Beomseok-LEE commited on
Commit
4fe6829
·
verified ·
1 Parent(s): 95c3ae0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -2256,7 +2256,7 @@ configs:
2256
  # Speech-MASSIVE
2257
 
2258
  ## Dataset Description
2259
- Speech-MASSIVE is a multilingual Spoken Language Understanding (SLU) dataset comprising the speech counterpart for a portion of the [MASSIVE](https://aclanthology.org/2023.acl-long.235) textual corpus. Speech-MASSIVE covers 12 languages (Arabic, German, Spanish, French, Hungarian, Korean, Dutch, Polish, European Portuguese, Russian, Turkish, and Vietnamese) from different families and inherits from MASSIVE the annotations for the intent prediction and slot-filling tasks. MASSIVE utterances' labels span 18 domains, with 60 intents and 55 slots. Full train split is provided for French and German, and for all the 12 languages (including French and German), we provide few-shot train, dev, test splits. Few-shot train (115 examples) covers all 18 domains, 60 intents, and 55 slots (including empty slots).
2260
 
2261
  Our extension is prompted by the scarcity of massively multilingual SLU datasets and the growing need for versatile speech datasets to assess foundation models (LLMs, speech encoders) across diverse languages and tasks. To facilitate speech technology advancements, we release Speech-MASSIVE publicly available with [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
2262
 
@@ -2264,49 +2264,49 @@ Speech-MASSIVE is accepted at INTERSPEECH 2024 (Kos, GREECE).
2264
 
2265
 
2266
  ## Dataset Summary
2267
- - `dev`: dev split available for all the 12 languages
2268
  - `test`: test split available for all the 12 languages
2269
  - `train_115`: few-shot split available for all the 12 languages (all 115 samples are cross-lingually aligned)
2270
  - `train`: train split available for French (fr-FR) and German (de-DE)
2271
 
2272
  | lang | split | # sample | # hrs | total # spk </br>(Male/Female/Unidentified) |
2273
  |:---:|:---:|:---:|:---:|:---:|
2274
- | ar-SA | dev | 2033 | 2.12 | 36 (22/14/0) |
2275
  | | test | 2974 | 3.23 | 37 (15/17/5) |
2276
  | | train_115 | 115 | 0.14 | 8 (4/4/0) |
2277
- | de-DE | dev | 2033 | 2.33 | 68 (35/32/1) |
2278
  | | test | 2974 | 3.41 | 82 (36/36/10) |
2279
  | | train | 11514 | 12.61 | 117 (50/63/4) |
2280
  | | train_115 | 115 | 0.15 | 7 (3/4/0) |
2281
- | es-ES | dev | 2033 | 2.53 | 109 (51/53/5) |
2282
  | | test | 2974 | 3.61 | 85 (37/33/15) |
2283
  | | train_115 | 115 | 0.13 | 7 (3/4/0) |
2284
- | fr-FR | dev | 2033 | 2.20 | 55 (26/26/3) |
2285
  | | test | 2974 | 2.65 | 75 (31/35/9) |
2286
  | | train | 11514 | 12.42 | 103 (50/52/1) |
2287
  | | train_115 | 115 | 0.12 | 103 (50/52/1) |
2288
- | hu-HU | dev | 2033 | 2.27 | 69 (33/33/3) |
2289
  | | test | 2974 | 3.30 | 55 (25/24/6) |
2290
  | | train_115 | 115 | 0.12 | 8 (3/4/1) |
2291
- | ko-KR | dev | 2033 | 2.12 | 21 (8/13/0) |
2292
  | | test | 2974 | 2.66 | 31 (10/18/3) |
2293
  | | train_115 | 115 | 0.14 | 8 (4/4/0) |
2294
- | nl-NL | dev | 2033 | 2.14 | 37 (17/19/1) |
2295
  | | test | 2974 | 3.30 | 100 (48/49/3) |
2296
  | | train_115 | 115 | 0.12 | 7 (3/4/0) |
2297
- | pl-PL | dev | 2033 | 2.24 | 105 (50/52/3) |
2298
  | | test | 2974 | 3.21 | 151 (73/71/7) |
2299
  | | train_115 | 115 | 0.10 | 7 (3/4/0) |
2300
- | pt-PT | dev | 2033 | 2.20 | 107 (51/53/3) |
2301
  | | test | 2974 | 3.25 | 102 (48/50/4) |
2302
  | | train_115 | 115 | 0.12 | 8 (4/4/0) |
2303
- | ru-RU | dev | 2033 | 2.25 | 40 (7/31/2) |
2304
  | | test | 2974 | 3.44 | 51 (25/23/3) |
2305
  | | train_115 | 115 | 0.12 | 7 (3/4/0) |
2306
- | tr-TR | dev | 2033 | 2.17 | 71 (36/34/1) |
2307
  | | test | 2974 | 3.00 | 42 (17/18/7) |
2308
  | | train_115 | 115 | 0.11 | 6 (3/3/0) |
2309
- | vi-VN | dev | 2033 | 2.10 | 28 (13/14/1) |
2310
  | | test | 2974 | 3.23 | 30 (11/14/5) |
2311
  || train_115 | 115 | 0.11 | 7 (2/4/1) |
2312
 
@@ -2322,14 +2322,14 @@ For example, to download the French config, simply specify the corresponding lan
2322
  ```python
2323
  from datasets import load_dataset
2324
 
2325
- speech_massive_fr_train = load_dataset("FBK-MT/Speech-MASSIVE", "fr-FR", split="train", trust_remote_code=True)
2326
  ```
2327
 
2328
  In case you don't have enough space in the machine, you can stream dataset by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
2329
  ```python
2330
  from datasets import load_dataset
2331
 
2332
- speech_massive_de_train = load_dataset("FBK-MT/Speech-MASSIVE", "de-DE", split="train", streaming=True, trust_remote_code=True)
2333
  list(speech_massive_de_train.take(2))
2334
  ```
2335
 
@@ -2338,7 +2338,7 @@ And then access each split.
2338
  ```python
2339
  from datasets import load_dataset
2340
 
2341
- speech_massive = load_dataset("FBK-MT/Speech-MASSIVE", "all", trust_remote_code=True)
2342
  multilingual_validation = speech_massive['validation']
2343
  ```
2344
 
@@ -2347,13 +2347,13 @@ Or you can load dataset's all the splits per language to separate languages more
2347
  from datasets import load_dataset, interleave_datasets, concatenate_datasets
2348
 
2349
  # creating full train set by interleaving between German and French
2350
- speech_massive_de = load_dataset("FBK-MT/Speech-MASSIVE", "de-DE", trust_remote_code=True)
2351
- speech_massive_fr = load_dataset("FBK-MT/Speech-MASSIVE", "fr-FR", trust_remote_code=True)
2352
  speech_massive_train_de_fr = interleave_datasets([speech_massive_de['train'], speech_massive_fr['train']])
2353
 
2354
  # creating train_115 few-shot set by concatenating Korean and Russian
2355
- speech_massive_ko = load_dataset("FBK-MT/Speech-MASSIVE", "ko-KR", trust_remote_code=True)
2356
- speech_massive_ru = load_dataset("FBK-MT/Speech-MASSIVE", "ru-RU", trust_remote_code=True)
2357
  speech_massive_train_115_ko_ru = concatenate_datasets([speech_massive_ko['train_115'], speech_massive_ru['train_115']])
2358
  ```
2359
 
 
2256
  # Speech-MASSIVE
2257
 
2258
  ## Dataset Description
2259
+ Speech-MASSIVE is a multilingual Spoken Language Understanding (SLU) dataset comprising the speech counterpart for a portion of the [MASSIVE](https://aclanthology.org/2023.acl-long.235) textual corpus. Speech-MASSIVE covers 12 languages (Arabic, German, Spanish, French, Hungarian, Korean, Dutch, Polish, European Portuguese, Russian, Turkish, and Vietnamese) from different families and inherits from MASSIVE the annotations for the intent prediction and slot-filling tasks. MASSIVE utterances' labels span 18 domains, with 60 intents and 55 slots. Full train split is provided for French and German, and for all the 12 languages (including French and German), we provide few-shot train, validation, test splits. Few-shot train (115 examples) covers all 18 domains, 60 intents, and 55 slots (including empty slots).
2260
 
2261
  Our extension is prompted by the scarcity of massively multilingual SLU datasets and the growing need for versatile speech datasets to assess foundation models (LLMs, speech encoders) across diverse languages and tasks. To facilitate speech technology advancements, we release Speech-MASSIVE publicly available with [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
2262
 
 
2264
 
2265
 
2266
  ## Dataset Summary
2267
+ - `validation`: validation split available for all the 12 languages
2268
  - `test`: test split available for all the 12 languages
2269
  - `train_115`: few-shot split available for all the 12 languages (all 115 samples are cross-lingually aligned)
2270
  - `train`: train split available for French (fr-FR) and German (de-DE)
2271
 
2272
  | lang | split | # sample | # hrs | total # spk </br>(Male/Female/Unidentified) |
2273
  |:---:|:---:|:---:|:---:|:---:|
2274
+ | ar-SA | validation | 2033 | 2.12 | 36 (22/14/0) |
2275
  | | test | 2974 | 3.23 | 37 (15/17/5) |
2276
  | | train_115 | 115 | 0.14 | 8 (4/4/0) |
2277
+ | de-DE | validation | 2033 | 2.33 | 68 (35/32/1) |
2278
  | | test | 2974 | 3.41 | 82 (36/36/10) |
2279
  | | train | 11514 | 12.61 | 117 (50/63/4) |
2280
  | | train_115 | 115 | 0.15 | 7 (3/4/0) |
2281
+ | es-ES | validation | 2033 | 2.53 | 109 (51/53/5) |
2282
  | | test | 2974 | 3.61 | 85 (37/33/15) |
2283
  | | train_115 | 115 | 0.13 | 7 (3/4/0) |
2284
+ | fr-FR | validation | 2033 | 2.20 | 55 (26/26/3) |
2285
  | | test | 2974 | 2.65 | 75 (31/35/9) |
2286
  | | train | 11514 | 12.42 | 103 (50/52/1) |
2287
  | | train_115 | 115 | 0.12 | 103 (50/52/1) |
2288
+ | hu-HU | validation | 2033 | 2.27 | 69 (33/33/3) |
2289
  | | test | 2974 | 3.30 | 55 (25/24/6) |
2290
  | | train_115 | 115 | 0.12 | 8 (3/4/1) |
2291
+ | ko-KR | validation | 2033 | 2.12 | 21 (8/13/0) |
2292
  | | test | 2974 | 2.66 | 31 (10/18/3) |
2293
  | | train_115 | 115 | 0.14 | 8 (4/4/0) |
2294
+ | nl-NL | validation | 2033 | 2.14 | 37 (17/19/1) |
2295
  | | test | 2974 | 3.30 | 100 (48/49/3) |
2296
  | | train_115 | 115 | 0.12 | 7 (3/4/0) |
2297
+ | pl-PL | validation | 2033 | 2.24 | 105 (50/52/3) |
2298
  | | test | 2974 | 3.21 | 151 (73/71/7) |
2299
  | | train_115 | 115 | 0.10 | 7 (3/4/0) |
2300
+ | pt-PT | validation | 2033 | 2.20 | 107 (51/53/3) |
2301
  | | test | 2974 | 3.25 | 102 (48/50/4) |
2302
  | | train_115 | 115 | 0.12 | 8 (4/4/0) |
2303
+ | ru-RU | validation | 2033 | 2.25 | 40 (7/31/2) |
2304
  | | test | 2974 | 3.44 | 51 (25/23/3) |
2305
  | | train_115 | 115 | 0.12 | 7 (3/4/0) |
2306
+ | tr-TR | validation | 2033 | 2.17 | 71 (36/34/1) |
2307
  | | test | 2974 | 3.00 | 42 (17/18/7) |
2308
  | | train_115 | 115 | 0.11 | 6 (3/3/0) |
2309
+ | vi-VN | validation | 2033 | 2.10 | 28 (13/14/1) |
2310
  | | test | 2974 | 3.23 | 30 (11/14/5) |
2311
  || train_115 | 115 | 0.11 | 7 (2/4/1) |
2312
 
 
2322
  ```python
2323
  from datasets import load_dataset
2324
 
2325
+ speech_massive_fr_train = load_dataset("FBK-MT/Speech-MASSIVE", "fr-FR", split="train")
2326
  ```
2327
 
2328
  In case you don't have enough space in the machine, you can stream dataset by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
2329
  ```python
2330
  from datasets import load_dataset
2331
 
2332
+ speech_massive_de_train = load_dataset("FBK-MT/Speech-MASSIVE", "de-DE", split="train", streaming=True)
2333
  list(speech_massive_de_train.take(2))
2334
  ```
2335
 
 
2338
  ```python
2339
  from datasets import load_dataset
2340
 
2341
+ speech_massive = load_dataset("FBK-MT/Speech-MASSIVE", "all")
2342
  multilingual_validation = speech_massive['validation']
2343
  ```
2344
 
 
2347
  from datasets import load_dataset, interleave_datasets, concatenate_datasets
2348
 
2349
  # creating full train set by interleaving between German and French
2350
+ speech_massive_de = load_dataset("FBK-MT/Speech-MASSIVE", "de-DE")
2351
+ speech_massive_fr = load_dataset("FBK-MT/Speech-MASSIVE", "fr-FR")
2352
  speech_massive_train_de_fr = interleave_datasets([speech_massive_de['train'], speech_massive_fr['train']])
2353
 
2354
  # creating train_115 few-shot set by concatenating Korean and Russian
2355
+ speech_massive_ko = load_dataset("FBK-MT/Speech-MASSIVE", "ko-KR")
2356
+ speech_massive_ru = load_dataset("FBK-MT/Speech-MASSIVE", "ru-RU")
2357
  speech_massive_train_115_ko_ru = concatenate_datasets([speech_massive_ko['train_115'], speech_massive_ru['train_115']])
2358
  ```
2359