|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
import asyncio |
|
import os |
|
import base64 |
|
from duckduckgo_search import DDGS |
|
import edge_tts |
|
import hashlib |
|
from datetime import datetime |
|
from typing import List, Optional |
|
|
|
|
|
EXPOSED_MODEL = "gpt-4o-realtime-preview-2024-12-17" |
|
INTERNAL_MODEL = "gpt-4o-mini" |
|
VOICE = "en-US-AriaNeural" |
|
AUDIO_DIR = "/tmp/audio_files" |
|
|
|
|
|
if not os.path.exists(AUDIO_DIR): |
|
try: |
|
os.makedirs(AUDIO_DIR, exist_ok=True) |
|
except PermissionError: |
|
print(f"Warning: Could not create {AUDIO_DIR}. Using default tmp if available.") |
|
|
|
app = FastAPI(title="Chat to Speech API", description="OpenAI-compatible API with text and audio responses") |
|
|
|
|
|
class Message(BaseModel): |
|
role: str |
|
content: str |
|
|
|
class ChatRequest(BaseModel): |
|
model: str = EXPOSED_MODEL |
|
messages: List[Message] |
|
stream: Optional[bool] = False |
|
|
|
|
|
class Choice(BaseModel): |
|
index: int |
|
message: Message |
|
finish_reason: str = "stop" |
|
audio: Optional[dict] = None |
|
|
|
class ChatResponse(BaseModel): |
|
id: str |
|
object: str = "chat.completion" |
|
created: int |
|
model: str = EXPOSED_MODEL |
|
choices: List[Choice] |
|
|
|
|
|
class Model(BaseModel): |
|
id: str |
|
object: str = "model" |
|
created: int |
|
owned_by: str = "xAI" |
|
|
|
@app.get("/v1/models") |
|
async def list_models(): |
|
"""Return a list of available models for OpenWebUI compatibility""" |
|
return { |
|
"object": "list", |
|
"data": [ |
|
{ |
|
"id": EXPOSED_MODEL, |
|
"object": "model", |
|
"created": int(datetime.now().timestamp()), |
|
"owned_by": "xAI" |
|
} |
|
] |
|
} |
|
|
|
async def text_to_speech(text: str, output_file: str) -> tuple[str, bytes]: |
|
"""Convert text to speech using edge-tts and return file path and audio bytes""" |
|
communicate = edge_tts.Communicate(text, VOICE) |
|
await communicate.save(output_file) |
|
with open(output_file, "rb") as f: |
|
audio_bytes = f.read() |
|
return output_file, audio_bytes |
|
|
|
def get_chat_response(query: str) -> str: |
|
"""Get response from DuckDuckGo Chat using gpt-4o-mini""" |
|
try: |
|
system_prompt = "<system_prompt>Your name is Vani. Give short, natural responses under 100 words that sound like casual human speech. Avoid lists, technical jargon, or complex sentences. Keep it simple and friendly for easy text-to-speech conversion.</system_prompt>" |
|
enhanced_query = f"{system_prompt}\n\n{query}" |
|
response = DDGS().chat(enhanced_query, model=INTERNAL_MODEL, timeout=30) |
|
return response |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error: {str(e)}") |
|
|
|
async def process_chat(query: str) -> tuple[str, bytes]: |
|
"""Process chat query and generate audio""" |
|
if not query: |
|
raise HTTPException(status_code=400, detail="Query cannot be empty") |
|
|
|
|
|
response_text = get_chat_response(query) |
|
|
|
|
|
hash_object = hashlib.md5(query.encode()) |
|
query_hash = hash_object.hexdigest()[:8] |
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") |
|
filename = f"response_{timestamp}_{query_hash}.mp3" |
|
output_file = os.path.join(AUDIO_DIR, filename) |
|
|
|
|
|
_, audio_bytes = await text_to_speech(response_text, output_file) |
|
|
|
return response_text, audio_bytes |
|
|
|
@app.post("/v1/chat/completions") |
|
async def chat_completions(request: ChatRequest): |
|
"""OpenAI-compatible chat endpoint with inline audio""" |
|
user_messages = [msg for msg in request.messages if msg.role == "user"] |
|
if not user_messages: |
|
raise HTTPException(status_code=400, detail="No user message provided") |
|
|
|
query = user_messages[-1].content |
|
|
|
|
|
response_text, audio_bytes = await process_chat(query) |
|
|
|
|
|
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8") |
|
|
|
|
|
chat_id = f"chatcmpl-{hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8]}" |
|
|
|
response = ChatResponse( |
|
id=chat_id, |
|
created=int(datetime.now().timestamp()), |
|
model=EXPOSED_MODEL, |
|
choices=[ |
|
Choice( |
|
index=0, |
|
message=Message( |
|
role="assistant", |
|
content=response_text |
|
), |
|
audio={ |
|
"id": f"audio-{chat_id}", |
|
"data": audio_base64, |
|
"format": "mp3" |
|
} |
|
) |
|
] |
|
) |
|
|
|
return response |
|
|
|
|
|
def cleanup(): |
|
for file in os.listdir(AUDIO_DIR): |
|
if file.startswith("response_") and file.endswith(".mp3"): |
|
try: |
|
os.remove(os.path.join(AUDIO_DIR, file)) |
|
except: |
|
pass |
|
|
|
@app.on_event("shutdown") |
|
def shutdown_event(): |
|
cleanup() |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |