File size: 29,147 Bytes
4b1e205 d64cb00 36c7a3d 5cd5ac6 0acea3f 0ede1ca a590917 d0fd8d2 58b3fd5 d551d39 4a36d0c 8c69846 14c37a0 76d99a3 f844434 562bf4a e1b8b14 75b3edb e2b85f7 bcfa3d9 158fd83 e46699e 8625c6e 412a319 1830610 5158f4d 66e57f9 d64cb00 36c7a3d d64cb00 36c7a3d 5cd5ac6 0acea3f 0ede1ca a590917 d0fd8d2 58b3fd5 d551d39 4a36d0c 8c69846 14c37a0 76d99a3 f844434 562bf4a e1b8b14 75b3edb e2b85f7 bcfa3d9 158fd83 e46699e 8625c6e 412a319 1830610 5158f4d 66e57f9 4b1e205 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
---
license: apache-2.0
task_categories:
- text-classification
- text-generation
language:
- en
tags:
- legal
- legal-reasoning
- multiple-choice
- regression
pretty_name: LegalBench Processed by DatologyAI
size_categories:
- 1K<n<10K
configs:
- config_name: canada_tax_court_outcomes
data_files:
- split: train
path: canada_tax_court_outcomes/train-*
- split: test
path: canada_tax_court_outcomes/test-*
- config_name: citation_prediction_classification
data_files:
- split: train
path: citation_prediction_classification/train-*
- split: test
path: citation_prediction_classification/test-*
- config_name: diversity_3
data_files:
- split: train
path: diversity_3/train-*
- split: test
path: diversity_3/test-*
- config_name: diversity_5
data_files:
- split: train
path: diversity_5/train-*
- split: test
path: diversity_5/test-*
- config_name: diversity_6
data_files:
- split: train
path: diversity_6/train-*
- split: test
path: diversity_6/test-*
- config_name: jcrew_blocker
data_files:
- split: train
path: jcrew_blocker/train-*
- split: test
path: jcrew_blocker/test-*
- config_name: learned_hands_benefits
data_files:
- split: train
path: learned_hands_benefits/train-*
- split: test
path: learned_hands_benefits/test-*
- config_name: maud_ability_to_consummate_concept_is_subject_to_mae_carveouts
data_files:
- split: train
path: maud_ability_to_consummate_concept_is_subject_to_mae_carveouts/train-*
- split: test
path: maud_ability_to_consummate_concept_is_subject_to_mae_carveouts/test-*
- config_name: maud_additional_matching_rights_period_for_modifications_cor
data_files:
- split: train
path: maud_additional_matching_rights_period_for_modifications_cor/train-*
- split: test
path: maud_additional_matching_rights_period_for_modifications_cor/test-*
- config_name: maud_change_in_law_subject_to_disproportionate_impact_modifier
data_files:
- split: train
path: maud_change_in_law_subject_to_disproportionate_impact_modifier/train-*
- split: test
path: maud_change_in_law_subject_to_disproportionate_impact_modifier/test-*
- config_name: maud_changes_in_gaap_or_other_accounting_principles_subject_to_disproportionate_impact_modifier
data_files:
- split: train
path: maud_changes_in_gaap_or_other_accounting_principles_subject_to_disproportionate_impact_modifier/train-*
- split: test
path: maud_changes_in_gaap_or_other_accounting_principles_subject_to_disproportionate_impact_modifier/test-*
- config_name: maud_cor_permitted_in_response_to_intervening_event
data_files:
- split: train
path: maud_cor_permitted_in_response_to_intervening_event/train-*
- split: test
path: maud_cor_permitted_in_response_to_intervening_event/test-*
- config_name: maud_fls_mae_standard
data_files:
- split: train
path: maud_fls_mae_standard/train-*
- split: test
path: maud_fls_mae_standard/test-*
- config_name: maud_includes_consistent_with_past_practice
data_files:
- split: train
path: maud_includes_consistent_with_past_practice/train-*
- split: test
path: maud_includes_consistent_with_past_practice/test-*
- config_name: maud_initial_matching_rights_period_cor
data_files:
- split: train
path: maud_initial_matching_rights_period_cor/train-*
- split: test
path: maud_initial_matching_rights_period_cor/test-*
- config_name: maud_ordinary_course_efforts_standard
data_files:
- split: train
path: maud_ordinary_course_efforts_standard/train-*
- split: test
path: maud_ordinary_course_efforts_standard/test-*
- config_name: maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic_related_governmental_responses_or_measures
data_files:
- split: train
path: maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic_related_governmental_responses_or_measures/train-*
- split: test
path: maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic_related_governmental_responses_or_measures/test-*
- config_name: maud_pandemic_or_other_public_health_event_subject_to_disproportionate_impact_modifier
data_files:
- split: train
path: maud_pandemic_or_other_public_health_event_subject_to_disproportionate_impact_modifier/train-*
- split: test
path: maud_pandemic_or_other_public_health_event_subject_to_disproportionate_impact_modifier/test-*
- config_name: maud_type_of_consideration
data_files:
- split: train
path: maud_type_of_consideration/train-*
- split: test
path: maud_type_of_consideration/test-*
- config_name: personal_jurisdiction
data_files:
- split: train
path: personal_jurisdiction/train-*
- split: test
path: personal_jurisdiction/test-*
- config_name: sara_entailment
data_files:
- split: train
path: sara_entailment/train-*
- split: test
path: sara_entailment/test-*
- config_name: sara_numeric
data_files:
- split: train
path: sara_numeric/train-*
- split: test
path: sara_numeric/test-*
- config_name: supply_chain_disclosure_best_practice_accountability
data_files:
- split: train
path: supply_chain_disclosure_best_practice_accountability/train-*
- split: test
path: supply_chain_disclosure_best_practice_accountability/test-*
- config_name: supply_chain_disclosure_best_practice_certification
data_files:
- split: train
path: supply_chain_disclosure_best_practice_certification/train-*
- split: test
path: supply_chain_disclosure_best_practice_certification/test-*
- config_name: supply_chain_disclosure_best_practice_training
data_files:
- split: train
path: supply_chain_disclosure_best_practice_training/train-*
- split: test
path: supply_chain_disclosure_best_practice_training/test-*
- config_name: telemarketing_sales_rule
data_files:
- split: train
path: telemarketing_sales_rule/train-*
- split: test
path: telemarketing_sales_rule/test-*
dataset_info:
- config_name: canada_tax_court_outcomes
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 7864
num_examples: 6
- name: test
num_bytes: 392042
num_examples: 244
download_size: 161532
dataset_size: 399906
- config_name: citation_prediction_classification
features:
- name: answer
dtype: string
- name: citation
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 1471
num_examples: 2
- name: test
num_bytes: 60272
num_examples: 108
download_size: 30302
dataset_size: 61743
- config_name: diversity_3
features:
- name: aic_is_met
dtype: string
- name: answer
dtype: string
- name: index
dtype: string
- name: parties_are_diverse
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 3040
num_examples: 6
- name: test
num_bytes: 153782
num_examples: 300
download_size: 38926
dataset_size: 156822
- config_name: diversity_5
features:
- name: aic_is_met
dtype: string
- name: answer
dtype: string
- name: index
dtype: string
- name: parties_are_diverse
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 3520
num_examples: 6
- name: test
num_bytes: 177382
num_examples: 300
download_size: 45990
dataset_size: 180902
- config_name: diversity_6
features:
- name: aic_is_met
dtype: string
- name: answer
dtype: string
- name: index
dtype: string
- name: parties_are_diverse
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 5087
num_examples: 6
- name: test
num_bytes: 253115
num_examples: 300
download_size: 66869
dataset_size: 258202
- config_name: jcrew_blocker
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 16657
num_examples: 6
- name: test
num_bytes: 137273
num_examples: 54
download_size: 79424
dataset_size: 153930
- config_name: learned_hands_benefits
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 17791
num_examples: 6
- name: test
num_bytes: 188795
num_examples: 66
download_size: 134816
dataset_size: 206586
- config_name: maud_ability_to_consummate_concept_is_subject_to_mae_carveouts
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 10943
num_examples: 1
- name: test
num_bytes: 628674
num_examples: 69
download_size: 226362
dataset_size: 639617
- config_name: maud_additional_matching_rights_period_for_modifications_cor
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 4807
num_examples: 1
- name: test
num_bytes: 698844
num_examples: 158
download_size: 242597
dataset_size: 703651
- config_name: maud_change_in_law_subject_to_disproportionate_impact_modifier
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 12303
num_examples: 1
- name: test
num_bytes: 927240
num_examples: 99
download_size: 323047
dataset_size: 939543
- config_name: maud_changes_in_gaap_or_other_accounting_principles_subject_to_disproportionate_impact_modifier
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 12331
num_examples: 1
- name: test
num_bytes: 921626
num_examples: 98
download_size: 314921
dataset_size: 933957
- config_name: maud_cor_permitted_in_response_to_intervening_event
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 5545
num_examples: 1
- name: test
num_bytes: 419104
num_examples: 100
download_size: 149850
dataset_size: 424649
- config_name: maud_fls_mae_standard
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 9773
num_examples: 1
- name: test
num_bytes: 733140
num_examples: 77
download_size: 237744
dataset_size: 742913
- config_name: maud_includes_consistent_with_past_practice
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 2551
num_examples: 1
- name: test
num_bytes: 333827
num_examples: 181
download_size: 108295
dataset_size: 336378
- config_name: maud_initial_matching_rights_period_cor
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 6559
num_examples: 1
- name: test
num_bytes: 698682
num_examples: 158
download_size: 249943
dataset_size: 705241
- config_name: maud_ordinary_course_efforts_standard
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 2407
num_examples: 1
- name: test
num_bytes: 340523
num_examples: 181
download_size: 111087
dataset_size: 342930
- config_name: maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic_related_governmental_responses_or_measures
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 7851
num_examples: 1
- name: test
num_bytes: 932728
num_examples: 98
download_size: 331916
dataset_size: 940579
- config_name: maud_pandemic_or_other_public_health_event_subject_to_disproportionate_impact_modifier
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 7790
num_examples: 1
- name: test
num_bytes: 926750
num_examples: 98
download_size: 344444
dataset_size: 934540
- config_name: maud_type_of_consideration
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 859
num_examples: 1
- name: test
num_bytes: 337302
num_examples: 172
download_size: 100428
dataset_size: 338161
- config_name: personal_jurisdiction
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: slice
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 4587
num_examples: 4
- name: test
num_bytes: 57966
num_examples: 50
download_size: 25202
dataset_size: 62553
- config_name: sara_entailment
features:
- name: answer
dtype: string
- name: case id
dtype: string
- name: description
dtype: string
- name: index
dtype: string
- name: question
dtype: string
- name: statute
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 4156
num_examples: 4
- name: test
num_bytes: 362718
num_examples: 272
download_size: 118893
dataset_size: 366874
- config_name: sara_numeric
features:
- name: answer
dtype: string
- name: case id
dtype: string
- name: description
dtype: string
- name: index
dtype: string
- name: question
dtype: string
- name: statute
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 357847
num_examples: 4
- name: test
num_bytes: 8595263
num_examples: 96
download_size: 1133960
dataset_size: 8953110
- config_name: supply_chain_disclosure_best_practice_accountability
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 41722
num_examples: 8
- name: test
num_bytes: 2870825
num_examples: 379
download_size: 1320868
dataset_size: 2912547
- config_name: supply_chain_disclosure_best_practice_certification
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 46104
num_examples: 8
- name: test
num_bytes: 2770224
num_examples: 378
download_size: 1303303
dataset_size: 2816328
- config_name: supply_chain_disclosure_best_practice_training
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 52370
num_examples: 8
- name: test
num_bytes: 2883341
num_examples: 379
download_size: 1325423
dataset_size: 2935711
- config_name: telemarketing_sales_rule
features:
- name: answer
dtype: string
- name: index
dtype: string
- name: text
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 2886
num_examples: 4
- name: test
num_bytes: 39244
num_examples: 47
download_size: 19388
dataset_size: 42130
---
# DatologyAI/legalbench
## Overview
This dataset contains 26 legal reasoning tasks from [LegalBench](https://github.com/HazyResearch/legalbench), processed for easy use in language model evaluation. Each task preserves its original data and includes an additional `input` column with a formatted prompt, generated using the LegalBench registry, ready to be fed directly into language models.
## Task Categories
- **Basic Legal**: `canada_tax_court_outcomes`, `jcrew_blocker`, `learned_hands_benefits`, `telemarketing_sales_rule`
- **Citation**: `citation_prediction_classification`
- **Diversity Analysis**: `diversity_3`, `diversity_5`, `diversity_6`
- **Jurisdiction**: `personal_jurisdiction`
- **SARA Analysis**: `sara_entailment`, `sara_numeric`
- **Supply Chain Disclosure**: `supply_chain_disclosure_best_practice_accountability`, `supply_chain_disclosure_best_practice_certification`, `supply_chain_disclosure_best_practice_training`
- **MAUD Contract Analysis**: `maud_ability_to_consummate_concept_is_subject_to_mae_carveouts`, `maud_additional_matching_rights_period_for_modifications_cor`, `maud_change_in_law_subject_to_disproportionate_impact_modifier`, `maud_changes_in_gaap_or_other_accounting_principles_subject_to_disproportionate_impact_modifier`, `maud_cor_permitted_in_response_to_intervening_event`, `maud_fls_mae_standard`, `maud_includes_consistent_with_past_practice`, `maud_initial_matching_rights_period_cor`, `maud_ordinary_course_efforts_standard`, `maud_pandemic_or_other_public_health_event_subject_to_disproportionate_impact_modifier`, `maud_pandemic_or_other_public_health_event_specific_reference_to_pandemic_related_governmental_responses_or_measures`, `maud_type_of_consideration`
## Task Details
<div style="overflow-x: auto; max-height: 400px; border: 1px solid #ddd;">
<table>
<thead>
<tr>
<th>Task Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr><td>canada\_tax\_court\_outcomes</td><td>multiple_choice</td><td>INSTRUCTIONS: Indicate whether the following judgment excerpt from a Tax Court of Canada decision allows the appeal or dismisses the appeal. Where the result is mixed, indicate that the appeal was allowed. Ignore costs orders. Where the outcome is unclear indicate other.<br>Options: allowed, dismissed, other</td></tr>
<tr><td>citation\_prediction\_classification</td><td>multiple_choice</td><td>Can the case can be used as a citation for the provided text?</td></tr>
<tr><td>diversity\_3</td><td>multiple_choice</td><td>Diversity jurisdiction exists when there is (1) complete diversity between plaintiffs and defendants, and (2) the amount-in-controversy (AiC) is greater than $75k.</td></tr>
<tr><td>diversity\_5</td><td>multiple_choice</td><td>Diversity jurisdiction exists when there is (1) complete diversity between plaintiffs and defendants, and (2) the amount-in-controversy (AiC) is greater than $75k.</td></tr>
<tr><td>diversity\_6</td><td>multiple_choice</td><td>Diversity jurisdiction exists when there is (1) complete diversity between plaintiffs and defendants, and (2) the amount-in-controversy (AiC) is greater than $75k.</td></tr>
<tr><td>jcrew\_blocker</td><td>multiple_choice</td><td>The JCrew Blocker is a provision that typically includes (1) a prohibition on the borrower from transferring IP to an unrestricted subsidiary, and (2) a requirement that the borrower obtains the consent of its agent/lenders before transferring IP to any subsidiary. Do the following provisions contain JCrew Blockers?</td></tr>
<tr><td>learned\_hands\_benefits</td><td>multiple_choice</td><td>Does the post discuss public benefits and social services that people can get from the government, like for food, disability, old age, housing, medical help, unemployment, child care, or other social needs?</td></tr>
<tr><td>maud\_ability\_to\_consummate\_concept\_is\_subject\_to\_mae\_carveouts</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Is the 'ability to consummate' concept subject to Material Adverse Effect (MAE) carveouts?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_additional\_matching\_rights\_period\_for\_modifications\_cor</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: How long is the additional matching rights period for modifications in case the board changes its recommendation?<br>Option A: 2 business days or less<br>Option B: 3 business days<br>Option C: 3 days<br>Option D: 4 business days<br>Option E: 5 business days<br>Option F: > 5 business days<br>Option G: None</td></tr>
<tr><td>maud\_change\_in\_law\_subject\_to\_disproportionate\_impact\_modifier</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Do changes in law that have disproportionate impact qualify for Material Adverse Effect (MAE)?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_changes\_in\_gaap\_or\_other\_accounting\_principles\_subject\_to\_disproportionate\_impact\_modifier</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Do changes in GAAP or other accounting principles that have disproportionate impact qualify for Material Adverse Effect (MAE)?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_cor\_permitted\_in\_response\_to\_intervening\_event</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Is Change of Recommendation permitted in response to an intervening event?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_fls\_mae\_standard</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: What is the Forward Looking Standard (FLS) with respect to Material Adverse Effect (MAE)?<br>Option A: "Could" (reasonably) be expected to<br>Option B: "Would"<br>Option C: "Would" (reasonably) be expected to<br>Option D: No<br>Option E: Other forward-looking standard</td></tr>
<tr><td>maud\_includes\_consistent\_with\_past\_practice</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Does the wording of the Efforts Covenant clause include 'consistent with past practice'?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_initial\_matching\_rights\_period\_cor</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: How long is the initial matching rights period in case the board changes its recommendation?<br>Option A: 2 business days or less<br>Option B: 3 business days<br>Option C: 3 calendar days<br>Option D: 4 business days<br>Option E: 4 calendar days<br>Option F: 5 business days<br>Option G: Greater than 5 business days</td></tr>
<tr><td>maud\_ordinary\_course\_efforts\_standard</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: What is the efforts standard?<br>Option A: Commercially reasonable efforts<br>Option B: Flat covenant (no efforts standard)<br>Option C: Reasonable best efforts</td></tr>
<tr><td>maud\_pandemic\_or\_other\_public\_health\_event\_subject\_to\_disproportionate\_impact\_modifier</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Do pandemics or other public health events have to have disproportionate impact to qualify for Material Adverse Effect (MAE)?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_pandemic\_or\_other\_public\_health\_event\_specific\_reference\_to\_pandemic\_related\_governmental\_responses\_or\_measures</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: Is there specific reference to pandemic-related governmental responses or measures in the clause that qualifies pandemics or other public health events for Material Adverse Effect (MAE)?<br>Option A: No<br>Option B: Yes</td></tr>
<tr><td>maud\_type\_of\_consideration</td><td>multiple_choice</td><td>Instruction: Read the segment of a merger agreement and answer the multiple-choice question by choosing the option that best characterizes the agreement.<br>Question: What type of consideration is specified in this agreement?<br>Option A: All Cash<br>Option B: All Stock<br>Option C: Mixed Cash/Stock<br>Option D: Mixed Cash/Stock: Election</td></tr>
<tr><td>personal\_jurisdiction</td><td>multiple_choice</td><td>There is personal jurisdiction over a defendant in the state where the defendant is domiciled, or when (1) the defendant has sufficient contacts with the state, such that they have availed itself of the privileges of the state and (2) the claim arises out of the nexus of the defendant's contacts with the state.</td></tr>
<tr><td>sara\_entailment</td><td>multiple_choice</td><td>Determine whether the following statements are entailed under the statute.</td></tr>
<tr><td>sara\_numeric</td><td>regression</td><td>Answer the following questions.</td></tr>
<tr><td>supply\_chain\_disclosure\_best\_practice\_accountability</td><td>multiple_choice</td><td>Evaluates supply chain disclosure practices</td></tr>
<tr><td>supply\_chain\_disclosure\_best\_practice\_certification</td><td>multiple_choice</td><td>Evaluates supply chain disclosure practices</td></tr>
<tr><td>supply\_chain\_disclosure\_best\_practice\_training</td><td>multiple_choice</td><td>Evaluates supply chain disclosure practices</td></tr>
<tr><td>telemarketing\_sales\_rule</td><td>multiple_choice</td><td>The Telemarketing Sales Rule is provided by 16 C.F.R. § 310.3(a)(1) and 16 C.F.R. § 310.3(a)(2).</td></tr>
</tbody>
</table>
</div>
## Data Format
Each dataset retains its original columns from LegalBench and adds an `input` column containing a pre-formatted prompt based on the task's instructions and template from the LegalBench registry. This `input` column is designed for direct use with language models. The column structure varies by task; common examples include:
- **Basic Legal**: `answer`, `index`, `text`, `input`
- **Citation**: `answer`, `citation`, `index`, `text`, `input`
- **Diversity Analysis**: `aic_is_met`, `answer`, `index`, `parties_are_diverse`, `text`, `input`
- **Jurisdiction**: `answer`, `index`, `slice`, `text`, `input`
- **SARA Analysis**: `answer`, `case id`, `description`, `index`, `question`, `statute`, `text`, `input`
- **Supply Chain Disclosure**: `answer`, `index`, `text`, `input`
- **MAUD Contract Analysis**: `answer`, `index`, `text`, `input`
## Usage
Load and use a task dataset as follows:
```python
from datasets import load_dataset
# Load a specific task
dataset = load_dataset("DatologyAI/legalbench", "canada_tax_court_outcomes")
# Access the formatted input and answer
example = dataset["test"][0]
print("Input:", example["input"])
print("Answer:", example["answer"])
```
## Model Evaluation Example
Evaluate a language model on a task:
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
model_name = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Load a task
dataset = load_dataset("DatologyAI/legalbench", "personal_jurisdiction")
example = dataset["test"][0]
# Generate response
inputs = tokenizer(example["input"], return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_new_tokens=10, temperature=0.0)
response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(f"Gold answer: {example['answer']}")
print(f"Model response: {response}")
```
|