Delete README.md
Browse files
README.md
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
# Documentation Dataset: TTS_Multilingual_Data
|
2 |
-
|
3 |
-
## Dataset Summary
|
4 |
-
This large-scale multilingual corpus is designed for linguistic analysis and the development of speech processing models. It supports tasks such as **Text-to-Speech (TTS)**, **Automatic Speech Recognition (ASR)**, and **speaker identification**. Structured in **Parquet format**, it serves as a key resource for training and evaluating models, using metrics tailored to ASR and speech technologies.
|
5 |
-
|
6 |
-
## Thematic Categories
|
7 |
-
Our dataset is organized into the following thematic categories. Please note that all audio files have a maximum duration of **20 seconds**.
|
8 |
-
|
9 |
-
### Discours & Conférences
|
10 |
-
- "conférence TED"
|
11 |
-
- "discours politique"
|
12 |
-
- "interview"
|
13 |
-
- "podcast"
|
14 |
-
|
15 |
-
### Conversations & Dialogues
|
16 |
-
- "conversation téléphonique"
|
17 |
-
- "dialogue spontané"
|
18 |
-
- "discussion en groupe"
|
19 |
-
- "interview audio"
|
20 |
-
|
21 |
-
### Contenus Médias & Divertissement
|
22 |
-
- "extrait de radio"
|
23 |
-
- "chronique radio"
|
24 |
-
- "narration audio"
|
25 |
-
|
26 |
-
### Instructions & Assistants Vocaux
|
27 |
-
- "commandes vocales"
|
28 |
-
- "assistant vocal"
|
29 |
-
- "notification audio"
|
30 |
-
- "message automatique"
|
31 |
-
|
32 |
-
### Langage Informel & Expressions Courantes
|
33 |
-
- "argot"
|
34 |
-
- "expressions françaises"
|
35 |
-
- "langage familier"
|
36 |
-
- "parler jeune"
|
37 |
-
- "émotions en parole"
|
38 |
-
|
39 |
-
### Accessibilité & Inclusion
|
40 |
-
- "parole avec accent"
|
41 |
-
- "voix de personnes âgées"
|
42 |
-
- "enfants qui parlent"
|
43 |
-
|
44 |
-
### Littérature & Culture
|
45 |
-
- "littérature"
|
46 |
-
- "conte"
|
47 |
-
- "fable"
|
48 |
-
- "poésie"
|
49 |
-
- "extrait de roman"
|
50 |
-
|
51 |
-
## Supported Tasks
|
52 |
-
- **Text-to-Speech (TTS)**: The dataset can be used to train models for generating speech from text.
|
53 |
-
- **Automatic Speech Recognition (ASR)**: The dataset can be used to train models for transcribing speech to text. The most common evaluation metric is the **Word Error Rate (WER)**.
|
54 |
-
- **Speaker Identification**: The dataset supports tasks related to identifying speakers based on their voice.
|
55 |
-
|
56 |
-
## Dataset Structure
|
57 |
-
### Organisation of the Project
|
58 |
-
The dataset, **TTS_Multilingual_Data**, is organized as follows:
|
59 |
-
containing one subfolder. The train subfolder includes data files in Parquet format (e.g., data1.parquet), while the audio subfolder contains audio files in WAV format (e.g., audio1.wav). Additionally, a readme.md file at the root level provides detailed information about the dataset's content and usage.
|
60 |
-
|
61 |
-
### Columns
|
62 |
-
- **audio_path** (string): Path to the audio file.
|
63 |
-
- **text** (string): Ground truth transcription.
|
64 |
-
- **duration** (float64): Duration of the audio file in seconds.
|
65 |
-
- **speaker_id** (string or int): Identifier for the speaker.
|
66 |
-
- **audio_format** (string): Format of the audio file (e.g., WAV, MP3).
|
67 |
-
- **sampling_rate** (int): Sampling rate of the audio file.
|
68 |
-
- **language** (string): Language of the transcription.
|
69 |
-
- **gender** (string): Gender of the speaker (if available).
|
70 |
-
|
71 |
-
## File Format
|
72 |
-
The dataset is delivered in **Parquet format**, optimized for efficient storage and processing.
|
73 |
-
|
74 |
-
## 8. Contact
|
75 |
-
For inquiries, please contact:
|
76 |
-
|
77 |
-
- **Email**: [[email protected]](mailto\:[email protected])
|
78 |
-
- **Website**: [databoost.us](https://databoost.us)
|
79 |
-
|
80 |
-
## Citations Information
|
81 |
-
If you use this dataset, please cite it as follows:
|
82 |
-
```bibtex
|
83 |
-
@article{
|
84 |
-
title={TTS_Multilingual_Data},
|
85 |
-
author={Databoost},
|
86 |
-
year={2025}
|
87 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|