File size: 3,147 Bytes
6c3d3c5
 
 
 
 
 
 
 
27aad4e
 
 
6c3d3c5
 
 
 
27aad4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3d3c5
27aad4e
 
6c3d3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Documentation Dataset: TTS_Multilingual_Data

## Dataset Summary
This large-scale multilingual corpus is designed for linguistic analysis and the development of speech processing models. It supports tasks such as **Text-to-Speech (TTS)**, **Automatic Speech Recognition (ASR)**, and **speaker identification**. Structured in **Parquet format**, it serves as a key resource for training and evaluating models, using metrics tailored to ASR and speech technologies.

## Thematic Categories
Our dataset is organized into the following thematic categories. Please note that all audio files have a maximum duration of **20 seconds**.

### Speeches & Conferences
- "TED talk"
- "political speech"
- "interview"
- "podcast"

### Conversations & Dialogues
- "phone conversation"
- "spontaneous dialogue"
- "group discussion"
- "audio interview"

### Media Content & Entertainment
- "radio clip"
- "radio commentary"
- "audio narration"

### Instructions & Voice Assistants
- "voice commands"
- "voice assistant"
- "audio notification"
- "automated message"

### Informal Language & Common Expressions
- "slang"
- "French expressions"
- "colloquial language"
- "youth speech"
- "emotions in speech"

### Accessibility & Inclusion
- "speech with an accent"
- "elderly voices"
- "children speaking"

### Literature & Culture
- "literature"
- "tale"
- "fable"
- "poetry"
- "novel excerpt"

## Supported Tasks
- **Text-to-Speech (TTS)**: The dataset can be used to train models for generating speech from text.
- **Automatic Speech Recognition (ASR)**: The dataset can be used to train models for transcribing speech to text. The most common evaluation metric is the **Word Error Rate (WER)**.
- **Speaker Identification**: The dataset supports tasks related to identifying speakers based on their voice.

## Dataset Structure
### Organisation of the Project
The dataset, **TTS_Multilingual_Data**, is organized as follows:
containing one subfolder. The train subfolder includes data files in Parquet format (e.g., data1.parquet), while the audio subfolder contains audio files in WAV format (e.g., audio1.wav). Additionally, a readme.md file at the root level provides detailed information about the dataset's content and usage.

### Columns
- **audio_path** (string): Path to the audio file.
- **text** (string): Ground truth transcription.
- **duration** (float64): Duration of the audio file in seconds.
- **speaker_id** (string or int): Identifier for the speaker.
- **audio_format** (string): Format of the audio file (e.g., WAV, MP3).
- **sampling_rate** (int): Sampling rate of the audio file.
- **language** (string): Language of the transcription.
- **gender** (string): Gender of the speaker (if available).

## File Format
The dataset is delivered in **Parquet format**, optimized for efficient storage and processing.

## 8. Contact
For inquiries, please contact:

- **Email**: [[email protected]](mailto\:[email protected])
- **Website**: [databoost.us](https://databoost.us)

## Citations Information
If you use this dataset, please cite it as follows:
```bibtex
@article{
  title={TTS_Multilingual_Data},
  author={Databoost},
  year={2025}
}