Datasets:
Delete loading script
Browse files- ScreenTalk-XS.py +0 -167
ScreenTalk-XS.py
DELETED
|
@@ -1,167 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import csv
|
| 4 |
-
import datasets
|
| 5 |
-
from datasets.utils.py_utils import size_str
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
-
|
| 8 |
-
from .languages import LANGUAGES
|
| 9 |
-
from .release_stats import STATS
|
| 10 |
-
|
| 11 |
-
_CITATION = """\
|
| 12 |
-
@inproceedings{Trans,
|
| 13 |
-
title={fj11: A Massively Speech Corpus},
|
| 14 |
-
author={fj11},
|
| 15 |
-
year={2025}
|
| 16 |
-
}
|
| 17 |
-
"""
|
| 18 |
-
|
| 19 |
-
_HOMEPAGE = "https://huggingface.co/datasets/DataLabX"
|
| 20 |
-
|
| 21 |
-
_LICENSE = "CC-BY-SA-4.0"
|
| 22 |
-
|
| 23 |
-
_BASE_URL = "https://huggingface.co/datasets/DataLabX/ScreenTalk-XS/resolve/main/"
|
| 24 |
-
|
| 25 |
-
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar"
|
| 26 |
-
|
| 27 |
-
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv"
|
| 28 |
-
|
| 29 |
-
_N_SHARDS_URL = _BASE_URL + "n_shards.json"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def is_valid_token(token):
|
| 33 |
-
return True
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class TransConfig(datasets.BuilderConfig):
|
| 37 |
-
"""BuilderConfig for TransConfig."""
|
| 38 |
-
def __init__(self, name, version, **kwargs):
|
| 39 |
-
self.language = kwargs.pop("language", None)
|
| 40 |
-
self.release_date = kwargs.pop("release_date", None)
|
| 41 |
-
self.total_hr = kwargs.pop("total_hr", None)
|
| 42 |
-
self.validated_hr = kwargs.pop("validated_hr", None)
|
| 43 |
-
self.num_clips = kwargs.pop("num_clips", None)
|
| 44 |
-
self.size_bytes = kwargs.pop("size_bytes", None)
|
| 45 |
-
self.size_human = size_str(self.size_bytes)
|
| 46 |
-
description = (
|
| 47 |
-
f"This dataset consists of transcribed speech data from TV series and movies across various genres, "
|
| 48 |
-
f"including action, drama, sci-fi, and romance. It was released on {self.release_date} and contains "
|
| 49 |
-
f"{self.total_hr} hours of transcribed speech data. "
|
| 50 |
-
f"The dataset includes {self.num_clips} audio clips in {self.language}, with a total size of {self.size_human}, "
|
| 51 |
-
f"and is designed for automatic speech recognition (ASR) model training and fine-tuning, providing diverse and "
|
| 52 |
-
f"natural conversational speech from real-world entertainment media."
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
super(TransConfig, self).__init__(
|
| 56 |
-
name=name,
|
| 57 |
-
version=version,
|
| 58 |
-
description=description,
|
| 59 |
-
**kwargs
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class ScreenTalk(datasets.GeneratorBasedBuilder):
|
| 64 |
-
VERSION = datasets.Version("1.0.0")
|
| 65 |
-
BUILDER_CONFIGS = [
|
| 66 |
-
TransConfig(
|
| 67 |
-
name=lang,
|
| 68 |
-
version=STATS["version"],
|
| 69 |
-
language=LANGUAGES[lang],
|
| 70 |
-
release_date=STATS["date"],
|
| 71 |
-
num_clips=lang_stats["clips"],
|
| 72 |
-
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
|
| 73 |
-
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
|
| 74 |
-
)
|
| 75 |
-
for lang, lang_stats in STATS["locales"].items()
|
| 76 |
-
]
|
| 77 |
-
|
| 78 |
-
def _info(self):
|
| 79 |
-
total_languages = len(STATS["locales"])
|
| 80 |
-
total_valid_hours = STATS["totalValidHrs"]
|
| 81 |
-
description = (
|
| 82 |
-
f"This dataset consists of {total_valid_hours} hours of validated speech data "
|
| 83 |
-
f"in {total_languages} languages, with more content being continuously added. "
|
| 84 |
-
"It is designed for training and fine-tuning automatic speech recognition (ASR) models, "
|
| 85 |
-
"providing a diverse and realistic representation of spoken language."
|
| 86 |
-
)
|
| 87 |
-
features = datasets.Features(
|
| 88 |
-
{
|
| 89 |
-
"audio": datasets.Audio(), # Use datasets.Audio() instead of string
|
| 90 |
-
"sentence": datasets.Value("string"),
|
| 91 |
-
}
|
| 92 |
-
)
|
| 93 |
-
return datasets.DatasetInfo(
|
| 94 |
-
description=description,
|
| 95 |
-
features=features,
|
| 96 |
-
supervised_keys=None,
|
| 97 |
-
homepage=_HOMEPAGE,
|
| 98 |
-
license=_LICENSE,
|
| 99 |
-
citation=_CITATION,
|
| 100 |
-
version=self.config.version,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
def _split_generators(self, dl_manager):
|
| 104 |
-
|
| 105 |
-
lang = self.config.name
|
| 106 |
-
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
|
| 107 |
-
with open(n_shards_path, encoding="utf-8") as f:
|
| 108 |
-
n_shards = json.load(f)
|
| 109 |
-
|
| 110 |
-
user_token = dl_manager.download_config.token
|
| 111 |
-
has_valid_token = is_valid_token(user_token)
|
| 112 |
-
|
| 113 |
-
audio_urls = {}
|
| 114 |
-
splits = ["xs"]
|
| 115 |
-
|
| 116 |
-
for split in splits:
|
| 117 |
-
audio_urls[split] = [
|
| 118 |
-
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
|
| 119 |
-
]
|
| 120 |
-
archive_paths = dl_manager.download(audio_urls)
|
| 121 |
-
|
| 122 |
-
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
|
| 123 |
-
meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
|
| 124 |
-
meta_paths = dl_manager.download_and_extract(meta_urls)
|
| 125 |
-
|
| 126 |
-
split_generators = []
|
| 127 |
-
split_names = {
|
| 128 |
-
"xs": datasets.Split("xs"),
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
for split in splits:
|
| 132 |
-
split_generators.append(
|
| 133 |
-
datasets.SplitGenerator(
|
| 134 |
-
name=split_names.get(split, split),
|
| 135 |
-
gen_kwargs={
|
| 136 |
-
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
|
| 137 |
-
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
|
| 138 |
-
"meta_path": meta_paths[split],
|
| 139 |
-
},
|
| 140 |
-
),
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
return split_generators
|
| 144 |
-
|
| 145 |
-
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
|
| 146 |
-
|
| 147 |
-
metadata = {}
|
| 148 |
-
with open(meta_path, encoding="utf-8") as f:
|
| 149 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 150 |
-
for row in tqdm(reader, desc="Reading metadata..."):
|
| 151 |
-
if not isinstance(row, dict):
|
| 152 |
-
continue
|
| 153 |
-
path = row.get("audio")
|
| 154 |
-
_, filename = os.path.split(path)
|
| 155 |
-
metadata[filename] = row
|
| 156 |
-
|
| 157 |
-
for i, audio_archive in enumerate(archives):
|
| 158 |
-
for path, file in audio_archive:
|
| 159 |
-
_, filename = os.path.split(path)
|
| 160 |
-
if filename in metadata:
|
| 161 |
-
result = dict(metadata[filename])
|
| 162 |
-
# set the audio feature and the path to the extracted file
|
| 163 |
-
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
|
| 164 |
-
# print("path: ", path)
|
| 165 |
-
result["audio"] = path
|
| 166 |
-
# result["path"] = path
|
| 167 |
-
yield path, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|