|
import os |
|
import json |
|
import csv |
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
from tqdm import tqdm |
|
|
|
from .languages import LANGUAGES |
|
from .release_stats import STATS |
|
|
|
_CITATION = """\ |
|
@inproceedings{Trans, |
|
title={fj11: A Massively Speech Corpus}, |
|
author={fj11}, |
|
year={2025} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/DataLabX" |
|
|
|
_LICENSE = "CC-BY-SA-4.0" |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/DataLabX/ScreenTalk-XS/resolve/main/" |
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar" |
|
|
|
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv" |
|
|
|
_N_SHARDS_URL = _BASE_URL + "n_shards.json" |
|
|
|
|
|
def is_valid_token(token): |
|
return True |
|
|
|
|
|
class TransConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TransConfig.""" |
|
def __init__(self, name, version, **kwargs): |
|
self.language = kwargs.pop("language", None) |
|
self.release_date = kwargs.pop("release_date", None) |
|
self.total_hr = kwargs.pop("total_hr", None) |
|
self.validated_hr = kwargs.pop("validated_hr", None) |
|
self.num_clips = kwargs.pop("num_clips", None) |
|
self.size_bytes = kwargs.pop("size_bytes", None) |
|
self.size_human = size_str(self.size_bytes) |
|
description = ( |
|
f"This dataset consists of transcribed speech data from TV series and movies across various genres, " |
|
f"including action, drama, sci-fi, and romance. It was released on {self.release_date} and contains " |
|
f"{self.total_hr} hours of transcribed speech data. " |
|
f"The dataset includes {self.num_clips} audio clips in {self.language}, with a total size of {self.size_human}, " |
|
f"and is designed for automatic speech recognition (ASR) model training and fine-tuning, providing diverse and " |
|
f"natural conversational speech from real-world entertainment media." |
|
) |
|
|
|
super(TransConfig, self).__init__( |
|
name=name, |
|
version=version, |
|
description=description, |
|
**kwargs |
|
) |
|
|
|
|
|
class ScreenTalk(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
TransConfig( |
|
name=lang, |
|
version=STATS["version"], |
|
language=LANGUAGES[lang], |
|
release_date=STATS["date"], |
|
num_clips=lang_stats["clips"], |
|
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None, |
|
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None, |
|
) |
|
for lang, lang_stats in STATS["locales"].items() |
|
] |
|
|
|
def _info(self): |
|
total_languages = len(STATS["locales"]) |
|
total_valid_hours = STATS["totalValidHrs"] |
|
description = ( |
|
f"This dataset consists of {total_valid_hours} hours of validated speech data " |
|
f"in {total_languages} languages, with more content being continuously added. " |
|
"It is designed for training and fine-tuning automatic speech recognition (ASR) models, " |
|
"providing a diverse and realistic representation of spoken language." |
|
) |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(), |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=description, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=self.config.version, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
lang = self.config.name |
|
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL) |
|
with open(n_shards_path, encoding="utf-8") as f: |
|
n_shards = json.load(f) |
|
|
|
user_token = dl_manager.download_config.token |
|
has_valid_token = is_valid_token(user_token) |
|
|
|
audio_urls = {} |
|
splits = ["xs"] |
|
|
|
for split in splits: |
|
audio_urls[split] = [ |
|
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split]) |
|
] |
|
archive_paths = dl_manager.download(audio_urls) |
|
|
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits} |
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
|
|
split_generators = [] |
|
split_names = { |
|
"xs": datasets.Split("xs"), |
|
} |
|
|
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"meta_path": meta_paths[split], |
|
}, |
|
), |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
|
|
metadata = {} |
|
with open(meta_path, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in tqdm(reader, desc="Reading metadata..."): |
|
if not isinstance(row, dict): |
|
continue |
|
path = row.get("audio") |
|
_, filename = os.path.split(path) |
|
metadata[filename] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for path, file in audio_archive: |
|
_, filename = os.path.split(path) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path |
|
|
|
result["audio"] = path |
|
|
|
yield path, result |