Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
a7bc981
·
1 Parent(s): 36655e7

Update parquet files

Browse files
README.md DELETED
@@ -1,273 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language:
5
- - en
6
- language_creators:
7
- - found
8
- license:
9
- - other
10
- multilinguality:
11
- - monolingual
12
- pretty_name: FabNER is a manufacturing text dataset for Named Entity Recognition.
13
- size_categories:
14
- - 10K<n<100K
15
- source_datasets: []
16
- tags:
17
- - manufacturing
18
- - 2000-2020
19
- task_categories:
20
- - token-classification
21
- task_ids:
22
- - named-entity-recognition
23
- dataset_info:
24
- features:
25
- - name: id
26
- dtype: string
27
- - name: tokens
28
- sequence: string
29
- - name: ner_tags
30
- sequence:
31
- class_label:
32
- names:
33
- '0': O
34
- '1': B-MATE
35
- '2': I-MATE
36
- '3': O-MATE
37
- '4': E-MATE
38
- '5': S-MATE
39
- '6': B-MANP
40
- '7': I-MANP
41
- '8': O-MANP
42
- '9': E-MANP
43
- '10': S-MANP
44
- '11': B-MACEQ
45
- '12': I-MACEQ
46
- '13': O-MACEQ
47
- '14': E-MACEQ
48
- '15': S-MACEQ
49
- '16': B-APPL
50
- '17': I-APPL
51
- '18': O-APPL
52
- '19': E-APPL
53
- '20': S-APPL
54
- '21': B-FEAT
55
- '22': I-FEAT
56
- '23': O-FEAT
57
- '24': E-FEAT
58
- '25': S-FEAT
59
- '26': B-PRO
60
- '27': I-PRO
61
- '28': O-PRO
62
- '29': E-PRO
63
- '30': S-PRO
64
- '31': B-CHAR
65
- '32': I-CHAR
66
- '33': O-CHAR
67
- '34': E-CHAR
68
- '35': S-CHAR
69
- '36': B-PARA
70
- '37': I-PARA
71
- '38': O-PARA
72
- '39': E-PARA
73
- '40': S-PARA
74
- '41': B-ENAT
75
- '42': I-ENAT
76
- '43': O-ENAT
77
- '44': E-ENAT
78
- '45': S-ENAT
79
- '46': B-CONPRI
80
- '47': I-CONPRI
81
- '48': O-CONPRI
82
- '49': E-CONPRI
83
- '50': S-CONPRI
84
- '51': B-MANS
85
- '52': I-MANS
86
- '53': O-MANS
87
- '54': E-MANS
88
- '55': S-MANS
89
- '56': B-BIOP
90
- '57': I-BIOP
91
- '58': O-BIOP
92
- '59': E-BIOP
93
- '60': S-BIOP
94
- config_name: fabner
95
- splits:
96
- - name: train
97
- num_bytes: 4394010
98
- num_examples: 9435
99
- - name: validation
100
- num_bytes: 934347
101
- num_examples: 2183
102
- - name: test
103
- num_bytes: 940136
104
- num_examples: 2064
105
- download_size: 3793613
106
- dataset_size: 6268493
107
- ---
108
-
109
- # Dataset Card for [Dataset Name]
110
-
111
- ## Table of Contents
112
- - [Table of Contents](#table-of-contents)
113
- - [Dataset Description](#dataset-description)
114
- - [Dataset Summary](#dataset-summary)
115
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
116
- - [Languages](#languages)
117
- - [Dataset Structure](#dataset-structure)
118
- - [Data Instances](#data-instances)
119
- - [Data Fields](#data-fields)
120
- - [Data Splits](#data-splits)
121
- - [Dataset Creation](#dataset-creation)
122
- - [Curation Rationale](#curation-rationale)
123
- - [Source Data](#source-data)
124
- - [Annotations](#annotations)
125
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
126
- - [Considerations for Using the Data](#considerations-for-using-the-data)
127
- - [Social Impact of Dataset](#social-impact-of-dataset)
128
- - [Discussion of Biases](#discussion-of-biases)
129
- - [Other Known Limitations](#other-known-limitations)
130
- - [Additional Information](#additional-information)
131
- - [Dataset Curators](#dataset-curators)
132
- - [Licensing Information](#licensing-information)
133
- - [Citation Information](#citation-information)
134
- - [Contributions](#contributions)
135
-
136
- ## Dataset Description
137
-
138
- - **Homepage:** [https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407](https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407)
139
- - **Paper:** ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)
140
- - **Size of downloaded dataset files:** 3.79 MB
141
- - **Size of the generated dataset:** 6.27 MB
142
-
143
- ### Dataset Summary
144
-
145
- FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
146
- It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
147
- science research.
148
- For every word, there were categories/entity labels defined namely Material (MATE), Manufacturing Process (MANP),
149
- Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
150
- Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
151
- BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
152
- B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
153
-
154
- For details about the dataset, please refer to the paper: ["FabNER": information extraction from manufacturing process science domain literature using named entity recognition](https://par.nsf.gov/servlets/purl/10290810)
155
-
156
- ### Supported Tasks and Leaderboards
157
-
158
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
159
-
160
- ### Languages
161
-
162
- The language in the dataset is English.
163
-
164
- ## Dataset Structure
165
-
166
- ### Data Instances
167
-
168
- - **Size of downloaded dataset files:** 3.79 MB
169
- - **Size of the generated dataset:** 6.27 MB
170
-
171
- An example of 'train' looks as follows:
172
- ```json
173
- {
174
- "id": "0",
175
- "tokens": ["Revealed", "the", "location-specific", "flow", "patterns", "and", "quantified", "the", "speeds", "of", "various", "types", "of", "flow", "."],
176
- "ner_tags": [0, 0, 0, 46, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
177
- }
178
- ```
179
-
180
- ### Data Fields
181
-
182
- - `id`: the instance id of this sentence, a `string` feature.
183
- - `tokens`: the list of tokens of this sentence, a `list` of `string` features.
184
- - `ner_tags`: the list of entity tags, a `list` of classification labels.
185
-
186
- ```json
187
- {"O": 0, "B-MATE": 1, "I-MATE": 2, "O-MATE": 3, "E-MATE": 4, "S-MATE": 5, "B-MANP": 6, "I-MANP": 7, "O-MANP": 8, "E-MANP": 9, "S-MANP": 10, "B-MACEQ": 11, "I-MACEQ": 12, "O-MACEQ": 13, "E-MACEQ": 14, "S-MACEQ": 15, "B-APPL": 16, "I-APPL": 17, "O-APPL": 18, "E-APPL": 19, "S-APPL": 20, "B-FEAT": 21, "I-FEAT": 22, "O-FEAT": 23, "E-FEAT": 24, "S-FEAT": 25, "B-PRO": 26, "I-PRO": 27, "O-PRO": 28, "E-PRO": 29, "S-PRO": 30, "B-CHAR": 31, "I-CHAR": 32, "O-CHAR": 33, "E-CHAR": 34, "S-CHAR": 35, "B-PARA": 36, "I-PARA": 37, "O-PARA": 38, "E-PARA": 39, "S-PARA": 40, "B-ENAT": 41, "I-ENAT": 42, "O-ENAT": 43, "E-ENAT": 44, "S-ENAT": 45, "B-CONPRI": 46, "I-CONPRI": 47, "O-CONPRI": 48, "E-CONPRI": 49, "S-CONPRI": 50, "B-MANS": 51, "I-MANS": 52, "O-MANS": 53, "E-MANS": 54, "S-MANS": 55, "B-BIOP": 56, "I-BIOP": 57, "O-BIOP": 58, "E-BIOP": 59, "S-BIOP": 60}
188
- ```
189
-
190
- ### Data Splits
191
-
192
- | | Train | Dev | Test |
193
- |--------|-------|------|------|
194
- | fabner | 9435 | 2183 | 2064 |
195
-
196
- ## Dataset Creation
197
-
198
- ### Curation Rationale
199
-
200
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
201
-
202
- ### Source Data
203
-
204
- #### Initial Data Collection and Normalization
205
-
206
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
207
-
208
- #### Who are the source language producers?
209
-
210
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
211
-
212
- ### Annotations
213
-
214
- #### Annotation process
215
-
216
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
217
-
218
- #### Who are the annotators?
219
-
220
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
221
-
222
- ### Personal and Sensitive Information
223
-
224
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
225
-
226
- ## Considerations for Using the Data
227
-
228
- ### Social Impact of Dataset
229
-
230
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
231
-
232
- ### Discussion of Biases
233
-
234
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
235
-
236
- ### Other Known Limitations
237
-
238
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
239
-
240
- ## Additional Information
241
-
242
- ### Dataset Curators
243
-
244
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
245
-
246
- ### Licensing Information
247
-
248
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
249
-
250
- ### Citation Information
251
-
252
- ```
253
- @article{DBLP:journals/jim/KumarS22,
254
- author = {Aman Kumar and
255
- Binil Starly},
256
- title = {"FabNER": information extraction from manufacturing process science
257
- domain literature using named entity recognition},
258
- journal = {J. Intell. Manuf.},
259
- volume = {33},
260
- number = {8},
261
- pages = {2393--2407},
262
- year = {2022},
263
- url = {https://doi.org/10.1007/s10845-021-01807-x},
264
- doi = {10.1007/s10845-021-01807-x},
265
- timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
266
- biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
267
- bibsource = {dblp computer science bibliography, https://dblp.org}
268
- }
269
- ```
270
-
271
- ### Contributions
272
-
273
- Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fabner.py DELETED
@@ -1,213 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
15
-
16
- import datasets
17
-
18
-
19
- # Find for instance the citation on arxiv or on the dataset repo/website
20
- _CITATION = """\
21
- @article{DBLP:journals/jim/KumarS22,
22
- author = {Aman Kumar and
23
- Binil Starly},
24
- title = {"FabNER": information extraction from manufacturing process science
25
- domain literature using named entity recognition},
26
- journal = {J. Intell. Manuf.},
27
- volume = {33},
28
- number = {8},
29
- pages = {2393--2407},
30
- year = {2022},
31
- url = {https://doi.org/10.1007/s10845-021-01807-x},
32
- doi = {10.1007/s10845-021-01807-x},
33
- timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
34
- biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
35
- bibsource = {dblp computer science bibliography, https://dblp.org}
36
- }
37
- """
38
-
39
- # You can copy an official description
40
- _DESCRIPTION = """\
41
- FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
42
- It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
43
- science research.
44
- For every word, there were categories/entity labels defined namely Material (MATE), Manufacturing Process (MANP),
45
- Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
46
- Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
47
- BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
48
- B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
49
- """
50
-
51
- _HOMEPAGE = "https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407"
52
-
53
- # TODO: Add the licence for the dataset here if you can find it
54
- _LICENSE = ""
55
-
56
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
57
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
58
- _URLS = {
59
- "train": "https://figshare.com/ndownloader/files/28405854/S2-train.txt",
60
- "validation": "https://figshare.com/ndownloader/files/28405857/S3-val.txt",
61
- "test": "https://figshare.com/ndownloader/files/28405851/S1-test.txt",
62
- }
63
-
64
- class FabNER(datasets.GeneratorBasedBuilder):
65
- """FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
66
-
67
- VERSION = datasets.Version("1.1.0")
68
-
69
- # This is an example of a dataset with multiple configurations.
70
- # If you don't want/need to define several sub-sets in your dataset,
71
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
72
-
73
- # If you need to make complex sub-parts in the datasets with configurable options
74
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
75
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
76
-
77
- # You will be able to load one or the other configurations in the following list with
78
- # data = datasets.load_dataset('my_dataset', 'first_domain')
79
- # data = datasets.load_dataset('my_dataset', 'second_domain')
80
- BUILDER_CONFIGS = [
81
- datasets.BuilderConfig(name="fabner", version=VERSION, description="The FabNER dataset"),
82
- ]
83
-
84
- def _info(self):
85
- features = datasets.Features(
86
- {
87
- "id": datasets.Value("string"),
88
- "tokens": datasets.Sequence(datasets.Value("string")),
89
- "ner_tags": datasets.Sequence(
90
- datasets.features.ClassLabel(
91
- names=[
92
- "O",
93
- "B-MATE", # Material
94
- "I-MATE",
95
- "O-MATE",
96
- "E-MATE",
97
- "S-MATE",
98
- "B-MANP", # Manufacturing Process
99
- "I-MANP",
100
- "O-MANP",
101
- "E-MANP",
102
- "S-MANP",
103
- "B-MACEQ", # Machine/Equipment
104
- "I-MACEQ",
105
- "O-MACEQ",
106
- "E-MACEQ",
107
- "S-MACEQ",
108
- "B-APPL", # Application
109
- "I-APPL",
110
- "O-APPL",
111
- "E-APPL",
112
- "S-APPL",
113
- "B-FEAT", # Engineering Features
114
- "I-FEAT",
115
- "O-FEAT",
116
- "E-FEAT",
117
- "S-FEAT",
118
- "B-PRO", # Mechanical Properties
119
- "I-PRO",
120
- "O-PRO",
121
- "E-PRO",
122
- "S-PRO",
123
- "B-CHAR", # Process Characterization
124
- "I-CHAR",
125
- "O-CHAR",
126
- "E-CHAR",
127
- "S-CHAR",
128
- "B-PARA", # Process Parameters
129
- "I-PARA",
130
- "O-PARA",
131
- "E-PARA",
132
- "S-PARA",
133
- "B-ENAT", # Enabling Technology
134
- "I-ENAT",
135
- "O-ENAT",
136
- "E-ENAT",
137
- "S-ENAT",
138
- "B-CONPRI", # Concept/Principles
139
- "I-CONPRI",
140
- "O-CONPRI",
141
- "E-CONPRI",
142
- "S-CONPRI",
143
- "B-MANS", # Manufacturing Standards
144
- "I-MANS",
145
- "O-MANS",
146
- "E-MANS",
147
- "S-MANS",
148
- "B-BIOP", # BioMedical
149
- "I-BIOP",
150
- "O-BIOP",
151
- "E-BIOP",
152
- "S-BIOP",
153
- ]
154
- )
155
- ),
156
- }
157
- )
158
- return datasets.DatasetInfo(
159
- # This is the description that will appear on the datasets page.
160
- description=_DESCRIPTION,
161
- # This defines the different columns of the dataset and their types
162
- features=features, # Here we define them above because they are different between the two configurations
163
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
164
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
165
- # supervised_keys=("sentence", "label"),
166
- # Homepage of the dataset for documentation
167
- homepage=_HOMEPAGE,
168
- # License for the dataset if available
169
- license=_LICENSE,
170
- # Citation for the dataset
171
- citation=_CITATION,
172
- )
173
-
174
- def _split_generators(self, dl_manager):
175
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
176
-
177
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
178
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
179
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
180
- downloaded_files = dl_manager.download_and_extract(_URLS)
181
-
182
- return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
183
- for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
184
-
185
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
186
- def _generate_examples(self, filepath):
187
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
188
- with open(filepath, encoding="utf-8") as f:
189
- guid = 0
190
- tokens = []
191
- ner_tags = []
192
- for line in f:
193
- if line == "" or line == "\n":
194
- if tokens:
195
- yield guid, {
196
- "id": str(guid),
197
- "tokens": tokens,
198
- "ner_tags": ner_tags,
199
- }
200
- guid += 1
201
- tokens = []
202
- ner_tags = []
203
- else:
204
- splits = line.split(" ")
205
- tokens.append(splits[0])
206
- ner_tags.append(splits[1].rstrip())
207
- # last example
208
- if tokens:
209
- yield guid, {
210
- "id": str(guid),
211
- "tokens": tokens,
212
- "ner_tags": ner_tags,
213
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fabner/fabner-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcad6ab909decf8a7ff0cb85e5164031d365ad01f11a59978638edfb1e8fc05a
3
+ size 188065
fabner/fabner-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e11489e99bd6673b07f06807a08ea403e34d9f12d4968af460432d06a2131eed
3
+ size 887039
fabner/fabner-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65179b235fa61e60248e4004a0757c842c1011ffae98aa05d3fe41957feeaa6d
3
+ size 191383