Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K - 100K
License:
Delete loading script
Browse files
fabner.py
DELETED
|
@@ -1,230 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
"""FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
|
| 15 |
-
|
| 16 |
-
import datasets
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 20 |
-
_CITATION = """\
|
| 21 |
-
@article{DBLP:journals/jim/KumarS22,
|
| 22 |
-
author = {Aman Kumar and
|
| 23 |
-
Binil Starly},
|
| 24 |
-
title = {"FabNER": information extraction from manufacturing process science
|
| 25 |
-
domain literature using named entity recognition},
|
| 26 |
-
journal = {J. Intell. Manuf.},
|
| 27 |
-
volume = {33},
|
| 28 |
-
number = {8},
|
| 29 |
-
pages = {2393--2407},
|
| 30 |
-
year = {2022},
|
| 31 |
-
url = {https://doi.org/10.1007/s10845-021-01807-x},
|
| 32 |
-
doi = {10.1007/s10845-021-01807-x},
|
| 33 |
-
timestamp = {Sun, 13 Nov 2022 17:52:57 +0100},
|
| 34 |
-
biburl = {https://dblp.org/rec/journals/jim/KumarS22.bib},
|
| 35 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 36 |
-
}
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
# You can copy an official description
|
| 40 |
-
_DESCRIPTION = """\
|
| 41 |
-
FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition.
|
| 42 |
-
It is a collection of abstracts obtained from Web of Science through known journals available in manufacturing process
|
| 43 |
-
science research.
|
| 44 |
-
For every word, there were categories/entity labels defined namely Material (MATE), Manufacturing Process (MANP),
|
| 45 |
-
Machine/Equipment (MACEQ), Application (APPL), Features (FEAT), Mechanical Properties (PRO), Characterization (CHAR),
|
| 46 |
-
Parameters (PARA), Enabling Technology (ENAT), Concept/Principles (CONPRI), Manufacturing Standards (MANS) and
|
| 47 |
-
BioMedical (BIOP). Annotation was performed in all categories along with the output tag in 'BIOES' format:
|
| 48 |
-
B=Beginning, I-Intermediate, O=Outside, E=End, S=Single.
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
-
_HOMEPAGE = "https://figshare.com/articles/dataset/Dataset_NER_Manufacturing_-_FabNER_Information_Extraction_from_Manufacturing_Process_Science_Domain_Literature_Using_Named_Entity_Recognition/14782407"
|
| 52 |
-
|
| 53 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 54 |
-
_LICENSE = ""
|
| 55 |
-
|
| 56 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 57 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 58 |
-
_URLS = {
|
| 59 |
-
"train": "https://figshare.com/ndownloader/files/28405854/S2-train.txt",
|
| 60 |
-
"validation": "https://figshare.com/ndownloader/files/28405857/S3-val.txt",
|
| 61 |
-
"test": "https://figshare.com/ndownloader/files/28405851/S1-test.txt",
|
| 62 |
-
}
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def map_fabner_labels(string_tag):
|
| 66 |
-
tag = string_tag[2:]
|
| 67 |
-
# MATERIAL (FABNER)
|
| 68 |
-
if tag == "MATE":
|
| 69 |
-
return "Material"
|
| 70 |
-
# MANUFACTURING PROCESS (FABNER)
|
| 71 |
-
elif tag == "MANP":
|
| 72 |
-
return "Method"
|
| 73 |
-
# MACHINE/EQUIPMENT, MECHANICAL PROPERTIES, CHARACTERIZATION, ENABLING TECHNOLOGY (FABNER)
|
| 74 |
-
elif tag in ["MACEQ", "PRO", "CHAR", "ENAT"]:
|
| 75 |
-
return "Technological System"
|
| 76 |
-
# APPLICATION (FABNER)
|
| 77 |
-
elif tag == "APPL":
|
| 78 |
-
return "Technical Field"
|
| 79 |
-
# FEATURES, PARAMETERS, CONCEPT/PRINCIPLES, MANUFACTURING STANDARDS, BIOMEDICAL, O (FABNER)
|
| 80 |
-
else:
|
| 81 |
-
return "O"
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
class FabNER(datasets.GeneratorBasedBuilder):
|
| 85 |
-
"""FabNER is a manufacturing text corpus of 350,000+ words for Named Entity Recognition."""
|
| 86 |
-
|
| 87 |
-
VERSION = datasets.Version("1.2.0")
|
| 88 |
-
|
| 89 |
-
# This is an example of a dataset with multiple configurations.
|
| 90 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 91 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 92 |
-
|
| 93 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 94 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 95 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 96 |
-
|
| 97 |
-
# You will be able to load one or the other configurations in the following list with
|
| 98 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 99 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 100 |
-
BUILDER_CONFIGS = [
|
| 101 |
-
datasets.BuilderConfig(name="fabner", version=VERSION,
|
| 102 |
-
description="The FabNER dataset with the original BIOES tagging format"),
|
| 103 |
-
datasets.BuilderConfig(name="fabner_bio", version=VERSION,
|
| 104 |
-
description="The FabNER dataset with BIO tagging format"),
|
| 105 |
-
datasets.BuilderConfig(name="fabner_simple", version=VERSION,
|
| 106 |
-
description="The FabNER dataset with no tagging format"),
|
| 107 |
-
datasets.BuilderConfig(name="text2tech", version=VERSION,
|
| 108 |
-
description="The FabNER dataset mapped to the Text2Tech tag set"),
|
| 109 |
-
]
|
| 110 |
-
DEFAULT_CONFIG_NAME = "fabner"
|
| 111 |
-
|
| 112 |
-
def _info(self):
|
| 113 |
-
entity_types = [
|
| 114 |
-
"MATE", # Material
|
| 115 |
-
"MANP", # Manufacturing Process
|
| 116 |
-
"MACEQ", # Machine/Equipment
|
| 117 |
-
"APPL", # Application
|
| 118 |
-
"FEAT", # Engineering Features
|
| 119 |
-
"PRO", # Mechanical Properties
|
| 120 |
-
"CHAR", # Process Characterization
|
| 121 |
-
"PARA", # Process Parameters
|
| 122 |
-
"ENAT", # Enabling Technology
|
| 123 |
-
"CONPRI", # Concept/Principles
|
| 124 |
-
"MANS", # Manufacturing Standards
|
| 125 |
-
"BIOP", # BioMedical
|
| 126 |
-
]
|
| 127 |
-
if self.config.name == "text2tech":
|
| 128 |
-
class_labels = ["O", "Technological System", "Method", "Material", "Technical Field"]
|
| 129 |
-
elif self.config.name == "fabner":
|
| 130 |
-
class_labels = ["O"]
|
| 131 |
-
for entity_type in entity_types:
|
| 132 |
-
class_labels.extend(
|
| 133 |
-
[
|
| 134 |
-
"B-" + entity_type,
|
| 135 |
-
"I-" + entity_type,
|
| 136 |
-
"E-" + entity_type,
|
| 137 |
-
"S-" + entity_type,
|
| 138 |
-
]
|
| 139 |
-
)
|
| 140 |
-
elif self.config.name == "fabner_bio":
|
| 141 |
-
class_labels = ["O"]
|
| 142 |
-
for entity_type in entity_types:
|
| 143 |
-
class_labels.extend(
|
| 144 |
-
[
|
| 145 |
-
"B-" + entity_type,
|
| 146 |
-
"I-" + entity_type,
|
| 147 |
-
]
|
| 148 |
-
)
|
| 149 |
-
else:
|
| 150 |
-
class_labels = ["O"] + entity_types
|
| 151 |
-
features = datasets.Features(
|
| 152 |
-
{
|
| 153 |
-
"id": datasets.Value("string"),
|
| 154 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 155 |
-
"ner_tags": datasets.Sequence(
|
| 156 |
-
datasets.features.ClassLabel(
|
| 157 |
-
names=class_labels
|
| 158 |
-
)
|
| 159 |
-
),
|
| 160 |
-
}
|
| 161 |
-
)
|
| 162 |
-
return datasets.DatasetInfo(
|
| 163 |
-
# This is the description that will appear on the datasets page.
|
| 164 |
-
description=_DESCRIPTION,
|
| 165 |
-
# This defines the different columns of the dataset and their types
|
| 166 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 167 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 168 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 169 |
-
# supervised_keys=("sentence", "label"),
|
| 170 |
-
# Homepage of the dataset for documentation
|
| 171 |
-
homepage=_HOMEPAGE,
|
| 172 |
-
# License for the dataset if available
|
| 173 |
-
license=_LICENSE,
|
| 174 |
-
# Citation for the dataset
|
| 175 |
-
citation=_CITATION,
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
def _split_generators(self, dl_manager):
|
| 179 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 180 |
-
|
| 181 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 182 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 183 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 184 |
-
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 185 |
-
|
| 186 |
-
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_files[str(i)]})
|
| 187 |
-
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
|
| 188 |
-
|
| 189 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 190 |
-
def _generate_examples(self, filepath):
|
| 191 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 192 |
-
with open(filepath, encoding="utf-8") as f:
|
| 193 |
-
guid = 0
|
| 194 |
-
tokens = []
|
| 195 |
-
ner_tags = []
|
| 196 |
-
for line in f:
|
| 197 |
-
if line == "" or line == "\n":
|
| 198 |
-
if tokens:
|
| 199 |
-
yield guid, {
|
| 200 |
-
"id": str(guid),
|
| 201 |
-
"tokens": tokens,
|
| 202 |
-
"ner_tags": ner_tags,
|
| 203 |
-
}
|
| 204 |
-
guid += 1
|
| 205 |
-
tokens = []
|
| 206 |
-
ner_tags = []
|
| 207 |
-
else:
|
| 208 |
-
splits = line.split(" ")
|
| 209 |
-
tokens.append(splits[0])
|
| 210 |
-
ner_tag = splits[1].rstrip()
|
| 211 |
-
if self.config.name == "fabner_simple":
|
| 212 |
-
if ner_tag == "O":
|
| 213 |
-
ner_tag = "O"
|
| 214 |
-
else:
|
| 215 |
-
ner_tag = ner_tag.split("-")[1]
|
| 216 |
-
elif self.config.name == "fabner_bio":
|
| 217 |
-
if ner_tag == "O":
|
| 218 |
-
ner_tag = "O"
|
| 219 |
-
else:
|
| 220 |
-
ner_tag = ner_tag.replace("S-", "B-").replace("E-", "I-")
|
| 221 |
-
elif self.config.name == "text2tech":
|
| 222 |
-
ner_tag = map_fabner_labels(ner_tag)
|
| 223 |
-
ner_tags.append(ner_tag)
|
| 224 |
-
# last example
|
| 225 |
-
if tokens:
|
| 226 |
-
yield guid, {
|
| 227 |
-
"id": str(guid),
|
| 228 |
-
"tokens": tokens,
|
| 229 |
-
"ner_tags": ner_tags,
|
| 230 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|