--- annotations_creators: - expert-generated language: - en language_creators: - found license: [] multilinguality: - monolingual pretty_name: CrossRE is a cross-domain dataset for relation extraction size_categories: - 10K<n<100K source_datasets: - extended|cross_ner tags: - cross domain - ai - news - music - literature - politics - science task_categories: - text-classification task_ids: - multi-class-classification dataset_info: - config_name: ai features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 62411 num_examples: 100 - name: validation num_bytes: 183717 num_examples: 350 - name: test num_bytes: 217353 num_examples: 431 download_size: 508107 dataset_size: 463481 - config_name: literature features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 62699 num_examples: 100 - name: validation num_bytes: 246214 num_examples: 400 - name: test num_bytes: 264450 num_examples: 416 download_size: 635130 dataset_size: 573363 - config_name: music features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 69846 num_examples: 100 - name: validation num_bytes: 261497 num_examples: 350 - name: test num_bytes: 312165 num_examples: 399 download_size: 726956 dataset_size: 643508 - config_name: news features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 49102 num_examples: 164 - name: validation num_bytes: 77952 num_examples: 350 - name: test num_bytes: 96301 num_examples: 400 download_size: 239763 dataset_size: 223355 - config_name: politics features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 76004 num_examples: 101 - name: validation num_bytes: 277633 num_examples: 350 - name: test num_bytes: 295294 num_examples: 400 download_size: 726427 dataset_size: 648931 - config_name: science features: - name: doc_key dtype: string - name: sentence sequence: string - name: ner sequence: - name: id-start dtype: int32 - name: id-end dtype: int32 - name: entity-type dtype: string - name: relations sequence: - name: id_1-start dtype: int32 - name: id_1-end dtype: int32 - name: id_2-start dtype: int32 - name: id_2-end dtype: int32 - name: relation-type dtype: string - name: Exp dtype: string - name: Un dtype: bool - name: SA dtype: bool splits: - name: train num_bytes: 63876 num_examples: 103 - name: validation num_bytes: 224402 num_examples: 351 - name: test num_bytes: 249075 num_examples: 400 download_size: 594058 dataset_size: 537353 --- # Dataset Card for CrossRE ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [CrossRE](https://github.com/mainlp/CrossRE) - **Paper:** [CrossRE: A Cross-Domain Dataset for Relation Extraction](https://arxiv.org/abs/2210.09345) ### Dataset Summary CrossRE is a new, freely-available crossdomain benchmark for RE, which comprises six distinct text domains and includes multilabel annotations. It includes the following domains: news, politics, natural science, music, literature and artificial intelligence. The semantic relations are annotated on top of CrossNER (Liu et al., 2021), a cross-domain dataset for NER which contains domain-specific entity types. The dataset contains 17 relation labels for the six domains: PART-OF, PHYSICAL, USAGE, ROLE, SOCIAL, GENERAL-AFFILIATION, COMPARE, TEMPORAL, ARTIFACT, ORIGIN, TOPIC, OPPOSITE, CAUSE-EFFECT, WIN-DEFEAT, TYPEOF, NAMED, and RELATED-TO. For details, see the paper: https://arxiv.org/abs/2210.09345 ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages The language data in CrossRE is in English (BCP-47 en) ## Dataset Structure ### Data Instances #### news - **Size of downloaded dataset files:** 0.24 MB - **Size of the generated dataset:** 0.22 MB An example of 'train' looks as follows: ```python { "doc_key": "news-train-1", "sentence": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], "ner": [ {"id-start": 0, "id-end": 0, "entity-type": "organisation"}, {"id-start": 2, "id-end": 3, "entity-type": "misc"}, {"id-start": 6, "id-end": 7, "entity-type": "misc"} ], "relations": [ {"id_1-start": 0, "id_1-end": 0, "id_2-start": 2, "id_2-end": 3, "relation-type": "opposite", "Exp": "rejects", "Un": False, "SA": False}, {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "opposite", "Exp": "calls_for_boycot_of", "Un": False, "SA": False}, {"id_1-start": 2, "id_1-end": 3, "id_2-start": 6, "id_2-end": 7, "relation-type": "topic", "Exp": "", "Un": False, "SA": False} ] } ``` #### politics - **Size of downloaded dataset files:** 0.73 MB - **Size of the generated dataset:** 0.65 MB An example of 'train' looks as follows: ```python { "doc_key": "politics-train-1", "sentence": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], "ner": [ {"id-start": 8, "id-end": 9, "entity-type": "politicalparty"}, {"id-start": 15, "id-end": 20, "entity-type": "politicalparty"}, {"id-start": 22, "id-end": 26, "entity-type": "politicalparty"} ], "relations": [ {"id_1-start": 8, "id_1-end": 9, "id_2-start": 15, "id_2-end": 20, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False}, {"id_1-start": 8, "id_1-end": 9, "id_2-start": 22, "id_2-end": 26, "relation-type": "opposite", "Exp": "in_opposition", "Un": False, "SA": False} ] } ``` #### science - **Size of downloaded dataset files:** 0.59 MB - **Size of the generated dataset:** 0.54 MB An example of 'train' looks as follows: ```python { "doc_key": "science-train-1", "sentence": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], "ner": [ {"id-start": 4, "id-end": 5, "entity-type": "chemicalcompound"}, {"id-start": 7, "id-end": 8, "entity-type": "chemicalcompound"}, {"id-start": 11, "id-end": 11, "entity-type": "chemicalcompound"} ], "relations": [] } ``` #### music - **Size of downloaded dataset files:** 0.73 MB - **Size of the generated dataset:** 0.64 MB An example of 'train' looks as follows: ```python { "doc_key": "music-train-1", "sentence": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], "ner": [ {"id-start": 4, "id-end": 6, "entity-type": "location"}, {"id-start": 13, "id-end": 17, "entity-type": "event"} ], "relations": [ {"id_1-start": 13, "id_1-end": 17, "id_2-start": 4, "id_2-end": 6, "relation-type": "physical", "Exp": "", "Un": False, "SA": False} ] } ``` #### literature - **Size of downloaded dataset files:** 0.64 MB - **Size of the generated dataset:** 0.57 MB An example of 'train' looks as follows: ```python { "doc_key": "literature-train-1", "sentence": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], "ner": [ {"id-start": 7, "id-end": 9, "entity-type": "person"}, {"id-start": 12, "id-end": 13, "entity-type": "country"}, {"id-start": 17, "id-end": 18, "entity-type": "writer"}, {"id-start": 20, "id-end": 20, "entity-type": "writer"}, {"id-start": 26, "id-end": 27, "entity-type": "writer"}, {"id-start": 29, "id-end": 29, "entity-type": "writer"}, {"id-start": 33, "id-end": 33, "entity-type": "country"}, {"id-start": 35, "id-end": 35, "entity-type": "country"}, {"id-start": 38, "id-end": 38, "entity-type": "misc"}, {"id-start": 45, "id-end": 46, "entity-type": "person"}, {"id-start": 49, "id-end": 50, "entity-type": "misc"}, {"id-start": 55, "id-end": 55, "entity-type": "person"} ], "relations": [ {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "role", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 7, "id_1-end": 9, "id_2-start": 12, "id_2-end": 13, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 17, "id_1-end": 18, "id_2-start": 26, "id_2-end": 27, "relation-type": "social", "Exp": "family", "Un": False, "SA": False}, {"id_1-start": 20, "id_1-end": 20, "id_2-start": 17, "id_2-end": 18, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 33, "id_2-end": 33, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 35, "id_2-end": 35, "relation-type": "physical", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 38, "id_2-end": 38, "relation-type": "temporal", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 26, "id_1-end": 27, "id_2-start": 45, "id_2-end": 46, "relation-type": "social", "Exp": "greeted_by", "Un": False, "SA": False}, {"id_1-start": 29, "id_1-end": 29, "id_2-start": 26, "id_2-end": 27, "relation-type": "named", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 45, "id_1-end": 46, "id_2-start": 55, "id_2-end": 55, "relation-type": "social", "Exp": "marriage", "Un": False, "SA": False}, {"id_1-start": 49, "id_1-end": 50, "id_2-start": 45, "id_2-end": 46, "relation-type": "named", "Exp": "", "Un": False, "SA": False} ] } ``` #### ai - **Size of downloaded dataset files:** 0.51 MB - **Size of the generated dataset:** 0.46 MB An example of 'train' looks as follows: ```python { "doc_key": "ai-train-1", "sentence": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], "ner": [ {"id-start": 3, "id-end": 5, "entity-type": "product"}, {"id-start": 10, "id-end": 11, "entity-type": "field"}, {"id-start": 13, "id-end": 14, "entity-type": "task"}, {"id-start": 16, "id-end": 17, "entity-type": "task"}, {"id-start": 21, "id-end": 23, "entity-type": "task"}, {"id-start": 26, "id-end": 27, "entity-type": "field"}, {"id-start": 28, "id-end": 29, "entity-type": "researcher"}, {"id-start": 31, "id-end": 32, "entity-type": "researcher"}, {"id-start": 34, "id-end": 35, "entity-type": "researcher"}, {"id-start": 37, "id-end": 38, "entity-type": "researcher"}, {"id-start": 40, "id-end": 41, "entity-type": "researcher"}, {"id-start": 43, "id-end": 44, "entity-type": "researcher"}, {"id-start": 46, "id-end": 47, "entity-type": "researcher"}, {"id-start": 49, "id-end": 50, "entity-type": "researcher"} ], "relations": [ {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 10, "id_2-end": 11, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 13, "id_2-end": 14, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 16, "id_2-end": 17, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 3, "id_1-end": 5, "id_2-start": 26, "id_2-end": 27, "relation-type": "usage", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "part-of", "Exp": "", "Un": False, "SA": False}, {"id_1-start": 21, "id_1-end": 23, "id_2-start": 16, "id_2-end": 17, "relation-type": "type-of", "Exp": "", "Un": False, "SA": False} ] } ``` ### Data Fields The data fields are the same among all splits. - `doc_key`: the instance id of this sentence, a `string` feature. - `sentence`: the list of tokens of this sentence, obtained with spaCy, a `list` of `string` features. - `ner`: the list of named entities in this sentence, a `list` of `dict` features. - `id-start`: the start index of the entity, a `int` feature. - `id-end`: the end index of the entity, a `int` feature. - `entity-type`: the type of the entity, a `string` feature. - `relations`: the list of relations in this sentence, a `list` of `dict` features. - `id_1-start`: the start index of the first entity, a `int` feature. - `id_1-end`: the end index of the first entity, a `int` feature. - `id_2-start`: the start index of the second entity, a `int` feature. - `id_2-end`: the end index of the second entity, a `int` feature. - `relation-type`: the type of the relation, a `string` feature. - `Exp`: the explanation of the relation type assigned, a `string` feature. - `Un`: uncertainty of the annotator, a `bool` feature. - `SA`: existence of syntax ambiguity which poses a challenge for the annotator, a `bool` feature. ### Data Splits #### Sentences | | Train | Dev | Test | Total | |--------------|---------|---------|---------|---------| | news | 164 | 350 | 400 | 914 | | politics | 101 | 350 | 400 | 851 | | science | 103 | 351 | 400 | 854 | | music | 100 | 350 | 399 | 849 | | literature | 100 | 400 | 416 | 916 | | ai | 100 | 350 | 431 | 881 | | ------------ | ------- | ------- | ------- | ------- | | total | 668 | 2,151 | 2,46 | 5,265 | #### Relations | | Train | Dev | Test | Total | |--------------|---------|---------|---------|---------| | news | 175 | 300 | 396 | 871 | | politics | 502 | 1,616 | 1,831 | 3,949 | | science | 355 | 1,340 | 1,393 | 3,088 | | music | 496 | 1,861 | 2,333 | 4,690 | | literature | 397 | 1,539 | 1,591 | 3,527 | | ai | 350 | 1,006 | 1,127 | 2,483 | | ------------ | ------- | ------- | ------- | ------- | | total | 2,275 | 7,662 | 8,671 | 18,608 | ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{bassignana-plank-2022-crossre, title = "Cross{RE}: A {C}ross-{D}omain {D}ataset for {R}elation {E}xtraction", author = "Bassignana, Elisa and Plank, Barbara", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", year = "2022", publisher = "Association for Computational Linguistics" } ``` ### Contributions Thanks to [@phucdev](https://github.com/phucdev) for adding this dataset.