File size: 7,899 Bytes
196184d 2fa3d6f 196184d 2fa3d6f 196184d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
"""The Argumentative Microtext Corpus for German and English Argumentation Mining."""
import glob
import logging
import os
from os.path import abspath, isdir
from pathlib import Path
from xml.etree import ElementTree
import datasets
_CITATION = """\
@inproceedings{peldszus2015annotated,
title={An annotated corpus of argumentative microtexts},
author={Peldszus, Andreas and Stede, Manfred},
booktitle={Argumentation and Reasoned Action: Proceedings of the 1st European Conference on Argumentation, Lisbon},
volume={2},
pages={801--815},
year={2015}
}
"""
_DESCRIPTION = "The Argumentative Microtext Corpus for German and English Argumentation Mining."
_HOMEPAGE = "http://angcl.ling.uni-potsdam.de/resources/argmicro.html"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, see https://creativecommons.org/licenses/by-nc-sa/4.0/"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://github.com/peldszus/arg-microtexts/archive/refs/heads/master.zip"
_VERSION = datasets.Version("1.0.0")
_STANCE_CLASS_LABELS = ["con", "pro", "unclear", "UNDEFINED"]
_ADU_CLASS_LABELS = ["opp", "pro"]
_EDGE_CLASS_LABELS = ["seg", "sup", "exa", "add", "reb", "und"]
logger = logging.getLogger(__name__)
class ArgMicro(datasets.GeneratorBasedBuilder):
"""ArgMicro is a argumentation mining dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="en"),
datasets.BuilderConfig(name="de"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"topic_id": datasets.Value("string"),
"stance": datasets.ClassLabel(names=_STANCE_CLASS_LABELS),
"text": datasets.Value("string"),
"edus": datasets.Sequence(
{
"id": datasets.Value("string"),
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
}
),
"adus": datasets.Sequence(
{
"id": datasets.Value("string"),
"type": datasets.ClassLabel(names=_ADU_CLASS_LABELS),
}
),
"edges": datasets.Sequence(
{
"id": datasets.Value("string"),
"src": datasets.Value("string"),
"trg": datasets.Value("string"),
"type": datasets.ClassLabel(names=_EDGE_CLASS_LABELS),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
if dl_manager.manual_dir is not None:
base_path = abspath(dl_manager.manual_dir)
if not isdir(base_path):
base_path = os.path.join(dl_manager.extract(base_path), "arg-microtexts-master")
else:
base_path = os.path.join(
dl_manager.download_and_extract(_URL), "arg-microtexts-master"
)
base_path = Path(base_path) / "corpus"
dtd = None
etree = None
try:
from lxml import etree
#dtd = etree.DTD(base_path / "arggraph.dtd")
except ModuleNotFoundError:
logger.warning("lxml not installed. Skipping DTD validation.")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"path": base_path / self.config.name, "dtd": dtd, "etree": etree},
),
]
def _generate_examples(self, path, dtd=None, etree=None):
"""Yields examples."""
# This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
_id = 0
text_file_names = sorted(glob.glob(f"{path}/*.txt"))
if len(text_file_names) == 0:
raise Exception(f"No text files found in {path}. Did you set the correct data_dir?")
invalid_files = []
for text_file_name in text_file_names:
txt_fn = Path(text_file_name)
ann_fn = txt_fn.with_suffix(".xml")
with open(txt_fn, encoding="utf-8") as f:
text = f.read()
# validate xml file, if dtd is available
if dtd is not None and etree is not None:
e = etree.parse(ann_fn)
v = dtd.validate(e)
if not v:
logger.error(f"{ann_fn} is INVALID:")
logger.error(dtd.error_log.filter_from_errors()[0])
invalid_files.append(ann_fn)
continue
annotations = ElementTree.parse(ann_fn).getroot()
edus = []
start_pos = 0
for edu in annotations.findall("edu"):
start = text.find(edu.text, start_pos)
if start == -1:
raise Exception(f"Cannot find {edu.text} in {text}")
end = start + len(edu.text)
edus.append({"id": edu.attrib["id"], "start": start, "end": end})
start_pos = end
adus = [
{"id": adu.attrib["id"], "type": adu.attrib["type"]}
for adu in annotations.findall("adu")
]
edges = [
{
"id": edge.attrib["id"],
"src": edge.attrib["src"],
"trg": edge.attrib["trg"],
"type": edge.attrib["type"],
}
for edge in annotations.findall("edge")
]
yield _id, {
"id": annotations.attrib["id"],
"topic_id": annotations.attrib.get("topic_id", "UNDEFINED"),
"stance": annotations.attrib.get("stance", "UNDEFINED"),
"text": text,
"edus": edus,
"adus": adus,
"edges": edges,
}
_id += 1
if len(invalid_files) > 0:
raise Exception(f"Found {len(invalid_files)} invalid files: {invalid_files}")
|