Datasets:

Modalities:
Tabular
Text
Formats:
csv
Languages:
Italian
Libraries:
Datasets
pandas
License:
File size: 3,060 Bytes
a250666
 
23281a2
 
 
 
 
 
 
a250666
b59d3c6
a250666
b59d3c6
a250666
 
 
b59d3c6
a250666
b59d3c6
 
 
 
 
 
a250666
b59d3c6
a250666
 
 
b59d3c6
a250666
8151735
b59d3c6
a250666
 
 
b59d3c6
a250666
b59d3c6
 
 
 
a250666
 
 
b59d3c6
a250666
b59d3c6
a250666
b59d3c6
a250666
 
 
 
b59d3c6
8151735
a250666
b59d3c6
a250666
23281a2
a250666
23281a2
b59d3c6
23281a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
task_categories:
- question-answering
language:
- it
pretty_name: BEEP
size_categories:
- 1K<n<10K
---
# 🚗 BEst DrivEr’s License Performer (BEEP) Dataset

**BEEP** is a challenge benchmark designed to evaluate large language models (LLMs) through a simulation of the Italian driver’s license exam. This dataset focuses on understanding traffic laws and reasoning through driving situations, replicating the complexity of the Italian licensing process.

---

## 📁 Dataset Structure

| Column                 | Data Type     | Description                                                                 |
| ---------------------- | ------------- | --------------------------------------------------------------------------- |
| `Categorisation Structure` | [String]   | Hierarchical categorisation of major, minor, and subcategories for each question |
| `Question Text`         | [String]      | The actual content of the question                                           |
| `True Answer`           | [Boolean]     | True or false answer                                                        |
| `Figure`                | [String]      | Reference to an accompanying figure, if present                             |

> **Note**: Questions are organised into a classification system that reflects the complexity of road rules and signage.

---

## 📊 Summary Statistics

- **Total Questions**: 2920
- **Last Updated**: 01/07/2020

---

## 🔍 Key Features

- **Source**: The dataset is derived from the publicly accessible official document "Listato A e B", provided by the Italian Ministry of Infrastructure and Transport. It includes all questions related to driver’s license categories A and B.
- **Hierarchical Structure**: Questions are classified into major categories, such as "Road Signage", and further subdivided into minor and subcategories for precise categorisation.
- **Question Format**: The dataset primarily consists of true/false questions aimed at evaluating knowledge of traffic laws, signage, and driving behavior.
- **Exclusions**: For the **CALAMITA** challenge, questions containing images are excluded, focusing solely on text-based questions.

---

## 🛠️ Using the Dataset

### Loading Example

You can load this dataset in Python using `pandas`:

```python
import pandas as pd

# Load the dataset
df = pd.read_csv('beep_data.csv')

# Display the first few rows of the dataset
print(df.head())
```

## Citation

If you find our work interesting, please cite us:

**BibTeX:**

```
@inproceedings{mercorio2024beep,
  title={BEEP-BEst DrivEr’s License Performer: A CALAMITA Challenge},
  author={Mercorio, Fabio and Potert{\`\i}, Daniele and Serino, Antonio and Seveso, Andrea and others},
  booktitle={CEUR WORKSHOP PROCEEDINGS},
  volume={3878},
  year={2024}
}
```

**APA:**

Mercorio, F., Potertì, D., Serino, A., & Seveso, A. (2024). BEEP-BEst DrivEr’s License Performer: A CALAMITA Challenge. In CEUR WORKSHOP PROCEEDINGS (Vol. 3878).


## Contact

Andrea Seveso - [email protected]