|
import json |
|
import numpy |
|
|
|
|
|
def extract_sentence_tagset(sentence: dict, tagset_name: str) -> dict: |
|
tagset = {} |
|
if tagset_name == 'deps': |
|
tagset = {deprel |
|
for dep in sentence[tagset_name] |
|
if dep is not None |
|
for deprel in json.loads(dep).values()} |
|
else: |
|
tagset = set(sentence[tagset_name]) |
|
|
|
tagset.discard(None) |
|
return tagset |
|
|
|
|
|
def build_min_coverage(sentences: list[dict], tagsets_names: list[str]) -> set[int]: |
|
""" |
|
Build a set of sentences such that every tag from `tagsets` tagsets has at least one occurrence. |
|
We use this to make sure training set contains all the tags of all tagsets. |
|
""" |
|
|
|
sentences_tagsets = [] |
|
tagsets = {tagset_name: set() for tagset_name in tagsets_names} |
|
|
|
for sentence in sentences: |
|
sentence_tagsets = dict() |
|
for tagset_name in tagsets_names: |
|
sentence_tagsets[tagset_name] = extract_sentence_tagset(sentence, tagset_name) |
|
tagsets[tagset_name] |= sentence_tagsets[tagset_name] |
|
sentences_tagsets.append(sentence_tagsets) |
|
|
|
|
|
|
|
inv_tagsets = {tagset_name: {tag: set() for tag in tagsets[tagset_name]} for tagset_name in tagsets_names} |
|
for sentence_index, sentence_tagsets in enumerate(sentences_tagsets): |
|
for tagset_name in tagsets_names: |
|
for tag in sentence_tagsets[tagset_name]: |
|
inv_tagsets[tagset_name][tag].add(sentence_index) |
|
|
|
cover_sentences_indexes = set() |
|
|
|
|
|
while sum(len(inv_tagset) for inv_tagset in inv_tagsets.values()) > 0: |
|
|
|
rarest_tag, rarest_tag_frequency, rarest_tag_tagset_name = None, float('inf'), None |
|
for tagset_name, inv_tagset in inv_tagsets.items(): |
|
if len(inv_tagset) == 0: |
|
continue |
|
rare_tag, rare_tag_sentences = min(inv_tagset.items(), key=lambda item: len(item[1])) |
|
|
|
rare_tag_frequency = len(rare_tag_sentences) |
|
if rare_tag_frequency < rarest_tag_frequency: |
|
rarest_tag = rare_tag |
|
rarest_tag_frequency = rare_tag_frequency |
|
rarest_tag_tagset_name = tagset_name |
|
assert rarest_tag is not None |
|
|
|
|
|
sentences_with_tag = inv_tagsets[rarest_tag_tagset_name].pop(rarest_tag) |
|
|
|
sentence_with_tag = list(sentences_with_tag)[0] |
|
|
|
cover_sentences_indexes.add(sentence_with_tag) |
|
|
|
for tagset_name, inv_tagset in inv_tagsets.items(): |
|
for tag in list(inv_tagset.keys()): |
|
sentences = inv_tagset[tag] |
|
if sentence_with_tag in sentences: |
|
inv_tagset.pop(tag) |
|
|
|
return cover_sentences_indexes |
|
|
|
|
|
def train_test_split( |
|
sentences: list[dict], |
|
train_fraction: float, |
|
tagsets_names: list[str] |
|
) -> tuple[list, list]: |
|
if not (0.0 < train_fraction < 1.0): |
|
raise ValueError("train_fraction must be between 0.0 and 1.0") |
|
|
|
sentence_count = len(sentences) |
|
target_train_size = int(train_fraction * sentence_count) |
|
target_test_size = sentence_count - target_train_size |
|
|
|
train_sentences = [] |
|
test_sentences = [] |
|
|
|
while len(train_sentences) < target_train_size and len(test_sentences) < target_test_size: |
|
|
|
min_train_coverage = build_min_coverage(sentences, tagsets_names) |
|
train_sentences += [sentence for i, sentence in enumerate(sentences) if i in min_train_coverage] |
|
|
|
sentences = [sentence for i, sentence in enumerate(sentences) if i not in min_train_coverage] |
|
|
|
|
|
min_test_coverage = build_min_coverage(sentences, tagsets_names) |
|
test_sentences += [sentence for i, sentence in enumerate(sentences) if i in min_test_coverage] |
|
|
|
sentences = [sentence for i, sentence in enumerate(sentences) if i not in min_test_coverage] |
|
|
|
if len(train_sentences) < target_train_size: |
|
train_sentences += sentences |
|
else: |
|
test_sentences += sentences |
|
|
|
assert len(train_sentences) + len(test_sentences) == sentence_count |
|
assert numpy.isclose(len(train_sentences) / sentence_count, train_fraction, atol=0.05) |
|
|
|
return train_sentences, test_sentences |
|
|