File size: 44,589 Bytes
888a372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "dd3a9f32-3b8c-46b5-9165-b243049d2f81",
   "metadata": {},
   "source": [
    "# TMDB Network\n",
    "\n",
    "This notebook contains recipe to construct a heterogeneous network based on the fetched TMDB dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "412ba4a1-7f05-4a65-97ae-9a235c30dae5",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:05.965764Z",
     "start_time": "2024-12-02T15:41:05.188819Z"
    }
   },
   "outputs": [],
   "source": [
    "import pickle\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e3ab0c46-271e-4cae-adf4-f5de94f011bf",
   "metadata": {},
   "source": [
    "## Input Data\n",
    "\n",
    "[The Movie Database (TMDB)](https://www.themoviedb.org/) is a popular online database and community platform that provides a vast collection of information about movies, TV shows, and other related content. We collected metadata about more than 7500 of the most popular action, romance, thriller and animation English movies from [TMDB's public API](https://developer.themoviedb.org/docs) on May 31, 2024. After meticulous data cleaning, we finally obtain 7,505 movies, 13,016 actors, and 3,891 directors.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "262e4aa2-3566-476f-a79f-29609a88139a",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:07.133497Z",
     "start_time": "2024-12-02T15:41:06.904795Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of movies: 7505\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>title</th>\n",
       "      <th>overview</th>\n",
       "      <th>genre</th>\n",
       "      <th>release_date</th>\n",
       "      <th>actor</th>\n",
       "      <th>director</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>199753</td>\n",
       "      <td>Tom and Jerry's Giant Adventure</td>\n",
       "      <td>Tom And Jerry are among the last animals livin...</td>\n",
       "      <td>Animation</td>\n",
       "      <td>2013-08-04</td>\n",
       "      <td>[80416, 86434, 60739, 5129, 1065, 31531, 11444...</td>\n",
       "      <td>[23683, 1447452, 92317]</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>9560</td>\n",
       "      <td>A Walk in the Clouds</td>\n",
       "      <td>World War II vet Paul Sutton falls for a pregn...</td>\n",
       "      <td>Romance</td>\n",
       "      <td>1995-05-27</td>\n",
       "      <td>[7353, 62595, 3753, 85869, 6862, 152943, 6384,...</td>\n",
       "      <td>[77162, 1377239]</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>10875</td>\n",
       "      <td>The Fabulous Baker Boys</td>\n",
       "      <td>The lives of two struggling musicians, who hap...</td>\n",
       "      <td>Romance</td>\n",
       "      <td>1989-10-13</td>\n",
       "      <td>[7906, 8354, 43364, 152963, 1160, 57992, 1229,...</td>\n",
       "      <td>[2226, 2571810, 1966431]</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>67609</td>\n",
       "      <td>Three Blind Mouseketeers</td>\n",
       "      <td>As the title implies, the three blind mice are...</td>\n",
       "      <td>Animation</td>\n",
       "      <td>1936-09-26</td>\n",
       "      <td>[31771, 5462]</td>\n",
       "      <td>[564041, 5446]</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>24021</td>\n",
       "      <td>The Twilight Saga: Eclipse</td>\n",
       "      <td>Bella once again finds herself surrounded by d...</td>\n",
       "      <td>Romance</td>\n",
       "      <td>2010-06-23</td>\n",
       "      <td>[84224, 84225, 45827, 121868, 87310, 1475835, ...</td>\n",
       "      <td>[2045537, 1393423, 27571, 2476949, 113019]</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       id                            title  \\\n",
       "0  199753  Tom and Jerry's Giant Adventure   \n",
       "1    9560             A Walk in the Clouds   \n",
       "2   10875          The Fabulous Baker Boys   \n",
       "3   67609         Three Blind Mouseketeers   \n",
       "4   24021       The Twilight Saga: Eclipse   \n",
       "\n",
       "                                            overview      genre release_date  \\\n",
       "0  Tom And Jerry are among the last animals livin...  Animation   2013-08-04   \n",
       "1  World War II vet Paul Sutton falls for a pregn...    Romance   1995-05-27   \n",
       "2  The lives of two struggling musicians, who hap...    Romance   1989-10-13   \n",
       "3  As the title implies, the three blind mice are...  Animation   1936-09-26   \n",
       "4  Bella once again finds herself surrounded by d...    Romance   2010-06-23   \n",
       "\n",
       "                                               actor  \\\n",
       "0  [80416, 86434, 60739, 5129, 1065, 31531, 11444...   \n",
       "1  [7353, 62595, 3753, 85869, 6862, 152943, 6384,...   \n",
       "2  [7906, 8354, 43364, 152963, 1160, 57992, 1229,...   \n",
       "3                                      [31771, 5462]   \n",
       "4  [84224, 84225, 45827, 121868, 87310, 1475835, ...   \n",
       "\n",
       "                                     director  \n",
       "0                     [23683, 1447452, 92317]  \n",
       "1                            [77162, 1377239]  \n",
       "2                    [2226, 2571810, 1966431]  \n",
       "3                              [564041, 5446]  \n",
       "4  [2045537, 1393423, 27571, 2476949, 113019]  "
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "movies = pd.read_csv('TMDB.csv')\n",
    "movies['actor'] = movies['actor'].apply(eval)\n",
    "movies['director'] = movies['director'].apply(eval)\n",
    "print('Number of movies:', movies.shape[0])\n",
    "movies.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "92ae38e6-98cb-4c6a-b66f-7187208c9e30",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:08.778301Z",
     "start_time": "2024-12-02T15:41:08.763644Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "13016"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "actor_id_map = {}\n",
    "idx = 0\n",
    "for actors in movies['actor']:\n",
    "    for actor in actors:\n",
    "        if actor not in actor_id_map:\n",
    "            actor_id_map[actor] = idx\n",
    "            idx += 1\n",
    "len(actor_id_map)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "fec3f109-45dd-43a5-a35f-6679339a756d",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:10.396138Z",
     "start_time": "2024-12-02T15:41:10.388693Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3891"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "director_id_map = {}\n",
    "idx = 0\n",
    "for directors in movies['director']:\n",
    "    for director in directors:\n",
    "        if director not in director_id_map:\n",
    "            director_id_map[director] = idx\n",
    "            idx += 1\n",
    "len(director_id_map)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c3f9713-edbc-4bad-859c-1431177aa617",
   "metadata": {},
   "source": [
    "## Graph Construction\n",
    "\n",
    "```mermaid\n",
    "---\n",
    "title: The TMDB HIN\n",
    "---\n",
    "flowchart LR\n",
    "    Movie[\"<b>Movie</b><br>7,505 nodes<br>4 labels\"]\n",
    "    Actor[\"<b>Actor</b><br>13,016 nodes\"]\n",
    "    Director[\"<b>Director</b><br>3,891 nodes\"]\n",
    "    Actor --\"<b>performs</b><br>86,517 edges\"--- Movie\n",
    "    Director --\"<b>directs</b><br>18,341 edges\"--- Movie\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a01c16ab-1ba7-4ea5-a5c8-0d78e40fe400",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:12.596227Z",
     "start_time": "2024-12-02T15:41:12.592281Z"
    }
   },
   "outputs": [],
   "source": [
    "data = {}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "02713230-25d4-4554-bd0c-6aaa34602bc0",
   "metadata": {},
   "source": [
    "### Movie-Actor Links"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "76c1a5df-c091-49be-b6f6-2569235d4115",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:14.498387Z",
     "start_time": "2024-12-02T15:41:14.322988Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of movie-actor links: 86517\n"
     ]
    }
   ],
   "source": [
    "movie_ids = []\n",
    "actor_ids = []\n",
    "for movie_id in range(len(movies)):\n",
    "    actors = movies.iloc[movie_id]['actor']\n",
    "    for actor in actors:\n",
    "        movie_ids.append(movie_id)\n",
    "        actor_ids.append(actor_id_map[actor])\n",
    "    \n",
    "movie_ids = np.array(movie_ids, dtype=np.int16)\n",
    "actor_ids = np.array(actor_ids, dtype=np.int16)\n",
    "print('Number of movie-actor links:', movie_ids.shape[0])\n",
    "data['movie-actor'] = (movie_ids, actor_ids)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18ecde55-9e2e-4a0d-97ef-e0d1e5ebfd79",
   "metadata": {},
   "source": [
    "### Movie-Director Links"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "dc40996c-a04c-4c49-9346-c7c8b1fbc7fd",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:16.702077Z",
     "start_time": "2024-12-02T15:41:16.550123Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of movie-director links: 18341\n"
     ]
    }
   ],
   "source": [
    "movie_ids = []\n",
    "director_ids = []\n",
    "for movie_id in range(len(movies)):\n",
    "    directors = movies.iloc[movie_id]['director']\n",
    "    \n",
    "    for director in directors:\n",
    "        movie_ids.append(movie_id)\n",
    "        director_ids.append(director_id_map[director])\n",
    "    \n",
    "movie_ids = np.array(movie_ids, dtype=np.int16)\n",
    "director_ids = np.array(director_ids, dtype=np.int16)\n",
    "print('Number of movie-director links:', movie_ids.shape[0])\n",
    "data['movie-director'] = (movie_ids, director_ids)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "64fc0ee7-6dcb-406f-a98e-21214866d25d",
   "metadata": {},
   "source": [
    "### Labels\n",
    "\n",
    "There are a total of 19 movie genres in TMDB. We selected four genres with low intercorrelation as our ground truth labels. Note that one movie usually has multiple genres. To improve label quality, we only collect movies whose genres just include one of {action, romance, thriller, animation}.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "72cb9ae1-7a8b-4231-82e2-d0ceea47b1eb",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:19.409614Z",
     "start_time": "2024-12-02T15:41:19.298045Z"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAAGzCAYAAABEsJEnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHVUlEQVR4nO3dd1yV9f//8edhCrIEB6C4DVeYO0dJQaKZafpJRXNlQ1NLTTOzcnwqTbMsNVsE2VL7pFlWmgO3lgtzRWqOcqYGhANB3t8//HF+HhkqgXDl4367nduNc13v631eb64D58n7GtiMMUYAAACwJKeiLgAAAAD5R5gDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDgCKwZ88etW7dWr6+vrLZbPrqq6+KuqSrCg8PV3h4eFGXkaO4uDjZbDZt2rSpwPocO3asbDZbgfUHFBbCHPAvl/Uhl9Pj2WefLeryblq9e/fW9u3b9fLLL+vjjz9Wo0aNcmx34MAB+/566aWXcmzTo0cP2Ww2eXl5FWbJBa5Pnz6WqxkojlyKugAAN8b48eNVpUoVh2V169YtompubufOndP69es1evRoDRo06Jq2KVGihD7//HM9//zzDsvPnDmjBQsWqESJEoVRqoMffvih0F8DwPUjzAE3ibZt2+Y6+3Ol8+fPy83NTU5OTN4Xhj///FOS5Ofnd83b3HvvvZo3b562bdumevXq2ZcvWLBAFy5cUJs2bbR8+fKCLtWBm5tbofYPIH/4TQ3c5FasWCGbzabZs2fr+eefV/ny5eXp6amUlBRJ0o8//qg2bdrI19dXnp6eatWqldauXZutnzVr1qhx48YqUaKEqlWrpnfffTfbOUdZhwzj4uKybW+z2TR27FiHZYcPH9bDDz+scuXKyd3dXXXq1NGHH36YY/1z587Vyy+/rAoVKqhEiRKKiIjQ3r17s73Ojz/+qHvvvVelSpVSyZIlFRYWpjfffFOSFBsbK5vNpq1bt2bb7pVXXpGzs7MOHz6c5/dz69atatu2rXx8fOTl5aWIiAht2LDBvn7s2LGqVKmSJGnEiBGy2WyqXLlynn1KUrNmzVSlShV99tlnDss//fRTtWnTRv7+/jlu9/bbb6tOnTpyd3dXcHCwBg4cqKSkJPv6QYMGycvLS2fPns22bXR0tAIDA3Xx4kVJOZ8zl5aWpjFjxqh69epyd3dXSEiInnnmGaWlpV11TNfi4MGDeuKJJxQaGioPDw8FBATowQcf1IEDB3Jsf/bsWT3++OMKCAiQj4+PevXqpb/++itbu++//1533HGHSpYsKW9vb7Vr1047d+68aj1LlixRy5Yt5efnJy8vL4WGhuq55577p8ME/hFm5oCbRHJysk6ePOmwrHTp0vav//vf/8rNzU3Dhw9XWlqa3NzctHz5crVt21YNGzbUmDFj5OTkpNjYWN19991avXq1mjRpIknavn27WrdurTJlymjs2LHKyMjQmDFjVK5cuXzXe/z4cd1+++2y2WwaNGiQypQpo++//179+vVTSkqKhgwZ4tB+4sSJcnJy0vDhw5WcnKxJkyapR48e+vHHH+1tlixZovvuu09BQUF66qmnFBgYqN27d2vhwoV66qmn9J///EcDBw7Up59+qvr16zv0/+mnnyo8PFzly5fPteadO3fqjjvukI+Pj5555hm5urrq3XffVXh4uFauXKmmTZuqU6dO8vPz09ChQxUdHa177733ms8bi46O1ieffKKJEyfKZrPp5MmT+uGHH/Txxx9r0aJF2dqPHTtW48aNU2RkpAYMGKDExETNnDlTGzdu1Nq1a+Xq6qquXbtqxowZ+vbbb/Xggw/atz179qy++eYb9enTR87OzjnWk5mZqfvvv19r1qzRY489plq1amn79u1644039OuvvxbIRR0bN27UunXr1K1bN1WoUEEHDhzQzJkzFR4erl27dsnT09Oh/aBBg+Tn56exY8fax3vw4EF76Jekjz/+WL1791ZUVJReffVVnT17VjNnzlTLli21devWXMP1zp07dd999yksLEzjx4+Xu7u79u7dm+MfN8ANZQD8q8XGxhpJOT6MMSY+Pt5IMlWrVjVnz561b5eZmWlq1KhhoqKiTGZmpn352bNnTZUqVcw999xjX9axY0dTokQJc/DgQfuyXbt2GWdnZ3P5r5n9+/cbSSY2NjZbnZLMmDFj7M/79etngoKCzMmTJx3adevWzfj6+tprzaq/Vq1aJi0tzd7uzTffNJLM9u3bjTHGZGRkmCpVqphKlSqZv/76y6HPy8cXHR1tgoODzcWLF+3LtmzZkmvdl+vYsaNxc3Mz+/btsy87cuSI8fb2NnfeeWe278PkyZPz7O/Ktjt27DCSzOrVq40xxsyYMcN4eXmZM2fOmN69e5uSJUvatztx4oRxc3MzrVu3dhjL9OnTjSTz4Ycf2sdevnx507lzZ4fXnTt3rpFkVq1aZV/WqlUr06pVK/vzjz/+2Dg5OdnryfLOO+8YSWbt2rV5ju3KmnNy+Xsyy/r1640kM2vWLPuyrPd5w4YNzYULF+zLJ02aZCSZBQsWGGOM+fvvv42fn5959NFHHfo8duyY8fX1dVg+ZswYh/fvG2+8YSSZP//8M8+agRuNw6zATWLGjBlasmSJw+NyvXv3loeHh/15QkKC9uzZo+7du+vUqVM6efKkTp48qTNnzigiIkKrVq1SZmamLl68qMWLF6tjx46qWLGifftatWopKioqX7UaY/Tll1+qffv2MsbYX/vkyZOKiopScnKytmzZ4rBN3759Hc7puuOOOyRJv/32m6RLhz/379+vIUOGZDtX7fJDwb169dKRI0cUHx9vX/bpp5/Kw8NDnTt3zrXmixcv6ocfflDHjh1VtWpV+/KgoCB1795da9assR+6zq86deooLCxMn3/+uSTps88+U4cOHbLNTknS0qVLdeHCBQ0ZMsTh3MdHH31UPj4++vbbbyVdGvuDDz6o7777TqmpqfZ2c+bMUfny5dWyZctc6/niiy9Uq1Yt1axZ02Ef3X333ZLk8D3Mr8vfk+np6Tp16pSqV68uPz+/bO8BSXrsscfk6upqfz5gwAC5uLjou+++k3RpdjYpKUnR0dEONTs7O6tp06Z51pz1vlmwYIEyMzP/8diAgsJhVuAm0aRJkzwvgLjyStc9e/ZIuhTycpOcnKy0tDSdO3dONWrUyLY+NDTU/iF6Pf78808lJSXpvffe03vvvZdjmxMnTjg8vzxISlKpUqUkyX6+1L59+yRd/Qree+65R0FBQfr0008VERGhzMxMff755+rQoYO8vb3zrPns2bMKDQ3Ntq5WrVrKzMzU77//rjp16uT5+lfTvXt3TZkyRUOHDtW6detyPV/r4MGDkpStHjc3N1WtWtW+XpK6du2qqVOn6uuvv1b37t2Vmpqq7777To8//nie91nbs2ePdu/erTJlyuS4/sp9lB/nzp3ThAkTFBsbq8OHD8sYY1+XnJycrf2V70MvLy8FBQXZz7HLel9nBc4r+fj45FpL165d9cEHH+iRRx7Rs88+q4iICHXq1En/+c9/uFgIRYowB0CS4wyIJPvMw+TJk3XbbbfluI2Xl9d1neieWzDIOsH+ytd+6KGHcg2TYWFhDs9zO6/r8g//a+Hs7Kzu3bvr/fff19tvv621a9fqyJEjeuihh66rn8ISHR2tUaNG6dFHH1VAQIBat279j/u8/fbbVblyZc2dO1fdu3fXN998o3Pnzqlr1655bpeZmalbb71Vr7/+eo7rQ0JC/nFtgwcPVmxsrIYMGaJmzZrZb7LcrVu3fM2OZW3z8ccfKzAwMNt6F5fcPxY9PDy0atUqxcfH69tvv9WiRYs0Z84c3X333frhhx9yfQ8ChY0wByBH1apVk3RppiIyMjLXdmXKlJGHh4d9xuNyiYmJDs+zZssuv5pSksMsUVaf3t7eunjxYp6vfT2yxrNjx46r9tmrVy9NmTJF33zzjb7//nuVKVPmqoeMy5QpI09Pz2xjlqRffvlFTk5OBRJuKlasqBYtWmjFihX2Q4g5ybpiNjEx0eGw74ULF7R///5s34MuXbrozTffVEpKiubMmaPKlSvr9ttvz7OWatWqadu2bYqIiCi0/5Twv//9T71799aUKVPsy86fP5/tPZRlz549uuuuu+zPU1NTdfToUd177732miWpbNmy+XpvOTk5KSIiQhEREXr99df1yiuvaPTo0YqPjy+w9ypwvZgXBpCjhg0bqlq1anrttdcczqXKknWvNGdnZ0VFRemrr77SoUOH7Ot3796txYsXO2zj4+Oj0qVLa9WqVQ7L3377bYfnzs7O6ty5s7788kvt2LEj19e+Hg0aNFCVKlU0derUbEHgytm7sLAwhYWF6YMPPtCXX36pbt265Tljk1Vz69attWDBAofbZhw/flyfffaZWrZsmechvOvx0ksvacyYMRo8eHCubSIjI+Xm5qa33nrLYXwxMTFKTk5Wu3btHNp37dpVaWlp+uijj7Ro0SJ16dLlqnV06dJFhw8f1vvvv59t3blz53TmzJnrGFXOnJ2ds+2fadOmZZvNzfLee+8pPT3d/nzmzJnKyMhQ27ZtJUlRUVHy8fHRK6+84tAuS17vrdOnT2dbljVrXVC3YgHyg5k5ADlycnLSBx98oLZt26pOnTrq27evypcvr8OHDys+Pl4+Pj765ptvJEnjxo3TokWLdMcdd+iJJ55QRkaGpk2bpjp16ujnn3926PeRRx7RxIkT9cgjj6hRo0ZatWqVfv3112yvP3HiRMXHx6tp06Z69NFHVbt2bZ0+fVpbtmzR0qVLc/xgvdp4Zs6cqfbt2+u2225T3759FRQUpF9++UU7d+7MFjx79eql4cOHS9I1H2J96aWX7Pche+KJJ+Ti4qJ3331XaWlpmjRp0nXVm5dWrVqpVatWebYpU6aMRo0apXHjxqlNmza6//77lZiYqLfffluNGzfONqYGDRqoevXqGj16tNLS0q56iFWSevbsqblz56p///6Kj49XixYtdPHiRf3yyy+aO3euFi9efNUbVaenp+f4b8r8/f31xBNP6L777tPHH38sX19f1a5dW+vXr9fSpUsVEBCQY38XLlxQRESEunTpYh9vy5Ytdf/990u69AfFzJkz1bNnTzVo0EDdunVTmTJldOjQIX377bdq0aKFpk+fnmPf48eP16pVq9SuXTtVqlRJJ06c0Ntvv60KFSrkeaEIUOiK8EpaADdA1i0bNm7cmOP6rFt7fPHFFzmu37p1q+nUqZMJCAgw7u7uplKlSqZLly5m2bJlDu1WrlxpGjZsaNzc3EzVqlXNO++8k+3WDsZcutVEv379jK+vr/H29jZdunQxJ06cyHZrEmOMOX78uBk4cKAJCQkxrq6uJjAw0ERERJj33nvvqvXndhuUNWvWmHvuucd4e3ubkiVLmrCwMDNt2rRs4z569KhxdnY2t9xyS47fl9xs2bLFREVFGS8vL+Pp6Wnuuusus27duhxru95bk+Qlt9t8TJ8+3dSsWdO4urqacuXKmQEDBmS7NUuW0aNHG0mmevXqOa6/8tYkxhhz4cIF8+qrr5o6deoYd3d3U6pUKdOwYUMzbtw4k5ycfNWalcttc6pVq2aMMeavv/4yffv2NaVLlzZeXl4mKirK/PLLL6ZSpUqmd+/e9r6y3ucrV640jz32mClVqpTx8vIyPXr0MKdOncr22vHx8SYqKsr4+vqaEiVKmGrVqpk+ffqYTZs22dtc+f5dtmyZ6dChgwkODjZubm4mODjYREdHm19//TXPcQKFzWbMdZ4dDADXKOumtVb8NXPy5EkFBQXpxRdf1AsvvFDU5QBArjhnDgByEBcXp4sXL6pnz55FXQoA5Ilz5gDgMsuXL9euXbv08ssvq2PHjtf0f1MBoCgR5gDgMuPHj9e6devUokULTZs2rajLAYCr4pw5AAAAC+OcOQAAAAsjzAEAAFgY58xZUGZmpo4cOSJvb+9C+xc6AACgYBlj9Pfffys4OFhOTgU3n0aYs6AjR44UyP94BAAAN97vv/+uChUqFFh/hDkL8vb2lnTpzVBQ/+sRAAAUrpSUFIWEhNg/xwsKYc6Csg6t+vj4EOYAALCYgj5FigsgAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFiYS1EXgPyrO2axnNw9i7oMAChWDkxsV9QlADcUM3MAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpj7B+Li4uTn51fUZQAArrBq1Sq1b99ewcHBstls+uqrr3Jt279/f9lsNk2dOjXbum+//VZNmzaVh4eHSpUqpY4dO9rXnTp1Sm3atFFwcLDc3d0VEhKiQYMGKSUlpeAHBOThpgtz69evl7Ozs9q1a3dd21WuXDnbD3rXrl3166+/FmB1AICCcObMGdWrV08zZszIs938+fO1YcMGBQcHZ1v35ZdfqmfPnurbt6+2bdumtWvXqnv37vb1Tk5O6tChg77++mv9+uuviouL09KlS9W/f/8CHw+QF5eiLuBGi4mJ0eDBgxUTE6MjR47k+AN8rTw8POTh4VGA1QEACkLbtm3Vtm3bPNscPnxYgwcP1uLFi7P9gZ+RkaGnnnpKkydPVr9+/ezLa9eubf+6VKlSGjBggP15pUqV9MQTT2jy5MkFNArg2txUM3OpqamaM2eOBgwYoHbt2ikuLs5h/TfffKPGjRurRIkSKl26tB544AFJUnh4uA4ePKihQ4fKZrPJZrNJyvkw68yZM1WtWjW5ubkpNDRUH3/8scN6m82mDz74QA888IA8PT1Vo0YNff3114U2ZgBAdpmZmerZs6dGjBihOnXqZFu/ZcsWHT58WE5OTqpfv76CgoLUtm1b7dixI9c+jxw5onnz5qlVq1aFWTqQzU0V5ubOnauaNWsqNDRUDz30kD788EMZYyRdOi/igQce0L333qutW7dq2bJlatKkiSRp3rx5qlChgsaPH6+jR4/q6NGjOfY/f/58PfXUU3r66ae1Y8cOPf744+rbt6/i4+Md2o0bN05dunTRzz//rHvvvVc9evTQ6dOnc607LS1NKSkpDg8AQP69+uqrcnFx0ZNPPpnj+t9++02SNHbsWD3//PNauHChSpUqpfDw8Gy/r6Ojo+Xp6any5cvLx8dHH3zwQaHXD1zupgpzMTExeuihhyRJbdq0UXJyslauXClJevnll9WtWzeNGzdOtWrVUr169TRq1ChJkr+/v5ydneXt7a3AwEAFBgbm2P9rr72mPn366IknntAtt9yiYcOGqVOnTnrttdcc2vXp00fR0dGqXr26XnnlFaWmpuqnn37Kte4JEybI19fX/ggJCSmIbwcA3JQ2b96sN998U3FxcfYjLVfKzMyUJI0ePVqdO3dWw4YNFRsbK5vNpi+++MKh7RtvvKEtW7ZowYIF2rdvn4YNG1boYwAud9OEucTERP3000+Kjo6WJLm4uKhr166KiYmRJCUkJCgiIuIfvcbu3bvVokULh2UtWrTQ7t27HZaFhYXZvy5ZsqR8fHx04sSJXPsdNWqUkpOT7Y/ff//9H9UJADez1atX68SJE6pYsaJcXFzk4uKigwcP6umnn1blypUlSUFBQZIcz5Fzd3dX1apVdejQIYf+AgMDVbNmTd1///169913NXPmzFyP4ACF4aa5ACImJkYZGRkOFzwYY+Tu7q7p06ff0AsZXF1dHZ7bbDb7X4E5cXd3l7u7e2GXBQA3hZ49eyoyMtJhWVRUlP3KVUlq2LCh3N3dlZiYqJYtW0qS0tPTdeDAAVWqVCnXvrN+l6elpRVS9UB2N0WYy8jI0KxZszRlyhS1bt3aYV3Hjh31+eefKywsTMuWLbP/IF/Jzc1NFy9ezPN1atWqpbVr16p37972ZWvXrnX4yw4AUPhSU1O1d+9e+/P9+/crISFB/v7+qlixogICAhzau7q6KjAwUKGhoZIkHx8f9e/fX2PGjFFISIgqVapkv0r1wQcflCR99913On78uBo3biwvLy/t3LlTI0aMUIsWLewzfMCNcFOEuYULF+qvv/5Sv3795Ovr67Cuc+fOiomJ0eTJkxUREaFq1aqpW7duysjI0HfffaeRI0dKunSfuVWrVqlbt25yd3dX6dKls73OiBEj1KVLF9WvX1+RkZH65ptvNG/ePC1duvSGjBMAcMmmTZt011132Z9nncfWu3fvbHcyyM3kyZPl4uKinj176ty5c2ratKmWL1+uUqVKSbp0e6r3339fQ4cOVVpamkJCQtSpUyc9++yzBT4eIC83RZiLiYlRZGRktiAnXQpzkyZNkr+/v7744gv997//1cSJE+Xj46M777zT3m78+PF6/PHHVa1aNaWlpdmvgr1cx44d9eabb+q1117TU089pSpVqig2Nlbh4eGFOTwAwBXCw8Nz/D2dmwMHDmRb5urqqtdeey3bRWxZ7rrrLq1bty6/JQIFxmau592OYiElJeXSVa1D5srJ3bOoywGAYuXAxOv7Dz/AjZL1+Z2cnCwfH58C6/emuZoVAADg34gwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhbkUdQHIvx3jouTj41PUZQAAgCLEzBwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWJhLUReA/Ks7ZrGc3D2LugwAAHRgYruiLuGmxcwcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhVk+zI0dO1a33XZbkb2+zWbTV199VWSvDwBAcbJq1Sq1b99ewcHBOX5GpqamatCgQapQoYI8PDxUu3ZtvfPOOw5tjh07pp49eyowMFAlS5ZUgwYN9OWXX9rXr1ixQjabLcfHxo0bb8Qwi5ViEebWr18vZ2dntWvX7rq3HT58uJYtW1YIVTnKLTQePXpUbdu2LfTXBwDACs6cOaN69eppxowZOa4fNmyYFi1apE8++US7d+/WkCFDNGjQIH399df2Nr169VJiYqK+/vprbd++XZ06dVKXLl20detWSVLz5s119OhRh8cjjzyiKlWqqFGjRjdknMVJsQhzMTExGjx4sFatWqUjR45c17ZeXl4KCAgopMquLjAwUO7u7kX2+gAAFCdt27bVSy+9pAceeCDH9evWrVPv3r0VHh6uypUr67HHHlO9evX0008/ObQZPHiwmjRpoqpVq+r555+Xn5+fNm/eLElyc3NTYGCg/REQEKAFCxaob9++stlsN2ScxUmRh7nU1FTNmTNHAwYMULt27RQXF2dflzWNumzZMjVq1Eienp5q3ry5EhMT7W2unDHr06ePOnbsqFdeeUXlypWTn5+fxo8fr4yMDI0YMUL+/v6qUKGCYmNjHeoYOXKkbrnlFnl6eqpq1ap64YUXlJ6eLkmKi4vTuHHjtG3bNvs0bladV04hb9++XXfffbc8PDwUEBCgxx57TKmpqdnqe+211xQUFKSAgAANHDjQ/loAAPybNW/eXF9//bUOHz4sY4zi4+P166+/qnXr1g5t5syZo9OnTyszM1OzZ8/W+fPnFR4enmOfX3/9tU6dOqW+ffveoFEUL0Ue5ubOnauaNWsqNDRUDz30kD788EMZYxzajB49WlOmTNGmTZvk4uKihx9+OM8+ly9friNHjmjVqlV6/fXXNWbMGN13330qVaqUfvzxR/Xv31+PP/64/vjjD/s23t7eiouL065du/Tmm2/q/fff1xtvvCFJ6tq1q55++mnVqVPHPp3btWvXbK975swZRUVFqVSpUtq4caO++OILLV26VIMGDXJoFx8fr3379ik+Pl4fffSR4uLiHELsldLS0pSSkuLwAADAiqZNm6batWurQoUKcnNzU5s2bTRjxgzdeeed9jZz585Venq6AgIC5O7urscff1zz589X9erVc+wzJiZGUVFRqlChwo0aRrFS5GEuJiZGDz30kCSpTZs2Sk5O1sqVKx3avPzyy2rVqpVq166tZ599VuvWrdP58+dz7dPf319vvfWWQkND9fDDDys0NFRnz57Vc889pxo1amjUqFFyc3PTmjVr7Ns8//zzat68uSpXrqz27dtr+PDhmjt3riTJw8NDXl5ecnFxsU/penh4ZHvdzz77TOfPn9esWbNUt25d3X333Zo+fbo+/vhjHT9+3N6uVKlSmj59umrWrKn77rtP7dq1y/O8vwkTJsjX19f+CAkJubZvLgAAxcy0adO0YcMGff3119q8ebOmTJmigQMHaunSpfY2L7zwgpKSkrR06VJt2rRJw4YNU5cuXbR9+/Zs/f3xxx9avHix+vXrdyOHUay4FOWLJyYm6qefftL8+fMvFePioq5duyomJsZhKjUsLMz+dVBQkCTpxIkTqlixYo791qlTR05O/z+nlitXTnXr1rU/d3Z2VkBAgE6cOGFfNmfOHL311lvat2+fUlNTlZGRIR8fn+saz+7du1WvXj2VLFnSvqxFixbKzMxUYmKiypUrZ6/P2dnZYUw5vUGzjBo1SsOGDbM/T0lJIdABACzn3Llzeu655zR//nz7RY9hYWFKSEjQa6+9psjISO3bt0/Tp0/Xjh07VKdOHUlSvXr1tHr1as2YMSPbla+xsbEKCAjQ/ffff8PHU1wUaZiLiYlRRkaGgoOD7cuMMXJ3d9f06dPty1xdXe1fZ53YmJmZmWu/l7fP2ianZVl9rF+/Xj169NC4ceMUFRUlX19fzZ49W1OmTMn/4PKQVy05cXd35yILAIDlpaenKz093WHCRbo0yZL1OXj27FlJyrNNFmOMYmNj1atXr2yfrTeTIgtzGRkZmjVrlqZMmeJw0qMkdezYUZ9//rlq1qx5Q2pZt26dKlWqpNGjR9uXHTx40KGNm5ubLl68mGc/tWrVUlxcnM6cOWOfnVu7dq2cnJwUGhpa8IUDAFDMpKamau/evfbn+/fvV0JCgvz9/VWxYkW1atVKI0aMkIeHhypVqqSVK1dq1qxZev311yVJNWvWVPXq1fX444/rtddeU0BAgL766istWbJECxcudHit5cuXa//+/XrkkUdu6BiLmyI7Z27hwoX666+/1K9fP9WtW9fh0blzZ8XExNywWmrUqKFDhw5p9uzZ2rdvn9566y37od8slStXtr8hT548qbS0tGz99OjRQyVKlFDv3r21Y8cOxcfHa/DgwerZs6f9ECsAAP9mmzZtUv369VW/fn1Jl+4rV79+fb344ouSpNmzZ6tx48bq0aOHateurYkTJ+rll19W//79JV06evXdd9+pTJkyat++vcLCwjRr1ix99NFHuvfeex1eKyYmRs2bN79hkz/FVZHNzMXExCgyMlK+vr7Z1nXu3FmTJk3Szz//fENquf/++zV06FANGjRIaWlpateunV544QWNHTvWoaZ58+bprrvuUlJSkmJjY9WnTx+Hfjw9PbV48WI99dRTaty4sTw9PdW5c2f7XxsAAPzbhYeHZ7srxeUCAwOz3R7sSjVq1HD4jw+5+eyzz667vn8jm8nrO45iKSUl5dJVrUPmysnds6jLAQBAByZe/39xutlkfX4nJydf90WWeSnyW5MAAAAg/whzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYmEtRF4D82zEuSj4+PkVdBgAAKELMzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAheU7zGVkZGjp0qV699139ffff0uSjhw5otTU1AIrDgAAAHnL161JDh48qDZt2ujQoUNKS0vTPffcI29vb7366qtKS0vTO++8U9B1AgAAIAf5mpl76qmn1KhRI/3111/y8PCwL3/ggQe0bNmyAisOAAAAecvXzNzq1au1bt06ubm5OSyvXLmyDh8+XCCFAQAA4OryNTOXmZmpixcvZlv+xx9/yNvb+x8XBQAAgGuTrzDXunVrTZ061f7cZrMpNTVVY8aM0b333ltQtQEAAOAqbMYYc70b/f7772rTpo2MMdqzZ48aNWqkPXv2qHTp0lq1apXKli1bGLXi/0lJSZGvr6+Sk5P536wAAFhEYX1+5yvMSZduTTJnzhxt27ZNqampatCggXr06OFwQQQKB2EOAADrKTZhLj09XTVr1tTChQtVq1atAisE144wBwCA9RTW5/d1nzPn6uqq8+fPF1gBAAAAyL98XQAxcOBAvfrqq8rIyCjoegAAAHAd8nWfuY0bN2rZsmX64YcfdOutt6pkyZIO6+fNm1cgxQEAACBv+Qpzfn5+6ty5c0HXAgAAgOuUrzAXGxtb0HUAAAAgH/J1zhwAAACKh3yFuePHj6tnz54KDg6Wi4uLnJ2dHR4AAAC4MfJ1mLVPnz46dOiQXnjhBQUFBclmsxV0XQAAALgG+Qpza9as0erVq3XbbbcVcDkAAAC4Hvk6zBoSEqJ8/hcwAAAAFKB8hbmpU6fq2Wef1YEDBwq4HAAAAFyPfB1m7dq1q86ePatq1arJ09NTrq6uDutPnz5dIMUBAAAgb/kKc1OnTi3gMgAAAJAf+QpzvXv3Lug6AAAAkA/5vmnwvn379Pzzzys6OlonTpyQJH3//ffauXNngRUHAACAvOUrzK1cuVK33nqrfvzxR82bN0+pqamSpG3btmnMmDEFWiAAAAByl68w9+yzz+qll17SkiVL5ObmZl9+9913a8OGDQVWHAAAAPKWrzC3fft2PfDAA9mWly1bVidPnvzHRQEAAODa5CvM+fn56ejRo9mWb926VeXLl//HRQEAAODa5CvMdevWTSNHjtSxY8dks9mUmZmptWvXavjw4erVq1dB1wgAAIBc5CvMvfLKK6pZs6ZCQkKUmpqq2rVr64477lDz5s31/PPPF3SNAAAAyIXN/IN/svr7779r+/btSk1NVf369VWjRo2CrA25SElJka+vr5KTk+Xj41PU5QAAgGtQWJ/f+bpp8LBhw7It27Bhg2w2m0qUKKHq1aurQ4cO8vf3/8cFAgAAIHf5mpm76667tGXLFl28eFGhoaGSpF9//VXOzs6qWbOmEhMTZbPZtGbNGtWuXbvAi77ZMTMHAID1FNbnd77OmevQoYMiIyN15MgRbd68WZs3b9Yff/yhe+65R9HR0Tp8+LDuvPNODR06tMAKBQAAQHb5mpkrX768lixZkm3WbefOnWrdurUOHz6sLVu2qHXr1tx3rhAwMwcAgPUUq5m55ORk+/9jvdyff/6plJQUSZfuRXfhwoV/Vh0AAADylO/DrA8//LDmz5+vP/74Q3/88Yfmz5+vfv36qWPHjpKkn376SbfccktB1goAAIAr5Oswa2pqqoYOHapZs2YpIyNDkuTi4qLevXvrjTfeUMmSJZWQkCBJuu222wqyXojDrAAAWFFhfX7/o/vMpaam6rfffpMkVa1aVV5eXgVWGHJHmAMAwHqK1X3msnh5eSksLKygagEAAMB1ytc5cwAAACge/tHMHIpW3TGL5eTuWdRlAABQ7ByY2K6oS7hhmJkDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAAD/ShMmTFDjxo3l7e2tsmXLqmPHjkpMTHRoc/78eQ0cOFABAQHy8vJS586ddfz48Rz7O3XqlCpUqCCbzaakpKQc26xdu1YuLi667bbbCng0ubspw9yKFSvy3BF5CQ8P15AhQ+zPK1eurKlTp9qf22w2ffXVV/+4RgAA8M+sXLlSAwcO1IYNG7RkyRKlp6erdevWOnPmjL3N0KFD9c033+iLL77QypUrdeTIEXXq1CnH/vr166ewsLBcXy8pKUm9evVSREREgY8lLy439NVuAJvNluf6MWPGKDw8PN/9z5s3T66urvneHgAA3BiLFi1yeB4XF6eyZctq8+bNuvPOO5WcnKyYmBh99tlnuvvuuyVJsbGxqlWrljZs2KDbb7/dvu3MmTOVlJSkF198Ud9//32Or9e/f391795dzs7ON3Ri5183M3f06FH7Y+rUqfLx8XFYNnz48Hz1e+HCBUmSv7+/vL29C7LkHF8HAAAUrOTkZEmXPsslafPmzUpPT1dkZKS9Tc2aNVWxYkWtX7/evmzXrl0aP368Zs2aJSennKNTbGysfvvtN40ZM6YQR5Czf12YCwwMtD98fX1ls9kclnl5ednbbt68WY0aNZKnp6eaN2/ucBx97Nixuu222/TBBx+oSpUqKlGihKTsh1mv5vfff1eXLl3k5+cnf39/dejQQQcOHLCv79Onjzp27KiXX35ZwcHBCg0N/cffAwAA4CgzM1NDhgxRixYtVLduXUnSsWPH5ObmJj8/P4e25cqV07FjxyRJaWlpio6O1uTJk1WxYsUc+96zZ4+effZZffLJJ3JxufEHPf91Ye56jB49WlOmTNGmTZvk4uKihx9+2GH93r179eWXX2revHlKSEi47v7T09MVFRUlb29vrV69WmvXrpWXl5fatGnjMAO3bNkyJSYmasmSJVq4cGG2ftLS0pSSkuLwAAAA127gwIHasWOHZs+efV3bjRo1SrVq1dJDDz2U4/qLFy+qe/fuGjdunG655ZaCKPW6/evOmbseL7/8slq1aiVJevbZZ9WuXTudP3/ePgt34cIFzZo1S2XKlMlX/3PmzFFmZqY++OAD+7l8sbGx8vPz04oVK9S6dWtJUsmSJfXBBx/Izc0tx34mTJigcePG5asGAABudoMGDdLChQu1atUqVahQwb48MDBQFy5cUFJSksPs3PHjxxUYGChJWr58ubZv367//e9/kiRjjCSpdOnSGj16tIYOHapNmzZp69atGjRokKRLs4DGGLm4uOiHH36wn49XWG7qMHf5FSlBQUGSpBMnTtinUStVqpTvICdJ27Zt0969e7OdY3f+/Hnt27fP/vzWW2/NNchJl/4qGDZsmP15SkqKQkJC8l0XAAA3A2OMBg8erPnz52vFihWqUqWKw/qGDRvK1dVVy5YtU+fOnSVJiYmJOnTokJo1ayZJ+vLLL3Xu3Dn7Nhs3btTDDz+s1atXq1q1avLx8dH27dsd+n377be1fPly/e9//8v2moXhpg5zl1+VmjVzlpmZaV9WsmTJf9R/amqqGjZsqE8//TTbustD4tVex93dXe7u7v+oFgAAbjYDBw7UZ599pgULFsjb29t+Hpyvr688PDzk6+urfv36adiwYfL395ePj48GDx6sZs2a2a9krVatmkOfJ0+elCTVqlXLPpuXdQ5elrJly6pEiRLZlheWmzrMFbYGDRpozpw5Klu2rHx8fIq6HAAAbiozZ86UpGy3JIuNjVWfPn0kSW+88YacnJzUuXNnpaWlKSoqSm+//fYNrvSfuakvgChsPXr0UOnSpdWhQwetXr1a+/fv14oVK/Tkk0/qjz/+KOryAAD4VzPG5PjICnKSVKJECc2YMUOnT5/WmTNnNG/ePPv5cjkJDw+XMSbbFbCXGzt2bL4unMwvwlwh8vT01KpVq1SxYkV16tRJtWrVUr9+/XT+/Hlm6gAAQIGwmazLMmAZKSkp8vX1VciQuXJy9yzqcgAAKHYOTGxX1CVkk/X5nZycXKCTOszMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAAC3Mp6gKQfzvGRcnHx6eoywAAAEWImTkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDCXoi4A+Vd3zGI5uXsWdRkAAPyrHJjYrqhLuC7MzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAOAKEyZMUOPGjeXt7a2yZcuqY8eOSkxMdGjz3nvvKTw8XD4+PrLZbEpKSsrWz8svv6zmzZvL09NTFStWzPG1nnzySTVs2FDu7u667bbbrrvWYhnm+vTpI5vNJpvNJldXV1WpUkXPPPOMzp8/X9SlAQCAm8DKlSs1cOBAbdiwQUuWLFF6erpat26tM2fO2NucPXtWbdq00XPPPZdrPxcuXNCDDz6oAQMG5Pl6Dz/8sLp27ZqvWl3ytdUN0KZNG8XGxio9PV2bN29W7969ZbPZ9OqrrxZ1aQAA4F9u0aJFDs/j4uJUtmxZbd68WXfeeackaciQIZKkFStW5NrPuHHj7Nvn5q233pIk/fnnn/r555+vu9ZiOTMnSe7u7goMDFRISIg6duyoyMhILVmyRJKUlpamJ598UmXLllWJEiXUsmVLbdy40b7tihUrZLPZtHjxYtWvX18eHh66++67deLECX3//feqVauWfHx81L17d509e9a+3aJFi9SyZUv5+fkpICBA9913n/bt22dff+DAAdlsNs2bN0933XWXPD09Va9ePa1fv96h9rVr1yo8PFyenp4qVaqUoqKi9Ndff0mSMjMzNWHCBFWpUkUeHh6qV6+e/ve//xXmtxIAAPxDycnJkiR/f/8iriS7YhvmLrdjxw6tW7dObm5ukqRnnnlGX375pT766CNt2bJF1atXV1RUlE6fPu2w3dixYzV9+nStW7dOv//+u7p06aKpU6fqs88+07fffqsffvhB06ZNs7c/c+aMhg0bpk2bNmnZsmVycnLSAw88oMzMTId+R48ereHDhyshIUG33HKLoqOjlZGRIUlKSEhQRESEateurfXr12vNmjVq3769Ll68KOnSMfhZs2bpnXfe0c6dOzV06FA99NBDWrlyZa7jT0tLU0pKisMDAADcGJmZmRoyZIhatGihunXrFnU52RTbw6wLFy6Ul5eXMjIylJaWJicnJ02fPl1nzpzRzJkzFRcXp7Zt20qS3n//fS1ZskQxMTEaMWKEvY+XXnpJLVq0kCT169dPo0aN0r59+1S1alVJ0n/+8x/Fx8dr5MiRkqTOnTs71PDhhx+qTJky2rVrl8POGz58uNq1ayfp0vRpnTp1tHfvXtWsWVOTJk1So0aN9Pbbb9vb16lTR9KlUPbKK69o6dKlatasmSSpatWqWrNmjd599121atUqx+/FhAkT7NO0AADgxho4cKB27NihNWvWFHUpOSq2M3N33XWXEhIS9OOPP6p3797q27evOnfurH379ik9Pd0e0iTJ1dVVTZo00e7dux36CAsLs39drlw5eXp62oNc1rITJ07Yn+/Zs0fR0dGqWrWqfHx8VLlyZUnSoUOHcu03KChIkuz9ZM3M5WTv3r06e/as7rnnHnl5edkfs2bNcjice6VRo0YpOTnZ/vj9999zbQsAAArOoEGDtHDhQsXHx6tChQpFXU6Oiu3MXMmSJVW9enVJl2bI6tWrp5iYGDVu3Pia+3B1dbV/nXVl7OVsNpvDIdT27durUqVKev/99xUcHKzMzEzVrVtXFy5cyLNfSfZ+PDw8cq0nNTVVkvTtt9+qfPnyDuvc3d1z3c7d3T3P9QAAoGAZYzR48GDNnz9fK1asUJUqVYq6pFwV25m5yzk5Oem5557T888/r2rVqsnNzU1r1661r09PT9fGjRtVu3btfL/GqVOnlJiYqOeff14RERGqVauW/aKF6xEWFqZly5bluK527dpyd3fXoUOHVL16dYdHSEhIvmsHAAAFa+DAgfrkk0/02WefydvbW8eOHdOxY8d07tw5e5tjx44pISFBe/fulSRt375dCQkJDufwHzp0SAkJCTp06JD9/Pmff/7ZPsEjXTpyl5CQYO8/ISFBCQkJ2SaTclNsZ+au9OCDD2rEiBGaOXOmBgwYoBEjRsjf318VK1bUpEmTdPbsWfXr1y/f/ZcqVUoBAQF67733FBQUpEOHDunZZ5+97n5GjRqlW2+9VU888YT69+8vNzc3xcfH68EHH1Tp0qU1fPhwDR06VJmZmWrZsqWSk5O1du1a+fj4qHfv3vmuHwAAFJyZM2dKksLDwx2Wx8bGqk+fPpKkd955x+Gc9qxbllze5sUXX9RHH33k0Mcdd9yh+Ph4e9+PPPKIw4WQ9evXlyTt37/ffspXXiwT5lxcXDRo0CBNmjRJ+/fvV2Zmpnr27Km///5bjRo10uLFi1WqVKl89+/k5KTZs2frySefVN26dRUaGqq33nor2068mltuuUU//PCDnnvuOTVp0kQeHh5q2rSpoqOjJUn//e9/VaZMGU2YMEG//fab/Pz81KBBgzxvOAgAAG4sY8xV24wdO1Zjx47Ns01cXJz9HnMpKSny9fVVcnKyfHx87G3yuk/dtbCZa6kWxUrWmyFkyFw5uXsWdTkAAPyrHJjYrlD6zS3M/VOWOGcOAAAAOSPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYYQ5AAAACyPMAQAAWBhhDgAAwMIIcwAAABZGmAMAALAwwhwAAICFEeYAAAAsjDAHAABgYS5FXQDyb8e4KPn4+BR1GQAAoAgxMwcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFkaYAwAAsDDCHAAAgIUR5gAAACyMMAcAAGBhhDkAAAALI8wBAABYGGEOAADAwghzAAAAFuZS1AXg+hljJEkpKSlFXAkAALhWWZ/bWZ/jBYUwZ0GnTp2SJIWEhBRxJQAA4Hr9/fff8vX1LbD+CHMW5O/vL0k6dOhQgb4ZiouUlBSFhITo999/l4+PT1GXU+AYn7UxPmtjfNZm9fEZY/T3338rODi4QPslzFmQk9OlUx19fX0t+Wa+Vj4+PozPwhiftTE+a2N8xVdhTMJwAQQAAICFEeYAAAAsjDBnQe7u7hozZozc3d2LupRCwfisjfFZG+OzNsZ3c7KZgr4+FgAAADcMM3MAAAAWRpgDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQuaMWOGKleurBIlSqhp06b66aefirqkq5owYYIaN24sb29vlS1bVh07dlRiYqJDm/DwcNlsNodH//79HdocOnRI7dq1k6enp8qWLasRI0YoIyPjRg4lR2PHjs1We82aNe3rz58/r4EDByogIEBeXl7q3Lmzjh8/7tBHcR2bJFWuXDnb+Gw2mwYOHCjJevtu1apVat++vYKDg2Wz2fTVV185rDfG6MUXX1RQUJA8PDwUGRmpPXv2OLQ5ffq0evToIR8fH/n5+alfv35KTU11aPPzzz/rjjvuUIkSJRQSEqJJkyYV9tAk5T2+9PR0jRw5UrfeeqtKliyp4OBg9erVS0eOHHHoI6d9PnHiRIc2xXF8ktSnT59stbdp08ahjVX3n6QcfxZtNpsmT55sb1Nc99+1fBYU1O/LFStWqEGDBnJ3d1f16tUVFxdX2MMrOgaWMnv2bOPm5mY+/PBDs3PnTvPoo48aPz8/c/z48aIuLU9RUVEmNjbW7NixwyQkJJh7773XVKxY0aSmptrbtGrVyjz66KPm6NGj9kdycrJ9fUZGhqlbt66JjIw0W7duNd99950pXbq0GTVqVFEMycGYMWNMnTp1HGr/888/7ev79+9vQkJCzLJly8ymTZvM7bffbpo3b25fX5zHZowxJ06ccBjbkiVLjCQTHx9vjLHevvvuu+/M6NGjzbx584wkM3/+fIf1EydONL6+vuarr74y27ZtM/fff7+pUqWKOXfunL1NmzZtTL169cyGDRvM6tWrTfXq1U10dLR9fXJysilXrpzp0aOH2bFjh/n888+Nh4eHeffdd4t0fElJSSYyMtLMmTPH/PLLL2b9+vWmSZMmpmHDhg59VKpUyYwfP95hn17+81pcx2eMMb179zZt2rRxqP306dMObay6/4wxDuM6evSo+fDDD43NZjP79u2ztymu++9aPgsK4vflb7/9Zjw9Pc2wYcPMrl27zLRp04yzs7NZtGhRoY6vqBDmLKZJkyZm4MCB9ucXL140wcHBZsKECUVY1fU7ceKEkWRWrlxpX9aqVSvz1FNP5brNd999Z5ycnMyxY8fsy2bOnGl8fHxMWlpaYZZ7VWPGjDH16tXLcV1SUpJxdXU1X3zxhX3Z7t27jSSzfv16Y0zxHltOnnrqKVOtWjWTmZlpjLH2vrvywzIzM9MEBgaayZMn25clJSUZd3d38/nnnxtjjNm1a5eRZDZu3Ghv8/333xubzWYOHz5sjDHm7bffNqVKlXIY38iRI01oaGghj8hRTmHgSj/99JORZA4ePGhfVqlSJfPGG2/kuk1xHl/v3r1Nhw4dct3m37b/OnToYO6++26HZVbZf1d+FhTU78tnnnnG1KlTx+G1unbtaqKiogp7SEWCw6wWcuHCBW3evFmRkZH2ZU5OToqMjNT69euLsLLrl5ycLEny9/d3WP7pp5+qdOnSqlu3rkaNGqWzZ8/a161fv1633nqrypUrZ18WFRWllJQU7dy588YUnoc9e/YoODhYVatWVY8ePXTo0CFJ0ubNm5Wenu6w32rWrKmKFSva91txH9vlLly4oE8++UQPP/ywbDabfbmV993l9u/fr2PHjjnsL19fXzVt2tRhf/n5+alRo0b2NpGRkXJyctKPP/5ob3PnnXfKzc3N3iYqKkqJiYn666+/btBork1ycrJsNpv8/Pwclk+cOFEBAQGqX7++Jk+e7HAYq7iPb8WKFSpbtqxCQ0M1YMAAnTp1yr7u37T/jh8/rm+//Vb9+vXLts4K++/Kz4KC+n25fv16hz6y2ljts/JauRR1Abh2J0+e1MWLFx3ewJJUrlw5/fLLL0VU1fXLzMzUkCFD1KJFC9WtW9e+vHv37qpUqZKCg4P1888/a+TIkUpMTNS8efMkSceOHctx7FnrilLTpk0VFxen0NBQHT16VOPGjdMdd9yhHTt26NixY3Jzc8v2QVmuXDl73cV5bFf66quvlJSUpD59+tiXWXnfXSmrnpzqvXx/lS1b1mG9i4uL/P39HdpUqVIlWx9Z60qVKlUo9V+v8+fPa+TIkYqOjpaPj499+ZNPPqkGDRrI399f69at06hRo3T06FG9/vrrkor3+Nq0aaNOnTqpSpUq2rdvn5577jm1bdtW69evl7Oz879q/3300Ufy9vZWp06dHJZbYf/l9FlQUL8vc2uTkpKic+fOycPDozCGVGQIc7jhBg4cqB07dmjNmjUOyx977DH717feequCgoIUERGhffv2qVq1aje6zOvStm1b+9dhYWFq2rSpKlWqpLlz5/7rfmnExMSobdu2Cg4Oti+z8r67maWnp6tLly4yxmjmzJkO64YNG2b/OiwsTG5ubnr88cc1YcKEYv9/Mbt162b/+tZbb1VYWJiqVaumFStWKCIioggrK3gffvihevTooRIlSjgst8L+y+2zANePw6wWUrp0aTk7O2e7quf48eMKDAwsoqquz6BBg7Rw4ULFx8erQoUKebZt2rSpJGnv3r2SpMDAwBzHnrWuOPHz89Mtt9yivXv3KjAwUBcuXFBSUpJDm8v3m1XGdvDgQS1dulSPPPJInu2svO+y6snr5ywwMFAnTpxwWJ+RkaHTp09bZp9mBbmDBw9qyZIlDrNyOWnatKkyMjJ04MABScV/fJerWrWqSpcu7fB+tPr+k6TVq1crMTHxqj+PUvHbf7l9FhTU78vc2vj4+Pzr/sCWCHOW4ubmpoYNG2rZsmX2ZZmZmVq2bJmaNWtWhJVdnTFGgwYN0vz587V8+fJs0/s5SUhIkCQFBQVJkpo1a6bt27c7/BLO+hCqXbt2odSdX6mpqdq3b5+CgoLUsGFDubq6Ouy3xMREHTp0yL7frDK22NhYlS1bVu3atcuznZX3XZUqVRQYGOiwv1JSUvTjjz867K+kpCRt3rzZ3mb58uXKzMy0B9lmzZpp1apVSk9Pt7dZsmSJQkNDi/wQXVaQ27Nnj5YuXaqAgICrbpOQkCAnJyf74cniPL4r/fHHHzp16pTD+9HK+y9LTEyMGjZsqHr16l21bXHZf1f7LCio35fNmjVz6COrTXH/rMy3Ir4AA9dp9uzZxt3d3cTFxZldu3aZxx57zPj5+Tlc1VMcDRgwwPj6+poVK1Y4XCp/9uxZY4wxe/fuNePHjzebNm0y+/fvNwsWLDBVq1Y1d955p72PrMvRW7dubRISEsyiRYtMmTJlisXtO55++mmzYsUKs3//frN27VoTGRlpSpcubU6cOGGMuXSpfcWKFc3y5cvNpk2bTLNmzUyzZs3s2xfnsWW5ePGiqVixohk5cqTDcivuu7///tts3brVbN261Ugyr7/+utm6dav9as6JEycaPz8/s2DBAvPzzz+bDh065Hhrkvr165sff/zRrFmzxtSoUcPh1hZJSUmmXLlypmfPnmbHjh1m9uzZxtPT84bc2iKv8V24cMHcf//9pkKFCiYhIcHh5zHrSsB169aZN954wyQkJJh9+/aZTz75xJQpU8b06tWr2I/v77//NsOHDzfr1683+/fvN0uXLjUNGjQwNWrUMOfPn7f3YdX9lyU5Odl4enqamTNnZtu+OO+/q30WGFMwvy+zbk0yYsQIs3v3bjNjxgxuTYLiZdq0aaZixYrGzc3NNGnSxGzYsKGoS7oqSTk+YmNjjTHGHDp0yNx5553G39/fuLu7m+rVq5sRI0Y43KvMGGMOHDhg2rZtazw8PEzp0qXN008/bdLT04tgRI66du1qgoKCjJubmylfvrzp2rWr2bt3r339uXPnzBNPPGFKlSplPD09zQMPPGCOHj3q0EdxHVuWxYsXG0kmMTHRYbkV9118fHyO78fevXsbYy7dnuSFF14w5cqVM+7u7iYiIiLbuE+dOmWio6ONl5eX8fHxMX379jV///23Q5tt27aZli1bGnd3d1O+fHkzceLEIh/f/v37c/15zLpv4ObNm03Tpk2Nr6+vKVGihKlVq5Z55ZVXHMJQcR3f2bNnTevWrU2ZMmWMq6urqVSpknn00Uez/cFr1f2X5d133zUeHh4mKSkp2/bFef9d7bPAmIL7fRkfH29uu+024+bmZqpWrerwGv82NmOMKaRJPwAAABQyzpkDAACwMMIcAACAhRHmAAAALIwwBwAAYGGEOQAAAAsjzAEAAFgYYQ4AAMDCCHMAAAAWRpgDAACwMMIcAACAhRHmAAAALOz/AC/KJgjT4tLPAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "ax = movies['genre'].value_counts().plot.barh()\n",
    "ax.bar_label(ax.containers[0])\n",
    "plt.title('Frequency of Movie Labels')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "a0adb2d4-a0a1-415c-bb1a-a4c089477112",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-12-02T15:41:23.653792Z",
     "start_time": "2024-12-02T15:41:23.647865Z"
    }
   },
   "outputs": [],
   "source": [
    "movie_label_ids = {'Action': 0, 'Romance': 1, 'Thriller': 2,  'Animation': 3}\n",
    "\n",
    "movie_labels = movies['genre'].apply(lambda g: movie_label_ids[g]).values\n",
    "movie_labels = movie_labels.astype(np.int8)\n",
    "data['movie_labels'] = movie_labels"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "970ce294-9848-4dc7-a2c9-0f3f4d6337aa",
   "metadata": {},
   "source": [
    "## Node Features\n",
    "\n",
    "We generate embeddings as features for each node in the graph. Node embeddings are generated by passing the movie overviews through a Sentence-BERT model and obtaining a 384-embedding vector for each movie node.\n",
    "\n",
    "\n",
    "According to [Sentence-Transformers docs](https://www.sbert.net/docs/pretrained_models.html), the **all-MiniLM-L6-v2** model provides the best quality. So we use it to generate node features.\n",
    "\n",
    "all-MiniLM-L6-v2\n",
    "\n",
    "Description:\tAll-round model tuned for many use-cases. Trained on a large and diverse dataset of over 1 billion training pairs.\n",
    "Base Model:\tnreimers/MiniLM-L6-H384-uncased\n",
    "Max Sequence Length:\t256\n",
    "Dimensions:\t384\n",
    "Normalized Embeddings:\ttrue\n",
    "Suitable Score Functions:\tdot-product (util.dot_score), cosine-similarity (util.cos_sim), euclidean distance\n",
    "Size:\t80 MB\n",
    "Pooling:\tMean Pooling\n",
    "Training Data:\t1B+ training pairs. For details, see model card.\n",
    "Model Card:\thttps://huggingface.co/sentence-transformers/all-MiniLM-L6-v2\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7ee22ad2-b585-47b1-8399-3bb0b56fa4d3",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-01T15:04:46.716504Z",
     "start_time": "2024-06-01T15:04:46.404836Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/local/lib/python3.10/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "SentenceTransformer(\n",
       "  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel \n",
       "  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})\n",
       "  (2): Normalize()\n",
       ")"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import torch\n",
    "from sentence_transformers import SentenceTransformer\n",
    "\n",
    "device = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
    "model = SentenceTransformer('../sentence-transformers/all-MiniLM-L6-v2', device=device)\n",
    "model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "e05e1a93",
   "metadata": {},
   "outputs": [],
   "source": [
    "text = movies['overview']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "3faccc3a-1091-4044-8e6a-1af1e6dfa147",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-01T15:04:52.986932Z",
     "start_time": "2024-06-01T15:04:49.969544Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Batches: 100%|██████████| 2/2 [00:04<00:00,  2.22s/it]\n"
     ]
    }
   ],
   "source": [
    "feats = model.encode(text, batch_size=4096, show_progress_bar=True, convert_to_numpy=True)\n",
    "data['movie_feats'] = feats"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "bd4dc536-4581-41ea-8c2a-a7d949ee7d29",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-01T15:05:58.038410Z",
     "start_time": "2024-06-01T15:05:58.031236Z"
    }
   },
   "outputs": [],
   "source": [
    "movie_years = movies['release_date'].apply(lambda s: int(s[:4]))\n",
    "movie_years = movie_years.values.astype(np.int16)\n",
    "data['movie_years'] = movie_years"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "f7334c3a1db74c5",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-01T15:06:10.649671Z",
     "start_time": "2024-06-01T15:06:10.647029Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'movie-actor': (array([   0,    0,    0, ..., 7504, 7504, 7504], dtype=int16),\n",
       "  array([    0,     1,     2, ..., 11870,  1733, 11794], dtype=int16)),\n",
       " 'movie-director': (array([   0,    0,    0, ..., 7503, 7503, 7504], dtype=int16),\n",
       "  array([   0,    1,    2, ..., 3423,  966, 2890], dtype=int16)),\n",
       " 'movie_labels': array([3, 1, 1, ..., 1, 1, 2], dtype=int8),\n",
       " 'movie_feats': array([[ 0.00635284,  0.00649689,  0.01250827, ...,  0.06342042,\n",
       "         -0.01747945,  0.0134356 ],\n",
       "        [-0.14075027,  0.02825641,  0.02670695, ..., -0.12270895,\n",
       "          0.08417314,  0.02486392],\n",
       "        [ 0.00014208, -0.02286632,  0.00615967, ..., -0.03311544,\n",
       "          0.04735276, -0.07458566],\n",
       "        ...,\n",
       "        [ 0.01835816,  0.07484645, -0.08099765, ..., -0.00150019,\n",
       "          0.01669764,  0.00456595],\n",
       "        [-0.00821487, -0.10434289,  0.01928608, ..., -0.06343049,\n",
       "          0.05060194, -0.04229118],\n",
       "        [-0.06465845,  0.13461556, -0.01640793, ..., -0.06274845,\n",
       "          0.04002513, -0.00751513]], dtype=float32),\n",
       " 'movie_years': array([2013, 1995, 1989, ..., 1939, 1941, 1965], dtype=int16)}"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "577568478c17d746",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2024-06-01T15:06:19.797438Z",
     "start_time": "2024-06-01T15:06:19.746897Z"
    }
   },
   "outputs": [],
   "source": [
    "with open('tmdb.pkl', 'wb') as f:\n",
    "    pickle.dump(data, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d4174a1f7a7c8da1",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}