Create fine_tune_model.py
Browse files- fine_tune_model.py +47 -0
fine_tune_model.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
3 |
+
|
4 |
+
# Load custom dataset
|
5 |
+
dataset = load_dataset('json', data_files='path_to_your/shell_commands_mock_data.json')
|
6 |
+
|
7 |
+
# Load tokenizer and model for Repl.it LLM
|
8 |
+
model_name = "Repl.it/llama-2-13b"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Tokenization function
|
13 |
+
def tokenize_function(examples):
|
14 |
+
return tokenizer(examples['prompt'], padding="max_length", truncation=True)
|
15 |
+
|
16 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
17 |
+
|
18 |
+
# Training arguments
|
19 |
+
training_args = TrainingArguments(
|
20 |
+
output_dir="./results",
|
21 |
+
evaluation_strategy="epoch",
|
22 |
+
learning_rate=2e-5,
|
23 |
+
per_device_train_batch_size=1,
|
24 |
+
per_device_eval_batch_size=1,
|
25 |
+
num_train_epochs=3,
|
26 |
+
weight_decay=0.01,
|
27 |
+
logging_dir="./logs",
|
28 |
+
logging_steps=10,
|
29 |
+
save_steps=100,
|
30 |
+
)
|
31 |
+
|
32 |
+
# Trainer setup
|
33 |
+
trainer = Trainer(
|
34 |
+
model=model,
|
35 |
+
args=training_args,
|
36 |
+
train_dataset=tokenized_datasets['train'],
|
37 |
+
eval_dataset=tokenized_datasets['test'] if 'test' in tokenized_datasets else None,
|
38 |
+
)
|
39 |
+
|
40 |
+
# Start training
|
41 |
+
trainer.train()
|
42 |
+
|
43 |
+
# Save fine-tuned model
|
44 |
+
trainer.save_model("./fine_tuned_model")
|
45 |
+
|
46 |
+
# Evaluate the model
|
47 |
+
trainer.evaluate()
|