Unnamed: 0
int64
0
5k
title
stringlengths
9
210
abstract
stringlengths
164
1.92k
300
Deep Learning and Symbolic Regression for Discovering Parametric Equations
Symbolic regression is a machine learning technique that can learn the governing formulas of data and thus has the potential to transform scientific discovery. However, symbolic regression is still limited in the complexity and dimensionality of the systems that it can analyze. Deep learning on the other hand has transformed machine learning in its ability to analyze extremely complex and high-dimensional datasets. We propose a neural network architecture to extend symbolic regression to parametric systems where some coefficient may vary but the structure of the underlying governing equation remains constant. We demonstrate our method on various analytic expressions, ODEs, and PDEs with varying coefficients and show that it extrapolates well outside of the training domain. The neural network-based architecture can also integrate with other deep learning architectures so that it can analyze high-dimensional data while being trained end-to-end. To this end we integrate our architecture with convolutional neural networks to analyze 1D images of varying spring systems.
301
Behavioral Player Rating in Competitive Online Shooter Games
Competitive online games use rating systems for matchmaking; progression-based algorithms that estimate the skill level of players with interpretable ratings in terms of the outcome of the games they played. However, the overall experience of players is shaped by factors beyond the sole outcome of their games. In this paper, we engineer several features from in-game statistics to model players and create ratings that accurately represent their behavior and true performance level. We then compare the estimating power of our behavioral ratings against ratings created with three mainstream rating systems by predicting rank of players in four popular game modes from the competitive shooter genre. Our results show that the behavioral ratings present more accurate performance estimations while maintaining the interpretability of the created representations. Considering different aspects of the playing behavior of players and using behavioral ratings for matchmaking can lead to match-ups that are more aligned with players' goals and interests, consequently resulting in a more enjoyable gaming experience.
302
Using Machine Learning to Anticipate Tipping Points and Extrapolate to Post-Tipping Dynamics of Non-Stationary Dynamical Systems
In this paper we consider the machine learning (ML) task of predicting tipping point transitions and long-term post-tipping-point behavior associated with the time evolution of an unknown (or partially unknown), non-stationary, potentially noisy and chaotic, dynamical system. We focus on the particularly challenging situation where the past dynamical state time series that is available for ML training predominantly lies in a restricted region of the state space, while the behavior to be predicted evolves on a larger state space set not fully observed by the ML model during training. In this situation, it is required that the ML prediction system have the ability to extrapolate to different dynamics past that which is observed during training. We investigate the extent to which ML methods are capable of accomplishing useful results for this task, as well as conditions under which they fail. In general, we found that the ML methods were surprisingly effective even in situations that were extremely challenging, but do (as one would expect) fail when ``too much" extrapolation is required. For the latter case, we investigate the effectiveness of combining the ML approach with conventional modeling based on scientific knowledge, thus forming a hybrid prediction system which we find can enable useful prediction even when its ML-based and knowledge-based components fail when acting alone. We also found that achieving useful results may require using very carefully selected ML hyperparameters and we propose a hyperparameter optimization strategy to address this problem. The main conclusion of this paper is that ML-based approaches are promising tools for predicting the behavior of non-stationary dynamical systems even in the case where the future evolution (perhaps due to the crossing of a tipping point) includes dynamics on a set outside of that explored by the training data.
303
Enhancing cluster analysis via topological manifold learning
We discuss topological aspects of cluster analysis and show that inferring the topological structure of a dataset before clustering it can considerably enhance cluster detection: theoretical arguments and empirical evidence show that clustering embedding vectors, representing the structure of a data manifold instead of the observed feature vectors themselves, is highly beneficial. To demonstrate, we combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN. Synthetic and real data results show that this both simplifies and improves clustering in a diverse set of low- and high-dimensional problems including clusters of varying density and/or entangled shapes. Our approach simplifies clustering because topological pre-processing consistently reduces parameter sensitivity of DBSCAN. Clustering the resulting embeddings with DBSCAN can then even outperform complex methods such as SPECTACL and ClusterGAN. Finally, our investigation suggests that the crucial issue in clustering does not appear to be the nominal dimension of the data or how many irrelevant features it contains, but rather how \textit{separable} the clusters are in the ambient observation space they are embedded in, which is usually the (high-dimensional) Euclidean space defined by the features of the data. Our approach is successful because we perform the cluster analysis after projecting the data into a more suitable space that is optimized for separability, in some sense.
304
MotionMixer: MLP-based 3D Human Body Pose Forecasting
In this work, we present MotionMixer, an efficient 3D human body pose forecasting model based solely on multi-layer perceptrons (MLPs). MotionMixer learns the spatial-temporal 3D body pose dependencies by sequentially mixing both modalities. Given a stacked sequence of 3D body poses, a spatial-MLP extracts fine grained spatial dependencies of the body joints. The interaction of the body joints over time is then modelled by a temporal MLP. The spatial-temporal mixed features are finally aggregated and decoded to obtain the future motion. To calibrate the influence of each time step in the pose sequence, we make use of squeeze-and-excitation (SE) blocks. We evaluate our approach on Human3.6M, AMASS, and 3DPW datasets using the standard evaluation protocols. For all evaluations, we demonstrate state-of-the-art performance, while having a model with a smaller number of parameters. Our code is available at: https://github.com/MotionMLP/MotionMixer
305
Training Novices: The Role of Human-AI Collaboration and Knowledge Transfer
Across a multitude of work environments, expert knowledge is imperative for humans to conduct tasks with high performance and ensure business success. These humans possess task-specific expert knowledge (TSEK) and hence, represent subject matter experts (SMEs). However, not only demographic changes but also personnel downsizing strategies lead and will continue to lead to departures of SMEs within organizations, which constitutes the challenge of how to retain that expert knowledge and train novices to keep the competitive advantage elicited by that expert knowledge. SMEs training novices is time- and cost-intensive, which intensifies the need for alternatives. Human-AI collaboration (HAIC) poses a way out of this dilemma, facilitating alternatives to preserve expert knowledge and teach it to novices for tasks conducted by SMEs beforehand. In this workshop paper, we (1) propose a framework on how HAIC can be utilized to train novices on particular tasks, (2) illustrate the role of explicit and tacit knowledge in this training process via HAIC, and (3) outline a preliminary experiment design to assess the ability of AI systems in HAIC to act as a trainer to transfer TSEK to novices who do not possess prior TSEK.
306
Time-aware Dynamic Graph Embedding for Asynchronous Structural Evolution
Dynamic graphs refer to graphs whose structure dynamically changes over time. Despite the benefits of learning vertex representations (i.e., embeddings) for dynamic graphs, existing works merely view a dynamic graph as a sequence of changes within the vertex connections, neglecting the crucial asynchronous nature of such dynamics where the evolution of each local structure starts at different times and lasts for various durations. To maintain asynchronous structural evolutions within the graph, we innovatively formulate dynamic graphs as temporal edge sequences associated with joining time of vertices (ToV) and timespan of edges (ToE). Then, a time-aware Transformer is proposed to embed vertices' dynamic connections and ToEs into the learned vertex representations. Meanwhile, we treat each edge sequence as a whole and embed its ToV of the first vertex to further encode the time-sensitive information. Extensive evaluations on several datasets show that our approach outperforms the state-of-the-art in a wide range of graph mining tasks. At the same time, it is very efficient and scalable for embedding large-scale dynamic graphs.
307
Personalized Diagnostic Tool for Thyroid Cancer Classification using Multi-view Ultrasound
Over the past decades, the incidence of thyroid cancer has been increasing globally. Accurate and early diagnosis allows timely treatment and helps to avoid over-diagnosis. Clinically, a nodule is commonly evaluated from both transverse and longitudinal views using thyroid ultrasound. However, the appearance of the thyroid gland and lesions can vary dramatically across individuals. Identifying key diagnostic information from both views requires specialized expertise. Furthermore, finding an optimal way to integrate multi-view information also relies on the experience of clinicians and adds further difficulty to accurate diagnosis. To address these, we propose a personalized diagnostic tool that can customize its decision-making process for different patients. It consists of a multi-view classification module for feature extraction and a personalized weighting allocation network that generates optimal weighting for different views. It is also equipped with a self-supervised view-aware contrastive loss to further improve the model robustness towards different patient groups. Experimental results show that the proposed framework can better utilize multi-view information and outperform the competing methods.
308
Simulating financial time series using attention
Financial time series simulation is a central topic since it extends the limited real data for training and evaluation of trading strategies. It is also challenging because of the complex statistical properties of the real financial data. We introduce two generative adversarial networks (GANs), which utilize the convolutional networks with attention and the transformers, for financial time series simulation. The GANs learn the statistical properties in a data-driven manner and the attention mechanism helps to replicate the long-range dependencies. The proposed GANs are tested on the S&P 500 index and option data, examined by scores based on the stylized facts and are compared with the pure convolutional GAN, i.e. QuantGAN. The attention-based GANs not only reproduce the stylized facts, but also smooth the autocorrelation of returns.
309
Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes
A determinantal point process (DPP) is an elegant model that assigns a probability to every subset of a collection of $n$ items. While conventionally a DPP is parameterized by a symmetric kernel matrix, removing this symmetry constraint, resulting in nonsymmetric DPPs (NDPPs), leads to significant improvements in modeling power and predictive performance. Recent work has studied an approximate Markov chain Monte Carlo (MCMC) sampling algorithm for NDPPs restricted to size-$k$ subsets (called $k$-NDPPs). However, the runtime of this approach is quadratic in $n$, making it infeasible for large-scale settings. In this work, we develop a scalable MCMC sampling algorithm for $k$-NDPPs with low-rank kernels, thus enabling runtime that is sublinear in $n$. Our method is based on a state-of-the-art NDPP rejection sampling algorithm, which we enhance with a novel approach for efficiently constructing the proposal distribution. Furthermore, we extend our scalable $k$-NDPP sampling algorithm to NDPPs without size constraints. Our resulting sampling method has polynomial time complexity in the rank of the kernel, while the existing approach has runtime that is exponential in the rank. With both a theoretical analysis and experiments on real-world datasets, we verify that our scalable approximate sampling algorithms are orders of magnitude faster than existing sampling approaches for $k$-NDPPs and NDPPs.
310
Asynchronous Distributed Bayesian Optimization at HPC Scale
Bayesian optimization (BO) is a widely used approach for computationally expensive black-box optimization such as simulator calibration and hyperparameter optimization of deep learning methods. In BO, a dynamically updated computationally cheap surrogate model is employed to learn the input-output relationship of the black-box function; this surrogate model is used to explore and exploit the promising regions of the input space. Multipoint BO methods adopt a single manager/multiple workers strategy to achieve high-quality solutions in shorter time. However, the computational overhead in multipoint generation schemes is a major bottleneck in designing BO methods that can scale to thousands of workers. We present an asynchronous-distributed BO (ADBO) method wherein each worker runs a search and asynchronously communicates the input-output values of black-box evaluations from all other workers without the manager. We scale our method up to 4,096 workers and demonstrate improvement in the quality of the solution and faster convergence. We demonstrate the effectiveness of our approach for tuning the hyperparameters of neural networks from the Exascale computing project CANDLE benchmarks.
311
Online Reflective Learning for Robust Medical Image Segmentation
Deep segmentation models often face the failure risks when the testing image presents unseen distributions. Improving model robustness against these risks is crucial for the large-scale clinical application of deep models. In this study, inspired by human learning cycle, we propose a novel online reflective learning framework (RefSeg) to improve segmentation robustness. Based on the reflection-on-action conception, our RefSeg firstly drives the deep model to take action to obtain semantic segmentation. Then, RefSeg triggers the model to reflect itself. Because making deep models realize their segmentation failures during testing is challenging, RefSeg synthesizes a realistic proxy image from the semantic mask to help deep models build intuitive and effective reflections. This proxy translates and emphasizes the segmentation flaws. By maximizing the structural similarity between the raw input and the proxy, the reflection-on-action loop is closed with segmentation robustness improved. RefSeg runs in the testing phase and is general for segmentation models. Extensive validation on three medical image segmentation tasks with a public cardiac MR dataset and two in-house large ultrasound datasets show that our RefSeg remarkably improves model robustness and reports state-of-the-art performance over strong competitors.
312
Agent with Tangent-based Formulation and Anatomical Perception for Standard Plane Localization in 3D Ultrasound
Standard plane (SP) localization is essential in routine clinical ultrasound (US) diagnosis. Compared to 2D US, 3D US can acquire multiple view planes in one scan and provide complete anatomy with the addition of coronal plane. However, manually navigating SPs in 3D US is laborious and biased due to the orientation variability and huge search space. In this study, we introduce a novel reinforcement learning (RL) framework for automatic SP localization in 3D US. Our contribution is three-fold. First, we formulate SP localization in 3D US as a tangent-point-based problem in RL to restructure the action space and significantly reduce the search space. Second, we design an auxiliary task learning strategy to enhance the model's ability to recognize subtle differences crossing Non-SPs and SPs in plane search. Finally, we propose a spatial-anatomical reward to effectively guide learning trajectories by exploiting spatial and anatomical information simultaneously. We explore the efficacy of our approach on localizing four SPs on uterus and fetal brain datasets. The experiments indicate that our approach achieves a high localization accuracy as well as robust performance.
313
Weakly-supervised High-fidelity Ultrasound Video Synthesis with Feature Decoupling
Ultrasound (US) is widely used for its advantages of real-time imaging, radiation-free and portability. In clinical practice, analysis and diagnosis often rely on US sequences rather than a single image to obtain dynamic anatomical information. This is challenging for novices to learn because practicing with adequate videos from patients is clinically unpractical. In this paper, we propose a novel framework to synthesize high-fidelity US videos. Specifically, the synthesis videos are generated by animating source content images based on the motion of given driving videos. Our highlights are three-fold. First, leveraging the advantages of self- and fully-supervised learning, our proposed system is trained in weakly-supervised manner for keypoint detection. These keypoints then provide vital information for handling complex high dynamic motions in US videos. Second, we decouple content and texture learning using the dual decoders to effectively reduce the model learning difficulty. Last, we adopt the adversarial training strategy with GAN losses for further improving the sharpness of the generated videos, narrowing the gap between real and synthesis videos. We validate our method on a large in-house pelvic dataset with high dynamic motion. Extensive evaluation metrics and user study prove the effectiveness of our proposed method.
314
Reinforcement Learning of Multi-Domain Dialog Policies Via Action Embeddings
Learning task-oriented dialog policies via reinforcement learning typically requires large amounts of interaction with users, which in practice renders such methods unusable for real-world applications. In order to reduce the data requirements, we propose to leverage data from across different dialog domains, thereby reducing the amount of data required from each given domain. In particular, we propose to learn domain-agnostic action embeddings, which capture general-purpose structure that informs the system how to act given the current dialog context, and are then specialized to a specific domain. We show how this approach is capable of learning with significantly less interaction with users, with a reduction of 35% in the number of dialogs required to learn, and to a higher level of proficiency than training separate policies for each domain on a set of simulated domains.
315
Lifelong Inverse Reinforcement Learning
Methods for learning from demonstration (LfD) have shown success in acquiring behavior policies by imitating a user. However, even for a single task, LfD may require numerous demonstrations. For versatile agents that must learn many tasks via demonstration, this process would substantially burden the user if each task were learned in isolation. To address this challenge, we introduce the novel problem of lifelong learning from demonstration, which allows the agent to continually build upon knowledge learned from previously demonstrated tasks to accelerate the learning of new tasks, reducing the amount of demonstrations required. As one solution to this problem, we propose the first lifelong learning approach to inverse reinforcement learning, which learns consecutive tasks via demonstration, continually transferring knowledge between tasks to improve performance.
316
A Neural Network Based Novel Test Selector
Machine learning (ML) has been used to accelerate the progress of functional coverage in simulation-based verification. A supervised ML algorithm, as a prevalent option in the previous work, is used to bias the test generation or filter the generated tests. However, for missing coverage events, these algorithms lack the positive examples to learn from in the training phase. Therefore, the tests generated or filtered by the algorithms cannot effectively fill the coverage holes. This is more severe when verifying large-scale design because the coverage space is larger and the functionalities are more complex. This paper presents a configurable framework of test selection based on neural networks (NN), which can achieve a similar coverage gain as random simulation with far less simulation effort under three configurations of the framework. Moreover, the performance of the framework is not limited by the number of coverage events being hit. A commercial signal processing unit is used in the experiment to demonstrate the effectiveness of the framework. Compared to the random simulation, NNBNTS can reduce up to 53.74% of simulation time to reach 99% coverage level.
317
Implicit adaptation of mesh model of transient heat conduction problem
Considering high-temperature heating, the equations of transient heat conduction model require an adaptation, i.e. the dependence of thermophysical parameters of the model on the temperature is to be identified for each specific material to be heated. This problem is most often solved by approximation of the tabular data on the measurements of the required parameters, which can be found in the literature, by means of regression equations. But, for example, considering the steel heating process, this approach is difficult to be implemented due to the lack of tabular discrete measurements for many grades of steel, such as alloyed ones. In this paper, the new approach is proposed, which is based on a solution of a related variational problem. Its main idea is to substitute the adaptation process in the classical sense (i.e., to find the dependencies of thermophysical parameters on temperature) with 'supervised learning' of a mesh model on the basis of the technological data received from the plant. The equations to adjust the parameters of the transient heat conduction model, which are related to the thermophysical coefficients, have been derived. A numerical experiment is conducted for steel of a particular group of grades, for which enough both technological as well as tabular data are available. As a result, the 'trained' mesh model, which has not received explicitly any information about the physical and chemical properties of the heated substance, demonstrated an average error of 18.820 C, which is quite close to the average error of the model adapted classically on the basis of the tabular data (18.10 C).
318
Shai-am: A Machine Learning Platform for Investment Strategies
The finance industry has adopted machine learning (ML) as a form of quantitative research to support better investment decisions, yet there are several challenges often overlooked in practice. (1) ML code tends to be unstructured and ad hoc, which hinders cooperation with others. (2) Resource requirements and dependencies vary depending on which algorithm is used, so a flexible and scalable system is needed. (3) It is difficult for domain experts in traditional finance to apply their experience and knowledge in ML-based strategies unless they acquire expertise in recent technologies. This paper presents Shai-am, an ML platform integrated with our own Python framework. The platform leverages existing modern open-source technologies, managing containerized pipelines for ML-based strategies with unified interfaces to solve the aforementioned issues. Each strategy implements the interface defined in the core framework. The framework is designed to enhance reusability and readability, facilitating collaborative work in quantitative research. Shai-am aims to be a pure AI asset manager for solving various tasks in financial markets.
319
Modular Lifelong Reinforcement Learning via Neural Composition
Humans commonly solve complex problems by decomposing them into easier subproblems and then combining the subproblem solutions. This type of compositional reasoning permits reuse of the subproblem solutions when tackling future tasks that share part of the underlying compositional structure. In a continual or lifelong reinforcement learning (RL) setting, this ability to decompose knowledge into reusable components would enable agents to quickly learn new RL tasks by leveraging accumulated compositional structures. We explore a particular form of composition based on neural modules and present a set of RL problems that intuitively admit compositional solutions. Empirically, we demonstrate that neural composition indeed captures the underlying structure of this space of problems. We further propose a compositional lifelong RL method that leverages accumulated neural components to accelerate the learning of future tasks while retaining performance on previous tasks via off-line RL over replayed experiences.
320
Autonomous Intraluminal Navigation of a Soft Robot using Deep-Learning-based Visual Servoing
Navigation inside luminal organs is an arduous task that requires non-intuitive coordination between the movement of the operator's hand and the information obtained from the endoscopic video. The development of tools to automate certain tasks could alleviate the physical and mental load of doctors during interventions, allowing them to focus on diagnosis and decision-making tasks. In this paper, we present a synergic solution for intraluminal navigation consisting of a 3D printed endoscopic soft robot that can move safely inside luminal structures. Visual servoing, based on Convolutional Neural Networks (CNNs) is used to achieve the autonomous navigation task. The CNN is trained with phantoms and in-vivo data to segment the lumen, and a model-less approach is presented to control the movement in constrained environments. The proposed robot is validated in anatomical phantoms in different path configurations. We analyze the movement of the robot using different metrics such as task completion time, smoothness, error in the steady-state, and mean and maximum error. We show that our method is suitable to navigate safely in hollow environments and conditions which are different than the ones the network was originally trained on.
321
WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer
Deep learning based solutions are being succesfully implemented for a wide variety of applications. Most notably, clinical use-cases have gained an increased interest and have been the main driver behind some of the cutting-edge data-driven algorithms proposed in the last years. For applications like sparse-view tomographic reconstructions, where the amount of measurement data is small in order to keep acquisition times short and radiation dose low, reduction of the streaking artifacts has prompted the development of data-driven denoising algorithms with the main goal of obtaining diagnostically viable images with only a subset of a full-scan data. We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising. Two encoder-decoder networks perform denoising in both sinogram- and reconstruction-domain simultaneously, while a third layer implementing the Filtered Backprojection algorithm is sandwiched between the first two and takes care of the reconstruction operation. We investigate the performance of the network on sparse-view chest CT scans, and we highlight the added benefit of having a trainable reconstruction layer over the more conventional fixed ones. We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms.
322
Better Methods and Theory for Federated Learning: Compression, Client Selection and Heterogeneity
Federated learning (FL) is an emerging machine learning paradigm involving multiple clients, e.g., mobile phone devices, with an incentive to collaborate in solving a machine learning problem coordinated by a central server. FL was proposed in 2016 by Kone\v{c}n\'{y} et al. and McMahan et al. as a viable privacy-preserving alternative to traditional centralized machine learning since, by construction, the training data points are decentralized and never transferred by the clients to a central server. Therefore, to a certain degree, FL mitigates the privacy risks associated with centralized data collection. Unfortunately, optimization for FL faces several specific issues that centralized optimization usually does not need to handle. In this thesis, we identify several of these challenges and propose new methods and algorithms to address them, with the ultimate goal of enabling practical FL solutions supported with mathematically rigorous guarantees.
323
Characterizing the Effect of Class Imbalance on the Learning Dynamics
Data imbalance is a common problem in the machine learning literature that can have a critical effect on the performance of a model. Various solutions exist - such as the ones that focus on resampling or data generation - but their impact on the convergence of gradient-based optimizers used in deep learning is not understood. We here elucidate the significant negative impact of data imbalance on learning, showing that the learning curves for minority and majority classes follow sub-optimal trajectories when training with a gradient-based optimizer. The reason is not only that the gradient signal neglects the minority classes, but also that the minority classes are subject to a larger directional noise, which slows their learning by an amount related to the imbalance ratio. To address this problem, we propose a new algorithmic solution, for which we provide a detailed analysis of its convergence behavior. We show both theoretically and empirically that this new algorithm exhibits a better behavior with more stable learning curves for each class, as well as a better generalization performance.
324
Analysis of Kinetic Models for Label Switching and Stochastic Gradient Descent
In this paper we provide a novel approach to the analysis of kinetic models for label switching, which are used for particle systems that can randomly switch between gradient flows in different energy landscapes. Besides problems in biology and physics, we also demonstrate that stochastic gradient descent, the most popular technique in machine learning, can be understood in this setting, when considering a time-continuous variant. Our analysis is focusing on the case of evolution in a collection of external potentials, for which we provide analytical and numerical results about the evolution as well as the stationary problem.
325
Rapid training of quantum recurrent neural network
Time series prediction is the crucial task for many human activities e.g. weather forecasts or predicting stock prices. One solution to this problem is to use Recurrent Neural Networks (RNNs). Although they can yield accurate predictions, their learning process is slow and complex. Here we propose a Quantum Recurrent Neural Network (QRNN) to address these obstacles. The design of the network is based on the continuous-variable quantum computing paradigm. We demonstrate that the network is capable of learning time dependence of a few types of temporal data. Our numerical simulations show that the QRNN converges to optimal weights in fewer epochs than the classical network. Furthermore, for a small number of trainable parameters it can achieve lower loss than the latter.
326
Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs
There has been a growing interest in the use of Deep Neural Networks (DNNs) to solve Partial Differential Equations (PDEs). Despite the promise that such approaches hold, there are various aspects where they could be improved. Two such shortcomings are (i) their computational inefficiency relative to classical numerical methods, and (ii) the non-interpretability of a trained DNN model. In this work we present ASPINN, an anisotropic extension of our earlier work called SPINN--Sparse, Physics-informed, and Interpretable Neural Networks--to solve PDEs that addresses both these issues. ASPINNs generalize radial basis function networks. We demonstrate using a variety of examples involving elliptic and hyperbolic PDEs that the special architecture we propose is more efficient than generic DNNs, while at the same time being directly interpretable. Further, they improve upon the SPINN models we proposed earlier in that fewer nodes are require to capture the solution using ASPINN than using SPINN, thanks to the anisotropy of the local zones of influence of each node. The interpretability of ASPINN translates to a ready visualization of their weights and biases, thereby yielding more insight into the nature of the trained model. This in turn provides a systematic procedure to improve the architecture based on the quality of the computed solution. ASPINNs thus serve as an effective bridge between classical numerical algorithms and modern DNN based methods to solve PDEs. In the process, we also streamline the training of ASPINNs into a form that is closer to that of supervised learning algorithms.
327
Multi-Objective Coordination Graphs for the Expected Scalarised Returns with Generative Flow Models
Many real-world problems contain multiple objectives and agents, where a trade-off exists between objectives. Key to solving such problems is to exploit sparse dependency structures that exist between agents. For example, in wind farm control a trade-off exists between maximising power and minimising stress on the systems components. Dependencies between turbines arise due to the wake effect. We model such sparse dependencies between agents as a multi-objective coordination graph (MO-CoG). In multi-objective reinforcement learning a utility function is typically used to model a users preferences over objectives, which may be unknown a priori. In such settings a set of optimal policies must be computed. Which policies are optimal depends on which optimality criterion applies. If the utility function of a user is derived from multiple executions of a policy, the scalarised expected returns (SER) must be optimised. If the utility of a user is derived from a single execution of a policy, the expected scalarised returns (ESR) criterion must be optimised. For example, wind farms are subjected to constraints and regulations that must be adhered to at all times, therefore the ESR criterion must be optimised. For MO-CoGs, the state-of-the-art algorithms can only compute a set of optimal policies for the SER criterion, leaving the ESR criterion understudied. To compute a set of optimal polices under the ESR criterion, also known as the ESR set, distributions over the returns must be maintained. Therefore, to compute a set of optimal policies under the ESR criterion for MO-CoGs, we present a novel distributional multi-objective variable elimination (DMOVE) algorithm. We evaluate DMOVE in realistic wind farm simulations. Given the returns in real-world wind farm settings are continuous, we utilise a model known as real-NVP to learn the continuous return distributions to calculate the ESR set.
328
A geometric framework for outlier detection in high-dimensional data
Outlier or anomaly detection is an important task in data analysis. We discuss the problem from a geometrical perspective and provide a framework that exploits the metric structure of a data set. Our approach rests on the manifold assumption, i.e., that the observed, nominally high-dimensional data lie on a much lower dimensional manifold and that this intrinsic structure can be inferred with manifold learning methods. We show that exploiting this structure significantly improves the detection of outlying observations in high-dimensional data. We also suggest a novel, mathematically precise, and widely applicable distinction between distributional and structural outliers based on the geometry and topology of the data manifold that clarifies conceptual ambiguities prevalent throughout the literature. Our experiments focus on functional data as one class of structured high-dimensional data, but the framework we propose is completely general and we include image and graph data applications. Our results show that the outlier structure of high-dimensional and non-tabular data can be detected and visualized using manifold learning methods and quantified using standard outlier scoring methods applied to the manifold embedding vectors.
329
Automatic Evaluation of Speaker Similarity
We introduce a new automatic evaluation method for speaker similarity assessment, that is consistent with human perceptual scores. Modern neural text-to-speech models require a vast amount of clean training data, which is why many solutions switch from single speaker models to solutions trained on examples from many different speakers. Multi-speaker models bring new possibilities, such as a faster creation of new voices, but also a new problem - speaker leakage, where the speaker identity of a synthesized example might not match those of the target speaker. Currently, the only way to discover this issue is through costly perceptual evaluations. In this work, we propose an automatic method for assessment of speaker similarity. For that purpose, we extend the recent work on speaker verification systems and evaluate how different metrics and speaker embeddings models reflect Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) scores. Our experiments show that we can train a model to predict speaker similarity MUSHRA scores from speaker embeddings with 0.96 accuracy and significant correlation up to 0.78 Pearson score at the utterance level.
330
A Deep-Learning-Aided Pipeline for Efficient Post-Silicon Tuning
In post-silicon validation, tuning is to find the values for the tuning knobs, potentially as a function of process parameters and/or known operating conditions. In this sense, an more efficient tuning requires identifying the most critical tuning knobs and process parameters in terms of a given figure-of-merit for a Device Under Test (DUT). This is often manually conducted by experienced experts. However, with increasingly complex chips, manual inspection on a large amount of raw variables has become more challenging. In this work, we leverage neural networks to efficiently select the most relevant variables and present a corresponding deep-learning-aided pipeline for efficient tuning.
331
Conditional Variable Selection for Intelligent Test
Intelligent test requires efficient and effective analysis of high-dimensional data in a large scale. Traditionally, the analysis is often conducted by human experts, but it is not scalable in the era of big data. To tackle this challenge, variable selection has been recently introduced to intelligent test. However, in practice, we encounter scenarios where certain variables (e.g. some specific processing conditions for a device under test) must be maintained after variable selection. We call this conditional variable selection, which has not been well investigated for embedded or deep-learning-based variable selection methods. In this paper, we discuss a novel conditional variable selection framework that can select the most important candidate variables given a set of preselected variables.
332
Learning Subject-Invariant Representations from Speech-Evoked EEG Using Variational Autoencoders
The electroencephalogram (EEG) is a powerful method to understand how the brain processes speech. Linear models have recently been replaced for this purpose with deep neural networks and yield promising results. In related EEG classification fields, it is shown that explicitly modeling subject-invariant features improves generalization of models across subjects and benefits classification accuracy. In this work, we adapt factorized hierarchical variational autoencoders to exploit parallel EEG recordings of the same stimuli. We model EEG into two disentangled latent spaces. Subject accuracy reaches 98.96% and 1.60% on respectively the subject and content latent space, whereas binary content classification experiments reach an accuracy of 51.51% and 62.91% on respectively the subject and content latent space.
333
Identification of Binary Neutron Star Mergers in Gravitational-Wave Data Using YOLO One-Shot Object Detection
We demonstrate the application of the YOLOv5 model, a general purpose convolution-based single-shot object detection model, in the task of detecting binary neutron star (BNS) coalescence events from gravitational-wave data of current generation interferometer detectors. We also present a thorough explanation of the synthetic data generation and preparation tasks based on approximant waveform models used for the model training, validation and testing steps. Using this approach, we achieve mean average precision ($\text{mAP}_{[0.50]}$) values of 0.945 for a single class validation dataset and as high as 0.978 for test datasets. Moreover, the trained model is successful in identifying the GW170817 event in the LIGO H1 detector data. The identification of this event is also possible for the LIGO L1 detector data with an additional pre-processing step, without the need of removing the large glitch in the final stages of the inspiral. The detection of the GW190425 event is less successful, which attests to performance degradation with the signal-to-noise ratio. Our study indicates that the YOLOv5 model is an interesting approach for first-stage detection alarm pipelines and, when integrated in more complex pipelines, for real-time inference of physical source parameters.
334
Can we learn from developer mistakes? Learning to localize and repair real bugs from real bug fixes
Real bug fixes found in open source repositories seem to be the perfect source for learning to localize and repair real bugs. However, the absence of large scale bug fix collections has made it difficult to effectively exploit real bug fixes in the training of larger neural models in the past. In contrast, artificial bugs -- produced by mutating existing source code -- can be easily obtained at a sufficient scale and are therefore often preferred in the training of existing approaches. Still, localization and repair models that are trained on artificial bugs usually underperform when faced with real bugs. This raises the question whether bug localization and repair models trained on real bug fixes are more effective in localizing and repairing real bugs. We address this question by introducing RealiT, a pre-train-and-fine-tune approach for effectively learning to localize and repair real bugs from real bug fixes. RealiT is first pre-trained on a large number of artificial bugs produced by traditional mutation operators and then fine-tuned on a smaller set of real bug fixes. Fine-tuning does not require any modifications of the learning algorithm and hence can be easily adopted in various training scenarios for bug localization or repair (even when real training data is scarce). In addition, we found that training on real bug fixes with RealiT is empirically powerful by nearly doubling the localization performance of an existing model on real bugs while maintaining or even improving the repair performance.
335
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
This work takes a critical look at the application of conventional machine learning methods to wireless communication problems through the lens of reliability and robustness. Deep learning techniques adopt a frequentist framework, and are known to provide poorly calibrated decisions that do not reproduce the true uncertainty caused by limitations in the size of the training data. Bayesian learning, while in principle capable of addressing this shortcoming, is in practice impaired by model misspecification and by the presence of outliers. Both problems are pervasive in wireless communication settings, in which the capacity of machine learning models is subject to resource constraints and training data is affected by noise and interference. In this context, we explore the application of the framework of robust Bayesian learning. After a tutorial-style introduction to robust Bayesian learning, we showcase the merits of robust Bayesian learning on several important wireless communication problems in terms of accuracy, calibration, and robustness to outliers and misspecification.
336
Distributed Influence-Augmented Local Simulators for Parallel MARL in Large Networked Systems
Due to its high sample complexity, simulation is, as of today, critical for the successful application of reinforcement learning. Many real-world problems, however, exhibit overly complex dynamics, which makes their full-scale simulation computationally slow. In this paper, we show how to decompose large networked systems of many agents into multiple local components such that we can build separate simulators that run independently and in parallel. To monitor the influence that the different local components exert on one another, each of these simulators is equipped with a learned model that is periodically trained on real trajectories. Our empirical results reveal that distributing the simulation among different processes not only makes it possible to train large multi-agent systems in just a few hours but also helps mitigate the negative effects of simultaneous learning.
337
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
We propose a novel machine learning method for sampling from the high-dimensional probability distributions of Lattice Quantum Field Theories. Instead of the deep architectures used so far for this task, our proposal is based on a single neural ODE layer and incorporates the full symmetries of the problem. We test our model on the $\phi^4$ theory, showing that it systematically outperforms previously proposed flow-based methods in sampling efficiency, and the improvement is especially pronounced for larger lattices. Compared to the previous baseline model, we improve a key metric, the effective sample size, from 1% to 91% on a lattice of size $32\times 32$. We also demonstrate that our model can successfully learn a continuous family of theories at once, and the results of learning can be transferred to larger lattices. Such generalization capacities further accentuate the potential advantages of machine learning methods compared to traditional MCMC-based methods.
338
Effect of Homomorphic Encryption on the Performance of Training Federated Learning Generative Adversarial Networks
A Generative Adversarial Network (GAN) is a deep-learning generative model in the field of Machine Learning (ML) that involves training two Neural Networks (NN) using a sizable data set. In certain fields, such as medicine, the training data may be hospital patient records that are stored across different hospitals. The classic centralized approach would involve sending the data to a centralized server where the model would be trained. However, that would involve breaching the privacy and confidentiality of the patients and their data, which would be unacceptable. Therefore, Federated Learning (FL), an ML technique that trains ML models in a distributed setting without data ever leaving the host device, would be a better alternative to the centralized option. In this ML technique, only parameters and certain metadata would be communicated. In spite of that, there still exist attacks that can infer user data using the parameters and metadata. A fully privacy-preserving solution involves homomorphically encrypting (HE) the data communicated. This paper will focus on the performance loss of training an FL-GAN with three different types of Homomorphic Encryption: Partial Homomorphic Encryption (PHE), Somewhat Homomorphic Encryption (SHE), and Fully Homomorphic Encryption (FHE). We will also test the performance loss of Multi-Party Computations (MPC), as it has homomorphic properties. The performances will be compared to the performance of training an FL-GAN without encryption as well. Our experiments show that the more complex the encryption method is, the longer it takes, with the extra time taken for HE is quite significant in comparison to the base case of FL.
339
Discriminator-Guided Model-Based Offline Imitation Learning
Offline imitation learning (IL) is a powerful method to solve decision-making problems from expert demonstrations without reward labels. Existing offline IL methods suffer from severe performance degeneration under limited expert data due to covariate shift. Including a learned dynamics model can potentially improve the state-action space coverage of expert data, however, it also faces challenging issues like model approximation/generalization errors and suboptimality of rollout data. In this paper, we propose the Discriminator-guided Model-based offline Imitation Learning (DMIL) framework, which introduces a discriminator to simultaneously distinguish the dynamics correctness and suboptimality of model rollout data against real expert demonstrations. DMIL adopts a novel cooperative-yet-adversarial learning strategy, which uses the discriminator to guide and couple the learning process of the policy and dynamics model, resulting in improved model performance and robustness. Our framework can also be extended to the case when demonstrations contain a large proportion of suboptimal data. Experimental results show that DMIL and its extension achieve superior performance and robustness compared to state-of-the-art offline IL methods under small datasets.
340
Improving Speech Enhancement through Fine-Grained Speech Characteristics
While deep learning based speech enhancement systems have made rapid progress in improving the quality of speech signals, they can still produce outputs that contain artifacts and can sound unnatural. We propose a novel approach to speech enhancement aimed at improving perceptual quality and naturalness of enhanced signals by optimizing for key characteristics of speech. We first identify key acoustic parameters that have been found to correlate well with voice quality (e.g. jitter, shimmer, and spectral flux) and then propose objective functions which are aimed at reducing the difference between clean speech and enhanced speech with respect to these features. The full set of acoustic features is the extended Geneva Acoustic Parameter Set (eGeMAPS), which includes 25 different attributes associated with perception of speech. Given the non-differentiable nature of these feature computation, we first build differentiable estimators of the eGeMAPS and then use them to fine-tune existing speech enhancement systems. Our approach is generic and can be applied to any existing deep learning based enhancement systems to further improve the enhanced speech signals. Experimental results conducted on the Deep Noise Suppression (DNS) Challenge dataset shows that our approach can improve the state-of-the-art deep learning based enhancement systems.
341
Visual Transformer Meets CutMix for Improved Accuracy, Communication Efficiency, and Data Privacy in Split Learning
This article seeks for a distributed learning solution for the visual transformer (ViT) architectures. Compared to convolutional neural network (CNN) architectures, ViTs often have larger model sizes, and are computationally expensive, making federated learning (FL) ill-suited. Split learning (SL) can detour this problem by splitting a model and communicating the hidden representations at the split-layer, also known as smashed data. Notwithstanding, the smashed data of ViT are as large as and as similar as the input data, negating the communication efficiency of SL while violating data privacy. To resolve these issues, we propose a new form of CutSmashed data by randomly punching and compressing the original smashed data. Leveraging this, we develop a novel SL framework for ViT, coined CutMixSL, communicating CutSmashed data. CutMixSL not only reduces communication costs and privacy leakage, but also inherently involves the CutMix data augmentation, improving accuracy and scalability. Simulations corroborate that CutMixSL outperforms baselines such as parallelized SL and SplitFed that integrates FL with SL.
342
VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations
Vision-Language Pretraining (VLP) models have recently successfully facilitated many cross-modal downstream tasks. Most existing works evaluated their systems by comparing the fine-tuned downstream task performance. However, only average downstream task accuracy provides little information about the pros and cons of each VLP method, let alone provides insights on how the community can improve the systems in the future. Inspired by the CheckList for testing natural language processing, we introduce VL-CheckList, a novel framework to understand the capabilities of VLP models. The proposed method divides the image-texting ability of a VLP model into three categories: objects, attributes, and relations, and uses a novel taxonomy to further break down these three aspects. We conduct comprehensive studies to analyze seven recently popular VLP models via the proposed framework. Results confirm the effectiveness of the proposed method by revealing fine-grained differences among the compared models that were not visible from downstream task-only evaluation. Further results show promising research direction in building better VLP models. Data and Code: https://github.com/om-ai-lab/VL-CheckList
343
e-CLIP: Large-Scale Vision-Language Representation Learning in E-commerce
Understanding vision and language representations of product content is vital for search and recommendation applications in e-commerce. As a backbone for online shopping platforms and inspired by the recent success in representation learning research, we propose a contrastive learning framework that aligns language and visual models using unlabeled raw product text and images. We present techniques we used to train large-scale representation learning models and share solutions that address domain-specific challenges. We study the performance using our pre-trained model as backbones for diverse downstream tasks, including category classification, attribute extraction, product matching, product clustering, and adult product recognition. Experimental results show that our proposed method outperforms the baseline in each downstream task regarding both single modality and multiple modalities.
344
Studying the impact of magnitude pruning on contrastive learning methods
We study the impact of different pruning techniques on the representation learned by deep neural networks trained with contrastive loss functions. Our work finds that at high sparsity levels, contrastive learning results in a higher number of misclassified examples relative to models trained with traditional cross-entropy loss. To understand this pronounced difference, we use metrics such as the number of PIEs (Hooker et al., 2019), Q-Score (Kalibhat et al., 2022), and PD-Score (Baldock et al., 2021) to measure the impact of pruning on the learned representation quality. Our analysis suggests the schedule of the pruning method implementation matters. We find that the negative impact of sparsity on the quality of the learned representation is the highest when pruning is introduced early on in the training phase.
345
When Does Differentially Private Learning Not Suffer in High Dimensions?
Large pretrained models can be privately fine-tuned to achieve performance approaching that of non-private models. A common theme in these results is the surprising observation that high-dimensional models can achieve favorable privacy-utility trade-offs. This seemingly contradicts known results on the model-size dependence of differentially private convex learning and raises the following research question: When does the performance of differentially private learning not degrade with increasing model size? We identify that the magnitudes of gradients projected onto subspaces is a key factor that determines performance. To precisely characterize this for private convex learning, we introduce a condition on the objective that we term restricted Lipschitz continuity and derive improved bounds for the excess empirical and population risks that are dimension-independent under additional conditions. We empirically show that in private fine-tuning of large language models, gradients evaluated near a local optimum are mostly controlled by a few principal components. This behavior is similar to conditions under which we obtain dimension-independent bounds in convex settings. Our theoretical and empirical results together provide a possible explanation for recent successes in large-scale private fine-tuning.
346
Usable Region Estimate for Assessing Practical Usability of Medical Image Segmentation Models
We aim to quantitatively measure the practical usability of medical image segmentation models: to what extent, how often, and on which samples a model's predictions can be used/trusted. We first propose a measure, Correctness-Confidence Rank Correlation (CCRC), to capture how predictions' confidence estimates correlate with their correctness scores in rank. A model with a high value of CCRC means its prediction confidences reliably suggest which samples' predictions are more likely to be correct. Since CCRC does not capture the actual prediction correctness, it alone is insufficient to indicate whether a prediction model is both accurate and reliable to use in practice. Therefore, we further propose another method, Usable Region Estimate (URE), which simultaneously quantifies predictions' correctness and reliability of confidence assessments in one estimate. URE provides concrete information on to what extent a model's predictions are usable. In addition, the sizes of usable regions (UR) can be utilized to compare models: A model with a larger UR can be taken as a more usable and hence better model. Experiments on six datasets validate that the proposed evaluation methods perform well, providing a concrete and concise measure for the practical usability of medical image segmentation models. Code is made available at https://github.com/yizhezhang2000/ure.
347
Generating Counterfactual Hard Negative Samples for Graph Contrastive Learning
Graph contrastive learning has emerged as a powerful tool for unsupervised graph representation learning. The key to the success of graph contrastive learning is to acquire high-quality positive and negative samples as contrasting pairs for the purpose of learning underlying structural semantics of the input graph. Recent works usually sample negative samples from the same training batch with the positive samples, or from an external irrelevant graph. However, a significant limitation lies in such strategies, which is the unavoidable problem of sampling false negative samples. In this paper, we propose a novel method to utilize \textbf{C}ounterfactual mechanism to generate artificial hard negative samples for \textbf{G}raph \textbf{C}ontrastive learning, namely \textbf{CGC}, which has a different perspective compared to those sampling-based strategies. We utilize counterfactual mechanism to produce hard negative samples, which ensures that the generated samples are similar to, but have labels that different from the positive sample. The proposed method achieves satisfying results on several datasets compared to some traditional unsupervised graph learning methods and some SOTA graph contrastive learning methods. We also conduct some supplementary experiments to give an extensive illustration of the proposed method, including the performances of CGC with different hard negative samples and evaluations for hard negative samples generated with different similarity measurements.
348
Robustness of Epinets against Distributional Shifts
Recent work introduced the epinet as a new approach to uncertainty modeling in deep learning. An epinet is a small neural network added to traditional neural networks, which, together, can produce predictive distributions. In particular, using an epinet can greatly improve the quality of joint predictions across multiple inputs, a measure of how well a neural network knows what it does not know. In this paper, we examine whether epinets can offer similar advantages under distributional shifts. We find that, across ImageNet-A/O/C, epinets generally improve robustness metrics. Moreover, these improvements are more significant than those afforded by even very large ensembles at orders of magnitude lower computational costs. However, these improvements are relatively small compared to the outstanding issues in distributionally-robust deep learning. Epinets may be a useful tool in the toolbox, but they are far from the complete solution.
349
Automated Quantum Circuit Design with Nested Monte Carlo Tree Search
Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions and have found a myriad of applications in the last few years. Despite the adaptability and simplicity, their scalability and the selection of suitable ans\"atzs remain key challenges. In this work, we report an algorithmic framework based on nested Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed bandit (CMAB) model for the automated design of quantum circuits. Through numerical experiments, we demonstrated our algorithm applied to various kinds of problems, including the ground energy problem in quantum chemistry, quantum optimisation on a graph, solving systems of linear equations, and finding encoding circuit for quantum error detection codes. Compared to the existing approaches, the results indicate that our circuit design algorithm can explore larger search spaces and optimise quantum circuits for larger systems, showing both versatility and scalability.
350
Optimizing Training Trajectories in Variational Autoencoders via Latent Bayesian Optimization Approach
Unsupervised and semi-supervised ML methods such as variational autoencoders (VAE) have become widely adopted across multiple areas of physics, chemistry, and materials sciences due to their capability in disentangling representations and ability to find latent manifolds for classification and regression of complex experimental data. Like other ML problems, VAEs require hyperparameter tuning, e.g., balancing the Kullback Leibler (KL) and reconstruction terms. However, the training process and resulting manifold topology and connectivity depend not only on hyperparameters, but also their evolution during training. Because of the inefficiency of exhaustive search in a high-dimensional hyperparameter space for the expensive to train models, here we explored a latent Bayesian optimization (zBO) approach for the hyperparameter trajectory optimization for the unsupervised and semi-supervised ML and demonstrate for joint-VAE with rotational invariances. We demonstrate an application of this method for finding joint discrete and continuous rotationally invariant representations for MNIST and experimental data of a plasmonic nanoparticles material system. The performance of the proposed approach has been discussed extensively, where it allows for any high dimensional hyperparameter tuning or trajectory optimization of other ML models.
351
Proteus: A Self-Designing Range Filter
We introduce Proteus, a novel self-designing approximate range filter, which configures itself based on sampled data in order to optimize its false positive rate (FPR) for a given space requirement. Proteus unifies the probabilistic and deterministic design spaces of state-of-the-art range filters to achieve robust performance across a larger variety of use cases. At the core of Proteus lies our Contextual Prefix FPR (CPFPR) model - a formal framework for the FPR of prefix-based filters across their design spaces. We empirically demonstrate the accuracy of our model and Proteus' ability to optimize over both synthetic workloads and real-world datasets. We further evaluate Proteus in RocksDB and show that it is able to improve end-to-end performance by as much as 5.3x over more brittle state-of-the-art methods such as SuRF and Rosetta. Our experiments also indicate that the cost of modeling is not significant compared to the end-to-end performance gains and that Proteus is robust to workload shifts.
352
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
To train robust deep neural networks (DNNs), we systematically study several target modification approaches, which include output regularisation, self and non-self label correction (LC). Three key issues are discovered: (1) Self LC is the most appealing as it exploits its own knowledge and requires no extra models. However, how to automatically decide the trust degree of a learner as training goes is not well answered in the literature. (2) Some methods penalise while the others reward low-entropy predictions, prompting us to ask which one is better. (3) Using the standard training setting, a trained network is of low confidence when severe noise exists, making it hard to leverage its high-entropy self knowledge. To resolve the issue (1), taking two well-accepted propositions--deep neural networks learn meaningful patterns before fitting noise and minimum entropy regularisation principle--we propose a novel end-to-end method named ProSelfLC, which is designed according to learning time and entropy. Specifically, given a data point, we progressively increase trust in its predicted label distribution versus its annotated one if a model has been trained for enough time and the prediction is of low entropy (high confidence). For the issue (2), according to ProSelfLC, we empirically prove that it is better to redefine a meaningful low-entropy status and optimise the learner toward it. This serves as a defence of entropy minimisation. To address the issue (3), we decrease the entropy of self knowledge using a low temperature before exploiting it to correct labels, so that the revised labels redefine a low-entropy target state. We demonstrate the effectiveness of ProSelfLC through extensive experiments in both clean and noisy settings, and on both image and protein datasets. Furthermore, our source code is available at https://github.com/XinshaoAmosWang/ProSelfLC-AT.
353
Predicting Ulnar Collateral Ligament Injury in Rookie Major League Baseball Pitchers
In the growing world of machine learning and data analytics, scholars are finding new and innovative ways to solve real-world problems. One solution comes by way of an intersection between healthcare, sports statistics, and data sciences. Within the realm of Major League Baseball (MLB), pitchers are regarded as the most important roster position. They often are among the highest paid players and are crucial to a franchise's success, but they are more at risk to suffer an injury that sidelines them for over a complete season. The ulnar collateral ligament (UCL) is a small ligament in the elbow that controls the strength and stability of a pitcher's throwing arm. Due to repetitive strain, it is not uncommon for pitchers to tear it partially or completely during their careers. Repairing this injury requires UCL reconstruction surgery, as known informally as Tommy John surgery. In this podium abstract, we want to investigate whether we can use machine learning techniques to predict UCL injury by analyzing online pitcher data.
354
Language model compression with weighted low-rank factorization
Factorizing a large matrix into small matrices is a popular strategy for model compression. Singular value decomposition (SVD) plays a vital role in this compression strategy, approximating a learned matrix with fewer parameters. However, SVD minimizes the squared error toward reconstructing the original matrix without gauging the importance of the parameters, potentially giving a larger reconstruction error for those who affect the task accuracy more. In other words, the optimization objective of SVD is not aligned with the trained model's task accuracy. We analyze this previously unexplored problem, make observations, and address it by introducing Fisher information to weigh the importance of parameters affecting the model prediction. This idea leads to our method: Fisher-Weighted SVD (FWSVD). Although the factorized matrices from our approach do not result in smaller reconstruction errors, we find that our resulting task accuracy is much closer to the original model's performance. We perform analysis with the transformer-based language models, showing our weighted SVD largely alleviates the mismatched optimization objectives and can maintain model performance with a higher compression rate. Our method can directly compress a task-specific model while achieving better performance than other compact model strategies requiring expensive model pre-training. Moreover, the evaluation of compressing an already compact model shows our method can further reduce 9% to 30% parameters with an insignificant impact on task accuracy.
355
Ranking in Contextual Multi-Armed Bandits
We study a ranking problem in the contextual multi-armed bandit setting. A learning agent selects an ordered list of items at each time step and observes stochastic outcomes for each position. In online recommendation systems, showing an ordered list of the most attractive items would not be the best choice since both position and item dependencies result in a complicated reward function. A very naive example is the lack of diversity when all the most attractive items are from the same category. We model position and item dependencies in the ordered list and design UCB and Thompson Sampling type algorithms for this problem. We prove that the regret bound over $T$ rounds and $L$ positions is $\Tilde{O}(L\sqrt{d T})$, which has the same order as the previous works with respect to $T$ and only increases linearly with $L$. Our work generalizes existing studies in several directions, including position dependencies where position discount is a particular case, and proposes a more general contextual bandit model.
356
Discrimination in machine learning algorithms
Machine learning algorithms are routinely used for business decisions that may directly affect individuals, for example, because a credit scoring algorithm refuses them a loan. It is then relevant from an ethical (and legal) point of view to ensure that these algorithms do not discriminate based on sensitive attributes (like sex or race), which may occur unwittingly and unknowingly by the operator and the management. Statistical tools and methods are then required to detect and eliminate such potential biases.
357
Modularity Optimization as a Training Criterion for Graph Neural Networks
Graph convolution is a recent scalable method for performing deep feature learning on attributed graphs by aggregating local node information over multiple layers. Such layers only consider attribute information of node neighbors in the forward model and do not incorporate knowledge of global network structure in the learning task. In particular, the modularity function provides a convenient source of information about the community structure of networks. In this work we investigate the effect on the quality of learned representations by the incorporation of community structure preservation objectives of networks in the graph convolutional model. We incorporate the objectives in two ways, through an explicit regularization term in the cost function in the output layer and as an additional loss term computed via an auxiliary layer. We report the effect of community structure preserving terms in the graph convolutional architectures. Experimental evaluation on two attributed bibilographic networks showed that the incorporation of the community-preserving objective improves semi-supervised node classification accuracy in the sparse label regime.
358
GaitForeMer: Self-Supervised Pre-Training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation
Parkinson's disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F1 score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer .
359
Measuring Forgetting of Memorized Training Examples
Machine learning models exhibit two seemingly contradictory phenomena: training data memorization and various forms of forgetting. In memorization, models overfit specific training examples and become susceptible to privacy attacks. In forgetting, examples which appeared early in training are forgotten by the end. In this work, we connect these phenomena. We propose a technique to measure to what extent models ``forget'' the specifics of training examples, becoming less susceptible to privacy attacks on examples they have not seen recently. We show that, while non-convexity can prevent forgetting from happening in the worst-case, standard image and speech models empirically do forget examples over time. We identify nondeterminism as a potential explanation, showing that deterministically trained models do not forget. Our results suggest that examples seen early when training with extremely large datasets -- for instance those examples used to pre-train a model -- may observe privacy benefits at the expense of examples seen later.
360
Threat Assessment in Machine Learning based Systems
Machine learning is a field of artificial intelligence (AI) that is becoming essential for several critical systems, making it a good target for threat actors. Threat actors exploit different Tactics, Techniques, and Procedures (TTPs) against the confidentiality, integrity, and availability of Machine Learning (ML) systems. During the ML cycle, they exploit adversarial TTPs to poison data and fool ML-based systems. In recent years, multiple security practices have been proposed for traditional systems but they are not enough to cope with the nature of ML-based systems. In this paper, we conduct an empirical study of threats reported against ML-based systems with the aim to understand and characterize the nature of ML threats and identify common mitigation strategies. The study is based on 89 real-world ML attack scenarios from the MITRE's ATLAS database, the AI Incident Database, and the literature; 854 ML repositories from the GitHub search and the Python Packaging Advisory database, selected based on their reputation. Attacks from the AI Incident Database and the literature are used to identify vulnerabilities and new types of threats that were not documented in ATLAS. Results show that convolutional neural networks were one of the most targeted models among the attack scenarios. ML repositories with the largest vulnerability prominence include TensorFlow, OpenCV, and Notebook. In this paper, we also report the most frequent vulnerabilities in the studied ML repositories, the most targeted ML phases and models, the most used TTPs in ML phases and attack scenarios. This information is particularly important for red/blue teams to better conduct attacks/defenses, for practitioners to prevent threats during ML development, and for researchers to develop efficient defense mechanisms.
361
DarKnight: An Accelerated Framework for Privacy and Integrity Preserving Deep Learning Using Trusted Hardware
Privacy and security-related concerns are growing as machine learning reaches diverse application domains. The data holders want to train or infer with private data while exploiting accelerators, such as GPUs, that are hosted in the cloud. Cloud systems are vulnerable to attackers that compromise the privacy of data and integrity of computations. Tackling such a challenge requires unifying theoretical privacy algorithms with hardware security capabilities. This paper presents DarKnight, a framework for large DNN training while protecting input privacy and computation integrity. DarKnight relies on cooperative execution between trusted execution environments (TEE) and accelerators, where the TEE provides privacy and integrity verification, while accelerators perform the bulk of the linear algebraic computation to optimize the performance. In particular, DarKnight uses a customized data encoding strategy based on matrix masking to create input obfuscation within a TEE. The obfuscated data is then offloaded to GPUs for fast linear algebraic computation. DarKnight's data obfuscation strategy provides provable data privacy and computation integrity in the cloud servers. While prior works tackle inference privacy and cannot be utilized for training, DarKnight's encoding scheme is designed to support both training and inference.
362
Sustainable Computing -- Without the Hot Air
The demand for computing is continuing to grow exponentially. This growth will translate to exponential growth in computing's energy consumption unless improvements in its energy-efficiency can outpace increases in its demand. Yet, after decades of research, further improving energy-efficiency is becoming increasingly challenging, as it is already highly optimized. As a result, at some point, increases in computing demand are likely to outpace increases in its energy-efficiency, potentially by a wide margin. Such exponential growth, if left unchecked, will position computing as a substantial contributor to global carbon emissions. While prominent technology companies have recognized the problem and sought to reduce their carbon emissions, they understandably focus on their successes, which has the potential to inadvertently convey the false impression that this is now, or will soon be, a solved problem. Such false impressions can be counterproductive if they serve to discourage further research in this area, since, as we discuss, eliminating computing's, and more generally society's, carbon emissions is far from a solved problem. To better understand the problem's scope, this paper distills the fundamental trends that determine computing's carbon footprint and their implications for achieving sustainable computing.
363
Distribution-based Sketching of Single-Cell Samples
Modern high-throughput single-cell immune profiling technologies, such as flow and mass cytometry and single-cell RNA sequencing can readily measure the expression of a large number of protein or gene features across the millions of cells in a multi-patient cohort. While bioinformatics approaches can be used to link immune cell heterogeneity to external variables of interest, such as, clinical outcome or experimental label, they often struggle to accommodate such a large number of profiled cells. To ease this computational burden, a limited number of cells are typically \emph{sketched} or subsampled from each patient. However, existing sketching approaches fail to adequately subsample rare cells from rare cell-populations, or fail to preserve the true frequencies of particular immune cell-types. Here, we propose a novel sketching approach based on Kernel Herding that selects a limited subsample of all cells while preserving the underlying frequencies of immune cell-types. We tested our approach on three flow and mass cytometry datasets and on one single-cell RNA sequencing dataset and demonstrate that the sketched cells (1) more accurately represent the overall cellular landscape and (2) facilitate increased performance in downstream analysis tasks, such as classifying patients according to their clinical outcome. An implementation of sketching with Kernel Herding is publicly available at \url{https://github.com/vishalathreya/Set-Summarization}.
364
Fast computation of rankings from pairwise comparisons
We study the ranking of individuals, teams, or objects on the basis of pairwise comparisons using the Bradley-Terry model. Maximum-likelihood estimates of rankings within this model are commonly made using a simple iterative algorithm first introduced by Zermelo almost a century ago. Here we describe an alternative and similarly simple iteration that solves the same problem much faster -- over a hundred times faster in some cases. We demonstrate this algorithm with applications to a range of example data sets and derive some results regarding its convergence.
365
Advances in Prediction of Readmission Rates Using Long Term Short Term Memory Networks on Healthcare Insurance Data
30-day hospital readmission is a long standing medical problem that affects patients' morbidity and mortality and costs billions of dollars annually. Recently, machine learning models have been created to predict risk of inpatient readmission for patients with specific diseases, however no model exists to predict this risk across all patients. We developed a bi-directional Long Short Term Memory (LSTM) Network that is able to use readily available insurance data (inpatient visits, outpatient visits, and drug prescriptions) to predict 30 day re-admission for any admitted patient, regardless of reason. The top-performing model achieved an ROC AUC of 0.763 (0.011) when using historical, inpatient, and post-discharge data. The LSTM model significantly outperformed a baseline random forest classifier, indicating that understanding the sequence of events is important for model prediction. Incorporation of 30-days of historical data also significantly improved model performance compared to inpatient data alone, indicating that a patients clinical history prior to admission, including outpatient visits and pharmacy data is a strong contributor to readmission. Our results demonstrate that a machine learning model is able to predict risk of inpatient readmission with reasonable accuracy for all patients using structured insurance billing data. Because billing data or equivalent surrogates can be extracted from sites, such a model could be deployed to identify patients at risk for readmission before they are discharged, or to assign more robust follow up (closer follow up, home health, mailed medications) to at-risk patients after discharge.
366
MultiViz: An Analysis Benchmark for Visualizing and Understanding Multimodal Models
The promise of multimodal models for real-world applications has inspired research in visualizing and understanding their internal mechanics with the end goal of empowering stakeholders to visualize model behavior, perform model debugging, and promote trust in machine learning models. However, modern multimodal models are typically black-box neural networks, which makes it challenging to understand their internal mechanics. How can we visualize the internal modeling of multimodal interactions in these models? Our paper aims to fill this gap by proposing MultiViz, a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages: (1) unimodal importance: how each modality contributes towards downstream modeling and prediction, (2) cross-modal interactions: how different modalities relate with each other, (3) multimodal representations: how unimodal and cross-modal interactions are represented in decision-level features, and (4) multimodal prediction: how decision-level features are composed to make a prediction. MultiViz is designed to operate on diverse modalities, models, tasks, and research areas. Through experiments on 8 trained models across 6 real-world tasks, we show that the complementary stages in MultiViz together enable users to (1) simulate model predictions, (2) assign interpretable concepts to features, (3) perform error analysis on model misclassifications, and (4) use insights from error analysis to debug models. MultiViz is publicly available, will be regularly updated with new interpretation tools and metrics, and welcomes inputs from the community.
367
Visual Pre-training for Navigation: What Can We Learn from Noise?
A powerful paradigm for sensorimotor control is to predict actions from observations directly. Training such an end-to-end system allows representations that are useful for the downstream tasks to emerge automatically. In visual navigation, an agent can learn to navigate without any manual designs by correlating how its views change with the actions being taken. However, the lack of inductive bias makes this system data-inefficient and impractical in scenarios like search and rescue, where interacting with the environment to collect data is costly. We hypothesize a sufficient representation of the current view and the goal view for a navigation policy can be learned by predicting the location and size of a crop of the current view that corresponds to the goal. We further show that training such random crop prediction in a self-supervised fashion purely on random noise images transfers well to natural home images. The learned representation can then be bootstrapped to learn a navigation policy efficiently with little interaction data. Code is available at https://github.com/yanweiw/noise2ptz.
368
Privacy-preserving Graph Analytics: Secure Generation and Federated Learning
Directly motivated by security-related applications from the Homeland Security Enterprise, we focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships. In particular, we discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data. For each direction, we identify both "quick wins" and "hard problems". Towards the end, we demonstrate a user interface that can facilitate model explanation, interpretation, and visualization. We believe that the techniques developed in these directions will significantly enhance the capabilities of the Homeland Security Enterprise to tackle and mitigate the various security risks.
369
Performative Reinforcement Learning
We introduce the framework of performative reinforcement learning where the policy chosen by the learner affects the underlying reward and transition dynamics of the environment. Following the recent literature on performative prediction~\cite{Perdomo et. al., 2020}, we introduce the concept of performatively stable policy. We then consider a regularized version of the reinforcement learning problem and show that repeatedly optimizing this objective converges to a performatively stable policy under reasonable assumptions on the transition dynamics. Our proof utilizes the dual perspective of the reinforcement learning problem and may be of independent interest in analyzing the convergence of other algorithms with decision-dependent environments. We then extend our results for the setting where the learner just performs gradient ascent steps instead of fully optimizing the objective, and for the setting where the learner has access to a finite number of trajectories from the changed environment. For both the settings, we leverage the dual formulation of performative reinforcement learning and establish convergence to a stable solution. Finally, through extensive experiments on a grid-world environment, we demonstrate the dependence of convergence on various parameters e.g. regularization, smoothness, and the number of samples.
370
DP$^2$-NILM: A Distributed and Privacy-preserving Framework for Non-intrusive Load Monitoring
Non-intrusive load monitoring (NILM), which usually utilizes machine learning methods and is effective in disaggregating smart meter readings from the household-level into appliance-level consumption, can help analyze electricity consumption behaviours of users and enable practical smart energy and smart grid applications. Recent studies have proposed many novel NILM frameworks based on federated deep learning (FL). However, there lacks comprehensive research exploring the utility optimization schemes and the privacy-preserving schemes in different FL-based NILM application scenarios. In this paper, we make the first attempt to conduct FL-based NILM focusing on both the utility optimization and the privacy-preserving by developing a distributed and privacy-preserving NILM (DP2-NILM) framework and carrying out comparative experiments on practical NILM scenarios based on real-world smart meter datasets. Specifically, two alternative federated learning strategies are examined in the utility optimization schemes, i.e., the FedAvg and the FedProx. Moreover, different levels of privacy guarantees, i.e., the local differential privacy federated learning and the global differential privacy federated learning are provided in the DP2-NILM. Extensive comparison experiments are conducted on three real-world datasets to evaluate the proposed framework.
371
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
The past several years have witnessed the success of transformer-based models, and their scale and application scenarios continue to grow aggressively. The current landscape of transformer models is increasingly diverse: the model size varies drastically with the largest being of hundred-billion parameters; the model characteristics differ due to the sparsity introduced by the Mixture-of-Experts; the target application scenarios can be latency-critical or throughput-oriented; the deployment hardware could be single- or multi-GPU systems with different types of memory and storage, etc. With such increasing diversity and the fast-evolving pace of transformer models, designing a highly performant and efficient inference system is extremely challenging. In this paper, we present DeepSpeed Inference, a comprehensive system solution for transformer model inference to address the above-mentioned challenges. DeepSpeed Inference consists of (1) a multi-GPU inference solution to minimize latency while maximizing the throughput of both dense and sparse transformer models when they fit in aggregate GPU memory, and (2) a heterogeneous inference solution that leverages CPU and NVMe memory in addition to the GPU memory and compute to enable high inference throughput with large models which do not fit in aggregate GPU memory. DeepSpeed Inference reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios. Moreover, it enables trillion parameter scale inference under real-time latency constraints by leveraging hundreds of GPUs, an unprecedented scale for inference. It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over $50\%$ of A6000 peak).
372
LaserMix for Semi-Supervised LiDAR Semantic Segmentation
Densely annotating LiDAR point clouds is costly, which restrains the scalability of fully-supervised learning methods. In this work, we study the underexplored semi-supervised learning (SSL) in LiDAR segmentation. Our core idea is to leverage the strong spatial cues of LiDAR point clouds to better exploit unlabeled data. We propose LaserMix to mix laser beams from different LiDAR scans, and then encourage the model to make consistent and confident predictions before and after mixing. Our framework has three appealing properties: 1) Generic: LaserMix is agnostic to LiDAR representations (e.g., range view and voxel), and hence our SSL framework can be universally applied. 2) Statistically grounded: We provide a detailed analysis to theoretically explain the applicability of the proposed framework. 3) Effective: Comprehensive experimental analysis on popular LiDAR segmentation datasets (nuScenes, SemanticKITTI, and ScribbleKITTI) demonstrates our effectiveness and superiority. Notably, we achieve competitive results over fully-supervised counterparts with 2x to 5x fewer labels and improve the supervised-only baseline significantly by 10.8% on average. We hope this concise yet high-performing framework could facilitate future research in semi-supervised LiDAR segmentation. Code will be publicly available.
373
On the Learning and Learnablity of Quasimetrics
Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.
374
Denoised MDPs: Learning World Models Better Than the World Itself
The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors.How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression.
375
AnoShift: A Distribution Shift Benchmark for Unsupervised Anomaly Detection
Analyzing the distribution shift of data is a growing research direction in nowadays Machine Learning, leading to emerging new benchmarks that focus on providing a suitable scenario for studying the generalization properties of ML models. The existing benchmarks are focused on supervised learning, and to the best of our knowledge, there is none for unsupervised learning. Therefore, we introduce an unsupervised anomaly detection benchmark with data that shifts over time, built over Kyoto-2006+, a traffic dataset for network intrusion detection. This kind of data meets the premise of shifting the input distribution: it covers a large time span ($10$ years), with naturally occurring changes over time (\eg users modifying their behavior patterns, and software updates). We first highlight the non-stationary nature of the data, using a basic per-feature analysis, t-SNE, and an Optimal Transport approach for measuring the overall distribution distances between years. Next, we propose AnoShift, a protocol splitting the data in IID, NEAR, and FAR testing splits. We validate the performance degradation over time with diverse models (MLM to classical Isolation Forest). Finally, we show that by acknowledging the distribution shift problem and properly addressing it, the performance can be improved compared to the classical IID training (by up to $3\%$, on average). Dataset and code are available at https://github.com/bit-ml/AnoShift/.
376
Causal Machine Learning: A Survey and Open Problems
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
377
Forecasting Future World Events with Neural Networks
Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.
378
Watch and Match: Supercharging Imitation with Regularized Optimal Transport
Imitation learning holds tremendous promise in learning policies efficiently for complex decision making problems. Current state-of-the-art algorithms often use inverse reinforcement learning (IRL), where given a set of expert demonstrations, an agent alternatively infers a reward function and the associated optimal policy. However, such IRL approaches often require substantial online interactions for complex control problems. In this work, we present Regularized Optimal Transport (ROT), a new imitation learning algorithm that builds on recent advances in optimal transport based trajectory-matching. Our key technical insight is that adaptively combining trajectory-matching rewards with behavior cloning can significantly accelerate imitation even with only a few demonstrations. Our experiments on 20 visual control tasks across the DeepMind Control Suite, the OpenAI Robotics Suite, and the Meta-World Benchmark demonstrate an average of 7.8X faster imitation to reach 90% of expert performance compared to prior state-of-the-art methods. On real-world robotic manipulation, with just one demonstration and an hour of online training, ROT achieves an average success rate of 90.1% across 14 tasks.
379
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Machine learning (ML) interpretability techniques can reveal undesirable patterns in data that models exploit to make predictions--potentially causing harms once deployed. However, how to take action to address these patterns is not always clear. In a collaboration between ML and human-computer interaction researchers, physicians, and data scientists, we develop GAM Changer, the first interactive system to help domain experts and data scientists easily and responsibly edit Generalized Additive Models (GAMs) and fix problematic patterns. With novel interaction techniques, our tool puts interpretability into action--empowering users to analyze, validate, and align model behaviors with their knowledge and values. Physicians have started to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an evaluation with 7 data scientists working in diverse domains highlights that our tool is easy to use, meets their model editing needs, and fits into their current workflows. Built with modern web technologies, our tool runs locally in users' web browsers or computational notebooks, lowering the barrier to use. GAM Changer is available at the following public demo link: https://interpret.ml/gam-changer.
380
Practical Black Box Hamiltonian Learning
We study the problem of learning the parameters for the Hamiltonian of a quantum many-body system, given limited access to the system. In this work, we build upon recent approaches to Hamiltonian learning via derivative estimation. We propose a protocol that improves the scaling dependence of prior works, particularly with respect to parameters relating to the structure of the Hamiltonian (e.g., its locality $k$). Furthermore, by deriving exact bounds on the performance of our protocol, we are able to provide a precise numerical prescription for theoretically optimal settings of hyperparameters in our learning protocol, such as the maximum evolution time (when learning with unitary dynamics) or minimum temperature (when learning with Gibbs states). Thanks to these improvements, our protocol is practical for large problems: we demonstrate this with a numerical simulation of our protocol on an 80-qubit system.
381
QUIDAM: A Framework for Quantization-Aware DNN Accelerator and Model Co-Exploration
As the machine learning and systems communities strive to achieve higher energy-efficiency through custom deep neural network (DNN) accelerators, varied precision or quantization levels, and model compression techniques, there is a need for design space exploration frameworks that incorporate quantization-aware processing elements into the accelerator design space while having accurate and fast power, performance, and area models. In this work, we present QUIDAM, a highly parameterized quantization-aware DNN accelerator and model co-exploration framework. Our framework can facilitate future research on design space exploration of DNN accelerators for various design choices such as bit precision, processing element type, scratchpad sizes of processing elements, global buffer size, number of total processing elements, and DNN configurations. Our results show that different bit precisions and processing element types lead to significant differences in terms of performance per area and energy. Specifically, our framework identifies a wide range of design points where performance per area and energy varies more than 5x and 35x, respectively. With the proposed framework, we show that lightweight processing elements achieve on par accuracy results and up to 5.7x more performance per area and energy improvement when compared to the best INT16 based implementation. Finally, due to the efficiency of the pre-characterized power, performance, and area models, QUIDAM can speed up the design exploration process by 3-4 orders of magnitude as it removes the need for expensive synthesis and characterization of each design.
382
Improving Visual Grounding by Encouraging Consistent Gradient-based Explanations
We propose a margin-based loss for vision-language model pretraining that encourages gradient-based explanations that are consistent with region-level annotations. We refer to this objective as Attention Mask Consistency (AMC) and demonstrate that it produces superior visual grounding performance compared to models that rely instead on region-level annotations for explicitly training an object detector such as Faster R-CNN. AMC works by encouraging gradient-based explanation masks that focus their attention scores mostly within annotated regions of interest for images that contain such annotations. Particularly, a model trained with AMC on top of standard vision-language modeling objectives obtains a state-of-the-art accuracy of 86.59% in the Flickr30k visual grounding benchmark, an absolute improvement of 5.48% when compared to the best previous model. Our approach also performs exceedingly well on established benchmarks for referring expression comprehension and offers the added benefit by design of gradient-based explanations that better align with human annotations.
383
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Traditional approaches based on finite element analyses have been successfully used to predict the macro-scale behavior of heterogeneous materials (composites, multicomponent alloys, and polycrystals) widely used in industrial applications. However, this necessitates the mesh size to be smaller than the characteristic length scale of the microstructural heterogeneities in the material leading to computationally expensive and time-consuming calculations. The recent advances in deep learning based image super-resolution (SR) algorithms open up a promising avenue to tackle this computational challenge by enabling researchers to enhance the spatio-temporal resolution of data obtained from coarse mesh simulations. However, technical challenges still remain in developing a high-fidelity SR model for application to computational solid mechanics, especially for materials undergoing large deformation. This work aims at developing a physics-informed deep learning based super-resolution framework (PhySRNet) which enables reconstruction of high-resolution deformation fields (displacement and stress) from their low-resolution counterparts without requiring high-resolution labeled data. We design a synthetic case study to illustrate the effectiveness of the proposed framework and demonstrate that the super-resolved fields match the accuracy of an advanced numerical solver running at 400 times the coarse mesh resolution while simultaneously satisfying the (highly nonlinear) governing laws. The approach opens the door to applying machine learning and traditional numerical approaches in tandem to reduce computational complexity accelerate scientific discovery and engineering design.
384
Learning Iterative Reasoning through Energy Minimization
Deep learning has excelled on complex pattern recognition tasks such as image classification and object recognition. However, it struggles with tasks requiring nontrivial reasoning, such as algorithmic computation. Humans are able to solve such tasks through iterative reasoning -- spending more time thinking about harder tasks. Most existing neural networks, however, exhibit a fixed computational budget controlled by the neural network architecture, preventing additional computational processing on harder tasks. In this work, we present a new framework for iterative reasoning with neural networks. We train a neural network to parameterize an energy landscape over all outputs, and implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution. By formulating reasoning as an energy minimization problem, for harder problems that lead to more complex energy landscapes, we may then adjust our underlying computational budget by running a more complex optimization procedure. We empirically illustrate that our iterative reasoning approach can solve more accurate and generalizable algorithmic reasoning tasks in both graph and continuous domains. Finally, we illustrate that our approach can recursively solve algorithmic problems requiring nested reasoning
385
Learning Functions on Multiple Sets using Multi-Set Transformers
We propose a general deep architecture for learning functions on multiple permutation-invariant sets. We also show how to generalize this architecture to sets of elements of any dimension by dimension equivariance. We demonstrate that our architecture is a universal approximator of these functions, and show superior results to existing methods on a variety of tasks including counting tasks, alignment tasks, distinguishability tasks and statistical distance measurements. This last task is quite important in Machine Learning. Although our approach is quite general, we demonstrate that it can generate approximate estimates of KL divergence and mutual information that are more accurate than previous techniques that are specifically designed to approximate those statistical distances.
386
Classical and learned MR to pseudo-CT mappings for accurate transcranial ultrasound simulation
Model-based treatment planning for transcranial ultrasound therapy typically involves mapping the acoustic properties of the skull from an x-ray computed tomography (CT) image of the head. Here, three methods for generating pseudo-CT images from magnetic resonance (MR) images were compared as an alternative to CT. A convolutional neural network (U-Net) was trained on paired MR-CT images to generate pseudo-CT images from either T1-weighted or zero-echo time (ZTE) MR images (denoted tCT and zCT, respectively). A direct mapping from ZTE to pseudo-CT was also implemented (denoted cCT). When comparing the pseudo-CT and ground truth CT images for the test set, the mean absolute error was 133, 83, and 145 Hounsfield units (HU) across the whole head, and 398, 222, and 336 HU within the skull for the tCT, zCT, and cCT images, respectively. Ultrasound simulations were also performed using the generated pseudo-CT images and compared to simulations based on CT. An annular array transducer was used targeting the visual or motor cortex. The mean differences in the simulated focal pressure, focal position, and focal volume were 9.9%, 1.5 mm, and 15.1% for simulations based on the tCT images, 5.7%, 0.6 mm, and 5.7% for the zCT, and 6.7%, 0.9 mm, and 12.1% for the cCT. The improved results for images mapped from ZTE highlight the advantage of using imaging sequences which improve contrast of the skull bone. Overall, these results demonstrate that acoustic simulations based on MR images can give comparable accuracy to those based on CT.
387
Understanding Instance-Level Impact of Fairness Constraints
A variety of fairness constraints have been proposed in the literature to mitigate group-level statistical bias. Their impacts have been largely evaluated for different groups of populations corresponding to a set of sensitive attributes, such as race or gender. Nonetheless, the community has not observed sufficient explorations for how imposing fairness constraints fare at an instance level. Building on the concept of influence function, a measure that characterizes the impact of a training example on the target model and its predictive performance, this work studies the influence of training examples when fairness constraints are imposed. We find out that under certain assumptions, the influence function with respect to fairness constraints can be decomposed into a kernelized combination of training examples. One promising application of the proposed fairness influence function is to identify suspicious training examples that may cause model discrimination by ranking their influence scores. We demonstrate with extensive experiments that training on a subset of weighty data examples leads to lower fairness violations with a trade-off of accuracy.
388
Implicit Neural Spatial Filtering for Multichannel Source Separation in the Waveform Domain
We present a single-stage casual waveform-to-waveform multichannel model that can separate moving sound sources based on their broad spatial locations in a dynamic acoustic scene. We divide the scene into two spatial regions containing, respectively, the target and the interfering sound sources. The model is trained end-to-end and performs spatial processing implicitly, without any components based on traditional processing or use of hand-crafted spatial features. We evaluate the proposed model on a real-world dataset and show that the model matches the performance of an oracle beamformer followed by a state-of-the-art single-channel enhancement network.
389
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Distributional shift, or the mismatch between training and deployment data, is a significant obstacle to the usage of machine learning in high-stakes industrial applications, such as autonomous driving and medicine. This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates. Standard ML baseline datasets do not allow these properties to be assessed, as the training, validation and test data are often identically distributed. Recently, a range of dedicated benchmarks have appeared, featuring both distributionally matched and shifted data. Among these benchmarks, the Shifts dataset stands out in terms of the diversity of tasks as well as the data modalities it features. While most of the benchmarks are heavily dominated by 2D image classification tasks, Shifts contains tabular weather forecasting, machine translation, and vehicle motion prediction tasks. This enables the robustness properties of models to be assessed on a diverse set of industrial-scale tasks and either universal or directly applicable task-specific conclusions to be reached. In this paper, we extend the Shifts Dataset with two datasets sourced from industrial, high-risk applications of high societal importance. Specifically, we consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels. Both tasks feature ubiquitous distributional shifts and a strict safety requirement due to the high cost of errors. These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations. In this work, we provide a description of the dataset and baseline results for both tasks.
390
Learning Audio-Text Agreement for Open-vocabulary Keyword Spotting
In this paper, we propose a novel end-to-end user-defined keyword spotting method that utilizes linguistically corresponding patterns between speech and text sequences. Unlike previous approaches requiring speech keyword enrollment, our method compares input queries with an enrolled text keyword sequence. To place the audio and text representations within a common latent space, we adopt an attention-based cross-modal matching approach that is trained in an end-to-end manner with monotonic matching loss and keyword classification loss. We also utilize a de-noising loss for the acoustic embedding network to improve robustness in noisy environments. Additionally, we introduce the LibriPhrase dataset, a new short-phrase dataset based on LibriSpeech for efficiently training keyword spotting models. Our proposed method achieves competitive results on various evaluation sets compared to other single-modal and cross-modal baselines.
391
Randomized K-FACs: Speeding up K-FAC with Randomized Numerical Linear Algebra
K-FAC is a successful tractable implementation of Natural Gradient for Deep Learning, which nevertheless suffers from the requirement to compute the inverse of the Kronecker factors (through an eigen-decomposition). This can be very time-consuming (or even prohibitive) when these factors are large. In this paper, we theoretically show that, owing to the exponential-average construction paradigm of the Kronecker factors that is typically used, their eigen-spectrum must decay. We show numerically that in practice this decay is very rapid, leading to the idea that we could save substantial computation by only focusing on the first few eigen-modes when inverting the Kronecker-factors. Randomized Numerical Linear Algebra provides us with the necessary tools to do so. Numerical results show we obtain $\approx2.5\times$ reduction in per-epoch time and $\approx3.3\times$ reduction in time to target accuracy. We compare our proposed K-FAC sped-up versions with a more computationally efficient NG implementation, SENG, and observe we perform on par with it.
392
j-Wave: An open-source differentiable wave simulator
We present an open-source differentiable acoustic simulator, j-Wave, which can solve time-varying and time-harmonic acoustic problems. It supports automatic differentiation, which is a program transformation technique that has many applications, especially in machine learning and scientific computing. j-Wave is composed of modular components that can be easily customized and reused. At the same time, it is compatible with some of the most popular machine learning libraries, such as JAX and TensorFlow. The accuracy of the simulation results for known configurations is evaluated against the widely used k-Wave toolbox and a cohort of acoustic simulation software. j-Wave is available from https://github.com/ucl-bug/jwave.
393
Where to Begin? Exploring the Impact of Pre-Training and Initialization in Federated Learning
An oft-cited challenge of federated learning is the presence of data heterogeneity -- the data at different clients may follow very different distributions. Several federated optimization methods have been proposed to address these challenges. In the literature, empirical evaluations usually start federated training from a random initialization. However, in many practical applications of federated learning, the server has access to proxy data for the training task which can be used to pre-train a model before starting federated training. We empirically study the impact of starting from a pre-trained model in federated learning using four common federated learning benchmark datasets. Unsurprisingly, starting from a pre-trained model reduces the training time required to reach a target error rate and enables training more accurate models (by up to 40\%) than is possible than when starting from a random initialization. Surprisingly, we also find that the effect of data heterogeneity is much less significant when starting federated training from a pre-trained initialization. Rather, when starting from a pre-trained model, using an adaptive optimizer at the server, such as \textsc{FedAdam}, consistently leads to the best accuracy. We recommend that future work proposing and evaluating federated optimization methods consider the performance when starting both random and pre-trained initializations. We also believe this study raises several questions for further work on understanding the role of heterogeneity in federated optimization.
394
Verification and search algorithms for causal DAGs
We study two problems related to recovering causal graphs from interventional data: (i) $\textit{verification}$, where the task is to check if a purported causal graph is correct, and (ii) $\textit{search}$, where the task is to recover the correct causal graph. For both, we wish to minimize the number of interventions performed. For the first problem, we give a characterization of a minimal sized set of atomic interventions that is necessary and sufficient to check the correctness of a claimed causal graph. Our characterization uses the notion of $\textit{covered edges}$, which enables us to obtain simple proofs and also easily reason about earlier results. We also generalize our results to the settings of bounded size interventions and node-dependent interventional costs. For all the above settings, we provide the first known provable algorithms for efficiently computing (near)-optimal verifying sets on general graphs. For the second problem, we give a simple adaptive algorithm based on graph separators that produces an atomic intervention set which fully orients any essential graph while using $\mathcal{O}(\log n)$ times the optimal number of interventions needed to $\textit{verify}$ (verifying size) the underlying DAG on $n$ vertices. This approximation is tight as $\textit{any}$ search algorithm on an essential line graph has worst case approximation ratio of $\Omega(\log n)$ with respect to the verifying size. With bounded size interventions, each of size $\leq k$, our algorithm gives an $\mathcal{O}(\log n \cdot \log \log k)$ factor approximation. Our result is the first known algorithm that gives a non-trivial approximation guarantee to the verifying size on general unweighted graphs and with bounded size interventions.
395
Improving the Generalization of Supervised Models
We consider the problem of training a deep neural network on a given classification task, e.g., ImageNet-1K (IN1K), so that it excels at that task as well as at other (future) transfer tasks. These two seemingly contradictory properties impose a trade-off between improving the model's generalization while maintaining its performance on the original task. Models trained with self-supervised learning (SSL) tend to generalize better than their supervised counterparts for transfer learning; yet, they still lag behind supervised models on IN1K. In this paper, we propose a supervised learning setup that leverages the best of both worlds. We enrich the common supervised training framework using two key components of recent SSL models: multi-scale crops for data augmentation and the use of an expendable projector head. We replace the last layer of class weights with class prototypes computed on the fly using a memory bank. We show that these three improvements lead to a more favorable trade-off between the IN1K training task and 13 transfer tasks. Over all the explored configurations, we single out two models: t-ReX that achieves a new state of the art for transfer learning and outperforms top methods such as DINO and PAWS on IN1K, and t-ReX* that matches the highly optimized RSB-A1 model on IN1K while performing better on transfer tasks. Project page and pretrained models: https://europe.naverlabs.com/t-rex
396
Online TSP with Predictions
We initiate the study of online routing problems with predictions, inspired by recent exciting results in the area of learning-augmented algorithms. A learning-augmented online algorithm which incorporates predictions in a black-box manner to outperform existing algorithms if the predictions are accurate while otherwise maintaining theoretical guarantees even when the predictions are extremely erroneous is a popular framework for overcoming pessimistic worst-case competitive analysis. In this study, we particularly begin investigating the classical online traveling salesman problem (OLTSP), where future requests are augmented with predictions. Unlike the prediction models in other previous studies, each actual request in the OLTSP, associated with its arrival time and position, may not coincide with the predicted ones, which, as imagined, leads to a troublesome situation. Our main result is to study different prediction models and design algorithms to improve the best-known results in the different settings. Moreover, we generalize the proposed results to the online dial-a-ride problem.
397
Why we do need Explainable AI for Healthcare
The recent spike in certified Artificial Intelligence (AI) tools for healthcare has renewed the debate around adoption of this technology. One thread of such debate concerns Explainable AI and its promise to render AI devices more transparent and trustworthy. A few voices active in the medical AI space have expressed concerns on the reliability of Explainable AI techniques, questioning their use and inclusion in guidelines and standards. Revisiting such criticisms, this article offers a balanced and comprehensive perspective on the utility of Explainable AI, focusing on the specificity of clinical applications of AI and placing them in the context of healthcare interventions. Against its detractors and despite valid concerns, we argue that the Explainable AI research program is still central to human-machine interaction and ultimately our main tool against loss of control, a danger that cannot be prevented by rigorous clinical validation alone.
398
Learning Underrepresented Classes from Decentralized Partially Labeled Medical Images
Using decentralized data for federated training is one promising emerging research direction for alleviating data scarcity in the medical domain. However, in contrast to large-scale fully labeled data commonly seen in general object recognition tasks, the local medical datasets are more likely to only have images annotated for a subset of classes of interest due to high annotation costs. In this paper, we consider a practical yet under-explored problem, where underrepresented classes only have few labeled instances available and only exist in a few clients of the federated system. We show that standard federated learning approaches fail to learn robust multi-label classifiers with extreme class imbalance and address it by proposing a novel federated learning framework, FedFew. FedFew consists of three stages, where the first stage leverages federated self-supervised learning to learn class-agnostic representations. In the second stage, the decentralized partially labeled data are exploited to learn an energy-based multi-label classifier for the common classes. Finally, the underrepresented classes are detected based on the energy and a prototype-based nearest-neighbor model is proposed for few-shot matching. We evaluate FedFew on multi-label thoracic disease classification tasks and demonstrate that it outperforms the federated baselines by a large margin.
399
Learning Citywide Patterns of Life from Trajectory Monitoring
The recent proliferation of real-world human mobility datasets has catalyzed geospatial and transportation research in trajectory prediction, demand forecasting, travel time estimation, and anomaly detection. However, these datasets also enable, more broadly, a descriptive analysis of intricate systems of human mobility. We formally define patterns of life analysis as a natural, explainable extension of online unsupervised anomaly detection, where we not only monitor a data stream for anomalies but also explicitly extract normal patterns over time. To learn patterns of life, we adapt Grow When Required (GWR) episodic memory from research in computational biology and neurorobotics to a new domain of geospatial analysis. This biologically-inspired neural network, related to self-organizing maps (SOM), constructs a set of "memories" or prototype traffic patterns incrementally as it iterates over the GPS stream. It then compares each new observation to its prior experiences, inducing an online, unsupervised clustering and anomaly detection on the data. We mine patterns-of-interest from the Porto taxi dataset, including both major public holidays and newly-discovered transportation anomalies, such as festivals and concerts which, to our knowledge, have not been previously acknowledged or reported in prior work. We anticipate that the capability to incrementally learn normal and abnormal road transportation behavior will be useful in many domains, including smart cities, autonomous vehicles, and urban planning and management.