Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
parquet-converter commited on
Commit
fc8b407
·
1 Parent(s): a8158d1

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,39 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
38
- task_1.2.csv filter=lfs diff=lfs merge=lfs -text
39
- task_1.3.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,127 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- license:
5
- - unknown
6
- multilinguality:
7
- - monolingual
8
- size_categories:
9
- - 10K<n<100K
10
- ---
11
-
12
- # Dataset Card for CLUTRR
13
-
14
- ## Table of Contents
15
-
16
- ## Dataset Description
17
- ### Dataset Summary
18
- **CLUTRR** (**C**ompositional **L**anguage **U**nderstanding and **T**ext-based **R**elational **R**easoning), a diagnostic benchmark suite, is first introduced in (https://arxiv.org/abs/1908.06177) to test the systematic generalization and inductive reasoning capabilities of NLU systems.
19
-
20
- The CLUTRR benchmark allows us to test a model’s ability for **systematic generalization** by testing on stories that contain unseen combinations of logical rules, and test for the various forms of **model robustness** by adding different kinds of superfluous noise facts to the stories.
21
-
22
- ### Dataset Task
23
- CLUTRR contains a large set of semi-synthetic stories involving hypothetical families. The task is to infer the relationship between two family members, whose relationship is not explicitly mentioned in the given story.
24
-
25
- Join the CLUTRR community in https://www.cs.mcgill.ca/~ksinha4/clutrr/
26
- ## Dataset Structure
27
- We show detailed information for all 14 configurations of the dataset.
28
-
29
- ### configurations:
30
- **id**: a unique series of characters and numbers that identify each instance <br>
31
- **story**: one semi-synthetic story involving hypothetical families<br>
32
- **query**: the target query/relation which contains two names, where the goal is to classify the relation that holds between these two entities<br>
33
- **target**: indicator for the correct relation for the query <br>
34
- **target_text**: text for the correct relation for the query <br>
35
- the indicator follows the rule as follows: <br> "aunt": 0, "son-in-law": 1, "grandfather": 2, "brother": 3,
36
- "sister": 4,
37
- "father": 5,
38
- "mother": 6,
39
- "grandmother": 7,
40
- "uncle": 8,
41
- "daughter-in-law": 9,
42
- "grandson": 10,
43
- "granddaughter": 11,
44
- "father-in-law": 12,
45
- "mother-in-law": 13,
46
- "nephew": 14,
47
- "son": 15,
48
- "daughter": 16,
49
- "niece": 17,
50
- "husband": 18,
51
- "wife": 19,
52
- "sister-in-law": 20 <br>
53
- **clean\_story**: the story without noise factors<br>
54
- **proof\_state**: the logical rule of the kinship generation <br>
55
- **f\_comb**: the kinships of the query followed by the logical rule<br>
56
- **task\_name**: the task of the sub-dataset in a form of "task_[num1].[num2]"<br>
57
- The first number [num1] indicates the status of noise facts added in the story: 1- no noise facts; 2- Irrelevant facts*; 3- Supporting facts*; 4- Disconnected facts*.<br>
58
- The second number [num2] directly indicates the length of clauses for the task target.<br>
59
- *for example:*<br>
60
- *task_1.2 -- task requiring clauses of length 2 without adding noise facts*<br>
61
- *task_2.3 -- task requiring clauses of length 3 with Irrelevant noise facts added in the story*<br>
62
- **story\_edges**: all the edges in the kinship graph<br>
63
- **edge\_types**: similar to the f\_comb, another form of the query's kinships followed by the logical rule <br>
64
- **query\_edge**: the corresponding edge of the target query in the kinship graph<br>
65
- **genders**: genders of names appeared in the story<br>
66
- **task\_split**: train,test <br>
67
-
68
- *Further explanation of Irrelevant facts, Supporting facts and Disconnected facts can be found in the 3.5 Robust Reasoning section in https://arxiv.org/abs/1908.06177
69
-
70
- ### Data Instances
71
-
72
- An example of 'train'in Task 1.2 looks as follows.
73
- ```
74
- {
75
- "id": b2b9752f-d7fa-46a9-83ae-d474184c35b6,
76
- "story": "[Lillian] and her daughter [April] went to visit [Lillian]'s mother [Ashley] last Sunday.",
77
- "query": ('April', 'Ashley'),
78
- "target": 7,
79
- "target_text": "grandmother",
80
- "clean_story": [Lillian] and her daughter [April] went to visit [Lillian]'s mother [Ashley] last Sunday.,
81
- "proof_state": [{('April', 'grandmother', 'Ashley'): [('April', 'mother', 'Lillian'), ('Lillian', 'mother', 'Ashley')]}],
82
- "f_comb": "mother-mother",
83
- "task_name": "task_1.2",
84
- "story_edges": [(0, 1), (1, 2)],
85
- "edge_types": ['mother', 'mother'],
86
- "query_edge": (0, 2),
87
- "genders": "April:female,Lillian:female,Ashley:female",
88
- "task_split": trian
89
- }
90
- ```
91
- ### Data Splits
92
-
93
- #### Data Split Name
94
- (corresponding with the name used in the paper)
95
-
96
- | task_split | split name in paper | train &validation task |test task |
97
- | :---: | :---: | :-: | :-: |
98
- | gen_train23_test2to10 | data_089907f8 | 1.2, 1.3 | 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10 |
99
- | gen_train234_test2to10 | data_db9b8f04 | 1.2, 1.3, 1.4| 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10 |
100
- | rob_train_clean_23_test_all_23 | data_7c5b0e70 | 1.2,1.3 | 1.2, 1.3, 2.3, 3.3, 4.3 |
101
- | rob_train_sup_23_test_all_23 | data_06b8f2a1 | 2.2, 2.3 | 2.2, 2.3, 1.3, 3.3, 4.3 |
102
- | rob_train_irr_23_test_all_23 | data_523348e6 | 3.2, 3.3 | 3.2, 3.3, 1.3, 2.3, 4.3 |
103
- | rob_train_disc_23_test_all_23 | data_d83ecc3e | 4.2, 4.3 | 4.2, 4.3, 1.3, 2.3, 3.3 |
104
-
105
- #### Data Split Summary
106
- Number of Instances in each split
107
-
108
- | task_split | train | validation | test |
109
- | :-: | :---: | :---: | :---: |
110
- | gen_train23_test2to10 | 9074 | 2020 | 1146 |
111
- | gen_train234_test2to10 | 12064 | 3019 | 1048 |
112
- | rob_train_clean_23_test_all_23 | 8098 | 2026 | 447 |
113
- | rob_train_disc_23_test_all_23 | 8080 | 2020 | 445 |
114
- | rob_train_irr_23_test_all_23 | 8079 | 2020 | 444 |
115
- | rob_train_sup_23_test_all_23 | 8123 | 2031 | 447 |
116
-
117
-
118
- ## Citation Information
119
- ```
120
- @article{sinha2019clutrr,
121
- Author = {Koustuv Sinha and Shagun Sodhani and Jin Dong and Joelle Pineau and William L. Hamilton},
122
- Title = {CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text},
123
- Year = {2019},
124
- journal = {Empirical Methods of Natural Language Processing (EMNLP)},
125
- arxiv = {1908.06177}
126
- }
127
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gen_train234_test2to10/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:618938733acc4f385e108d88964e3872b707065e5593c61fcb7624a2550ba4da
3
+ size 598203
gen_train234_test2to10/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:285d8a01ca44a17267d1b02e5d3d2d0123c588dd0b973c0beb95631fb310b022
3
+ size 3694198
gen_train234_test2to10/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c9dd98f889ed9a2f98d1d80c8ab979a119755ebf7210d5527fcf976c0e2f86c
3
+ size 938229
gen_train23_test2to10/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58dc24808f707f7467e48c93e0468fa8f1900d9c7ab2cdc72311f76ca002b6e
3
+ size 627028
gen_train23_test2to10/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a79fa137bdc5534c076e828964f3e917dd1dffec1152f99bbdfcde220c328e7
3
+ size 2426087
gen_train23_test2to10/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:257a3944542b1841f6db2cdbdc5bb931ffc97f303c25ca94f8664eee8b5c6ef8
3
+ size 537400
rob_train_clean_23_test_all_23/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce74ed3fbea93abc044c157302d866c8cad855cfd275bf57df962fe765d6d4b
3
+ size 123610
rob_train_clean_23_test_all_23/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e07c710a8ac7526fde0a613772f10927cc49fb736e041d3784c7717ab010722b
3
+ size 2111023
rob_train_clean_23_test_all_23/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252db1299b8ae81a5d00a118e47e3ac1e417d774515fe6e1381d16d3bc08cab6
3
+ size 543562
rob_train_disc_23_test_all_23/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:024e3d3a360515b2f2f4c764334cb7eff64042d93063730d71fe26fb0a1dd7b7
3
+ size 123005
rob_train_disc_23_test_all_23/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68ec5eca51add9f7d9bf3c0ce97ac5f32be8b5cebacbeadbc7748c81f47e2e03
3
+ size 2409442
rob_train_disc_23_test_all_23/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bf83590c255081c67ef61de975ca2e924e6607c4c363adf4fdcac9225fc9626
3
+ size 613911
rob_train_irr_23_test_all_23/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd11b8a6f28facd2d9a048abbcbe37f870afb5ffe647876ff8fc58e78daa02c5
3
+ size 121666
rob_train_irr_23_test_all_23/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fcfb1b7bca149bc791b12a71323fd07e040bfbc193800102025d69433d4371f
3
+ size 2375542
rob_train_irr_23_test_all_23/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ba3cb0e44159f6f33522b6d20146a272064a338bc057d15f8f16a03e482eb1
3
+ size 605316
rob_train_sup_23_test_all_23/v1-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef71cc61bc10ddeb695b68ec401c3ad1f117baec48eeaa76b7f55206553bf828
3
+ size 122235
rob_train_sup_23_test_all_23/v1-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2883bcf963e11edb85993a004d17b3f384e59c99a7a37780abf150e45fcbe20d
3
+ size 2613660
rob_train_sup_23_test_all_23/v1-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead96a942ce416fe537c5c7bc800f83830d5c8d7d05f452828b2c87dac61be65
3
+ size 659218
v1.py DELETED
@@ -1,154 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """CLUTRR_Dataset Loading Script.ipynb
3
- Automatically generated by Colaboratory.
4
- Original file is located at
5
- https://colab.research.google.com/drive/1q9DdeHA5JbgTHkH6kfZe_KWHQOwHZA97
6
- """
7
- # coding=utf-8
8
- # Copyright 2019 The CLUTRR Datasets Authors and the HuggingFace Datasets Authors.
9
- #
10
- # CLUTRR is CC-BY-NC 4.0 (Attr Non-Commercial Inter.) licensed, as found in the LICENSE file.
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
-
18
- # Lint as: python3
19
- """The CLUTRR (Compositional Language Understanding and Text-based Relational Reasoning) benchmark."""
20
-
21
-
22
- import csv
23
- import os
24
- import textwrap
25
-
26
- import numpy as np
27
-
28
- import datasets
29
- import json
30
-
31
- _CLUTRR_CITATION = """\
32
- @article{sinha2019clutrr,
33
- Author = {Koustuv Sinha and Shagun Sodhani and Jin Dong and Joelle Pineau and William L. Hamilton},
34
- Title = {CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text},
35
- Year = {2019},
36
- journal = {Empirical Methods of Natural Language Processing (EMNLP)},
37
- arxiv = {1908.06177}
38
- }
39
- """
40
-
41
- _CLUTRR_DESCRIPTION = """\
42
- CLUTRR (Compositional Language Understanding and Text-based Relational Reasoning),
43
- a diagnostic benchmark suite, is first introduced in (https://arxiv.org/abs/1908.06177)
44
- to test the systematic generalization and inductive reasoning capabilities of NLU systems.
45
- """
46
- _URL = "https://raw.githubusercontent.com/kliang5/CLUTRR_huggingface_dataset/main/"
47
- _TASK = ["gen_train23_test2to10", "gen_train234_test2to10", "rob_train_clean_23_test_all_23", "rob_train_disc_23_test_all_23", "rob_train_irr_23_test_all_23","rob_train_sup_23_test_all_23"]
48
-
49
- class v1(datasets.GeneratorBasedBuilder):
50
- """BuilderConfig for CLUTRR."""
51
-
52
- BUILDER_CONFIGS = [
53
- datasets.BuilderConfig(
54
- name=task,
55
- version=datasets.Version("1.0.0"),
56
- description="",
57
- )
58
- for task in _TASK
59
- ]
60
-
61
- def _info(self):
62
- return datasets.DatasetInfo(
63
- description=_CLUTRR_DESCRIPTION,
64
- features=datasets.Features(
65
- {
66
- "id": datasets.Value("string"),
67
- "story": datasets.Value("string"),
68
- "query": datasets.Value("string"),
69
- "target": datasets.Value("int32"),
70
- "target_text": datasets.Value("string"),
71
- "clean_story": datasets.Value("string"),
72
- "proof_state": datasets.Value("string"),
73
- "f_comb": datasets.Value("string"),
74
- "task_name": datasets.Value("string"),
75
- "story_edges": datasets.Value("string"),
76
- "edge_types": datasets.Value("string"),
77
- "query_edge": datasets.Value("string"),
78
- "genders": datasets.Value("string"),
79
- "task_split": datasets.Value("string"),
80
- }
81
- ),
82
- # No default supervised_keys (as we have to pass both premise
83
- # and hypothesis as input).
84
- supervised_keys=None,
85
- homepage="https://www.cs.mcgill.ca/~ksinha4/clutrr/",
86
- citation=_CLUTRR_CITATION,
87
- )
88
-
89
- def _split_generators(self, dl_manager):
90
- """Returns SplitGenerators."""
91
- # dl_manager is a datasets.download.DownloadManager that can be used to
92
- # download and extract URLs
93
-
94
- task = str(self.config.name)
95
- urls_to_download = {
96
- "test": _URL + task + "/test.csv",
97
- "train": _URL + task + "/train.csv",
98
- "validation": _URL + task + "/validation.csv",
99
- }
100
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
101
-
102
-
103
- return [
104
- datasets.SplitGenerator(
105
- name=datasets.Split.TRAIN,
106
- # These kwargs will be passed to _generate_examples
107
- gen_kwargs={
108
- "filepath": downloaded_files["train"],
109
- "task": task,
110
- },
111
- ),
112
- datasets.SplitGenerator(
113
- name=datasets.Split.VALIDATION,
114
- # These kwargs will be passed to _generate_examples
115
- gen_kwargs={
116
- "filepath": downloaded_files["validation"],
117
- "task": task,
118
- },
119
- ),
120
- datasets.SplitGenerator(
121
- name=datasets.Split.TEST,
122
- # These kwargs will be passed to _generate_examples
123
- gen_kwargs={
124
- "filepath": downloaded_files["test"],
125
- "task": task,
126
- },
127
- ),
128
- ]
129
-
130
- def _generate_examples(self, filepath, task):
131
- """Yields examples."""
132
- with open(filepath, encoding="utf-8") as f:
133
- reader = csv.reader(f)
134
- for id_, data in enumerate(reader):
135
- if id_ == 0:
136
- continue
137
- # yield id_, data
138
- # id_ += 1
139
- yield id_, {
140
- "id": data[1],
141
- "story": data[2],
142
- "query": data[3],
143
- "target": data[4],
144
- "target_text": data[5],
145
- "clean_story": data[6],
146
- "proof_state": data[7],
147
- "f_comb": data[8],
148
- "task_name": data[9],
149
- "story_edges": data[10],
150
- "edge_types": data[11],
151
- "query_edge": data[12],
152
- "genders": data[13],
153
- "task_split": data[14],
154
- }