Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
nielsr HF Staff commited on
Commit
c8ab7bd
·
verified ·
1 Parent(s): e3bb4aa

Improve dataset card: Add task category, license, library, tags, and links

Browse files

This PR enhances the dataset card for `CIRCL/vulnerability-scores` by:
- Adding `task_categories: text-classification`, `license: agpl-3.0`, `library_name: datasets`, and relevant `tags` to the metadata for better discoverability and compliance.
- Updating the primary paper link to the official Hugging Face Papers page (`https://huggingface.co/papers/2507.03607`) at the top of the card.
- Including explicit links to the project page (`https://vulnerability.circl.lu`) and the associated GitHub repository (`https://github.com/vulnerability-lookup/ML-Gateway`) for easier access to related resources.
- Adding a brief introductory overview of the dataset derived from the paper's abstract.
- Removing the redundant arXiv citation, as the Hugging Face paper link serves as the primary reference.
- Preserving the existing detailed information about data sources and usage examples.

Files changed (1) hide show
  1. README.md +16 -2
README.md CHANGED
@@ -33,8 +33,24 @@ configs:
33
  path: data/train-*
34
  - split: test
35
  path: data/test-*
 
 
 
 
 
 
 
 
 
 
36
  ---
37
 
 
 
 
 
 
 
38
 
39
  ### Sources of the data
40
 
@@ -50,8 +66,6 @@ configs:
50
  Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu).
51
  Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/).
52
 
53
- This dataset is cited in arxiv.org/abs/2507.03607.
54
-
55
  ### Query with datasets
56
 
57
  ```python
 
33
  path: data/train-*
34
  - split: test
35
  path: data/test-*
36
+ task_categories:
37
+ - text-classification
38
+ license: agpl-3.0
39
+ library_name: datasets
40
+ tags:
41
+ - vulnerability
42
+ - cybersecurity
43
+ - security
44
+ - cve
45
+ - cvss
46
  ---
47
 
48
+ This dataset, `CIRCL/vulnerability-scores`, comprises over 600,000 real-world vulnerabilities used to train and evaluate VLAI, a transformer-based model designed to predict software vulnerability severity levels directly from text descriptions, enabling faster and more consistent triage.
49
+
50
+ The dataset is presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607).
51
+
52
+ Project page: [https://vulnerability.circl.lu](https://vulnerability.circl.lu)
53
+ Associated code: [https://github.com/vulnerability-lookup/ML-Gateway](https://github.com/vulnerability-lookup/ML-Gateway)
54
 
55
  ### Sources of the data
56
 
 
66
  Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu).
67
  Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/).
68
 
 
 
69
  ### Query with datasets
70
 
71
  ```python