Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,50 +1,83 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
The dataset is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: id
|
5 |
+
dtype: string
|
6 |
+
- name: title
|
7 |
+
dtype: string
|
8 |
+
- name: description
|
9 |
+
dtype: string
|
10 |
+
- name: cpes
|
11 |
+
list: string
|
12 |
+
- name: cvss_v4_0
|
13 |
+
dtype: float64
|
14 |
+
- name: cvss_v3_1
|
15 |
+
dtype: float64
|
16 |
+
- name: cvss_v3_0
|
17 |
+
dtype: float64
|
18 |
+
- name: cvss_v2_0
|
19 |
+
dtype: float64
|
20 |
+
splits:
|
21 |
+
- name: train
|
22 |
+
num_bytes: 364407183.04846585
|
23 |
+
num_examples: 562497
|
24 |
+
- name: test
|
25 |
+
num_bytes: 40489902.95153417
|
26 |
+
num_examples: 62500
|
27 |
+
download_size: 159615679
|
28 |
+
dataset_size: 404897086.0
|
29 |
+
configs:
|
30 |
+
- config_name: default
|
31 |
+
data_files:
|
32 |
+
- split: train
|
33 |
+
path: data/train-*
|
34 |
+
- split: test
|
35 |
+
path: data/test-*
|
36 |
+
task_categories:
|
37 |
+
- text-classification
|
38 |
+
license: cc-by-4.0
|
39 |
+
library_name: datasets
|
40 |
+
tags:
|
41 |
+
- vulnerability
|
42 |
+
- cybersecurity
|
43 |
+
- security
|
44 |
+
- cve
|
45 |
+
- cvss
|
46 |
+
---
|
47 |
+
|
48 |
+
This dataset, `CIRCL/vulnerability-scores`, comprises over 600,000 real-world vulnerabilities used to train and evaluate VLAI, a transformer-based model designed to predict software vulnerability severity levels directly from text descriptions, enabling faster and more consistent triage.
|
49 |
+
|
50 |
+
The dataset is presented in the paper [VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification](https://huggingface.co/papers/2507.03607).
|
51 |
+
|
52 |
+
Project page: [https://vulnerability.circl.lu](https://vulnerability.circl.lu)
|
53 |
+
Associated code: [https://github.com/vulnerability-lookup/ML-Gateway](https://github.com/vulnerability-lookup/ML-Gateway)
|
54 |
+
|
55 |
+
### Sources of the data
|
56 |
+
|
57 |
+
|
58 |
+
- CVE Program (enriched with data from vulnrichment and Fraunhofer FKIE)
|
59 |
+
- GitHub Security Advisories
|
60 |
+
- PySec advisories
|
61 |
+
- CSAF Red Hat
|
62 |
+
- CSAF Cisco
|
63 |
+
- CSAF CISA
|
64 |
+
|
65 |
+
|
66 |
+
Extracted from the database of [Vulnerability-Lookup](https://vulnerability.circl.lu).
|
67 |
+
Dumps of the data are available [here](https://vulnerability.circl.lu/dumps/).
|
68 |
+
|
69 |
+
### Query with datasets
|
70 |
+
|
71 |
+
```python
|
72 |
+
import json
|
73 |
+
from datasets import load_dataset
|
74 |
+
|
75 |
+
dataset = load_dataset("CIRCL/vulnerability-scores")
|
76 |
+
|
77 |
+
vulnerabilities = ["CVE-2012-2339", "RHSA-2023:5964", "GHSA-7chm-34j8-4f22", "PYSEC-2024-225"]
|
78 |
+
|
79 |
+
filtered_entries = dataset.filter(lambda elem: elem["id"] in vulnerabilities)
|
80 |
+
|
81 |
+
for entry in filtered_entries["train"]:
|
82 |
+
print(json.dumps(entry, indent=4))
|
83 |
+
```
|