diff --git a/data/part_1/0020297413.json b/data/part_1/0020297413.json new file mode 100644 index 0000000000000000000000000000000000000000..189fbbfdebbcc18608ced5dd4e3a72aade8412dd --- /dev/null +++ b/data/part_1/0020297413.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"17db9b2cbf4490ca10c5533ca1c75a48","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9831fb3b-736a-4d78-b0f4-5fd38e40d609/retrieve","id":"-959194587"},"keywords":[],"sieverID":"59dd3ae6-5ad4-41ad-bf94-8a392788d420","pagecount":"88","content":"CIAT is a nonprofit orgamzation devoted to the agricultura! and economic development of the lowland tropics. The government of Colombia prov1des support as host country for CIAT and furnishes a 522-hectare site near Cali for CIA T's headquarters. In addition. the Fundac1ón para la Educación Superior (FES) makes available to CIAT a 184-hectare substation in Ouilichao and a 73-hectare substauon near Popayán. CIAT also comanages with the Instituto Colombiano Agropecuario (ICA) the 22.000-hectare Carimagua Research Center in the Eastern Plams of Colombia, and carries out collaborative work on several of ICA's expenmental stations in Colombia. Similar work IS done w1th national agncultural agencies in other Latín Amencan countries. CIAT 1S financed by a number of donors representad in the Consultative Group for lnternational Agncultural Research (CGIAR).The dry or common bean (Phaseolus vulgaris L.) is an important protein and carbohydrate source in human diets in Latin America, where middle-and low-income families often cannot afford sufficient animal protein . Traditionally, beans have comprised as muchas 10 percent by weight of diets in the region (Bressani, 1972), but per capita consumption is falling as production increases lag behind population growth rates (Sanders and Alvarez, 1978). lncreased production is urgently needed to maintain or increase the affordable protein supply, especially to lower income groups.What strategy should be employed to increase overall production? Beans are predominantly a subsistence crop produced mostly by small farmers with traditional cultural practicas (Silva et al., 1972;Alvarado and Sanders, unpublished). They usually are not adequately fertilizad or protected from diseases and insects. Finally, they have received only limited support from national research programs (Roberts, 1970;Hernandez-Bravo, 1973;Pinchinat, 1973 ). Therefore, increased production and productivity should be achieved by developing technology based on low inputs to meet the needs of current producers. Roberts (1970) reviewed grain legume yields throughout the world and concluded that multidisciplinary grain legume research programs should be established in the international agricultura! research centers. He suggested CIAT become the center for bean(P. vulgaris) research. An integrated bean research program was initíated in 1973, a lthough so me CIA T staff members had worked on beans prior to that time.The United Nations' Food and Agricultura Organization (FAO) has estimated world bean production at 14.4 million tons annually, during 1977-79. Latín America was the most important production zone with 4.0 million ton/ year, approximately 30 percent of the total. Eastern Africa, the second most important zone in the tropics, produced an average of 0.8 million ton/year. Other important bean-producing countries are China and India, according to the FAO. In Asia most of the principal bean types have now been reclassified as Vigna sp.In the last decade in Latín America bean production growth has been substantially below the population growth rate (Sanders and Alvarez, 1978). The annual production increase of 1.2 percent resulted from expanding the area about 1.3 percent annually, since yields have been decreasing (-0.16%). Bean production has lagged substantially behind the 2. 7 percent annual growth in population .While Brazil and Mexico produced almost 78 percent of the region's dry beans, their long-term total production has increased relatively little. Significant production increases were reportad, however, in Argentina, Colombia, El Salvador and Guatemala (Tabla 1 ). Argentina increased her bean production from 32,000 tons in 1964-66 to 194,000 m 1977-79. The sharp production gain and consequent increase in Argentina exports made Latín America a net exportar of grain legumes by the mid-seventies. Nevertheless, Brazil. Cuba and Venezuela have importad heavily in recent years and their total imports reached almost 238,000 t annually in 1976-78. Total imports of grain Yields and the rate of yield improvement were less than those obtained with cereal gra ins and soybeans ovar the same years (FAO, 1963(FAO, -1975)). Yields ovar the region have remained low, comparad, for example, to the U.S.A. average of1 509 kg / ha. Yields in Latin America have declinad from 580 to 559 kg/ ha, an annual rate of -0 .16 percent from 1962 to 1979.These statistics reflect a complex production situation. In Argentina and Chile, two of the major bean exporters, production is concentrated on relatively larga holdings receiving high levels of inputs (Hernandez-Bravo, 1973;INTA. 1977). Although other Latín American countries possess limitad areas where larga bean farms predominate, most beans are produced on smaller holdings, often on slopping land of low fertility. Bean producing farms in El Salvador and Haiti average less than one hectare in size (Aguirre and Miranda, 1973;Scobie et al., 1974). Under these circumstances the tendency is toward multiple cropping systems (Junqueira et al., 1 972;Pinchinat, 1977) using minimal inputs (Bazan. 1975; Ruiz de Londof'\\o et al., 1978). Beans have increasingly been displaced from the morefertile, mechanizable lands by crops such as sorghum and soybeanswhich have a more stable production and marketing situation.Bean seed color and size preferences vary widely (Moh, 1971 ;Flores et al., 1973;Scobie et al., 1974) and complicate the production and consumption pictures (see columns 4 and 5 of Tabla 3). Blackseeded cultivars have outyielded those of other seed colors (Moh, 1971 ;CIAT, 1978). However, in many countries black beans either are not consumad or receive a substantial price discount.Bean production increases of almost 3 percent annually are needed to match population growth ratas. Even if production were to increase 6 percent annually, an initial price decline would be partially offset by increased consumption in middle-and low-income familias (Pinstrup-Andersen et al., 1976). 1n contrast to the \"green revolution\" crops, rice and wheat. bean yield increases of that magnitude would need to occur in a predominantly subsistence crop which is rarely i rrigated, fertilizad or protected from pests, which is produced under many farming systems and in which grain color and size preferences will slow the rate of development and acceptance of improved cultivars.Under experimental conditions, bush bean yields as high as 5.0 t /ha have been reportad (Cartee and Hank, 1974;CIAT, 1975a), and climbing beans on artificial support systems have y1eldea even higher (CIAT, 1976). The gap, however, between experimental yields and mean farm yields (less than 600 kg/ha in association) is huge. A review of the factors responsible for this gap is essential in devising a strategy for increasing yields.The literatura and farm surveys clearly indicate that diseases and pests are the major factors responsible for extremely low yields. More than 250 pathogens and 450 insects attack P. vulgeris. Several of these are widely distributed and can reduce yields substantially (Wellman, 1969;Auppel and ldrobo, 1962;Vieira et el., 1971 ;Mancia and Cortez, 1975). An attempt was made by researchers to identify major bean diseases in Latin America. Bean common mosa ic virus (BCMV), rust, anthracnose, angular leaf spot, powdery mildew and common bacteria! blight were, in that order, considerad major diseases in South America (Gutierrez et el., 1975).Various regional surveys of production losses support these overall priority estimates (Echandi, 1966;Schieber. 1970;Costa, 1972;Crispin and Campos. 1976). Losses to BCMV can ranga from 53-96 percent (Laborde, 1967;Costa, 1972;Crispin, 1974;Hampton, 1975;Crispin and Campos. 1976); to bean rust from 18-82 percent (Carrijo, 1975; CIAT. 1975a); and to anthracnose, as much as 97 percent (CIAT, 1975a).Severa! diseases are important under specific regional or clim atic conditions. As cotton and soybean production expanded in Brazil. populations of Bemesia tabaci, the bean golden mosaic virus (BGMV) vector, increased. This virus has become a serious problem in many regions of Southern Brazil, as it already was in Central America ( Gamez. 1971 ;Costa, 1972;Costa and Cupertino, 1976). In warm, humid regions web blight can devastate production (Crispin and Gallegos, 1963;Echandi, 1966 and1976). In cooler regions where anthracnose is important, various local fungal diseases, root rots and halo blight are often important as well (Cardona and Skiles. 1954;Costa, 1972;Crispin and Campos, 1976;Shands et al., 1964).In Eastern Africa, anthracnose and halo blight are the principal pathogens (leakey, 1970;Kenyan Ministry of Agricultura, 1975). Other diseases such as rust. BCMV, Southern blight, white mold, Fusarium root rot, Cercospora, Alternaría, Ascochyta, angular leaf spot and bean scab are also important in Africa (Rheenen, 1978; Edje and Mughogho, 1 974; CIA T. Regional Workshop on Potential for Field Beans in Eastern Africa, 1981 ). Bean scab so far has not been reportad in Latín America.Although diseases are considerad to be more important, insects can also reduce bean yields substantially and losses as high as 94 percent are reportad. Leafhoppers (Empoasca kraemeri), chrysomelids and cutworms are important in most Latín American bean production zones (Bonnefil. 1965;Gutierrez et al., 1975). Other insects such as the bean pod weevil(Apion godmani)and the Mexican bean beetle (Epilachna varivestis) are important in Central America and Mexico (Enkerling, 1957). In Africa, the beantly(Ophiomyia spp.) form the principal production limiting insect pest (leaky, 1970).CIAT conducted an in-depth study of bean yield constraints in Colombia to better define production systems and problems. This study was made during 1974 and 1975, when Colombia exported black beans produced in larga holdings in the Valle del Cauca and Huila regions. The survey indicated a greater potential productivity in the more fertile Valle del Cauca than in Huila and Narino. Actual farm yields were 905 and 598 kg/ ha, in Valle and Huila respectively. The former region was characterized by large farm~ while small farms were common in the other two regions. In spite of larga expenditures on inputs including fu ngicides and insecticidas (Tabla 2), di se ase and insect losses were still high in the large-farm, monoculture region of Valle. The combination of rust, common bacteria! blight, angular leaf spot, and leafhoppers reduced yields in Valle del Cauce by 500 kg/ ha, or 36 percent. Thus, in the Valle, mechanization, monoculture, high input levels and planting improved black-seeded cultivars such as ICA-Pijao and ICA-Tu i still did not increaseyields to 1 ton/ ha. In Huila and Narif\\o, input use was much lower and beans were produced prmc1pally 1n association with maize. The prevalence of diseases in trad itional bean production zonas implies that new varieties with higher yield potential but lacking the appropriate resistances would confront even largar potential yield losses than those reportad here. In summary, the Colombian farm data i ndicate the prevalence of many serious diseases in the principal bean regions, the importance and difficulty of controlling diseases and insects with chemicals, and the importance of incorporating disease resistance into new higher-yielding cultivars, so they can attain their yield potential.Based on the studies cited above and several years of work within the Latin American bean network, requirements for disease and insect resistance in varieties for the principal production zones of Latin America have been defined (Table 3). These requirements are always under review as new data and observations become available. The principal disease and insect problems and other important constraints to bean production are discussed more fully in the next section (see also Schwartz and Galvez, 1980).Bean common moaaic virua (BCMV). lt has bean reportad from all bean producing countries in Latin America and Africa (Gamez, 1977;Kulkarni, 1973). Most regionally important varieties, especially nonblack-seeded types are susceptible to the virus. This is transmitted in seed, by aphids, and mechanically. Several strains of the pathogen have been identified in Latin Amarica (Aivarez and Ziver, 1965;Guerra et al., 1971 );Gamez, 1973;Drijfhout et al., 1978) including strains which can cause systemic necrosis in sorne cultivars (Drijfhout. 1975). Two types of resistance to BCMV have been identified; those conditioned by recessive and strain-specific genes or by a dominant \" 1\" gene, which pravents chronic systemic infection (mosaic) and seed transmission of the virus.Breeders in Latin America have principally utilizad the dominant type of resistanca (Cafati and Alvarez, 1975). Naithar resistanca a lona may be sufficient for all Latín American conditions. lf plants possessing the dominant 1 gene are infectad by a necrosis-inducing strain of BCMV, systemic necrosis and plant daath can result. With limited quarantine control in most countries, introduction of new mosaic or necrosis-inducing strains of the virus is a real possibility.Recently, resistance to all known BCMV strains was identified in germplasm from temperate zones (Drijfhout, 1978). In farm trials in Colombia, virus-free seed of varieties susceptible to BCMV could not substituta for varietal resistance to the virus (CIAT, 1978 and1979). The Bean Program has therefore given its highest priority to incorporating resistance to BCMV i nto its new materials.Sean rust (Uromyces phaseoll) is endemic to Latin America and may be the most important beandisease in subtropical regions up to elevations of 2500 m above sea level. Many races have been identified (Echandi, 1966;Christen and Echandi 1967;Netto et al., 1969;Augustin and Costa, 1971 a;Costa, 1972). Major shifts in race prevalence have been observad between seasons (Antunes, cited by Costa, 1 972) a nd with the introduction of n ew cultiva rs (Aug usti n a nd Costa, 1971 a).Many rust-resistant cultivars exist (Costa, 1972;Coyne and Schuster, 1975) but few retain their resistance over long periods of time or in all regions (CIAT, 1979). Stable resistance to rust is one of the highest priorities of the Sean Program. Sasic studies are needed on alternative control strategies, such as gene pyramiding, development of more stable resistance and cultural practicas for reducing disease incidence.Anthracnose (Colletotrichum lindemuthianum). lt is a major pathogen in Argentina, Srazil, Mexico, and high altitude regions in Central Ame rica, the Andean Zone countries and Eastern Africa. One hundred percent field infection can occur (Shands et al., 1964;Augustin and Costa, 1971 b;Araujo, 1973;Echandi, 1976;INTA, 1977;Gutierrez et al., 1975). While race differentials and nomenclature rema in to be standardized, 1 O apparently distinct races of anthracnose have been identified.The cultivar Cornell 49-242 is resistant to important races in Latín America (Oiiari et al., 1973) and has been used in breeding for resistance. New and distinct sources identified by Bannerot et al. (1971 ), Fouilloux (1976) carry resistance against additional races (Kruger et al., 1977), sorne against all known races (Drijfhout, pers. comm.). Resistance to anthracnose isa requisitefor a JI newmaterials the Sean Program develops for cooler production zonas.Angular leaf apot (lsariopsis griseo/a). This is perhaps the most underrated of the major bean diseases. Despite intensiva efforts to develop control methods in Colombia (Barros et al., 1957;Bastidas, 1977), the disease continuas to cause appreciable losses there and in other countries, partly beca use it can be seed-transmitted (Diaz et al., 1965;Crispin and Campos, 1 976;Ruiz de Londono et al., 1978). Brock (1951). Clave (1958) and Santos-Filho et al. (1976) have identified sources of resistance to this disease with resistance controlled by a single recessive gene. Possible race relationships for this pathogen must still be studied. The Program isdeveloping resistanceto angular leaf spot in specific materials.Common bacteria! blight(Xanthomonas phaseoll).lt is one of the most imortant disease pathogens dueto its wide occurrence a nd seed transmission. Moreover, it is difficult to control chemically or through varietal resistance. Resistance has been identified in GN-Nebraska No. 1 Sel27 and Pl207 262 and appearstobe quantitatively inherited with different genes controlling resistance in each cultivar. The narrow adaptation of the above two cultivars (CIAT, 1977) will necessitate extensive breeding efforts to incorporate resistance into tropically adapted cultivars and to pyramid resistance 1 evels. Resistance in GN-Nebraska No. 1 Sel 27 was derived from i nterspecific hybridization with blight-resistant P. acutifolius and more such crossing should be done. lncorporation of common bacteria! blight in materials for the tropical production zonas is one of the priorities of the Program . In sect Pests Leafhopper. Of the insects attacking beans, the leafhopper (Empoasca kraemen) is considerad the most widespread and i njurious (Bonnefil. 1 965;Langlitz, 1966;Costa and Rosetto, 1972;Gutierrez et al., 1975). Gutierrez et al. (1975) reportad significant damage by this insect in 11 of 12 Latin American countries surveyed. Yield 1 osses of up to 96 percent have been reportad (Diaz-Castro, 1971;Miranda, 1971 ). Damage is generally greatest under dry conditions.While intermediate levels of tolerance have been identified (Wolfenbarger and Sleesman, 1961) current control methods usually emphasize 1nsect1cides (Costa and Rossetto, 1972). The leafhopper is the only insect to which the Program has given priority to incorporate resistan ce into i mproved lines.Bean pod weevil (Apion godmani) is major bean pest in Mexico, Guatemala, El Salvador, Honduras, and Nicaragua (McKelvey et al., 1947;Enkerling. 1957; Mancia. 1973a) with pod infestation ranging from 20-95 percent (Enkerling, 1957;Diaz, 1970;Mancia, 1973a).While resistant varieties have been identified (Guevara, 1957 and1969;Mancia, 1973b), present control recommendations depend primarily upon insecticidas (Diaz. 1970;Mancia, 1973a). Resistance to Apion is be ing develop in new lines intended for Central Ame rica.Mexican bean beetle (Epilachna varivestis). 1 t is a major problem in Mexico, Guatemala andEl Salvador, where yield losses of up to 75 percent are reportad (Paz et al., 1975). Existence of resistant cultivars has been reportad (Campbell and Brett, 1 966; Garcia and Sosa, 1 973; Raina et al., 1978).Storage insects .. The principal insects attacking stored beans are two bruchids, Acanthoscelides obtectus and Zabrotes subfasciatus. Both are common throughout Latin America but direct loss estimates are surprisingly low (Schoonhoven, 1976). However, these insects m ay be indirectly more important as they force the rapid sale of beans after harvest, thereby contributing to post-harvest price collapses (CIAT, 1977).Nematodes. Nematodes have been studied relatively little in Latin America but are important in Brazil, Chile, Mexico and Peru (Costa, 1972;Crispin and Campos, 1 976;Jimenez, 1976). lmportant genera in Colombia include Helicotylenchus, Pratylenchus and Meloidogyne. Weeds, especially Bidens pilosa, increased nematode populations according to studies by Riedel (CIAT, 1978).Given the major disease and insect problems mentioned, intensiva breeding efforts are needed to incorporate identified resistance genes into locally important varieties. Genetically improved varieties, such as rliacoi -Calima, ICA-Pijao, and Canario rlivex are available in sorne countries and have significantly improved yields, e.g ., in Colombia, Brazil and Mexico (Orozco et al., 1964;Vieira, 1970Vieira, , 1974Vieira, and 1977;;Cafati and Alvarez, 1975;Lopez and Andrade, 1975;Bastidas, 1977). However, most commercial varieties such as Flor de Mayo, Jamapa and Canario 101 (Mexico), Carioca and Rio Tibagi (Brazil), Alubia and Caballero (Argentina), Tacarigua (Venezuela), Pompadour (Dominican Republic), Rojo de Seda and Zamorano (Central America) and the Porrillos are mass or individual plant selections obtained from land race cultivars (Crispin, 1968;Ortega and Barrios, 1972;INTA, 1977); they are susceptible to most of the important diseases and insects.Besides diseases and pests, agronomic constraints, particularly problems of phosphorus or nitrogen deficiency and soil acidity contribute to poor bean yields. Analyses of 11 O Central American soils showed 20 percent hada pHof less than 6.0(Mulleretal., 1968), 66 percent were highly deficient in phosphorus (Fassbender et al., 1968) and 75 percent, deficient in nitrogen (Dfaz-Romeu et al., 1970).Central American bean fertilization trials, reviewed by Fassbender (1967) and Bazan {1975), showed wídespread responses to nitrogen and phosphorus but not to potassi u m. Malavolta ( 1972) reviewed232 bean fertilization trials in eight Brazilian states and reported responses to nitrogen (67 times), phosphorus (1 03), potassium (15), 1 ime (31 ), and micronutrient combinations ( 17). Aluminum (Buol et al., 1975) and manganesa toxicities associated with the low soil pH (Dobereiner, 1966) and molybdenum deficiency (Franco, 1977) complicate fertilizar recommendations. The observed large genetic variation in phosphorus requirements among bean cultivars, especially in those from Brazil (Whiteaker, 1975;CIAT, 1978 and1979) are being exploited as a method to partially overcome this soil constraint.Given the low nitrogen status of many soils it is unfortunate that many commercial cultivars of P. vulgaris have proved weak in symbiotic nitrogen fixation. Yield increases following inoculation have been reported (reviewed by Graham and Halliday, 1977) but inoculation failure is common . Currently, less than 1 percent of the bean seed planted in Brazil receives inoculation (Araujo, 1974). By exploiting the Rhizobium strain x bean cultivar interaction, the Bean Program attempts to reduce dependence on nitrogen fertilization.Majar bean pathogens such as BCMV, anthracnose, angular leaf spot and common bacteria! blight are seed -transmitted. Although beans have their center of origin in Latín America, the ability of seed transmission of most important diseases may be a major factor accounting for similar disease problems in Africa.In the U.S.A., certified seed is produced in relatively dry areas (e.g ., ldaho) with little disease pressure, to meet stringent quality standards (Copeland et al, 1975). Over an eight-year period in Michigan, bacteria! blight incidence on farms not using pathogen-free seed was 3 to 1 O times as high as that on farms utilizing such seed. Latin American bean-producing countries generally Jack effective systems of bean seed production and quality control. In both Colombia and Brazil, for example, fewer than 4 percent of the farmers use certified seed (Silva et al., 1972;Walder et al., 1977;Bastidas, pers. comm.).In Minas Gerais, Brazil, 59 percent of 338 farmers surveyed resowed harvested seed for between two and five years, while only 16 percent used pure line seed (Walder et al., 1977). In a Costa Rican study, Sanchez and Pinchinat (1974) obsprved an average germination of 68 percent for farmers ' seed . These studies indicate the importance of producing high-quality seed, and the Bean Program and CIAT's Seed Unit give great importance to improving seed production in Latin America.Sorne degree of water stress is common in most bean producing areas {CIAT, 1979). However, it is endemic in Northeastern Brazil and Coastal Peru and Ecuador; beans are seldom produced under irrigation in these areas. Moderate levels of tolerance to drought have been identified but it may be difficult to obtain materials resistant to extended dry periods. Short-season varieties may be needed for certain regions. Experience has shown that farmers have sought to compromise between disease presence and drought risk by planting beans so that they mature at the end of the rainy season.In Latín America beans are often grown in association principally with maize, but also with cassava, coffee, potatoes and other crops (Moreno et al., 1973;Andrade et al., 1974;Ruiz de Londoño et al., 1978). Many different cropping systems exist. Approximately 80 percent of the bean area in Latin America is sown in association (Gutierrez et al., 1975), and 75-90 percent of the area in Africa (Leakey, 1970). Associated culture-the growth of two or more crop species together for part of their lite cycles~oes lower yields of beans and the companion crop (Francis et al., 1977;Ruizde Londoño et al., 1978). However, there may be advantages to association such as reduced pest incidence, eros ion control and reduced economic risk (Lepiz, 1971 ;Moreno et al .• 1973;Andrade et al., 1974;Soria et al., 1975;Desir and Pinchinat, 1976). While experimental yíelds of about 2 ton/ ha of beans with 5 ton/ ha of maize have been reportad (Desir and Pinchinat,1 976), yields are generally m u eh less (Krutman, 1 968;Santa Cecilia and Vieira, 1977). Agronomic research is complicated in farming systems bythe largenumberofvariables, includingdensities of maize and beans, time of planting, fertilization, weed control and compatibility of cultivars.Relay croppi ng-where crops sha re the sa me a re a for pa rt of the ir growth cycle, but at different stages of development-is common with beans and maize. In Central America beans are plantad nearthe end of the rainy season and must face diminishing soil moisture during flowering and pod formation (Garcia and Zandstra, 1977). Development of later-maturing maize populations for these regions would aggravate the problem of raising bean yields (Garcra and Zandstra, 1977).In summary, beans in Latín America are produced mostly by small farmers as a cash crop. Due to uncertainty of production from high disease pressure or drought, farmers utiliza few inputs; consequently, bean supplies and prices fluctuate greatlyfrom year to year. On the other hand, increasing production stability by increasing environmental stress resistance enables farmers to use inputs. and beans may move back into the better lands. The low-input philosophy of the Bean Program is directed to achieving these objectives, althoug h the use of inputs is always expected to increase production.The Bean Program has the major objective of developing, in collaboration with national programs, technology that can lead to increased productivity of field beans. The Program formulated its first strategies following a 1973 conference on the potential of field beans in Latin America (CIAT, 1973). Literatura and economic surveys, and visits to and from national programs are continually usad to reevaluate and modify strategies. The Program's principal activities for attaining its objective are: (1) germplasm improvement; (2) development and validation of improved agronomic practicas; (3) training of national program scientists; and (4) international collaboration.The Bean Program plans to achieve its overall objective by concentrating upon germplasm improvement. Emphasis is upon development of scale-neutral production technology with bias to the needs of the small farmer. This is being achieved by development of germplasm resistant or tolerant to diseases and insect pests instead of making chemical control recommendations. Raducad dependence on chemical fertilizers and tolerance to water stress are sought; no research is done on practicas such as mechanization or irrigation. Work on improvement of climbing bean technology is directad exclusively towards small-scale farmers. The Program emphasis will stay on Latín America but outreach activities will include Eastern A frica .Development efforts are limitad to the common bean, P. vulgsris.Research on relatad species such as the scarlet runner bean (P. coccineus) and the tepary bean (P. scutifolius) is limitad to their contribution to improving the common bean through interspecific hybridization. The lima bean (P. lunatus) collection at CIAT will be evaluated, documentad and maintained for national program use but no breeding work will be undertaken.No major effort is made to adapt beans toare as outside their current production zones. such as the hot hum id lowlands. or the highly acid, infertile soils. Other legumes have comparativa advantages in adaptation to these areas, while the cost and time involved to adapt beans to these areas are prohibitiva.The Bean Program placas its major emphasis upon improving germplasm. This encompasses the collection, maintenance and evaluation-of germplasm and the development and distribution of genetically improved bean germplasm.Collection, maintenance and evaluation of bean germplasm. The CIAT germplasm bank currently stores around 30,000 accessions of -Phaseolus spp., primarily P. vulgaris, obtained from more than 20 countries. In collaboration with national institutions and the IBPGR, additional germplasm is periodically collected from those areas where numbers or diversity of materials are lacking. CIAT's Genetic Resources Unit is primarily responsible for the maintenance, morphological characterization and distribution of germplasm bank accessions.Staff of the Bean Program actively participate in evaluating accessions for resistance to various diseases and insect pests, for plant architecture and yield potential, and for their response to climatic and edaphic constraints. A common procedure is to screen accessions for desired variability in observation nurseries both at CIAT-Palmira and Popayan. Hill plots or small row plots are used to accommodate large numbers of entries. This is done especially for accessions which have not been screened before or when a new problem arises for which desired variability is needed.Accessions which appear promising are normally reevaluated for the same character and are enterad in the First Uniform Screening Trial (VEF) (Fig . 1) and tested for artditional factors if they are also homozygous resistant to BCMV. Moreover, selected materials may be directly utilizad as parents in hybridization and/ or entered in international screening nurseries. This system assures the continuous flow of desirable variability from the bank to germplasm improvement projects.Development of genetically improved germplasm. The principal short-term goal of the Bean Program is to achieve yield gains under farmers ' conditions through breeding for resistance todiseases and insect pests . S imultaneously, research is being done to increase tolerance to stress environments and to improve plant architectural characteristics. Physiological traits possibly leading to improved yield potential have been identified in beans, and the search for these traits continuas. They include stem strength, tap root, differences in maturity, erect branches and narrow leaves. After incorporation into materials of good agronomic background, their true value can be determinad.lncorporating resistance to BCMV, rust, anthracnose, angular leaf spot. common bacteria! blightand leafhoppers intoagronomically and commercially acceptable lines is the primary objetive. The immediate goal is to consolidate resistance to multiple factors in materials with yield potentíal equal to or higher than present cultivars. They must fit into actual production systems and meet seed size and color preferences of consumers. Not all combinations of resistances are necessary in all materials (Table 3, pag. 17). Resistance to common bacterial blíght is not very important in beans for the Andean highlands. Anthracnose resistance is not necessary for many warm production regions in Central America, Coastal Peru, Ecuador and Chile.Genetic variation for tolerance of beans to stress environments, principally drought and low soil phosphorus, is sought. Architectural traits -stem strength to prevent lodging and disease accumulation due to soil contact of pods, and plant height, to increase numbers of pod-carrying internadas and photosynthetic capacity -are improved simultaneously. Breeding for improved protein content and qua\\ity and cooking properties is presently of low priority. Seed color and size of advanced materials must satisfy the requirementsofconsumers in the different regions.Two breeders in the Program dedícate full time to bush beans, and one, to climbing beans. One bush bean breeder concentrates on breeding for increased resistance levels to diseases and insects prevalent in warm climates. The other breeder works on improving yield potential through better plant architecture, increasing stress tolerance to climatic and edaphic factors, and improving resistanceto diseases prevalent in cooler regions (Table 4). For the genetic improvement of climbing beans, the same principies and priorities apply as for bush beans. Although noaccurate data exist on the relativa importance of climbing versus bush beans, one-third of the total breeding effort for climbers is estimated to be above the relative importance of this type, again indicating the Bean Program's bias towards small producers. As there is a variety by cropping system i nteraction for yields of climbing bean varieties, genetic improvement evaluations are done in the cropping system the material is intended for, that is, in direct association or in relay systems with maize. For direct association, a vigorous bean type is sought to provide an optimal yield combination in both maize and beans. For relay cropping, too vigorous a bean variety would cause maize lodging. Maior aspects of germplasm improvement activities are described below.Parental sources include national cultivars, germplasm bank accessions, introductions and experimental lines or selections in various stages of development and evaluation. The germplasm development and evaluation scheme used by the Bean Program is shown in Figure 1. Befare initiating each recombination cycle, the list of parents used in crossing is updated, based upon information available from prevíous nurseríes, progeny performance, specific requests of collaborators, and Program directions.In collaboration with CIAT's Data Services Unít, a computerized information system (SIFRI; see Fig . 1) is utilized to document the handling and evaluation of germplasm bank accessions, parents, crosses and selections. This helps avoid duplication of breeding efforts, assists in progeny management and facilitates responding to outside requests.Special attention is being given to rapidly improve widely grown cultivars, such as Jamapa, Canarios, Flor de Mayo, Zamorano, Pompadour, Diacoi-Calima, Cargamanto, Sangre de Toro, Favinha, Mulatinho, Roxinhos, lguacu, Alubia, and others. The basic adaptive features, grain and plant types of these cultivars are reselected while crossing them to : (a) sources of resistance to important disease and insect pests limiting their specific regional production potential ; {b} similarly, to sources of tolerance to adverse climatic and edaphic factors; and, (e) better plant architectural types to improve their yield potential.Germplasm improvement activities are d ivided into projects (Fig . 1 and Table 4) in which desired variability is recombined and built up further. When improving a particular character, parental combinations are sought which enhance and stabilize its expression as well as combine it with other desirable traits. For example, for common mosaic virus, sources of resistance to different strains of this virus are being crossed with tropically adapted parents possessing agronomic value and resistance to insects and other diseases. In general, parents are selected which combine overall performance with specific characteristcs that complement or contrastwith those of the other parent.Single but especially three -way crosses are commonly made. A limited number of backcrosses are made to improve selected national cultivars. In sorne projects selected F 3 and F4 familias are utilizad for early generation intermating and recurrent selection .Crosses are made manually in screenhouses or field-crossing blocks at CIAT -Palmira or Popayan. The latter site is primarily used for materials which are poorly adaptad at Palmira. The feasibility of utilizing male sterility and extrose stigma characters is being studied as a method for population improvement. The number of crosses in different projects takes into account Program priorities, availabilityof screening facilities and breeding methods employed.All segregating populations and early-generation familias are grouped together and managed separately for each project until their promising selections enter the First Uniform Nursery (VEF). For example, all crosses made for rust resistance are planted season after season in the rust evaluation nursery for screening, selecting and purifying until lines breeding true for their resistance are identified. Similar procedures apply for BCMV, leafhopper, common bacteria! blight, and anthracnose nurseries. For simultaneous improvementor incorporation of two or more characters, complementary parents possessing multiple desirable traits are crossed. Early generations are screened in one of the three following manners:1. Simultaneously, when and if inoculating, screening and selecting techniques are compatible, e.g., for anthracnose and angular leaf spot, common bacteria! blight and rust. ln sorne cases, several diseases are evaluated in the same nursery, in other cases, separate nurseries are needed for each d isease or pest.Alternetely, e.g., for anthracnose and low soil phosphorus tolerance, or anthracnose and leafhoppers in which the F 2 populations are first screened for resistance to anthracnose in Popayan and survivors evaluated at CIAT-Quilichao for low soil phosphorus or at CIAT-Palmira for leafhoppers. The sequential testing continuas until desired recombinants are identified.Divergently, in which the population is either divided for screening or first screened for the primary character or the character with high heritability-most frequently disease resistance -and then seed of selected plants is split. One part is u sed for its progeny confirmation test and the remainder is u sed for evaluation against the additional factor(s). The sequence is repeated until true-breeding recombinations are selected.All phases of germplasm development and evaluation are an integrated team activity. While severalteam membersworkcloselyin the initial stages of germplasm improvement in a particular project, all participate in evaluating advanced selections from any project or source entered in the uniform screening nurseries.Screening and selection activities are conducted in a few locations (mainly CIAT -Palmira and Popayan) which are representativa of major ecological bean production zonas (Tabla 5). Nearly 80 percent of the bean production zonas show average growing season temperaturas which fall between those of the two principal testing sites-CIAT-Palm ira and Popayan (Fig. 2). CIAT-Quilichao is used primarily to screen for low soil phosphorusand biological nitrogen fixation. The La Selva and Obonuco substations of the Instituto Colombiano Agropecuario (ICA) are principally used for climbing beans and associated technology su eh as inoculation in relay or association with maize. For climbing beans, in addition to the above factors, the F 3 and subsequent segregating populations are screened directly in the appropriate cropping system (relay or association). Selected progenies and yield trials are subsequently evaluated in associated and/ or relay cropping systems w ith regionally predominant maize cultivars.Screening for production constraints not occurring in Colombia, including BGMV, Apion and the bean fly, requires that crosses be made and verified at CIAT-Palmira before seed of segregating populations can be sent to collaborators for screening and selection. Seed of selected progenies is brought back toCIATto initiatethe next cycle of the improvement process. The major growth habit types which exist, and are primarily being sought during germplasm improvement, are described in Tabla 6 .While a modified backcrossing system is used for improving important cultivars grown in principal production zonas, the pedigree breeding method ora modified pedigree system is extensively u sed to improve most other materials. Populations are handled in bulk before individual plant selections are made, e .g., for drought or low soil phosphorus. These are generally characters for which precise and dependable screening facilities are not presently available.In all stages of germplasm development and evaluation, relatively low inputs and moderate stress to nutrients, water, diseases and i nsect pests are emphasized. Once a line has been selected within a project, usually in F 6 or F 7 generations,it is coded and advanced to the VEF for uniform and multiple character evaluation.The Bean Program conducts two uniform evaluations each year, the First Uniform Nursery (VEF) and the Preliminary Yield Trial (EP). The term \"uniform\" refers to screening and evaluation, for any given character, under similar conditions and with equal emphasis on all entries irrespective of their source of origin, genetic constitution and stage of development. The VEF and EP form vital and essential links among different improvement projects and integrate activities of all team members and collaborators. Materials being testad in the lnternational Bean Yield and Adaptation Nursery (IBYAN), the lnternational Bean Aust Nursery (IBAN) and other international nurseries have to pass quality criteria set for these nurseries.Both the VEF and EP are complementary nurseries and have the following common objectives: (a) to demonstrate the relativa potentials and deficiencias of advanced selections from all sources; (b) to enable selection of candidatas for the IBYAN, IBAN, and other international nurseries; and (e) to enable selection of parents for subsequent germplasm improvement.The progression from VEF to EP and the characteristics evaluated in each take into account CIAT's research priorities as they relate to production problems, numbers of materials which can be handled, screening facilities, and the quantity of seed available.. lt is open to all collaborators working in dry beans. Entries are selected from the germplasm bank, from matertals provtded by collabora tors of national and internationa l programs and from lines developed by CIAT. VEF entries must possess homozygous resistance to BCMV and be uniform for plant growth ha bit and grain type, in addition to the primary character(s) for which they were selected. Principal features of the VEF are listed in Table 7 . Preliminary Yield Trial (EP). The Preliminary Yield Trial (EP) is the second stage of the uniform testing of experimental lines of dry beans. A ll entries ar'~ selected from the previous VEF. This is the first yield eva luat10n of experimentallines and is planted at CIAT-Palmira and Popayan.Besides yield, lines are testad for additional characteristics, many of which were not testad in VEF. Unlike the VEF, the EP is not restricted to Colombia but is evaluated at key sites around the world for specific adaptation and constraints not found within Colombia, e.g ., BGMV, Apion, the bean fly and strains of anthracnose. Seed of each EP entry is kept for short-and long-term storage by the Genetic Resources Unit. An annual catalog of EP results is printed for use by collaborators. Small quantities of seed of complete or partial sets of an EP are available to interested scientists. The lnternational Bean Yield and Adaptation Nursery (IBYAN) is distributed internationally to key locations representing a wide ranga of major dry bean-producing areas. Objectives that were formalizad in an internationaiiBYAN workshop are to distribute and test. under a wide range of environments, outstanding commercial cultivars, germplasm bank accessions and experimentallines. Evaluation goals are: (a) to help identify high-yielding, stable materials for direct use as commercial cultivars; (b) to evaluate at each location a set of locally developed and adapted varieties representing a range of the best available materials in the region to be comparad with international bean improvement progress; (e) to assess specific and general adaptation of beans; and, (d) to select parents for further improvement.The IBYAN i s composed of four categories of materials: germplasm bank selections, experimental lines developed by either national institutions or CIAT, and check entries. With the exception of the Checks and entries selected from national programs, all other materials pass through the VEF and EP before entering the IBY AN. The check varieties include local varieties furnished by each collaborator, representing the best material available at each site; international checks -a group of varieties of known performance included in all trials over time; and elite checks -outstanding entries from previous IBYAN trials.The IBYAN trials take into account seed color and size preferences (consumer's requirements) and agronomic requirements of the different cropping systems (farmer's requirements). This dual approach is basic in bean improvement. Bush bean materials are of specific seed color and size groups, eg ., small seeded grouped into black, red, white nurseries, etc., medium or large white, red, canario, etc. Each group i ncludes plant types that m ay be grown in monoculture, association, or relay cropping but do not need support for climbing . Climbing beans requiring support are distributed in three groups -small blacks, small reds and large-seeded of all colors. The essential features of the IBYAN are listad in Tabla 9 .The IBYAN is intended as the bridge between research station studies of promising, stable and widely adaptad germplasm, and materials required for the on-farm trials and seed increase by national i nstitutions. Th is, like the other trials, are free of charge. Timely production of adequate quantities of pathogen-free seed is an integral part of the bean testing system (Fig. 1 ). Seed for IBYAN's is produced at Dagua, in a valley near Cáli, where absence of commercial bean production and semi-arid conditions guarantee seed free of pathogens.Additional germplasm exchange is accomplished by the international disease and insect resistance nurseries. These include nurseries for resistance to rust, BGMV, leafhoppers and Apion.Purposes of these nurseries are to distribute and evaluate sources of resistance to organisms orto races of pathogens not occurring in Colombia . lnternational nurseries are also distributed for evaluating materials for nitrogen fixation and for tolerance to drought and extreme temperaturas. Although no formal nursery is assembled, interested institutions can receive seed of segregating populationsat any stage of development.Severa/ components of agronomic research are best conducted by nationa/ programs. Most agronomic research such as fertilizar and herbicida response will be location-specific. Optimal plant density is specific to plant type, cropping system and location. lmproved varieties will not necessarily respond in the same way to inputs as traditional varieties. Since it will not be possible in the short term to incorporate resistance to all important local diseases, chemical control of sorne of these may be profitable in particular conditions. Hence, these types of applied research must also be done by national programs.On the other hand, research in agronomic practicas often as part of training which can be applied locally is done by the CIAT Bean Program. This includes methods and timing of fertilizar application, weed control and competition studies, and interactions of density on growth habit and nitrogen fixation.CIAT also conducts agronomic research on associated cropping, mainly the association of beans with maize, cassava and coffee, to study relative planting dates and influences of associations on disease and pest incidence and on nitrogen fixation. Farm•level •trials. Specific technological packages should be evaluated in farm • level trials by both CIAT and national programs. A principal problem in producing new bean technology, both involving new varieties and new agronomic practices, is that farm-level conditions are often much more adverse than those of the experiment station . Moreover, at the farm, specific bean types are required to fit into a production system. Hence, there must be continua! interaction between farmers and researchers, and this dialogue and feedback process is established through on•farm testing.With on• farm testing, both the effects of new varieties and associated technology can be tested under farmers' conditions. This provides researchers with a direct source of information on technical and economic problems impeding the functioning or the adoption of their experimental results. This is especially important since the principal dientele, the small producers, have more difficulty in communicating directly with researchers.Farm -level testing by the CIAT Bean Program is, therefore, notan extension activity but an integral component of the research process. and its focus is upon the feedback or measurement and evaluation of research performance and progress.Farm• level testing is also utilizad to develop and provide methodologies for other research institutions to verify their experimental results and farm-level constraints to the adoption of their new technology. The training component is an important aspect of this activity.lmproving bean productivity cannot be done by an international center alone. A center needs to work within a collaborative network for germplasm improvement and distribution 'and development of agronomic practicas. In 1975 the Bean Team assumed responsibility for developing a Latin American network of bean research workers. This network is now being expanded into Eastern Africa. Bean Program scientists felt each national program presentad a unique situation, hence responsibility for coordinating activities with specific countries was divided between Program staff. While this concept has undergone some change with the naming of a regional network coordinator for Central America andan out-posted staff member in Peru, the scheme continues to function in most of South America.The bi-monthly newsletter \"Hojas de Frijol\" is designad to improve communication and information within the Latin American research network. Additionally, to enhance transfer on information, an i llustrated book, Field Problema of Beans in Latín America, and a monograph on disease, insect and other problemsof bean production have been published.To further intensify the network collaboration between national and international programs and among national programs, the Bean Team is planning to have additional regional out-posted staffoverthe next few years. Current plans are for one staff member in Eastern Africa (1982( ), one in Brazil (1983) ) and one in the Middle East (1985). These are in addition to the two now working in Central America and the Caribbean and in Peru. Their principa l responsibility is to strengthen collaboration between research programs. Activities include selection of trainees. enhancing germplasm flow and generally assisting national programs in their activities.The Team also collaborates with institutions outside of Latin Amertca (Table 11 ). These mst1tut1ons provide basic research and methodology development. for wich CIAT lacks facilities. adequately tramed personnel or the comparative advantage to conduct such studies. In 1974. in collaboration with the CIAT Library, a documentation and abstracting ser.vice was established to process and distribute citations and abstracts of bean literatura to interested i nstitutes and scientists. They are available on a monthly subscription basis andas annual compilations in book form (Fig. 3). More than 3000 articles have been processed and approximately 1000 abstracts continue to be processed and published annually in Spanish and English.A series of workshops continuas to be organizad on bean production topics with participants invited from national programs and international institutions. In these. scientific information is exchanged and program strategies are discussed with national programs. providing a feedback to the Bean Program on itsobjectives and strategies. lnstead, a computerized summary of superior national and international breeding 1 ines and germplasm selections evaluated in each EP will be available annually, and seed of desired materials can be requested. All EP lines are resistant to BCMV and to at least one additional disease. Request for specific combinationsof characters in gerrt'4)1asm shipments can be met quickly, as a result of computerizing all data.Accesssions are regula rly evaluated for Program needs bythe tea m members. Observation nurseries are often plantad in CIAT-Palmira and Popayan, and are simultaneously screened for resistance to BCMV. All BCMV-resistant materials which are adaptad in one or both sitas enter the VEF for further testing as described in previous sections. In addition to BCMV, valuable sources of resistance to rust, angular leaf spot, anthracnose, common bacteria! blight, bean golden mosaic virus and web blight (Tabla 13) or combinations of these (Tabla 14) ha ve be en identified. Although of lower priority, sources of resistance or tolerance to other diseases, such as root rots, halo blight, and various foliar pathogens were also identified. lnitial evaluations at CIAT -Palmira showed different rust resistance mechanisms -slow rusting, necrotic reaction and limitad pustulesand their stability is now being measured. A second level of germplasm screening for rust resistance in the lnternational Bean Rust Nursery (IBAN) has revealed cultivars with resistance to races of the pathogen in severa! areas, but none with resistance to rust at all locations testad (Table 1 5) (CIAT, 1979b). These and additional materials are being evaluated in subsequent IBRN's and used as parents.Similarly, the Bean Golden Mosaic Nursery demonstrated resistance sources to this importar.t virus disease. As a consequence, multiple-disease resistant fines including resistance toBGMV were developed and released in Guatemala as new varieties. Among insect pests, emphasis has been placad on the leafhopper (Empoasca kraemeri). All available bank accessions have been evaluatad for tolerance, and differences in the susceptibility of cultivars are evident (Fig. 7). Levels of resistance encountered this far are adequate to provide protection during average leafhopper attacks but nead to be increasad for protection during heavy attacks. Materials of sorne preferred grain types still lack adequate levels of resistance. Studies have also confirmad and/or identifiad sources of resistance to Apion, and spider mitas.Besides disease and insect resistance sources, other valuable genetic variability has been encounterad in the germplasm bank. High-yielding varieties such as ICA-Pijao, Porrillo Sintetico, Jamapa and non-black accessions such as Bico de Ouro and NEP-2 are usad as parents in the breeding program.ldentified accessions with erect plant type and variability in pod and leaf size may be of value in raising yield potential. Other characteristics used in parental selection include the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, tolerance to drought stress, and to low soil phosphorus end extreme temperaturas, as well as insensitivity to photoperiod (Table 16).1t appears that tolerance to low soil phosphorus has to be measured by yield reduction in stressed versus non-stressed plots (Table 17) . as good vegetativa growth may occur but pods do not f ill. Leading brazilian commercial cultivars were among the most tolerant ones to low soil phosphorus. The Program selects entries efficient in phosphorus utilization and responsiva to phosphorus inputs (Fig . 8). Figure 8 also reflects the Sean Team 's general philosophy of seeking genetic variability which permits as high a yield as J><)ssible under low-input management but also provides a yield response to higher levels of management.Sorne desorable agronom1c charactenstics of selected lmes and cultivars that show these factors. Va rietal improvement has evolved considerably since the modest effort initiated in 1974. Currently about 500 parents are utilizad in the crossing program and more than 1 500 different crosses are made annually (Fig . 9). These provide more than 200,000 F 2 plants to be evaluated under field conditions each year. Unes leaving the varietal improvement programs are coded and enter the VEF for adaptation and multiple disease and insect resistance testing and subsequent selection and testing in the EP. Table 18 shows sorne of the more prom ising breeding li nes combining multiple resistances in several seed colors that were identified during the 1979 evaluations. Alllines leaving the Programare now resistant to BCMV. The Bean Team has incorporated the dominant 1 gene along with desirable strain-specific genes in sorne advanced lines. This is done in collaboration with the Plant Breeding lnstitute of the Netherlands. Progenies are tested in CIAT for adaptation to Latin American conditions.Since 1974 an active program of preliminary, uniform and international yield trials has been conducted in multiple locations. lnitially thesetrials included only germplasm accessions but nowthey consist predominantly of advanced breeding lines.ln initial selections from the germplasm bank, the high-yielding cultivars were principally black-seeded. Now, however, advanced breeding lines with other seedcoat colors equal or have surpassed the yield potential of blackseeded selections.While the 20 highest yielding materials in ttie 1979 EP yielded an average of 3.58 ton/ ha (ranging from 3.42 to 4.0 ton/ha) under intensiva management, more importance is given to lines' performances under more rustic management conditions approaching farmers' traditional practicas. Yield data of the 1978 and 1979 EP trials conducted under this management level are given in Tablas 19 and 20. In the 1978 yield trials, the bestCIAT line outyielded the best local variety by up to 43 percent and the best breeding linesoutyielded the best parents by 57 percent. Although the principal product of the Bean Program is finished breeding lines. national programs request specific crosses and select from among the best advanced lines identified each year. Network breeders have promoted CIAT crosses into promising advanced lines.One example is the Acacia lines selected out of early segregating materials by Honduran breeders. Three of these promising lines showed average yields of 2.32 ton/ ha, comparad to 1 .69 ton/ ha for f ive local varieties, a difference of 0 .63 ton/ ha. These lines combine resistance to BCMVand rust with increased yield potential and plant type, and one,Acacia 4,was recently released as a new variety. Sorne BGMV-resistant: selections made in Central America and Brazil have substantially outyielded their parents when subjected to the virus, while ma intaining their yield potential in the absence of the virus (Table 21 ). Three new BGMV varieties were recently released in Guatemala. Seed multiplication of such newly released varieties have been initiated.The best EP selections together with national program entries enter the IBYAN. Numbers and locations of IBYAN shipments over three years are given in Tabla 22 and include both bush and climbing trials. Whi le the f irst IBYAN of 1976 contained only germplasm bank accessions, current trials are principally composed of improved lines. Results of the first IBYAN (1976) from 50 locations ranging in latitude from 1 °5 (Boliche, Ecuador) to 55°N (Csmbridge, England) for both tropical and temperate locations, showed the mean yield of the best five lB Y AN en tries was 31 percent better than that of the best local cultivars (Table 23). Yield stability of the 20 lB Y AN entries variad across locations. Five black-seeded type 11 cultivars (PI 309 804, Jamapa,ICA-Pijao, 51051 , and Porrillo Sintetico) not only showed high average yields, but also relatively stable performance between sites (Fig. 1 (1) a.(1) a: Unfortunately, these Type 1 vanet1es are often large-seeded commercial types whose market value is substantially higher than smaller-seeded varieties in many countries. Currently both bush and climbing bean IBYAN 's are divided in small sets of lines of one commercial color group. Thus a ny collaborator only w ill receive lines .Jf commercial seed type in an IBYAN.Most bean producers cannot make large expenditures for inputs, hence considerable emphasis is given to development of technology utilizing low fertilizar inputs.Many Latin American soils are deficient in phosphorus and fertilization is necessary to get good yields. Critica! levels of phosphorus for bean growth at Popayan have been determinad to be about 15 ppm (Bray 11). To keep applications as low as possible, varietal differences in tolerance to low phosphorus are sought. Larga genetic differences have been found in the ability to produce yields under low soil phosphorus levels. The Bean Program hasdirected part of its resources to incorporating and augmenting this characteristic in germplasm i ntended especially for Brazil. When fertilizers are applied, results have shown that band applications in phosphorusfixing soils was advantageous when triple super-phosphate was used. However, sorne rock phosphates. when broadcast, are more residual and economical.Atmospheric nitrogen fixation at seasonal rates in excess of 40 kg of N2 fixed/ ha has been achieved, both under conditions at Popayan and CIAT -Ouilichao (CIAT, 1979). Such fixation rates are at least equal to those reported for other grain legumes. Fixation by determínate. early-flowering cultiva rs has proved w eak, as shown in Figure 11 . In severa l experiments n itrogen fixatio n (as meas u red in C 2 H 2 reduction) has been positively correlated with ca rbohydrate supply to nodules, again w ith major differences apparent between cultivars (Fig. 12). When the effect of cultural practices was studied, association with maize reduced nitrogen fixation in bush beans, but had littleeffecton the fixation rate of climbers. Optimum planting density for nitrogen fixation was near the optimal for maximum yields, however phosphate fertilization greatly increased nitrogen fixation .CIAT mamtains a documentad collection of sorne 300 cultures of Rhizobwm phaseo/1: which are available either as cultures or peat inoculants to other scientists. Currently, the best strains are tested in an lnternational Bean lnoculation Trial (IBIT) in many countries.Diseases. The production of pathogen-free foundation seed (clean seed) is an important research area of the Program. Studies of seed saved by farmers in Colombia 's Huila region showed low germination rates and many fungal contaminants. CIAT has stressed the \"c leaning \" of such seed to minimize the possibility of distributing pathogens in seed shipments and for increasing germination and early stand (Fig. 13). Various types of improved seed, including certified, protected and pathogen-free seed from Chile and from Dagua (CIAT's seed production site), did not have yield advantages over farmers' seed. when tested in on-farm trials. The principal reason appears to bethe difficulty of completely roguing BCMV in highly susceptible varieties. Since BCMV can substantially reduce yields and clean seed appears to be an inadequate substitute for resistance, the Bean Program only releases lines for testing that have resistance to BCMV.In such lines. seed free of other pathogens is expected to have a largar yield advantage and is tested again on farms. Additionally, farmers seem to select the best seed for future plantings. When new varieties are produced. the importance of improved seed production techniques is expected to substantially increase. The Seed Unit at CIAT is collaborating with several national programs to establish seed production schemes. lnsects. Several studies have been conducted to determine critica! insect pesf levels. Chrysomelid attack at the seedling stage can substantially reduce yields; however, in later stages its influence on yields is minimal. Studies relat ing leafhopper populations and damage with product ion costs ind icate an optimum return for the farmer by controlling Empoasca populations when they reach about 1 nymph/ leaf (Fig. 14). Empoasca control is most important during the flowering period. Mulching has been shown to reduce Empoasca attack in addition to reducing weed growth and preserving soil moisture.Treating harvested seed with small quantities of vegetable oils. a technique used earlier for cowpeas in Africa, has been highly successful in controlling the storage pests Zabrotes and Acanthoscelides. Only 5 mi of oil/ kg eliminated insect populations but did not affect germination or cooking quality (Table 24). Bean/ maize association Studies of the association of beans and maize have advanced considerably since their initiation in 1975. Associated cropping of beans and maize has reduced attacks of certain diseases and insect pests, while increasing others. Both leafhoppers and common bacteria! blight incidences appeared lower under this cropping system.Experiments have shown reduced yields of maize varieties even at lower bean densities. Although optimum densities for each species must be defined, density alone is not ah i mportant variable determining y1elds. Density response will depend upon the varieties of beans and maize, location, input use and other factors of weather and disease/pest incidence (Francis et al., 1978).In one series of trials, association with maize reduced bush and climbing bean yields 58 and 64 percent, respectively. Maize yields were reduced an average of 30 percent by association with beans. The hig hest association yield ach ieved in experimental plots was 2 .2 tons of beans and 5.5 tons of maize per hectare.Yields above 4 .5 t/ ha have been achieved in CIAT-Palmira and Popayan for climbing beans supported on mature maize stems and more than 5.0 t/ha on bamboo/ wire trellises. Numerous experiments to evaluate the genotype x system interactions for beans have indicated climbing bean lines should be selected under the cropping system for which they are intended. Specific and different types of beans and maize appear necessary, depending on whether direct association or relay cropping systems are utilizad. For planting in direct association, a vigorous climbing bean (Type IVb) should be sown with a maize variety intermediate in height (2.5m) and having narrow leaves and lodging resistance. A moderate climber (Type IVa) planted w ith a tall (2.5 m), lodge-resistant maize is better suited for relay systems.Whereas the genus Phaseolus has been studied intensively in temperate regions, physiological studies under tropical or semitropical conditions have been limitad. Growth analysis experiments (Table 25) helped identify yield-limiting factors in five varieties, from the tour growth habit groups defined by CIAT. The earliness of Type 1 plants limits the maximum leaf area and leaf area duration. lncreased node development and leaf area were strongly relatad to yield in all varieties. Flower and pod abscission has proved a major problem in beans with all cultivars tested showing almost 70 percent flower and pod abscission (Table 26). Abscission is greatest in flowersand pods high in the canopy, on branches, or in the higher positions within a raceme. Fir:;t-formed flowers are more likely to mature than those produced la ter. Growth habit groups have distinctly different patterns of flower production . This is an important f inding for beans produced under rainfed conditions (Fig. 15).The final test of experiment station technology occurs on farmers ' fields and in the marketplace. Farm testing was done in major bean zones in Colombia . Simple agronomic packages including chemicals, optimum plant support and better weed control substantially increased yields and farm income without larga increases in input costs (Table 27).Farm trials have shown potential gains of 1 t / ha of beans with improved agronomy. Approximately half of these grains can be obtained with low but specific input use, whi le the other half depends on higher input use (Fig. 1 6). Currently the first new improved fines from uniform yields testing are being testad at the farm leve!. Starting in 1979 all breeding lines being relea sed for international testing are resistant to BCMV, and in 1981 alllinas for areas in which anthracnose is a limiting factor will have resistance to this disaasa. Gradual improvamant will continua for resistanca/tolerance to tha leafhopper, angular leaf spot, common bacteria! blight, bean golden mosaic virus and other diseases and pests. lt is probable that resistances to other diseases such as Ascochyta, root rots, web blight and nematodes will become more important selection criteria once resistance to priority diseasas beco mes more frequent. For particular diseases such as rust, with its larga race variability, the stability of current resistance sources will determine whether greatar efforts will be necessary in seeking more stable resistance, possibly in collaboration with Title XII resaarch funding in the U.S.A.To the moment yield potential has been less emphasized than yield stability. Even so some significant gains have been made in yiald levels, and great variation in plant architecture and yiald components demonstrated. Thus, though crosses for enhanced yield potential currently contribute only a low percent of total crosses, greater emphasis will be given to this area in the future. Also limitad crossas will be made to develop improved snap bean cultivars.An expanded effort in the search for incraasad tolerance to adversa conditions such as drought, low phosphorus and acid soils will make new materials more ralevant to tha principal production zonas in Brazil, Latín America's largest producar of beans. Similarly, \"76 proteín content and cooking time will receive increased attention in selecting breeding lines. While the 1979 IBYAN stilllacked lines with proper seed sizes and colors, each year materials with a maximum number of resistances appropriate to their respective target zones will be approaching the seed characteristic requirements of national programs.Working with several national programs, the Bean Program will expand its utilization of farm trials as feedback mechanisms to determine constraints on introducing improved varieties and associated technology. In this respect, farm trials will increasingly complement the IBY AN.The size of national bean programs varíes from a few scientists to large multidisciplinary teams. Therefore, the Bean Program will maintain its present disciplinary mix, as sorne national programs will need finished varieties, while others request parental sources or segregating populations. The latter, for example, should become increasingly important as a consequence of CIAT's training efforts. National program personnel will be able to increasingly manage and fine-tune thenew germplasm and explore local adaptation and meet specific production problems and consumar preferences in their regions. To further strengthen this, regional outposted staff will be stationed in major bean production regions. In the future, IBYANs will contain an increasing number of locally improved materials.Once initial research objectives have been met, a change in emphasis will occur as the Bean Program moves towards cropping systems research. This will enable the bean crop to fit better into existing cropping patterns and, where necessary, provide for i mprovement of cropping systems.","tokenCount":"10692"} \ No newline at end of file diff --git a/data/part_1/0031577592.json b/data/part_1/0031577592.json new file mode 100644 index 0000000000000000000000000000000000000000..ff7518dc953bdb29f6fa58b36c5a7989514f7de6 --- /dev/null +++ b/data/part_1/0031577592.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"57feb2a1f41a79610b4006ffd863f392","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3910876c-b68c-465e-abd9-d79ac487cf3c/retrieve","id":"636255923"},"keywords":["Bill and Melinda Gates Foundation, through the Tropical Legumes III project cowpea, Cowpea market participation, food security, income, northern Nigeria, rural traders, urban traders C21","C26","Q12","Q13"],"sieverID":"90769d75-d19f-43e4-98f6-8c122edcb637","pagecount":"17","content":"This article evaluates the impact of cowpea market participation on household food security and income in northern Nigeria. Using household survey data from a representative sample of over 1,500 farm households and applying a combination of instrumental variable techniques and dose-response functions, we found that cowpea market participation had a statistically significant positive impact on household food security and income. Cowpea market participation increased food expenditure by 1.6% and household income by 0.7% with a 10 unit increase in the quantity of cowpea sold. These results underscore the importance of cowpea market participation for household food security and income improvement. We also found that selling cowpea to rural and urban traders significantly increased household income, food expenditure, and food security. Results show that selling cowpea to rural and urban traders increased household income by 17% and 13%, respectively. The results point to the need for an enabling policy environment and public infrastructure to enhance market participation of farmers and traders. Public infrastructure investments in the form of feeder road construction and maintenance in the distant villages are encouraged, which in the long run can translate into improved cowpea productivity and welfare of smallholder farmers.Although there is some progress in the fight against hunger in the world through increase in food production, many people are still food insecure and suffer from some form of malnutrition (FAO, IFAD, & WFP, 2015;Godfray et al., 2010;Sibhatu, Krishna, & Qaim, 2015). Globally, an estimated 821 million people were undernourished in 2017, with the majority living in the developing countries (FAO et al., 2018). Sub-Saharan Africa has the world's highest prevalence of undernourishment that was projected to be 23.2% during the same year (FAO et al., 2018). Nigeria remains a country with high levels of poverty, food insecurity, and malnutrition. An estimated 54% 1 of Nigerians live on less than US$1.9 per day and about 37% of the children were malnourished in 2013 (NPC & ICF, 2014;World Bank, 2018). Northern Nigeria has the highest poverty and malnutrition rates (Amare, Benson, Fadare, & Oyeyemi, 2018;NBSN, 2010).Smallholder market participation has long been touted as a strategy to improve farmers' productivity, income, food security, and poverty (Barrett, 2008;Radchenko & Corral, 2018;Sibhatu et al., 2015). However, no conclusive evidence exists on its effect on food security and nutrition. On the one hand, there are studies which have shown that commercialization of agricultural produce is effective in improving food security and nutrition (e.g., Muriithi & Matz, 2015;Ogutu, Gödecke, & Qaim, 2017;Ogutu, Gödecke, & Qaim, 2019;Ogutu & Qaim, 2019;Radchenko & Corral, 2018). On the other hand, studies such as Carletto, Corral, and Guelfi (2017) found little evidence that agricultural commercialization has a positive effect on the nutritional status of smallholder farmers. We contribute to this debate on market participation by examining the impact of cowpea market participation on household food security and income in northern Nigeria using rigorous econometric approaches, and a unique and comprehensive household-level data collected from a nationally representative sample of over 1,500 cowpea producing households in the region. Understanding the relationship between cowpea (an important crop in the northern Nigeria) market participation and food security can have important policy implications.Most previous studies on market participation have mainly concentrated on understanding the factors that facilitate or hinder incidence and level of market participation (e.g., Bellemare & Barrett, 2006;Burke, Myers, & Jayne, 2015;Mignouna, Abdoulaye, Akinola, Kamara, & Oluoch, 2016;Olwande, Smale, Mathenge, Place, & Mithöfer, 2015). Others have gone beyond determinants and examined the effects of market participation on income, food security, and poverty (Muriithi & Matz, 2015;Ogutu & Qaim, 2019;Radchenko & Corral, 2018). Yet, to our knowledge, none of these studies considered the associated benefits of different market choices (rural and urban) on food security and welfare of smallholder farmers, with the exception of a study by Montalbano, Pietrelli, and Salvatici (2018). In this study, a household was considered to have participated in the market if they sold any amount of cowpea.We add to the growing literature on market participation in the following ways. First, unlike many previous studies on market participation which use the traditional discrete choice of market participation versus nonparticipation, this study uses a continuous variable, the quantity of cowpea sold, as an indicator of market participation. This enables us to measure the impact of the level or intensity of market participation on our indicators of food security (household dietary diversity [HDD] and food expenditure per capita) and household income per capita. Further, taking advantage of the continuous nature of our treatment variable, we assess the impact of cowpea market participation by estimating dose-response functions and their derivatives, the marginal treatment effects. Marginal treatment effects estimate the heterogeneous returns to market participation (Radchenko & Corral, 2018). Second, we examine the farmers' decisions of pursuing different market choices in the cowpea value chain. Specifically, we consider whether selling cowpea to rural traders or urban wholesalers/traders has a positive effect on HDD, food expenditure per capita (hereafter referred to as food expenditure), and household income per capita (hereafter referred to as household income). This is especially important in view of the scantiness of the literature on grain assembly in rural Africa, making it difficult for policymakers to better understand the effects of grain assembly on rural farm households (Sitko & Jayne, 2014). To achieve these objectives, we used instrumental variable (IV) techniques to a unique and comprehensive household-level data involving a nationally representative sample of over 1,500 cowpea farmers in Nigeria. The IV technique allowed us to control for both observed and unobserved characteristics that would otherwise bias our results.In summary, the main aim of the study was to examine the impact of cowpea market participation on household food security and income. Specifically, this study was done to understand the associated benefits of different market choices on food security and welfare of smallholder farmers. This information has particularly been lacking in the literature.The rest of the article is organized as follows. The following section briefly describes the structure of the cowpea market in Nigeria, followed by the empirical framework and data collection procedure. In this section, we outline the empirical models used to estimate the impact of cowpea market participation on HDD, food expenditure, and household income. The penultimate section presents the empirical results and discussion, and Section 4 draws conclusions and describes the implications of the results for policy.Nigeria is the largest cowpea producer in the world as well as the largest consumer and importer of cowpea in Africa (Alene & Manyong, 2007;Langyintuo et al., 2003;Mishili et al., 2009). The crop is important for small-scale farmers in terms of soil fertility management, and sources of cash income, high-quality protein food, and fodder for animals (Kristjanson, Okike, Tarawali, Singh, & Manyong, 2005;Mishili et al., 2009;Singh, Ehlers, Sharma, & Filho, 2002).The cowpea value chain 2 comprises traders that ensure the movement of grain from rural markets to urban wholesale markets and finally to consumer markets (Mishili et al., 2009). Most of the cowpea production is sold as grain although some cowpeas are purchased as green pods at harvest time, and in some regions, the leaves are eaten as greens (Mishili et al., 2009). In most cases, farmers sell their marketable surplus cowpea either in small quantities to rural assemblers and commission agents, who aggregate them into 100 kg bags which are then sold to urban wholesalers or sometimes sold in large quantities directly to urban wholesalers (Langyintuo et al., 2003;Lowenberg-DeBoer & Ibro, 2008;Mishili et al., 2009). The center for cowpea trade in Nigeria, which also happens to be the largest cowpea market in the world, is Dawanau market located in Kano state. The traders in Dawanau market support a well-developed collection system throughout northern Nigeria where they provide credit to buyers in local markets. The local traders buy cowpea in small quantities, which are later aggregated and stored until transported to Kano (Lowenberg-DeBoer & Ibro, 2008). A large quantity of cowpea sold by farmers in north central Nigeria pass through the Dawanau market where independent grain and cowpea traders operate (Langyintuo et al., 2003).In this trading system, rural traders play a vital role in buying cowpea from markets in remote areas which may not be accessible by the bigger traders in the urban areas. Notwithstanding, most studies argue that rural traders usually exploit farmers by offering them low prices. For example, Sitko and Jayne (2014) noted that most people have the view that unreliable market access conditions compel farmers to sell their produce to village-level grain assemblers who exploit their lack of formal markets by offering prices that are below the cost of production. In this study, we aim to assess whether selling to rural and urban traders influences the welfare of smallholder cowpea farmers in Nigeria.To assess the impact of cowpea market participation on HDD, food expenditure, and household income, we estimated the following linear equation where Y i represents the outcome variables (household dietary diversity scores [HDDS], 3 food expenditure, and household income), T i is our treatment variable, market participation represented by the quantity of cowpea sold, X i is the vector of control variables, and ε i is the random disturbance term. The parameter of interest is β i which measures the effect of cowpea market participation on our outcome variables. Market participation can be modeled as where Z i is a vector of the determinants of market participation. T i is, however, potentially endogenous such that the cov (T i , ε i ) ≠ 0. To correct this, we employed the IV regression that accounts for unobserved characteristics, yielding unbiased and consistent estimates. This, however, requires identifying an IV that satisfies the orthogonality condition (i.e., a variable that is strongly correlated with the level of market participation but not directly correlated with our outcome variables). Following Rao and Qaim (2011) and Rao, Brümmer, and Qaim (2012), we used the availability of public transportation in the village as an IV or exclusive restriction. Public transportation is likely to increase market participation, and this is plausible because in most cases, farmers must deliver their products themselves to the cowpea market. We therefore included the availability of public transportation in Zi.To test whether the instrument is relevant, we used the Anderson canonical correlations test (Baum, Schaffer, & Stillman, 2007).In addition to the IV approach outlined above, we also estimated the dose-response functions (DRFs) and their derivatives (marginal treatment effects) following Cerulli (2015). Unlike previous DRFs models, for example, Bia and Mattei (2008) which require the normality assumption to be satisfied, this model does not need the full normality assumption, and it is well-suited when many individuals have a treatment level of zero (Cerulli, 2015). For the sake of brevity, we do not present the estimation niceties of the DRF model, but Cerulli (2015) gives an overt description of the model.To test whether selling to rural or urban traders influences HDD, food expenditure, and household income, we used the control function approach (Rivers & Vuong, 1988;Wooldridge, 2015). Unlike the cowpea market participation indicator, which was a continuous variable, the decisions of whether to sell to rural or urban traders are dummy variables; hence, we used the appropriate modeling procedure that considers the binary nature of our indicator variables. We can redefine Equation 2 as where Z i is a vector of the determinants of the decision to sell to rural traders and urban traders; 1 [.] is an indicator function whose value is 1 if the statement inside the brackets is true, and 0 otherwise. Note that in this study, rural traders are defined as those traders who buy cowpea within the farmers' village/markets. Urban traders on the other hand are defined (1)as traders who buy cowpea directly from farmers and rural traders in the main district markets. Denoting the observed HDD, food expenditure, and household income of the participants in the rural or urban market and nonparticipants by Y i0 and Y i1 , then we can specify the potential outcomes as where X i is defined as above (Equation 1), β represent the parameters to be estimated, and μ i0 is unobserved random component. The observed treatment and outcome can be expressed as T i in Equation 6 is also potentially endogenous and this may arise because of unobserved heterogeneity, reverse causality, or measurement error, leading to biased estimates (Ogutu et al., 2019;Ogutu & Qaim, 2019). That is, the treatment variable T i may be correlated with the error terms in Equations 4 and 5. To break the correlation between the possibly endogenous treatment variable and unobservables affecting the outcome variable, we used the IV control function approach (CFA). In addition to the instrument mentioned above, we included ownership of donkey/ ox cart in the rural trader model as an additional exclusion restriction. Donkey/ox carts are importantin northern Nigeria where livestock rearing is an integral part of the farming system. Since they are usually used in the transportation of crop produce to the market, we envisage that this variable is correlated with our treatment variable but not directly with the outcome variables.The estimation of the CFA proceeds in two steps. In the first step, we estimated a probit model of the choice to sell cowpea to rural or urban traders (Equation 3, including the instruments) and obtained the generalized residuals. The predicted residuals were then included as additional covariates in the second-stage regression of the outcome variables (Equation 6). Since the outcome variables-HDD, food expenditure, and household income-are all continuous variables, we estimated the outcome equations using ordinary least squares regression (OLS). The final estimate that we get is the average treatment effect on the treated ATT, that is, the effect for only those households who sold their marketable surplus to rural and urban traders.The data for this study came from a nationally representative sample survey of 1,525 cowpea producing households conducted in 2017 by the International Institute of Tropical Agriculture (IITA) under the Tropical Legumes III project. A survey questionnaire was designed using computerassisted personal interviewing (CAPI) based software called Surveybe and administered by trained enumerators who collected data from households through personal interviews. The survey targeted 10 states-Borno, Bauchi, Gombe, Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto, and Zamfara-which represent about 75% of the total cowpea production in Nigeria. These states mainly fall within the Sudan Savanna, which is the major agro-ecological zone for cowpea production in Nigeria. A multistage stratified sampling procedure was used to select the households. In the first stage, the 10 states were grouped into two geopolitical regions-three states in northeast and seven states in northwest. Only three states were considered (Borno, Bauchi, and Gombe) from the northeast region due to the security problems experienced in other states in the region during the survey. A list of villages and Local Government Areas (LGAs) located in the 10 states of the two regions was obtained from the National Population Commission (NPC).In the second stage, 25 and 13 LGAs were selected in each region using probability proportional to size (PPS) sampling. In the third stage, five cowpea producing villages were then randomly selected from each of the selectedLGAs. Following the selection of the villages, a sampling frame was developed for cowpea-growing households in the selected villages with the help of the extension agents from the Agricultural Development Programs (ADPs). In the final stage, eight households were randomly selected from each selected village resulting in a total sample of 1,525 households (995 households in the northwest region and 530 households in the northeast region). 4 The survey collected valuable information on the socioeconomic characteristics of the sample households, quantity of cowpea sold, marketing costs, and type of traders to whom farmers sell their produce.Table 1 shows the definitions and descriptive statistics of the key variables in our study. Our market participation variable is represented by quantity of cowpea sold. Results indicate that on average households sold about 633 kg of cowpea to various players in the market with about 48% of them selling to rural traders and 15% to urban wholesalers. Considering that the average production in our sample was 927 kg, the results suggest that over 60% of the households sold their cowpea. The proportion of cowpea sold was much higher (4) than that reported by Gondwe et al. (2017) in Zambia and Mignouna et al. (2016) in Nigeria.The outcome variables used in the study are the HDD and food expenditure which are proxies for food security , and the total household income , a proxy for the welfare of the farm households. The household HDD was constructed following the guidelines provided by Kennedy, Ballard, and Dop (2010). During the survey, households were asked to mention the food items they consumed in the past 7 days ranging from cereals, vegetables, proteins to beverages and condiments. These food items were classified into 12 food groups, each with a score of 1. According to Kennedy et al. (2010), the HDD is a qualitative measure of food consumption that reflects household access to a variety of foods and is also a proxy for nutrient adequacy of the diet of individuals. It is also meant to reflect the economic ability of a household to access a variety of foods. Table 1 shows that the HDD ranged from 0 to 12 with a mean value of about 9. This implies that on average, most of the households had reasonably good access to a variety of foods. Food expenditure is an important measure of food security as it is an indicator of economic vulnerability, that is, it approximates the losses experienced when food prices rise (Lele, Masters, Kinabo, & Meenakshi, 2016;Moltedo, Troubat, Lokshin, & Sajaia, 2014;Smith & Subandoro, 2007). Food expenditure includes the total food purchased by the household, the consumption of food produced by the household, and any food received by the household either through aid or in kind. The results show that on average, households spent ₦78,425 on food purchases, accounting for two-thirds of the household income. The average household income was about ₦116,546. Household income which is an indicator of farmers' well-being includes income from crops, livestock and livestock products, and off-farm income (e.g., salaries, remittances, farm labor wage income, pension income, and income from business). Table 1 further presents the household characteristics such as age, sex, education, cultivated land, number of adults in the household, and access to off-farm income. About 96% of the sample households were male headed, with about 4% of the households attending junior secondary school education. The number of adult members of the household between the ages of 15 and 59 is used as a proxy for household labor endowment. On average, each household had about seven adult members. Almost 85% of the sample households had access to off-farm income. Off-farm income is an indication of the dependence on off-farm employment in the household's community and among neighboring communities and may affect the individual household's labor allocation and cash earnings (Smale & Mason, 2014). Kinship, number of years the head of the household has been living in this village, friends or relatives in leadership positions in formal or informal institutions and member of formal and informal groups/institutions are all important indicators of social capital. About 59% of the households owned a radio. Radio ownership is important especially for the decision to participate in markets because radio ownership can facilitate access to production, market and price information (Olwande et al., 2015). Following Aguilar, Carranza, Goldstein, Kilic, & Oseni, (2015), we constructed a wealth index using principal component analysis (PCA) in which we considered all the assets owned by the household such bicycles, motorbikes cars, and television sets.Households with more assets are expected to participate in the market more fully than those with fewer assets. Previous studies have shown that improved cowpea varieties out yield local varieties, implying that a household's marketable surplus can be influenced by productivity (Kamara et al., 2010;Olwande et al., 2015). To capture this, we included an improved cowpea adoption dummy, which shows that about 42% of the households planted improved cowpea varieties in the 2016 cropping season. In participating in the input and output markets, households also incur transaction costs (Alene et al., 2008;Barrett, 2008;Olwande et al., 2015). The average one-way transport cost to the main market, distance to the village market, and distance from the homestead to farm are proxies for transaction costs incurred by farmers in transporting their produce to the market. It takes an average of 43 min for farmers to transport produce to the nearest village markets. Lastly, about 62% of the households had access to public transport and about 15% owned donkey/ox carts.Table 2 shows the outcome variables disaggregated by cowpea market participation. Note in Table 2, market participation is defined by a discrete choice variable and not continuous variable. The results indicate that cowpea market participants had higher food expenditures and incomes as compared to their nonparticipants. Participants spent about ₦11,736 more on food purchases than nonparticipants. Similarly, cowpea market participants had on average ₦18,867 more income than nonparticipants. While these results may suggest that cowpea market participation can be beneficial to the households, it will be misleading to conclude that market participation had impact on food expenditure and household income since descriptive analysis does not control for both observed and unobserved characteristics. To effectively assess its impact, we turn to multivariate analysis presented in the subsequent sections.We estimated the impact of cowpea market participation on HDD, food expenditure, and household income considering both observed and unobserved characteristics using an instrumental variable regression outlined in Section 2. But first, we estimated the determinants of cowpea market participation using ordinary least squares (OLS), and the results are presented in Table A1 5 in the appendix. Availability of public transport in the village is the instrumental variable used in the estimation. The availability of public transport in the village is expected to influence market participation without directly affecting our impact variables, making it a good candidate to be used as instrument. Results in Table A1 show that the availability of public transport in the villages is an important determinant of level of participation in the cowpea market, suggesting that it can be a relevant instrument to identify our IV model. The Anderson canonical correlations likelihoodratio test of whether the equation is identified, that is, that the excluded instruments are relevant is reported in Table 3 and shows a rejection of the null hypothesis, suggesting that the model is identified and that the instrument is relevant.Table 3 shows the results from our IV model from Equation 1. Specifically, the first row of Table 3 shows the impact of quantity of cowpea sold on HDD, food expenditure, and household income. The results indicate that cowpea market participation significantly increasd HDD, food expenditure, and household income. A 10% increase in the quantity of cowpea sold increases the food expenditure and income by 1.6% and 0.7%, respectively. These results are consistent with the results found by Montalbano et al. (2018) and Muriithi and Matz (2015) who found that maize and vegetable market participation increased food consumption, nutrition and total household income in Uganda and Kenya, respectively.To evaluate the effect of cowpea market participation over the entire sample of the distribution, we also estimated the dose-response functions. The dose-response functions in a way can also be viewed as a robustness check for the IV results since the functions are estimated based on observed characteristics and ignore the unobserved characteristics. Coupled with the DRFs, we also estimated the derivatives of the DRFs, that is, the marginal treatment effects to capture the heterogeneity in treatment effects. Figure 1 shows the estimated dose-response functions (average treatment effect) of cowpea market participation on HDD, food expenditure , and household income . Each estimated DRF is accompanied by 1% confidence bands. The x-axis shows the dose, which is the quantity of cowpea sold, scaled to be between 0 and 100 while the y-axis measures the average treatment effect (ATE). The results show that as the amount of cowpea sold increases, so do the HDD, food expenditure, and household income. The results show that food expenditure increases from below zero to a maximum of around ₦25,000 with an increase in the quantity of cowpea sold. Likewise, household income increases, reaching a maximum of about ₦140,000 with an increase in the amount of cowpea sold. These results are quite consistent with the IV results presented in Table 3.The marginal treatment effects graphs (Figure A1 in the appendix) show that the returns to cowpea market participation are heterogeneous, and generally, the conclusions are comparable to the DRFs. The slopes of all the MTE curves are positive, indicating positive selection bias, that is, cowpea market participation is most effective in increasing HDD, food expenditure, and household income for farmers who sold a larger amount of cowpea. This is consistent with the results found by Manda, Khonje, Alene, and Gondwe (2017) for groundnuts in Zambia and Wossen et al. (2018) for cassava in Nigeria. To fully understand the benefits of participating in the cowpea market, we analyzed the effect of the farmers' choice of either selling to rural traders or urban wholesalers on the same outcome variables as above. We estimated an instrumented control function model as outlined in Section 2. We used the availability of public transport as an instrument to identify the urban trader choice model. To identify the rural trader choice model, we included the variable, ownership of donkey/ox carts in addition to the availability of public transport variable for reasons explained above. Tables A2 and A3 in the appendix present the results of the endogeneity tests for the treatment variables. We performed a Wald test to determine whether the estimated correlations between the treatment-assignment and potential-outcome models were different from zero. The null hypothesis is that the correlations are jointly zero and rejection of the null hypothesis suggests endogeneity. Results in Table A3 show that we can reject the null hypothesis of no endogeneity at 10% and 5% for the HDD, food expenditure, and income equations, implying that without controlling for this endogeneity, our results would be biased. This provides the justification for using the instrumented control function approach. Even though our main objective was to assess the benefits of either choice of the market, we discuss briefly the determinants of the choice of whether to sell to rural or urban traders in Table 4 (first stage control function results). 6 Results in Table 4 show that the determinants of the decision of whether to participate in the rural or urban markets are different in terms of both magnitude and direction. For instance, participation in urban markets increases with the age of the household head. Livestock ownership increases the participation in rural markets but reduces participation in the urban markets.Age of the household head −0.00 (0.00) −0.00 (0.00)Sex of the household head −0.17 (0.17 This is probably because livestock is usually used to transport produce to village markets where in most cases the roads are in bad conditions and public transportation is not available.On the other hand, in urban areas, transportation of produce to the market can easily be done using public transport because generally the roads are in better conditions than those in the rural areas. Likewise, access to off-farm income has a positive effect on the decision to sell to rural traders and has a negative effect on urban market participation. Generally, the social capital variables had statistically significant effects on the decision to sell to rural traders while insignificant for the urban traders. The distance to the nearest market had a positive effect on the decision to sell to rural traders and negative on the urban traders. This is probably because of high transaction costs associated with transporting the marketable surplus to the market. Most of the village markets are near farmers' residences while those in urban markets are quite distant from the farmers' residences. Previous studies (e.g., Alene et al., 2008;Barrett, 2008;Renkow, Hallstrom, & Karanja, 2004) have shown that transaction costs (e.g., distance to the nearest market) prevent some of the farmers from participating in the market and in our case, prevents farmers from accessing urban markets offered by the urban wholesalers. Finally, our instrumental variables were statistically significant in explaining the decision to sell to the rural and urban traders. After controlling for observed and unobserved characteristics, the impact of the choice of whom to sell cowpea (i.e., either to rural or urban traders) from the control function model is presented in Table 5 below. The results show that selling to rural traders increases HDD by 38%, food expenditure and household income by 17%, each. Similarly, selling to urban traders increased HDD by 55%, food expenditure by 16%, and household income increased by 13%. The magnitudes of the percentage increase were not very different between the two market outlets. These results are consistent with other studies (e.g., Asfaw, Lipper, Dalton, & Audi, 2012;Montalbano et al., 2018;Sibhatu et al., 2015;Stifel & Minten, 2017) which indicate that market access/participation increases the dietary diversity and well-being of farm households. There are two major pathways through which market participation can affect dietary diversity. One pathway is through an increase in agricultural production, followed by more marketable surplus and income. Market participation leads to an increase in agricultural production which in turn leads to more marketable surplus (Stifel & Minten, 2017). The market surplus increases income for farmers which consequently increase their ability to buy more diverse foods from the market (Sibhatu et al., 2015). The other pathway is through transaction cost reduction followed by more marketable surplus and income. That is, participation in the local markets provided by rural traders reduces the transaction costs associated with the marketing of cowpea produce, which in turn leads to more marketable surplus and more income for farmers which consequently increase their ability to buy more diverse foods from the market (Sibhatu et al., 2015). On the flip side, lack of local market access increases transaction costs and leads to less marketable agricultural surplus, thus resulting in less food and fewer food items purchased (Stifel & Minten, 2017).This study estimated the impact of cowpea market participation on household dietary diversity, food expenditure per adult equivalent, and household income per capita using data from a nationally representative sample of over 1,500 farm households in northern Nigeria. We used a combination of instrumental variable techniques and dose-response functions to achieve our objective. Using the quantity of cowpea sold as an indicator of cowpea market participation, we found that on average farmers sold about 633 kg of cowpea to various cowpea traders. The results from our study also showed that, ceteris paribus, cowpea market participation significantly increased household dietary diversity, food expenditure, and household income, consistent with other studies on market participation and commercialization of agricultural produce. Cowpea market participation increased food expenditure by 1.6% and household income by 0.7% with a 10% increase in the amount of cowpea sold. The results suggest that the contribution of cowpea market participation to household income led to higher food expenditures and a more diversified diet. The effects on income and expenditure are plausible and consistent with other studies, considering that we only looked at cowpea. Ogutu et al. (2019) for instance examined the impact of agricultural commercialization (including crops and livestock), on income and poverty in Kenya. They found that commercialization increased income by 17% and reduced the prevalence of poverty by 5.1 percentage points. Similar results were obtained by Radchenko and Corral (2018) on food security in Malawi and Seng (2016) in Cambodia. Unlike other studies which have not explored the benefits of different markets channels of smallholder market participation on household food security and income, we showed in this study that selling cowpea to rural traders on average increased food security as measured by the household dietary diversity scores by 38% while selling to urban traders increased food security by 55%. Specifically, the results suggest that farmers who sold to urban traders had more diversified diets than those who sold to rural traders. In urban areas, there is usually variety of foods that are available for purchase as compared to rural areas where there is a limited choice; hence, the likelihood of households who had to travel to urban areas to sell their cowpea of having a diversified diet is higher than those who sold within the rural areas. Contrary to the common view that rural traders exploit small-scale farmers, results show that selling cowpea to rural traders on average increased household income by 17% while selling cowpea to urban traders increased by 13%. Rural traders are economic agents performing a function for which they are being remunerated, and at the same time, this function provides benefits to farmers as shown by our results. The results from this study show that these traders can be one of the solution to the seemingly nonexistent structured grain markets in rural areas. In most parts of the rural northern Nigeria, the road infrastructure is not in a good condition, making it very difficult for farmers to access distant urban markets. It also makes it very difficult for farmers to access market information from extension agents. Rural traders fill in these gaps by providing local stable market-outlet services, lowered search and transport costs and through interlinked contracts and may provide credit, inputs, and information (Kassie, Jaleta, Shiferaw, Mmbando, & Mekuria, 2013;Sitko & Jayne, 2014). It is therefore important for the government to recognize that rural traders also play an important role in the marketing of agricultural produce and to create an enabling environment in which commodity traders are encouraged to participate in the cowpea market. Precisely, the provision of credit facilities would greatly encourage these traders to buy produce even from hard to reach areas where most of the big traders are not present. Second, availability of public transportation is important in encouraging farmers to access urban markets; hence, public infrastructure investments in the form of feeder road construction and maintenance in the distant villages are encouraged, which in the long run can translate into improved cowpea productivity and welfare of smallholder farmers in not only Nigeria, but sub-Saharan Africa as a whole where market access is particularly a problem.| 15 of 17 MANDA et Al. ","tokenCount":"5691"} \ No newline at end of file diff --git a/data/part_1/0053147775.json b/data/part_1/0053147775.json new file mode 100644 index 0000000000000000000000000000000000000000..0361a8c7ff3e9af38d2ee28ccf26dbac855acccf --- /dev/null +++ b/data/part_1/0053147775.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"39af61eaa1044f1c13ea6ddb9ef98601","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H026013.pdf","id":"834846742"},"keywords":[],"sieverID":"b41ecfee-31ce-48b8-b328-0f5e3402cbb7","pagecount":"5","content":"The farmers in Punjab, especially in the southern part, are faced with constraints of low agricultural productivity due to utfit ground water. Besides, Bahawalnag? district is almost situated at tlie tail of the Puiijab's canal irrigation system. The only source of irrigation is the canal system. The performance of which has gone down over the years due to several economic and socio-political factors. In the given situation, neither the government nor the farmers alone cai. solve these problems. It was one of our long felt needs that the farmers should be organized to improve irrigated agriculture, a major source of our livelihood.There are five main criteria of selection:1 Hakra 4-R distributary comes under Fordwah Eastern Sadiqa South (FESS). It is a World Bank project on lining and drainage of canals. In addition, under this project, OFWM is doing the same organization work at Sirajwah distributary, so we coordinated with them for the organization of farmers. The farmers of the Distributary have diverse backgrounds such as local, Molijir and settlers etc.With little intervention by the agency, for development work there was an incentive for the farmers to be organized.It is a medium to large, 57-k.m long distributary with 124 irrigation outlets. The design discharge is 193 cusec, which was sanctioned in the 1966. The gross command area is 48250 acres and culturable coininand area is about 43400 acres. Presence of hydraulic structures, which would help the water users to monitor the discharge in terms of space and time '.These drop structures represent the five subsystems,The first sub-system falls from RD-0 to RD-46, with 25 irrigation outlets (Ghulab All zone); Tlie Second sub-system falls froin RD-46 to RD-72 with 24 irrigation outlets (Haroonabad Zone);The third subsysteni falls froin RD-72 to RD-112 (tail) with 27 irrigation outlets (Tail Zone);The fourth subsystem is 1Wininor with 15 irrigation outlets (Khatan Zone); Tlie fifth subsystem is 1R/ ininor with 33 irrigation outlets (1R Zone).The base line survey was conducted in thirteen sample watercourses, in July and August 1995. It covered socio economic and technical inforination of the area. The purpose of tlie base line survey was to use this information to interact with tlie water users for establishing the WUOs.Social Mobilization process is based on five dialogic steps. Each step is the base of next step. If one is weak then next cannot be obtained. It is iterative. Each step leads to tlie next step.The initial interactions with the people in tlie project area helped the field team to accomplish tlie following combination activities:Importance of the program; Explain tlie project objectives; Preliminary calibration exercise;Introduce llMl and its programs to the peopre;Collect or construct warabandi schedule; and ldetitificatioii of Social Organization Volunteers (SOVs)T1i process was launched froin September 1995 to May 1996. The purpose of tlie identification was to help tlie field team comprising of five members and to involve the community in the organization ivork. The internally generated demand for social organizatioii has a greater chance of making these organizations productive and sustainable. It was difficult for a small field team to interact with 4500 \\vater users, so 158 SOVs were identified. The selection of the SOVs was based on the following criteria:Referred by tlie majority; Knowledgeable; Honest; Educated;Have experience in spealung at public place; Already taking part in the collective action.The SOVs were trained for one day. In the training their role and interaction with the community was discussed.After the identification process, Series of the meetings were arranged. Here the SOVs were only the target. Tlie purpose of the meetings was to further clear their mind about the program and IIMI, so as they can interact with the community with great zeal and zest. Tlie role of the SOVs was also discussed in the meeting. The participation ratio in the meeting remained 70%. The process was four months.The meeting was held at the larger scale, at village level. The purpose of the meeting was to discuss the tentative plan to establish water user organization, tiieiiiberslup of W A S , organizational structure and procedure for identifying organizational leaders. The meeting also worked as a follow up to the earlier awareness building meetings. The participation rate in the meeting was 39 %. This step was completed within the period of four months.A series of the meetings were conducted for discussing the process and finally taking the decisions for selecting the organizational leaders at watercourse level. There was considerable gap, [6][7][8] days, between the planing.and organizing of the meeting. The idea was to give maximum publicity and provide equal opportunity for all eligible water users to come forward for leadership. The average participation rate was 77 YO in the meeting. The members framed the informal coininittee that coniprised on 1 to 7 persons, with consensiis. They sent one person, who is the chairman of the committee, for the general body of the water user organization. The niiniber of general body of an organization (subsystem) depends upon the number of watercourses.The general body of each subsystem selected their own office-bearers, president, vice-president, general secretary, joint secretary, secretary information, and treasure. Each subsystem nominated five persons for federation members. This step took six niontlis to complete.The general body of 25 federation members in their two iiieetings selected five office-bearers 011 5 hlarch 1097. In this way, the organization process was completed.The approach fur social organizationThe approach was based on direct interaction with the community. Inforination was not one way, it was exchanged between SOs and community, SO and SOVs, SOVs and community and among commiinity niembers.Three tier organizational structure (WUAs, WUOs & WUF)First the farmers were organized at watercourse level into -124 WUAs, then they rvel-e orgaiii/ed at subsystem level covering five subsystems, a i d later they were federated at distributary le\\,el l'liet e were two main reasons of three tiered stnictures at the Hakra 4-R distributary. Firstly, 10 iiit,olve inaxiiniini water users in the irrigation management decision-making for the sustainability of the program. The office-bearers are comparatively inore active than the non-office-bearers. So in the three tiered structures, almost 600 hundred people collie ahead. If these office-bearers are active then there are inore chances of it sustainabilitySecondly, to increase tlie interaction among tlie water users, as the distributary is 57 kin long and it is very difficult for the headers and tail enders to interact with each other. Now they can interact easily through three tier organizational structure. ..1.2 . Disappointment among tlie community 3. and fanners Anarchy of legislation 6. Cultural Factors Propaganda by the people benefiting from status quo Low collaboration from relevant agencyThose people who were taking illegal benefits from the system started propagating against the activity. They not take part in collective action but get benefit fi-om it. They boosted the doubts a i d misinterpreted things. They propagated that meter would be installed on the outlets, privatization of the system and raise in water charges etc.This constraint is based on the past collective effort/actions and non-iinplementatioii of tlie programs. Some people related it with cooperatives and Uslier/Zakat where nominations are made from tlie top level and no value is given to public opinion. Therefore, some people were disinterest at the initial stagePeople were not sure of tlie implenientation of the program due to wide scale prevalence of corruption and political system. According to them tlie only solution was blood revolution.Low collaboration was only due to insecurity among tlie agency's staff. They thought that there was a chance of losing their jobs if the program is implemented. That's why they did participate in tlie farmers meetings.There was not any clear policy about the program due to lack of legislation. Tlie people felt it was useless without legal protection. If they organize themselves without recognition, tliere will be no incentive for tlie organization, so they showed disinterest initially.It is in our tradition to value tlie elder's role, to be lethargic, to ignore tenants and to build \"Chtidraht\" or izzat (class status). The reason for low participation rate (10% to 40%) in tlie meetings was that mostly people thought they were supposed to obey the elders' decisions and also \\vliat one committed on others behalf, would be acceptable to others. People wanted to show their \"Cliudrat\" status at all costs during site selection and selection of office-bearers. It happened only at few watercourses.Organize tlie workshop at initial stages and define the role of relevant operating agency. Also clear people's doubts by niaking them aware that joint management improves the system without damaging their interests.As it is a novel experience, there is need to publicize it through mass media. Tell people about the importance of the program, so they participate in the process with great zeal zest.The size should be manageable, so the SO can interact with the coniniunity regularly to avoid the mmors and keep it well aware about the existing situation.For the effectiveness of an organization, legal protection is very important. If an organization makes a decision, there should be legal protection for its implementation.The best way is the democratic way. It is nice if the process is completed with consensus, or through the election. The democratic way is the only way for the sustainability of the organization.We should m,&e the process free from the politics contacts. Agriculture is the backbone of our economy, so we should at least avoid politics and brotheryism.","tokenCount":"1549"} \ No newline at end of file diff --git a/data/part_1/0067519451.json b/data/part_1/0067519451.json new file mode 100644 index 0000000000000000000000000000000000000000..a02eda0bb67ff663b68640c2c96766ab72b0a683 --- /dev/null +++ b/data/part_1/0067519451.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d5aa5f865fa8195d1b4671cefa891043","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/db90efe4-a17d-4f1f-ba1c-5ccfeaa0397c/retrieve","id":"1615514643"},"keywords":[],"sieverID":"d12bbcf1-c38d-4dba-b2f5-56fc24b448ab","pagecount":"33","content":"One of the major underlying reasons for poor agricultural performance in East and Southern Africa (ESA) is the low efficiency of agricultural value chains and lack of resilience against climate shocks. Many agricultural value chains are fragmented and characterized by instability of relationships between offtakers and smallholder and emerging farmers. The ones that suffer the most from these inefficiencies and threats are the farmers. There are significant hurdles to farmers and market systems. These include access to affordable inputs, advisories, logistics, finance, and market linkages. Agribusinesses are addressing these challenges through their products and services, and supporting farmers to improve productivity, incomes, and resilience to climate change. This is particularly important in East and Southern Africa, where farmers are engaged in maize production which is vulnerable to climate change and projected to face not only 15% climate-related declines in yield without adaptation, but also challenges from diminished cropland suitability and poor agronomic inputs and management; degraded environmental bases with declining soil fertility and degraded water systems 1 .The mission of Ukama Ustawi is to support developments that transform the ESA agrifood system through sustainable intensification to maize-mixed systems and crop diversification to de-risk other systems. In addition, to a) empower more women and young farmers, agribusiness owners, and value chain actors; b) promote healthier diets; and c) protect the natural environment from further degradation.Against this backdrop and based on what has already been conceptualized 2 , the goal of this project is to support Ukama Ustawi design a Climate-smart Agriculture (CSA) accelerator programme that can be implemented in East and Southern Africa. The overall objective of Ukama Ustawi is to develop an accelerator programme that is demand-driven, responsive to market needs, inclusive of gender and youth and targets high-growth, high-impact agribusinesses that require technical assistance and links to financing to strengthen food systems and advance sustainable and inclusive growth. The programme, named Food Systems Accelerator, will achieve this through 3 main areas to be implemented across select focus countries in East and Southern Africa over the duration of the initiative (2022 -2024):2.1. Provision of CSA Technical Assistance (TA): to provide agribusinesses with coordinated and specialized evidence-based TA support that encourages adoption and/or strengthens their CSA practices, as well as addresses concrete ecosystem challenges. CSA TA supports de-risking of agribusinesses (especially those involved in production) and improves their bankability. This TA support will be provided by CGIAR network of scientists.2.2. Provision of Impact Measurement and Management (IMM) Technical Assistance: Understanding how to effectively measure and manage impact is critical to ensuring agribusinesses achieve their desired result in contributing towards positive environmental and social impact. Companies use this data to improve business performance, identify areas where value can be created and make better decisions to maximise positive impact while minimising negative impact. Further, IMM strengthens the position of a company for investment by impact and/or responsible investors. This training will be provided by CGIAR network of experts.Assistance: Funding provides crucial resources that enable businesses to develop new products, expand production capacity and access new markets. Securing financing (especially from the private sector) is an essential step in establishing a foundation for long-term growth and sustainability. However, businesses must be investment ready to secure funding. Management teams must understand their growth plans and financing needs to ensure that new funding supports, rather than hinders, their path to sustainability. Further, they must understand how to position their business to potential investors and be equipped to negotiate with them. This TA support will be provided by IFDC-2SCALE and its network. Ultimately, by the end of 2024 Ukama Ustawi would have accelerated up to 30 agribusinesses (40% run by women and 40% by youth) and facilitated links to at least USD 5 million of new finance, that has been unlocked and invested, or in the process of being invested through debt, equity, or grants.The CGIAR Food Systems Accelerator is a work package in the Ukama Ustawi (UU) regional initiative of the CGIAR. The Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify, and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lens.The International Fertilizer Development Centre (IFDC) is a public international organization addressing critical issues such as international food security, the alleviation of global hunger and poverty, environmental protection and the promotion of economic development and self-sufficiency. IFDC focuses on increasing productivity across the agricultural value chain in developing countries. This is achieved by the creation and transfer of effective and environmentally sound crop nutrient technology and agribusiness expertise. The IFDC-2SCALE program, funded by the Ministry of Foreign Affairs of the Netherlands, is one of the most innovative incubator programs for inclusive agribusiness in sub-Saharan Africa.2SCALE develops a portfolio of public-private partnerships (PPPs) in several (10-15) target countries in sub-Saharan Africa. These partnerships aim to promote inclusive business in agriculture, through support to value chain development, agribusiness cluster formation and enabling business environments. The agribusiness cluster approach is designed to help rural smallholders move from subsistence farming to farming as a business and to supply agricultural products for local, national, regional, and international markets. The project partners with national and multinational agri-food companies as drivers to increase productivity and to improve efficiency and sustainability of supported agribusiness clusters and value chains. Specific attention is given to job creation (including for the youth), women entrepreneurship and \"base of the pyramid\" (BoP) consumers and producers; the latter are most people and therefore the largest market for food products in sub-Saharan Africa.In a world of abundant liquidity, access to finance to invest in working capital, capital expenditure and expansion for regional and international trade is increasingly challenging to procure for a wide range of cash-intensive business activities, and especially for agri-businesses in Africa. Private sector funders have a high perception of sector and country risk and do not have the ability to assess and manage these risks. Insufficient market data and high transaction costs hinder private sector's investment in agribusinesses.This concept paper will leverage on the breadth of agriculture financing expertise and experience to codesign a science-based accelerator programme with the Ukama Ustawi project team. This accelerator will address some of the challenges in unlocking investment by identifying high-impact and inclusive bankable businesses in Kenya, Rwanda, Uganda, and Zambia, and de-risk them through the provision of technical assistance and grants. It will also be used as a practice guide to operationalize sciencebased accelerator programmes across Africa.5.1. Science-based -the accelerator leverages the portfolio of CGIAR innovations as well as the expertise of a wide network of international researchers from various disciplines. Agriculture and food systems knowledge is combined with social sciences to create systemic change while considering commercial parameters to ensure business success.5.2. Focus on Climate-smart Agriculture -CSA as a sector remains relatively underexplored in the agriculture funding landscape despite the potential of adaptive and mitigation effects to create stronger and more sustainable value chains 3 . Part of the challenge relates to the commercial viability of solutions compared to tried and tested alternatives. Apart from providing investment readiness support, this accelerator programme focuses on strengthening food, land and water systems through a value chain approach and the CSA practices of agribusinesses, de-risking them through provision of bespoke technical assistance from highly qualified experts and creating a strong investment pipeline of highimpact, high-growth companies. 5.3. Provides Impact Measurement and Management (IMM) technical support -the accelerator programme supports agribusinesses to effectively measure and manage impact which is critical to ensuring they achieve their desired result in contributing towards positive environmental and social impact. Companies use this data to improve business performance, identify areas where value can be created and make better decisions to maximise positive impact while minimising negative impact. Further, IMM strengthens the position of a company for investment by impact and/or responsible investors.5.4. Provides Investment Readiness technical assistance -supporting agribusinesses understand their growth plans and financing and how to position their business to potential investors and be equipped to negotiate with them. 5.5. Promoting gender, youth, and social inclusion -targeting female and youth-led agribusinesses, as well as strengthening gender and inclusion within business operations. 5.6. De-risking grant -following the conclusion of the accelerator programme and pitch day (demo day), companies with the top four scores will receive a grant of USD 20,000 each according to their business scaling plans. 5.7. Access to investor network, mentors, and experts -through networking events and technical assistance, agribusinesses will gain access to public and private investors, commercial partners, and industry experts. 5.8. PR and marketing support through existing marketing platforms for agribusinesses already working with Ukama Ustawi (e.g., Shamba Shape Up) and IFDC-2SCALE. The accelerator team will explore opportunities for PR and marketing support. 5.9. Access to Alumni Network and peer learning supportAs part of the first cohort, the Food Systems Accelerator will onboard 10 agribusinesses from Kenya, Rwanda, Uganda and Zambia that are aligned with the following priority areas: sustainable intensification of production through (i) Mechanization and Irrigation and (ii) Conservation Agriculture, (iii) improving Nutrition through crops that diversify from maize and promote alternative staples, legumes and other food and cash crops and add-value or process those crops and (iv) managing agriculture risks (Agriculture Risk Management) through access to financial services and adoption of climate information services. Applicants must be working with smallholder farmers as partners either by sourcing produce from them and/or customers by providing products and services to them. They must be for-profit, with at least 2 years of operations, legally registered with the relevant documentation, post revenue with paying customers, a demonstrated business case and commercially viable. Finally, applicants must have a need to scale and accelerate innovative and transformative climate solutions that make the food system more inclusive and resilient. To attract the most promising inclusive agribusinesses, the programme will leverage both physical and digital channels. This approach ensures that the search is inclusive and exhaustive, reaching agribusinesses that may not have a strong online presence.The Call for Applications will be a competitive application process that will be hosted digitally by VC4A.A dedicated campaign page for the Call for Applications will be created, including documents for download with additional information per priority area. There will be weekly reports on the progress of applications, and a final report when the application period ends. See Annex 2.1. for the Call for Application campaign and Annex 2.2. for the application form.With input from the IFDC-2SCALE team, VC4A will:• Set up the campaign page • Set up the application form page • Monitor the application process and provide insights on progress from the data • Provide an online adjudication tool for the selection process • Support promotion of the programme • Support post-selection cohort promotionIn addition to the promotional activities provided by VC4A, the IFDC-2Scale and CGIAR team will advertise the Call for Applications through the following channels to attract agribusinesses:6.2. Digital channels 6.2.1. Social media: sharing the Call for Application promotional material on 2SCALE, Ukama Ustawi and CGIAR social media pages such as: LinkedIn, Twitter, and Facebook. The following are the CGIAR science centers that will be approached to assist with spreading the word: CIAT, IWMI, ILRI, CYMMYT and IITA. The Call will be shared three times per week from the launch date to the deadline. This will be coordinated by the 2SCALE team for their social media pages, including those of their partners. CGIAR team will coordinate for their social media pages.6.2.2. Ecosystem partners: promoting the Call by engaging key ecosystem partners to share the promotional materials with their mailing lists, in their newsletters, community sites and forums. See Annex 2.3. for partners that the Food System Accelerator will approach:6.3. Physical channels 6.3.1. Sending the Call promotional materials to selected networks and business associations on the ground to share with their members.6.3.2. Leveraging IFDC-2SCALE's large pipeline of agribusinesses to prospect opportunities. The following organizations will be instrumental: IFDC Global, IFDC ESA, 2SCALE, SNV, BoP Inc, ICRA, PrC amongst others 6.3.3. Leveraging Ukama Ustawi and CGIAR's network of agribusiness to prospect opportunities. The following science centers and initiatives will be approached to share within their networks: CIAT, IWMI, CYMMYT, IITA, PABRA, AICCRA and ClimBeR.The Call for Applications will be launched on 23 rd November 2022 and the deadline of submissions will be 23:59hrs CAT on the 22 nd of December 2022. The campaign will last for 4 weeks.This selection process will involve the following steps:The total applications received will be reviewed by the accelerator's core team members represented by 2SCALE and CGIAR UU WP 3 members. Members from the CGIAR Sustainable Finance team will support this step of the selection process.Shortlist applications to: 25 agribusinesses 7.2. Stage 2: Selecting 4 Agribusinesses to receive grant funding After the 10 agribusinesses selected for acceleration complete the 6-month programme, 4 agribusinesses from each of the target countries will be selected to receive grants and sign a partnership agreement. Each agribusiness will be scored against the following general criteria:• Full attendance of technical assistance training by member(s) of management team • Scoring of homework submissions (graded according to timeliness of submission, completeness, quality, and effort demonstrated) • Satisfactory performance of the enterprise participants in the technical assistance and agreed milestones.• Full attendance of networking events • Ability to showcase to judges and investors investment ready/scalable innovations • Pre-demo Day investor engagement activity scores • Live pitch at demo day scoresThe shortlisted applications will be reviewed by the accelerator's core internal team represented by 2SCALE, CGIAR UU WP 3 members and a panel of external experts. The external experts will be agribusiness experts from each of the target countries. A scoring tool will be developed and jointly reviewed by the core Food Systems Accelerator Team against the criteria above. A further screening on the areas below will provide more scores:• Ability of the innovation to scale Providing a needs-based and bespoke curriculum will assist the agribusinesses scale sustainably, increasing their impact, growing local economies, and reducing the risk of failure. As such, a quality technical assistance curriculum is an essential part of a successful accelerator programme.The Food Systems Accelerator programme curriculum will be guided by the needs of the agribusinesses in the cohort. The information for the needs assessment will be collected:• During the Call for Applications to get a general understanding of the applicant's needs • During onboarding of the cohort to get a more in-depth understanding of the agribusiness' needs However, given the experience of the core team we can generally anticipates the investment readiness needs to fall into some of the following areas:1. Technical Assistance -on IMM and CSA based on a CGIAR developed curriculum. 2. Business planning -understanding the importance of and how to build a business plan.3. Target market identification -understand your ideal customer and the size of the market opportunity, as well as how to identify opportunities to think bigger and scale to a larger audience. 4. Customer acquisition -learning how to engage key stakeholders. 5. Competition -understanding the competition that exists for your business, and how to use competitive analysis to identify and leverage your competitive advantages. 6. Identification of milestones and metrics -learning to create a plan for moving your business forward and identifying performance metrics that you will use to measure success. 7. Human Resource -build the organization chart for your business and identify when to hire, insource, outsource, as well as alignment to the company's overall vision and culture. 8. Governance -strengthen corporate governance of the company by learning how to build a board of directors, identifying and appointing Board of Directors, building a Board Charter and other key aspects. 9. Fundraising -learning how to determine how much financing is needed to achieve milestones and success and build a plan for investment funding. 10. Strategy and projections -building your growth plan and translating the company's business strategy into a financial forecast. Building an income statement, balance sheet and cashflow statement. 11. Accounting, legal, tax and other regulatory issues 12. Investor engagement -Building a pitch deck, identifying investors, how to pitch to investors, engaging with investors, negotiations and what to expect in a due diligence process.The Food Systems Accelerator Programme will offer technical assistance in three areas:8.1.1. Scientific excellence which will include:• Innovation specific climate-smart agriculture • Gender and social inclusion (GESI) -inclusion of GESI within company level, supply chain level and customer level 8.1.2. Investment Readiness which will include:• Fundraising -training on how to secure finance • Commercial sustainability -growing a business sustainably • Regulatory support -launching into exports, navigate industry regulatory issues, etc.There will be three phases of technical assistance delivery:8.1.4. Design and diagnostic: The technical team will organise an in-person design and diagnostic session for each of the agribusinesses within the cohort in February 2023. The design and diagnostic will identify the TA needs of the agribusinesses. The outputs of the design and diagnostics session will inform the design of the programme curriculum.8.1.5. Co-development: After the needs of the agribusinesses are identified, the technical team and the agribusinesses will co-design a curriculum and structure of TA delivery, including the number of sessions, duration, specific topics covered, type of trainers and the session outputs. Given the experience of the technical team we can generally anticipate 4 sessions per month for the period of implementation using a hybrid delivery method (both in-person and online), and a mix of group sessions for general trainings and one-on-one sessions per agribusiness for more specific needs. TA experts will receive a general guide and recommendations on how to best prepare for trainings and/or mentoring sessions from the accelerator team.8.1.6. Delivery: each agribusiness receives technical assistance along the 3 areas according to their identified needs. The accelerator programme will provide high-quality TA experts who have practical experience. Trainings will be execution-oriented with the agribusinesses delivering concrete results.There will be practical homework/assignments delivered monthly. These monthly milestones will be co-developed with the agribusinesses to ensure that the programme is not too demanding because the entrepreneurs need to work on their businesses. Monitoring of these milestones will be conducted monthly by the accelerator team.Some KPIs for each agribusiness will include:• Participating in all the training sessions • Completion of the homework/assignments given • Quality of completed homework/assignments • Timeliness of submission of homework/assignmentsCommunity building activities are an important aspect of an accelerator programme. Therefore, it is important to include community building services and activities within the programme. Besides all the formal training sessions, the Food System Accelerator will organise some community building activities.One important part of community building activities and post-programme support will be focused on alumni members i.e., all the agribusinesses that have successfully graduated from the Food Systems Accelerator programme. This is to maintain or enhance the agribusinesses' investment viability and provide more opportunities for business growth. In addition, satisfied agripreneurs are both the best promotors of the accelerator programme and a strong resource to build a great community.To build an alumni network, the Food Systems Accelerator programme will:• Build and maintain an alumni database • Organise annual networking gatherings between cohorts • Organise peer-to-peer mentoring: mentoring sessions between alumni members and incoming cohortsThe accelerator programme will offer the following post-programme support:• Fundraising support: invite successful graduates to participate in investor road shows • Presenting successful stories in the media: this will further promote the agribusinesses and the accelerator programme • Talent scouting: help alumni members attract talent and find key employees for their businessesOne of the key objectives of the Food Systems Accelerator is to link the agribusiness cohort to financing in the form of grants, equity, and debt. Therefore, the accelerator programme will:10.1. Identify -build and maintain a pipeline of suitable investors. This will include, leveraging both the existing network of IFDC-2SCALE and the investor mapping data in the market assessment conducted with Briter Bridges 4 to identify investors and financial institutions that are actively investing in agriculture in East and Southern Africa.The accelerator programme will work with the following:10.2. Prepare -create an investment pack which will include a deal book and all necessary material for engaging with donors and private sector funders, and an effective communication strategy.10.3. Engage: This will include:• organising an investor roadshow • inviting targeted investors to in-person events (kick-off/onboarding, pitch/demo day)• accelerator programme mid-cycle email updates to investors within the pipeline 10.4. Monitor: track and maintain on-going conversations with investors and other funders to monitor progress.The Food Systems Accelerator will conduct an impact assessment to measure the impact and performance of its programme and inform future programmes. A framework will be developed that will:• The CGIAR Food Systems Accelerator aims to support agribusinesses scale climate-smart innovations among agrifood actors to solve pressing problems in food value chains and contribute to stronger and more sustainable food systems.The overall objective of the CGIAR Food Systems Accelerator Programme is to: • Access to finance through de-risking grants to scale CSA innovations and business models and matchmaking with private investors for follow-on capital.What are we looking for in participants?i. Priority innovation themes We are looking for user-centric innovation cases that will lead to broad and positive impacts in food security through the increase in productivity, climate change resilience and adaptation and mitigation of the negative effects on agriculture. We support innovations that are climate-smart and that have a strong case for commercial sustainability. Innovations can be digital, technical, financial, products, services processes, or business models.These can be existing or planned innovations in either of the four target countries as well as under one of the four priority innovation themes. Supported innovations should be designed to benefit smallholder farmers and associations in East and Southern Africa. Attention will be given to business models that promote agro-processing and provide aggregation services. Women and youth owned companies are encouraged to apply.The four priority innovation themes are as follows:• Mechanization and irrigation:Mechanization is the process of using agricultural machinery to mechanize the work of agriculture greatly increasing farm worker productivity. Mechanization encompasses production, distribution, and utilization of a variety of tools, machinery, and equipment for the development of agricultural land, planting, maintaining crop and livestock harvest and post-harvest operations. Irrigation is the system of applying water to crops and field by aid of machinery like pumps, sprinklers, drip hoses and any other mechanical means. Mechanized irrigation directly increases the water use efficiency leading to many indirect benefits in the climate action area. Some examples of innovations under this theme include, solar powered irrigation, supplementary irrigation, grading and sorting equipment, storage, and processing equipment.• Conservation agriculture is a farming approach that promotes minimum soil disturbance, maintenance of permanent soil covers and diversification of farmed plant species. It enhances natural biological processes and contributes to increased water and nutrient use efficiency reducing the need for chemical fertilizers and the disturbance they create in the environment. The approach is based on practical application of three interlinked principles: (i) continuous none or minimum mechanical soil disturbance (no-till seeding or planting and no-till weeding), (ii) permanent maintenance of soil mulch cover (crop biomass, stubble and cover crops), and (iii) diversification of cropping systems (crop rotations and/or sequences and/or associations involving annuals and perennials, including legumes for natural nitrogen fixation), along with other complementary good agricultural production and management practices. Some examples of innovations under this theme include, agriculture-based sustainable intensification management practices, Integrated Soil Fertility Management (ISFM) and Integrated Pest Management (IPM).• Nutrition-sensitive climate-smart agriculture are solutions decreasing the trade-offs between agricultural productivity, climate change, and human and animal nutrition. They make farming more climate sensitive and produce more nutritious food while maintaining productivity. Some examples of innovations under this theme include products such as legumes, cassava, livestock, dairy, oil seeds, horticulture (fresh produce and vegetables), and other staples.• Agricultural Risk Management (ARM) is the identification, evaluation, and prioritization of risks in agricultural activities including coordinated and economic application to minimize, monitor and control the probability or impact of unfortunate events and maximize opportunities. They make farming more predictable and increase the resilience of farmers. Some examples of innovations under this theme include advisory services, market linkage services, digitizing the value chain and financial products (microinsurance, savings, lending, and credit guarantees).ii. Business stage • Early Stage: companies that have begun to market their products. Will require funding to market products. Funded by venture capitalists and growth equity investors (private equity) • Growth Stage: companies with increased demand for products, that require funding to increase production and are looking for debt or equity investors (venture capital and private equity). • Expansion Stage: companies looking to gain market share locally and/or for export funded by debt and equity (private and public equity).What do we have to offer to the selected participantsi. Provision of CSA Technical Assistance (TA); through this programme each agribusiness will collaborate with CGIAR scientists and experts to receive coordinated and specialised evidence-based TA support that encourages adoption and strengthens their CSA practices, addresses concrete ecosystem challenges, and improves their bankability. Agribusinesses will also have access to research and data. ii. Provision of Impact Measurement and Management (IMM) Technical Assistance:Agribusiness teams selected to this Programme will receive training on how to effectively measure and manage impact, use their data to improve business performance, identify areas where value can be created and achieve their desired result in contributing towards positive environmental and social impact. This training will be provided by CGIAR network of scientists and experts. iii. Provision of Investment Readiness Technical Assistance: Each agribusiness in this programme will collaborate with IFDC-2SCALE and its network to receive investment readiness and business development support to help secure financing from the private sector. iv. De-risking Grant: Following the conclusion of the accelerator program and Pitch Day, four companies will receive USD 20,000 each according to their business scaling plans.v. Access to investors and corporate partners to attract follow-on funding and potential business opportunities. iii. At least 2 contact details of company's references iv. Team composition v. Curriculum Vitae for management team vi. Tax Compliance Certificate and/or in the case of a startup tax exemption certificate b. A clear inclusive strategy for smallholder farmers, women, and youth within the business model in at least one of the following dimensions: ownership, management team, workforce and policies, supply chain and customers. c. Applicants must be a for-profit company and demonstrate commercial viability and either be profitable or on the path to profitability. NGOs, corporate companies, and consultants will not be considered. d. Operating in the following countries: Kenya, Rwanda, Uganda, and Zambia.Team members who should have access to the page/applications they should have a VC4A member account and if they are to be shown on the page, a profile photo and additional info should be added to their profiles. The CGIAR Food Systems Accelerator is a work package in the Ukama Ustawi regional initiative of the CGIAR. The Initiative aims to support climate-resilient agriculture and livelihoods in 12 countries in East and Southern Africa by helping millions of smallholders intensify, diversify, and reduce the risks in maize-based farming through improved extension services, small and medium enterprise development, supporting governance frameworks and increased investment with a gender and social inclusion lensThe 2SCALE (www.2scale.org) is one of the most of IFDC (www.ifdc.org) influential incubator and accelerator program of inclusive agribusiness in sub-Saharan Africa. The program support partnerships and business models with significant potential to attract and employ the youth, to engage and empower women, and to improve food and nutrition security (at the consumer end of the value chain), also the program focus on replication of successful business models and on institutional factors that drive or constrain systematic and transformative change, to accelerate and scale inclusive agribusiness.The application form consists of 5 steps:1. Eligibility criteria 2. General company information 3. Commercial and financial information 4. Climate-smart agriculture 5. ProposalSteps 1 to 4 comprise of binary and drop-down answers so that the captured responses can be standardized and captured in an excel. Necessary entries are marked with an asterix (*)Step 5 should provide a download option for a proposal document (.doc) as well as an upload field.Step -will improve the human capital (technical skill levels) of producers in the target area -will increase the stability of agricultural production needed to help producers meet their own basic food security and income needs -will promote the diversification of the income and asset bases of users -will promote crop diversification in the target area -will involve the incorporation of site-specific knowledge in its application -will facilitate cooperation and networking among producers -will foster local and regional production and supply chains -will provide opportunities for feedback from extension workers -will narrow existing power differentials in the community -will contribute to reducing existing gender inequalities -will increase the resilience of the cropping system to drought -will increase the resilience of the livestock to drought -not applicable The team has the qualifications needed to make the business successful. Management team members have complementary expertise.10% 5The company is innovating in one of the following priority innovation themes (Mechanisation and irrigation, Conservation agriculture, Nutrition, Agriculture risk Management) 10% 5Gender Does the enterprise have women founders/ women in leadership/management team/ supporting women in its ecosystem?10% 5Is the company close to profitability (for growth stage companies) / does the company have revenues (startup companies)?10% 5Agribusiness 4 C'sCharacter: The motivation of the agribusiness and the extent to which the Agribusiness is adhering to minimal standards of Social Responsibility (SR)Competence: A review of the practicability and a check on whether the innovations adopted/applied for make economic/business sense thus making scalability possible. 10%","tokenCount":"4907"} \ No newline at end of file diff --git a/data/part_1/0106917520.json b/data/part_1/0106917520.json new file mode 100644 index 0000000000000000000000000000000000000000..d11a7bb3623d75f29e970dead871eab5f7361972 --- /dev/null +++ b/data/part_1/0106917520.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"86cd93583900b22fde3c303e5fda141a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8801fa2c-1067-4c5c-b0a6-fbd07eab150f/retrieve","id":"1824745063"},"keywords":[],"sieverID":"6b944979-98bf-437f-9779-115835c5fd15","pagecount":"4","content":"Benin is located on the Guinean coast of West Africa and has a mixed tropical and sub-equatorial climate with two rainy seasons. Beninoise farmers practice mixed rain-fed crop and livestock farming. Climate change puts the country at risk of food insecurity. Since the 1960s the mean average temperature has increased by 1.1ºC and that the average number of 'hot' days per year increased by 39 days between 1960 and 2003, from 38 days in the 1960s to 77 days in 2010, and the number of 'hot' nights by 73 nights from 53 nights in the 1960s (McSweeney et al, 2010). In contrast, the frequency of 'cold' days and nights annually has decreased significantly since 1960. There is a general decrease in annual precipitation of about 180 mm from a previous value of about 1480 mm in the 1960s to 1300 mm presently; and increased incidences of drought. There is erratic and intensified rainfall leading to floods and soil erosion. Climate models project an increase in annual temperature by 1.5 to 3°C by the 2060s and up to 5.1°C by the 2090s (Jalloh et al. 2013). As a result, farmers are already experiencing lower harvest yields, and food production is projected to decrease by 6% by the year 2025. Adaptive measures are necessary to avert further food insecurity. One adaptation strategy is to help farmers and plant breeders find and use genetically controlled plant traits that are suited to their changing climate conditions. Indeed, the 5 th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) recognizes the importance of strategies based on the use, conservation and management of genetic resources for climate change adaptation (IPPC, 2014). The report highlights the importance of improving crop tolerance to new conditions and improving access to genebanks to develop varieties with appropriate adaptive characteristics. It also notes the importance of using indigenous knowledge to identify adaptive strategies contributing to food security (ibid).CCAFS, with support from projects funded by the Darwin Initiative (Mutually support implementation of the ITPGRFA and the Nagoya Protocol), the Netherlands (Genetic Resources Policy Initiative) and GIZ (the ABS Capacity Development Initiative), supported the introduction in a group of communities called Tori-Bossito of participatory methods to identify potentially useful plant genetic resources for experimentation by farmers and plant breeders. The research teams focused on maize, which was selected by the farmers as it is particularly important for their food security in Tori-Bossito.A team of CCAFS Scientists from Bioversity International led a participatory capacity building initiative with a multistakeholder research team comprising farmers and local leaders from Tori-Bossito, scientists from Benin's national agricultural research organizations, including the national genebank, plant breeders, agronomists, climate specialists, and local civil society organizations. The objective was to analyze the impacts of climate change on food security crops in Tori-Bossito, and to identify potentially adapted maize genetic resources from local farmers, the Benin national genebank, other countries' genebanks and genebanks hosted by international organizations. A total of 20 scientists and 46 men and women farmers participated in action research and learning exercises.Through participatory action, research and learning (PAR&L), scientists and farmers discussed climate change-related challenges for their crops. They also identified desirable traits for maize (and other crops) that enable adaptation to those challenges. The teams conducted a 'four square analysis' whereby they charted out the richness and evenness of distribution of maize varieties used by the farmers (Rana et al, 2005). They identified some existing varieties that perform better under the current stressed conditions as well as varieties that they had lost which they considered worthwhile obtaining and re-introducing locally. The second and third stages of the PAR&L focused on identifying potentially useful maize materials in the Benin national genebank, other countries' genebanks, and genebanks hosted by international organizations. The teams were taught how to access and use publicly available climate data (from WorldClim at http://www.worldclim.org/) and national and international genebanks' accession level information, including passport data (from Genesys at https://www.genesys-pgr.org/welcome) and a range of computational programs. The teams were able to identify accessions conserved in those collections that are potentially adapted for use in Tori-Bossito under both present climatic conditions, and conditions that are predicted for Tori-Bossito in 2050.Data on maize accessions from the national gene bank and from Genesys database were screened using combination of GIS and climate datasets (current and future) from Worldclim to develop climate profiles (both current and 2050) for each accession, in order to develop a predictive tool to identify suitable varieties. A total of 19 bioclimatic variables were extracted using the BIOCLIM algorithm at 2.5 arc-minutes resolution, and using the program DIVA-GIS. Most of these variables were associated with the different precipitation and temperature regimes from WorldClim, characteristic of the different habitats of the selected crops.Agro-ecological variables at each locality were extracted using DIVA GIS. Each accession had a unique agroecological zone. The accessions were clustered based on three variables: annual average temperature, annual precipitation and agro-ecological Zone. The teams calculated the annual average temperature and annual precipitation variables derived from each month's minimum and maximum precipitation and temperatures using the formulas: ((tmin1+tmax1)/2 + (tmin2+tmax2)/2 + (tminn+tmaxn)/2)/12 and (prec1+prec2+precn) respectively and matched with the growing season at each reference site. Finally, the selected accessions from the national gene banks and international sources were mapped to provide a visualization of the change in the number and geographic spread of the sites of original collection of the accessions that are best candidates for use under present climate conditions, and predicted conditions in 2050.Additional factors-such as soil qualities, elevation, agricultural practices, and cultural preferences-beyond temperature and precipitation patterns need to be taken into consideration when determining whether an accession is potentially well suited for use in a particular area. Therefore, additional work is necessary to filter 'best bet' candidate materials from those identified by the research work reported here. Nonetheless, this project's focus on temperature and precipitation patterns provided useful leads for the research teams. It research results underscored the fact that farmers in Benin will be increasingly dependent on 'external sources' of plant genetic resources. It is clearly important to put systems in place to ensure that farmers in Tori-Bossito (and plant breeders who are developing materials for use by those farmers) will have access to the genetic resources they need for adapting their agricultural production systems to changing climates.Focus group discussions with farmers confirmed that there have been changes in rainfall patterns, with lower amounts of rains being experienced and shifting rainy seasons. Farmers also reported increased temperatures and an increased number of hot days with prolonged dry seasons and droughts. Ultimately these shifting climate patterns have led the two regular cropping seasons in one year to collapse into just one, as illustrated in Figure 1. This has been the situation for the last three years. Figure 1 might give the impression that the newly merged single growing season is almost as long as the other previously separated seasons put together so that farmers could sow and harvest twice during the single longer season; however this is not the case. Farmers are not only able to harvest once per year. As a result of these climatic changes, farmers have experienced maize yield losses. This is partly due to the fact that changing climate conditions are also contributing to increased incidence of pests and diseases. Maize prices have increased, and farmers reported feeling increasingly food insecure.Some adaptive strategies that farmers are currently employing include using earlier-maturing maize varieties.Those varieties are improved varieties. They require additional inputs such as fertilizer, which makes them prohibitively expensive for many of the farmers. Some farmers are replacing their maize with other crops such as cassava. As a last resort, some are abandoning farming to do off-farm activities such as motorcycle transport or petty trading.The four cell analysis of local maize diversity revealed that there are nine maize varieties actively being grown by the farmers in Tori-Bossito. The preference scoring indicated that the highest ranked variety (based on the following traits: yield, early/late maturity, resistance to pests and diseases, response to low input farming, drought, cooking characteristics and taste) possesses good cooking and storage qualities, it is high-yielding, relatively early-maturing and drought tolerant and is largely grown for the market (photo 3). It is an improved open-pollinated variety that was introduced into the community about 10 years ago.The other eight varieties will be less and less useful to the farmers as the climate changes. Three of them are improved, early maturing and high yielding, but they are not widely grown because they are susceptible to drought and do not possess desirable cooking qualities; they also attract low market price. Three other varieties are drought resistant, but are low-yielding, with poor cooking qualities.The remaining two varieties have longer maturity periods, making them vulnerable under the changing conditions. In recent years, farmers also lost three local varieties that were late maturing and could not withstand lower rainfall. Ultimately, they are increasingly reliant on just one maize variety. The research team underscored the importance of farmers being able to manage a broader portfolio of adapted varieties for their food security.Farmers listed the desired traits in the following order of priority: drought tolerance, early maturing, and high yielding.The process of finding adapted maize germplasm from beyond Tori-Bossito started with an analysis of national genebank collections. The national genebank has 225 accessions of maize collected from different parts of Benin. Of those accessions, 132 are potentially suited for growing in Tori-Bossito in present climate conditions (noting, of course, that they may not be useful for other reasons, e.g. low-yielding, disease susceptibility, poor taste, poor cooking qualities, etc). However, when looking forward to the predicted climate conditions in Tori-Bossito in 2050, only 37 of the accessions in the genebank appear to be potentially adapted.Over the same time period there will be an increase in the number of maize accessions conserved in other countries' and international genebanks that are adapted for Tori-Bossito's changing climateUsing information available through Genesys, the research team identified 39 accessions in other countries' genebanks and in international collections that are suited to Tori-Bossito's current climate. This number might seem to be rather low, given that more than half of the maize accessions in the national genebank appear to be well suited to current day conditions in Tori-Bossito. This is due to the seasons that have shortened then merged, the variability in temperature and rainfall during this merged season leads to few varieties that are matched.The number of accessions that are potentially adapted to Tori-Bossito's predicted 2050 climate actually increases to almost 150. This is consistent with the finding that Tori-Bossito's climate will change in ways that make it similar to the climates where those materials were collected at the time they were collected. Interestingly, many of the accessions identified through Genesys were originally collected not only in Africa, but also in Central and South America and parts of Asia.Climate change is already having a negative impact on maize production in Tori-Bossito. To be able to respond, farmers and plant breeders need to be able to take advantage of maize genetic diversity as a source of traits that are adapted to changing climate conditions: traits such as drought tolerance, and early maturity. Local maize diversity in Tori-Bossito is limited. As climates change, farmers will become increasingly reliant on genetic traits from materials originally collected elsewhere: either from within Benin or internationally.The proportion of maize materials currently included in the national genebank of Benin that are potentially suited to grow in Tori-Bossito's changing climate is decreasing. By contrast, there will be an increase in the proportion of materials conserved in other countries' and international genebanks that are potentially adapted to Tori-Bossito's changing climatic conditions. Therefore, farmers in Tori-Bossito and plant breeders hoping to develop materials for their use will be increasingly reliant on genetic diversity from other parts of the world as the source of adapted genetic traits.The MLS created by the ITPGRFA was designed to facilitate international availability and exchange of plant genetic resources as inputs into agricultural research, plant breeding and training. Benin ratified the ITPGRFA in 2015. Recently, Benin has also adopted interim measures-\"Decree on national guidelines on access to genetic resources and associated traditional knowledge and fair and equitable sharing of benefits arising from their use in the Republic of Benin\"-to put systems in place to implement the ITPGRFA at national levels. The research presented in this Info Note highlights the importance of programs to train multi-stakeholder teams-with roots at farmer community levels-to use the MLS to access the diversity that farmers and plant breeders need to adapt to climate changes. ","tokenCount":"2094"} \ No newline at end of file diff --git a/data/part_1/0110771691.json b/data/part_1/0110771691.json new file mode 100644 index 0000000000000000000000000000000000000000..c0437f8fa864329a49edca5e5b6ca919fb26ed99 --- /dev/null +++ b/data/part_1/0110771691.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3c2b899ce79eb6559600939031c9dfb7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b289ba21-f9fb-4a18-b6dc-c05f00ef2eae/retrieve","id":"-206743288"},"keywords":["future","meat substitution","plant proteins","stakeholders","backcasting","pathways"],"sieverID":"bc7f1aeb-e894-410e-80c2-1a678458bf38","pagecount":"22","content":"Global and European diets have shifted towards greater consumption of animal proteins. Recent studies urge reversals of these trends and call for a rapid transition towards adoption of more plant-based diets. This paper explored mechanisms to increase the production and consumption of plant-proteins in Europe by 2030, using participatory backcasting. We identified pathways to the future (strategies), as well as interim milestones, barriers, opportunities and actions, with key European stakeholders in the agri-food chain. Results show that four strategies could be implemented to achieve the desired future: increased research and development, enriched consumer education and awareness, improved and connected supply and value chains and public policy supports. Actions needed to reach milestones were required immediately, reinforcing the need for urgent actions to tackle the protein challenge. This study concretely detailed how idealized dietary futures can be achieved in a real-world context. It can support EU protein transition by informing policy makers and the broader public on potential ways to move towards a more sustainable plant-based future. The outputs of this analysis have the potential to be combined with dietary scenarios to develop more temporally explicit models of future dietary changes and how to reach them.A number of studies conclude that increases in animal protein production and consumption are unsustainable, contributing to degraded natural systems, biodiversity losses and climate change [1][2][3][4][5]. These changes are also implicated in an array of human health issues [6][7][8]. Global consumption of animal products has increased by almost 30% since 1961, whilst plant protein consumption has largely reduced [9,10]. Animal-proteins now account for at least 40% of dietary proteins [11,12]. These dietary changes are the manifestation of socio-economic transitions towards wealthier and urban populations [13][14][15][16][17]. These patterns are widely expected to continue, even in wealthier regions [16,17]. The impacts of these trends have led to suggestions that without future targeted dietary changes, the associated environmental and health impacts will be grave (e.g. Etemadi et al. [6], Springmann et al. [18]). These predictions have led to calls for sustainable diets rich in plant-based proteins to be encouraged (e.g. Willett [2], Springmann et al. [18], IPCC [19]).The potential for reversing current dietary trends and replacing animal proteins with plant proteins has been widely studied [11,20,21]. Adoption of the 'Mediterranean,' vegetarian or vegan diets have all been proposed as mechanisms for achieving such reversals [2,18,22,23]. The benefits of shifts towards diverse and largely plant-based diets could address the negative impacts of current dietary trends by reducing dietary based emissions, supplying adequate calories for growing global populations, averting diet related avoidable deaths and reducing agriculturally driven deforestation [2,18,22,23]. However, despite the considerable benefits that could be accrued from plant-based diets, they represent significant societal and agricultural systemic changes, with dramatic shifts in consumer attitudes needed [8,24,25]. Although consumer attitudes have shifted and increases in vegetarianism have been observed in wealthier countries [25,26], further shifts are still required to attain the idealized futures described in the literature (e.g. Springmann et al. [21]).These observations evidence a divergence in outlooks of the future, where idealized futures [18,22] are compared to business-as-usual projections [17]. The process of reaching idealized future conditions are often considered through dietary scenarios, where narrow mechanisms (e.g. meat taxation) and their impacts (e.g. reduced meat consumption) are analyzed (e.g. Springmann et al. [21], Cassidy et al. [22], Erb et al. [23]). The utility of such methods is unquestionable for framing the human health and environmental argument for dietary change and potential future conditions [27]. However, scenario-based analyses, in general, consider only limited variables, ignoring the wider challenges of how contemporary social and agricultural systems transition to a point where the idealized future becomes a societal reality [28].Characterization of potential strategies and the policy environments required to encourage and enable such wide-ranging systemic changes remain comparatively unexplored. A number of recent studies have begun addressing this, characterizing how consumption shifts could be made through education and policy interventions over time [29,30]. But their narrow focus ignores the wider social, agricultural and political environments within which these changes would need to be made. Graça et al. [31] go a step further, developing a framework for mapping the socio-economic barriers and enablers, which may discourage/encourage future dietary shits. Although this work is vital, it largely considers only one side of the problem-consumption. However, for dietary transitions to be made, simultaneous changes in production would also be needed. This therefore offers an opportunity to investigate how society and in particular high animal-protein consuming regions, like Europe, can address current trends and move towards the idealized futures envisaged in the literature. In particular, considering mechanisms and pathways for encouraging both increased consumption and production of plant proteins.To do so, we propose a participatory methodology to characterize pathways from the present towards an idealized dietary and production future, where plant-proteins are consumed and produced at the expense of animal proteins. In investigating idealized futures, the development of participatory normative scenarios (or backcastings) can be useful [32]. Participatory backcasting offers a framework for medium to long-term planning that includes development of mechanisms and strategies required for attaining desirable futures [33,34]. It is normative, goal-oriented and problem-solving and is characterized by involvement of heterogeneous stakeholders contributing to a consensual visioning [35].This analysis looks to: (i) understand the barriers and opportunities that may inhibit or enable dietary and production changes in the future; (ii) map policy actions and milestones needed to achieve a sustainable future; iii) develop stakeholder developed strategies for moving towards this sustainable future. This novel study ultimately aims to inform visionary policy-making about future strategies and possible shifts in consumption and production of proteins across the EU towards a more sustainable future and hopefully provide the impetus for future studies to provide greater detail to these strategies.This analysis has been developed within a five-year European research project: 'PROTEIN2FOOD' ( Development of high quality food protein through sustainable production and processing. Project No. 635727-2. Horizon 2020 Programme, under the Societal Challenge 2-Food Security, Sustainable Agriculture and Forestry, Marine, Maritime and Inland Water Research and the Bioeconomy. EU Commission, 2015-2020.). The project aims to develop innovative, high quality, protein-rich crops and food products to sustain human health, the environment and biodiversity and help transition to more sustainable food systems in Europe. Stakeholders play a crucial role in the project forming a 'stakeholder forum,' an advisory body to the project. Stakeholder forum meetings are organized annually to gather stakeholders and partners to facilitate discussion about the project and future prospects. This study is devoted to the analysis of the results obtained in the 3 rd Stakeholder Forum meeting, held in Freising, Germany, in March 2018. More information of the PROTEIN2FOOD and the stakeholder forum and workshops can be found in Supplementary Material 'The Project.'The backcasting technique can be used to develop normative visions of the future [33]. It can assist in planning and decision-making by exploring the conditions required for realization of idealized visions [34]. It also presents the opportunity to explore the feasibility of alternative future conditions and formulate solutions for their achievement [36]. Including stakeholders as part of this technique allows them to work backwards from agreed end-points and outline barriers and opportunities, define milestones and describe actions required for the achievement of idealized end-points [37]. Backcasting can liberate stakeholders of the constraints of contemporary thinking, offering greater freedom in developing more creative solutions [38]. Stakeholder engagement can also expand the knowledge base and provide an opportunity for social learning [39], increase legitimization of outputs and allow for consensus building [40]. As an output, strategies from the future to the present can be mapped and characterized, aiding in planning processes [36].Participatory backcasting can be developed following variants of the five steps (e.g. Kok et al. [36]) presented in Table 1: Table 1. Methodological steps of participatory backcasting.Step ActivitiesBackcasting starts defining and describing the desired future in which the problems identified are expected to be solved by meeting a stated objective. Participants determine the spatial and temporal scale of the analysis and agree upon the final end-point (objective) of the backcasting and its timeline.Milestones are interim objectives that are required to achieve the desired objective from Step 1. Participants are asked to identify milestones and place them on a backcasting timeline (line from the year of the objective to the present). Also, they are invited to specify why the milestone is needed, what it entails and when it needs to be achieved.Barriers and opportunities for achieving the objective and milestones are identified (Steps 1 and 2). Participants are given the opportunity to present factors or processes that they consider to be a barrier for achieving the objective or milestones. Similarly, opportunities that can be taken advantage of to achieve the objective and the interim milestones are defined. As with the milestones, participants are asked to explain the barrier/ opportunity to other participants and then place it on the backcasting timeline.Participants are then invited to identify actions that are required to achieve the objective (Step 1) and milestones (Step 2), address the barriers or take advantage of the opportunities (Step 3). Participants are asked to describe the action and place it upon the backcast timeline. Likewise, they are requested to be as specific as possible, specifying what the action would entail, who would enforce them and when they would be implemented.Participants are then asked to develop pathways from the desired future objective back to the present. Milestones are connected with the policy actions that would be required for their achievement. These pathways connecting milestones and actions are called strategies.The backcasting exercise was implemented as part of PROTEIN2FOOD during the 3 rd stakeholder forum meeting. The stakeholder forum meeting consisted of a one-day workshop of 37 participants, which included key researchers from the project and representatives of the food production-processingconsumption chain (Table 2). The workshop included short plenary presentations on the EU plant-protein food challenge, the backcasting exercise and a final wrap-up discussion chaired by a research EU Policy Officer. The backcasting exercise was developed following the steps described in Table 1.Step 1 (defining a desirable future) was completed in a plenary session with all participants agreeing on a common desired future objective. Then, two groups of 18 and 19 participants were formed to develop Steps 2 to 5 (identification of milestones, barriers, opportunities, policy actions and strategies). As much as possible, the two groups were equally balanced in terms of stakeholder group and geographical representation (see Table 2). Steps 2 to 5 were simultaneously performed across the two groups to facilitate the process of developing backcasting maps and to explore alternative visions of how to reach the desired endpoint. As part of Step 4 (identifying policy actions), participants were asked to vote on which policy action was most needed to achieve the final objective. This voting was also weighted, with participants giving three votes to the most important, two votes to second and one to the third.As a result, two backcasting maps were produced. A summary overview in the form of strategies and most voted options was presented and discussed in the final wrap-up session.The two backcasting maps were comparatively analyzed in terms of structure and contents. The structure of the backcasts was analyzed using basic graph theory. To do so, the backcast maps were interpreted as graphs, which are mathematical structures that represent pairwise relationships between elements. We used Latapy et al. [41] as a basis to study the spatial structure (composition) of the maps (type and number of elements; barriers, opportunities, milestones and actions and links between them). As part of this analysis, two parameters were created: (i) 'M+A' that represents the sum of milestones and actions and is considered a proxy for measuring the proactivity and response to change of the system (backcast); and (ii) 'O-B' is the number of opportunities minus the barriers and is used as a proxy to measure the resistance to change of the system (backcast). Following Wu et al. [42], we also studied the temporal structure of the maps, in particular, the evolution of elements and links across time. The content of the backcasts was analyzed by looking across maps identifying different and common elements (milestones, barriers, opportunities, actions) and strategies. We used Kok et al. [36] to compare strategies and identify robust (common) strategies and policy suggestions. Strategies were considered robust if the themes they covered and the general content were identified in both groups.Stakeholders agreed on the following desired end-point (objective): \"To increase plant-protein production and consumption (by 25% and 10%, respectively) in the EU by 2030.\" This objective coincides with one of the key expected results of the PROTEIN2FOOD project. Participants believed that the project could incentivize protein crop production and consumption in the EU by developing new breeding techniques, optimizing crop and soil management methods and identifying appropriate market approaches. The new plant protein food ingredients and products developed in the project were expected to receive a high consumer acceptance, leading to a gain market share of these types of products and a reduction of meat consumption in the medium to long term. Meeting the desired objective was considered crucial to enhance protein transition from animal-based to plant-based protein and thus, promote a more sustainable plant-rich diet in the EU.A period of 15 years (2015-2030) was selected for the backcast timeline. The year 2030 was chosen as the reference point for the future due to the time horizon of the PROTEIN2FOOD project, its temporal proximity to facilitate participants' ability to imagine a future and to coincide with the targets of relevant policies and initiatives, such as the UN's 2030 Agenda for Sustainable Development and the EU's FOOD 2030. Researchers and policy makers have become increasingly more aware that dietary change is central to meet the proposed Sustainable Development Goals (SDGs) (2, 16 and 17) [43] and the Paris Climate Change Accord [19].In total, 146 elements were generated across the two backcasts, with 82 (56% of the total) developed in the first group and 64 (44% of the total) in the second (Table 3). In general, elements were evenly distributed across groupings (milestones, barriers, opportunities and actions). Actions represent the largest number of elements, followed by milestones. Full backcasts can be found in the Appendices (Tables A3 and A4). The temporal positioning of elements was not evenly distributed (Table 4). Most elements were placed in the present (2015-2020) and the near future (2021-2025), with few elements placed in the most distant period (2026-2030). In Group 1, 39 elements (48% of the total) were included in the present (2015-2020), 30 (36%) in the near future (2021-2025) and 13 (17%) in the long-term future (2026-2030). Similarly, in Group 2, the present concentrates most of the elements (29, 45% of the total), followed by the near future (25, 39% of the total) and the long-term future (10, 16% of the total). Looking at the type of elements and their location on the timeline (Table 4), barriers were found in the present (2015-2020), actions in the present and near future (2015-2025) and opportunities and milestones more evenly distributed. Figures 1 and 2 show that, in the period covering the near past-present (2015-2020), barriers outnumber opportunities (O-B presents negative values), particularly in Group 2, which illustrate the difficulty to change the current situation. After 2020, stakeholders perceive a brighter future, with more opportunities than barriers (O-B positive values) and thus suggest less resistance to change. In both groups, barriers reduce to zero at the end of the period (2026-2030) but this is more noticeable in Group 1, where no barriers were identified after 2024. This may be explained by current barriers being more evident than those of the future. Years 2022-2023 and 2027-2030 are quite neutral, with the same number of opportunities and barriers (O-B is equal to zero).The proactive response to change, measured by the sum of milestones and actions (M+A), presents a more irregular and oscillatory pattern compared with the resistance to change (O-B) (Figures 3 and 4). Notably in Group 1, years with high M+A values are preceded and followed by years with low M+A values. In general, however, the present and near future (2015-2025) include high M+A values, suggesting stakeholders perceive that immediate action is required. The most distant period of time (2026-2030) shows low M+A values (e.g. in Group 2, neither actions nor milestones were defined in year 2027). Thus, how to act in the future is less clear in the eyes of stakeholders. The number of links in both maps are similar, 51 in Group 1 and 52 in Group 2. Both groups show a high percentage of total links being between milestones and actions (67% and 44% respectively) (Table 5), showing the direct link between actions and milestone achievement. However, the more dispersed effects of milestones achieving milestones are noted by only 10% of all links being between these elements in Group 1 and 29% in Group 2. The number of connections that a year has in the future years implies the importance of that year in the backcast. For Group 1 years 2019, 2020 and 2026 have the highest influence in the flow of the process (Figure A1). In the case of Group 2 2018 and 2020 are the most influential ones (Figure A2).In total, 37 milestones were defined (19 in Group 1 and 18 in Group 2). In Group 1, the milestones were oriented towards technology, processing, products and crop management and breeding. In Group 2, themes also included consumer awareness, organic agriculture supports, value chain establishment and the organoleptic properties of plant-proteins. Common milestone themes included: In the first five years of the timelines, milestones regarding funding, development facilities and product availability are seen in both groups. This would suggest that stakeholders think of these being the easiest to achieve due to their temporal proximity. More temporally distant milestones include increased awareness of plant-proteins, improved management and development of varieties.Across the two groups, 36 barriers and 33 opportunities were identified. The 19 barriers identified by Group 1 are diverse and include technological, agronomic and societal awareness. Of the 17 barriers identified by Group 2, distinct themes like product cost and scale were proposed as important impediments to achieve the objective. Across the groups three similar barrier themes were identified:High prices of protein-rich processed products may limit greater consumption (2018-2022)Low demand and a lack of knowledge of products also hinder consumption (2015-2020) • Protein-rich product functional properties in terms of difficulty of protein extraction, lack of homogeneity in isolates and the organoleptic properties and anti-nutritional factors of represent processing barriers (2016-2025)In total, 33 opportunities were identified (19 in Group 1 and 14 in Group 2). In Group 1, dietary changes, market development, sustainable benefits of plant-proteins, increased awareness and innovation were cited as opportunities. In Group 2, access to information, international collaborations and increased value in value chains were suggested. Although opportunities were distinct between the groups, repeated themes were evident:Health and environmental benefits (2020-2025) • Dietary changes and increased consumer awareness (2021-2022) • Marketability of products and improved access to information (2022)In total, 39 actions (25 in Group 1 and 14 in Group 2) were defined. These actions are clustered across themes of consumer education, financial and information supports, lobbying and value chain restructuring. In Group 1, actions include increases in public supports, investments in breeding, creation of a plant lobby, consumer education, marketing and advertising and taxes of soya imports. In Group 2, actions included local supply chain development, certification, lobbying, biodiversity payments and labelling.In total, 6 common actions were defined by participants (Figure 3). Despite the commonality of these actions, their voted importance was quite different. The development of local supply chains, increased consumer information, increases in funding for research and creation of a plant-protein lobby were voted as the most important (Figure 3). Furthermore, it is interesting to note the creation of a plant-protein lobby, which in both backcasts was set for the period 2020-21. This implies the perceived urgency for the need of a concerted and organized effort to include plant-proteins in political decision making and the need for a counter-point to the perceived power of the meat and dairy lobbies (identified as barriers). In total, 13 strategies (7 in Group 1 and 6 in Group 2) linking milestones with actions were developed (different colored arrows in Figures 4 and 5). The strategies are presented from right to left, with the goal on the right and the stepwise milestones and actions needed from 2030 back to 2015 to attain the objective. These strategies are diverse and range from agricultural research and development, policy supports and consumer education. A number of these strategies are complex, requiring a number of actions and milestones before achieving the objective (e.g. Agricultural Research and Development and Marketing and Labelling of Figure 4; Consumer Education and Awareness and Development and Support of Supply and Value Chains of Figure 5), countered by a number of more simple strategies (e.g. Crop Management and Guidelines of Figure 4 and Agricultural Research of Figure 5). It is interesting to note that the groups perceived the strategy of Agricultural Research differently, one considering it complex, the other more simplistic.From Figures 4 and 5 it is evident that these strategies are similar not only in their content but also in the timelines for implementation. The similarity across the groups suggest that participants in both groups saw, in general terms, similar pathways of moving towards a more sustainable future. In both groups, the need for funding and support of protein products appear to be a key step in each of the strategies and for achieving the desired goal. Following the workshop, 4 robust strategies for achieving the goal of increasing plant-protein production by 25% and increasing consumption by 10% were identified:Increased investment in research (~2018-22) for crop breeding (~2022) is implemented to improve protein-rich plant varieties for improved disease resistance (~2023) and higher yields (~2027), making these crops more attractive to farmers. Improved crop varieties result in increases in area dedicated to protein-rich crops across the EU (~2028). Expansion of new cultivars is dependent upon information and support for agricultural training (~2024). Means for achieving these increases in funding would be through the development of a protein-crop lobby (~2019).Formation of local supply chains (~2019) encourage creation of value chains for protein-rich crops (2024-26) and expansion in protein-rich crop area (~2028). The establishment and consolidation of these chains are supported and encouraged by supports for local protein-crop and organic production (2023-24), as well as through supports from the future reform of Common Agricultural Policy (CAP) (~2027).Advertising is expanded to increase exposure of protein-rich crop products (~2019), with labelling improved (~2019) to increase consumer information (~2019-21). Improved consumer education (~2021) is supported by dissemination of educational media to improve understanding of consumption and production benefits. Increased exposure to products and information drives greater consumption (~2023) and acceptance (~2025) of novel plant-based products.The formation of a protein-crop lobby (~2019) would encourage greater national public (agricultural) policy supports (~2022-24) directed towards protein-rich crops, leading to increased supports from the CAP (~2027). This results in a competitive protein crop market (~2028) and increases in areas dedicated to protein crops (~2029). Further support mechanisms are used to increase taxes on imported soya (~2026) and establish protective taxes to encourage greater use of EU-produced raw materials (~2023). Policies are also implemented to increase prices of animal protein products (~2025).We performed a participatory backcasting exercise to identify and explore potential strategies for enabling sustainable European dietary futures, with four robust strategies identified. The constituent parts of these strategies largely echo findings of the literature of sustainable dietary futures but formalize them into coherent and temporally mapped pathways.These normative strategies outline the need for greater production of plant-proteins in the EU. To do so, stakeholders stressed that formal investments in agricultural research should become a focus of future EU policies and could liberate protein-rich crop production. Particular attention is needed on investing in breeding programs to develop higher yielding and resistant protein-rich crop varieties. Such a suggestion is not without precedence within recent EU agricultural policies, where focused research investments were highly successful in stimulating pea production [44]. The cobenefits of such a policy could be wide-ranging and could help to address the agricultural barriers that currently affect legume production in Europe [45].However, greater production of plant-proteins would not be sufficient to guarantee their availability nor their affordability for the general public. Stakeholders suggested that the focus of EU policies should also shift towards supporting the supply and value chains of protein-rich crops. Magrini et al. [44] outlines the inhibitory effects of incomplete supply chains for crops such as legumes, a point reflected in the workshop and from the authors' experiences in Spain. Etemadi et al. [6] evidences the benefits of complete and well-resourced value chains, highlighting how investments in value chains can contribute to consumption increases. Henchion et al. [46] argues that the commercial production of novel proteins requires the establishment of new value chains capable of minimizing production costs and risks. This could contribute to overcoming a major barrier identified by the stakeholders-the high price of protein-rich processed products. This barrier follows that of previous studies [47], who identified that healthier foods are likely unaffordable for low income populations. A shift to healthier diets may therefore require higher incomes, nutritional assistance and lower prices, representing considerable social and economic transformations. In this context, Henchion et al. [46] stresses the necessity of developing new initiatives to involve wider stakeholders and key value chain actors, not traditionally working together, to support the aforementioned transformations. Stakeholders insisted the crucial role of multi-scale governments (regional-supra national) for achieving such transformations. Voisin et al. [48] demonstrates previous governmental successes of supply chain supports, through creation of niche markets and labelling.A decade after Schneider [49] posited that a lack of information of protein-rich crops had limited their production and consumption, de Bakker and Dagevos [50] noted the continued need for consumer education concerning plant-based products. Awareness of animal products' environmental impacts remains low amongst western consumers [51]. According to stakeholders, this lack of information continues to affect EU consumers. Ritchie et al. [8] states that without movement in consumer attitudes concerning animal-based products, consumption shifts are unlikely. Stakeholders noted and addressed these concerns stating that to reduce animal product consumption, increase animal replacement products' acceptance and shift towards greater plant protein consumption, would require EU-scale improvements in consumer education and access to and availability of, information. There continues to be a common notion amongst the general public that healthier diets may be unpalatable, low in variety and may be time intensive [31]. According to stakeholders, to address this misinformation the EU must step in and develop educational policies as a conduit for encouraging public opinion and consumption changes. Historically, governments have had policy successes in encouraging and promoting consumption shifts through educational activities [52]. Wellesley et al. [53] establishes that the general public expect governmental leadership to reduce the consumption of unhealthy products. Stakeholders suggest that marketing campaigns, which follow information and education campaigns, coupled with improved labelling and exposure to novel products, could assist in shifting consumer perceptions and increase awareness of the environmental and health impacts of animal products.Increases in public supports and implementation of taxes is another potential strategy presented for encouraging sustainable dietary changes. To increase production of protein-rich crops stakeholders noted that national or supra national agricultural policy supports were required. This is not without antecedence, where CAP supports have had direct and positive impacts upon EU legume cropping area [10]. Stakeholders reinforce the continued need of these supports for encouraging EU production of protein-rich crops. Stakeholders also stressed the need for taxation upon non-EU produced protein-rich crops, like soya, supporting calls from Wellesley et al. [53]. Protective taxes to encourage use of local raw protein-rich materials in plant-based products was also suggested as an enabling mechanism for transition. However, such protectionist taxation could have international trade implications, considering the EU's global trade agreements. Stakeholders summarized that application of taxes on animal-based products could also be used to reduce consumption. This is in line with calls from the literature for such measures (e.g. Springmann et al. [54]). Nordgren [55] argues the wide-ranging benefits of taxing meat consumption, with Springmann et al. [54] noting the benefits of carbon intensity related taxation, coupled with subsidies for food groups with positive health and environmental impacts. Saxe et al. [56], however, cautions the likely political, industrial and social opposition to such a strategy.Although these strategies are defined individually, it is evident that their application in the realworld could not be mutually exclusive, being in many cases interdependent and complementary. For example, lobbying for greater supports for plant proteins and increased investment in research may be far more successful with greater citizen awareness and interest in their benefits. Improved consumer education would also encourage the completion of the supply chains, as farmers and companies would recognize the benefits of following consumer demands. Proposed policy suggestions could be considered individually or as part of a meta-strategy, taking advantage of their interconnectedness, to encourage a series of a virtuous circles towards more sustainable futures. Sachs et al. [57] calls this meta-strategy a 'sustainable food transformation' and argues that to achieve it, interventions should be pursued in an integrated manner. In line with our results, the strategies identified by Sachs et al. [57], to operationalize this transformation would require deep structural changes, strong government action and the mobilization of stakeholders. Our findings and those of Willett et al [2] and Gerten et al. [58] suggest that it is crucial that adoption of less resource-intensive diets occurs in the upcoming decade. Stakeholders perceive that, in the next years, we will be facing more opportunities than barriers and a high number of actions and milestones, which may contribute to accelerate the EU protein transition up to 2030.Finally, this study has contributed to the extensive literature on dietary change by concretely detailing how shifts in diets and production could be achieved in the real world, where current trends are largely moving in an increasingly unsustainable direction. Through a participatory methodology we mapped the conditions required to transition towards a near-future Europe, where diets are more plant-based. We identified a suite of strategies that, if implemented, could shift the EU from its current pathways towards a more sustainable 2030. Encouragingly, these strategies in many cases were found to be robust across groups, which may point to their potential efficacy, if implemented. These stakeholder derived strategies could be combined with the dietary scenarios that dominate the literature, to develop more explicit scenarios, assisting policy making.This study is subject to some limitations. One shortcoming inherent to participatory backcasting exercises is that the proposed final objective is largely dependent on values and can therefore be potentially contested [59]. This can be mitigated when the topic addressed is of high political relevance [34], which is this is the case of the present study. Furthermore, working temporally backwards can be difficult for stakeholders [38]. Thinking backwards can be counterintuitive and requires high concentration, especially when end-points are chosen far into the future (25-50 years). This may diminish the inherent capacity of backcasting to deal with high uncertainty in distant situations [60]. To address this, a more immediate goal period (2030) was selected.In participatory backcasting, the distinction between milestones and actions is often described as too vague and dependent on the wording used [36]. Some examples that can be found in our study (e.g. 'optimizing crop management' as an action or 'crop management optimized' as a milestone) support this finding. Similarly, barriers and opportunities are in many cases difficult to distinguish (e.g. 'lack of public support' as barrier or 'public support' as opportunity) and can emerge as relevant items at different points in time (2015-2020 or 2020-2025). In these situations, good workshop facilitation is considered essential to clarify items, guide discussions and ensure an appropriate iterative process by looking at both the long and short term [38]. The authors tried to minimize these problems acting as facilitators due to their long experience in organizing, implementing and facilitating stakeholder workshops [61].Another critical aspect common to participatory backcasting is time constraint. As time is limited in the workshops, the backcasts produced usually do not reach the level of detail that is needed to be used directly into decision-making processes [36]. In the present study, there was not enough time to address important issues, such as responsibility, costs, impacts or implementation procedures. In subsequent workshops, these issues should be analyzed, along with mutual influences between steps and strategies.This study aimed to inform policymakers and the interested general public through the development of potential strategies and required actions to move towards a more sustainable dietary future in the EU. We used participatory backcasting to identify actions and develop strategies to transition EU protein-rich food production and consumption by 2030. Strategies developed revolved around increased funding for research, development and support of local supply chains, consumer education and awareness building and policy supports. These proposed strategies present a stepwise, time considerate and stakeholder derived conduit to a desirable future. Many of the developed strategies were dominated by actions required immediately, reinforcing the urgent need for actions to achieve necessary dietary changes and therefore avoid the health and environmental impacts of continuation of current dietary trends. This article complements previous studies that elaborate on the benefits of dietary shifts by enhancing understanding of near future barriers and opportunities, whilst providing stakeholder-based policy suggestions for encouraging sustainable dietary and production shifts. This study is, to our knowledge, the first to concretely detail how shifts in diets and production could be achieved in a real-world European context. The outputs of these stakeholder derived strategies could be combined with the dietary scenarios, that dominate the literature, to develop more temporally explicit models, to assist policy making and future scoping. Further, we propose as a next step, that further workshops should be performed, with a wider diversity of stakeholders (e.g. consumer groups), not only to validate the current strategies but to generate more detailed strategies. This would offer a greater learning opportunity for a wider selection of interest groups and would result in the development of highly structured and detailed strategies to be presented to policymakers. ","tokenCount":"5688"} \ No newline at end of file diff --git a/data/part_1/0118518486.json b/data/part_1/0118518486.json new file mode 100644 index 0000000000000000000000000000000000000000..024f40c9862441fa3806ee27db1aefbb40965a48 --- /dev/null +++ b/data/part_1/0118518486.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c895dda2ee27e6395b7b93b9699114df","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9d85a4f1-7cb9-46bf-bae2-a8b5f5b43894/retrieve","id":"258119191"},"keywords":[],"sieverID":"0d29b71b-cfd3-4422-925b-300e91a23ebb","pagecount":"4","content":"Vegetable growers in and around Accra, Ghana's capital, have felt their livelihoods being threatened by a city bylaw banning the use of polluted drain water, their main source of irrigation. Using diluted wastewater is a common practice in urban and peri-urban agriculture in sub-Saharan Africa and other low-income countries, and is known to pose health risks to people.CGIAR Challenge Program for Water and Food (CPWF) Project Number 38 \"Safeguarding public health concerns, livelihoods and productivity in wastewater irrigated urban and periurban vegetable farming, \" supported by the International Water Management Institute (IWMI), built on past work by local universities in an effort to find solutions to reduce health risks without compromising the livelihoods of the producers and the health of the consumers.Reducing health risks from irrigation water Farmers were generally aware that the water they used was contaminated. Their knowledge of health risks resulting from direct exposure to wastewater from irrigation was however, quite low. They took few precautions on their farms to reduce those risks.Farmer and food vendor knowledge regarding health risks and implementation of risk reduction measures for increased food safety have increased National irrigation policy revised to reflect new stance on potential benefits of wastewater re-use Sedimentation ponds and filtration using sand filters were tested and found to reduce helminth eggs to acceptable levels. Lowering the watering height and using a rose or spray head on the watering reduced helminth egg and coliform counts.Simple adjustments in water practices, such as reduced splashing from the soil to the vegetables, lowered contamination levels. Cessation of irrigation before harvesting was also effective, with longer periods being more effective, though some yield reduction was noted. This led to various follow up projects (e.g. by WHO, IDRC and FAO) and the founding of the Ghana Environmental Health Platform, which continues the work started by local universities and CPWF partners.Project researchers were also asked to provide inputs to the WHO guidelines for wastewater use in agriculture.In close collaboration with the Resource Centre on Urban Agriculture and Food Security (RUAF), researchers initiated the revision of the Accra bylaws banning the use of polluted drain water.In 2010, the national irrigation policy was launched, which stated that, with certain precautions, the re-use of wastewater could be beneficial.\"About 800 million people are engaged in urban and peri-urban agriculture (UPA) worldwide, contributing about 30% to the world's food supply (UNDP 1996).UPA is an effective way of alleviating poverty. It provides jobs for the poor. In Africa 65% of the people involved in UPA as farmers or traders are women.\"showing vegetables displayed on the ground Photo: IWMINow Accra's urban vegetable farmers can continue to make a living, while helping ensure the city's food security.Most Significant Innovations 1. Health risk reducing options tested and verified on farm, in markets and in the fast food sector.2. Advice to WHO on options for risk reduction using a multi-barrier approach from farm to fork as per WHO guidance.3. FAO using the results for the production of farmer field school modules.4. Influence on Ghana National Irrigation Policy.","tokenCount":"503"} \ No newline at end of file diff --git a/data/part_1/0121545354.json b/data/part_1/0121545354.json new file mode 100644 index 0000000000000000000000000000000000000000..4b436796e498344ab7ab8a855f8ff8d807703714 --- /dev/null +++ b/data/part_1/0121545354.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"152ea2ed990357ad8745706f3fe1414a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d4e24cc5-7985-445b-b88c-6eb1968b1ff4/retrieve","id":"-1127095540"},"keywords":[],"sieverID":"e9f45007-4780-44c1-bbe1-4ec84edd8aa1","pagecount":"4","content":"Very little ia known of the general phyaiology oí eaasava. Consequently the initia! program is intended to give a haaie underatanding oí the growth eyele of the plant and how this ia affeeted by factor s known to be of major importan ce in other erops.Growth cycle of the plant fu. most crops assimilation during the búÍking.:periOd (the period when economic.\" yield ia formed) aecounta for more than 80 percent of the yie1d. lt has been repeatedly , \". \"found in a variety of other crope tOOt the primary factor influeneing rate of assimilation ls having sufficlent leaf area to intereept more than 90 percent of the incoming light.In the Iriah potato, yield la dire~ly related to the integral.of the lea! area index wit~ tlme during the bulking period (when lea! area index la greater than 3 lt la taken as 3), Henee a study of the pettern of lea! area index ls easentia! to understanding the erop. 300 N split so as to be 100 a.t planting, 100 at 3 months and 100 at 6 months • 200 K20 )) at planting 200 P 2 0 5 )Weed oontrol: Inseot oontrol:By hand as neoessary Inseotioides as neoessaryHarvests at 2, 3, 4, 5, 6, 7, 8, 9, lO, 11, 12 months after.planting. At eaoh harvest the following measurements wiIl be made:.1. Lea!: Areá, width, weight, angle, number., nitrf)gen oontent., ..'2. PetioIe: Length, weight.3. stem: Node number, branohing habit, sugar and staroh oontent, dry weight.4. Roets: Fresh weight, dry weight, sugar and starch, nitrngen oontent, number.5. Ught: ,L. T.R .• totallncident radiation, profile radiation.Expected information .l. Dependence of growth rata on lea! area index and radiation: presence or absence oí optimum L. A. I. for C. G. R.3.5.Contributi~ of carbohydrate stored in the atems before tuber bu1king tb final yield.ReIationship between yield and growth rate after tuber formation.Differenoes in growth associated with broad and fine leaves and their effeet on light penetration. .-1 -1There are several reporte suggesting tbat there is little tf any response to 'N' in eassava. As a erop physiologist 1 find this somewhat surprising. However, casaava ia normal1y grown on light free-draining soils where nitrogen losses will be large. 1t Expected information 1. Nitrogen response x time of application interaction.2. Effects of time of application on nitrogen content of roots. rilte oi plantingThe response oí yuca to climatic changeIJ. particuIarly solar radiation, is not known.To gain preliminary information a series oi monthly plantings using the best known available agronomíc techniques wiIl be grown in simple yield trials.At present the rate of multiplication of planting material is quite low in ,cassava, somewhere in the regíon of 10 times per annu~, For a successful breeding and selection program a much faster rate of reproduction ls requlred.Tbis problem wlll be approached in two ways:1. An assessment oi the feasibility of mist propagation as a means of rapid multiplicatlon using single node cuttings. During this study hormonal and fertilizer treatments wiIl be investigated .2. Investigation of rapid methods of propagation in the field.******.,","tokenCount":"502"} \ No newline at end of file diff --git a/data/part_1/0123276722.json b/data/part_1/0123276722.json new file mode 100644 index 0000000000000000000000000000000000000000..855b822dd9779f5a7ec7da59d220fd9d64851a28 --- /dev/null +++ b/data/part_1/0123276722.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"633b06e590120d4108f1d23170e92daa","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/be30b19d-a28d-4bd5-8af9-7c52d8171609/retrieve","id":"-1901374098"},"keywords":["global barley panel","genetic diversity","barley breeding toolbox","population structure","phenology","association mapping (AM)"],"sieverID":"1a89740f-cc65-46a8-abd3-b3e93b5559d2","pagecount":"18","content":"Breeding programs in developing countries still cannot afford the new genotyping technologies, hindering their research. We aimed to assemble an Association Mapping panel to serve as CGIAR Barley Breeding Toolbox (CBBT), especially for the Developing World. The germplasm had to be representative of the one grown in the Developing World; with high genetic variability and be of public domain. For it, we genotyped with the Infinium iSelect 50K chip, a Global Barley Panel (GBP) of 530 genotypes representing a wide range of rowtypes, end-uses, growth habits, geographical origins and environments. 40,342 markers were polymorphic with an average polymorphism information content of 0.35 and 66% of them exceeding 0.25. The analysis of the population structure identified 8 subpopulations mostly linked to geographical origin, four of them with significant ICARDA origin. The 16 allele combinations at 4 major flowering genes (HvVRN-H3, HvPPD-H1, HvVRN-H1 and HvCEN) explained 11.07% genetic variation and were linked to the geographic origins of the lines. ICARDA material showed the widest diversity as revealed by the highest number of polymorphic loci (99.76% of all polymorphic SNPs in GBP), number of private alleles and the fact that ICARDA lines were present in all 8 subpopulations and carried all 16 allelic combinations. Due to their genetic diversity and their representativity of the germplasm adapted to the Developing World, ICARDA-derived lines and cultivated landraces were pre-selected to form the CBBT. Using the Mean of Transformed Kinships method, we assembled a panel capturing most of the allelic diversity in the GBP. The CBBT (N=250) preserves good balance between row-types and good representation of both phenology allelic combinations and subpopulations of the GBP. The CBBT and its genotypic data is available to researchers worldwide as a collaborative tool to underpin the genetic mechanisms of traits of interest for barley cultivation.The new advances in genotyping technologies and genomic research applied to breeding (Genome Wide Association Studies and more recently Genomic Selection) have the potential to bring the largest yield productivity increase and stability improvement since the Green Revolution. The efficient use of these new tools is important to attain the production needed to feed the increasing population in a scenario of climate instability. These new approaches have been widely adopted thanks to new low-cost and high throughput genotyping technologies (Paux et al., 2010;Rimbert et al., 2018). However, despite the reduced cost, many public and private breeding programs, mostly in developing countries, still cannot afford them and as a result, a new technological gap between the developing and developed world has arisen.Barley (Hordeum vulgare L.) covers 50Mha worldwide, ca. 20Mha of them in developing countries (Food and Agriculture Organization of the United Nations, 2022). Its drought tolerance and integration in the traditional crop-livestock farming systems make this crop an integral part of the strategies to cope with Climate Change, especially in the Dry Areas (Sanchez-Garcia, 2021). With the mandate to develop new barley varieties and cutting-edge research for the developing World, the CGIAR Global Barley Breeding program of the International Center for Agricultural Research in the Dry Areas (ICARDA), in collaboration with national partners, has successfully developed, since 1977, more than 250 cultivars released and adopted by farmers. Genomic studies have been an integral part of the research carried out in the program to underpin the genetic control of traits of interest such as drought tolerance (Varshney et al., 2012), disease resistance (Visioni et al., 2018;Visioni et al., 2020) and nutritional and malting quality (Gyawali et al., 2017;Bouhlal et al., 2021) among others. This research has been integrated into the breeding program and the new germplasm developed carries novel QTL for traits of interest, benefiting partners Worldwide. However, despite the large network of testing locations and phenotyping capacities that the program uses -mostly in Morocco, Egypt, Ethiopia, Lebanon and Indiathe capacity to identify new QTL is still limited, especially for stresses not occurring at the testing locations. A collaborative network of scientists, particularly from the developing world, testing the same germplasm across local conditions and stresses and for traits of interest could help identifying new relevant alleles that will then be available to the whole network.Several highly diverse barley populations have been assembled in the last 30 years to study the genetic control of traits. Most of these populations consisted in core collections of major genebanks (Van Hintum et al., 1995;Igartua et al., 1998;Muñoz-Amatriaıń et al., 2014) or even multilateral efforts such as the International Barley Core Collection in 1989 (Knüpffer and van Hintum, 2003). Also, collections of modern varieties and elite germplasm have been used (Looseley et al., 2020), however, many of these populations are not representative of the barley varieties adapted to the developing world or are too large to be grown with limited resources. In addition, only a limited number of them take advantage of the new genotyping technologies that allow the use of large number of representative stable markers such as the 50k Illumina Infinium iSelect genotyping array for barley (Bayer et al., 2017) or are not freely available to the international community.When studying subpopulation genetic differentiation, Muñoz-Amatriaıń et al. (2014), found that many differentially selected genomic regions are coincidental with, or near to known loci involved in flowering time and spike row number. Russell et al. (2016) reported similar differentiation between two and six-row germplasm close to the location of VRS1 on c h r o m o s o m e 2 H ( K o m a t s u d a e t a l . , 2 0 0 7 ) and INTERMEDIUM-C on chromosome 4H (Ramsay et al., 2011) known as controlling the number of fertile florets in barley. In fact, the two spike morphologies have traditionally been separated geographically, and this separation has been reinforced by modern plant breeding (Muñoz-Amatriaıń et al., 2014). Therefore, any efforts in producing new mapping populations have to take into account the balance between row-types as well as other morphological or genetic traits that can impact the population's genetic structure.The main objective of the present study was to identify and assemble an Association Mapping panel of 250 barley genotypes to serve as a barley breeding toolbox, especially for the Developing World. To this aim, we took advantage of the extensive expertise of ICARDA on germplasm exchange through its network of international collaborators, on the consistent use of genebank material in the breeding program and recent efforts to develop relevant association panels to assemble and genotype a Global Barley Panel (GBP) of 530 barley entries. This panel includes entries representing the different barley uses (feed, forage, malt and food), morphophysiological traits and phenology patterns and local and regional preferences. It is using the information gathered from this Global Barley Panel that we aim to constitute a barley breeding toolbox that represents the global diversity in the GBP and: i) is representative of the germplasm grown in the Developing World; ii) covers a wide range of genetic variability, morphophysiological traits and phenology groups and iii) is of public domain or international public goods to facilitate germplasm exchange.A Global Barley Panel (GBP) of 530 genotypes mainly considered of spring-type, including elite lines, cultivars, and landraces from different geographic origins was assembled. The GBP includes a significant number of elite lines and cultivars from the ICARDA Global Barley Breeding Program of the CGIAR, both from the ICARDA program previously based in Syria, now in Morocco and Lebanon, and from the ICARDA/ CIMMYT Latin-America program based in Mexico, merged during the first decade of the 2000s. The set represents a worldwide spectrum of barley genetic variance with diversity of row-types, end-uses, growth habits and geographical and environmental distribution. Out of the 530 genotypes (292 two-row and 238 six-row types), 288 are from the ICARDA Global Barley Breeding Program, 61 from the United States of America (USA), 48 from Europe, 40 from India, 23 from Australia, 19 from Canada, 12 from Africa, 6 from Latin America and 16 from other countries across the globe. The Panel also includes 17 landraces from different countries (Figure 1). A detailed list of the genotypes used is provided in Supplementary Table S1.The genotyping work was done in two events. The first 266 entries were genotyped as described in Verma et al. (2021). For the second event, genomic DNA was isolated from lyophilized 2week-old leaf tissue from a single plant from each genotype as described in (Slotta et al., 2008). The GBP was genotyped using the recently developed barley Infinium iSelect 50K chip (Illumina, San Diego, California, USA) (Bayer et al., 2017) by TraitGenetics GmbH using the manufacturer's guidelines. Out of 43,461 scorable SNP markers (Bayer et al., 2017), 40,342 were polymorphic (Supplementary Table S2). A final set of 36,253 SNPs was obtained after removing markers with minor allele frequencies (MAF) < 5% and markers with > 10% of missing data. The distribution of the filtered SNPs across the seven barley chromosomes was illustrated using the CMplot package (Yin et al., 2021) for R statistical software (R Core Team, 2019).From the set of 40,342 SNP markers, a subset of 40,256 polymorphic markers with known physical positions was selected to perform the linkage disequilibrium (LD) analysis for each chromosome using TASSEL 5.0 software (Bradbury et al., 2007) and a sliding window of 50 SNPs. The LD for locus pairs within the same chromosome was estimated as the squared allele frequency correlations estimates (R 2 ) and significant corresponding p-values ≤ 0.01. The R Statistical Software (R Core Team, 2019) was used to estimate the extent of LD by nonlinear regression analysis based on all intrachromosomal R 2Characterization of the 530 genotypes used based on row number (A, C) and geographic origin (A, B). values as described in Hill and Weir (1988) and implemented in Remington et al. (2001). After analyzing the distribution of the observed R 2 values, the critical R 2 value was set to 0.1, which refers to the minimum threshold for a significant association between two loci. The distribution and extent of LD were visualized by plotting the R 2 values against the genetic distance between same-chromosome markers (Mb).To estimate the genetic diversity within the GBP, a Principal Component Analysis (PCA) was conducted with the filtered SNP marker set using TASSEL version 5.0 (Bradbury et al., 2007), and the first two eigenvectors were considered. The unrooted neighbor-joining (NJ) clustering algorithm under the Provesti's absolute genetic distances was applied using the R package poppr (Kamvar et al., 2015) to investigate the relationship among barley accessions. The R packages, ggtree (Yu, 2020) was used to visualize the NJ phylogenetic tree. Analysis of molecular variance (AMOVA) implemented in the R package poppr (Kamvar et al., 2015) was used to assess the genetic diversity between and within major clusters (row types and geographic origins) defined by PCA and the NJ clustering. For AMOVA of geographical origin, we excluded the \"Other\" group since it includes cultivars from different origins. The population differentiation was assessed based on population pairwise Fst calculated using hierfstat package (Goudet, 2005). Diversity indices analyses including Nei's unbiased gene diversity (Nei, 1978) and allelic richness were calculated using the \"locus_table\" and \"poppr\" function of poppr R package (Kamvar et al., 2014).AMOVA was used to assess the extent of genetic diversity existing within the 530 barley genotypes based on flowering genes. For it, SNP markers associated with major flowering time genes in barley were selected: BK_05 (T/C) associated to HvVRN-H3 (FT1) gene, BK_14 (A/G) associated with HvPPD-H1 gene, BK_17 (C/G) associated to HvVRN-H1 gene, and BOPA2_12_30265 (A/G) associated with HvCEN gene (Comadran et al., 2012). AMOVA tests were used to calculate the variation explained by each of the SNP markers associated with flowering genes and the 16 allelic combinations (AC) of the 4 markers. The list and detailed information of the selected SNPs are provided in Supplementary Table S4. AMOVA was conducted using the R package poppr (Kamvar et al., 2014). The AC obtained from the SNPs were used to identify germplasm classes based on their earliness and lateness. LD parameter (R 2 ) calculated by TASSEL software (Bradbury et al., 2007) was used to test whether the selected SNPs were in LD with each other (Supplementary Table S3).The 36,253 filtered SNP markers were used to calculate individual admixture coefficients using the sparse Nonnegative Matrix Factorization (sNMF) algorithm implemented in the R package LEA (Frichot and Francois, 2015). This method was specifically developed to estimate individual admixture coefficients on large genomic datasets. The sNMF algorithm estimates ancestry independently for each individual and does not require prior assumptions about population membership. We used the cross-entropy criterion from the snmf function (Alexander and Lange, 2011;Frichot et al., 2014) to test several putative populations (K) ranging from K=2 to K=15. For each K we set the number of runs to 10, alpha to 10, tolerance to 10 -5 , and the iterations number to 200. Lines with strong admixture were defined as those showing less than 70% of identity (membership) with any ancestry in the model (Supplementary Table S5).To select a subset that represents the diversity of the population and at the same time provides an optimized set of entries for association mapping studies we used the R package GeneticSubsetter (Beukelaer et al., 2012;Graebner et al., 2016). For it, we used the Local Search subsetting option that produces single-genotype replacements repeatedly to multiple random starting subsets, until no more single-genotype replacements can be made with 100 iterations. The subsetting criteria used was Mean of Transformed Kinships (MTK) which measures the kinship of genotypes in a subset and identifies the most dissimilar set of genotypes, a favorable trait for GWAS studies.A total of 40,342 polymorphic SNP markers were retained after removing monomorphic markers and used for further genetic analysis. Only 86 SNP lacked chromosomal and physical map position information. The highest number of markers per chromosome was observed in chromosome 5H followed by 2H with 7,545 and 6,718 SNP respectively while chromosome 1H had the lowest number of SNPs amongst the seven chromosomes with 4,415 SNP. The MAF ranged from 0.26 to 0.28 with chromosome 4H having the lowest average MAF. The PIC values ranged from 0.34 to 0.36 among chromosomes and an average density of 8.54 SNPs per Mbp was calculated (Table 1). Diversity statistics computed for each SNP are summarized in (Supplementary Table S3). The minimum PIC value for SNPs was 0.003 with an average of 0.35. Most of the markers (66.12%) displayed PIC values exceeding 0.25, indicating the informativeness of the genotyping in our population. The SNPs density along the seven barley chromosomes was higher in proximal and distal portions compared to pericentromeric regions (Figure 2A). The mean R 2 values for the whole genome decreased with increasing pairwise distance. In general, LD showed a fast rate of decline, and the decay distance was approximately 0.3 Mb (Figure 2B).We conducted PCA using the filtered set of 36,253 SNP markers to evaluate the genetic diversity of the 530 barley genotypes. The PCA of the GBP showed a clear differentiation based on row type and geographic origin. The first axis of the PCA, explaining 8.6% of the genotypic variance, separated the genotypes according to their row type, being the 2-row genotypes located towards the negative side of the axis and 6row ones in the positive (Figure 3A). The same separation was observed with the phylogenetic tree (Figure 3C). In addition, two-rowed genotypes were grouped into five subgroups, the first was composed mainly of entries from Australia and ICARDA; the second was mostly from USA; the third grouped genotypes from Canada, USA and ICARDA; the fourth was predominantly from Europe, and the subgroup 7 was composed mainly of ICARDA entries. The six-rowed barley genotypes were split into three groups, with the first one (subgroup 5) composed of ICARDA, India, North and South America, the second (subgroup 6) and third (subgroup 8) represented two genetically different subgroups of ICARDA genotypes, as observed in the two-rowed genotypes (Figure 3B). Landrace genotypes were not grouped in distinct group while presented in separated clusters together with genotypes from other origins.The genetic variation between and within groups was further explored through AMOVA tests and the analysis of genetic diversity parameters (Tables 2, 3, respectively). AMOVA revealed that the row type grouping accounted for more than 10.6% of the whole genetic variation (Table 2). This result supports the grouping defined by the first PC in the PCA (Figure 3A). The six-rowed genotypes contributed to a higher share of genetic variation within populations as compared to two-rowed genotypes (Table 2). Six-rowed genotypes contained a higher number of polymorphic loci (Npl), higher MAF and PIC values than two-rowed genotypes. The allelic richness (Ar) and the number of private alleles were higher in two-rowed genotypes. However, equivalent values were observed between row types for Nei's unbiased gene diversity (He) (Table 3).To better describe the pattern of genetic diversity across the geographic origins, the \"Other\" group was removed and nine subgroups (Africa, Australia, Canada, Europe, ICARDA, India, Landraces, Latin America, and USA) were considered for analysis. The cultivated landraces were considered as a separate group to avoid distorting the genetic integrity of the geographic groups, as the rest of the lines are either released varieties or advanced breeding lines. The AMOVA of this grouping explained up to 12.32% of the total genetic variation (Table 2). The genotypes from ICARDA, USA, and Africa groups contributed the most to the genetic variation as reflected by the mean squares. The genotypes from ICARDA contained the highest number of polymorphic loci and of private alleles. The lowest value of allelic richness was found in the Latin America population (1.4), probably due to the low number of entries in the group, while the ICARDA population showed the highest value (1.65). The Nei's gene diversity varied from 0.26 (Europe) to 0.34 (ICARDA and Africa). The lowest MAF (0.17%) and PIC (0.24) were obtained for the Latin America population, while the Africa population showed the highest values with 0.28 and 0.37, respectively (Table 3). However, in pairwise differentiation among geographic groups, the highest Fst and therefore the highest difference was found for India vs Europe (Fst = 0.26) followed by Landrace vs Europe comparison (Fst = 0.25). Large differences were also found between, Australia vs Landrace (0.23) and Australia vs India (Fst=0.22) (Table 4). These results confirm the distinctiveness of European population from the other populations as reflected also by the PCA (Figure 3B). The ICARDA group showed generally lower pairwise Fst values, and therefore genetic distance as compared to all the other groups, despite the relatively higher Fst values shown with the European, Canadian and Australian groups (Table 4).Population subgrouping using sNMF, cross-validation and the cross-entropy criterion approaches gave further information regarding the genotypic structure of the GBP. The cross-entropy criterion did not exhibit a minimum value or a clear plateau and steadily decreased at higher k values (Supplementary Figure 1). However, substantial reductions of the criterion could be observed from cluster 2 to 8. Using 70% membership as a threshold, entries were assigned to different subpopulations at each K. Individuals whose highest ancestry coefficient is less than 70% were considered as admixed. Germplasm groups defined by sNMF with the number of ancestral populations corresponded USA and SubPop8.7 representing India. Over half of the genotypes placed in SubPop8.1 (SubPop7.5) were \"PETUNIA 1\" and its derived genotypes. Genotypes assigned to SubPop8.5 (SubPop7.7) were mostly issued from crosses with the cultivar \"Rihane-03\". Similarly, genotypes included in SubPop8.8 (SubPop7.3 and SubPop4.3) were mainly derived from crosses with the cultivar \"CANELA\". Most of the unassigned entries (admixed; n=356) observed in the collection were from ICARDA (58%) and to a lesser extent from USA (9.83%), and India (7.02%).In addition to the genetic structure of the population, the diversity based on four SNPs previously identified as linked to major flowering genes (HvVRN-H3 (FT1), HvPPD-H1 HvVRN-H1 and HvCEN) and generating sixteen allelic combinations (AC) was studied. The AMOVA of the genetic differentiation between and within each flowering locus and their allelic combinations was conducted (Table 5). The marker associated to HvCEN explained the highest variation (11.11%) among populations followed by those associated to VRN-H3 (4.33%), while the VRN-H1 explained the lowest (2.53%) variation among populations. The sixteen allelic combinations explained 11.07% of total genetic variation. Fifteen genotypes with missing SNP data were not considered when calculating AMOVA based on allelic combinations. The sixteen allelic combinations were classified from the latest flowering (AC1) to the earliest (AC16; Figure 5A) on the base of the mean values of heading date recorded in 20 environments across Morocco, Lebanon, and India (data not shown).All sixteen allelic combinations were present in the 275 genotypes from ICARDA origin. Thirteen allelic combinations were detected in USA group, eight in European, Australian and \"Other\" barleys, and seven in Indian genotypes. The most frequent allelic combinations in the germplasm were the early flowering AC15 (21.17%), AC12 (12.62%) and AC16 (12.43%). AC11 and AC13 were less frequent and unique to the ICARDA and Landrace populations. (Figure 5C; Supplementary Table S5). The PCA showed a clear distribution pattern of allelic combinations based on their effect on phenology. Genotypes associated with late allelic combinations were grouped on the negative side of the first PC while the early ones were more widespread (Figure 5A). Allelic combinations with late flowering characterized most two-rowed European, Canadian and USA genotypes and, to a lesser extent, the two-rowed African, Australian and Other origins (Figures 5A, B). The distribution of different allelic combinations within germplasm origin groups is shown in Figure 5C.Figure 5D shows the assignment of allelic combinations to different clusters in the phylogenetic tree. The group of 2-rows genotypes comprises entries carrying late or intermediate flowering allelic combinations, mostly from USA, Canada and Europe origins belonging to groups 2,3 and 4, respectively. On the other hand, genotypes from ICARDA and Australia (cluster 1) carry early to intermediate flowering allelic combinations. Interestingly, Cluster 7, mainly composed of ICARDA entries, is characterized by early allelic combinations, with few genotypes having late flowering allelic combinations. The 6-row genotypes are mostly grouped in Clusters 5, 6 and 8 that are mostly composed of entries from ICARDA, India and other origins carrying early flowering allelic combinations. mostly USA, Canada and Europe origins respectively. In particular, the allelic combinations showing the earliest average flowering (AC15 and AC16) were most frequent in ICARDA genotypes, while most European and USA barleys carried the allelic combinations associated to the latest average flowering (AC1 and AC2). Two-rowed genotypes from USA carried mostly late flowering allelic combinations while in the six-rowed genotypes early flowering allelic combinations predominated. Frequent allelic combinations within Australian barleys were of the intermediate flowering AC9 (36%) and the early flowering AC12 (27%). Indian genotypes and Landrace included in this study carried predominantly the early flowering AC15 (28.2%; 43.8%), AC12 (10.8%; 18%) and AC10 (28.2%; 18%) respectively. These results indicate that the materials used in the analysis are carrying specific flowering allelic combinations linked to their geographic origins.To assemble a collection of diverse barley germplasm representative of the germplasm grown worldwide and with particular emphasis on Developing World a subset of the full collection was selected. Instead of considering the whole GBP for the subset, where many lines are proprietary, we used the 312 entries mostly from CGIAR origin (including cultivars released in developing countries) and the landraces. The reason for this was to fulfill the three objectives of the present study, that is, that the panel developed is of public domain and free to use; that is relevant to the developing world and that it represents a wide genetic diversity (Figure 6). The subsetting was done using the Mean of Transformed Kinships method aiming at a final number of 250 entries. Up to 99.72% of the polymorphic markers present in the GBP set were also polymorphic in the new CGIAR subset. The distribution of the missing markers showed chromosome 7H as the one with less coverage (31) while chromosome 1H showed the highest coverage with only 3 markers missing. Moreover, 426 of the 471 rare alleles (alleles carried by <1% of the lines) of the total population are present in the subset. After filtering for minor allele frequency (MAF≥5%)and missing data (<10%), the number of polymorphic markers in the CGIAR set was 35,854, that is, 89% of the total number of polymorphic markers and 98.9% of the ones present after filtering in the GBP.The subset continues to preserve a good balance between the row type with a slightly larger proportion of 6-row types (55% of the 250 entries) over the 2-rowed types as compared with the Global population (46% 6-row and 54% 2-row) (Figure 6). The selected subset showed a good coverage of most of the PCA spectra except the most negative values in PC1, where the European, Canadian and USA varieties are located (Supplementary Table 6). In fact, entries from all the SubPopulations identified in the present study are enclosed in the subset. The proportions are similar in the subset as compared to the Global Panel except for SubPopulation 1, 3 and 6 in which the subset shows a smaller proportion as compared with the GBP (Figure 6). These 3 SubPopulations are characterized by harboring entries from USA, Canada and Europe, the 3 origins identified as some of the least related to ICARDA material (Table 3). It is noteworthy to mention that all the Allelic Combinations identified at the most important phenological loci are represented in the subset (Figure 6). The characterization and dissection of genetic diversity and structure present in current germplasm collections help the breeders to meet breeding goals through the identification of beneficial alleles for traits of interest associated to molecular markers (Tester and Langridge, 2010;Al-Abdallat et al., 2017;Mazzucotelli et al., 2020). With this aim, in this study we explored the genetic diversity of a large global barley panel, comprising two-and six-rowed barley, from nine geographic origins and with different end-uses. The size and diversity of the panel used makes it a relevant tool for exploring the genetic diversity available for breeders.Out of the 43,461 scorable SNPs markers of the 50k iSelect SNP array (Bayer et al., 2017), 40,342 SNPs were found polymorphic in the global barley panel. Thus, 92.5% of all potential markers were segregating in our panel and 89.8% of them did so in a significant number of genotypes (MAF>5%) and with minimum data loss (missing data<10%).This result is similar and often higher than other reports of 39,733 SNPs (Darrier et al., 2019);33,818 SNPs (Novakazi et al., 2020) and 37.242 SNPs (Cope et al., 2020). The highest number of SNPs was found on chromosomes 5H and 2H, respectively, while chromosome 1H contained the least number of SNPs accordingly with Bayer et al. (2017). Using the filtered set, we reported high gene diversity (0.35) and PIC (0.35), which indicates a similar level of genetic diversity as compared to previously studied collections. Higher PIC values have been reported for 170 Canadian cultivars and breeding lines (PIC=0.38; Zhang et al., 2009) and wild and cultivated barley (PIC= 0.38 and 0.35 respectively; Dai et al., 2012). Recent genomic studies reported lower gene diversity and PIC values in diverse germplasm collections including landraces, wild and cultivated barley (Pasam et al., 2012;Bengtsson et al., 2017;Amezrou et al., 2018;Verma et al., 2021). The high level of genetic diversity reported is probably a result of the wide range of worldwide germplasm collected across years and of the different objectives of the breeding programs. Particularly, the large proportion of ICARDA Global Barley Breeding Program elite lines (54.3%) contributed greatly to genetic diversity. This is probably due to its extensive use of genetic resources from the ICARDA Genebank and from the extensive breeding efforts and international collaborations and germplasm exchange needed to address the needs of a global breeding program.Principal components analysis (PCA) and the NJ clustering partitioned the 530 entries into two clearly defined groups based on row-type (2-row vs 6-row) and highlighted the presence of subgroups characterized by common or closely related origins. Furthermore, AMOVA analysis indicated that germplasm origin could also explain a significant part of genetic diversity. The variation explained by geographic origin was higher than the value reported by Jilal et al. (2008) for a worldwide collection of 304 barley landraces from seven countries. The row type grouping captured 10.6% of the total genetic variance, which was lower than Malysheva-Otto et al (2007) for 504 European barley cultivars released during the 20th century suggesting that the diversity of this panel goes beyond the row type genepools. Row type in barley has been shown in the past to be one of the main determinants of the genetic structure, both due to the inherent nature of the trait which is associated to major regional preferences and its association to the different barley end-uses (Komatsuda et al., 2007;Saisho et al., 2009;Zhou et al., 2012). Most European countries exclusively use two-row barley for malt, while in North America, six-row varieties have played an important role in brewing (Verstegen et al., 2014;Milner et al., 2019). When comparing the genetic diversity, the six-row group showed more Npl, Nua, Ar, MAF, PIC values and genetic diversity relative to the number of genotypes as compared to the 2-row group. Higher MAF and PIC of six-row barley was also reported for a global barley panel (Hill et al., 2021), while the opposite was true for a Canadian barley collection (Zhang et al., 2009).The group of ICARDA germplasm showed high genetic diversity as revealed by the number of polymorphic loci, number of unique alleles and Nei's unbiased gene diversity. Moreover, 99.72% of the 40,342 polymorphic SNPs in the panel were so in the ICARDA population too. Interestingly, the lower differentiation between ICARDA germplasm and most of the other origins evidenced the long-lasting collaborations between the Global Program and national and regional breeding programs. In fact, more than 250 spring and winter 2-row, 6row and naked barley varieties of ICARDA origin have been released in 46 countries since 1979, including USA (5 varieties), Canada (15 varieties), Australia (4), India (8 varieties) and some African (70) and Latin American (27) countries among others. ICARDA germplasm has in addition being extensively used in crosses in the National programs. Interestingly, the Indian germplasm is closely related to the groups of Landrace, ICARDA and Africa, while distinct from the other groups. Landrace group exhibited the lowest Npl, MAF and PIC values which may be explained by the under-representation of Landrace genotypes during the development of the 50K SNP array (Bayer et al., 2017;Darrier et al., 2019).Latin American germplasm exhibited the highest He, MAF, PIC although having the lowest number of individuals (5) as compared to other origins. This could be due to the diverse source of genotypes originating from different countries (Argentina, Peru, Ecuador and Uruguay). Despite American malting varieties being obtained through hybridization with European accessions, the national industrial standards for malting and brewing have led to the development of germplasm with specific characteristics (Matus and Hayes, 2002). The European barley germplasm showed the lowest allelic richness and genetic diversity as compared to other geographical origins. Similar findings were achieved in a previous study by Malysheva-Otto et al. (2006) when conducting a genetic diversity study with 953 barley accessions and 48 SSR markers. Furthermore, it has been suggested that the replacement in Europe of six-row spring barley by two-row spring barley during the 18th and 19th centuries led to a loss of diversity (Backes et al., 2003). In addition, the European varieties used were also the least related to the ICARDA germplasm. This could be due to the type of environments these varieties target in Europe. Most of the European varieties used in the present study were released in West, Central and Northern Europe where the type of environment and stresses associated differ from the main target areas of the Global Barley Breeding Program. In fact, while there have been collaborations between ICARDA and research groups from these countries both nowadays and in the past, practically all 25 ICARDA originated varieties released in Europe have been so in countries of the Mediterranean Basin.In the current study, we also analyzed the allelic diversity at four SNPs associated with key flowering genes (HvCEN, HvVrn-H3, HvPpd and HvVrn-H1) and their additive effect on the phenology and adaptation of the panel studied. These highly polymorphic (PIC > 0.4) loci were not in LD (Supplementary Table S2) and showed to be associated to the genetic structure of the population. The different allelic combinations of the four markers used explained 11.07% of the total variance and the distribution of HvCEN was the main driver of the association between the flowering genes and genetic structure of the population with minor effects of the other flowering genes studied. This influence was even more evident in the PCA graph which, in addition, shows clear geographical structuring based on earliness/lateness of the constructed allelic combinations. Comadran et al. (2012) and Russell et al. (2016) found that the patterns of single and multiple-flowering gene combinations contributed to a wide range of ecogeographical adaptation in barley.The ICARDA group contained all sixteen allelic combinations indicating high allelic variability that could provide adaptation to different environments and farming practices. Notably, in the rest of the germplasm, most of the genotypes harboring early-flowering allelic combinations are six and two-row barleys from India, ICARDA and Australia, while most of the accessions with late allelic combinations grades are two-rowed barleys from Europe, USA, Canada and Latin America. However late-flowering allelic combinations were also present in low frequencies in two-rowed genotypes from Africa, Australia, and ICARDA. Alqudah et al. (2014) found a similar separation of a spring barley collection based on the response to photoperiod and reduced photoperiod sensitivity (Ppd-H1/ppd-H1) at heading time. In this study, most of the accessions in the PpdH1-group were six-rowed barleys from West Asia and North Africa (WANA) region and East Asia (EA), while most of the accessions in the ppd-H1 group were two-rowed barleys from Europe. Spring barley accessions originating from regions where the growing season is short and with a dry summer (WANA, India e.g.) tend to carry photoperiod responsive Ppd-H1 alleles, causing early heading under LD, while late-flowering allelic combinations in European and North American accessions of spring barley could be due to reduced photoperiod sensitivity, ppd-H1, alleles as reported earlier by (Turner et al., 2005;Wang et al., 2010;Alqudah et al., 2014). Saisho et al. (2011) highlighted the geographic distribution of vernalization requirements in domesticated barley; western regions including Turkey, Europe, North Africa, and Ethiopia were strongly associated with a higher degree of spring growth habits, while the extreme winter growth habits were localized to Far Eastern regions including China, Korea and Japan. In the European-cultivated germplasm, most variation in vernalization requirement is accounted for alleles at the VRN-H1 and VRN-H2 loci, as the majority of European varieties are thought to be fixed for winter alleles at the VRN-H3 locus (Cockram et al., 2007). In the Landrace group predominated early-flowering allelic combinations and showed an allelic profile similar to India and six-rowed genotypes representing CWANA region. The barley landraces have adapted to seasonal photoperiod and temperature by changing their growth habit from a facultative winter-planted species in its center of origin to a short-season spring-planted crop on the northwestern fringes of Europe and highland plateaus of Central Asia (Comadran et al., 2012).It is generally agreed that the principal sources of structure in diverse collections of barley germplasm are spike row number, growth habit, and geographic origin (Cuesta-Marcos et al., 2010;Hamblin et al., 2010;Comadran et al., 2012). The results obtained through population structure, principal component analysis, neighbor-joining clustering analysis indicate a separation based on inflorescence type, geographic origin and phenology. Generally, PCA does not always classify accessions into discrete clusters, especially not when admixed accessions and accessions of various geographical origins are included (Glaszmann et al., 2010). In our case, subpopulations defined by sNMF correspond to discrete clusters in the PCA space. At K=2, a division according to row type was the main driver. Finer subdivisions at higher K could be interpreted based on geographical origin, phenology and row type generally within the discrete clusters established by the phylogenetic tree. Earlier studies reported similar population divisions (Muñoz-Amatriaıń et al., 2014;Al-Abdallat et al., 2017;Bengtsson et al., 2017;Amezrou et al., 2018;Milner et al., 2019;Verma et al., 2021).Two-row cultivars from Australia, USA and Canada alongside two-rowed varieties from Latin America and Europe were mostly grouped in the first, second, third and the fourth clusters, respectively. This relatedness can be explained by the European origin of American cultivated barley that was introduced in the continent from Europe nearly 500 years ago. Then after, the similar climate and continual human migration has likely led to subsequent introductions and exchanges (Casao et al., 2011). This relatedness could be seen already since the K=2 separation population structure. However, at higher Ks, the USA and Australian, most of them malting barley types, formed relatively distinct and stable groups within the diversity observed across the panel and had little overlap with the genotypes from other groups. This was especially true also for the European two-rowed barleys. Malysheva-Otto et al. (2006) suggested that the lower genetic diversity existing in European barley may be explained by the fact that exotic varieties were very rarely involved in the breeding programs in Europe. It is also important to note that two-rowed barleys are mostly malting types which may lead to specialized breeding gene pools. Two-rowed genotypes grouped in cluster 7 were from ICARDA origin and showed also distinctiveness at least from K=4 (SubPop4.3). These lines included the cultivar CANELA and its derived crosses (Supplementary Table S4). CANELA is a 2-row malt barley resistant to at least 7 diseases, issued from the ICARDA/CIMMYT Latin America breeding program where the focus on malt barley was particularly strong as compared to the Syrian program.Cluster 5, 6 and 8 assembled most of the 6-row barley lines of the panel. Although in this case, the phylogenetic clustering did not completely overlap with the subpopulations at K=4, at larger K these three clusters were evident. Cluster 5 grouped two subpopulations at K=8. The first subpopulation consisted of USA and Canada 6-row feed barley entries. The second grouped mostly 6-row Indian varieties. Cluster 6 instead consisted of a distinct subpopulation from ICARDA origin (SubPop7.7 and SubPop8.5). Genotypes of this group were mostly derived from crosses with the cultivar RIHANE-03, a mega-variety from the ICARDA Syria program released in several North African and West Asian countries characterized by its drought tolerance. Cluster 8 harbored one subpopulation (SubPop7.5 and SubPop8.2). This subpopulation assembled almost exclusively the 6-row ICARDA lines issued from the ICARDA/CIMMYT Latin America program, notably the lines derived from the cultivars PETUNIA-1 and, especially, 'DOÑA JOSEFA' (aka V-MORALES) a widely adapted 6-row malt barley line. The last subpopulation consisted of genotypes mostly issued from crosses between entries from the Syrian and Mexican programs. Despite this differentiation, the PCA showed some level of overlap in Clusters 5, 6 and 8 suggesting that these subpopulations may have some genetic overlapping that goes beyond the origin.Admixed genotypes at K=8 belonged to nine geographical origins and 57.6% of them were ICARDA breeding lines (47% two-row and 53% six-row). The higher number of admixed genotypes among the ICARDA lines can be explained by their largest population size (53.6% of genotypes present in the collection) and its extensive use of two-by-six row crosses for germplasm improvement (Amezrou et al., 2018;Visioni et al., 2018;Verma et al., 2021). Likewise, two-by-six row crosses hybridization is routinely practiced in India for improving the adaptability of exotic two-row barleys with indigenous six-row cultivars (Verma and Sarkar, 2010).The main objective of the present study was to identify and assemble an Association Mapping panel of barley genotypes that represented the diversity of the Global Barley Panel to serve as a CGIAR barley breeding toolbox (CBBT) especially for the Developing World. For it, the main criteria to select among the lines in the Global panel was: i) to be representative of the germplasm grown in the Developing World; ii) to cover a wide range of genetic variability, morphophysiological relevant traits and phenology groups and iii) be of public domain or international public goods to facilitate germplasm exchange.In order to meet these criteria and due to their large diversity, the CGIAR entries, including landraces hosted in the ICARDA genebank were pre-selected for a total of 241 lines. The Developing World representativity requirement was met due to the global target of the CGIAR Global Barley Breeding program especially in terms of adaptation and end-uses. In fact, most of the CGIAR lines included in the panel have been shared with and selected by National Partners as part of the Barley International Nurseries. These sets of diverse and elite barley genotypes distributed upon request to more than 70 collaborators in 20 countries in America, Europe, Africa and Asia (Sanchez-Garcia et al., 2021) annually have resulted in the release of more than 250 varieties since 1977, mostly in the Developing World. Moreover, these genotypes are transferred as International Public Goods under a Standard Material Transfer Agreement that allows their free use for research, education, and breeding. The CGIAR lines also showed wide diversity and representativity of the whole population. This group of lines showed the largest number of polymorphic loci and together with the landraces covered most of the diversity in the population. Moreover, the CGIAR origin lines are present in all the subpopulations and showed all 16 allelic combinations of phenology genes.However, to facilitate future phenotyping studies and reduce redundancies a core subset of 250 entries was selected using Mean of Transformed Kinships method. The use of this method differs from others like the PIC based one used in other studies such as Muñoz-Amatriaıń et al. (2014) due to the different aim of the subset. In the case of the CBBT, the primary aim is to serve as an Association Mapping panel for researchers that do not have access to one and rare trait discovery is only a secondary objective. However, the subset chosen kept most of the diversity of the Global panel and its morphophysiological traits' proportions suggesting that rare trait discovery is still possible. In summary, the CBBT is a solid and diverse representation of the barley grown in developing countries but also significant in the developed World.The genotypic data of the population is available in Supplementary Table 7 and in Germinate Database (https:// germinateplatform.github.io/get-germinate/). All the data generated on this population will be freely available in Germinate for the global barley community to use.The main objective of the present study was to assemble a collection of diverse barley germplasm representative of the germplasm grown worldwide and with particular emphasis on Developing World. The results showed that the Global panel used in this study is highly diverse and covers a wide range of both genetic variability of cultivated barley and phenology groups. The CBBT assembled represents with fidelity the genetic diversity and key morphophysiological traits of the Global panel. This collection will be made available, together with the genotypic data, to breeders and researchers worldwide to serve as a collaborative tool to underpin the genetic mechanisms of traits of interest for barley cultivation. In addition, the collaborative approach to gene discovery will make this collection a toolbox for breeders that will be able to use the germplasm and the markers identified by researchers worldwide in their own breeding programs.","tokenCount":"7197"} \ No newline at end of file diff --git a/data/part_1/0127063491.json b/data/part_1/0127063491.json new file mode 100644 index 0000000000000000000000000000000000000000..600ac75a5686182ace9ef303ca8878cba05923d8 --- /dev/null +++ b/data/part_1/0127063491.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6a7e21522193e40a5e884ac8db80e7fc","source":"gardian_index","url":"https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistentId=doi:10.7910/DVN/NKH9SW/ICTHC1","id":"181458374"},"keywords":[],"sieverID":"01cfba10-3533-4976-9c4c-b92fd5d4171f","pagecount":"22","content":"Ask the respondents if we can interview them for a few minutes. If YES, then obtain informed consent and then proceed with the interview.Hello. My name is _____________________. We are here on behalf of the Alive and Thrive (A&T) and Integrated Family Health Program (IFHP) to have some understanding about the health extension program and the services aimed at improving infant and young child feeding being provided in the health posts.Your kebele has randomly been selected to participate in this study. We will be asking you several questions about the types of services that you provide; the kind of training you received and your interaction with health extension workers, volunteer community health workers. The information you provide us will be used by the RHB and organizations supporting services in your facility, for planning service improvements or further studies of services. The information you share may also be provided to researchers for analyses, however, any reports that use your data will only present information in aggregate form so that neither you nor the facilities can be identified. We will also inform you regarding the survey results. You may refuse to answer any question or choose to stop the interview at any time. Do you have any questions about the survey? Do I have your agreement to proceed? If you have any questions or queries regarding this survey, please contact Dr. Disha Ali (0911 4664601) of International Food Policy Research Institute (IFPRI)/ Alive and Thrive or Prof Yemane Berhane (0014-168207) of Addis Continental Institute of Public Health (ACIPH).How long have you been working as supervisor?If less than 1 year, write 0 ","tokenCount":"269"} \ No newline at end of file diff --git a/data/part_1/0127385830.json b/data/part_1/0127385830.json new file mode 100644 index 0000000000000000000000000000000000000000..504a1adecf1dce55296ef1eb87f67b8d24668083 --- /dev/null +++ b/data/part_1/0127385830.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"54966a7b399cad3302b91b34aa2760c4","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H041591.pdf","id":"1760525304"},"keywords":[],"sieverID":"a8ac51aa-7091-40ba-9c63-f14d54442b80","pagecount":"13","content":"Management of land, soil and water are intimately related and complementary to each other. Land degradation, and in particular soil quality degradation, is a major factor limiting agricultural water productivity and is often neglected in water management circles. When degradation of agricultural soil resources results in productivity declines that are more limiting than water, then water productivity declines. The best existing evaluation of the extent of soil degradation worldwide is still the Global Assessment of Land Degradation (GLASOD) by Oldeman (1991). Based on this assessment we can infer that on 50% of arable land worldwide, water productivity is below what could have been expected before degradation occurred (Wood et al., 2000; see also Eswaran et al. (2001) for more detailed treatment of yield impacts from land degradation). Soil degradation limits water productivity in cases where absolute quantities of water are not the most limiting factor. This situation is widespread, considering that nutrients can be more limiting than water even in very dry areas, such as the Sahel (Penning de Vries and Djiteye, 1982;Breman, 1998). Addressing these constraints is critical if improvements in water productivity are to be achieved. Increasing awareness of a 'global water crisis' recognizes that the scarcity of clean water does affect food production and conservation of ecosystems. It is predicted that by 2025, most developing countries will face either physical or economic water scarcity, while at the same time global demand for food will increase (Molden, 2007). Because irrigated and rainfed agriculture is by far the largest human consumptive use of fresh water, improving the productivity of water used in agriculture can assist in increasing food production while maintaining water-related ecosystem services. Tackling human-induced degradation of agricultural lands is therefore central to addressing the 'water crisis'.This chapter reviews a range of studies and concepts regarding options for improving water productivity through improved land management that mitigates soil degradation, and aims to highlight its importance as part of a comprehensive strategy to address global water scarcity. The focus is primarily on crop water productivity at the field scale, but the importance of taking a landscape-scale perspective when evaluating impacts of changes in water use is also discussed.Soil and land degradation can be identified and described in terms of physical, chemical and biological changes from some ideal state brought about by natural or man-made influences. Soil degradation is often assessed as the amount of soil material that has been removed from a landscape by water and wind erosion, since these physical changes are obvious and quantifiable. The effects on fundamental chemical properties, soil nutrient supplies and soil biological activity are, however, often less obvious and more insidious in nature. All of these forms of degradation significantly influence water productivity in both rainfed and irrigated production systems (Table 2.1). The degree of impact will depend on the type and level of degradation.The impact of soil chemical degradation on water productivity is predominantly direct. By reducing yields, chemical degradation reduces water productivity. One form and cause of chemical degradation is the loss of soil organic matter, which is a ubiquitous and underappreciated form of degradation. Soil organic matter (SOM) both acts as a substrate upon which the macro-and micro-flora and fauna depend, and also mediates the cycling of nutrients within ecosystems and imparts important chemical attributes to soils, such as cation exchange capacity (CEC) and buffer capacity. When ecosystems are disturbed through changed land use and continuous cultivation, the productivity of most agricultural soils declines rapidly, particularly under humid climatic conditions, due to a loss in SOM (Kang and Juo, 1986;Aweto et al., 1992;Noble et al., 2000Noble et al., , 2001)), accelerated acidification (Gillman et al., 1985;Noble et al., 2000) and a reduction in CEC, thereby limiting the ability of the soil to hold important nutrients.Chemical degradation, including loss of soil organic matter and nutrient depletion, is a form of degradation that has been underappreciated for decades in high-input systems, as inputs can be increased to offset the yield impacts of degradation. For example, yield declines in rice-rice systems in the Indo-Ganges plain were only recently revealed through long-term yield data analysis. These analyses showed a yield decline of 37 kg/ha/year over 20 years (Padre and Ladha, 2004). This represents a 15% decline over the study period, undetected in shorter-term studies. The decline could be reversed through the application of NPK fertilizer and farmyard manure, thus indicating that soil chemical degradation through organic matter and nutrient depletion was the primary cause of observed yield declines (see Penning de Vries, Chapter 5, this volume).The impacts of salinization and waterlogging in irrigated systems are better appreciated. In the irrigation systems of arid and semi-arid zones, one of the largest threats to sustained agricultural production and water productivity is secondary salinization. Although data are poor, estimates indicate that 20% of irrigated land worldwide suffers from secondary saliniza- (Oldeman, 1991).tion and waterlogging (Wood et al., 2000), induced by the build-up of salts introduced in irrigation water or mobilized within the soil profile. Currently, the FAO estimates that 29% of the irrigated land in six countries of the Near East had salinity problems between 1990and 1994(Martinez-Beltran and Manzur, 2005) (Sakthivadivel et al., 1999). Although it is relatively easy to link salinity to poverty, limited information is available that places a monetary value on the social and economic impacts (Ali et al., 2001). Available information addresses mainly crop yield losses on salt-affected soils, revealing estimates of an annual global income loss in excess of US$12 billion (Ghassemi et al., 1995).The impact of physical degradation on water productivity is mainly indirect. By interfering with the soil water balance and the ability of plants to access soil water, physical degradation reduces water productivity. Physical degradation includes soil erosion, crust formation, structural decline, compaction and waterlogging, all of which have a negative impact on yields and hence water productivity. As with chemical degradation, loss of soil organic matter is one of the primary causes of physical degradation because it is vital to the maintenance of soil structure.Soil erosion is one of the most severe forms of soil physical degradation and results in the irreversible removal of fertile surface layers. A decrease in soil depth due to erosion will result in a loss of clay and organic matter, and thereby reduces the water-holding capacity of the soil and soil depth (Stocking, 1994). Both of these impacts will significantly reduce the productivity potential of soils and the physical attributes of the solum. Likewise, the formation of surface crusts will result in a dramatic decline in the saturated hydraulic conductivity of the soil surface, thereby impeding the intake of water into the soil profile and reducing its recharge (Nishimura et al., 1990;Miller and Radcliffe, 1992). Moreover, crusts are known to inhibit the seedling emergence of crops as the crust dries out and develops its hardness (Nabi et al., 2001).As a result of compaction, the total porosity and the proportion of large pores (macropores) diminishes while the proportion of smaller pores increases (Cruse and Gupta, 1991). A decrease in porosity, with an associated increase in soil bulk density, induces an increase in the mechanical impedance of the soil, thereby limiting root proliferation (Oussible et al., 1992;Dunker et al., 1995). Based on field experiments using upland rice, Hasegawa and Kasubuchi (1993) illustrated the water extraction patterns of plants. When a soil profile is thoroughly wet, plants extract most soil water from shallow, densely rooted layers. With a decrease in surface-layer water content, water retained in deeper layers begins to make a larger contribution to transpiration. If a crop has a sparse root system in these deeper layers, the crop ceases to extract soil water, even though there may be sufficient soil moisture at depth. Thus, crops with a poor root distribution system are more susceptible to drought when compared with crops that do not have this limitation.Global water scarcity analyses generally agree that a large share of the world population -up to two-thirds -will be affected by water scarcity over the next few decades (cf. Shiklomanov, 1991;Alcamo et al., 1997Alcamo et al., , 2000;;Raskin et al., 1997;Seckler et al., 1998;Vorosmarty et al., 2000;Wallace, 2000;Wallace and Gregory, 2002). While views diverge as to whether or not this constitutes a 'crisis', it is clear and inescapable that as the global population grows, there will be proportionally less water available per capita, given that the resource base is more or less constant. It is often assumed that such water scarcity means that people will have insufficient water for their domestic use, but this is not necessarily the case. At a minimum water requirement per capita of 50 l/day, the annual domestic requirement is less than 20 m 3 per capita. In fact, the total amount of water required for domestic purposes is small compared with the water required for other basic needs, such as to produce their food (Rijsberman, 2006).People require thousands of litres of water per day to produce their food, depending on their dietary and lifestyle preferences. On average, it takes roughly 70 times more water to grow food for people than people use directly for domestic purposes (cf. SIWI and IWMI, 2004). In addition, the large majority (up to 90%) of the water provided to people for domestic purposes is returned after use as wastewater and can be recycled, while most of the water (40-90%) provided to agriculture is consumed (evapotranspired) and cannot be reused, until it falls again as precipitation.There is broad agreement that future increases in water scarcity will turn water into a key, or the key, limiting factor in food production and livelihood generation for poor people throughout much of rural Asia and most of Africa, with particularly severe scarcity in the breadbaskets of north-west India and northern China. Competition for water is cause for considerable political tension and concern already, for example on the Euphrates and Jordan, and these tensions have little to do with domestic water demand but are driven by water demands for the agricultural sector (Phillips et al., 2006). The Millennium Development Goal (MDG) target to halve the proportion of poor and hungry by 2015 will require feeding 900 million more people and improving the dietary composition of 400 million others. It is estimated that this will require a 50% increase in freshwater use in agriculture by 2015, and a doubling of freshwater consumption by 2050, if production is to keep pace with population growth (Rockström et al., 2005). Analysis of future water requirements also suggests that a large proportion of this increased food production will have to be met in the rainfed agricultural sector (Rockström et al., 2005), due to limitations to the continued development of irrigated agriculture. In Asia especially, new irrigation development faces increasing competition from other sectors of the economy, including industry, urban centres and the environment.Given increasing conflicts over fresh water, and considering that the production of food is the largest consumptive user of fresh water, it is now appreciated that efforts to improve the productivity of water in agriculture can result in significant savings in water diverted or used to produce food. Agricultural water productivity can be a very broad concept, expressing the beneficial output per unit of water input, and encompassing biophysical and social aspects of the relationship between production and water use (Molden et al., 2007). This concept would then have various values at different spatial scales (plant, field, farm, irrigation network, river basin and agroecological zone) and different stakeholders (farmers, system managers, policy makers). Here, we will focus on agricultural water productivity at the plant and field level, where the primary stakeholder is the farmer. Thus, we will concentrate on crop water productivity (CWP), defined as the agronomic yield per unit of water used in transpiration, evapotranspiration (ET), or applied (including precipitated) water. This concept is equally valid for irrigated and rainfed systems and thus also provides a vehicle for exploring water-use options at the basin scale, where a variety of systems and options for development exist.Increasing agricultural water productivity can significantly reduce the total amount of water we will need in the future to produce food. Thus, agricultural water productivity estimates are an important component in scenarios that have been explored to try to estimate future water requirements. For example, under a base scenario that included optimistic assumptions on yield increases and efficiency, Seckler et al. (1998) estimated a 29% increase in irrigated land would be required by the year 2025 to produce enough food to feed the population. But because of gains in water productivity, the increase in water diversions to agriculture would only need to be 17%. FAO (2002aFAO ( , 2003a,b) ,b) and Shiklomanov (1998) had comparable results. FAO (2002b) estimated a 34% increase in irrigated area and a 12% increase in irrigation diversions, and similarly Shiklomanov (1998) projected a 27% increase in irrigated diversions. More recently, scenarios taking into account both irrigated and rainfed agriculture projected that 30-40% more water will be used in agriculture by 2050 than is used today (De Fraiture et al., 2007). This optimistic scenario was based on the assumption of balanced investments in water management in rainfed and irrigated areas, and increased water productivity. Without improved water management the overall increase is projected to be 70-90%. Because of the importance of rainfed agricultural production now and in the future, we are interested in water productivity in both irrigated and rainfed systems.A fundamental but somewhat technical discussion is required to understand how CWP can be improved. For a given crop variety, there is a near linear relationship between plant biomass (leaves, stems, roots, grain, etc.) and transpiration (Tanner and Sinclair, 1983), depending on plant variety and climate (Steduto and Albrizio, 2005). Since the mid-1960s, breeding strategies that increase the harvest index (the proportion of grain to total biomass) have resulted in larger increases in water productivity than any other agronomic practice. These gains, however, are not based on a decrease in transpiration per unit of biomass produced, but instead on an increase in the proportion of biomass that is marketable or consumable produce (usually grain). Thus, the amount of biomass per unit transpiration has not changed through breeding strategies that increase harvest index. This illustrates the perceived 'biological imperative' that to produce more biomass, more water is required for transpiration. Given that it is now thought that the scope for further increases in harvest index seems small, even with biotechnology (Bennett, 2003), where might we identify opportunities to continue to increase water productivity in agriculture?The difference between actual water productivity and this limit represented by plant physi-ology demonstrates the enormous opportunities to increase water productivity. Taking wheat as an example, Fig. 2.1 shows the significant variation that exists in CWP (Sadras and Angus, 2006). The solid line in Fig. 2.1 may represent the biological limits along which increased biomass production requires increases in water use, while most systems surveyed achieved much lower water productivity. The mechanisms to achieve improvement are related to reducing evaporative losses of water or increasing transpiration efficiency, both of which can decrease ET per unit of biomass produced, thus increasing water productivity. Both of these factors can be strongly affected by land management and soil quality. In particular, increased infiltration rates and soil water-holding capacity can reduce evaporative losses, and soil fertility improvement can increase transpiration efficiency. Understanding a simple water balance of a typical farm helps guide an analysis of where opportunities lie to increase water productivity. Water which either falls as precipitation or is applied to any particular field can have several fates: transpiration, evaporation, storage or drainage (Fig. 2.2). Storage and drainage water can still be used productively either on-site or downstream, and is not 'lost' unless its quality declines (through, for example, being drained off into a saline aquifer). Evaporation, however, is a significant by-product of agricultural practices, and does not contribute to biomass production. Evaporation depends on climate (thus CWP is generally higher at northern latitudes with lower temperatures) and soil shading (by leaves of the crop canopy), and can thus be high in rainfed systems in the tropics, with high temperatures and low plant densities. In degraded tropical systems, evaporation is even higher, as infiltration into the soil and soil waterholding capacity are reduced, runoff is rapid and plant densities are very low. Transpired water can also be wasted if crop failure occurs after significant biomass growth. Thus, practices that reduce evaporation and prevent crop failure, such as mulching and fertilizer to increase soil water retention, plant vigour and leaf expansion can significantly increase CWP. Losses due to pests also limit harvestable yields, and hence managing these limitations can also increase water productivity.Transpiration efficiency -the biomass produced per unit of water transpired -is also highly dependent on soil nutrient availability. In fact, it has only recently been appreciated that the linear relationship between transpiration and biomass production only holds at a constant level of nutrient availability. Soil degradation therefore, particularly poor soil fertility, is a primary cause of low water productivity. A recent modelling study by one of us (Nangia), undertaken to understand the role of nitrogen fertilizer in enhancing water productivity, particularly highlights the role of soil nutrient availability as a determinant of water productivity. While a lot of agronomic studies have been conducted investigating crop response to nutrients and water, they were primarily aimed at understanding land productivity and not water productivity. This work, aimed at bridging this gap, concluded that more biomass and harvestable products can be produced per unit of transpired water given adequate nitrogen availability (Fig. 2.3), and that maximizing water productivity was not equivalent to maximizing land productivity. The improvement is most successful when trying to raise productivity from very low levels, such as are common in many degraded rainfed farming systems.The basis for understanding how much CWP can still be improved in practice is provided by a few recent reviews that have quantified CWP variability in irrigated and rainfed systems.These reviews indicate that significant improvement to CWP can be achieved. On irrigated land, Zwart and Bastiaanssen (2004) estimated the variability in WP for major crops based on measurements of actual ET on fields across five continents (Table 2.2) from 84 published studies conducted since the early 1980s. This variability, often up to threefold differences between low and high water productivity, is encouraging since it gives an idea of the tremendous potential that exists to increase CWP. These authors concluded that, if constraints were removed, increases of 20-40% in CWP could easily be achieved. The variation was primarily attributed to climate, irrigation water management and soil management. Similarly, Fig. 2.1 demonstrates the significant variation in CWP for wheat (Sadras and Angus, 2006). In semi-arid zones of sub-Saharan Africa Falkenmark and Rockström (2004) found CWP for maize, sorghum and millet to range from about 2.5 to 15 kg/mm water per/ha. As with Zwart and Bastiaanssen (2004), improving soil management was one of several factors identified that affect CWP.This gap between actual water productivity and potential is largest in rainfed farming systems in semi-arid areas. Falkenmark and Rockström (2004) review the theory and data supporting the significant opportunities that exist to improve water productivity in these rainfed systems. They highlight the tremendous potential to shift from unproductive evaporative losses to productive transpiration. Figure 2.4 shows the relationship between actual CWP as measured by ET and grain produced across a large range of sites in sub-Saharan Africa. Hatfield et al. (2001) support this conclusion, based on an extensive review of studies that examined the potential of soil management practices alone to improve water-use efficiency. Hatfield et al. (2001) estimated that CWP could be increased by 25-40% through soil management practices, such as 'no till', to improve infiltration and soil water storage, and between 15 and 25% with nutrient management. summarizes the idea that, although the biological relationship between water use and biomass may be linear, soil management could significantly push the line towards increased production at the same level of water use, such as illustrated in detail for wheat (Fig. 2.1). Likewise, poor soil management and soil limitations move the line down, limiting water productivity.In another recent review of case studies of resource-conserving agriculture projects (Pretty et al., 2006), it was estimated that improvement in water productivity ranged from 70 to 100% in rainfed systems, and 15 to 30% in irrigated systems (Table 2.3). These estimates were made based on reported crop yields and average potential evapotranspiration (ETp) for each project location during the relevant growing season. Actual evapotranspiration (ETa) was assumed to equal 80% of ETp, and ETa to remain a constant at different levels of productivity. Impacts are attributed primarily to land management changes such as removing limitations on productivity by enhancing soil fertility, and reducing soil evaporation through conservation tillage. The variability was high due to the wide variety of practices represented in the dataset, but do demonstrate gains in WP are possible through the adoption of sustainable farming technologies in a variety of crops and farm systems (Bossio et al., forthcoming).A few detailed field studies from Australia, Africa and Asia serve to highlight these potential impacts. Smith et al.'s (2000) careful study demonstrated this shift from evaporation to transpiration as influenced by soil fertility in a rainfed wheat/lucerne production system in New South Wales, Australia. By increasing fertilizer (i.e. nitrogen) inputs, they were able to demonstrate increases in water productivity of wheat grain as measured by crop evapotranspiration from 8.4 to 14.6 kg/mm of water (Table 2.4). Some interesting trends can be gleaned from these results on improving the CWP of rainfed production systems when limited by the fertility status of the soil. In annual cropping systems, evaporation decreases and transpiration increases with increasing leaf area. As a consequence, the total amount of water consumed through the sum of evaporation and transpiration (ET) in a crop with low leaf area may be similar to that consumed in a crop with high leaf area. In this case, ET of 404 and 439 mm, respectively, was measured between these two contrasting crops. This study therefore clearly demonstrates that it is erroneous to assume that the water use of a high biomass crop will be proportionately greater than that of a low biomass crop, when leaf areas are very different (Smith et al., 2000). In this case, a doubling of grain yield only required a further 35 mm of ET (less than 10% increase) (Table 2.4).Field results from a low-yielding rainfed system in Africa (Barron and Okwach, 2005) demonstrated that water productivity could be dramatically increased and also highlighted the importance of synergistic water and nutrient management to achieve this impact on farmers' fields. Water productivity in a smallholder maize production system in semi-arid Africa was increased from 2.1 to 4.1 kg grain/mm/ha, almost a 100% increase, by using supplemental irrigation to mitigate dry spells. But this increase was only achieved when supplemental irrigation was applied in combination with nitrogen fertilizer (Barron and Okwach, 2005).In cases where soil chemical and physical degradation is extreme, rehabilitation of degraded soils can have an even greater impact, as demonstrated in recent studies on rainfed production systems in north-east Thailand (Noble et al., 2004). Sandy soils in NE Thailand have severe nutrient and carbon depletion after 40 or more years of agricultural production. Low nutrient-supplying capacity, poor water-holding capacity and the presence of a compacted layer at 20-30 cm are the dominant constraints to ensuring yield stability under rainfed conditions. Crop failure is now the norm owing to the extremely low availability of both nutrients and water. Annual precipitation is about 1100 mm, and sufficient for rainfed farming. Adding fertilizers or supplemental irrigation cannot stabilize yields, owing to the soil's very low capacity to retain water and nutrients. A novel approach of adding clay materials to these soils has ensured yield stability, as well as significantly enhancing crop yields (Noble et al., 2004;Noble and Suzuki, 2005). A measure of water productivity in these studies was estimated from the biomass produced per unit of rainfall over the growing season. Water productivity increased from a mere 0.32 kg/mm under the degraded situation to 14.74 kg/mm where constraints such as low nutrient supplies and water-holding capacity were addressed through the application of clay-based materials. These dramatic results are partly attributed to a 28% increase in soil water-holding capacity (Noble and Suzuki, 2005).The primary focus of this chapter has been CWP at field level and the opportunities that exist to improve CWP by mitigating soil degradation through improved land management.We have demonstrated that the potential gain in water productivity through land management interventions, particularly to improve soil quality, is large and, we suggest, generally underappreciated. Various studies estimate that water productivity in irrigated systems could be improved by between 20 and 40%, primarily through land management approaches. In rainfed systems in developing countries, where average crop production is very low and many soils suffer from nutrient depletion, erosion and other degradation problems, potential improvement in water productivity is even higher, and may be as high as 100% in many systems. This is particularly important given that a large share of the needed increases in food production will have to come from rainfed systems.We have emphasized the importance of reducing real losses in the water balance, such as evaporation, by improving soil physical properties, and increasing transpiration efficiency through improved nutrient management as the key entry points through which desired improvements in water productivity can be achieved. This point is particularly important in the watershed or landscape context. If increases in biomass production on site are achieved simply by using more water, without reducing unproductive losses or increasing transpiration efficiency (i.e. water productivity remains constant), this would then simply represent an increased diversion of water from runoff or deep percolation to biomass production on site. This type of diversion would be a reallocation of water that may have been valuable downstream either to maintain aquatic ecosystems or for other productive purposes in a different location. It is not necessarily an increase in water productivity at the landscape or basin scale if water is simply used in a different location. The important entry point for water productivity improvement at larger scales is to reduce real losses of water that occur through evaporation, losses to saline sinks, ineffective transpiration, or useless transpiration resulting from crop failure.The diverse set of studies discussed above clearly demonstrate that improved land management is a very promising way to increase water productivity, particularly in lowyielding rainfed systems. To put this in perspective, the recent Comprehensive Assessment on Water Management in Agriculture reviewed the opportunities to improve agricultural water productivity and found that alternatives such as genetic improvements can be expected to yield only moderate water productivity improvements, although genetic improvements may play an important role in reducing the risk of crop failure (Molden et al., 2007). Synergistic interventions, including improved water management and maintenance of soil quality, have the greatest potential to improve water productivity. There is every indication, therefore, that investing in the rehabilitation of degraded agricultural lands should be taken up as a priority in efforts to mitigate the 'water crisis'. There are additional gains to be had in such an intervention, including maintenance of terrestrial ecosystems, and also the preservation of aquatic ecosystems and their accompanying services, all of which are linked directly to how agricultural land is managed and maintained.","tokenCount":"4542"} \ No newline at end of file diff --git a/data/part_1/0130971300.json b/data/part_1/0130971300.json new file mode 100644 index 0000000000000000000000000000000000000000..acaf5636b85dac26d4e232048b676245cadec890 --- /dev/null +++ b/data/part_1/0130971300.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f65d0aa4f89c7f97d5fb9ccba7b3034b","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/bbdbc9db-640e-4a06-b093-3f6980b2002e/content","id":"-892140292"},"keywords":["Wheats","soft wheat","Triticum aestivum","dwarfs","varieties","genera","taxa","land races","ancestry","provenance. AGRIS category codes: F30 Dewey decimal classification: 633.1123 KLRF/4,IB&cAl/IVZBZ CHIRYA CHIRYA CatAG.CUlIGLEWA\"S\"ELAtfD ELD s M.2A//K.LA /Bllll\"S\".X:-.>. HIPPO\"S\" s PND\"S \"/SPD\"S \"/4./TGE\"S\" /1/PG\"S\" /CENT. .... • lTOC lt32 = TJ/BGL\"S\"BTA\"S'//PHD\"S\"/YE 75/5/El/ARM\"S\"/ /1'12.A/l/AJ>X \"S \"/4/NY\" S \"/BGL\" S\" C llUS\"S\" /JLO\"S\" K2A/CKL t\"J/IRA PTR\"S\"//CIH /FS 651 BGL DEi.IV ./AHTEATEJ.\"S\" lllA/BGL\" S \"//M2A\"' 2/ClN M2A/9ULX E2//CHL\"S\" \"\"\"UJtON 11 S• U&ON\"S\" c OCTO llY/HAB.E//BCH\"S\"/SPY llY.E VACA\"S\" YACA\"S\" s K2A/Cill//PllD\" S\"WHALE\"S\" c W74. 103/ADX\" S \"/3/BGL\"S \"/M2A//lllA WOLP'\"S\" WOLP'\"S\" s CML\" s II /l:AL/ /LOBO\" s II /l/GPR .. s .. /RM\" s.WOMBAT\"S\"WBT\"S\", PG \"S \"/CEMT. BULK//A8N,. S \"/l/JRA/CML 3. Triticale cultivars and advanced lines sorted according to cross numbers.MEllINO\"S\" ltERillO\"S\" c M2A/TCL WHEATY/ /Il!IIA/l/BGL• S\" s PRD\"S \"/MPE 11 $ \"/ /GPR\" S \"/YAK \"S\" X-50 40 8-B-5Y-2Y-1K-l Y-0 WOLP'\"S\" WOLF\"S\" s CML\" s .. /ICAl./ /LOBO .. s \"/ 3/GPR\" s \"/RM\" s II X-50 59 8-A KATZE\"S\" KATZE\"S\" s DACK/WLOSZANOWSKIE//M2A• 2 X-!.3260REH\"S\" REH\"S • s SRL\"S \"//M2A/CAL/5/BUEY/BGL\" S •I X-S4032-B /MFS \"S \"/l/IA/IllA/4/ADX\" S HIPPO\"S\" HIPPO\"S\" s PRD\"S .. /SPD 11 5 .. /4/TGE II s .. /l/PG. s .. IX.-6201 C&KT llULlr.//ABN\"S\" MUSTANG\"$\"MST\"S\" s Al•\"S 11 //M2A /IRA/l/PND\"S\"/CASTOB./ X-6 l l 77-l-2Y-2K-OY 4/416/SPY//TED\" S\" LAMM\"S\" LAHM\"S\" s LMG\"S \"/SPD\" S \"/4/BGL\" S \"/MUS\" S \"/ •... ","tokenCount":"756"} \ No newline at end of file diff --git a/data/part_1/0169811591.json b/data/part_1/0169811591.json new file mode 100644 index 0000000000000000000000000000000000000000..1557a3f29dc2cc0da0c8cd4e093f629127ea81da --- /dev/null +++ b/data/part_1/0169811591.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"39d0bec6436442a8309ad3576ed66a45","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/47b74df8-5ff6-4d7a-ab5e-8698479c39e2/retrieve","id":"1510427520"},"keywords":[],"sieverID":"094ad089-6e43-4905-88cb-b1e6ff94c9eb","pagecount":"5","content":"The impacts of climate change in Eastern and Southern Africa (ESA), are already well known to farmers. Climate change affects women more negatively compared to men in five impact areas: (i) agricultural production; (ii) food and nutrition security; (iii) health; (iv) water and energy; (v) climate-related disaster, migration, and conflict. Over 2 million people in Kenya face the threat of food insecurity due to climate change.Maize production is particularly vulnerable to climate change. It is projected to face not only 15% climate-related declines in yield without adaptation but also challenges from diminished cropland suitability and poor agronomic inputs and management; degraded environmental bases with declining soil fertility and degraded water systems are already apparent.Given that maize-mixed systems cover over 75% of the cropping land in many places, it is critical to build climate resilience and derisk through diversification.Crop diversification seeks to promote crop diversity by crop rotation, multiple cropping, or intercropping, with the goal of improving productivity, sustainability, and supply of ecological systems.Ukama Ustawi (UU): Diversification for Resilient Agri-food in East and Southern Africa: This aims to help millions of smallholders intensify, diversify and de-risk maize-mixed farming through improved extension services, institutional capacity strengthening, targeted farm management bundles, policy support, enterprise development and private investment.The Gender Equality Initiative (HER+): Tackles gender inequality in agri-food systems to build climate change resilience in the Global South. We aim to co-Identify and model diverse scenarios for bundling climate-smart technologies to empower women and men to be partners and drivers of climate-change solutions.In Kenya, Ukama Ustawi and HER+ are implemented in 5 counties: Nakuru, Narok, Kakamega, Embu and Makueni. Map showing UU and HER+ sites in KenyaThe project promotes Conservation Agriculture and promotes the three principles of CA that help to regenerate soils while at the same time building resilience to climate change.Crop diversification involves integrating legumes such as beans, green grams, pigeon peas, cowpea into the cereal based cropping systems.In Nakuru County, KALRO Njoro is collaborating with the Alliance of Bioversity International and CIAT, Participatory Approaches For Integrated Development (PAFID) and the County Governments of Nakuru to scale out sustainable intensification and climate smart agriculture practices to build resilience in the maize based system. The interventions are in 3 Sub-Counties: Njoro, Rongai and Gilgil where 6 mother demos have been established to enable learning by farmers and researchers.Interventions revolve around the following areas:• Climate Smart Agriculture ","tokenCount":"393"} \ No newline at end of file diff --git a/data/part_1/0170525607.json b/data/part_1/0170525607.json new file mode 100644 index 0000000000000000000000000000000000000000..6bed3bd25cba75d0472442314aabdd9717aa8b40 --- /dev/null +++ b/data/part_1/0170525607.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d4f04a3c819bc10a627c18204c6e2e32","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/234cbe58-05c1-4428-a85f-77827d7b9244/retrieve","id":"-2030203693"},"keywords":["nutrient balance","legumes","biological nitrogen fixation","manure","soil fertility ORCID iDs"],"sieverID":"d1a4eab4-e12b-4e38-a6da-fa20e175eb13","pagecount":"16","content":"Can farmers in sub-Saharan Africa (SSA) boost crop yields and improve food availability without using more mineral fertilizer? This question has been at the center of lively debates among the civil society, policy-makers, and in academic editorials. Proponents of the \"yes\" answer have put forward the \"input reduction\" principle of agroecology, i.e. by relying on agrobiodiversity, recycling and better efficiency, agroecological practices such as the use of legumes and manure can increase crop productivity without the need for more mineral fertilizer. We reviewed decades of scientific literature on nutrient balances in SSA, biological nitrogen fixation of tropical legumes, manure production and use in smallholder farming systems, and the environmental impact of mineral fertilizer. Our analyses show that more mineral fertilizer is needed in SSA for five reasons: (i) the starting point in SSA is that agricultural production is \"agroecological\" by default, that is, very low mineral fertilizer use, widespread mixed crop-livestock systems and large crop diversity including legumes, but leading to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen needs of crops cannot be adequately met solely through biological nitrogen fixation by legumes and recycling of animal manure, (iii) other nutrients like phosphorus and potassium need to be replaced continuously, (iv) mineral fertilizers, if used appropriately, cause little harm to the environment, and (v) reducing the use of mineral fertilizers would hamper productivity gains and contribute indirectly to agricultural expansion and to deforestation. Yet, the agroecological principles directly related to soil fertility-recycling, efficiency, diversity-remain key in improving soil health and nutrient-use efficiency, and are critical to sustaining crop productivity in the long run. We argue for a nuanced position that acknowledges the critical need for more mineral fertilizers in SSA, in combination with the use of agroecological practices and adequate policy support.Agriculture is at the cross-road of sustainability issues related to food security, biodiversity loss, environmental degradation and climate change. Alternative approaches to \"industrial\" or \"conventional\" agriculture (Sumberg and Giller, 2022), such as regenerative agriculture and agroecology are gaining momentum, as noticeable from the rising number of scientific papers dealing with these topics (Giller et al., 2021b;Wezel and Jauneau, 2011). Success stories of farmers in the tropics who shift away from mineral fertilizers, pesticides, and other chemical inputs also abound on social media and communication materials of nongovernmental organizations. These are increasingly being populated with testimonies of farmers diversifying their cropping systems with cover crops, investing in livestock keeping, producing high-quality compost, and improving their cropland with the use of legumes, often with claims of great positive impact on income, food security, and soil fertility maintenance.These promises of diversified and \"fully-integrated\" farming systems where the need for external inputs to sustain soil fertility and crop productivity is reduced or eliminated, along with abundant scientific literature on the farmlevel impact of resource recycling and improved efficiency, have certainly inspired the \"input reduction\" principle of agroecology: \"Reduce or eliminate dependency on purchased inputs and substitute conventional inputs that have negative impacts on the environment, replacing them by making use of agroecological alternatives\" (Wezel et al., 2020).Agroecology can be defined in numerous ways. A broad definition is \"the science of the relationships of organisms in an environment purposely transformed by man for crop or livestock production\" (Martin and Sauerborn, 2013). More recently, agroecology has been defined as the application of ecological concepts and principles to optimize interactions between plants, animals, humans and the environment while taking into consideration the social aspects that need to be addressed for a sustainable and fair food system (Wezel et al., 2020). A key focus has been increased reliance on knowledge and management of ecological processes, complementing and reducing the use of external inputs, like mineral fertilizers and pesticides. Agroecology revolves around a set of 10 elements (FAO, 2018) or 13 principles (HLPE, 2021), among which the recycling, input reduction, soil health, biodiversity and synergy principles are directly relevant to soil fertility maintenance. 1 These principles can be operationalized through a wide range of agroecological practices, among which are intercropping, agroforestry, rotation with legumes and crop-livestock integration. Decades of scientific work in the tropics have shown that these agroecological practices can contribute to replenishing and maintaining soil fertility, i.e., \"the ability of a soil to sustain plant growth by providing essential plant nutrients and favorable chemical, physical, and biological characteristics as a habitat for plant growth\" (https://www.fao.org/global-soil-partnership/areas-of-work/ soil-fertility/en/).Here, we question the \"input reduction\" principle of agroecology: what does it mean in resource-limited farming contexts, such as those commonly experienced by smallholder farmers throughout sub-Saharan Africa (SSA)?The aforementioned success stories often seem based on conducive individual circumstances, for example, high remittances and above-average farm size, thus neglecting the constraints faced by the majority of smallholder farmers in SSA. Farm sizes have been shrinking in SSA, and soils are generally nutrient-depleted, due to low inherent fertility and decades of continuous cropping with low nutrient inputs, leading to low crop productivity (Sanchez, 2002). Huge productivity gains need to be achieved to match a growing food demand (van Ittersum et al., 2016). Yet, in the development community, particularly in SSA, an emerging viewpoint considers the use of mineral fertilizers as \"climate stupid.\" 2 Advocates of this perspective argue that governments should stop subsidizing them, due to their rising costs and their negative impact on the environment, including the emission of greenhouse gases (GHGs). Instead, they advocate for the promotion of low-cost agroecological alternatives that are expected to revitalize the soil and protect the ecosystem. Within the scientific literature, there is a debate at the science-policy interface harnessing current knowledge to build views on the possible future of agricultural systems: some authors claim that there is \"a growing consensus that sustainable intensification in Africa will be […] fertilizer intensive\" (Jayne et al., 2019;Vanlauwe et al., 2014), while others assert, that \"reducing the dependency on purchased inputs can reduce food insecurity especially for small-scale food producers\" (Wezel et al., 2020) and that \"the challenges farmers face can be met with appropriate management […] making the addition of external inputs largely unnecessary\" (Gliessman, 2014). Côte et al. (2022) propose a reconciling view of agroecology that does not exclude \"the use of […] exogenous inputs when yield gap is important,\" insisting that \"an in-depth agroecological transformation […] should be free of synthetic pesticides and should be parsimonious in the use of synthetic fertilizers.\" Donor agencies, notably the European Union and its member countries, increasingly support development projects in SSA that engage with the agroecological transition and transition to green economies (DG DEVCO, 2020), without necessarily being clear on the role that external inputs and mineral fertilizer play.In this article, we critically examine the input reduction claim made by agroecology in the context of smallholder farmers in SSA. Our objective is to evaluate the feasibility and desirability of this principle for SSA, specifically concerning the maintenance of soil fertility and the role of mineral fertilizer. Our analysis leads to five arguments: (i) the starting point in Africa is \"agroecological\" by default, meaning very low fertilizer use, that has over the years led to poor soil fertility as a result of widespread soil nutrient mining, (ii) the nitrogen (N) required by crops cannot be adequately fulfilled solely through biological N fixation from legumes or through recycling of animal manure, (iii) other nutrients like phosphorus (P) and potassium (K) need to be replaced and are also key for biological N fixation, (iv) mineral fertilizer, if used appropriately, causes little harm to the environment, and (v) reducing the use of mineral fertilizer would hamper crop productivity gains and contributes indirectly to agricultural expansion. We then discuss the role that agroecological principles can play in improving soil health and nutrient use efficiency, and in sustaining crop productivity.Our analyses focus on rainfed annual cropping systems in SSA. This category regroups the maize crop-livestock, root and tuber crop, and cereal-root crop-livestock farming systems (Dixon et al., 2001) that predominate on the continent. Our analysis does not focus on irrigated systems (e.g., rice, vegetables) and perennial systems (e.g., coffee, cocoa, oil palm), that represent a relatively smaller share of the agricultural production area (Vanlauwe et al., 2023).Starting point in SSA: Agroecological \"by default\"Maintaining soil fertility through agroecological practices has been a common feature of mixed crop-livestock farming systems in SSA where livestock plays a great role in soil fertility maintenance. For example, in the cotton basin of southern Mali, the income earned from cotton production has been used by farmers to increase the size of their cattle herd-they can recycle amounts of manure as high as three tons per hectare per year (Falconnier et al., 2015). Farmers also rely on legumes and biological N fixation: in central Senegal, farmers have cultivated millet in rotation with groundnut for decades (Noba et al., 2014). Across the semiarid and subhumid zones of the continent, from the groundnut basin of central Senegal and the cotton basin of southern Mali, to central Ethiopia (Sida et al., 2018) and the mid-Zambezi valley in Zimbabwe (Baudron, 2011), farmers have deliberately retained native trees in their fields, creating the so-called \"parklands.\" Some of these trees are N-fixing trees, for example, the well-known Faidherbia albida (Delile) A. Chev. (Peltier, 1996). In the Sahel region, farmers have traditionally maintained long-term fallows that help replenish soil fertility and offer an additional source for livestock nutrition and manure production (Schlecht et al., 2004).As a result of these long-standing agroecological practices, manure and biological N fixation have been estimated to be the largest sources of N input to cropland when considering the African continent as a whole (Billen et al., 2014). In fact, Africa is the only region of the world where mineral fertilizer is not the first source of N input to cropland (Billen et al., 2014). This conclusion also holds when looking at N inputs to cropland at the farm and village level: despite considerable variations among farms in, e.g., Kenya, Uganda, Ethiopia, and Mali, organic inputs from outside the farm/village are the primary source of N, followed by biological N fixation, atmospheric deposition and mineral fertilizer, in that order (Figure 1). The main sources of P input to cropland in Africa are manure and mineral fertilizer, which contribute approximately the same amount, around 2.5 kg P/ha/year. This is in contrast to the other regions of the world where the main P source is mineral fertilizer (>10 kg P/ha/year) (Ringeval et al., 2017).Fertilizer use on cropland (including perennials) is currently very low in SSA, on average 13 kg N/ha/year, 3 kg P/ ha/year, and 3 kg K/ha/year (FAOSTAT, 2023). This contrasts sharply with other regions of the world, e.g., Northern America with 73, 11, and 21 kg/ha/year for N, P, and K, and China with 170, 29, and 54 kg/ha/year for N, P, and K, respectively. The numbers for Africa mask, however, a great diversity across countries and agroecological regions within countries (Vanlauwe et al., 2023). In Africa, fertilizers are predominantly used in horticultural systems and large commercial farms, whereas their use is extremely limited in smallholder farms. Southern Africa has witnessed a sharper increase in mineral fertilizer use in the 1960s compared with East and West Africa, possibly because of the thriving large-scale farm sector in the region. In the 1980s, the phasing-out of governmental subsidies for inputs, as a result of structural adjustment programs, has caused mineral fertilizer use to decrease in several countries of SSA (Jayne et al., 2018).One could therefore argue that smallholder mixed crop-livestock farming systems across SSA do not need to engage in an \"agroecological\" transition, given their limited dependency on external inputs in the form of mineral fertilizer, and their reliance on biological N fixation and recycling of plant biomass. Yet, a close look at the nutrient balances of cropping systems across the region suggests that long-term agro-environmental sustainability is not granted. Soil nutrient mining is widespread: Smaling et al. (1997) estimated that the cultivated land in SSA was losing annually 22 kg of N, 2.5 kg of P, and 15 kg of K per hectare. These negative balances have continued to increase over time (Vanlauwe et al., 2023). A comprehensive literature review indicated that more than 75% of nutrient balance studies across SSA concluded on negative balances for N and K, and about 60% of studies for P (Cobo et al., 2010). Long-term experiments conducted across the region also point to substantial soil nutrient mining over time; even the biennial rotation system of millet and groundnut in the F. albida parklands in central Senegal has shown evident negative N and P balances (Pieri, 1989). Similarly, the millet cropping system of western Niger with fallowing and strong livestock-mediated nutrient transfers was found to lose nutrients (Powell et al., 2004). The nutrient inputs derived from agroecological processes, as currently harnessed by smallholder farmers in SSA, combined with the current low fertilizer use, cannot compensate for nutrient exports and losses, that mainly occur in the form of crop harvest products, animal removals, leaching, and soil erosion. Demographic pressure and the related cropland expansion at the expense of rangelands and fallows add further constraints on soil fertility maintenance with current agroecological practices (Schlecht et al., 2004).This happens in the context of low crop yields compared to the yield potential that could be achieved based on the region's climate and soil properties (Affholder et al., 2013). This discrepancy can be largely attributed to low nutrient availability in the soils (Sanchez, 2002). Yields need to substantially increase to meet the current and future food demand and alleviate rural poverty in SSA while minimizing deforestation and other forms of land-use change. Narrowing yield gaps in SSA can contribute to increasing food security at household, national, and continental levels (Gérard et al., 2020;Giller et al., 2021a;van Ittersum et al., 2016). For example, modest increases in maize yield were found to greatly contribute to improved food security in Tanzania and Uganda, though this depended strongly on local contexts (Falconnier et al., 2023). Yet, increases in cereal productivity can only be achieved if nutrient inputs increase substantially (ten Berge et al., 2019). Across several case studies, the estimated maize grain yields that are compatible with food security ranged from 3.5 to 11.9 t/ha (median 6.5 t/ ha, Table 1). This translates into N uptake (grain + straw) that ranges from 54 to 228 kg N/ha, with a median of 113 kg N/ha (Table 1 and Figure 2A). For a maize-based cropping system to be sustainable, these crop exports need to be compensated by some form of nutrient inputs. If mineral fertilizers were to be reduced as per the \"input reduction\" claim of agroecology, other forms of input need to be drastically increased. In the next sections, we examine to what extent legumes and biological N fixation, and the recycling of plant biomass through composting and use of cattle manure, can help bring the N, P, and K required.Most legumes obtain N from the atmosphere through a symbiotic relationship with rhizobia bacteria. Plant N originating from biological fixation, if not exported from the field, is a net input to the soil-crop system. Four types of legumes can be distinguished: trees and shrubs, green manures (i.e., legumes primarily cultivated for biomass to be incorporated into the soil), grain legumes (legumes primarily cultivated for food), and fodder legumes (legumes primarily cultivated to provide feed and fodder to livestock). Figures 2B-C clearly demonstrate that on average, the potential net input from biological N fixation is greatest for legume trees and shrubs, and green manures, followed by grain legumes and fodder legumes. In what follows we scrutinize the constraints to fully achieve high levels of net N inputs with the integration of legumes into cropping systems.Legume trees and shrubs could contribute as much as 100 kg N/ha/year through N fixation (median of 13 studies, Figure 2B). The net N inputs vary considerably, owing to the way perennials are integrated into cropping systems, and which plant parts are left on or incorporated into the soil (Figure 2B). Trees and shrubs can be integrated into cropping systems in at least three different ways. The first is improved woody legume fallows (Sileshi et al., 2008), where trees are planted to give a large amount of high-quality biomass that can be incorporated into the soil to release nutrients for the subsequent crop. Improved fallows usually take two years to be implemented and can be considered a short-term benefit for soil fertility, but with a strong trade-off with food security because food crops cannot be grown during the fallow period. Labor for planting trees and weeding can also be a constraint to the adoption of these systems by farmers (Giller, 2001). A second option to integrate trees are parklands, i.e., the deliberate retention of scattered trees in farmers' field so that mature trees coexist with crops. In the parklands of the Sahel region, it is common to find F. albida trees, that shed their leaves during the growing season, so that competition with the annual crop for light, water and nutrients is limited (Sida et al., 2018). However, only mature trees aged 20-40 years fix substantial amounts of N (Giller, 2001), which makes it a longterm investment for farmers. Although more observations are needed, net N inputs from parklands seem also lower than those from improved woody legume fallows (Figure 2B). Besides, there is a threshold beyond which the increase in tree density in parklands no longer benefits the crop (Leroux et al., 2020). A third option is alley cropping, where trees or shrubs are planted in rows alongside the crops, and their prunings can be left on or incorporated into the soil (Sileshi et al., 2011). Farmers' adoption of Boxplot of (A) estimated maize nitrogen (N) uptake (in grain + straw) for grain yield compatible with food security in four selected studies (see Table 1 for details of the four studies), (B) Net N input from biological N fixation from trees (13 studies), (C) Net N input from biological N fixation from green manures (21 studies), grain legumes (59 studies) and fodder legumes (60 studies), (D) Net N input from manure (four studies). For grain legumes, we assumed that all grain was exported and only stover was returned to the field, with a harvest index of 0.4 for soybean and groundnut and 0.35 for other grain legumes (Herridge et al., 2008). For fodder legumes, the studies are the same as for green manure (excluding those that are not palatable), but we assumed that only roots were returned to the soil. N fixed in roots was estimated using a root: shoot ratio of 0.3 for the majority of studies where it was not quantified. The dotted horizontal bar in B, C, and D is the median maize uptake (see A). In B, two outliers are not displayed (1063 and 1026 kg/ha, Peoples et al., 1996). See Table S1 for details on the reviewed studies.alley cropping has been generally low (e.g., Swinkels and Franzel, 1997), unless employed on contours and used as fodder (see section on fodder legumes). Although alley cropping offers the prospect of alleviating the trade-off between food security and environmental sustainability, because food crops and trees can be mixed, trees often compete strongly with the crops for light and water, especially during dry years (Rao et al., 1991).Nitrogen fixation by green manures, grain and fodder legumesGreen manures have similar potential net N inputs to cropland compared with trees and shrubs (median of 91 kg N/ha/year across 20 studies, Figure 2C). Although green manures rotated with cereals can bring a substantial yield benefit to the cereal (e.g., Ripoche et al., 2021), this comes at the cost of foregoing a part of the cereal yield, similar to woody fallows. The increase in cereal yield from the green manure often does not sufficiently compensate for this yield penalty (e.g., Ojiem et al., 2014;Ranaivoson et al., 2022). The small farm sizes exacerbate the challenge of losing a growing season for cereals, thereby becoming a major obstacle to the adoption of green manures. This concern has been very often voiced by farmers, along with the lack of consumable or marketable products derived from green manures (Vanlauwe et al., 2003). Additional labor is also another constraint, as incorporating the biomass from green manure into the soil can take as much as 80 persons per day per ha for a prolific Mucuna in Malawi (Vanlauwe and Giller, 2006), i.e., 40 times more than what is required to apply mineral N fertilizer (Ojiem et al., 2014).Grain legumes offer directly consumable and marketable products, e.g., the grains of cowpea, soybean, common beans, and groundnut and are therefore preferred by farmers over woody fallows and green manures. However, the benefits in terms of soil fertility are smaller because the grains are removed from the field (Figure 2C). Franke et al. (2018) showed that on average grain legumes increase cereal yield by 0.49 t ha −1 via their precrop effects. Such yield increase is considerable, but far below the strong cereal yield increases needed to reach food security in SSA (see the first section). There is a strong trade-off between legume grain yield and the residual soil nutrient benefits (Giller et al., 1994). High-yielding soybean varieties with high N-harvest index can even be \"net removers\" of soil N (Vanlauwe and Giller, 2006). Overall, the grain productivity of legumes is far below that of cereals, for a labor demand that is generally greater (Ojiem et al., 2014), which is a major impediment to the adoption of grain legumes by smallholder farmers.Plant residues, including prunings from shrubs and trees, as well as the stems and leaves of grain legumes, are often of great value as fodder for livestock (except some green manures with toxic components like in some species of Crotalaria). For example, farmers in East Africa adopted the cultivation of fodder shrubs like Leucaena trichandra on contours (Wambugu et al., 2011). However, with fodder legumes, all aboveground biomass is exported from the fields, and only roots remain, representing a small N source for the following crop (Figure 2C). On the other hand, part of the fodder biomass and its nutrients can be returned to the field in the form of manure (see the section on manure).Grain legume intercropping can be a promising alternative to cereal-legume rotations, as it allows for the maintenance of cereal production. Although the proportion of N uptake by the legumes through biological fixation is usually similar in intercropping compared with sole cropping (e.g., Namatsheve et al., 2020), the absolute amounts, and the potential net inputs to the cropping system, are smaller (Figure 2C). This is due to the lower plant density of the legume in intercropping compared with the sole cropping, but also because of competition for light and water with the cereal crop (e.g., Traoré et al., 2022). For example, Namatsheve et al. (2020) found that the grain productivity of intercropped cowpeas was on average around 50% of that of sole cowpeas, whereas the yields of the intercropped cereals were around 80% of those of the sole crops.Only the legume options that compete strongly with food production (woody fallows and green manure) can bring substantial N inputs from biological N fixation (Figure 2B) in the range of what would offset the N exports (grain + straw) of a maize crop with a yield level (∼6.5 t/ha) that is compatible with food security objectives (Figure 2A). Other options that compete less with food production and/ or offer direct value for farmers (grain and fodder legumes, Figure 2C) can only bring a fraction of what would be required to offset the N exports by maize.The estimated contributions of biological N fixation to the net N inputs to cropland, as shown in Figure 2, are possibly overestimated. Firstly, this is because only a small fraction (less than 30%) of the N in green manure and legume tree prunings is effectively recovered by the following cereal crop. Part of it can be leached, volatilized or immobilized by soil microorganisms (Giller and Cadisch, 1995). Secondly, high levels of N fixation can only be achieved if P is not limiting, and if appropriate inoculation is performed when the legume nodulates poorly. These conditions are usually observed in on-station and/or researchermanaged trials (corresponding to most of the estimates of Figure 2) but do not necessarily hold true in farmers' fields. Thirdly, pests and diseases, usually controlled in research experiments, are an additional barrier in farmers' fields that must be overcome for the full realization of the potential benefits of legume N fixation.In conclusion, although legumes can contribute substantially to N input to cropping systems, it is unlikely that they alone can sustain agricultural productivity at the high level that is required for food security.A simple calculation indicates that about 9 t manure (dry matter) per ha per year would be required to balance the N exports by a maize crop yielding 6.5 t/ha with a corresponding export of 125 kg N/ha in its grain and stover (see Table 1), considering that manure from smallholder farms in SSA contains on average 1.4% N (Pieri, 1989). This is largely beyond the 4 t/ha typically applied by cattle owners on a portion of their cropland in, e.g., Zimbabwe (Rusinamhodzi et al., 2013;Zingore et al., 2008). Nine Tropical Livestock Units (TLU), corresponding to approximately 13 cattle or 90 goats, are required to produce 9 t of manure (considering that one TLU produces 2.8 kg of manure per day, Berre et al., 2021). This number of TLU is far beyond what smallholder farmers typically own: for example, the average TLU across nationally representative household samples (Living Standards Measurement Study-Integrated Surveys on Agriculture, LSMS-ISA data) was 1.39 in Uganda and 1.43 in Tanzania (Figure 3). Because it is not feasible to collect all the produced manure and part of its N is lost during storage, composting and transport (Vayssières and Rufino, 2012), farmers recycle far less than what is theoretically possible. Even farmers owning 12 TLU or more cannot recycle the required 125 kg N/ha (Figure 3). Thus, recycling of N through manure falls short of what is required to sustain the necessary levels of cereal yields (Figure 2A, 2D).During the cropping season, livestock cannot access fields and feed mainly on rangelands. One TLU-250 kg liveweight-consumes a maximum of 3% of its liveweight daily (Moran, 2005). Based on a simple calculation, it is estimated that 1.4 ha of rangeland would be required for feeding one TLU in the Sudano-Sahelian environment of West Africa, corresponding to a livestock carrying capacity of 0.7 TLU/ha. This estimation assumes that one TLU requires around 1400 kg of biomass over a six-month growing season and that rangelands produce about 1000 kg of biomass (dry matter) per hectare with 600 mm of rainfall, considering a rainfall productivity of 1.7 kg biomass (dry matter) per millimeter rain (Rufino et al., 2011). In many areas of the Sudano-Sahelian region, livestock density is far beyond this estimated carrying capacity of 0.7 TLU/ha, e.g., 4.8 TLU/ha in western Burkina Faso (Andrieu et al., 2015) and 1.3 TLU/ha in the Senegalese groundnut basin (Grillot et al., 2018). It is also important to note that high grazing pressure often leads to a decline in rangeland productivity (Hiernaux et al., 2009). The above estimations indicate that available feed resources are a strong constraint to maintaining the large herds that would be necessary to produce the manure required to sustain high cereal yields. Furthermore, manure represents a direct transfer of nutrients from rangelands to croplands. For example, Andrieu et al. (2015) estimated that N loss from the rangeland could be as high as 25 kg N/ha/year in western Burkina Faso. Enriching cropland with nutrients from manure therefore comes at the expense of soil nutrient mining in rangelands (Powell et al., 2004).For P and K fertilization, agroecological practices rely on the transfers of biomass through manure and compost. It should, however, be noted that with these lateral transfers, the places of origin of the biomass (e.g., rangelands, hedgerows, fields of farmers who do not own cattle and where crop residues are left) are progressively impoverished in P and K. Therefore, we argue that P and K need to be brought by mineral fertilizers if long-term agro-environmental sustainability is to be guaranteed.In addition, biomass transfers are also often insufficient to meet crop requirements. One reason is that low P and K contents in soil translate into low P and K concentrations in recycled plant materials. Soils of SSA have typically low plant-available P due to low P concentration in the parent material and extended weathering, and because of low soil pH and binding of phosphates by Fe 3+ and Al 3+ cations (Margenot et al., 2016). Similarly, plant-available K in soils of SSA is generally low because of prolonged weathering over time and insufficient external inputs (Majumdar et al., 2021).As a result, P and K concentrations in manure and compost are rarely above respectively 0.2 and 0.6%, in SSA (Blanchard et al., 2014;Fall et al., 2000;Zingore et al., 2008). This means that manure inputs of respectively 8 and 14 t/ha would be required to sustain a maize yield of 6.5 t/ha, corresponding to P and K uptake demands of 16 kg P ha −1 and 83 kg K ha −1 . It is clear that these P and K requirements for crops are difficult or even impossible to achieve by smallholder farmers, given their current herd sizes and feed resource limitations (see previous section and Schlecht et al., 2004).Relying solely on biomass transfers in combination with the ongoing depletion of soil P and K might also have implications for the potential of legumes to efficiently fix N. In particular, insufficient availability of P can constrain biological N fixation, as adenosine triphosphate is needed in larger quantities for N-fixing legumes than for other crops (Giller, 2001). Besides, soil K deficiency affects the growth of rhizobia, nodule formation and functioning, resulting in a depressing effect on biological N fixation (Divito and Sadras, 2014).Mineral fertilizers are often and rightly blamed for environmental pollution (Gruber and Galloway, 2008). Pollution arises from both their use and their production. In what follows, we analyze opportunities to address the negative environmental outcomes of mineral fertilizer, firstly related to their use, and secondly to their production.In general, fertilizer use contributes to four negative environmental outcomes. First, direct soil emission from the application of mineral fertilizers is the most important source of N 2 O emission from agriculture, together with emissions from organic fertilizer (Tian et al., 2020). The estimations regarding these two emission sources carry considerable uncertainty, making it challenging to distinctly differentiate between them (IPCC, 2022). Second, NH 3 volatilization from fertilizer application can have serious consequences for human health, acidification, and eutrophication of ecosystems (Liu et al., 2023;Paerl et al., 2014), and is also a source of indirect production of N 2 O. Third, the global increase in N and P fertilizer use has led to the eutrophication of water (Paerl et al., 2014;Peñuelas and Sardans, 2022). Fourth, N fertilizers have resulted in global soil acidification that can undermine soil carbon (C) sequestration and climate mitigation efforts (Raza et al., 2021). Yet, these negative outcomes do not come from the fertilizers per se, but from their excessive or inappropriate use. It is important to note that there are no chemical differences between NH 4 + or NO 3 − ions coming from organic or mineral fertilizers. Plants equally absorb both these two ions regardless of their source while the origins of negative environmental impacts of nutrients vary. For example, N 2 O emissions are very high in Europe, North America, and East and South Asia, which together consume over 80% of the world's mineral N fertilizers (Guenet et al., 2021;Tian et al., 2020), while it is manure application that is currently the main source of agricultural N 2 O emissions in SSA (Davidson, 2009;Guenet et al., 2021).Global N-use efficiency in croplands has dramatically dropped over the last decades and is now only about 40% (Lassaletta et al., 2014;Zhang et al., 2015). The potential to improve fertilizer-use efficiency and reduce pollution in regions of intensive agriculture is therefore large, with a limited negative impact on crop yield (Wuepper et al., 2020). For example, it has been reported that N-use efficiency in Greece increased from 30% in 1990 to more than 70% in 2010 (Lassaletta et al., 2014). In SSA, the scope to improve N-use efficiency is also large, as the current average agronomic efficiency of N is estimated at 14 kg maize grain per kg N applied, compared with the global average of 30 kg kg −1 (Vanlauwe et al., 2023). In general, improvement of nutrient-use efficiency can be achieved by widely adopting the 4R principles (the right nutrient source at the right rate, right time and right place) (Penuelas et al., 2023). In the context of SSA, site-specific nutrient management tailored to the high spatial heterogeneity of smallholder farming systems will be key (Chivenge et al., 2021). An analysis of 11 published studies showed that the addition of N fertilizer increased N 2 O emissions compared to the no input control, but there were no differences among the different rates of N fertilizer application (Vanlauwe et al., 2023). In addition, even with the high N fertilizer rates, N 2 O emissions remained below 1 kg N 2 O-N ha −1 . Nitrogen fertilizer application at a rate four to five times greater than the current average in SSA (i.e., 60 kg N/ha), using one basal application and two top dressings, led to low N 2 O emissions in Zimbabwe, far below the IPCC default values (i.e., 0.5 to 1% of applied mineral N) (Shumba et al., 2023).With regard to production, the synthesis of NH 3 to produce mineral N fertilizers accounts for about 0.8-1.2% of the global anthropogenic CO 2 emissions and 2% of global energy (Gao and Serrenhoo, 2023;Smith et al., 2020). Ammonia emissions during fertilizer production are also responsible for indirect N 2 O emissions. These GHG emissions could, however, be largely reduced by the production of NH 3 using hydrogen from water hydrolysis with renewable energy instead of fossil fuels (Smith et al., 2020;Wang et al., 2018). This prospect is currently significant enough for the IPCC to consider NH 3 as a potential low-or zero-carbon fuel similar to hydrogen (IPCC, 2022). The current expansion of fertilizer manufacturing witnessed across Africa could also largely reduce GHG emissions due to transport, besides increasing the sovereignty of the region for access to fertilizer.Overall, it is estimated that GHG emissions from N fertilizer production and use could be reduced by up to one-fifth of current levels by 2050 with currently available technologies, increasing N-use efficiency being the most effective one, as about two-thirds of GHG emissions from fertilizers actually take place immediately after their application in croplands (Gao and Serrenhoo, 2023). The excess of fertilizers currently being used in regions where overapplication is prevalent could be redistributed to SSA (less in the Global North, more in the Global South), possibly without the need to produce more fertilizers at the global scale.Eutrophication is a rising issue throughout Africa, particularly around large and rapidly expanding cities (Nyenje et al., 2010), but it is currently most probably driven by untreated sewage waste and erosion deposits rather than by the excessive fertilizer use in agriculture (Vanlauwe and Giller, 2006). However, if fertilizer use is to increase, its contribution to eutrophication has to be carefully monitored. Relevant \"4R\" fertilizer practices that are crucial to increase profitability and reduce gaseous losses will also contribute to limit N and P leaching and their contribution to eutrophication.The impacts of a strategy where the use of mineral fertilizer is reduced or eliminated, as purported by the \"input reduction\" principle of agroecology should be carefully evaluated, and weighed against the negative environmental impacts associated with fertilizer use. Because nutrient limitations constrain crop yields (see the first section), reducing fertilizer use will further lower crop yields, and inevitably drive cropland expansion to meet the demands of a fast-growing population in SSA. Although increased fertilizer use for higher crop productivity will cause an increase in N 2 O emissions (e.g., Leitner et al., 2020), cropland expansion into natural ecosystems would trigger an even greater ecological footprint. Conversion of natural ecosystems into cropland is associated with accelerated vegetation and soil C loss, and loss of biodiversity (Searchinger et al., 2015). Kehoe et al. (2017) showed greater biodiversity losses with cropland expansion than with agricultural intensification, globally and in SSA in particular. Van Loon et al. (2019) projected greater GHG emissions associated with cropland expansion than with agricultural intensification to meet food security in SSA by 2050. In addition, even though SSA is generally considered as having abundant land, accounting for about 60% of the world's uncultivated arable land, this abundance is primarily concentrated in less than 10 countries. Most countries in the region are facing land scarcity. This makes cropland expansion a limited option, emphasizing the need for production intensification on existing cropland. For a net positive effect of intensification and fertilizer use on the GHG balance of Africa to take place, public policies and stronger governance of natural resources will have to be put in place to prevent rebound effects (i.e., increased deforestation due to increased profitability of farming) (Byerlee et al., 2014). In this context, it is noteworthy to highlight that a number of countries in the South, such as Vietnam, India, Bhutan, El Salvador and Chile, have successfully achieved a land-use transition in recent decades through sound policies and innovations, which has led to the simultaneous increase of their forest cover and agricultural production (Lambin and Meyfroidt, 2011).It is clear from what precedes that harnessing only biomass fluxes and biological N fixation cannot bring all the nutrients required to increase food production and meet the food demand of an increasing population. However, these processes and the related practices are key to maintain or improve soil health in general, and soil organic C, in particular (Vanlauwe et al., 2023). Soil health is one of the 13 HLPE principles of agroecology, and is reflected in three of the ten FAO agroecology elements, namely diversity, synergy and resilience (Wezel et al., 2020). Degraded soils, i.e., soils with poor health and with chemical and physical properties of low quality are estimated to occur in 25% of croplands globally, across all environmental conditions (Le et al., 2016). In what follows we show that two agroecology principles (recycling and biodiversity) and associated practices (the use of organic amendments and agroforestry) are key to maintain and improve soil health.Degraded soils tend to be poorly responsive to mineral fertilizers (Nezomba et al., 2015). The application or retention of organic resources is critical to maintain or restore soil health (Laub et al., 2023). Crop residues are the most abundant and available organic resource, and their retention in croplands can play a significant role. However, due to other competing demands for animal feed, fuel and construction, amounts of crop residues returned to cropland are usually low (Valbuena et al., 2012). In this context, manure is often the most critical resource to maintain soil health, but required application rates may be prohibitive to smallholders (see section on manure). On the other hand, there is a large potential to increase the biomass and nutrients being recycled through manure by adopting better herd management (e.g., cattle housing) and improved manure storage (e.g., heap coverage) (Rufino et al., 2007). Improved recycling is thus required if soil organic matter is to be maintained in soils. Manure application can also mitigate soil acidification resulting from the continuous application of N fertilizers on soils with low cation exchange capacity and low pH buffering capacity (Vanlauwe et al., 2001).Agroforestry-defined in its broad sense as \"land-use systems and practices in which woody perennials are deliberately integrated with crops and/or animals on the same land management unit\" (Leakey, 1996)-can also maintain and improve soil health. Agroforestry is based on the biodiversity principle. Compared to annuals, some perennials have deeper root systems and fix more C, capture nutrients from deeper soil layers and produce biomass and litter for a longer period of time; their inclusion in cropping systems can thus contribute to a greater input of organic C to the soil (Corbeels et al., 2019), but also lead to nutrient cycles (e.g., N, P) that are more tightly coupled to the C cycle (by stoichiometric relations in plant biomass, organic matter and microbial biomass), and thus are less leaky (Lemaire et al., 2014).Efficiency is a key principle of agroecology (captured in both 13 HLPE principles and the 10 FAO elements), but also a concept that is central to the ecological and economic sustainability of any agricultural production system, whether agroecological or not (Kumar et al., 2020).Long-term improvement of soil health as described above can lead to more nutrients being supplied by the decomposition of soil organic matter, complementing or substituting some of the nutrients that need to be supplied by mineral fertilizers (Myers et al., 1994). Although nutrients other than N \"need to be imported and replaced continually\" (see section on P and K), agroecological practices help maximize their use efficiency. In the case of P in particular, the inclusion of legumes (principle of biodiversity) can lead to higher nutrient-use efficiency, as legumes tend to have greater rates of P acquisition than cereals (e.g., Tang et al., 2021). Often, the efficiency of mineral fertilizer improves with the use of agroecological practices. For example, the incorporation of Crotaliaria-Mucuna green manures into the soil improved N-use efficiency of the subsequent upland rice in Madagascar (Ranaivoson et al., 2022); the use of cattle manure was responsible for increased maize response to mineral fertilizer in Kenyan smallholder farms (Njoroge et al., 2019); intercropping maize with soybean gave greater fertilizer N-use efficiency across 106 observations in Africa (Xu et al., 2020). More generally, experimental evidence suggests that increased plant diversity-in particular functional diversity tends to lead to higher nutrient-use efficiency (Furey and Tilman, 2021). Biomass recycling (through manure, crop residues; principle of recycling) also leads to P being retained in the labile organic soil pools, which may lead to higher P-use efficiency (Drinkwater et al., 2017). Similarly, nutrient-use efficiency was shown to be promoted by nutrient recycling through livestock grazing (e.g., Hiernaux and Turner, 1996). Finally, better nutrient-use efficiency also decreases the risk of negative cost-benefit ratios when farmers invest in fertilizers (Bielders and Gérard, 2015).Maintaining other ecosystem services for sustained crop productivity Bommarco et al. (2013) highlighted the link between supporting and regulating ecosystem services, crop productivity and yield gaps, both in low-input and intensively cultivated production systems. Soil fertility maintenance and nutrient cycling are key supporting ecosystem services for agriculture and have been reviewed in the previous sections of this article. Biological pest and weed control, and crop pollination are two regulating ecosystem services that are equally critical for food production.Crop losses due to pests are projected to increase with climate change (Deutsch et al., 2018) while the use of insecticides in agriculture is increasingly regulated and its cost-benefit ratio is declining globally (Zhang, 2018). Weeds also contribute substantially to yield gaps globally for a range of crops (maize, wheat, cotton, soybean) (Oerke, 2006). As a result, biological pest and weed control is becoming more critical, in both low-input and intensively cultivated production systems. Similarly, the global pollinator decline is threatening all regions of the world. Yield losses due to pollinator decline have been recorded globally for crops with a moderate dependence on pollination. On the other hand, yields of crops with a high dependence on pollination may have been maintained by their stronger reliance on domestic honeybees, whose stocks are, however, growing slower than the demand for pollination (Aizen and Harder, 2009;Garibaldi et al., 2009).Biological pest and weed control, and pollination may be stimulated by increasing on-farm diversity, a key agroecology principle. For example, the populations of wild pollinators, and predatory and parasitoid arthropods may increase following the retention of natural and semi-natural patches in cropland, that provide nectar, alternative preys, and overwintering and nesting habitats (Bianchi et al., 2006). These patches may also host and provide cropland with insectivorous birds and bats (Sow et al., 2020). Natural areas may also provide agricultural areas with herbivores feeding on weeds, and with pathogens attacking crop pests (Blitzer et al., 2012). The optimal amount of noncrop habitat and the optimal spatial arrangement are species-specific, and depend on the dispersal ability and sensitivity to disturbance (including edge effects) of the species of interest (Ekroos et al., 2016). With regard to weeds, diversified crop rotations including legumes can help decrease weed pressure and its impact on cereal yield (e.g., Ripoche et al., 2021). Appropriate biological pest and weed control is a critical step to ensure appropriate crop growth and improved nutrient-use efficiency (ten Berge et al., 2019).The analysis of existing scientific literature on nutrient balances in SSA, biological N fixation of tropical legumes, and manure production and use in smallholder farming systems shows that agroecological practices have a clear role to play when it comes to maintaining and improving soil fertility in the context of smallholder farmers in SSA. However, further reducing the already low use of mineral fertilizeras per the \"input reduction\" principle of agroecology-may aggravate the current challenge of nutrient depletion in croplands and rangelands throughout SSA. Our analysis shows that biophysical production factors, but also shortages of land and farm labor, constrain the opportunity to close crop nutrient gaps and increase productivity by relying solely on N fixation and transfers of biomass using manure. More research at the farm and landscape level where issues of nutrient availability and sustainability operate, is needed to explore the benefits and constraints of agroecology. It is, however, clear that agroecological practices can improve nutrient-use efficiency and should complement the use of mineral fertilizer, provided that financial and physical access to fertilizer is guaranteed through adequate market development. Moreover, effective policy support to agroecological practices that deliver great environmental benefits for the society, but often limited short-term benefits to farmers, requires urgent attention.François Affholder, Universidade Eduardo Mondlane, Faculdade de Agronomia e Engenharia Florestal, Maputo.","tokenCount":"7663"} \ No newline at end of file diff --git a/data/part_1/0185433124.json b/data/part_1/0185433124.json new file mode 100644 index 0000000000000000000000000000000000000000..9db56f56775aa90334159ae761398fdd1da28295 --- /dev/null +++ b/data/part_1/0185433124.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"91a20c3fc47d121d9ba4f062d305f300","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9ce59150-8f25-48e3-a148-ed75acd4829e/retrieve","id":"-1865844048"},"keywords":[],"sieverID":"bfc9d58f-bd61-4c41-957f-23f2edf1f50e","pagecount":"51","content":"Vitamin A deficiency, drought, low soil nitrogen (low N) and Striga hermonthica parasitism of maize (Zea mays L.) cause malnutrition and food insecurity in sub-Saharan Africa. The objectives of this study were to determine combining abilities of extra-early provitamin A (PVA) lines, classify them into heterotic groups (HGs), identify testers, and determine yield stability of hybrids under contrasting environments in two trials. In trial 1, 20 extra-early PVA lines were inter-mated in a diallel mating scheme to obtain 190 F 1 hybrids. The 190 F 1 hybrids plus six checks were tested under Striga infestation, drought, and stress-free environments in Nigeria from 2015 to 2017. In trial 2, 35 extra-early yellow hybrids were evaluated under low-N, Striga-infested and stress-free environments in 2018. Provitamin A concentrations of 23.98 and 22.56 µg g -1 were obtained for TZEEIOR 202 and TZEEIOR 205. TZEEIOR 197 × TZEEIOR 205 (20.1 μg g -1 ) and TZEEIOR 202 × TZEEIOR 205 (22.7 μg g -1 ) contained about double the PVA level of the commercial check, TZEEI 58 × TZEE-Y Pop STR C5 (11.4 μg g -1). Both general (GCA) and specific (SCA) combining ability variances were statistically significant for most agronomic traits, although GCA was much larger than SCA effects, indicating that additive genetic effects primarily controlled the inheritance of those traits.TZEEIOR 97 and TZEEIOR 197 were identified as inbred testers. TZEEIOR 197 × TZEEIOR 205 (20.1 μg g -1 ) was identified as a single-cross tester as well as the most stable and highestyielding hybrid across environments. TZEEIOR 202 and TZEEIOR 205 should be invaluable resources for breeding for high PVA. PVA level was independent of hybrid yield potential, indicating that selection of superior hybrids with elevated PVA levels should be feasible.Abbreviations: ASI, anthesis-silking interval; ATC, average-tester coordinate axis; DA, days to anthesis; DAP, days after planting; DS, days to silking; EASP, ear aspect; EHT, ear height; EPP, ears per plant; EROT, ear rot; ESP, emerged Striga plants; GCA, general combining ability; YIELD, grain yield; HGs, heterotic groups; HPVA, PVA levels of the hybrids; VAD, vitamin A deficiency; HUSK, husk cover; IITA, International Institute of Tropical Agriculture; MP, mid-parent; PASP, plant aspect; PHT, plant height; PVA, provitamin A; RL, root lodging; RMHT, Regional Maize Hybrid Trial; SCA, specific combining ability; SDR1, Striga damage syndrome ratings at 8 WAP; SDR2, Striga damage syndrome ratings at 10 WAP; SL, stalk lodging; STMA, stress tolerant maize for Africa (STMA), SSA, sub-Saharan Africa; WAP, weeks after planting; WCA, West and Central Africa.MALNOURISHMENT OCCURS AMONG MILLIONS OF PEOPLE worldwide with the larger proportion being in developing countries, especially in Asia and Africa -sub-Saharan Africa (SSA) in particular (Jauhar, 2006). According to Swaminathan (2012), in some \"hunger hot spots\" of the world where agriculture is the backbone of survival, as in SSA and South Asia, mainstreaming nutrition in agriculture programs is the most effective and low-cost method of eliminating malnutrition. During the past two decades, tremendous efforts have been made to improve the nutritional status of crops consumed in SSA, but the region still has the largest number of malnourished people in the world. For instance, in West and Central Africa (WCA), a large proportion of the population has limited access to nutritionally balanced food to support a healthy life (Badu-Apraku and Fakorede, 2017). Maternal and childhood malnutrition results in underweight, causing millions of deaths in the sub-region. The World Health Report of 2002 ranked malnutrition first among the top globally preventable health risks, with the dreaded HIV/AIDS ranking fourth, an indication that greater attention should be focused on improving nutrition to minimize the impact of preventable diseases. Cereal-based diets on which most Africans subsist, have low levels of vitamin A (VA). According to West (2002), about 33 million preschool-age children suffer from sub-optimal VA, which has contributed to their vulnerability to several major diseases, including river blindness (onchocerciasis), anemia, diarrhoea, measles, malaria, and respiratory infections (Villamor and Fawzi, 2000). Menkir et al. (2014) reported that in SSA, vitamin A deficiency (VAD) affects more than 45 million children five years old or less. Furthermore, VAD impairs the functionality of the immune system, increases susceptibility to diseases, increases the chances of death from severe illnesses, andcauses night or complete blindness (Sommer, 2008).Maize is the most important staple food crop in SSA. It is the most widely consumed cereal in WCA, where it is eaten as green maize, processed grain, popcorn and sweet corn. Quality improvement (biofortification) of this crop, therefore, has a crucial nutritional role in solving some of the problem of malnutrition in Africa. Kernels of some types of maize, especially yellow and orange maize, contain pro-vitamin A (PVA) in the form of carotenoids in the endosperm, for which there is a high level of genetic variation and which makes it possible to increase accumulation of the vitamin through plant breeding. In a study involving 39 maize inbred lines, Blessin et al. (1963) obtained 0.9 to 4.1 μg g -1 of carotenes, and 18.6 to 48.0 μg g -1 of xanthophylls. Ortiz-Monasterio et al. (2007) reported a variation of 0.24 -8.80 μg g -1 in total PVA and a range of 5 to 30 % in the proportion of PVA to total carotenoids among 1000 tropical maize genotypes obtained from the International Center for Maize and Wheat Improvement (CIMMYT) in Mexico. Therefore, increasing the level of PVA in maize through breeding is a feasible approach for alleviating malnutrition related to its deficiency. A study was conducted in Zambia by Palmer et al. (2016) to investigate the impact of PVA maize consumption on dark adaptation, an early functional indicator of VAD. Results revealed that children with deficient or marginal VA status showed increased pupillary responsiveness following consumption of PVA maize thus providing evidence of the functional health benefits of consuming PVA maize.In addition to VAD, parasitism by Striga hermonthica, low soil nitrogen (low-N) and drought are among other constraints in maize production in SSA. Striga parasitism can lead to complete crop failure when the infestation is very severe (Kroschel, 1999). On the other hand, drought could reduce maize yield by up to 90% when it coincides with flowering (anthesis and silking) and/or grain-filling periods (NeSmith and Ritchie, 1992). Furthermore, the savanna soils, where maize potential could be easily maximized, are low or completely deficient in certain nutrients, such as nitrogen, phosphorus, potassium, several micronutrients as well as in organic matter. In SSA, low-N stress reduces maize grain yield by 10 to 50% year -1 (Logrono and Lothrop, 1997). Genetic enhancement of maize is the most economic, affordable and sustainable option for mitigating the adverse effects of S. hermonthica parasitism, drought and low-N in SSA (Badu-Apraku et al., 2015a, b, c). The development and commercialization of multiple-stress-tolerant maize with high levels of PVA content is urgently required to mitigate VA malnutrition and food insecurity in SSA. Substantial progress has been made in increasing the PVA in maize through conventional breeding (Menkir et al., 2013). Menkir et al. (2013), indicated that the identification of adapted orange maize inbred lines from diverse genetic backgrounds and with varying carotenoid concentrations is critical to facilitating the development of superior PVA hybrids and establishing a successful PVA hybrid program. Suwarno et al. (2014) demonstrated the effectiveness of grouping PVA lines based on maximum molecular marker-based genetic distance between the lines to achieve heterosis.However, little or no information is available on the development and commercialization of multiple-stress-tolerant PVA maize hybrids.Cultivation of hybrid maize in SSA has occupied center stage in the past decade and emerging seed companies have relied on existing outstanding germplasm in the public domain for commercialization. However, a successful hybrid development program is a function of the heterotic patterns of the parental lines used in the development of the hybrids and their ability to combine well with most other inbred lines, or specific lines to develop productive and superior hybrids (Fan et al., 2009). Thus, heterotic groups (HGs) are formed among sets of developed inbred lines, such that those with genetic similarity are placed in the same group, whereas those genetically dissimilar are categorized in opposite groups (Fan et al., 2009;Badu-Apraku et al., 2015a, b). This increases the chances of developing outstanding hybrids for commercialization, since crosses are made only among inbred lines from opposite HGs.Information on inter-trait relationships guides a breeder on the choice of traits to consider for improving the performance of a primary trait, such as grain yield, under diverse environmental conditions (Talabi et al., 2017). Breeders routinely investigate how grain yield and secondary traits of maize interact, especially when new sets of genetic materials are developed, to ascertain that the existing interrelationships among the traits have not been altered by the genetic constitution of the newly developed materials or by climate change. Several researchers have documented inter-trait relationships in maize. Number of ears per plant (EPP), anthesissilking interval (ASI), and stay-green characteristic (STGR) were identified by Bänziger et al. (2000) as the most reliable secondary traits for improvement of grain yield under drought-stress and low N conditions. Badu-Apraku et al. ( 2011) also identified EPP and ASI, along with plant aspect (PASP) and ear aspect (EASP) as the secondary traits for yield improvement under both drought and low N stresses. They also found days to 50% silking (DS), days to 50% anthesis (DA), plant height (PHT), and STGR as indirect selection criteria for grain yield under low-N environments (Badu-Apraku et al., 2011).Since 2007, several inbred lines with varying levels of PVA and reactions to stresses are being developed in the IITA maize improvement program. However, there is dearth of information on the heterotic patterns of the extra-early PVA inbred lines and on the performance and intertrait relationships of derived hybrids in multiple environments. In addition, only few PVA hybrids in the extra-early maturity group have been developed and released for commercialization in the sub-region. The studies reported here were therefore conducted to (i) determine the GCA and SCA effects for grain yield and several other agronomic traits of extraearly PVA inbred lines, (ii) assign the inbred lines to appropriate heterotic groups, (iii) identify inbred lines and single-cross hybrids for use as testers for producing high-yielding single-cross and three-way hybrids, (iv) evaluate grain yield performance and stability of the hybrid combinations of selected inbred lines in drought-affected, Striga-infested, low-N, and optimal growing environments, and (v) examine inter-trait relationships among the PVA hybrids. , a source of high PVA, from the IITA Maize Improvement Program in an effort to transfer the genes for high beta-carotene into the cultivar.The F 1 was backcrossed to the extra-early cultivar and kernels of the BC 1 F 1 with deep orange color were selected and advanced to F 2 and F 3 stages through selfing. At the F 3 stage, lines with intense orange color were selected and recombined to obtain the extra-early PVA cultivar '2009 TZEE-OR1 STR', from which a new set of extra-early inbred lines were extracted starting in 2011. By 2014, a total of 224 S 6 inbred lines, selected for deep orange color, had been developed from the variety. This set of PVA inbred lines were assessed for tolerance to induced drought at Ikenne, Nigeria, in the 2014/2015 dry season. Thereafter, the PVA inbred lines were advanced to the S 7 /S 8 stages, from which the kernels were sampled and subjected to chemical analyses at the Food and Nutrition Laboratory of IITA-Ibadan for the determination of their PVA contents. Results of the chemical analyses were used as the basis for selecting the PVA inbred lines evaluated in the genetic studies reported here.Two trials (Trial 1 and Trial 2) were conducted in the present study. In Trial 1, 20 extra-early S 7 PVA inbred lines selected for moderate to high levels of beta-carotene content (Table 1) were inter-mated in the IITA-Ibadan breeding nursery in 2015 according to the diallel mating scheme (Sprague and Tatum, 1942) and 190 F 1 hybrids were obtained. The PVA hybrids and six yellow hybrid checks were used for combining ability studies in Striga-infested (Experiment 1), drought (Experiment 2), and optimal growing environments (Experiment 3) from 2015 to 2017. Trial 2 comprised 34 extra-early-maturity genotypes, including PVA and non-PVA hybrids, which were selected from a number of preliminary maize hybrid trials. The 34 hybrids and a commercial check were evaluated in the Stress Tolerant Maize for Africa (STMA) Regional Maize Hybrid Trial (hereafter referred to as Regional Maize Hybrid Trial or RMHT) in Striga-infested, low-N and optimal growing environments in Nigeria, in 2018.This trial consisted of three independent experiments conducted under different management conditions. Experiment 1 involved evaluation of the 190 PVA hybrids plus six extra-early hybrid checks (42-49 days to flowering) at Mokwa (9•18 N, 5•4 E, 457 m above sea level, 1100 mm mean annual rainfall) under artificial Striga infestation during the 2016 and 2017 growing seasons. Residual Striga seeds were eliminated by inducing their suicidal germination through the injection of ethylene gas into the soils two weeks prior to manual Striga infestation. The artificial Striga infestation followed the procedure proposed by Kim (1991). Fertilizer application was delayed until about 25 days after planting (DAP) when 30 kg ha -1 was applied as NPK 15:15:15. Delay in fertilizer application and the low rate were aimed at subjecting the maize plants to a required stress level to trigger the production of strigolactones, hormones responsible for the stimulation of germination of Striga seeds. The Striga plants that emerge, being parasitic, grow in the maize field for as long as the host plant (maize) is growing and supplying the required nutrients for the growth and development of Striga plants.In Experiment 2, the 196 hybrids were planted during the dry seasons of 2015/2016, 2016/2017 and 2017/2018 under managed drought at Ikenne (6•53'N, 30•42'E, 60 m above sea level, 1200 mm mean annual rainfall). The soils at Ikenne are characterized as Alfisols (Soil Survey Staff, 2007), which are fairly flat, uniform and typically have high water-retention capacity. The experiments were established during the dry seasons of each year, starting from November to March of the following year. Water was provided to the trials through a sprinkler irrigation system, which made available about 17 mm of water to each plant every week. Drought was imposed in the trials at about 25 DAP, during which water supply was discontinued. As such, growth and development of plants till harvest were dependent on the moisture stored in the soil. Basal fertilizer was applied as 60 kg each of K, P and N at sowing. Topdressing was carried out by applying 30 kg of N ha -1 at 3 weeks after planting (WAP).Experiment 3 involved evaluation of the 196 hybrids in optimal growing environments at Mokwa in 2016, Ikenne in 2016 and 2017, and Bagauda (lat.12°00'N, long. 8°22'E, with 580 m above sea level and 800 mm mean annual rainfall) in 2017. In the optimal environments, there was adequate supply of water and nitrogen and the plots were Striga-free. About 60 kg each of N, P and K ha -1 was applied as basal fertilizer at 2 WAP, with additional 30 kg N ha -1 top-dressed 4 WAP.Each of the three experiments was conducted using a 14 × 14 lattice design, with two replications. In the three experiments, 3 m long single-row plots were used, with inter-and intra-row spacing of 0.75 and 0.40 m, respectively. Three seeds were sown per hill and emerged seedlings were thinned to two per hill at about two WAP to attain the target population density of approximately 66,667 plants ha −1 . Atrazine (Primextra) was applied for pre-emergence weed control in all the fields, whereas Paraquat (Gramoxone) served as a post-emergence herbicide in drought and optimal fields. Following the emergence of maize plants, Striga fields were kept weed-free through hand pulling.Entries of Trial 2 were evaluated in Striga-infested environment in Mokwa, during the 2018 growing season. In addition, the trial was conducted in low and high-N environments at Ile-Ife and Mokwa, and in optimal environments in Ikenne, Mokwa,Zaria (11•11'N,7•38'E,640 m) above sea level, 1200 mm mean annual rainfall) and Bagauda in 2018. The experimental design used was a 5 × 7 lattice with three replications. Two-row plots, each measuring 4 m long, with inter-row spacing of 0.75 m and within-row spacing of 0.40 m, were employed. Other experimental procedures used in the Trial were as given for Trial 1.The soil of the field used for the low-N experiment in Mokwa was characterized as Luvisol and that of Ile-Ife as fine-loamy, isohyperthemic Plinthustalf (Soil Survey Staff, 2007). The fields had been previously depleted of N by continuous planting of maize crop without application of N fertilizer, in addition to the removal of plant residue after each harvest, for a period of two years. Prior to planting, soil samples were collected for determination of N level by the Kjeldahl digestion and colorimetric method using Technicon AAII Autoanalyser (Bremner and Mulvaney, 1982). The soils had very low residual N, varying from 0•21 to 0•53% N. Based on the soil test results, urea, triple super phosphate and muriate of potash were used to formulate fertilizer, which was applied 2 WAP at the rate of 15, 60 and 60 kg ha -1 each of N, P and K to the low-N experiments, whereas 45, 60 and 60 kg ha -1 of N, P and K were applied to high-N experiments. The N-treatment fields were top-dressed at 4 WAP with the amount of urea required to increase the total available N to 30 and 90 kg ha -1 for low-N and high-N experiments, respectively. Herbicides, followed by manual weeding as needed, were employed for weed control in the trial. Evaluation of the hybrids in the RMHT under optimal environments followed the standard agronomic practices, as described for Trial 1 under optimal environments.Seed samples used for the carotenoid analyses were produced, as described by Suwarno et al. (2014) by self-pollinating the first and last two plants per plot in the 196 hybrid trial involving the 190 PVA and six normal endosperm extra-early yellow hybrid checks as well as 20 selected S 8 plants of PVA inbred lines evaluated under optimal growing conditions at Ikenne and Mokwa in 2016 and 2017. The self-pollinated ears of the inbred lines and hybrids in each year were harvested per plot, dried under ambient temperature and shelled (Azmach et al., 2013).The seed samples were stored in the long-term storage facility of IITA at 4°C. Seed samples of the 20 inbred lines used for the diallel cross, along with top yielding 13 PVA hybrids and two checks obtained from composite grains harvested separately from the inbred lines and hybrid trials of each year, were drawn from the long-term storage. The carotenoids were extracted and quantified at the Food and Nutritional Laboratory of IITA, Ibadan, Nigeria. The High-Performance Liquid Chromatography (HPLC) method, based on the extraction protocol described by Howe and Tanumihardjo (2006), was employed for the carotenoid analysis. The five carotenoids, β -carotene (cis and trans isomers), α-carotene, β-cryptoxanthin, zeaxanthin, and lutein, were determined based on calibrations using external standards. Total carotenoids were computed as the sum of concentrations of α-carotene, β-carotene, lutein, zeaxanthin and β-cryptoxanthin. PVA was computed as the sum of β-carotene, and half of each of βcryptoxanthin and α-carotene contents, because β-cryptoxanthin and α-carotene contribute about 50% of the β-carotene as PVA according to the US Institute of Medicine (2001). Two independent measurements were taken to represent each sample. In addition to the PVA levels of the hybrids (HPVA) determined by chemical analysis, those of the mid-parent (MP) were estimated as the average of the sum of PVA levels of parental inbred lines of a specific hybrid.Data were recorded on days to anthesis (DA) and silking (DS), anthesis-silking interval (ASI), plant height (PHT), ear height (EHT), plant aspect (PASP), ear aspect (EASP), root lodging Combined analysis of variance (ANOVA) was performed for agronomic traits of Trial 1 (genetic study) across year-location combinations in Striga-infested, drought and optimal growing environments using the SAS codes for GLM and the RANDOM statement with the TEST option (SAS Institute, 2011). Genotypes were considered fixed effects, whereas test environments, replications, genotype by environment interaction and all other sources of variation were treated as random effects.For Trial 2 (RMHT), ANOVA was done separately across stress (Striga-infested and low-N) and non-stress (Striga-free, high-N and optimal) growing environments. The statistical model employed for the combined analysis in the present study has been previously described by Badu-Apraku et al. (2015b). Broad-sense heritability (H 2 ) of the traits was estimated as the proportion of the phenotypic variance contributed by the genetic variance based on the hybrid means, following the method of Hallauer et al. (2010). Repeatability (R 2 ) of grain yield and other measured characters was computed for individual environments using the following formula:The standard errors for heritability and repeatability estimates (Hallauer et al. 2010) were computed and used for pair-wise comparison of calculated estimates of the two parameters.Excluding the checks from the analysis of Trial 1, the GCA effects of the PVA parental lines and the SCA effects of F 1 hybrids as well as their mean squares under each and across research conditions were estimated according to Griffing's Method 4 model 1 (fixed effects) (Griffing, 1956), using the DIALLEL-SAS program (Zhang et al., 2005) in SAS software version 9.3 (SAS Institute, 2011). The significance of the GCA and SCA effects were tested using t-statistic. The square root of the GCA and SCA variances provided an estimate of the standard errors corresponding to their effects (Griffing, 1956). The relative importance of GCA and SCA was examined following the method proposed by Baker (1978), as modified by Hung and Holland (2012). The importance of the combining ability effects was examined by expressing the GCA effects as the ratio of the total genetic effects (i.e., 2GCA + SCA). The closer the ratio to unity (equivalent of 100%), the greater the predictability of hybrid performance based on GCA effects alone (Baker, 1978).The PVA lines were assigned to the HGs across test environments using the GCA effects of multiple traits (HGCAMT) grouping method (Badu-Apraku et al., 2013). This was accomplished by standardizing GCA effects of measured traits that showed significant mean squares for genotypes across test environments and subjecting the dataset to Ward's minimum variance cluster analysis based on the Euclidean distance obtained from HGCAMT, employing SAS software 9.3 (SAS Institute, 2011). To qualify as a tester, an inbred must (i) have a high, statistically significant positive GCA effect for grain yield, (ii) belong to a heterotic group, and(iii) possess a high per se grain yield (Pswarayi and Vivek, 2008). Single-cross testers were also identified according to the criteria established by Pswarayi and Vivek (2008), which included (i) parental inbred lines involved in the development of the hybrids must have positive and significant GCA effects for grain yield, (ii) parental lines of hybrid must belong to the same heterotic group, and (iii) the single-cross hybrid must have a reasonable grain yield.The ANOVA was performed on plot means of grain yield across test environments to determine whether the G × E interaction was significant. For traits with significant G × E interaction mean squares, the genotype main effect plus G × E interaction (GGE) biplot was used to determine the performance and stability of selected top 15, middle five and worst five PVA maize hybrids plus five yellow hybrid checks across test environments. All the hybrids in the RMHT were also subjected to GGE biplot analysis. The GGE biplot is a Window's application software that fully automates biplot analysis (Yan, 2001). Information on the GGE biplot program may be accessed at www.ggebiplot.com (Accessed 13 February 2019). The relationships among traits were investigated using the stepwise multiple regression analyses (SPSS, 2007) and illustrated with sequential path diagrams (Mohammadi et al., 2003;Badu-Apraku et al., 2014). In this method, HPVA, considered the primary trait, was regressed on MP of grain yield and other traits. Traits with significant contributions to HPVA were identified as first order traits. Subsequently, each first order trait was regressed on traits not in the first order category to identify those with significant contributions to HPVA through the first order traits.These were grouped as second order traits. The procedure was continued till all measured traits had been categorized. The standardized b values of the regression analysis provided an estimate of the path co-efficient, which was tested for significance using the t test at 0.05 probability level (Mohammadi et al., 2003;Badu-Apraku et al., 2014).The PVA levels of inbred lines used in this study were significantly different, ranging from 7.88 μg g -1 for TZEEIOR 27 to 23.98 μg g -1 for TZEEIOR 202 (Table 1) with an overall mean of 10.91 μg g -1 and SEM of 0.91. Eight (40%) of the lines had PVA value greater than 10 μg g -1 and two of them, TZEEIOR 202 (23.98 μg g -1 ) and TZEEIOR 205 (22.56 μg g -1 ), had values significantly higher than the overall mean. Similarly, the hybrids resulting from the crosses of the 20 inbred lines had significantly different PVA values with two of the hybrids, TZEEIOR 197 × TZEEIOR 205 (20.1 μg g -1 ) and TZEEIOR 202 × TZEEIOR 205 (22.7 μg g -1 ), having values much higher than the target of 15 μg g -1 proposed by HarvestPlus (Table 1). Here also, relatively few hybrids had PVA values greater than 10 μg g -1 .Theoretically as well as in practice, most traits of maize inbred lines display hybrid vigor or heterosis in single crosses. Results of the inbred lines and their resulting hybrids seemed to deviate from the expected trend that PVA values of hybrids would be higher than the midparent value. For the inbred lines and their hybrids summarized in (2008) examined tropical yellow maize inbred lines sampled from four trials in one location and a fifth trial conducted in two locations and found that carotenoid concentrations of lutein, zeaxanthin, β-carotene, β-cryptoxanthin, α-carotene and total PVA contents were not strongly affected by the differences in replications or locations or GEI. In another study conducted by Menkir and Maziya-Dixon (2004), no significant GEI was obtained for β-carotene of 17 maize genotypes evaluated in three locations for 2 years.Environments (E), genotypes (G), and G × E interaction (GEI) sources of variation significantly affected YIELD and most other traits of the PVA hybrids in the Striga-infested, drought, and optimal environments (Table 2). Some traits, such as DA, PHT, EHT, RL and EROT, wereconsistently not affected by one or more of the three sources of variation in the three environmental conditions of the study (Table 2). The proportion of total variation due to the environment varied among the field trial conditions. Grain yield, for example, had much larger proportion due to the environment for optimal (45%) than Striga (28%) and drought (6%)conditions. Similar values for G were 15, 25, and 37%; and for G x E were 12, 14, and 25%for the three field trial conditions, respectively. The stress environments, Striga-infested in particular, had more traits with non-significant G and GEI mean squares than the optimal environmental conditions. However, significant differences occurred among the hybrids for grain yield and some other traits, an indication that real variability existed among the hybrids which could be exploited during selection for these traits under the stress factors (Badu-Apraku et al., 2015a, b, c). Significant GEI effect detected for grain yield and some other measured traits is also desirable; an implication that PVA hybrids adapted to specific stress and nonstress environments are potentially available in the extra-early PVA maize germplasm at IITA (Badu-Apraku et al., 2008). The consistent expression of ASI, PHT, EHT, RL, SL, HUSK and EROT irrespective of the environments in which the hybrids were tested, if confirmed in further studies, could be an advantage to the breeder to minimize evaluation costs by reducing the number of environments in which data are obtained on these traits for PVA hybrids.Under optimal conditions, the much larger proportion of total variation caused by the environment (45%) relative to proportions due to G (15%) and G x E (12%) calls for attention.First, the results show that the recommendation that hybrids be tested over multiple environments for several years prior to promotion for release and commercialization (Badu-Apraku et al., 2007;Ifie et al., 2015) is also applicable to PVA hybrids. Second, although significant differences observed among the hybrids for all measured traits in this study would facilitate the identification of hybrids with desired attributes (Bhatnagar et al., 2004), it seems the environment would greatly regulate the response to selection, an observation similar to that made for some modified-endosperm opaque-2 tropical maize inbred lines (Pixley and Bjarnason, 1993). Third, coefficient of variation and repeatability, which are some of the parameters used as indicators of reliability of production estimates (Badu-Apraku et al., 2012), varied widely among traits and evaluation conditions (Table 2). Although the grain yield CV was lower and repeatability estimate higher for optimal relative to Striga and drought environments, the values call for more stringent management conditions to optimize production of PVA hybrids, an indication that the genotype x environment x management interaction is operating in PVA hybrid maize production. However, heritability estimates for grain yield ranged from 30 to 69% under contrasting environments used in the present study (Supplementary Table 1). This observation, along with CV≤30 for most traits under all environments in this study indicated that the data set from the test locations were reliable with minimal or no systematic error. Although the test environments used in the present study were consistent in discriminating among the agronomic traits of the hybrids, the results suggest that the type of environmental condition used by scientists would depend on the breeding strategies and product target.As indicated by significant GCA and SCA mean squares under each evaluation condition, both additive and non-additive gene actions were involved in the inheritance of most measured traits of the genetic materials evaluated in this study (Table 2). Across all test environments, >60%of the total genetic effect was attributable to GCA for YIELD and other traits (Fig. 1). These results support the general evidence in the literature; that is, additive gene action controls inheritance of most traits of maize although non-additive gene action, along with environmental effects could also be important but to a lesser extent. In other words, PVA inbred lines are not different from other inbred lines in terms of quantitative inheritance. Under optimum conditions, GCA x E and SCA x E were also statistically significant for all traits except ASI.This was not the case under the stress environments where relatively few GCA x E and SCA x E interactions were significant. In fact, under Striga infestation, GCA x E interaction was not significant for any trait, including grain yield. These results suggested that the inheritance of the PVA maize traits controlled by both additive and non-additive gene action was not dependent on the environment within each evaluation condition to much appreciable extent (Wegary et al., 2013). This is desirable because it indicates that the performance of the hybrids produced from the inbred lines in this study could be reliably predicted based, to a large extent, on the GCA effects alone (Baker, 1978). Contrarily, significant GCA x E and SCA x E interaction effects for most traits under optimal conditions and some of the traits under the stress conditions indicated that mode of inheritance of the traits could vary under different environmental conditions, as observed in earlier studies (Badu-Apraku et al., 2011a).GCA effects of inbred lines. Among the lines evaluated in the study, eight (TZEEIOR 97,TZEEIOR 142,TZEEIOR 197,TZEEIOR 202,TZEEIOR 205,TZEEIOR 209,TZEEIOR 250 and TZEEIOR 251) had significant positive GCA effects for grain yield across test environments and mostly under each environmental condition (Table 3). These inbred lines are likely to produce high YIELD in hybrid combinations (Badu-Apraku et al., 2015a). However, none of the inbred lines consistently had significant GCA effects for all the other traits assayed in the study. The effects were significant for some traits, ranging from two for TZEEIOR 209 to nine for TZEEIOR 197 and TZEEIOR 250 ( It is noteworthy that the inbreds TZEEIOR 97 and TZEEIOR 251 had significant positive GCA effects for YIELD across environments as well as significant negative GCA effects for STGR under drought. The inbred TZEEIOR 251 had significant and positive effects of GCA for YIELD across test environments and significant negative GCA effects for STGR in drought as well as in Striga-infested environments. The performance of inbred line TZEEIOR 197 was particularly striking. Across all environments, the line showed significant positive GCA effects for YIELD but significant negative effects for STGR under drought as well as for SDR2 and ESP1 under Striga-infested environments. This suggested that TZEEIOR 197 could serve as a potential source of beneficial alleles for improved grain yield, drought tolerance and Striga resistance/tolerance in PVA hybrids. The line could also be introgressed into consumer acceptable tropical PVA germplasm that are otherwise susceptible to drought and Striga infestation. In addition, inbred line TZEEIOR 197 may be a potentially good tester for PVA single-cross hybrid production.The HGCAMT method (Badu-Apraku et al., 2013) assigned the inbreds into two HGs across environments at 40% level of dissimilarity (i.e. R-squared value of 40%), with 11 and 9 of the lines in HG 1 and HG 2, respectively (Table 4 and Supplementary Figure 1). The placement of the inbred lines into two heterotic groups increased the chances of developing high-yielding hybrids through inter-mating of inbred lines belonging to opposing HGs. The inbred TZEEIOR 97 was identified as tester for HG 1 and TZEEIOR 197 for HG 2, while TZEEIOR 197 × TZEEIOR 205 was identified as single-cross tester for HG 2. The identification of inbred testers TZEEIOR 97 and TZEEIOR 197 for HGs 1 and 2 would not only fast track the development of outstanding hybrids but also support a conservative approach to hybrid development, as testers identified for each HG could be crossed to lines of opposing HGs. Of interest was the inbred TZEEIOR 197 which was identified as possessing genes for high YIELD, drought tolerance and Striga resistance/tolerance, and as one of the new inbred testers.This inbred would definitely be invaluable in the development of high yielding, multiple-stress tolerant PVA hybrids for commercialization in SSA.In the GGE biplot view, the thick single-arrow red line passing through the biplot origin and the average tester is referred to as the average-tester coordinate axis (ATC). The double-arrow line (ATC ordinate) separates hybrids with yield less than the average (to the left side of the line) from those with yield greater than the mean (to the right side of the line) (Figs 2 and 3).The average performance of a hybrid is approximated by the projection of its marker on the ATC. The stability of the hybrids is measured by the projection onto the ATC y-axis singlearrow line (ATC abscissa). The shorter the absolute length of the projection of the hybrid, the more stable it is (Yan et al., 2007). In the GGE biplot, hybrid TZEEIOR 109 × TZEEIOR 197 was promising in terms of YIELD but relatively less stable (Fig. 2). The PVA hybrid TZEEIOR 142 × TZEEIOR 197, which ranked third in YIELD, was very stable across test environments.However, hybrid TZEEIOR 197 × TZEEIOR 205 in the genetic study had the highest above mean YIELD as well as the shortest projection onto the average-tester coordinate y-axis and was, therefore, the highest yielding and most stable hybrid across test environments (Fig. 2).Based on the genetic studies, this hybrid was identified as a single-cross tester for HG 2 and Results of ANOVA for extra-early yellow and PVA hybrids evaluated in RMHT revealed significant differences among the hybrids for all measured agronomic traits across stress and non-stress environments except for SDR2 under Striga infestation (Table 5). The environment effects were significant for all measured traits assayed separately across stress and non-stress environments. In contrast, hybrid × environment interaction effects were significant for YIELD and STGR under stress and for DS, ASI, HUSK, PASP and EASP across non-stress environments. Furthermore, the results revealed TZEEIOR 197 × TZEEIOR 205 as the highest yielding hybrid across stress (3554 kg ha -1 ) and non-stress (5655 kg ha -1 ) environments, outyielding the commercial PVA check, TZEEI 58 × TZEE-Y STR C5 by 67 and 61%, respectively. In addition, TZEEIOR 197 × TZEEIOR 205 was superior to the commercial hybrid check in terms of HUSK, STGR and SDR2 under stress, and PASP, EASP and EPP across stress and non-stress environments.The GGE biplot revealed TZEEIOR 197 × TZEEIOR 205 in the RMHT as having the most outstanding above mean YIELD performance and was therefore considered the highest yielding hybrid across test environments (Fig. 3). However, the hybrid had a long projection onto the average-tester coordinate y-axis. Other promising hybrids in terms of YIELD stability across test environments included TZEEIOR 125 × TZdEEI 7 and 2009 TZEE-OR2 STR × TZdEEI 7.Information on the interrelationships among traits plays a key role in the choice of secondary traits a breeder would consider for inclusion in the selection index. In the present study, causal relationships among the hybrid PVA levels, mid-parent levels, YIELD and other measured agronomic traits were illustrated using stepwise regression as well as path analyses under Striga-infested and drought environments (Mohammadi et al., 2003;Talabi et al., 2017). The stepwise multiple regression analysis revealed MP as the sole trait in the first order category accounting for 93% of the observable variation in the PVA levels of hybrids under managed drought environments (Fig. 4). This implied that the PVA content of a hybrid is largely dependent on those of the parental lines used to develop it. Husk cover was the only second order trait while EASP, DS and PHT fell in the third order category of traits contributing to the variation in the hybrid PVA levels. Plant aspect, STGR, DA, ASI, EHT and EROT were categorized as fourth order traits while YIELD and SL were classified as fifth order traits. EPP was in the sixth order category of the traits.Across Striga-infested environments, MP and RL were identified as the first order traits explaining about 96% of the observable differences in the hybrid PVA levels (Fig. 5). This implied that mid-parent PVA and RL were the primary traits that influenced the HPVA under artificial Striga-infested environments. About 96% of the variation could be attributed to these traits, indicating that the PVA content of a hybrid is a function of the PVA levels of the parental inbred lines as well as the lodging resistance of the PVA hybrids under artificial Striga-infested environments. The traits in the second order category included DS, EPP and PHT. Days to anthesis, ASI and YIELD were classified as third order traits while EASP and ESP1 fell in the fourth order. Striga damage syndrome rating at 10 WAP was the only trait in the fifth order whereas HUSK and SL were among sixth order traits. The seventh order category comprised EROT, ESP2 and SDR1. Ear height was the sole trait in the eighth order under Striga-infested environments. The identification of YIELD as fifth and third order traits under induced drought and Striga-infested environments, respectively, implied that the PVA level of hybrids is independent of their yield performance. Thus, simultaneous selection for high YIELD and elevated PVA levels would suffice when the development of hybrids with these characteristics is the goal of a breeding program.When the HarvestPlus Challenge Program was initiated, the yellow kernel maize, on average, had 1.5 μg g -1 PVA content while the orange color maize had 3-8 μg g-1 (HarvestPlus, 2014).Maize breeders then considered maize germplasm with orange kernels as a possible source of PVA and focused attention on the materials for PVA improvement. By implication, PVA genes must have been present in the landraces, although in low frequencies at best. The WECAMAN program subjected the populations developed from the composite of the landraces to genetic enhancement of resistance/tolerance to drought, Striga, and low-N, along with improved quality protein and PVA content, both of which are more recent projects. Stress tolerant maize varieties that have relatively high nutritious value are now being released to farmers in SSA.The genetic studies and breeding efforts for improved PVA that are presented in this paper were based on the orange kernel materials. Indeed, inbred lines with relatively high PVA have been developed and used as parent materials for hybrids. Among the inbred lines are TZEEIOR TZEEIOR 22,TZEEIOR 24,TZEEIOR 26,TZEEIOR 27,TZEEIOR 28,TZEEIOR 41,TZEEIOR 45,TZEEIOR 30,TZEEIOR 97,TZEEIOR 233 and TZEEIOR 234 TZEEIOR 109,TZEEIOR 197,TZEEIOR 209,TZEEIOR 250,TZEEIOR 251,TZEEIOR 140,TZEEIOR 142,TZEEIOR 202 and TZEEIOR 205 ","tokenCount":"6757"} \ No newline at end of file diff --git a/data/part_1/0197205978.json b/data/part_1/0197205978.json new file mode 100644 index 0000000000000000000000000000000000000000..5d84b88066f9640bd86ac2ccba113abbb5c2e072 --- /dev/null +++ b/data/part_1/0197205978.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2d45afd5fb5da52ab4f172264d8025d6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6394cabb-099c-48e8-9027-81c8b2924440/retrieve","id":"672932430"},"keywords":[],"sieverID":"cc67cea3-8b4e-42ee-9462-cb549c2760ea","pagecount":"72","content":"Resource Recovery and Reuse (RRR) is a subprogram of the CGIAR Research Program on Water, Land and Ecosystems (WLE) dedicated to applied research on the safe recovery of water, nutrients and energy from domestic and agro-industrial waste streams. This subprogram aims to create impact through different lines of action research, including (i) developing and testing scalable RRR business models, (ii) assessing and mitigating risks from RRR for public health and the environment, (iii) supporting public and private entities with innovative approaches for the safe reuse of wastewater and organic waste, and (iv) improving rural-urban linkages and resource allocations while minimizing the negative urban footprint on the peri-urban environment. This subprogram works closely with the World Health Organization (WHO), Food and Agriculture Organization of the United Nations (FAO), United Nations Environment Programme (UNEP), United Nations University (UNU), and many national and international partners across the globe. The RRR series of documents present summaries and reviews of the subprogram's research and resulting application guidelines, targeting development experts and others in the research for development continuum.There are many opportunities to address the dual challenge of waste management and soil nutrient depletion in developing countries via the safe recovery of nutrients from both solid and liquid waste streams for reuse in agriculture. Commercialization of waste-based organic fertilizers such as Fortifer TM (fecal sludge-based fertilizer) has the potential to generate significant benefits for developing economies via cost recovery for the sanitation sector and providing affordable alternative agricultural inputs for smallholder farmers. The successful commercialization of Fortifer TM , however, largely depends on future businesses understanding the dynamics and functionings of the markets that they will operate in. To guide future Fortifer TM businesses, this report presents a detailed market assessment of a fecal sludgebased fertilizer product -Fortifer TM , evaluating farmers' perceptions, attitudes and willingness-to-pay (WTP) for the product. Two formulations of the Fortifer TM product were considered -pelletized Fortifer TM (PF) and non-pelletized Fortifer TM (NPF). This report further provides insights into the market demand and outlook as related to the adoption profiles of farmers and adoption rates. This will serve to guide businesses on the types of marketing and pricing strategies to implement in order to facilitate market entry and mitigate the negative effects of competition. This research was conducted in the Greater Accra and Western regions in Ghana; Kampala, Uganda; Bangalore, India; Hanoi, Vietnam; and Kurunegala, Sri Lanka. Furthermore, cross-country analyses were conducted to better understand the effects of market drivers and if possible, capture lessons learned for knowledge sharing.Farmers' fertilizer purchasing decisions were analyzed to better understand farmers' WTP for agricultural inputs.Price was considered an important factor by farmers on whether to purchase Fortifer TM or not across all study areas, except Hanoi. The latter is possibly due to the fact that farmers traditionally face high fertilizer prices (no subsidies), anticipate the expense and so do not view it as a limiting purchasing factor. With most farmers in these countries being smallholders and typically cash-constrained, accessible and suitable financing will be essential to incentivize adoption. A comparison of key product attributes influencing farmers' fertilizer purchasing decisions across Africa and Asia showed that farmers in Hanoi did not score highly in any of the product attributes compared to all other regions. Nutrient content and fertilizer application methods were amongst product attributes, which scored highly across all the study areas, but less so in Hanoi. An important attitude construct that cuts across most of the selected regions is the issue of safety, which captures farmers' perceived concerns about the safety of the product. To this, farmers' attitudes toward fecal sludge-based fertilizer were generally positive in all the study areas, on condition that a relevant authority ((preferably a governmental authority) that can be trusted certifies the product. While farmers in Bangalore and Kurunegala perceived Fortifer TM as a substitute for chemical fertilizer and would buy it irrespective of the price offered, farmers in Ghana and Uganda were price sensitive and would only buy Fortifer TM if it was cheaper than chemical fertilizer. Additionally, experiential learning as measured by farmers knowing someone who has used the product before and/or if it has been recommended by a trusted source, is critical to whether farmers will purchase the product or not. Future Fortifer TM businesses will need to explore strategic partnerships with agricultural ministries and tap into their extension programs to catalyze adoption.Regression models assessing factors influencing farmers' WTP showed that farmers were less willing to pay for Fortifer TM at higher bids, and this was consistent across all the six countries. Statistically significant socio-demographic variables influencing farmers' WTP for Fortifer TM included farm size, status of landownership and previous experience using organic fertilizer. The effects of farm size on farmers' WTP differed by product type, in that farmers with larger farm sizes were more willing to pay for PF over NPF. This is expected as the latter requires more labor for application. The effects of the attribute variables were similar and consistent across both the Asian and African countries.Farmers' concerns about product safety and related needx for third-party product certification was confirmed by the regression results. Third-party certification will be especially necessary in the Asian countries where guidelines for fecal sludge use in agriculture are unclear.Willingness-to-pay estimates for Fortifer TM were comparable to the prices of existing compost and artificial fertilizers in all the study areas. In Ghana, the mean WTP estimates for NPF and PF were USD 0.145 kg -1 and USD 0.198 kg -1 , respectively for the Greater Accra region. The mean WTP for NPF in Western region was 20% higher than the mean WTP for NPF in the Greater Accra region while the reverse was true for PF. Kampala recorded significantly higher prices than either regions in Ghana, with farmers' WTP twice that in Ghana. In the Asian countries, while WTP estimates were fairly similar for Hanoi and Kurunegala, Bangalore estimates were approximately seven times higher. The highest WTP estimates for NPF and PF among these countries were USD 0.73 kg -1 and USD 0.52 kg -1 , respectively, whilst the lowest WTP estimates were recorded in Hanoi at USD 0.11 kg kg -1 and USD 0.13 USD kg -1 for NPF and PF, respectively. Generally, across all the countries, farmers were willing to pay more for PF than NPF with the exception of Bangalore and the Western Region in Ghana.The demand analyses indicated that the Western region of Ghana recorded the highest demand for both NPF and PF at 0.045 million and 0.044 million tons year -1 , respectively, in spite of the marginally lower adoption rates in comparison to Kampala and the Greater Accra region of Ghana. Demand for NPF and PF in the Western region is about 15 and 24 times higher than that of the Greater Accra region, respectively. Estimated demand in Kampala is significantly lower than any of the other countries, which is not surprising as this is driven by the considerably low fertilizer application rates.Of the Asian study areas, Kurunegala posted the highest demand for both Fortifer products, followed by Hanoi and subsequently Bangalore. The demand for NPF in Kurunegala at 0.6 million tons year -1 is nine times and two times more than that recorded for Bangalore and Hanoi, respectively. This is not surprising as the Kurunegala district ranks high in terms of agricultural activities with oil crops, coconut and paddy production dominant in the region. There is a greater demand for NPF as opposed to PF in all of the countries. This is indicative of farmers' greater willingness to adopt a product (a compost-type product) similar to what they currently use. Overall, demand is comparatively lower in the African countries than the Asian countries for both Fortifer TM products, which was expected, given the overwhelmingly lower fertilizer application rates in the former. The Western region in Ghana has the highest cultivated area of all the countries but still records demand estimates lower than its Asian counterparts.Whilst farmers may be keen to adopt a product (NPF) similar to what they currently use, they are more price sensitive to this product as there are comparable substitutes available in the market. In the case of PF, there are no records of its extensive production or that of a similar product in Uganda or Ghana. Fortifer TM producers will need to particularly consider this when setting prices. Their decision on whether to implement a penetrative, competitive or premium pricing system is crucial as short-term price changes can significantly affect demand. In the case of Ghana, an increase in the price of NPF by USD 0.05 kg -1 will reduce demand by approximately 30%, as is the case in Uganda.For the Asian countries, the elasticity of both the NPF and PF demand curves for Hanoi are approximately the same. This suggests that there is no significant difference in demand with an equal level of price change for both products. However, in the case of Kurunegala, there is a similar trend as in the African countries where the NPF demand curve is more elastic than the PF demand curve. This suggests that farmers will generally be more responsive to price changes for NPF than PF, and an equivalent price change for both NPF and PF will result in a larger change in demand for NPF compared to PF. Thus, whilst a significant potential market exists in Kurunegala, high price sensitivity of farmers may negatively affect demand.Another important facet of market dynamics considered in this report was the diffusion of Fortifer TM , assessed using the Bass model. Adoption profiles for Fortifer TM indicated that the farmers' coefficient of innovation, p, representative of early adopters, was generally low across all the countries and for both Fortifer TM products. For PF, Bangalore recorded the lowest measure for early adopters, while the Western region in Ghana had the highest level of early adopters.As noted earlier, the Western region boasts a strong and extensive agriculture sector, predominantly characterized by large-scale agricultural producers who have more flexibility in terms of financial resources to invest in new technologies. Kampala had the lowest measure among the African regions -which is not surprising given the unusual low fertilizer application rates in Uganda. This result is also mirrored for the case of NPF. For NPF, Kurunegala recorded the lowest measure for early adopters whilst the Greater Accra region had the highest measure. It is interesting to note that in comparing the coefficients for both PF and NPF across all the countries, early adopters had a proclivity for NPF rather than PF with the exception of Kurunegala. This result corroborates the findings from the demand estimations.Whilst the measure of early adoption was generally low, it is interesting to note that on average, farmers from the African countries had a marginally higher measure for early adoption of both PF and NPF than the Asian farmers.The results confirmed what is traditionally known of developing country farmers, who are typically known as imitators for adoption of agricultural technologies. This is confirmed by the coefficient of imitation, q, (representative of late adopters, i.e. farmers who will adopt a technology, if it is recommended by other farmers or any other trusted source (e.g. extension service agents)) estimates. The values for q were the same for both NPF and PF. With the exception of Hanoi, most farmers will most likely adopt Fortifer TM if a trusted source can confirm and recommend its quality. This suggests that future Fortifer TM businesses will need to invest in strong awareness programs coupled with actual field experiments to increase product recognition and eventual adoption. Strategic partnerships with existing governmental extension programs will be key in view of farmers' reliance on extension agents for technical information and training.For all the study areas, it was noted that market growth rate in the introduction phase of Fortifer TM will be significantly fast. While investments in promotion and awareness programs will be necessary, greater focus should be placed on incentive mechanisms to catalyze farmer adoption. In the African countries, diffusion of Fortifer TM products is expected to be faster in Ghana than in Uganda. This is largely driven by the higher measures of early adoption and comparatively higher levels of fertilizer application rates in Ghana. For Uganda, a country with relatively low fertilizer application rates, it is important that Fortifer TM businesses focus on the development of new product features and quality improvement to buffer the effects of competitors' innovations. In Asia, diffusion of Fortifer TM products will be faster in Bangalore than in Hanoi for both NPF and PF, despite the larger market and higher measures of early adoption in the latter. Greater investments in awareness programs coupled with actual field experiments will be crucial to increase product recognition and eventual adoption, in comparison to Bangalore where farmers are already informally using fecal sludge for agricultural production. This result is also applicable for Kurunegala and Hanoi; however, the comparisons between Bangalore and Kurunegala are inconclusive. Higher percentages of market demand were captured at the period of peak sales in the African countries compared to the Asian countries, suggesting faster market growth rates in the former. This result is indicative of the combined effect of higher innovation and imitation coefficients on market demand and growth. Similar results were noted for PF. Of the African countries, Ghana had the fastest diffusion rate for Fortifer TM products, while this was the case for India and Sri Lanka in the Asian countries considered for this study.Opportunities to address the dual challenge of waste management and soil nutrient depletion in many developing countries via the safe recovery of nutrients from both solid and liquid waste streams for reuse in agriculture is high on the global agenda. Large urban cities in Africa and Asia such as Kampala, Uganda, Sekondi-Takoradi, Ghana and Hanoi, Vietnam face the challenge of a growing urban population and a resulting exponential increase in waste generation (Danso et al. 2017). Limited public funds to support waste management infrastructure and services has resulted in significant environmental pollution as most of the generated waste, whether collected or uncollected, is often deposited untreated in open spaces, waterbodies and/or landfills (Kinobe et al. 2015;Matter et al. 2015;Cofie et al. 2010. The long-term effects of these practices include increased human health risk from communities' exposure to untreated waste and generation of significant quantities of greenhouse gas (GHG) emissions in the form of methane, to name a few. This situation is particularly exacerbated for cities characterized by a growing population and rapid urban migration (Sabiiti 2011;Vermeiren et al. 2012;World Bank 2015a, 2015b, 2017;Jagadeesh et al. 2015;Kollikkathara 2009;Loi 2005;Manning 2010).As evident in the last decade, solid waste generation has doubled and was projected to increase exponentially from 1.3 billion tons a year in 2010 to 2.2 billion tons a year in 2025 (Hoornweg and Bhada-Tata 2012), globally. This increase is mostly attributed to developing countries, where it is driven by a combination of high urbanization rates and economic development. In developing countries, the per capita waste generation rate ranges between 0.4 to 1.1 kilograms (kg) day -1 , reaching 2.4 kg day -1 in many urban areas, of which on average 50-75% is organic matter (Sabiiti et al. 2014;Kawai and Tasaki 2016). The pattern of inadequate treatment of municipal solid waste translates to other waste streams such as fecal sludge 1 (excreta). For example, an estimated 2.4 billion users of onsite sanitation systems in Sub-Saharan Africa generate fecal sludge that goes untreated resulting in environmental contamination (Rao et al. 2017;Muspratt et al. 2014;Koné 2010). Also important are the health concerns often related to waterborne diseases associated with fecal contamination, which are among the top causes of child mortality in India and Sri Lanka (Hingorani 2011;Bain et al. 2014;Lakshminarayanan and Jayalakshmy 2015). With the increasing challenges of waste management, policy-makers in developing countries have adopted many international principles and approaches such as Agenda 21 and the Sustainable Development Goals (SDGs), but in practice, waste management challenges have not significantly improved (Diener et al. 2014;UNICEF and WHO 2012).Conversely, municipal solid waste (MSW) and fecal sludge (FS) are huge sources for nutrient recovery (Sabiiti 2011) that have yet to be exploited. The recovery of nutrients from both solid and liquid waste streams is especially important where soils are poor and the availability of alternative inputs is constrained. Many large cities in developing countries boast of large urban arable farm areas (Thebo et al. 2014;Nuwagaba 2003). Uganda is noted as a country with very low fertilizer application rates compared to other countries in the region (Crawford et al. 2005;Bayite-Kasule et al. 2011;EPRC 2011;Pedersen et al. 2012). Average annual fertilizer consumption in Uganda is estimated at around 10,000 to 20,000 tons, which is significantly lower than other comparable African and Asian countries 2 (IFPRI 2008; World Bank 2013). Peri-urban and rural farmers in Uganda face increasingly limited access to fertilizers due to: a) structurally-flawed subsidy programs and b) limited and inefficient distribution networks, resulting in exorbitant market prices; and invariably decreased agricultural productivity. With a foreseeable increasing trend of urban food demand, increasing fertilizer prices and stricter regulations for safeguarding the environment from pollution, initiatives for nutrient recovery from waste will play a key role in the economic development of many urban cities in developing countries and elsewhere.There is great potential to close the nutrient loop, support a 'circular economy' and cost recovery within the waste sector or even to create viable businesses. The idea of closing the nutrient and water cycles by using municipal organic waste, fecal sludge and wastewater for urban and peri-urban agriculture is nothing new. Not only has it been practiced for generations in many countries either formally or informally, but it has also been proposed and tried on a small scale as a green solution for modern cities (Smit and Nasr 1992;Murray and Buckley 2010;Murray et al. 2011;EAI 2011). Farmers in West Africa and South India, for example, redirect cesspit truck operators to dump the raw collected fecal sludge on their farm fields to obtain the nutrient-rich manure (Otoo and Drechsel 2018;Rao et al. 2016;Cofie et al. 2009). Health authorities however are more concerned about the health issues associated with the use of raw fecal matter in food production but field experiments in Ghana have shown that with sufficient solar drying and crop restrictions, these risks can be minimized (Seidu 2010;Keraita et al. 2014) and this is even possible in situations where there are limited regulations governing the process.Over a decade of research by the International Water Management Institute (IWMI), the Food and Agriculture Organization of the United Nations (FAO) and the International Development Research Centre (IDRC) shows the use of compost 3 can accrue significant benefits to farmers and also has the potential to reduce public budget allocations to waste management (Otoo and Drechsel 2018;Danso and Drechsel 2014). Additionally, previous studies have shown that composting of municipal solid waste is more beneficial than other existing options such as land filling, incineration or open disposal (Drechsel et al. 2004;Hutton et al. 2009;De Bertoldi et al. 1996;EC 2002). However, very few successful cases have been noted such as Waste Concern in Bangladesh, Balangoda Municipal Compost Plant in Sri Lanka and Zoomlion in Ghana; most initiatives in low-and middle-income countries have been recorded as small scale and seldom viable without significant subsidies. With the limited viability of wastebased nutrient recovery initiatives, compost businesses have been particularly linked to gaps in market information and business planning. Research has shown that farmers' concerns related to low product nutrient content, skin diseases from product use, related labor requirements and general mistrust of information provided on product quality, significantly affect the demand for the compost product (Otoo et al. 2015;Viaene et al. 2015;Danso et al. 2006;Drechsel et al. 2004). In many situations, farmers' willingness-to-pay (WTP) was either too low or farmers preferred existing substitutes for soil inputs such as cow dung, poultry manure or even dried fecal sludge (Evans et al. 2013;Otoo et al. 2012;Cofie et al. 2006;Danso et al. 2006). The use of these alternatives, however, comes with limitations. The cost of transporting fecal sludge from Kampala in Uganda, for example, to peri-urban and rural areas where large-scale farming is more prevalent, is significantly higher compared to other alternatives like chemical fertilizer (Otoo et al. 2015). Additionally, the limited awareness about the value and safety of using fecal sludge for enhancing agricultural productivity is prevalent (NETWAS 2011).There are opportunities for the pelletization and blending of fecal sludge (FS) and municipal solid waste (MSW) cocompost with rock phosphate, urea/struvite or nitrogen, phosphorus and potassium (NPK) to produce a product with: a) structure improvement (reduced bulkiness while simplifying crop application -pellets) and b) higher nutrient content tailored for specific crops and soils (Annex 1). This will enhance the competitive advantage, marketability and field use (Nikiema et al. 2013(Nikiema et al. , 2014)). IWMI has developed such a product called Fortifer TM , a nitrate-fortified and pelletized fecal sludge and MSW-based co-compost, which addresses the current challenges associated with using 'regular' compost or dried fecal sludge such as bulkiness, low nutrient content and associated health risks (IWMI 2017;Impraim et al. 2014;Nikiema et al. 2013). The main approach is to dry the septage followed by aerobic composting of the dewatered sludge, which sanitizes and reduces its volume. Although fecal sludge can be processed alone, co-composting with another organic waste, such as organic municipal waste is more common, as it improves the composting properties, in particular the carbon-nitrogen ratio and moisture content (Figure A1) (Cofie et al. 2009(Cofie et al. , 2016)). Opportunities to increase the accessibility and usability of value-added fecal sludge products in agriculture include fortification or enrichment of fecal sludge with nutrients such as rock phosphate, struvite/urine or industrial fertilizer to boost their fertilizer value; and pelletizing the composted fecal sludge, resulting in easy-to-handle, safe, high-value products.The commercialization of such a product in countries such as Ghana, India, Sri Lanka and Uganda, for example, would make an immense contribution to both the sanitation and agriculture sectors. Revenue generation from the sale of the Fortifer TM product also provides great opportunities for cost recovery for the sanitation sector (Murray and Buckley 2010), while farmers, on the other hand, have increased access to alternative agricultural inputs at competitive market prices. The successful commercialization of Fortifer TM , however, requires an accurate estimation of the relative market size for the new product. Even more importantly, the questions of whether demand actually exists and whether end-users are willing to pay for the product need to be explored, as \"demand, even among those with limited resources, is not automatic\" (Phillips et al. 2003;page 194). In particular, the perceptions of the end-users towards the product and their WTP need to be assessed, especially given mixed reviews of farmers' attitudes concerning excreta use for agricultural production in many developing countries.In this regard, the objectives of this study are to: 1. Assess farmers' perceptions and attitudes of fecal sludge-based co-compost (Fortifer TM ). 2. Estimate their WTP for fecal sludge-based cocompost (Fortifer TM ).for fecal sludge-based co-compost (Fortifer TM ).Many studies have estimated farmers' WTP for compost products but most have been undertaken in developed countries with very few in the developing world (Agyekum et al. 2014;Palatnik et al. 2005;Arene and Mbata 2008;Valerian et al. 2001). In particular, to the best of our knowledge, this is the first comprehensive study that covers several developing countries using an empirical application of a contingent valuation method to assess the market feasibility of a fecal sludge-based fertilizer. The results from this study will provide important demand-side (productspecific attributes) information for future businesses to guide their investment decisions. The findings will not only be of interest to waste management regulators in the selected countries, but also to international donors and sanitation investors who are constantly exploring a holistic approach in generating multiple benefits from waste reuse businesses.The use of organic nutrients in crop production is not new and different forms such as poultry manure and cow dung, human excreta, slurry from biogas digesters and compost have been used in crop production. Human excreta has been used in crop production for centuries (Drechsel et al. 2010;Pham Duc et al. 2014). However, mineral fertilizer remains the main source of nutrients in agriculture. Although the contribution from organic nutrients is minimal relative to mineral fertilizer, they have high significance considering their effect on soil physico-chemical and biological properties. This minimal contribution is due in part to the lack of production and consumption data as a result of the informal nature of their use in many instances (Roy et al. 2006).Human excreta is a rich source of NPK, also found in mineral fertilizers, and can therefore be recycled for use in agriculture (Cofie and Adamtey 2009). As a result of the high nutrient value of raw fecal sludge, many farmers in Africa, Asia and Latin America are very eager to use it in crop production because it also offers a cheaper alternative source of nutrients and is much more readily available (Nikiema et al. 2013). The World Health Organization (WHO) has developed guidelines to promote the safe use of human excreta in agriculture, realizing its resource value and nutrient content for crop production (WHO 2006). This has culminated in the recent development of technologies and pre-agricultural use of human excreta such as composting of dried fecal sludge, co-composting with other organic matter and enrichment with inorganic fertilizer (Nikiema et al. 2013(Nikiema et al. , 2014)).Various studies have been conducted to ascertain the suitability and the health risks associated with the use of human excreta as a nutrient source in crop production.Pham Duc et al. (2011Duc et al. ( , 2014) ) studied the prevalence of helminth infection among farmers using human excreta as fertilizer in Vietnam. Mackie Jensen et al. ( 2008) also studied the perceived health risks and benefits among farmers of using human excreta as fertilizer in Vietnam. Lederer et al. (2015) investigated the potential of using recycled human excreta as a nutrient source in agriculture in Uganda. Koné et al. (2007) investigated helminth egg removal and inactivation efficiency using composting of dewatered fecal sludge as a treatment process. Cofie et al. (2010) also investigated farmers' perceptions and cultural attitudes towards the use of human excreta in farming in southern Ghana.Apart from the health challenges associated with the use of human excreta in farming, which are effectively eradicated through composting (Nikiema et al. 2013;Cofie et al. 2010;Mackie Jensen et al. 2008;Knudsen et al. 2008), there are also socioeconomic and cultural challenges that to a large extent border on the very viability and sustainability of a fecal sludge-based fertilizer business and its acceptability among farmers. Consequently, studies have been conducted in various countries to empirically ascertain and evaluate these conditions. A study by Ali (2004) noted that the failure of most compost projects is due to the lack of attention paid to demand and marketing. A marketing study for compost across four countries; Pakistan, Sri Lanka, India and Bangladesh revealed that identification of market segments and devising good strategies are requirements for successful composting operations (Drescher et al. 2006). In spite of the high cost of inorganic fertilizer, it is quite difficult for farmers to shift to compost because the incremental yield benefits of compost occur in the long term. Rouse et al. (2008) found that the success of the Horizon Lanka, university and community compost projects in Sri Lanka was attributable to effective marketing.A study by Danso et al. (2006) estimated the demand for compost in Ghana and found that government subsidies are necessary to boost both production and use given the abundant availability of cheap poultry manure. A study on marketing of human excreta as a soil ameliorant in Uganda by NETWAS (2011) revealed that re-use of human excreta as a fertilizer in Uganda is a possibility, however a careful selection of target customer segments is a prerequisite for success. A study by Knudsen et al. (2008) evaluated the risk perceptions' and health risks' awareness among Vietnamese farmers using human excreta in agriculture.The farmers prefer composted excreta to fresh, uncomposted human faeces, the latter being described as 'dirty'. In order to identify potential mitigation measures to address negative consumer perceptions and understand the dynamics of the market the new product will be sold in, potential businesses will need to clearly assess the underlying factors of farmers' purchasing decisions and unpack the structural elements that drive market demand.In this study, a farmer's decision process is modeled using a random utility framework (Danso et al. 2017). We assume that the sociodemographic characteristics of farmers influence their attitudes towards the fecal sludge-based co-compost, Fortifer TM , 4 and contribute to each farmer's subjective use of the product. Stated preference methods such as contingent valuation and choice-based conjoint analysis have gained immense popularity in eliciting farmers' valuation of new technologies or other farming input products (Burdine et al. 2002;Lusk and Hudson 2004;Kimenju and Groote 2008;Ibro et al. 2009;Gbégbélégbé 2008). These methods elicit WTP from consumers in a hypothetical and less than realistic environment and are based on intended behavior. In this study a contingent valuation questionnaire was applied using a dichotomous choice model to assess farmers' WTP for fecal sludgebased fertilizer. To assess farmers' knowledge, attitudes and perceptions towards fecal sludge-based fertilizer, multivariate data analysis using factor analysis was used. Furthermore, the Bass model was applied to assess the market outlook for fecal sludge-based fertilizer.In providing estimates for non-market goods and services, stated preference valuation and conjoint analysis are the most dominant approaches (Lusk and Hudson 2004;Kimenju and Groote 2008). Most researchers prefer to use these approaches because of their flexibility in design and the relatively low implementation costs. These methods elicit WTP from farmers in a hypothetical and less than realistic environment and are based on either perceived or intended behavior. Critics argue that these approaches are not incentive-compatible as farmers' prevalent decision-making options are not consistent with their preferences for the good in question (Carson 2000). Thus, it is not too surprising that research has shown that these elicitation techniques have consistently overestimated consumers' WTP measures (Umberger and Feuz 2004;Kimenju and Groote 2008). In spite of this bias, these approaches continue to be used because they provide results that are better than other methods and are relatively cost effective to generate. where y i is a farmer's WTP, is the vector of parameters and e i is an error term which is assumed to be normally distributed with \uD835\uDC52\uD835\uDC52 \uD835\uDC56\uD835\uDC56 ~\uD835\uDC41\uD835\uDC41(0, \uD835\uDF0E\uD835\uDF0E 2 ). Then we have: (2) where is the standard cumulative normal. The estimated parameters and the estimated standard deviation can then be used to determine the average WTP of the respondents: where and are the vector of coefficients associated with the explanatory variables and the coefficient capturing the amount of the bid from the Probit model respectively.It is hypothesized that farmers' knowledge and attitude towards fecal sludge-based fertilizer will affect their WTP for Fortifer TM . Thus, a multivariate data analysis using factor analysis was used to assess farmers' knowledge, attitude and perceptions towards a fecal sludge-based fertilizer. Information pertaining to farmers' attitudes toward fecal sludge-based fertilizer consists of many interrelated variables. To reduce the dimensionality of the attitude variables and to create a smaller set of meaningful orthogonal variables, a factor analysis was used (Jolliffe 2002). Factor analysis is used to reorient data and create a few variables (also referred to as factors) which account for as much of the available information as possible. In the factor analysis, p can be expressed as observed random variables, X=[x 1 , x 2 ,…, x p ] can be expressed as linear functions of m (< p) and latent factors aswhere j= 1,2, …, p; k= 1,2,…,m denotes factor loadings and ej, j= 1,2,…, p are error terms or specific factors. The factors obtained have the property that each factor is uncorrelated with all others and thus can be included as explanatory variables in the single-bounded dichotomous choice model.The survey was conducted in the Greater Accra and Western regions of Ghana, Kampala in Uganda, Hanoi in Vietnam, Bangalore in India and Kurunegala in Sri Lanka as depicted in Figure 1. The Greater Accra region is the smallest in terms of land size among the ten regions in Ghana, having a total land area of about 4,450 square kilometers (km sq.) and a bimodal rainfall pattern. The average annual rainfall in the region varies from about millimeters (mm) along the coastal belt to about 1,270 mm in the extreme southwest. The major agricultural activities in the region include crop production (cereals, root and tubers, vegetables and tree crops), livestock, fisheries and alternative livelihoods such as mushroom cultivation, apiculture, rabbit and grass-cutter rearing. The Western region has an approximate land area of about 239,221 km sq. The region is the wettest in the country with a double peak rainfall pattern and an average annual rainfall of 1,600 mm. The vegetation and climate make the region very conducive for agriculture; this coupled with the moderately well-drained, clayey and loamy soil types in the region enables significant plantation agriculture in the region. The region is the largest producer of cocoa, rubber, coconut and oil palm in the country.At present, Ghana does not produce any inorganic fertilizer although recently a few compost-producing plants operating at a commercial scale have been established. All inorganic fertilizers used in the country are imported by a few private companies, which distribute the fertilizers to registered wholesalers or retailers located in the regional capitals. While there are only few fertilizer importers, there are about retailers of fertilizers spread throughout the country (FAO 2005). In Ghana, despite the fact that the importance of fertilizer is made clear in the National Development Plan, its adoption is still very low (Fuentes et al. 2012). It is estimated that fertilizer application rate is 8 kilograms per hectare (kg ha -1 ) in Ghana compared to 20 kg ha -1 in Sub-Saharan Africa, 99 kg ha -1 in Latin America, 109 kg ha -1 in South Asia and 149 kg ha -1 in East and Southeast Asia (MOFA 2015). The low application rate has been attributed to, among other factors, the high cost of fertilizers. A study by FAO (2005) indicated that the key constraints to fertilizer use in Ghana include insufficient credit to the farmer, high lending rates by banks for the agriculture sector and problems with marketing of agricultural produce. Moreover, distance from the farm gate to the nearest fertilizer dealer is cited as one of the several challenges faced by Ghana in the use of fertilizers (Krausova and Banful 2010). Not only farmers but also agricultural inputs dealers in all the regions have to travel long distances ranging from median distances of less than 50 km in Greater Accra to 152 km in the Western region to access their suppliers (IFDC 2012).As with Ghana (Greater Accra region), the Ugandan economy is predominantly supported by agriculture and contributes almost 25% to the national gross domestic product. Beyond this, urban agriculture features prominently as part of Kampala's economy and is an important livelihood strategy for the city's urban poor, especially women (Hooton et al. 2007) (George and Gracious 2005). With increasing and erratic inorganic fertilizer prices and increased organic farming, agricultural producers will become more dependent on organic fertilizer sources as their main nutrient source. Market distortions coupled with the absence of a large-scale government fertilizer program that provides subsidized fertilizer and an inactive private fertilizer sector that can supply fertilizer at competitive prices, represent a great opportunity in the broader fertilizer market for organic (waste-based) fertilizer businesses.This trend mirrors the case in Vietnam, where the absence of fertilizer price subsidies means that farmers face erratic and significantly high fertilizer prices. Prices are typically subject to international price changes and exchange rate fluctuations of the economy. Accordingly, the Vietnamese fertilizer market has and continues to experience great price volatility. Fertilizer prices have doubled, and in some cases even tripled, over the past year. This creates significant speculation among local producers and farmers about future price hikes, causing a surge in farmer demand. Whilst, producers benefit from input subsidies, fluctuations in fertilizer prices result in significant uncertainties related to production. These trends however represent a great opportunity for waste-based organic fertilizer businesses to take advantage of erratic chemical fertilizer prices and the limited number of actors in the respective market and capture a share of the market. Whilst, peri-urban and urban agriculture is a longstanding feature in Hanoi and its surrounding areas, and an important indicator for fertilizer demand, rapid urban growth is leading to greater competition over land use, such that this practice is being increasingly threatened by conversion to nonagricultural urban uses (Lee et al. 2010). Research suggests that 80% of fresh vegetables, 50% of pork, poultry and freshwater fish, as well as 40% of eggs, originate from urban and periurban areas of Hanoi. This region boasts a warm humid subtropical climate with abundant rainfall (Peel et al. 2007), conducive for agricultural production.This climatic pattern extends also to the Karnataka region (Bangalore, India) and North Western region of Sri Lanka (Kurunegala). Crop production ranks high in both regions in terms of agricultural activities with oil crops, coconut and paddy production dominant in the Kurunegala region. The region of Karnataka boasts 122,470,000 ha of cultivated land (with 157,354 ha in Bangalore), constituting 25.3% of the total geographical area of the state (Government of Karnataka 2017). The 2001 census indicated that farmers and agricultural laborers formed more than half of the workforce of Karnataka (Government of India 2017). The main crops grown are rice, ragi, jowar, maize, and pulses (tur and gram), oilseeds and a number of cash crops. Karnataka is the largest producer of coarse cereals, coffee, raw silk and tomatoes among the states in India (FAO 2017; Government of India 2017). Horticultural crops are grown over an area of 16,300 km² and the annual production is about 9.58 million tons, with the generated income constituting over 40% of all income from agriculture. Contrary to the cases of Vietnam and the two African countries, there are large-scale government chemical fertilizer programs that provide subsidized fertilizer to farmers and a moderately active private fertilizer sector that supplies fertilizer at competitive prices in India and Sri Lanka. The fertilizer industry is however similarly plagued with market distortions related to limited product differentiation, distribution inefficiencies in the supply chain, information flow and foreign exchange rate fluctuations. Overall, the selected regions for this study boast a conducive climate for agriculture, which along with market distortions in the chemical fertilizer sector preliminarily translate into a great industry opportunity for a burgeoning organic waste-based) fertilizer industry.Prior to conducting the market experiments, a scoping study was conducted in each of the cities to make a preliminary determination of the key potential customer segments for the Fortifer TM product. As a potential substitute for chemical fertilizer, Fortifer TM is viewed as a key agricultural input and smallholder farmers were noted as the main prospective customer segment. Subsequently, a survey was conducted to assess farmers' attitudes and WTP for Fortifer TM in six cities in five countries, representing two continents -Africa and Asia. The surveys were conducted in Greater Accra and Sekondi-Takoradi of the Western region in Ghana, Bangalore in India, Kampala in Uganda, Kurunegala in Sri Lanka and Hanoi in Vietnam.The CV surveys were conducted in 2015 in all the selected locations. Respondents for the study were sampled from farming households in several districts, representative of urban, peri-urban and rural parts of the city region.In Kampala, for example, the respondents were sampled from farming households in five districts (Table 1) representative of: a) urban Kampala (i.e. Kampala city, central division) and b) peri-urban Kampala (i.e. Luwelo, Mukono, Mpigi and Wakiso divisions). The targeted sample size of 300 farmers was proportionally distributed across each district based on the land use (i.e. residential land vs. agricultural land) distribution per district. Respondents from each district for the study were randomly sampled from farming households with and without compost-use experience in the different divisions. Twenty-five respondents provided a protest response and refused to respond to the surveys. Therefore, a total of 275 farmers fully completed the survey, with valid observations for the analysis. In Ghana, for the Greater Accra region, 226 farmers were interviewed in six districts while in the Western region, four districts were sampled and a total of 235 respondents were interviewed. The districts were Accra, Tema and Ashaiman municipalities, Shai Osu-Doku, Ada East and Ga East districts in Greater Accra and Nzema East Ahanta West, Mpohor and Bia East in the Western region. For each district, at least two communities were selected. The Ashaiman irrigation site was deliberately selected in Ashaiman metropolis as it is the main site for agricultural activity in the district. Similarly, Tema, Klaggon and Community 11 and 12 were selected, as agricultural activities are mainly concentrated in these communities.A similar sampling approach was implemented in the Asian cities and the data are presented in Table 1. In addition to the responses to CVM experiment questions, data were collected on the respondents' socioeconomic characteristics, farmers' fertilizer-use characteristics, farmers' fertilizer purchasing behavior including their knowledge, perceptions, attitudes and experience in using different compost products, among other factors. These data served as the explanatory variables in investigating the heterogeneity in the farmers' preferences for fecal sludge-based co-compost. Prior to the implementation of the market experiments, pilot surveys were conducted to explore the type of farming activities in and around the selected study areas. Samples of the Fortifer TM product were introduced to the farmers during the pilot surveys to get an insight into their willingness to use and pay for the product. In each selected survey site, informal discussions were conducted with a group of farmers to determine the starting bid levels to be used during the actual survey. Before the actual surveys, enumerators underwent a one-day training focusing on the execution of the market experiment, technicalities of the questionnaire and characteristics of the Fortifer TM product for which the WTP values were to be elicited. This ensured that the enumerators were knowledgeable about the product and would be able to adequately address any questions that the farmers might raise regarding the product during the actual survey. Two different types of formulations of the Fortifer TM product were used in the market experiments: a) a pelletized co-compost and b) non-pelletized co-compost. To elicit the farmers' WTP for the Fortifer TM products, they were randomly assigned different bid levels to control for the effect of extraneous variables on the dependent variable.The study used a single-bounded dichotomous choice model to estimate the WTP for both the pelletized and nonpelletized Fortifer TM (NPF) product. The farmers were thus initially provided with a bid; when this was accepted, they were then given a higher bid for which their acceptance or rejection was evaluated. In the instance when the initial bid was rejected, the farmers were given a lower bid and their acceptance or rejection of the bid were also evaluated.The CV experiment was designed on the basis of 'low bids', 'medium bids' and 'high bids' for both types of the Fortifer TM product. Using the throw of a die, the farmers were randomly assigned to these three categories -when the die showed a 1 or 4, the participant was assigned a 'low bid'; when the die showed a 2 or 5 the participant was assigned a 'medium bid' and when the die showed a 3 or 6 the participant was assigned a 'high bid'. Table 2 shows the different bids assigned to the farmers. The different bids were determined based on consultation with local partners in each of the countries and based on a scoping market study. The ranges of price levels were chosen to reflect the low-end and high-end prices that were observed in the actual fertilizer markets in the different cities. For example, the levels of prices chosen ranged from USD 0.12 kg -1 to USD 0.54 kg -1 in Kampala, Uganda. Thus if a randomly selected respondent was assigned a low bid for NPF, the respondent was initially given a bid of USD 0.15 If they accepted this bid level, they were subsequently presented with a higher bid of USD 0.19, which they accepted or not. Table 2 shows that on average the population of participants was fairly evenly assigned to the different bid levels in the selected cities -with the exception of Kampala where the majority was assigned the low-level bid. It is important to note that the bids were presented to the respondents in local currencies in the different cities but for uniformity and ease of comparison of the results, the bids are presented here in United States dollars (USD). Table 3 presents the sociodemographic statistics of the respondents from the selected study areas. This information will be useful for the subsequent sections, particularly in estimating the WTP measures and the influence of these variables on the mean WTP. The survey results showed that the sampled farmers were disproportionately male across all the cities, although comparatively fewer in Kampala and the Western region of Ghana. Most farmers were within the age bracket of 38-51 years, which corroborates the finding that the productive age group in developing countries (14-59 years) is the age group that provides labor to the agriculture sector (World Bank 2016; ILO 2016). The average ages of the sampled farmers in the African and Asian cities were 45 and 48 years, respectively. The level of education of the farmers was noted to be moderately evenly distributed across the three categories of: a) no education, b) primary education and c) secondary education in the African cities.In the Asian cities, with the exception of Bangalore, a disproportionate percentage of the farmers had a secondary education in comparison to the other educational levels. The relatively high literacy level of the farmers suggested that the farmers had the basic education to perform activities such as reading and understanding the instructions on labels and fertilizer application methods -which may be an implicit factor that influences their willingness to adopt/use the Fortifer TM product.Most of the respondents belonged to medium-and large-sized households, ranging between three and seven members. This result may be indicative of the use of family labor for agricultural activities. This assertion is also supported, particularly in the African cities, by the fact that a significant percentage of the farmers do not engage in off-farm employment. A similar trend was observed in Asia, although the percentages were relatively proportionally distributed across on-and off-farm employment in Bangalore and Hanoi. The number of years that the farmers had been engaged in agricultural activities varied significantly across the different countries from as low as one year to 40 years, with an average of 25 years of farming experience. The highest percentage of farmers belonging to a farmers' association occurred in the Western region in Ghana. This is not surprising as this region is a main agricultural belt in the country. Additionally, whilst urban and peri-urban agricultural is prominent in the selected cities -the farmers tend to be nomadic due to increasing urban development and thus typically have a lower incentive to engage in farmers' associations, especially if this comes at a cost. Farmers in the study areas were predominately small scale with an average land size ranging from 0.83 to 7.92 acres, although the latter is more representative for the Western region farmers in Ghana. This significant variation also translates to the income earned, ranging from USD 849 to approximately USD 5,062 -with the highest earners in Hanoi. It is important to note that the large standard deviations may well be attributable to the fact that farmers are typically unwilling to reveal their incomes and thus the stated income levels may be biased downwards.Although, traditionally noted to be nomadic farmers, most of the respondents in all the cities owned their land.With the exception of Kampala and Bangalore, a dominant percentage of the farmers used chemical fertilizers. The case of Kampala is attributed to several distortions in the fertilizer market, including: a) an uncertain macro-environment, characterized by high exchange rate movements with a devaluation of local currency; b) high domestic and import taxes; c) a weak regulatory system that cannot control unlicensed suppliers; and d) limited established distribution networks. As expected, organic fertilizer use was higher among farmers in Kampala and Bangalore, although on average 50% of the farmers in the other locations used organic fertilizer. Gender Gender category (%) 1= InorganicUse_org_fert Use of organic fertilizer (%): Note: a The overall percentage of respondents using different kinds of organic fertilizers.The use of poultry manure for agricultural activities was quite predominant in Ghana until recently (Boateng et al. 2006). Despite farmers' increasing demand for poultry manure, its availability is increasingly diminishing given the declining state of the country's poultry industry, which is attributable to lax import policies. Bangalorean farmers are also noted to be large users of organic fertilizers, although this was not observed in Hanoi (Table 5). The survey included statements related to a set of fertilizer attributes that were likely to have an influence on farmers' choice of fertilizers. To determine the most important factors that influence farmers' choices, farmers were asked to rate various product attributes. These product attributes were rated based on their level of importance prior to purchasing fertilizer using a Likert scale. Product attributes were then ranked for their level of importance based on the number of farmers giving high scores (4)(5) to each attribute (Table 6).Farmers in both regions of Ghana rated a suitable credit offer as the most important product attribute in making their fertilizer-purchasing decisions. While price was ranked as the second most important product attribute in the Western region, a convenient location to buy the product was rated as the second-most important attribute in Greater Accra. Nutrient content and fertilizer application methods were also amongst the product attributes, which scored high in both regions. Other product attributes which farmers considered before purchasing fertilizer were organic matter, volume to apply and a label showing product certification by relevant authorities such as the Ministry of Food and Agriculture. The importance of brand and packaging ranked as the least important attributes in both regions. Moreover, whether the product was locally made or imported was not considered as an important product attribute determining farmers' fertilizer purchase decisions. In contrast, farmers in Kampala considered whether someone they knew had used it as the most important aspect when making a fertilizer purchase decision. Fertilizer application method, organic matter, waterholding capacity and volume to apply were also considered as important product attributes. Unlike surveyed farmers in Ghana, farmers in Kampala did not consider a suitable credit offer and price as the most important attributes when making purchase decisions. While farmers in Ghana were indifferent to the safety of a product, farmers in Kampala rated safety as an important product attribute when making purchase decisions.Farmers in Bangalore, Hanoi and Kurunegala considered different product attributes when making fertilizer purchase decisions. While farmers in Bangalore and Kurunegala rated product quality as measured by nutrient content and safety as the most important product attributes respectively, farmers in Hanoi made their fertilizer purchase decisions based on whether someone they knew had used it. In addition to nutrient content and safety, farmers in Bangalore and Kurunegala rated price and organic matter as important product attributes when making purchase decisions. Waterholding capacity and volume of fertilizer to apply were also rated as important product attributes by Kurunegala farmers.Comparison of key important product attributes influencing fertilizer purchase decisions across Africa and Asia showed that farmers in Hanoi did not particularly give a high score to any of the product attributes compared to all other regions. While price was given a moderate to high score in all of the regions, farmers in Hanoi rated price as the least important product attribute. While farmers in Ghana rated a suitable credit offer as very important in their purchase decisions they were indifferent to the safety of the product; in contrast farmers in other regions, with the exception of Hanoi, were indifferent to credit offers but rated safety as an important product attribute. The farmers were asked a series of questions aimed at assessing their knowledge, attitudes and perceptions regarding fecal sludge-based fertilizers. This information was collected to investigate the effect of farmers' attitudes on their WTP for Fortifer TM . To investigate the underlying structure of the attitude variables, we conducted a factor analysis. This section presents the results of the factor analysis for the selected regions.Table 7 presents the factor loadings of attitude variables (in bold) on the extracted factors after varimax orthogonal rotation. The factor analysis of attitude variables in Greater Accra resulted in four factors while three factors were identified in the Western region. Each of the factors had an eigenvalue greater than 1. The first three factors were similar in both regions, but in a different order, indicating that their relative importance differed. The total variance accounted for was 67% in Greater Accra and 51% in the Western region. Cronbach's alpha coefficients were computed to examine the internal consistency of each factor. Values were moderate to high (0.62-0.89), indicating that the attitude variables loading on each of the factors measured the same underlying construct. The first factor termed 'positive attribute' had high loadings on questions related to the potential benefits of Fortifer TM in both regions. This factor captured the tendency of farmers to accept Fortifer TM based on its perceived potential benefits such as its potential to enhance agricultural productivity, nutrient availability to crops and enhance long-term soil fertility including its contribution to improving sanitation and environmental sustainability. However, in the Western region, while perceived potential benefits of Fortifer TM had positive factor loadings on 'positive attribute', the variables related to farmers' concerns about religious and cultural beliefs against using fecal sludge-based fertilizers had negative factor loadings (-0.71 and -0.76). This indicated that when a farmer believes that it is religiously and culturally unacceptable to use a fertilizer made from fecal sludge, the farmers' tendency to consider the benefits of using fecal sludge-based fertilizer is reduced. Three factors were identified in Kampala (Table 8). The first factor, certification-trust, had high loadings on variables related to certification of Fortifer TM by relevant authorities. This factor captures farmers' tendency to trust and buy the product based on approval by relevant and trusted authorities. This is also in line with farmers' attitudes towards certification of the product in Ghana. Thus, farmers in the selected regions of Ghana and Uganda perceived that product quality is guaranteed if certified by relevant authorities. In addition to certification, this factor had high loading on statements related to the perceived price of Fortifer TM compared to chemical fertilizer indicating that farmers tend to buy Fortifer TM if it is cheaper than chemical fertilizer. The second factor, safety issues, had high loadings on variables reflecting farmers' awareness of the advantages and disadvantages of fecal sludge-derived fertilizer and their concerns on safety aspects. This is also in line with results obtained in Ghana whereas factor four captured farmers' concerns on safety. The third factor, positive attributes, captured farmers' perceived advantage of fecal sludge-based fertilizer including their preference of the pellet over nonpellet form. The farmers responded to fewer knowledge and attitude variables in India and Sri Lanka compared to those used in Ghana and Uganda. The third factor, safety issues, had high loadings on variables reflecting farmers' concerns about safety aspects. However, the Cronbach alpha is low (0.42) indicating that the attitude variables loading on the safety factor do not measure the same underlying construct. Looking at the factors extracted from Kurunegala, the first factor, positive attribute, had high loadings on variables related to the perceived advantage of fecal sludge-derived fertilizers for improving sanitation and the environment. The third factor, awareness, captured farmers' knowledge of the advantages and disadvantages of fecal sludge-derived fertilizers and their acceptance without any reservation. However, the Cronbach alpha is low (0.29) indicating that the attitude variables loading on this factor does not measure the same underlying construct.The perception statements used in the Hanoi surveys differed slightly because of the context and there was a need to adapt the questionnaires accordingly to ensure proper comprehension by the farmers. Three factors were identified in Hanoi ( Looking at the overall result from each country, sampled farmers in all the selected regions perceived that if Fortifer TM is certified by relevant authorities, it can be trusted. Another important attitude construct that cuts across most of the selected regions is the safety issue which captures farmers' perceived concerns about the safety of the product. While sampled farmers in Bangalore and Kurunegala perceived that Fortifer TM can substitute for chemical fertilizer and would buy it irrespective of the price offered, farmers in Ghana and Uganda were price sensitive and would only buy Fortifer TM if it was cheaper than chemical fertilizer. Once the factors were identified, indices were created for each factor by calculating the factor scores for each farmer in the sample. The factor scores were then used as one of the explanatory variables in the dichotomous choice model to assess consumers' WTP for Fortifer TM (see subsequent section 5.5.1).Fertilizer (Fortifer TM )We used a Probit regression model to estimate equation 2. Table 11 depicts the variables used in the econometric analysis. The log-likelihood ratio test was used to select the appropriate model for the analysis. A Principal Component Analysis (PCA) was used to determine the questions that provided a better assessment for farmers' purchasing decisions and perceptions about Fortifer TM .The PCA showed that factors such as product certification, price and safety concerns of the product were the relevant questions to assess farmers' purchasing decisions. Also, the PCA revealed that the ability to use the product if certification was done by a relevant authority, product use without any reservations, certification by a trusted authority and benefits to the environment were better determinants of farmers' perceptions for a pelletized and certified Fortifer TM product.Separate regression models were run for two formulation types of Fortifer TM -NPF and PF (Table 12).As noted earlier, the Fortifer TM product was developed to address challenges associated with using 'regular' compost or dried fecal sludge such as bulkiness, low nutrient content and associated health risks. Thus, it was important to not only assess farmers' WTP for the general Fortifer TM product (fecal sludge-based fertilizer) but also the specific product attributes. Reduced product bulkiness implies a more concentrated product with reduced volume, lower transportation costs and related lower labor costs. Farmers may thus be incentivized to pay a marginally higher price for pelletized over non-pelletized compost.A set of common explanatory variables was used to explain farmers' WTP for the two products, which enabled comparison of results between the two models as well as comparison of results across regions and countries. In addition to the sociodemographic characteristics of the farmer and the random amount the farmer was asked to pay (Bid1), other explanatory variables included attitude variables obtained from the factor analysis. Attitudes of farmers are not necessarily independent of their sociodemographic characteristics, i.e. the differences in the attitudes of farmers are likely to be related to their sociodemographic characteristics. This poses an endogeneity problem as attitudes are partly determined by sociodemographic characteristics of farmers. To overcome the endogeneity problem, the factors obtained were first regressed on the sociodemographic characteristics of farmers as a system of linear equations by using seemingly unrelated regression estimation (SURE).Results of the SURE model indicated that the models were not significant and that the attitude variables were not endogenous for all the countries. Thus, the attitude variables were considered as exogenous explanatory variables. Results for Ghana: Tables 12 and 13 present the Probit model results for the WTP equations for NPF and PF in Greater Accra and the Western region respectively. In Greater Accra, the Bid1 variable was statistically significant in both models; as the bid went up the probability of a positive answer went down. Thus, the higher the amount requested to pay, the lower the probability a farmer would be willing to pay for NPF and PF. Furthermore, it implied that the farmers were more likely to choose different formulations of Fortifer TM if it was less expensive than other inorganic or organic fertilizers. Examining the results of the sociodemographic characteristics of respondents, some of the sociodemographic characteristics which had a statistically significant effect on farmers' WTP for NPF did not have a significant effect on the probability of farmers' WTP for PF and vice versa. While the educational level of the farmer had a negative and significant effect on the likelihood of farmers' WTP for NPF, it had no statistically significant effect on farmers' WTP for PF indicating that farmers with higher level of education were less likely to be willing to pay for NPF.In contrast to the results for the Greater Accra region, in the Western region the Bid1 variable was not statistically significant in both models indicating that price did not have a significant effect on farmers' WTP for different formulations of Fortifer TM . For the sociodemographic characteristics of the respondents, the variable farm_exp, which represents the farmers' farming experience, had a negative and statistically significant effect on farmers' WTP for PF however, the same variable did not have a statistically significant effect on farmers' WTP for NPF indicating that as farmers' farming experience increases, farmer's likelihood of paying for PF reduces. Thus, young farmers with less years of farming experience are more likely to pay for PF in the Western region.We expected farmers' characteristics to have a significant effect on farmer's WTP for Fortifer TM . This was confirmed by the fact that farm characteristics such as farm income, farmers' previous use of any organic fertilizer and having off-farm work and land titles all had a statistically significant effect on the likelihood of a farmer's WTP for at least one Fortifer TM formulation in Greater Accra. While farm size and whether a farmer is a member of a farmers' association did not have a statistically significant effect on farmers' WTP for both Fortifer TM formulations, farm income had a positive and significant effect on farmers' WTP for PF. This indicates that farmers with higher income are more likely to be willing to pay for PF, implying that wealthier farmers have more flexibility in allocating funds and are more willing to invest in new agricultural inputs to further improve yield. Farmers who previously used any form of organic fertilizers such as compost or animal dung are less likely to be willing to pay for any of the Fortifer TM formulations. This might be because organic fertilizers, such as composts, are available informally at a lower price and animal dung is sourced at a lower price in Ghana, thus making Fortifer TM less attractive for those who rely on other organic fertilizers.Having off-farm work had a positive and significant effect on farmers' WTP for both Fortifer TM formulations, indicating that farmers who had off-farm work were more likely to be willing to pay for the two Fortifer TM formulations. Furthermore, we expected that farmers who owned the land they cultivated would be more likely to be willing to invest in agricultural inputs to ensure that long-term soil quality is preserved.However, our results showed that landownership did not have a statistically significant effect on farmers' WTP for any of the Fortifer TM formulations. Of the attribute variables, farmers' perceived price and cost of handling of Fortifer TM compared to alternative fertilizers such as chemical fertilizer (price-sensitive) and safety concerns driven by cultural and religious beliefs (safety-culture) were noted to negatively influence their WTP for the Fortifer TM product, particularly NPF.Similarly, in the Western region farm characteristics such as farm size, farm income, landownership and farmers' previous use of any organic fertilizer all had statistically significant effects on the likelihood of farmers' WTP for at least one Fortifer TM formulation. Farm size had a positive and statistically significant effect on farmers' WTP for both Fortifer TM formulations, however farm size did not have a statistically significant effect on farmers' WTP in the Greater Accra region. This indicated that in the Western region, farmers with larger farm sizes will be more willing to pay for Fortifer TM products.While farm income had a positive and significant effect on farmers' WTP for NPF, it was weakly significant at the 20% critical level in the case of PF indicating that farmers with higher income were more likely to be willing to pay for NPF. This was in contrast to the results obtained in Greater Accra where farmers with higher income were more likely to pay for PF. Farmers who previously used any form of organic fertilizers such as compost or animal dung were less likely to be willing to pay for any of the Fortifer TM formulations. Similar results were obtained in the Greater Accra region.Model results pertaining to attitude variables revealed that in Greater Accra, the parameters for price-sensitive and safety-culture were significant at 5 and 10% critical levels respectively for NPF. Price-sensitive and safety-culture both had a negative effect on the probability of farmers' WTP for NPF. The attitude variable price-sensitive captures farmers' tendency to buy Fortifer TM if it is cheaper than chemical fertilizer and easier to transport and handle compared to other organic fertilizers while the safety-culture variable captures farmers' concerns on safety, including cultural and religious beliefs against using fecal sludge-based fertilizers.A negative and significant effect of these attitude variables indicated that farmers who believed that Fortifer TM should be priced lower than other inorganic fertilizer as well as farmers who had concerns about the safety of the product were less likely to pay for NPF. In contrast, attitude variables did not have a significant impact on farmers' willingness to pay for PF.In the Western region, the attitude variable, certification-trust had a negative and statistically significant effect on farmers' WTP for NPF but was weakly significant at the 20% critical level and had a positive effect in the case of PF. This indicated that farmers expressing concerns about product certification are less likely to pay for NPF but are more likely to pay for PF in the Western region. Other attitude variables did not have a significant impact on farmers' WTP for both Fortifer TM products.The results of the Probit models for Kampala are presented in Table 14. The FBOM (farmer's membership in the farmers' association) variable was omitted from the regression models due to the limited variation in the data points. Only two farmers were noted to belong to a farmers' association. For both regression models, the Bid1 variable is negative and statistically significant as expected, indicating that price increases will reduce the probability of a farmer buying either NPF or PF. Of the sociodemographic variables, the farmers' experience in agricultural production and level of farm income are statistically significant. In the case of NPF, the more experienced the farmer is, the less likely she/ he is to invest in NPF. Whilst this result is contrary to what was expected -as more experienced farmers are likely to be more familiar with the benefits of organic fertilizer use-this result may suggest that 'older' farmers are less willing to invest in inputs with delayed/ longer-term benefit accrual. Similar to the case in the Greater Accra region, farmers earning higher incomes are more willing to purchase Fortifer TM products, although more so for PF than NPF. Farmers engaging in off-farm work were noted in both Kampala and the Greater Accra region to be willing to pay for PF. This may be indicative of budget flexibility that the farmers have from additional income earned from off-farm employment.It was hypothesized that farmers with a smaller household size would be more willing to use PF given its attributes of reduced labor requirements in comparison to NPF.The Hhmember variable was used as a proxy to measure labor availability for agricultural production. Although the negative coefficient supports the notion of labor savings for PF use, it is statistically insignificant. Subsequently excluding it from the regression model had very marginal (insignificant) effects on the fit of the model. Landownership plays an important role in farmers' purchasing decisions of agricultural inputs. We note from the results that farmers who own the land they farm on are more willing to invest in Fortifer TM than those who are either renters, squatters or own untitled land. This corroborates the findings in both regions in Ghana. Farmers with previous experience in using other organic fertilizers such as compost, animal manure (use_org_fert) are more willing to buy Fortifer TM products, which is in contrast to the findings in Ghana. This may be suggestive of the lower product quality available to farmers, but as indicative in Table 4, organic fertilizer use is more prevalent in Uganda than in Ghana.Two of the three attribute variables were statistically significant for both NPF and PF. Farmers who have safety concerns (reservations) with Fortifer TM use are less willing to pay for the product as indicated by the negative coefficient. This result is supported by farmers' willingness to buy a formulation of Fortifer TM if a trusted governmental authority certifies the product -indicative of their need of safety assurance. Overall, the results from the African countries indicated that farmers' willingness to buy Fortifer TM decreases with increasing prices as expected. The effects of the socioeconomic variables related to the farmers' agricultural production experience, farm income, landownership and off-farm work on the farmers' WTP for Fortifer TM were similar across the three cities. Higher farmer income and landownership positively influenced their investment decision for Fortifer TM as did off-farm work. Surprisingly, contrasting results were noted for the variable capturing the effect of farmers' previous use of organic fertilizer on their WTP. Product certification is a crucial factor that influences farmers' purchasing decisions of any Fortifer TM product. This result indicated that there is a strong need for relevant governmental authorities in these countries to provide adequate product safety and quality control.Results for India: Bangalorean farmers were less willing to pay for Fortifer TM at higher prices as indicated by the negative coefficient for the Bid1 variable (Table 15). Of the socioeconomic variables, farmers' experience in agricultural production was the only statistically significant variable. It showed that the more experienced the farmer is, the less likely she/he will invest in PF, similar to the findings in Uganda and Ghana. Whilst this result is contrary to what was expected -as more experienced farmers are likely to be more familiar with the benefits of organic fertilizer use-this result may suggest that 'older' farmers are less willing to invest in inputs with delayed benefit accrual. Prior use of organic fertilizer positively influences farmers' WTP for both NPF and PF. The income effects of off-farm work on farmers' purchasing decisions of Fortifer TM can be ambiguous in that with the additional income, they may be willing to invest more in agricultural inputs. However, the option of alternative employment, especially if wages are higher, may deter farmers from making incremental investments in agriculture. It was noted among Bangalorean farmers that the latter is true and this may be indicative of increased urban development that threatens peri-urban and urban agriculture. Landownership is a critical factor influencing farmers' purchasing decisions of Fortifer TM . Similar to the African cases, farmers that rent, squat or own untitled land are less willing to invest in Fortifer TM . This may suggest that they view buying Fortifer TM as an investment for which they may not recoup a return in the 'very' short term. Of the attribute variables, certification and perception of product safety significantly influenced farmers' WTP for the Fortifer TM product. Whilst, the coefficient on the substitute variable was positive and indicated that farmers were more willing to buy Fortifer TM if it was sold at the same or a lower price than chemical fertilizer, it was not statistically significant. Results for Vietnam: Data were not available for the off-farm work, landownership and FBOM variables, and so were not included in the regression models for Hanoi. Additionally, age of the farmer was used as a proxy to measure the farmers' experience in agricultural production given limited data on the number of years the farmers were engaged in farming activities. As expected, the Bid1 variable was negative and statistically significant -suggesting higher farmers' WTP for Fortifer TM in view of lower prices (Table 16). Farmers with higher levels of education were noted to be less willing to pay for NPF, similar to the case in Ghana. This result may be because older farmers were less willing to adopt new agricultural technologies and were inherently less educated.An interesting result was that farmers with larger farm size were less willing to pay for NPF whilst the opposite was true for PF. This confirmed our hypothesis that farmers will adopt PF based on the inherent labor-saving characteristic of the product. Although farmers predominantly use inorganic fertilizer as opposed to organic fertilizer, the regression model suggests that farmers who have greater experience using organic fertilizer are more likely to pay for Fortifer TM , in particular PF.In terms of the attribute variables, the negative and statistically significant coefficient on the substitute variable suggested that farmers would be more willing to pay for Fortifer TM if its price was lower than or equal to that of chemical fertilizer. Product certification by a trusted governmental entity was additionally noted to be an important factor in farmers' purchasing decisions of Fortifer TM as in Bangalore. Farmers had no reservations about using either NPF or PF as long as it was proven safe and of high quality. The sign and significance of the safety_issues variable, which measures the farmers' concerns on safety related to use of a fecal sludge-based fertilizer, provided further evidence to support this result. Results for Sri Lanka: The results for the regression model for Kurunegala showed that farmers would be less willing to pay for Fortifer TM at higher bids (Table 17). Assessing the effects of the socioeconomic variables showed that education had an ambiguous effect on farmers' WTP for Fortifer TM . Whilst this variable was generally insignificant for PF across the other cities, it was negative and statistically significant in Kurunegala. Higher levels of education can suggest a greater understanding of the benefits from Fortifer TM use and thus these farmers were more willing to use the product, although this was specific to PF. Farm size was an important variable affecting farmers' WTP for Fortifer TM -farmers with larger farms had a lower WTP for NPF than those with smaller-sized farms. This confirmed our hypothesis that farmers consider the labor-saving characteristics of agricultural inputs (in this case, fertilizers) in their purchasing decisions. Higher farmer income positively influences farmers' WTP -suggesting that wealthier farmers have more flexibility in allocating financial resources and are more willing to invest in new agricultural inputs to further improve yield.All the attribute variables were statistically significant in the case of PF. Beyond the imperative need for a certified Fortifer TM product to incentivize farmers' WTP for the product, farmers' perceived benefits positively influenced their WTP. Additionally, the farmers in Hanoi were noted to be more willing to pay for Fortifer TM if they were knowledgeable about the advantages and disadvantages of using fecal sludge-based fertilizers and accepted its use without any reservation. In summary, results for the Asian countries indicated that increases in price will decrease farmers' WTP for both Fortifer TM products. Farm size was an equally important indicator for farmers' purchasing decisions, particularly for NPF -as farmers were less likely to be willing to pay for NPF if they had large farm sizes. This is indicative of the incremental labor requirements for NPF (representative of additional production costs) which farmers take into account when deciding on the type of fertilizers they will use. Farmers' income generally did not influence their WTP for Fortifer TM , with the exception of Kurunegala where wealthier farmers were more likely to purchase PF. The effects of landownership on farmers' WTP was evident only in the case of Bangalore, as was farmers' previous experience in using organic fertilizer. The latter result however extends also to Hanoi. Important determinants of farmers' WTP for NPF and PF were the attribute variables. In both cases, product certification by a trusted governmental body was imperative to incentivize farmers' purchase of Fortifer TM . This result is supported by the fact that farmers' concerns Notes: *Significant at the 0.10 level.**Significant at the 0.05 level.***Significant at the 0.01 level.on safety associated with the use of Fortifer TM negatively affects their likelihood of purchasing the product. Price of competitive products significantly influences farmers' adoption behavior as noted by the negative and significant coefficient of the substitute variable, although specific to Hanoi. Cheaper substitute products will result in a lower demand for Fortifer TM .In comparing the results of the Asian and African countries, the regression models showed that farmers were less willing to pay for Fortifer TM at higher bids, and this was consistent across all the six countries (Annexes 2 and 3). Assessing the effects of the socioeconomic variables showed that education had an ambiguous effect on farmers' WTP for Fortifer TM . Farm size, status of landownership and previous experience using organic fertilizer also significantly influenced a farmer's purchasing decision on Fortifer TM . Most farmers in the study countries, with the exception of the Greater Accra region and Hanoi, owned the land that they farmed. It is thus expected that farmers from Kampala, Bangalore and Kurunegala, all things being equal, will be more willing to pay and use Fortifer TM . The effects of farm size on farmers' WTP differed by product type, in that farmers with larger farm sizes were more willing to pay for PF over NPF, as the latter requires more labor for application. The effects of the attribute variables were similar and consistent across both the Asian and African countries. In particular, farmers' concerns about product safety and related need for certification were key factors influencing their decision when purchasing Fortifer TM . Third-party product certification is necessary, especially in the Asian countries where guidelines for fecal sludge use in agriculture are unclear.Marginal effects results -Ghana and Uganda: Table 18 presents the estimated marginal effects of the explanatory variables on the likelihood of farmers' WTP for Fortifer TM products in the Greater Accra and Western regions, and Kampala. As expected, in Greater Accra, the bid variable had a negative and statistically significant marginal effect. The higher the amount the farmer was requested to pay, the lower the probability that a farmer would be willing to pay for Fortifer TM . Thus, if the bid amount rose by USD 1.00, the probability of the farmer paying for NPF and PF decreased by 0.027. The impact of increasing the price on farmers' WTP was similar for both Fortifer TM products. In contrast, in the Western region, the bid amount had no statistically significant marginal effect on the likelihood of farmer's WTP for both Fortifer TM products. The case of Kampala was similar to that of the Greater Accra region where there was a negative marginal effect of the bid on farmers' WTP for Fortifer TM . A USD 1.00 increase in the bid amount reduced the probability of a farmers' WTP by 1.445 and 1.573 for NPF and PF, respectively. This reflects a significant reduction in demand from price changes that producers need to pay particular attention to.The effect of the farmers' sociodemographic characteristics showed that the education variable had a negative and statistically significant marginal effect on NPF in the Greater Accra region while education of farmer did not have a statistically significant marginal effect on farmer's WTP for both products in the Western region and Kampala. However, the variable farm_exp had a negative and statistically significant marginal effect on farmers' WTP for PF and NPF in the Western region and Kampala, respectively. Thus, an increase in one level of education decreased the probability of WTP by 0.072 for NPF in Greater Accra region and an increase in the number of years of farming by one year decreased the probability of WTP by 0.001 for PF in the Western region and 0.003 for NPF in Kampala.The effect of farm characteristics showed that off-farm work and previous use of organic fertilizer had statistically significant marginal effects on farmers' WTP for both products in Greater Accra while farm income had a statistically significant marginal effect on farmers' WTP for PF only. Similarly, farm characteristics such as farm size, farm income, land title and previous use of organic fertilizer had statistically significant marginal effects on farmers' WTP for at least one Fortifer TM product in the Western region and Kampala. The fact that a farmer used organic fertilizer decreased the probability he/she would be willing to pay for NPF and PF by 0.152 and 0.109 respectively in the Greater Accra region while it decreased the probability of farmer's WTP for PF by 0.194 in the Western region. In Kampala, previous experience with organic fertilizer increased the probability of farmers' WTP for Fortifer TM by 0.152 for NPF, with no marginal effects for PF. Moreover, farmers who had off-farm work were more likely to pay for PF only in Kampala, and both NPF and PF in the Greater Accra region while off-farm work did not have a statistically significant marginal effect on farmers' WTP for both products in the Western region. Farm income had a positive and statistically significant marginal effect on farmers' WTP for PF in Greater Accra and Kampala while it had a positive and statistically significant marginal effect on farmers' WTP for NPF in the Western region. An increase in farm income by USD 1.00 increased farmers' likelihood to pay for PF by 0.0003 and 0.0001 in Greater Accra and Kampala, respectively. In the Western region, an increase in farm income by USD 1.00 had a greater marginal effect of 0.001 for NPF. Farm size had a significant and positive marginal effect on farmers' WTP for both products only in the Western region. An increase in farm size by 1 acre increased farmer's likelihood to pay for NPF and PF by 0.199 and 0.015 respectively. Land titles did not have a statistically significant marginal effect on farmers' WTP for both products in Greater Accra while it had a significant and positive marginal effect on farmers' WTP for both products in Kampala. It was noted that when farmers own the land they cultivate, the probability of their WTP for both NPF and PF increases by 0.124 and 0.154, respectively. The marginal effects also showed that a higher score in the attitude variables, price-sensitive and safetycultural issues, decreased the likelihood of consumers' WTP for NPF in Greater Accra. When the score in the attitude variables price-sensitive and safety_cultural issues increased by 1 unit, the probability of WTP for NPF decreased by 0.077 and 0.059 respectively. In the Western region, only one attitude variable -certification_trusthad a negative and statistically significant marginal effect on farmers' WTP for NPF indicating that an increase by one unit in the score of the attitude variable certification_ trust decreases the probability of WTP for NPF by 0.076. Thus, while at least one attitude variable had a statistically significant marginal effect on NPF in both regions, none of the attitude variables had statistically significant marginal effects on farmers' WTP for PF in both regions. In the case of Kampala, a unit increase in the score of the certification_trust variable increased the probability of WTP for both NPF and PF by 6.3% and 5.8%, respectively. On the other hand, perceived product safety concerns decreased demand. A unit score increase in the safety_ issues variable decreased the likelihood of a farmer's WTP for NPF and PF by 14% and 8%, respectively. The positive_attitude variable however had no marginal effect on the probability of WTP for either products.Marginal effects results -India, Vietnam and Sri Lanka: Table 19 presents the estimated marginal effects of the explanatory variables on the likelihood of farmers' WTP for Fortifer TM products in Bangalore, Hanoi and Kurunegala. As expected, in all three countries, the bid variable had a negative and statistically significant marginal effect. The higher the price a farmer had to pay, the lower the probability that they would be willing to pay for Fortifer TM . A USD 1.00 increase in the bid amount offered decreased the probability of the farmer paying for NPF by 160%, 30% and 594% in Bangalore, Hanoi and Kurunegala, respectively. Likewise, for PF, a USD 1.00 increase in price reduced demand by 139%, 89% and 277% in the three cities. This result suggests a very elastic demand curve, particularly for Kurunegala.The effect of the sociodemographic characteristics of the farmers showed that the education variable had an ambiguous effect on Fortifer TM products across the countries. Whilst a negative effect was observed in Hanoi, a 1-level increase in the education level of a farmer increased the probability of WTP by 3% for PF in Kurunegala. No marginal effects for this variable were observed in Bangalore. The variable farm_exp had a negative and statistically significant marginal effect on farmers' WTP for PF in Bangalore. Thus, an increase in the number of years of farming by one year decreased the probability of WTP by 2.6% for PF in Bangalore.The effect of farm characteristics showed that farm income, off-farm work, previous use of organic fertilizer, farm size and status of landownership had statistically significant marginal effects on farmers' WTP for at least one Fortifer TM product in the three countries. Farm income had a positive and statistically significant marginal effect on farmers' WTP only in Kurunegala and for PF. An increase in farm income by USD 1.00 increased farmers' likelihood to pay for PF by 0.000007. In the Western region, an increase in farm income by USD 1.00 had a greater marginal effect of 0.001 for NPF. Interestingly, farmers who had off-farm work were less likely to pay for NPF in Bangalore. The income effects of off-farm work on farmers' purchasing decision of Fortifer TM can be ambiguous in that with the additional income, they may be willing to invest more in agricultural inputs. However, in the case of Bangalore, the option of alternative employment, especially if wages are higher, may deter farmers from making incremental investments in agriculture.The fact that a farmer used organic fertilizer increased the probability that she/he would be willing to pay for NPF and PF by 18% and 34%, respectively in Bangalore, while it increased the probability of farmers' WTP for PF by 16% in Hanoi. However, no marginal effects were observed for either Fortifer TM product in Kurunegala. Farm size had a significantly negative marginal effect on farmers' WTP for NPF and a positive marginal effect for PF in Hanoi and Kurunegala. An increase in farm size by 1 acre decreased a farmer's likelihood to pay for NPF by 5% and 0.1% in Hanoi and Kurunegala, respectively. On the other hand, a 1-acre increase in farm size increased the probability of farmers' WTP by 7% and 0.1% in Hanoi and Kurunegala, respectively. Status of landownership had an effect on farmers' purchasing decisions in Bangalore. Farmers who owned the land they cultivated were willing to pay for the Fortifer TM product, irrespective of the formulation. Landowning farmers were 38% and 16% more likely to be willing to pay for NPF and PF, respectively. No marginal effects for this variable were observed in either Hanoi or Kurunegala. The Hhmember variable, capturing the effects of free or inexpensive labor availability, had no marginal effects on demand in any of the countries.The marginal effects also showed that a higher score in the attitude variables, certification_trust and positive_attitude, increased the likelihood of consumers' WTP for at least one of the Fortifer TM products in all three countries. A unit increase in the score of the certification_trust variable increased the probability of farmers' WTP for NPF by 65%, 2% and 3% in Bangalore, Hanoi and Kurunegala, respectively. The marginal effects of the positive_attitude variable were only observed for PF in Kurunegala.On the other hand, farmers' concerns on safety issues associated with Fortifer TM use had a negative and statistically significant marginal effect on their WTP for both NPF and PF, indicating that a one-unit increase in the score of the variable safety_issues would decrease the probability of WTP for NPF and PF by 33% and 23%, respectively in Bangalore. A 4% decrease was similarly observed for NPF in Hanoi. Based on the regression estimates, WTP estimates and respective confidence intervals based on the Krinsky and Robb method were computed for testing the null hypothesis that WTP>=0. The WTP estimates for NPF and PF were determined using the mean values of the explanatory variables. The mean WTP for the two Fortifer TM products are presented in Table 20 for all the countries. The mean WTP estimates are statistically different from zero for all the countries, implying that farmers were receptive to the Fortifer TM products.For Ghana, the mean WTP estimates for NPF and PF were USD 0.145 kg -1 and USD 0.198 kg -1 , respectively for the Greater Accra region. The mean WTP for NPF in Western region was 20% higher than the mean WTP for NPF in the Greater Accra region while the reverse was true for PF, i.e. farmers in Greater Accra were willing to pay 20% higher than their counterparts in the Western region. The standard measurement for fertilizers in Ghana was mostly in 50-kg bags, thus the mean WTP for NPF in standard packaging was USD 7.11 for the 50-kg bag while the mean WTP for PF was USD 9.91 for the 50-kg bag in the Greater Accra region. These figures were comparable to the existing prices for compost and artificial fertilizers such as NPK in the country. Kampala had significantly higher prices than either regions in Ghana, with farmers' WTP recorded as 2 times and 2.3 times those in the Western and Greater Accra regions, respectively.In the Asian countries, while WTP estimates were fairly similar for Hanoi and Kurunegala, Bangalore estimates were almost seven times higher. The highest WTP estimates for NPF and PF among these countries were USD 0.73 kg -1 and USD 0.52 kg -1 , respectively, whilst the lowest WTP estimates were recorded in Hanoi at USD 0.11 kg -1 and USD 0.13 USD kg -1 for NPF and PF, respectively. Generally, across all the countries, farmers were willing to pay more for PF than NPF with the exception of Bangalore and the Western Region. The noted WTP estimates for the Asian countries as with the African countries were comparable to the existing market prices for inorganic fertilizers.Understanding the potential market for Fortifer TM extends beyond estimating the WTP measures and the factors that affect them but also requires having a clear overview of the potential quantity demanded in view of other market effects (e.g. competition). Fertilizer consumption rates across the study areas showed a big disparity between the African and Asian countries. Uganda and Ghana recorded very low levels of fertilizer application rates at an average of 2 kg ha -1 and 25 kg ha -1, respectively (Figure 2). Particularly for Uganda, this has been attributed to a fertilizer industry plagued by market distortions which are subsequently exacerbated by ineffective policies and limited infrastructure. With neither a large-scale government fertilizer program that provides subsidized fertilizer to farmers nor an active private fertilizer sector that supplies fertilizer at competitive prices, farmers face erratic fertilizer prices amidst the limited number of actors in the fertilizer market. Whilst these market distortions and barriers are limiting factors in the chemical fertilizer sector, they represent an opportunity for business development in the organic fertilizer subsector and businesses such as those for Fortifer TM production. Low fertilizer application rates in Ghana have been attributed to, among other factors, the high cost of fertilizers. Key constraints to fertilizer use in Ghana include insufficient credit to the farmer, high lending rates by banks for the agriculture sector and problems with marketing of agricultural produce. In the Asian countries, on the other hand, there were comparatively higher levels of fertilizer application rateswith Hanoi recording the highest at 370 kg ha -1 , followed by Kurunegala at 216 kg ha -1 and Bangalore at 165 kg ha -1 . Despite high levels of fertilizer consumption in Vietnam, there are fertilizer price subsidies, which means that farmers face erratic and significantly high fertilizer prices. Prices are typically subject to international price changes and exchange rate fluctuations. Contrary to the case of Vietnam and the two African countries, there were largescale government chemical fertilizer programs that provide subsidized fertilizer to farmers and a moderately active private fertilizer sector that supplied fertilizer at competitive prices in India and Sri Lanka. The fertilizer industry is however in the same way plagued with market distortions related to limited product differentiation, distribution inefficiencies in the supply chain, poor information flow and foreign exchange rate fluctuations.Based on data for the aforesaid fertilizer consumption and estimated adoption rates (Table 21), we estimated the potential demand for Fortifer TM in the study areas. As Fortifer TM is a novel product, adoption rates were estimated based on the percentage of respondents who answered yes to the 1 st bid and either yes or no to the 2 nd bid. We acknowledge that considering a more conservative measure would be to use the percentage of respondents who answered yes to the 1 st bid and yes to the 2 nd bid (i.e. 1 st bid = Yes, 2 nd bid = Yes). This however creates an upward bias in the corresponding WTP measure. It is not surprising that adoption rates were higher for NPF than PF because the farmers were familiar with compost-type products and in Ghana, India and Sri Lanka, there is significant informal use of fecal sludge in agriculture. The highest adoption rates were in Hanoi and Kurunegala and, surprisingly, Kampala. Interestingly, the range for adoption rates for PF was quite narrow considering all the countriessuggesting that whilst the farmers may overwhelmingly adopt NPF, they are a bit more reserved in their investment in PF. Bangalorean farmers generally had the lowest adoption rates for both Fortifer TM products.Chemical fertilizer application rates were used as a basis for the calculation of the application rates of Fortifer TM . Average chemical fertilizer applications were obtained via secondary data sources and Fortifer TM application rates were estimated at five times this estimate as Fortifer TM is considered to be a close competitive substitute product. It is important to note that the consideration of transportation costs to farmers for accessing Fortifer TM may reduce the estimated market demand and invariably the estimated economic return to producers. In this study, we assumed that the farmers will purchase the product from their current fertilizer outlets and will not incur any additional transportation costs when purchasing Fortifer TM . This may not necessarily be true, especially in Ghana where the distance from the farm-gate to the nearest fertilizer dealer is one of the key challenges farmers face when trying to access fertilizer inputs (Krausova and Banful 2010). Fer�lizer consump�on (kilograms per hectare of arable land)Of the African study areas, the Western region records the highest demand for both NPF and PF at 0.045 million and 0.044 million tons year -1 , respectively, in spite of the marginally lower adoption rates in comparison to Kampala and the Greater Accra region (Table 22). Demand for NPF and PF in the Western region is about 15 times and 24 times that of the Greater Accra region, respectively. Estimated demand in Kampala is significantly lower than any of the other countries, which is not surprising as this is driven by the considerably low fertilizer application rates. It is important to note that notable surrounding agricultural districts were considered in the market-size estimation, i.e. Luwelo, Mpigi, Mukono and Wakiso in addition to Kampala. Of the Asian study areas, Kurunegala posts the highest demand for both Fortifer TM products, followed by Hanoi and subsequently Bangalore. The demand for NPF in Kurunegala at 0.6 million tons year -1 is nine times and two times more than that recorded for Bangalore and Hanoi, respectively. This is not surprising as the Kurunegala district ranks high in terms of agricultural activities with oil crops, coconut and paddy production dominant in the region. Demand estimates for Hanoi are based on consideration of agricultural land for the whole province. The latter, coupled with high fertilizer application rates and adoption rates contribute to the recorded high demand estimate.There is a greater demand for NPF as opposed to PF in all of the countries. As previously noted, farmers are more willing to adopt a product similar to what they are familiar with (a compost-type product). Overall, demand is comparatively lower in the African countries than the Asian countries for both Fortifer TM products, which was expected, given the overwhelmingly lower fertilizer application rates in the former. The Western region in Ghana has the highest cultivated area of all the countries but still records demand estimates lower than its Asian counterparts. Note: a The estimate market demand is calculated as a product of the cultivated area, estimated Fortifer TM application rate (tons ha -1 ) and the estimated adoption rate.Beyond estimating the demand for the Fortifer TM products, it is important that future businesses have an idea of farmers' responsiveness to price changes. Whilst this is captured in the regression models to some extent, the use of the demand curve allows us to better illustrate price ranges where demand is most sensitive. A negatively sloped demand curve can be drawn from the cumulative probability distribution of the bids offered to the farmers for both Fortifer TM products. Figure 3 (a-f) shows the plot of the percentage of respondents who gave a positive response to 1 st bids offered for both NPF and PF.As with any linear demand curve, at higher price points the demand curves are more elastic and more inelastic at lower price points for all the countries. In the case of the demand curves for the African countries, we can assess and compare the level of demand elasticity between NPF and PF based on the inclines of the demand curves. This is based on the notion that for two intersecting demand curves, price elasticity at any given price point will be greater for the flatter demand curve than the relatively steeper demand curve. At the point of intersection, the demand curves have an identical price and quantity. Based on this, the demand curves for NPF are generally more elastic than the demand curves for PF for all three countries. As noted from the demand estimates in Table 22, whilst farmers may be keen to adopt a product (NPF) similar to one that they are familiar with (a compost-type product), they are more price responsive as often there are comparable substitutes available in the market. In the case of PF, there are no recorded cases of its extensive production or that of a similar product in Uganda or Ghana. Fortifer TM producers will need to particularly consider this when setting prices. Their decision on whether to implement a penetrative, competitive or premium pricing system is crucial as shortterm price changes can significantly affect demand. In the case of Ghana, an increase in the price of NPF by USD 0.05 kg -1 will reduce demand by approximately 30% and this is also the case in Uganda.In considering the demand curves for the Asian countries, the elasticity of both NPF and PF curves for Hanoi are approximately the same (overlapping demand curves). This suggests that there is no significant difference in demand with an equal level of price change for both products. However, in the case of Kurunegala, there is a similar trend as that in the African countries where the NPF demand curve is more elastic than the PF demand curve. This suggests that farmers will generally be more responsive to price changes for NPF than PF, and an equivalent price change for both NPF and PF will result in a larger change in demand for NPF compared to PF. As an example, for a USD 0.05 kg -1 price change, demand decreases by 30% for NPF whilst that for PF decreases by 20%. Thus, whilst a significant potential market exists in Kurunegala, high price sensitivity of farmers may negatively affect demand. - A comprehensive overview of market elements for the successful commercialization of a product requires understanding the rate of diffusion of the product (i.e. market demand growth of the product over time). The evaluation of the market outlook will aid potential Fortifer TM businesses in business planning. This is important, as investment toward an uncertain future can be difficult and risky; marketforecasting tools have been developed to alleviate the risk and to obtain more accurate and reliable information (Proctor 2000). As Fortifer TM is a fairly novel product in the fertilizer market, there are no existing time series data to develop a standard demand equation for a market trend analysis.The Bass model was used for the market outlook assessment of Fortifer TM in this study. This model has been used extensively in marketing for dynamic forecasts of market demand for new products against the background of intense rivalry between products or brands and is used to describe consumers' behavior in relation to their loyalty towards the product (Bass 1969;Satoh 2001). The Bass model allows one to forecast the rate of diffusion of the Fortifer TM product (future product behavior), whilst accounting for external factors such as market competition. This represents important demandside information that can guide investors' decisions on the envisioned stages of their businesses' life cycles. This is important because it is well known that adopters of agricultural technologies, particularly in developing countries, are often characterized as laggards (late adopters/imitators) rather than innovators (introduction) or early adopters (growth). In this regard, it is important for future Fortifer TM businesses to know the adoption profile of potential customers (farmers) and assess the effects on market demand.The Bass model is a mixed model capturing both innovative and imitative effects -i.e. the influence that early-adopting consumers and late-adopting consumers have on market demand. The Bass model is an S curve model that contains two values ('p' and 'q'), one that represents a value for the degree of innovation -p (sales influenced by desire for novel products -early adopters) by consumers and another for the degree of imitation -q (sales influenced by word-ofmouth -late adopters) (Bass 1969); and is defined as:(5)The density function of time to adoption is given by f(t) and the cumulative fraction of adopters (i.e. demand) at time t is given by F(t). The coefficients of innovation and imitation are defined by p and q, respectively. A(t) is defined as the cumulative adoption at period, t. This basic premise states that the conditional probability of adoption at time t (the percentage of the population that will adopt or buy a product at time t) is increasing in the fraction of the population that has already adopted. Therefore, part of the adoption influence depends on imitation or 'learning' and part of it does not. The parameter q reflects that influence and the parameter p reflects an influence that is independent of previous adoption (Mahajan et al. 1990). M defines the potential market (the ultimate number of adopters) for the product in question.In application, the major interest is in the coefficients of imitation and innovation (p and q) -which characterize the adoption profile of potential consumers and the timing of the peak in adoption, and the potential market size (M) of the Fortifer TM market. The optimal time that sales of a product will peak (i.e. the time where most of the market share for the product considered is captured 5 ) is given by: ( 6) Jeuland (1994) found that the average value of p is often quite small -0.01 or less, while q is rarely greater than 0.5 and rarely less than 0.3. Lawrence and Lawton (1981) found that the value of p + q lies between 0.3 and 0.7. These estimates, however, consider multiple sectors, which may not be reflective of the agricultural input market. This is because the diffusion rate (i.e. adoption and imitation) of new products or technologies is known to be particularly low in the agriculture sector in developing countries (Otoo 2011;Kasirye 2013;Simtowe et al. 2016). In the case of fertilizer use, strong loyalty of farmers (low switching behavior) for chemical fertilizers in the absence of strong alternative products in the market may affect the rate of adoption of Fortifer TM .In the absence of existing data for p and q for Fortifer TM , other organic fertilizer products or similar substitute products, this study estimated the coefficients based on the findings of Sulthan et al. (1990). The coefficient of innovation, p, representative of early adopters, was estimated as the percentage of respondents that was willing to buy the fecal sludge co-compost product, specifically those that provided a positive response to both the 1 st and 2 nd bid offers. We used a more conservative measure given the traditionally low diffusion rates of new technologies among agricultural producers in developing countries. The coefficient of imitation, q, representative of late adopters, was estimated based on the population of respondents who stated that they would purchase Fortifer TM products if they were recommended by other farmers or any other trusted source (e.g. extension service agents). They are representative of possible imitators in the sample population. Using a five-level Likert scale 6 , respondents -a) who agreed (level 4) and b) strongly agreed(level 5) with the statement were considered to be imitators and the representative percentage of the population estimated accordingly. The S curve was estimated based on estimating the sales (adoption) at time, t given as: (7) where M is defined as the potential market (the ultimate number of adopters) for Fortifer TM and is estimated in Table 22. Q(t) is cumulative sales of Fortifer TM at time, t.Farmers' adoption profiles for Fortifer TM : As expected the coefficient of innovation, p, representative of early adopters, was generally low across all the countries and for both Fortifer TM products (Table 23). For PF, Bangalore recorded the lowest measure for early adopters, while the Western region in Ghana had the highest level of early adopters. As noted earlier, the Western region boasts a strong and extensive agriculture sector, predominantly characterized by large-scale agricultural producers who have more flexibility in terms of financial resources to invest in new technologies. Additionally, Kampala has the lowest measure among the African regions -which is not surprising given the unusual low fertilizer application rates in Uganda. This result is also mirrored for the case of NPF. For NPF, Kurunegala recorded the lowest measure for early adopters whilst the Greater Accra region had the highest measure. It is interesting to note that in comparing the coefficients for both PF and NPF across all the countries, early adopters had a proclivity for NPF rather than PF with the exception of Kurunegala. This result corroborates the findings from the demand estimations. Whilst the measure of early adoption was generally low, it is interesting to note that on average, farmers from the African countries had a marginally higher measure for early adoption of both PF and NPF than the Asian farmers.For the coefficient of imitation, q, representative of late adopters (i.e. farmers that will purchase if it is recommended by other farmers or any other trusted source (e.g. extension service agents), the results confirmed what is traditionally known of developing countries, where farmers are typically known as imitators for adoption of agricultural technologies. The values for q were the same for both NPF and PF as single data points were considered for each farmer's response. Hanoi farmers had the lowest measure for imitated-based adoption whilst the Greater Accra region recorded the highest level among all the regions. Kampala had the lowest measure for the African regions considered although only marginally lower. With the exception of Hanoi, most farmers will most likely adopt Fortifer TM if it is recommended by a trusted source/ someone who has used it and confirmed high quality. This suggests that Fortifer TM producers will need to invest in strong awareness programs coupled with actual field experiments to increase product recognition and eventual adoption. Strategic partnerships with existing governmental extension programs will be key for Fortifer TM businesses in view of farmers' reliance on extension agents for technical information and training, particularly in developing countries. Note: a p -estimated as % of respondents willing to buy fecal sludge co-compost, i.e. respondents who provided a positive response to both the 1 st and 2 nd bid offers; q -estimated as % of respondents who stated that they would purchase Fortifer TM products if they were recommended by other farmers or any other trusted source, i.e. respondents who agreed and strongly agreed with the related statement;M -estimated as in Table 22; and measured in tons year -1 .Greater Accra region, Ghana: As observed in Figure 4a, sales (adoption) for NPF in the first half of the first year were negative, suggesting the need for Fortifer TM producers to account for storage costs in their financial statements. This was also the case for PF (Figure 4b). Both Fortifer TM products showed an exponential growth very early on in the growth phase and took 2.5 and 4.5 years to reach peak sales for NPF and PF, respectively. The shorter peak period for NPF compared to PF was mainly attributable to the higher measure of early adopters (p = 0.438 > 0.217), but also farmers' greater willingness to adopt a product similar to that with which they were familiar. In the case of PF, if necessary, businesses can adjust their production capacity and other financial requirements in order to target a higher average peak volume at the estimated average peak time. To achieve a comparatively higher and steady growth, businesses can adopt new strategies to reach new customer segments, new marketing and distribution strategies. Additionally, regular customer testing and evaluation will be useful to further tailor product features, in particular for Fortifer TM , such as nutrient ratio requirements and pelletization to consumer preferences.The market for NPF and PF can be captured in approximately 4.5 and 7 years, respectively. The difference in the length of adoption time is based on the relative difference in early adoption measures. At this stage, sales grow at slower rates and finally stabilize, essentially the S-curve will flatten out.Fortifer TM businesses will maximize profit and recover all the cost of operation and development. The main goal in this phase for businesses is to maximize production capacity.Prices can be increased or matched with competitors' prices. Whilst the cost of research and development (R&D) will be lower at this stage, experiments for the development of new product features are important to buffer the potential decrease in demand in the declining stage (as observed in the latter quarter of year 4). Product promotion will still be necessary to avoid possible brand switching. Competition for market share will be particularly stiff in this stage and strategic pricing, quality adjustment and promotional and awareness programs will be necessary to maintain current customers but also to reach additional customer segments. This will also be applicable to PF.Western region, Ghana: In contrast to the Greater Accra region, sales (adoption) for NPF in the first year were positive in the Western region (Figure 4c). This is not surprising given the greater demand in the latter market but also the comparatively high measure of early adoption rates. The market peaked in year 3, which was slightly earlier than that of Greater Accra. The PF market not only peaked a little later than the NPF market in the Western region (Figure 4d), which was indicative of farmers' proclivity for a product similar to that with which they were familiar, but also sales in year 1 were negative as in Greater Accra region.At the peak, businesses would have captured 68% and 69% of the NPF and PF markets, respectively; suggesting that Fortifer TM businesses need to invest more in incentive mechanisms that encourages farmers' adoption. Imperfect farmers' knowledge of human waste-based organic fertilizers may attributable for this trend in the introduction stage. Strong awareness programs coupled with actual field experiments will increase product recognition and shorten this phase.Credit-based sales with growers may be a good option to explore in order to establish farmer relationships and ensure demand. This strategy is increasingly been adopted by chemical fertilizer suppliers in Ghana. However, this implies that the cost of R&D (sunk cost) and negotiations may be higher and lead to lower profit overall at business start-up. The marginal difference in the time period in which markets for both products are fully captured is similarly attributable to the differences in the innovation coefficient. In comparing the two regions in Ghana, even with larger markets for both NPF and PF, market growth rates were marginally faster in the Western region compared to the Greater Accra region.The organic fertilizer market is still in a nascent stage in Ghana and there is ample opportunity for new compost and Fortifer TM businesses to enter the market. It is important to note that although chemical fertilizer businesses have the largest share in the industry, market distortions inherent in their supply chain mitigates the effects of their market power of which Fortifer TM businesses can take advantage. However, especially in the Western region where agricultural production is extensive and thus a greater number of fertilizer businesses exists, effective pricing strategies will be crucial to ease market entry for Fortifer TM businesses. Given farmers' price sensitivity, Fortifer TM businesses will need to implement a penetrative or competitive pricing strategy to mitigate competition effects.Kampala, Uganda: The trends observed in Kampala were similar to those in the Western region; negative demand for PF in the first year, although not for NPF (Figures 4e and 4f). Both Fortifer TM products showed an exponential growth very early on in the growth phase and took 3.5 and 4.5 years to reach peak sales for NPF and PF, respectively. For NPF, approximately 67% of market demand could be captured in the first year. On the other hand, it took about four times the number of years to achieve the same for PF. At the peak, businesses would have captured 79% and 60% of the NPF and PF markets, respectively. The relatively slower market growth rates for both products were mainly attributable to the assumed and conservative lower diffusion coefficients due the traditional nature of low adoptability by Ugandan farmers and their current level of knowledge and use of human waste-based organic fertilizers. Product growth sales and even eventually demand can be increased via the adoption of innovative marketing and pricing strategies and strongly positioning the product in the market at the introduction stage. Market growth stagnates at approximately years six and eight for NPF and PF, respectively. For a country with relatively low fertilizer application rates, it is important that Fortifer TM businesses focus on the development of new product features and quality improvement to buffer the effects of competitors' innovations (i.e. loss of consumer interest in products and a switch to new competitive products). Additionally, prices will need to be set lower to attract and possibly maintain more price-sensitive consumers.In comparing the adoption (sales or cumulative sales) graphs for the three African countries for NPF, the Western region reached its peak sales the fastest, followed by Kampala and subsequently the Greater Accra region (Annex 4). This is also the case for PF in the Western region. On the other hand, the Greater Accra region reached its peak incremental sales faster than Kampala for PF. For NPF, 79%, 66% and 62% of the market demand was reached at the period of peak sales in the Greater Accra region, Kampala and Western region, respectively. This result is reflected in the time period in which the market was fully captured -4.5, 6 and 5 years for the Greater Accra region, Western region and Kampala, respectively, indicative that Greater Accra has a faster market growth rate. On the other hand, for PF, 69%, 63% and 60% of the market demand was reached at the period of peak sales in the Western region, Kampala and Greater Accra region, respectively. Corroborating this result are the time periods in which the product markets were fully captured. For all three countries, there were limited to no incremental sales after years 6 and 8 for NPF and PF, respectively. In summary, the diffusion of Fortifer TM products will be faster in Ghana than in Uganda despite the larger market in the former, largely driven by the higher measures of early adoption and comparatively higher levels of fertilizer application rates in Ghana.Bangalore, India: Sales (adoption) of NPF in the first year were positive in Bangalore (Karnataka region) (Figure 5a). This is not surprising given the comparatively high measure of early adoption rates in comparison to Kurunegala. The market peaked in 3.25 years and thereafter was fully captured a little after year 5. At the peak sales period, 69% of the market demand was captured although it is worth noting that a significant proportion of this occurred in the year 2. Adoption of PF, although at a slow rate, in contrast to the African countries, was positive in the first year (Figure 5b). The PF market, as with the other African countries, peaked much later than the NPF market in Bangalore (in 5.5 years), which is indicative of farmers' proclivity for a product similar to that with which they are familiar. At peak sales, however, similar to PF, 69% of the market demand would have been reached. The introduction of Fortifer TM products can be facilitated when the competitive products are at the current chemical fertilizer stage of maturity. However, subsidies for the latter sector mean that effective pricing strategies (penetrative pricing) will be crucial to ease market entry. Additionally, strong awareness programs coupled with actual field experiments will increase product recognition and eventual adoption. By the eighth year there were no incremental sales for the product and market growth stagnated. Given the slower growth rate for PF, innovative marketing and incentive mechanisms related to product pricing would be essential in strongly positioning the product in the market and maintaining a strong customer base.Hanoi, Vietnam: Similar to Bangalore, sales were positive for NPF in the first year (Figure 5c). This observation is marginally mirrored by the case of PF, although negative sales were only observed for about one-quarter of the first year (Figure 5d). Both Fortifer TM products showed an exponential growth very early on in the growth phase (although faster for NPF) and took 3 and 4.5 years to reach peak sales for NPF and PF, respectively. For NPF, approximately 55% of market demand was captured when peak sales were reached, while it took five years for PF in comparison to three years for NPF. As corroborated by the innovation coefficients (given the same imitation coefficient), adoption of NPF will be significantly faster than PF in Hanoi. At the peak, businesses would have captured about 53% of the PF market, suggesting that most market growth occurs in the introduction stage of the product's life cycle. Similar to Bangalore, innovative pricing strategies (credit-based sales or penetrative pricing) and strong awareness programs coupled with actual field experiments will be needed to increase product recognition and eventual adoption. This implies that the cost of R&D (sunk cost) and negotiations will be higher and lead to lower profit overall at business startup. It was observed that it took 10.5 years to fully reach the PF market, in comparison to 6.5 years for NPF. The longer life cycle of the PF product, means that Fortifer TM businesses will not only need to invest in product promotion to reach additional customer segments and maintain customer bases, but also conduct regular customer testing and evaluation to further tailor product features such as nutrient ratio requirements to consumer preferences.Kurunegala, Sri Lanka: As with Bangalore and Hanoi, sales for NPF in the first year were positive in contrast with PF, which were negative (Figure 5e and 5f). This is not surprising given the greater demand in the former market but also the comparatively higher measure of an early adoption rate. The market for NPF peaked in year 4, which was slightly later than the other two Asian countries. The PF market peaked marginally later than the NPF market (4.5 years), which was indicative of farmers' preference for products similar to those with which they were familiar. The marginal difference in the time period in which markets for both products were fully captured can be attributable again to the differences in the innovation coefficient. At the peak, businesses would have captured 60% and 68% of the NPF and PF markets, respectively. This suggests that, as with Bangalore and Hanoi, most market growth of both NPF and PF occurs during the introductory phase of the products' life cycle. Typically, producers increase prices or match their competitors' price when they are in or close to transitioning to the growth phase. With a significant portion of the market for PF already captured in the introductory phase, producers of PF can adopt this pricing strategy. This however cannot be the case of NPF as the share of the market captured is lower and farmers are more price-sensitive (more elastic demand) than they are to PF. Maintaining a penetrative or competitive pricing strategy even in the growth phase would serve producers better in reaching new customer segments and maintaining their customer base. Product promotion will still be necessary to avoid possible brand switching.In comparing either adoption (sales or cumulative sales) graphs for the three Asian countries for NPF, Hanoi reached its peak sales the fastest, followed by Bangalore and subsequently Kurunegala (Annex 5). This result is corroborated by the respective innovation coefficients. On the other hand, for PF, Kurunegala reached its peak sales faster than either Hanoi or Bangalore. For NPF, 55%, 60% and 69% of the market demand was reached at the period of peak sales in Hanoi, Kurunegala and Bangalore, respectively. This finding suggests that in Hanoi, where limited farmers' knowledge and use of human waste-based organic fertilizers may cause low adoption rates in the introduction stage, greater investments in awareness programs coupled with actual field experiments will be needed to increase product recognition and eventual adoption, in comparison to Bangalore where farmers are already using fecal sludge for agricultural production. This result is also reflected in the time period in which the market is fully captured -5, 6.5 and 8.5 years for Bangalore, Hanoi and Kurunegala, respectively, indicative that Bangalore will have a faster market growth rate for NPF. Similarly, for PF, 53%, 68% and 69% of the market demand was reached at the period of peak sales in Hanoi, Kurunegala and Bangalore, respectively. Whilst the market growth for PF for Bangalore and Kurunegala was faster than that of Hanoi, the differences between Bangalore and Kurunegala were inconclusive. For all three countries, there were limited to no incremental sales after year 8.5 and 10 for NPF and PF, respectively. In summary, the diffusion of Fortifer TM products will be faster in Bangalore than in Hanoi for both NPF and PF, despite the larger market and higher measures of early adoption in the latter. This result was also applicable for Kurunegala and Hanoi, however the comparisons between Bangalore and Kurunegala were inconclusive.For all the countries under consideration, market growth rate in the introduction phase of the product life cycle was significantly fast. In this regard, while investments in promotion and awareness programs will be necessary, focus should be placed on incentive mechanisms to capture new customer segments and maintain the current customer base. In comparing the results of African countries to the Asian countries for NPF, on average, higher percentages of market demand were reached at the period of peak sales in the African countries as opposed to the Asian countries. This result translates to faster market growth rates observed in Africa compared to Asia, suggesting a significant combined effect of the higher innovation and imitation coefficients on market demand and growth. Similar results were noted for PF. It is important to note that although the difference in average percentages of market demand reached at the period of peak sales was marginal, the difference observed for the market growth rate was substantial. This result is reflected in the time period in which the market was fully captured -6, 7 and 8 years for the Western region, Greater Accra region and Kampala, respectively; and 7.5, 8 and 9 years for Kurunegala, Bangalore and Hanoi, respectively. Of the African countries, Ghana had the fastest diffusion rate for Fortifer TM products, while this was the case for India and Sri Lanka in the Asian countries considered for this study.There are numerous opportunities to address the dual challenge of waste management and soil nutrient depletion in many developing countries via the safe recovery of nutrients from both solid and liquid waste streams for reuse in agriculture. Commercialization of waste-based organic fertilizer such as Fortifer TM has the potential to generate significant benefits for developing economies via cost recovery for the sanitation sector and comparatively affordable alternative agricultural inputs for smallholder farmers. The successful commercialization of Fortifer TM , however, largely depends on businesses' understanding the dynamics and functionings of the markets that they operate in. To guide potential investors in Fortifer TM businesses, this report presents a detailed market assessment of the product -highlighting farmers' perceptions and attitudes towards Fortifer TM , and their WTP.The report further provides insights into the market demand and diffusion of the product as related to the adoption profiles of farmers and adoption rates. This serves to inform businesses on the types of marketing and pricing strategies to implement in order to facilitate market entry and mitigate the effects of competition. The analyses were conducted in the Greater Accra region and Western region in Ghana; Kampala, Uganda; Bangalore, India; Hanoi, Vietnam; and Kurunegala, Sri Lanka. Furthermore, cross-country comparison analyses were conducted to better understand the effects of noted market drivers and if possible, lessons learned for knowledge sharing.We analyzed farmers' fertilizer purchasing decisions as it is hypothesized that they influence their WTP for agricultural inputs. Credit-based transactions were noted as an important purchasing decision factor by farmers in both regions of Ghana but less so in Kampala and the study areas in Asia. It is well known that most farmers in Ghana are smallholders and typically cash-constrained and so accessible and suitable financing is essential to incentivize adoption. Therefore, it was not surprising that the price of the product was noted as an equally important factor considered by farmers in the input-purchasing decisions across all study areas. A comparison of key product attributes influencing farmers' fertilizer purchasing decisions across Africa and Asia showed that farmers in Hanoi did not score highly in any of the product attributes compared to all other regions. While price is given a moderate to high score in all of the regions, farmers in Hanoi rated price as the least important product attribute. The latter is possibly because farmers traditionally face high fertilizer prices (no subsidies), anticipate the expense and so do not view it as a limiting purchasing factor. Nutrient content and fertilizer application methods were also amongst product attributes, which scored highly across all the study areas, but less so in Hanoi. Experiential learning as measured by farmers knowing someone who has used the product before and/or if it has been recommended by a trusted source, is critical to whether farmers will purchase a product or not. Future Fortifer TM businesses need to explore strategic partnerships with agricultural ministries and tap into their extension programs to catalyze adoption.Analysis of farmers' perceptions about Fortifer TM in all the study areas, suggested that adoption will only occur if Fortifer TM is certified by trusted third-party entities (preferably a governmental authority). Another important attitude construct that cuts across most of the selected regions is the 'safety issue' which captures farmers' perceived concerns about the safety of the product. While farmers in Bangalore and Kurunegala perceived Fortifer TM as a substitute for chemical fertilizer and would buy it irrespective of its price; farmers in Ghana and Uganda were more price-sensitive and would only purchase Fortifer TM if it were comparatively cheaper than chemical fertilizer.Regression analysis results provided further support of the factor analysis results above. In comparing the results of the Asian and African countries, the regression models showed that farmers were less willing to pay for Fortifer TM at higher bids, and this was consistent across all the six countries.Assessing the effects of the socioeconomic variables showed that education had an ambiguous effect on farmers' WTP for Fortifer TM . Farm size, status of landownership and previous experience using organic fertilizer significantly influenced a farmer's purchasing decision of Fortifer TM . Most farmers in the study countries, with the exception of the Greater Accra region and Hanoi owned the land that they farmed on. It is thus expected that farmers from Kampala, Bangalore and Kurunegala, all things being equal, will be more willing to pay for and use Fortifer TM . The effects of farm size on farmers' WTP differed by product type, in that, farmers with larger farm sizes were more willing to pay for PF over NPF, as the latter requires more labor for application. The effects of the attribute variables were similar and consistent across both the Asian and African countries. In particular, farmers' concerns about product safety and the related need for certification were key factors influencing their decision when purchasing Fortifer TM . Third-party product certification will be necessary especially in the Asian countries where guidelines for fecal sludge use in agriculture are unclear.Beyond understanding the factors that drive farmers' purchasing decisions for Fortifer TM , farmers' WTP and demand were estimated. Generally, across all the study areas, farmers were willing to pay more for PF than NPF with the exception of Bangalore and the Western region in Ghana.The noted WTP estimates for the Asian countries as with the African countries were comparable to the existing market prices for inorganic fertilizers. Farmers' WTP for both Fortifer products were comparatively similar with the exception of Bangalore and Kampala, which recorded significantly higher values. Mean WTP estimates for NPF and PF were USD 0.145 kg -1 and USD 0.198 kg -1 , respectively for the Greater Accra region, Ghana whilst those for NPF in the Western region were 20% higher. However, the reverse was true for PF, i.e. farmers in Greater Accra were willing to pay 20% higher than those in the Western region. Kampala noted significantly higher prices than either regions in Ghana. In the Asian study areas, while WTP estimates were similar for Hanoi and Kurunegala, Bangalore estimates were almost seven times higher. The highest WTP estimates for NPF and PF among these countries were USD 0.73 kg -1 and USD 0.52 kg -1 , respectively whilst the lowest WTP estimates were recorded in Hanoi at USD 0.11 kg -1 and USD 0.13 kg -1 for NPF and PF, respectively.Demand for both Fortifer products was relatively substantial.Of the African study areas, the Western region recorded the highest demand for both NPF and PF at 0.045 million and 0.044 million tons year -1 , respectively, in spite of the marginally lower adoption rates in comparison to Kampala and the Greater Accra region (Table 22). Demand for NPF and PF in the Western region was about 15 and 24 times that of the Greater Accra region, respectively. Estimated demand in Kampala was significantly lower than any of the other countries, which is not surprising as this was driven by the considerably low fertilizer application rates. It is important to note that notable surrounding agricultural districts were considered in the market size estimation, i.e. Luwelo, Mpigi, Mukono and Wakiso in addition to Kampala. Of the Asian study areas, Kurunegala posted the highest demand for both Fortifer products, followed by Hanoi and subsequently Bangalore. The demand for NPF in Kurunegala at 0.6 million tons year -1 was nine and two times more than that recorded for Bangalore and Hanoi, respectively. This is not surprising as Kurunegala district ranks high in terms of agricultural activities with oil crops, coconut and paddy production dominant in the region. Demand estimates for Hanoi were based on consideration of agricultural land for the whole province. The latter, coupled with high fertilizer application rates and adoption rates contributed to the recorded high demand estimate. A greater demand was observed for NPF than PF in all the countries. As previously noted, farmers are more willing to adopt a product similar to what they are familiar with. It is important to note that the demand estimates may not be comparable across the study areas given different geographical scales. With that in mind, generally, it was noted that demand was comparatively lower in the African countries for both Fortifer products, which was expected, given their overwhelmingly lower fertilizer application rates. The Western region in Ghana had the highest cultivated area of all the countries but still recorded demand estimates lower than its Asian counterparts.Another important facet of market dynamics considered in this report is the diffusion of Fortifer. For all the study areas, it is noted that market growth rate in the introduction phase of Fortifer will be significantly fast. In this regard, while investments in promotion and awareness programs will be necessary, greater focus should be placed on incentive mechanisms to catalyze farmer adoption. In the African study areas, diffusion of Fortifer products is expected to be faster in Ghana than in Uganda despite the larger market demand in the former. This is largely driven by the higher measures of early adoption and comparatively higher levels of fertilizer application rates in Ghana. For Uganda, a country with relatively low fertilizer application rates, it is important that Fortifer businesses focus on the development of new product features and quality improvement to buffer the effects of competitors' innovations (i.e. loss of consumer interest in products and switch to new competitive products).Additionally, prices will need to be set lower to attract and possibly maintain more price-sensitive consumers.A comparison of adoption rates for the Asian study areas indicated that diffusion of Fortifer products would be faster in Bangalore than in Hanoi for both NPF and PF, despite the larger market and higher measures of early adoption in the latter. This finding suggests that in Hanoi, limited farmers' knowledge and use of human waste-based organic fertilizers may cause low adoption rates in the introduction stage. Greater investments in awareness programs coupled with actual field experiments will be crucial to increase product recognition and eventual adoption, in comparison to Bangalore where farmers are already using fecal sludge for agricultural production. This result is also applicable for Kurunegala and Hanoi; however, the comparisons between Bangalore and Kurunegala are inconclusive.The matured compost is then ground to a specific consistency. The ground compost is then mixed with starch, ammonium sulfate and water in ratios of 1: 0.03; 1: 0.06 and 1: 0.25, respectively. The resulting nitratefortified substance is then pelletized using a pelletizer. The raw pellets are then dried, sieved and packaged. Any remnants/fine particles resulting from the sieving process are added back into the process at the initial grinding stage. The pelletization step requires less than a day for pellet formation and 3 to 7 days for drying of pellets (depending on the drying method and climatic conditions, especially if solar energy is used. ","tokenCount":"22620"} \ No newline at end of file diff --git a/data/part_1/0207581006.json b/data/part_1/0207581006.json new file mode 100644 index 0000000000000000000000000000000000000000..54e2e47edead2f10dcfb6e42bc7770b82a54f0d3 --- /dev/null +++ b/data/part_1/0207581006.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4ec6a9e63a91ec427a5f57e0c11467b1","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/927f90e0-ace8-4114-9ffa-00c9f0cca3dd/retrieve","id":"1724078304"},"keywords":[],"sieverID":"221f178d-4aac-4b8a-adb8-a1955291a62e","pagecount":"55","content":"This synthesis was written based on essays produced by the following youth:• Sangwani Rebeccah Gondwe, Malawi, Southern Africa • Aristide Z. Adaha, Benin, West Africa • Maureen Agena, Uganda, Eastern Africa • Isaac Chanda, Zambia, Southern Africa • Riten Chand Gosai, Fiji, Pacific • Gabriel Dacko Goudjo, Cameroon, Central Africa • Tyrone Hall, Jamaica, Caribbean The full versions of essays can be read on the ARDYIS website http://ardyis.cta.intThe energy of youth can spark economies … The future belongs to them and they have a clear vision of the world we need to build together: peace, the preservation of our beautiful planet, the opportunity to make a better life.-United Nations Secretary-General Ban Ki-moon (ACP) countries faces many chal lenges. De spite their countries' heavy reliance on this sector for economic growth, food security and employment, young people perceive agriculture as an unattractive career option.Agriculture accounts for over 50% of GDP in some countries such as the Democratic Republic of Congo. This, coupled with the high level of unemployment, means that the need to secure the continued interest of youth in agriculture is imperative.The majority of farmers today are older. A research study by the Caribbean Farmers' Network (CaFAN) found that the average age of farmers in the Caribbean is 45 years, with the majority being over 60 years of age 1 . With a lack of youth to replace them, the future of agriculture is uncertain. Youth unemployment is a critical problem. In several countries the number of young people out of work exceeds 50%.It is therefore evident that a well-supported agricultural sector could present the ideal solution if it is transformed in the eyes of the younger generation. It must become attractive, viable and offer real opportunities for income.ICTs offer a good avenue for achieving this objective. These technologies are reaching every socioeconomic segment, even in remote rural areas. They offer efficient tools for transforming the agriculture sector. As it's recognized that young people spearhead the development of innovations 1 Caribbean Farmers' Network -Source: www.cafan.org, CaFANYouth in Agriculture Regional Workshop, 2010 in ICT, there are therefore, new rationale and opportunities for linking agriculture and youth. Moreover, in rural areas, ICTs can help improve youth livelihoods and reduce rural exodus.The ARDYIS (Agriculture, Rural Development and Youth in the Information Society) project is one of CTA's recent initiatives with ACP partners, notably created to improve ICT access for ru ral youth. Its aim is to raise awareness and streng then the capacity of young people, allowing them to contribute to agriculture and rural development through the use of ICTs. This booklet provides an overview and the results of the essay competition «Youth finding solutions to challenges in agriculture and rural development using ICTs!», one of the many ARDYIS activities. Entries submitted demonstrated that youth are more and more interested in the agricultural sector and supporting them will definitely have a strong impact in attracting more youth to rural areas.In addition to the ARDYIS project, CTA has also embarked on other initiatives such as a project with the FANRPAN (Food, Agriculture and Natural Resources Policy Analysis Network) to develop policies for youth in southern Africa and initiatives to target young scientists. Through its youth initiatives, CTA will contribute to the efforts of ACP governments to create employment and income for the youth in agriculture and related rural economies.Fostering youth solutions...T he essay compe tition «Youth finding solutions to challenges in agriculture and rural development using ICTs!» was an initia tive of the ARDYIS project, a frame work of actions, which aims to improve oppor tunities for youth in agri culture and rural develop ment through the use of ICTs.Youth, aged from 18 to 25 years old, were re quired to submit entries in four categories. The first category asked them to present two agricultural challenges and discuss how ICTs could be used to address them; the second category offers to analyze how ICTs could be used for effective advocacy and lobbying to promote agriculture; the third category targeted the use of ICTs to improve access to markets and the last category allowed them to tell the story of a young person living in a rural area who has used ICT successfully or in an innovative way (even if the experience was not a success) for his/her work. The summaries of essays published here are grouped into three sections, based on the initial four categories.We have decided to share summaries 2 of 18 of the best essays to highlight the solutions and perspectives of some of the best young entrants. Showcasing successful youth exposes those to new opportunities, motivates them, ultimately boosting their interests and those of their peers. We are certain that among these 18 young people, whose essays have been highlighted in this booklet, we have future leaders of ACP agricultural and rural development. Some of them are already making a difference in their communities and they will certainly achieve more in the future. They are people to watch! 2 For more information about the contest and to read the full versions of the best essays, please check: http://tinyurl.com/ ardyis-essay-documents Launched in June 2010, the competition has helped to create a collaborative framework for hundreds of young people and youth organizations who are active or interested in the farming sector, in rural development and in the use of ICTs in that context. Different activities have been organized since then, including: training and exchange on the use of web 2.0 tools in agriculture and rural development; a workshop on agricultural entrepreneurship through ICTs, the Youth In Agriculture Blog Competition (YoBloCo Awards; see Appendix); the adoption of an advocacy document entitled \"Call for Stronger Support for Youth Involvement in Agriculture and ICT\"; and networking and information dissemination on opportunities. Many youth have attended conferences to strengthen their knowledge, and some even have secured employment opportunities as a result.The ARDYIS initiative is still at its early stages and is refining its strategy and actions. We are open to collaboration with all organizations interested in these issues. I would like to seize this opportunity to thank the institutional members of the project's advisory committee, whose constant support has been crucial to the success of this project. Thanks must also go to my colleagues at CTA, in particular, Mrs Oumy Ndiaye (who as head of department at CTA, played a central role in the establishment and operation of the initiative), Thilda Chevouline, Giorgio Bellinzas, Therese Burke and Jenessi Matturi. Some encouraging results have been achieved so far and more will be accomplished in the future. PART 1Agricultural theft, crop pests and unpredictable weather con-ditions… these are just some of the challenges facing today's ACP producers. Information and communication technologies tailored to their needs and budgets can offer some solutions -and help farmers introduce more sustainable practices, improve record-keeping and plan more efficient farm strategies. My favourite quote: \"The young do not know enough to be prudent, and therefore they attempt the impossible -and achieve it, generation after generation.\" -Paul S. Buck My blog: http://www.ictworks.org/news/tyrone-hallD usk is approaching in the sleepy Jamaican village of Glengoffee, and farmer Leslie makes his usual evening rounds to check his property. He patiently counts his cattle, scans his crops and makes a mental note of all his tools and other assets. The evening patrol has become an essential ritual ever since agricultural theft -or praedial larceny to use its technical name -began to spiral out of control. More than 1 in 10 Jamaican farmers have been victims of agricultural theft, losing cattle, crops and equipment to crimes that are increasingly the work of organised gangs.More than one million farmers have suffered indirect losses such as damage to crops by intruders. Each year, an estimated J$5 billion ( 43 million) worth of crops and livestock is stolen. Responses have ranged from hiring security guards to installing trained guard dogs and the government has put in place stiffer penalties with a traceability system to track the movement of food and animals. But these measures can only be taken once the theft has happened and many exasperated producers have either been discouraged from investing in their businesses or have given up farming altogether.Tyrone Hall, Jamaica, Caribbean My main goal is to pioneer a consultancy that specializes in using communication to improve development processes with respect to health, the environment and rural development.Technology may offer some solutions. An electronic laser fence security alert system is one such innovative proposal. It consists of an invisible laser fence installed around a property, which triggers SMS messages or voice calls to mobile phones when an intruder crosses the line. Invisible to the naked eye, it is undetectable by outsiders and uses a medium that is both familiar and widely available. Nearly two-thirds of the population now has access to a mobile phone.Mobile phones may also hold the key to solving another problem critical to Jamaican farmers -poor market information and inadequate links between producers and buyers. An SMS information database (SMS ID) would put the two sides in touch, enabling farmers to post the price of their products via SMS or voice calls and retailers and middle-men or consumers to request the lowest prices for various products using the same simple system. For example, farmer Leslie could text prices for his produce that week: yam $100 or carrot $50. Meanwhile, buyers could request prices by punching in the name of the product and a given price range -perhaps carrot minimum $? Or potato average $? Another buyer might want to ask: who has min carrot $? And the answer will quickly come back: farmer Leslie has the lowest priced carrots @ $10. Farmers need never be out of touch with market prices again if they use SMS ID.Based on the original essay: \"Tackling Jamaica's two main agricultural plagues with ICT: Praedial larceny and information asymmetries/poor marketing\" by Tyrone Hall.As a proud 20-year-old Jamaican young lady, I take pride in reminiscing on the achievements in my life so far. I grew up in the rural community of Sandy Bay, Hanover. While attending secondary school [The Montego Bay High School for Girls] I adopted a spirit that was geared towards volunteerism. This continued throughout my tertiary level institution where I aligned myself with the Junior Chamber International (JCI) organization to further fulfil service needs.I hope that the government will seek to enhance this vital sector (which serves as a means of added employment), resulting in a reduction in the levels of poverty.\"Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit.\" -AristotleF armers need to be more united if agriculture is to thrive in the Jamaican parish of Hanover. That is the verdict of the chairman of the Green Island Cane Farmers' Association, who claims producers lack tools to communicate with each other and with authorities and organizations that could support them. The once high levels of productivity in the parish are now in decline. Farmers in Hanover complain of being neglected by the Ministry of Agriculture and say that they have no reliable channel through which to negotiate conditions that affect their incomes. A 2009 study found that more than half of the Jamaican farming community has access to a mobile phone. However, this system of communication has not proved sufficient to answer the needs of local producers.A more effective solution could be a small telecentre in the parish of Hanover, with access to an Intranet system to offer a constant, lowcost link between the Ministry and farmers. Skype could be part of the package, opening A UNITED FRONT FOR FARMERS Samantha Kaye-Christie, Jamaica, Caribbean While pursuing a degree in psychology at the University of the West Indies, I realized that the poverty levels in Jamaica have got worse. I think this is due to the lack of interest in the government in the agricultural sector.the way to video conferences. The Intranet link would also be a platform for farmers to exchange experiences and good practices, in order to boost output.One important consideration is that farming in Jamaica is not considered to be a profession for young people. Farmers are generally not well educated. A 2006 survey found that 50.8% of Hanoverian small-scale farmers were aged 54 or more, and that none had continued their education beyond primary school. In order for ICTs to be effectively used, most farmers will require training. One solution is to use touch screens with icons, far simpler than standard systems. If well presented, the new technology may even attract more young people to the farming sector in Hanover.ICTs also offer hope in addressing other problems, caused by the development of tourism facilities in the area. The building of hotels and other infrastructure needed to welcome visitors robs the farming sector of valuable land and resources. The use of glass-bottomed boats to view coral reefs causes damage to them, depleting fisheries and other marine resources as a result. Use of a Geographic Information System (GIS) could do much to mitigate both problems. GIS helps users to capture, store, analyse and present data for a specific location and would offer a means of viewing variables that affect crop yield, soil erosion and drought risk. This data could be translated into information useful to farmers and relayed to them via the Internet. For example, data on soil assessment would help them to plan their planting strategies and manage their land in a more efficient manner. For coastal management, GIS could play a useful role in locating and quantifying coral reefs, to improve conservation and protect fishery habitats. Naturally, all these initiatives will require investment and commitment. But as a popular Jamaican saying goes: \"If you want good yuh nose haffi run\" [If you want good, you really have to sacrifice and work for it].Based on the original essay: \"ICTs -Are they really the solution to challenges faced by Hanoverian farmers?\" by Samantha Kaye-Christie. I am young, dynamic and versatile Vincentian who is committed to the cause of advancing my country, and the Caribbean region. I am passionate about bettering the lives of young people through capacity building and will continue to champion the cause of under-privileged youth.I am pursuing a Bachelors of Laws at the University of the West Indies, but I'm scheduled to graduate in a couple of months. In reality however, my passion is I.T. / computer science. In any event, given that I am already in the profession, I promise to do my best to better the lives of those whom I interact with.My blog: http://ictandthelaw.blogspot.com/ My Facebook page: https://www.facebook.com/ super.starjasonP est infestations and lack of reliable market information are two major hurdles for producers in the Caribbean, preventing them from realising the full potential of agriculture in this fragile region. With 23 island states spread over a wide area, the Caribbean is highly fragmented. ICTs offer considerable scope for addressing some of the region's key problems, providing uniform solutions to even the most isolated areas. An agricultural information system (AIS) could do much to improve farmers' access to information on trends for prices and product demand. This would improve their negotiating position, make them less vulnerable to over-pricing for seeds, fertiliser and other inputs, and help them become better placed to make strategic decisions about which crops to grow and where to sell them. A regional price information system could collect data from main national markets and filter it out to local level through small information centres equipped with computers and Internet access. In more isolated communities, two-way or rural radio could be used to broadcast market prices to a wider target audience. Similar systems have already proved effective in some developing countries.Jason Haynes, St Vincent and Grenadines, Caribbean I appreciate the use of ICT in agriculture and rural development and will accordingly continue to foster closer ties between my profession and those important areas.A case in point is Ghana's e-Commerce project which collects commodity prices in key markets and makes the data available to rural farmers through a network of provincial offices. Add-on components to such a system might include an information and online purchasing options for farm implements, advice on how to cultivate and manage certain crops and weather forecasts to help producers plan for extreme conditions. Over the past 6 years, hurricanes have destroyed entire crop plantations in Antigua and Barbuda and caused US$305 million ( 224 million) worth of damage to agriculture in Belize.To combat pest damage and crop diseasewhich have led to what the Caribbean Agricultu ral Re search De velopment Institute (CARDI) describes as a \"frightening situation\" -Internet-based decision support systems can be useful tools for farmers. They can provide all the information needed to help producers select the most appropriate pest control strategy, including pest identification, life cycles and pest distribution models linked to weather monitoring systems. For maximum effect, such systems could offer details of bio-control methods, backed up by 'intelligent' functions such as e-learning tools and dynamic simulations of crop ecosystems.The sterile insect technique (SIT) is recommended environmentally friendly option for farmers. The technique involves sterilising factory-reared male Caribbean fruit flies by irradiation and releasing large quantities into infested areas. When they mate with female fruit flies, no offspring are produced, so populations are gradually reduced and sometimes wiped out. The Caribbean fruit fly causes massive damage to tropical and subtropical fruits across the region. CARDI research has revealed that the pest is found in nearly one-hundred fruit species, including citrus, guava, mangoes, French cherry, rose apple, peach and tropical almond.My name is Nawsheen Hosenally. I'm 21 years old and from Mauritius. I'm a final year student at the University of Mauritius, where I'm studying agriculture and specializing in agricultural extension. I joined the Agricultural Society of the University of Mauritius as secretary for 1 year and after that I wanted to go further and joined AIESEC.Youth expect to have entrepreneurial opportunities in agriculture,, where they get the support of the government/other organizations to start a business and contribute to the economy or get a job in the agricultural sector. Many youngsters have studied agriculture and have many ideas, but due to lack of opportunities and incentives, they have simply changed their field of study.Participating in the ARDYIS project has been one of the best decisions I have taken in my life so far. It started with the submission of the essay, after which all participants were registered in a group for discussion forums where participants shared our opinions/ideas on specific topics. This has increased my knowledge and interest in ICTs, youth and agriculture. Then, we took part in training on the use of Web 2.0 tools in Accra, Ghana which has proven to be very useful as I find I am regularly using what I have learnt there in my studies and other professional work. We are being notified about different opportunities for internship/scholarship/ competition, which is exactly what we need.My blog: http://nawsheenh.blogspot.com/ Essay summary I CTs could do much to help Mauritius achieve its goal of increasing agricultural output, while keeping production costs low and using more sustainable farming methods. The small island state is highly dependent on imports, producing just 23% of the food it needs. But a national campaign launched in 2008 to lower this level of dependence must be flanked by a strategy to use communication technologies if it is to have any real impact. Crucially, the ICTs must be matched to the conditions -and the budgets -of farmers.For smallholder producers, the mobile phone is the ideal tool. Most smallholders have a small plot of land and are either illiterate or only attended primary school. The mobile phone answers their needs perfectly, being simple andThe reason I'm studying agriculture is because I'm interested in global issues such as hunger, poverty and climate change, and my field of study enables me to contribute to making a positive impact on society.inexpensive to use, with good network coverage in all rural areas. Yet to date, the only mobilebased agricultural service in use on the island is the SMS disease alert, provided by the Agricultural Research and Extension Unit. It sends SMS messages to registered planters, warning when an outbreak of disease threatens a particular crop. Why stop with plant disease? How many more services could be offered to farmers using mobile phones? What about adapting the system to provide information on the price of inputs, weather updates, good agricultural practices, animal health and husbandry and help with marketing agricultural products? A good place to start would be a database for quality seeds, so that any farmer wanting a particular seed would only have to send a simple SMS to ask about availability and price.Other applications could include using the organiser of a farmer's mobile phone to keep records of farm details, such as chemicals used and the date of application. Most small-scale farmers are notoriously lax about record-keeping. Mobile phones could also increase interaction between extension services and farmers on radio shows. Farmers could send questions via SMS, prompting a dialogue with extension experts about problems and ways to solve them.Co-operatives, entrepreneurs and sugar planters, who generally have larger budgets and a better education, could take advantage of more sophis-ticated ICTs. Farming software can be used to record and save farm records on computers, helping producers to plan their farms and lower their production expenses. GPS technology, already adopted by two sugar estates in Mauritius, can be used to guide tractors in auto-pilot mode, cutting labour costs and making precision agriculture possible. The Internet can enable farmers to check market prices and weather reports download technical guides and share information. With a blog or wiki, farmers can easily interact with each other and find solutions to mutual problems. If the goal of making Mauritius more food secure is to be achieved, all stakeholders involved in agriculture -the public sector, NGOs, research and extension -must make more use of ICTs. ICTs offer the chance for them to work together with farmers and find real solutions for Mauritian agriculture.Based on the original essay: \"Two challenges experienced in Mauritius related to agriculture or rural development, and the use of ICTs to address them.\" by Nawsheen Hosenally Bibi. As many farmers find to their cost, the toughest link to crack in the value chain is often the last one. Finding buyers for their products or services can be a daunting business for many smallscale producers. But ICTs can play a valuable role in linking them to markets.My name is Sangwani Rebeccah Gondwe. The name Sangwani is \"Tumbuka\" and it means \"Rejoice\" in English. I love this name. I was born 25 years ago to Malawian parents. I come from the Northern part of Malawi but I spent most of my time in the capital city, Lilongwe. I hold a BSc in agribusiness management and I just finalized working on my MSc in agricultural and applied economics. My Master's thesis was in agricultural marketing. One set-back to the enhancement of agricultural marketing in Malawi and most African countries is poor access to information and ICTs.My favourite quote: \"Communication is the grease that makes the wheel of marketing go round\".In my article, I referred to a case where a 100 km stretch of road could take you 3 hours to travel instead of an hour because it is so poor. Therefore most agricultural products would deteriorate before you could find a prospective buyer for your products, if you are to depend on road transport. On the other hand, a phone, email or radio message may take one minute and they are connected.Email: sangwani2009@gmail.comK aronga district, in Malawi's northern region, is just 110 km from the neighbouring district of Chitipa. The journey should take no more than an hour, but the road is in a poor state and often the trip takes well over three hours. The daily newspaper regularly arrives a day late.. Mobile phone networks in Chitipa are erratic and Internet connection is unreliable in both districts. Yet both communities have a vital need to stay in touch with each other. Maize is the predominant crop in Chitipa, while farmers in Karonga produce mostly rice. Trading between the two districts is essential and farmers need to be connected so they have real-time information on markets and product availability.The close ties but poor links between Chitipa and Karonga are echoed in many other parts of rural Malawi. Liberalisation in both the communication and agriculture sectors has led to massive scope for improved market information for smallholder producers. In theory, these developments should have enabled small-scale producers to plan which crops to grow and how best to sell them. In practice, poor access to reliable market infor-As youth are most likely to embrace the technologies and use them, then they are the best agents to ensure maximum and efficient use of such and I strongly advocate for their involvement.mation, compounded by inefficient markets, continue to make it difficult for producers to place their products to the best effect.Some recent initiatives have had positive impacts on the ability of farmers to access markets, though these results have been poorly documented. Institutions have been set up to link smallholder farmers to markets through ICT interventions using FM radio, mobile phones, the Internet and emails. One such system is the Initiative for Development and Equity in African Agriculture (IDEAA), which is part of the Malawi Agriculture Commodity Exchange (MACE) project and disseminates prices for a range of products on a weekly basis. The Agriculture Commodity Exchange (ACE) programme, introduced recently by the National Association of Smallholder Farmers in Malawi (NASFAM) publishes updated farm prices on the Internet.But large numbers of farmers in Malawi remain cut off from such innovations, especially in remote areas such as Chitipa and Karonga. Small-scale farmers in Malawi are already facing massive challenges, grappling with under-sized plots and low-yielding varieties among other difficulties. Although smallholder farmers account for 25% of the country's total GDP, an estimated one-third of the country's population is perpetually unable to produce enough food to feed the family. Many farmers rely on sales of other agricultural products to buy the food they need. Efficient commodity markets are critical to all smallholder households in Malawi. And the use of modern ICTs to connect farmers to market information has now become an imperative.Based on the original essay: \"When the use of modern ICT becomes a requisite: The case of Malawi.\" by Sangwani Rebeccah Gondwe. Now aged 22, I grew up on my parents' farm in the west of Cameroon in a predominantly agricultural region. After graduating from high school in 2007, I moved to the capital, Yaoundé, where I passed the competitive entrance exam to the School of Telecommunications Engineering. The importance, and the instability, of telecommunications in my country are both key reasons for my choice of this sector for my future career. In 2010, after obtaining my degree in civil engineering, I learned of the ARDYIS project organized by CTA via the discussion group of Engineers Without Borders -Cameroon. I entered the essay contest and won the prize for central Africa. Through my research for the project, I was able to identify the challenges, solutions and opportunities within the agricultural sector. From this moment on, I decided to focus my telecommunications studies and my career on agriculture. I am currently working as a volunteer at Engineers Without Borders -Cameroon, where I am in charge of the programme: \"Bridging the digital divide to improve efficiency in agricultural systems\".My blog: http://afriqueenor.over-blog.com/ Essay summary R eorganization of Cameroon's telecommunications sector has already led to several interesting developments -a number of them favouring the country's rural communities. An e-government project has been launched to improve the efficiency of public administration, extending virtual services to areas where there are no offices. A network of multipurpose community telecentres (MCTs), in more than 150 locations, has done much to improve communications in isolated areas. With more and more graduates considering agriculture for their future, and the growing trend to form farming co-operatives, there is scope for ICTs to bring wide-ranging benefits to this important sector. A four-pronged strategy could do much to address the most serious challenges facing farmers, which include low productivity, insufficient credit, poor organization and weak market access.First would be a weekly radio broadcast, to be called \"Agri-Info\" and hosted by an extension expert in local languages. It would discuss prices on national and local markets, outlets, process-My dream is to continue my studies in a top-class university, to deepen my knowledge in Telecommunications which will enable me contribute more effective solutions to the agricultural sector in my country.ing and storage techniques and management and sales skills. Specialists could be featured on the programme, and farmers invited on to air their views about their problems and share solutions. A second component would be a deal with a mobile phone operator to secure a low-cost package offering unlimited phone calls and SMS messages between farmers. The service could also supply audio messages on technical issues of interest to producers. Village information centres, using material made available by the MCTs, could be a useful channel for making knowledge on key issues available to rural communities. The centres would cover a wide range of subjects and would make use of a variety of media, including posters and videos.A third initiative would be an Internet platform offering a geo-referenced database, using GIS, voice, data and video in a virtual community salon, staffed by someone well-informed in both agriculture and ICTs, who would help producers to explore the Internet and all it has to offer them.Once these three initiatives have been up and running for 3 years, and producers have become familiar with using ICTs, a community WIFI network for rural areas could be launched. This lowcost service, which can be made with local materials such as old sardine cans, would enable farmers to connect with each other, as well as with local radio and MCTs. Producers could buy second-hand computers and use freely downloadable software. The system could be powered by solar panels in areas with no access to electricity. Support from government and NGOs would be crucial to ensuring the success of these initiatives, but the opportunity of using ICTs to provide real benefits to rural producers is one that should not be missed.Based on the original essay: \"Comment les TIC peuvent-elles être utilisées pour améliorer l'accès au marché des produits agricoles au Cameroun?\" by Gabriel Dacko Goudjo.I grew up in Makurdi, the capital of Benue State of Nigeria. My family was involved in agriculture. From the age of 10, I had learned how to till the soil and sow staple crops such as maize, groundnuts and rice. At one stage I owned my own small soybean farm.When I was 14, I maintained a small poultry farm, rearing birds such as broilers and turkeys. I intend to invest in agriculture. My love for the sciences informed my decision to do engineering in school. I graduated with a degree in petroleum engineering from the University of Port Harcourt, Nigeria in 2009. In high school I dreamt of winning a Nobel Prize in Chemistry. I still hope to win one in literature as I pursue my love in poetry and story writing.ARDYIS brought intelligent young people to gether and the network I have created with these brilliant young minds has been very beneficial in my day-to-day endeavours.Favourite website: I would choose www.google. com, because for me it is the gateway to other sites, besides its versatility in terms of Google maps, docs, reader, etc.My blog: http://poeticfarmer.wordpress.com Contact: rutherford2forlife@yahoo.comA practical approach to linking farmers with new information technologies has the potential to improve the small-scale agriculture sector in Nigeria. Using ICTs to map land resources and markets could help solve some of country's most pressing agricultural problems, which include low productivity and scant opportunities for farmers to sell their produce at decent prices. Geo-mapping, used to identify the potential of land for farming and its suitability for specific crop and livestock production, canYouth can play a huge role in the development of their communities. We have an imminent food security challenge when young people shy away from agriculture, leaving this sensitive field to an ageing population.be a powerful tool for increasing agricultural output. Mapping markets for various products could help farmers decide where best to place their products. The same service could supply information on re quire ments for accessing particular markets, especially for export.Ineffective extension services pose major difficulties for Nigerian farmers, and here too, ICTs can help. Distance learning can offer valuable information to producers. Farmers living anywhere in the country can go to ICT centres to sign up for online courses that will give them the technical knowledge they need to adopt sound agricultural practices, as well as business management skills such as book-keeping. Manuals, containing practical information about production and marketing methods, can be offered online or as CDs. Video podcasts offer farmers an easy way of learning about crop and livestock production. Instead of the top-down system, why not use a two-way extension service method? The ask-the-expert approach, successfully used in a number of countries and known by various names, enables producers to ask specific questions and receive answers via a feedback platform, generally a website. Farmers can use Internet blogs to share their experiences with other farmers, swapping problems and solutions with each other.An online database, containing names, phone numbers, websites, email and contact addresses for all agricultural extension centres, would be a useful service, especially if supplemented by details of community focus groups, NGOs, credit suppliers and development partners. Communication between these groups would open the door to more opportunities for introducing high-yielding and innovative practices and linking farmers to markets.In order to set these kinds of services in place, changes will have to be made at policy level. Local government will need to do more to en sure the provision of basic ICT facilities for communities. One idea is to form partnerships with private organizations to set up ICT centres in rural areas. With 65% of Nigerians under the age of 25, youth will be a powerful force in developing the country's agriculture sector. Youth interest in the sector could be stimulated by forming young farmers' clubs in secondary schools, while the National Youth Service Corp (NYSC) -a mandatory one-year scheme for graduates in Nigeria -could be an effective tool for fostering ICT development in rural communities. Who better to pass on ICT skills and training than young educated members of NYSC? And what would be a better gift for the new generation of farmers?Based on the original essay: \"Using ICTs to bridge the agricultural extension Gap and improving market access for rural farmers in Nigeria: A practical approach\" by Itodo Samuel Anthony. Perhaps the vitality of agriculture to the Pacific region and the world really convinced me to endorse this field as a top priority; where my utmost interest and dedication lies. Currently I am working for the Biosecurity Authority of Fiji and advocating for youth to adopt agriculture via CTA's ARDYIS project. It has been the first ever project (of its kind) that I have been involved with... My favorite quote: \"Man despite his historic pretensions, his sophistication and art, owes the fact of his existence to a 6-inch layer of topsoil and the fact that it rains\"… Anonymous Favourite website: http://www.facebook.com/agrifiji -my initiative and commitment to spread the gospel and attract youth to agriculture.A griculture continues to be the bedrock of the Fijian economy, accounting for 14% of the country's GDP and two-thirds of its almost 320,000 strong workforce. However, with a drastic decline in sugar cultivation and production, the agricultural focus has now shifted towards diversifying into high-value cash crops for the domestic market, as well as tourism and exports. Information poverty continues to be one of the main obstacles to more modern, marketoriented farming practices in Fiji, whose 330 islands are scattered over 1.3 million square kilometres. Farmers are isolated, from each other, and from information and markets that could help them earn better incomes. As a result, they are reluctant to commercialise production. Most of Fiji's 86,680 rural households -54% of the population -are engaged in subsistence agricultural or fishing activities.It is a common fact that people prefer the so-called luxurious life and are slowly moving to urban centres, leaving behind a declining rural population where majority farming takes place. Hence the onus is on the youth to avoid succumbing to the age-old stereotype that agriculture is hard labour and not a reputable profession and a white collar job is a preferred career choice.ICTs can provide the essential link in bridging this information gap, but to date the agriculture sector has failed to take advantage of these new technologies. The potential is certainly there, and other developing countries have already paved the way, showing how ICTs can bring tangible benefits to farmers. Widespread use of mobile phones offers massive scope for spreading agricultural information. Software has already been developed to do just this. Take the example of Uganda, where a suite of mobile applications is being used to give farming advice. Rural telecentres, equipped with computers and Internet and using solar power for energy, can be valuable channels for transmitting information, as seen in a number of African countries. Useful agricultural information on the Internet can be accessed via mobile phones that support Internet connections. Video conferencing with farmers via satellite or over the Internet is another innovative use of ICTs, which can be especially helpful in remote areas.With many Pacific islands threatened by climate change, it is important that farmers are kept informed of new techniques. In Burkina Faso, farmers' organizations have used digital photos and video to teach new growing techniques, leading to a nine-fold rise in output. ICTs can also be used to increase the efficiency and sustainability of small-scale farms, making information available on crucial issues such as pest and disease control and early warning systems. Up-to-date market information can dramatically improve farmers' negotiating position, and simple websites that match supply and demand can be a start to more sophisticated trade systems.ICTs can help with stock and quality control, essential for some domestic and most export markets, and important when it comes to applying for credit. Global positioning system (GPS) technology, still relatively new to Fiji, can provide valuable support to marketing and distribution. In Ethiopia, it has been used to map rural roads, helping NGOs, extension services and farm ers to plan their trans porta tion needs. Tradi tional electronic media, such as radio and tele vision, which have more than 80% coverage in Fiji, should not be forgotten. But more could be done to broadcast qua lity pro grammes and provide a plat form for feed back from farmers.Based on the original essay: \"The use of information and communication technology to address information poverty and reluctance of farmers to commercialize in the Fiji Islands.\" by Riten Chand Gosai. My own dream is to become a leader on the international scene to defend African interests and those of the most marginalized communities. My goal is to bring together the qualities and competences necessary to nurture my ambition.My blog: http://www.toundeblog.blogspot.comD espite its relatively recent rise, it is clear that the contribution of ICT to agricultural development and poverty reduction is becoming increasingly significant. In particular, mobile telecommunications are of special interest because of their capacity to empower rural African communities. Although mobile phones were once considered luxury goods for well-todo urban populations, they have come to be increasingly used as the standard means of accessing information and of communication among rural populations.The humiliating and thankless place of agriculture in ACP countries today discourages interest from the younger generations. Their dream is to have a modern macroeconomic and institutional environment in which to develop their ideas and build an up-to-date agricultural sector that is capable of facing current challenges. It is only the youth that will be able to develop a fresh, modern image of agriculture in ACP countries.However, many mobile telephone applications remain underused in the rural sector, thereby limiting the potential of this tool to boost to primary development. Short text messaging (SMS), for example, is little known or used among rural populations, despite being a relatively cheap and effective means of communication. Furthermore, the multiple SMS function and synchronization via PC allow the user to reach a wider target group, and can, for example, improve access to markets and provide producers with more accurate price information.Unfortunately, at present only a small number of umbrella organizations are using multiple SMSs to communicate with the leaders of farmers' organizations. Yet, given the current rate of mobile phone penetration in the rural sector, and the increasing need for improved market access for small-scale producers, as well as meteorological information, the time is ripe for an expansion of this service to a wider public, in particular, to those at the beginning of the value chain. For this expansion to succeed, however, it will be important to lift the institutional and socio-linguistic barriers that currently limit SMS use in the rural agricultural sector. Expanding the use of multiple SMSs via PC, for example, requires simplified instructions and the creation of support structures drawn from the local population.An additional potentially limiting factor in upscaling its use is linguistic competence. Special attention should therefore be paid to schooling for children and literacy among rural populations in their local languages. ICT localization, in particular, the development of mobile telecommunications in local languages, constitutes a major strategic opportunity to improve market access for farmers through the widespread use of SMSs.Based on the original essay: \"Comment les TIC peuvent-elles être utilisées pour améliorer l'accès au marché des produits agricoles du Bénin?\" by Babatoundé Rivaldo Alain Kpadonou.Stienen, J., Bruinsma, W and Neuman, F. ( 2007) \"How ICT can make a difference in agri cultural liveli hoods\", International Institute for Communication and Development (IICD).I am from Burkina Faso, aged 25. I grew up in a village in the Boucle du Mouhoun Region in Burkina Faso, where I attended primary school and part of my secondary school education. I completed my secondary school studies at Lycée Ouézzin Coulibaly in Bobo Dioulasso, the economic capital of Burkina Faso.After graduating from high school with a specialization in mathematics, I decided to continue my studies in economics and management at the University of Ouagadougou. I have already completed the first stage of graduate school, specializing in applied macroeconomics, and am currently working on my doctorate at the Laboratory for Economic Policy and Analysis at the University of Ouagadougou II.The decision to analyse the issue of market access for agricultural products from the perspective of access to information is linked to my training as an economist, and to a number of studies I carried out using databases. Furthermore, according to economic theory, information plays a vital role in all market mechanisms.In the last few years, I have also carried out a lot of research on the role of ICT. This is why I entered my essay for the ARDYIS contest and ended up finalist for West Africa.My favourite quote: My favourite quote comes from my father, who always writes it at the end of his letters to me: \"Where there's a will, there's a way (A coeur vaillant, rien d'impossible)\".My blog: http://traoreinoussa.blogspot.comA griculture dominates daily life in much of Burkina Faso, where 80% of people live in rural areas. But lack of market access is one of the major hurdles facing producers, trapping the majority of them in subsistence farming and preventing them from taking that crucial stepInoussa Traoré, Burkina Faso, West Africa I believe that the real wealth of our nations is our youth. We are the future! on the path to becoming small-scale entrepreneurs. ICTs are becoming more widely available in rural areas of this West African country, despite problems posed by poor infrastructure and illiteracy. And the slow but steady march of new technologies is bringing important changes to the agriculture sector on which most people depend for their livelihoods.In the early stages, in Burkina Faso, ICTs were mainly used to help farmers improve crop farming practices and obtain forecasts about the weather. Then, gradually, the scope began to widen and new communication tools were introduced to open up market access. These days, agricultural information is available through a host of channels, including the Internet, television and radio, as well as on DVDs and CD ROMs. Some initiatives have become household names. TV Koodo runs a popular service broadcasting commodity prices on television and the Internet. A system launched by NGO APROSSA -Afrique Verte also sends out regular bulletins on the situation in agricultural markets. A market information system managed by SONAGESS publishes cereal prices on a website.GPS offers scope for tracking products in the value chain, a prerequisite for some markets and an important stepping stone on the path to certification. Several women's producer organizations have succeeded in obtaining certification using this technology.The Internet has made it possible to sell -and buy -at the click of a mouse, opening up new markets for producers. A number of producers' organizations have been swift to seize this opportunity, setting up websites to promote their products. Some women's groups are successfully using this strategy to sell the shea butter that they produce.When there is no Internet, the mobile phone can be used to distribute market information and make deals with buyers. The Burkina Faso Chamber of Commerce has launched a project called Mobile Business which uses SMS messages to provide producers and traders with the latest details on local and international market prices. Much progress has been made in using ICTs to spur the agriculture sector. But there is scope for a great deal more, although parallel improvements must be made in raising literacy and education levels if the strategy is to achieve the best effect. A market intelligence unit would be an invaluable tool for farmers and traders alike. Powered by software that ensures regularly updated market information from a range of different sources, such a system would be a significant help in decision-making. More information means more business, and that is good news for everyone in Burkina Faso's agriculture sector.Based on the original essay: \"Comment les TIC peuvent-elles être utilisées pour améliorer l'accès au marché des produits agricoles du Burkina Faso?\" by Inoussa Traoré. Thanks to ARDYIS, I received a wealth of information including training in Web 2.0. I gained a fuller understanding of the significance of rural development and how ICTs play their part. It helped me get a clearer picture of my personal dream for Africa. I had the opportunity to present my ideas and to be heard by an international jury. That was quite an honour and I travelled to countries I have never been to before.The agriculture and rural development sector must be managed professionally just like any other sector such as the financial sector or the tourism sector, so that they feel proud to be professionals involved in achieving something meaningful.My blog: http://theafrodream.blogspot.comI t is 7 am, and a 28-year-old woman farmer is getting ready for the busy day ahead. This season, she expects to harvest 500 tonnes of high quality potatoes. Today, she is still wondering where she will sell them, but she takes out her mobile phone, sends an SMS and soon smiles as she receives confirmation of an order to supply a weekly tonne of potatoes for the next twelve weeks. The transaction has been made possible by a service introduced by a local software company, in partnership with mobile phone service provider. Meanwhile, in Zimbabwe's communal lands, a 16-year-old boy walks into a telecentre, leaving his ox-drawn cart full of vegetables outside. After searching through the database, he sends an email to a potential buyer. The answer comes back almost immediately, with details of when the client will come to collect the produce.I am more determined to see my vision/dream, the Afro Dream, become a reality, whereby any inhabitable place in Africa provides its inhabitants with any product or service that is locally developed/ produced and can be found anywhere in the world.These two scenarios are projections rather than real examples. But they could soon become a reality if ICTs are used to improve access to markets for farmers in Zimbabwe. It is important to match the right technologies to the right producers and markets. Producers in Zimbabwe range from newly resettled farmers, with average computer literacy, to communal farmers -mostly very young -and the elderly, who depend on agriculture for their livelihoods, but whose literacy levels are very low. Then there are commercial farmers, mostly young or middle-aged, whose literacy levels are high.Zimbabwe now has an affordable mobile phone service and good network coverage, making this tool the obvious choice since mobile phones are widely available and easy-to-use. With locally developed software, mobile phones can be used to match farmers' offers to buyers' needs and notify farmers about the latest market prices. With the help of experts from the Agricultural Research Extension (AREX), there is scope for building information systems to offer market prices over the Internet. Computer prices are coming down and in Zimbabwe customs duties on all ICT goods have been scrapped. To attract buyer interest, farmers could use mobile phones or computers to upload details of produce and expected yields. This information could be relayed, via the Internet or SMS, to screens located in public market places, or directly to mailboxes of agents, agriprocessing companies and importers of Zimbabwean produce.We need better Internet support infrastructure and affordable services. Broadband over power line (BPL) technology, already available in South Africa, could make a significant contribution to developing this area in Zimbabwe. It relies on the existing electricity power lines and has bandwidth speeds of up to 200 Mbps. Telecentres can be valuable in rural areas, offering a variety of services (e.g. fax, Internet, typing, printing, scanning and information, including details from online agricultural databases). Even computer illiterate farmers can walk in here and get help in securing buyers for their produce.\"How can ICTs be used to improve access to market for agricultural products in Zimbabwe?\" by Gerald Mangena.Colle, R.D. ( 2005 T oday's agricultural challenges need modern solutions -ones that are producer-driven, affordable and adapted to local communities. ICTs hold the key to development in Zimbabwe's rural areas, where 70% of the population is based. At national level, communication technologies are well integrated into government administration, and all ministries and state corporations have their own ICT structures and personnel. NGOs have also come on board. One popular initiative is the Freedom Fone launched by the Kubatana Trust, which uses interactive voice response (IVR) technology. Anyone can call the service to leave a voice message, listen to messages from others, or hear the information provided by Kubatana Trust. This is a social platform but could also be adapted for agriculture. Private companies looking for out growers and contract producers could use the network to link up with farmers and their organizations.Youth must be relevant to their specific disciplines. Youth should use whatever avenues they have to make a difference. Youth must learn from experienced farmers and persons involved in agriculture. \"Mere talk\" is unacceptable. Youth must do it.Mobile phones offer a quick and inexpensive channel for marketing perishable agricultural products such as tomatoes, eggs and milk. Producers can use SMS and multimedia messages to link up with buyers and form groups to meet up with them when larger quantities are involved. On the Internet, farmers can use Google Earth to map and plan their fields and crops and Skype and Yahoo Messenger to talk to each other, as well as to potential buyers. Video conferencing gives farmers the opportunity to hook up live with producers in other parts of the country, or even the world.Producers can create and subscribe to websites that promote marketing activities through e-bulletins and updates. E-newsletters can be used to document farmer success stories. Through social networking platforms such as Twitter, Facebook and Google Chat, and by running their own blogs, producers can communicate, share experiences and penetrate new markets, using community Internet facilities if they do not have their own. Virtual producer forums offer exciting opportunities for farmers to market seasonal prod-ucts, linking up with local, regional and global markets. Such systems can enable suppliers and buyers to compare prices and producers to market lesser known products such as mushrooms and grain amaranth, alongside popular commodities such as maize, soybeans, tobacco and roses. E-marketing zones can be created, covering similar geographical, administrative, livelihood, and agro-ecological zones, boosting investor confidence and securing new markets for producers.Roadshows showcasing ICTs are a good way of putting rural communities in touch with developments in agriculture. Held at rural business centres, community halls and schools, such events offer a chance for producers to congregate and show off their crops and livestock. One unusual feature of agriculture in Zimbabwe is that both young and old are involved in the sector. ICT roadshows are an effective way of reaching both ends of the generation spectrum.Based on the original essay: \"How can ICTs be used to improve access to market for agricultural products in Zimbabwe?\" by Raymond Erick Zvavanyange. Despite not having an agricultural background, I would like to contribute to the development of this sector because of its great importance to the economy of my country.My favourite quote: \"Believe and act as if it were impossible to fail.\" -Charles F. KetteringL ack of policy support, inadequate extension services, weak land tenure and limited access to inputs, credit, new technologies and markets. These are some of the factors acting as a brake on the rural economy of Benin, a country where more than 50% of the population is engaged in the agriculture sector. Poor market linkages pose one of the major hurdles to better yields and incomes for the country's producers. Farmers lack knowledge about market prices, new outlets, transport and trade rules. With little or no reliable information, small-scale producers in many parts of Benin are totally isolated from the positive impacts of globalisation and often fall prey to middle-men. Links between producers' organizations and other important partners such as extension services and research are often sadly lacking.Improving access to information about markets, production techniques and important factors such as traceability and quality standards can make a significant contribution to increasing revenues for farmers. An agritrade website designed to help producers keep abreast of market trends and prices could be an important first step on the path to securing higher sales volumes and profit margins. The Indian initiative e-Choupal is a case in point. In a local context, the website of Benin's National Chamber of Agriculture would be the obvious choice for hosting such a platform, backed up by information centres to provide support, Internet access and ICT training in rural areas.Today's youth wants (…) a new form of agriculture that uses modern techniques and that will create a high number of jobs in the service and ICT sectors.As Burkina Faso cotton producers' association UNPCB has already shown, there is scope for negotiating a fixed fee with mobile phone operators for unlimited calls between subscribers and an SMS service to give updated market prices and connect buyers and sellers. This virtual market would allow online transactions to take place, making valuable savings in time and transport costs for producers. An effective ICT-based market platform, such as Prix par SMS run by RESIMAO-WAMIS-NET, can help producers plan their farm strategy well in advance, choosing which crops to grow when, depending on forecasts of likely demand. The platform could subsequently be developed to supply other services such as information on crop technologies and good practices or ICT training.More traditional technologies also have their role to play. Radio and television broadcasts can be valuable channels for relaying information in local languages and letting producers know who is looking for which product. Farmers' organizations can use Internet radio to download pod-casts on marketing or modules for training and compilations can be made, stored and distributed on CD-ROM. Any such initiative will be doomed to failure unless local people are involved in developing and managing it and the service is designed to be self-financing. But all the evidence points to the fact that Benin's large rural population has a great deal to gain from more investment in ICTs.Based on the original essay: \"Amélioration de l'accès au marche des produits agricoles par les TIC au Bénin.\" by Aristide Z. Adaha. I am a 25-year-old Jamaican, currently working in an agricultural research organization. I was exposed to agriculture from an early age; as my parents kept a small backyard farm and my grandparents raised poultry on a small-scale. I expect that as we continue to develop new technologies to improve efficiencies, the world will see that the only thing constant is change.The challenges faced in market access in my country and in the Caribbean region, are very real issues and in my opinion the key limitations toward development. Highlighting some of these challenges in this forum would allow these concerns to reach a wider audience.Contact Info: johnson.lloyd@hotmail.comF ruit, vegetables, fish, sugar, cocoa, peppers, coconuts and poultry -the Caribbean has a wealth of often exotic agricultural products to offer, both as raw and value-added items. But lack of reliable markets is hindering agricultural development in the region. Problems include inadequate market information, poor standards of training and informal farming systems, with little formal structure or planning.Reliable market information is difficult to obtain because of the seasonal nature of many prod-The youth are the future. To aid in the progress toward rural development as it relates to agriculture, there is a wealth of knowledge and experience from current farmers that will need to be transferred to another generation of farmers. In this technological age, it is expected that the youth will use these skills to increase efficiency in production practices and have access to more information than earlier farmers.ucts. Prices are constantly changing on these volatile markets, and the picture is made even more difficult by the geographical spread. The same commodity may have a different price in different locations, regardless of quality. And with no sound source for market information in the Caribbean, keeping one's finger firmly on the pulse is an uphill struggle. A public database system generated by a regional body and published as a website or mailing list could do much to improve the situation. With data fed into the system by local authorities, and regular updates of market information, consumers and suppliers would have a clearer idea of prices, leading to increased trade and more scope for placing new products and tapping into unfamiliar markets.ICTs can also be used to improve producers' knowledge of quality standards and give guidance to farmers before they enter a production chain. With increasingly rigorous standards, both for international and some local markets, small-scale Carib bean farmers who don't have adequate systems in place are finding themselves unable to sell their goods or to reap the rewards. Audio-visual and other multimedia packages, backed up by practical training exercises, could do much to improve farmers' understanding of quality requirements. As mobile phones are used by most Caribbean farmers, follow-up tutorials could be conducted via daily voice or text messages. Disease prevention, high-yielding techniques and technologies to prolong shelf-life are all areas where ICTs can play an important role in helping farmers to find out about more effective practices. Jamaica's Agricultural Business Information System (ABIS), launched by the Rural Agricultural Development Agency (RADA) is a useful model for mainstreaming informal markets. The system aims to register all farmers on the island on a district basis, listing critical information such as acreage, crops and harvest dates. The goal is to improve market access and help with planning, avoiding market gluts and lower prices --a common problem for farmers in the region.Regional organizations could greatly increase collaboration and strengthen linkages and dialogue using ICTs. Throughout the region there are a host of organizations dedicated to agriculture, in both public and private sectors. But their impact is often not as strong as it might be, partly because synergies are weak or non-existent. ICTs could help to synchronise activities, leading to open networking among stakeholders and more effective interventions for development and production.Based on the original essay: \"Improving market access of Caribbean agricultural products with information and communication technologies.\" by Lloyd Johnson Jr. Agriculture needs to attract more young people if it is to move ahead and develop in the future. ICTs can be an effective way of helping young rural entrepreneurs to launch a business or improve production in their day-to-day work. And since many of them enjoy using high tech tools, it all adds up to the perfect match.I have spent most of my life in a rural area of Nakuru district, Kenya where we have our fair share of social and economic problems. When local residents complained of having to travel several miles into town to get access to their money to pay for: food, shelter, education and health care, I realised that there was potential to use ICT to improve local money access. I introduced one of the youth to of the idea of setting up an M-Pesa (mobile money transfer) shop which he did. This initiative allowed members of the community to get easy access to their money and they were able to buy household consumables and farm inputs without travelling. This example can be used as a model for the transformation of life in other rural areas.Engagement of the youth in agriculture is minimal. But youth could make great contributions in agriculture and rural development.My blog: http://gbiportal.net/members/ chrisngige/ Email: chrismwa2005@gmail.comK amau is a young Kenyan in his late twenties, who lives in a small farming community in the Central Rift Valley. Four years ago, he became an agent for local company Safaricom, whose services include the mobile phone money transfer system M-Pesa, which literally means 'mobile money'. Convinced of the potential, Kamau set up an M-Pesa kiosk in his rural community. Business flourished, and using his profits, the enterprising young Kenyan then ventured into farming. He rented several fields and planted potatoes using methods from the Organic Farmer, an e-bulletin on sound farming practices published by the International Centre for Insects, Pests and Ecology (ICIPE) which he got on his General Packet Radio Service (GPRS)-enabled mobile phone.Kamau also planted maize and beans and obtained healthy yields, but when it came to harvest time, he was determined not to fall into the clutches of middle-men, as his parents' generation had done. Everyone knew they offered low prices. TheThe story was on a successful and inspiring experiences of a young person who use of ICTs transformed his life and benefited his community. If this model is used in other places, it could impact positively on young rural people lives.savvy entrepreneur opted for a high-tech solution, turning to 411 Get it, a joint ven ture be tween Sa faricom and the Kenya Agri cultural Commodity Exchange (KACE). Using his mobile phone to access up-to-date commodity prices, Kamau identified a favourable market.But Kamau's farming success was only the beginning -not just for him, but for the entire rural community. He invested in M-Kesho, an electronic savings account which also offers short-term loans to farmers. Other villagers started to open M-Kesho accounts with the proceeds of crop sales, using Kamau's kiosk to make the transactions. Kamau's one-stop e-banking kiosk has simplified money access, increasing the amount of cash available to be spent in the local economy. Producers no longer need to travel to towns, so are more likely to spend their money closer to home. Farm owners in the nearby town of Nakuru no longer have to commute to Kamau's village to pay their casual labourers, using the young businessman's M-Pesa kiosk instead. Agro-vet and other traders use M-Pesa to pay their suppliers and spend the cash saved on transport costs buying local stock and inputs. The entire local economy has benefited as a result.Like any good entrepreneur, Kamau has a knack for spotting business opportunities, so when he saw that his operating capital was declining during the planting and weeding season, he decided to diversify. Taking out a soft loan, he bought a motorcycle, an ideal mode of transport for the poor local roads, and as he was soon to find out, an excellent way of making extra income. Teaming up with a partner, the young Kenyan launched a taxi service, a thriving business in rural Kenya and one mainly dominated by youth. Banker, farmer, taxi operator -Kamau has spread his business interests over a wide range of sectors. But the common denominator is ICTs. He would never be where he is now if he had not made them work for him.Based on the original essay: \"Impacts of ICT on livelihoods: Experiences of a Kenyan rural youth.\" by Chris Mwangi. My favourite quote: \"Putting a price on water will make us aware of its scarcity and make us take better care of it.\" -Agnel Gurria, Secretary-General of the OECD.My blog: http://dignityinpoverty.blogspot.com/ Essay summary I CTs, including mobile phones and web 2.0, can be an effective tool for drawing more young people into agriculture. Twenty-fiveyear-old Gilbert Egwel is proof of that. This small-scale fruit farmer from Akere parish in Uganda's Maruzi county has used community radio, telecentres and his mobile phone to launch a lucrative career based on mango and lemon trees. It all started when Gilbert heard a community radio talk show. The theme was nursery beds, and it gave the school leaver the idea of tapping into the growing market for fruit juice from manufacturers in the capital Kampala.Maureen Agena, Uganda, Eastern Africa I want to be a role model and icon to all the young women who think that technology or technical courses are not meant for them.Gilbert bought 50 grafted mangoes and 60 lemon seedlings, and was pleased with the results of his first harvest, resolving to expand production. However, daunted by the 3000 sh ( 1) cost of buying each new seedling, he decided to produce his own, selling the surplus to other local farmers who were beginning to show an interest in his fledgling fruit business. With information gleaned from an agricultural radio talk show aired by local telecentre the Kubere Information Centre (KIC), Gilbert started a nursery, mobilising village children to collect mango and lemon seeds from the neighbourhood. The young farmer planted 100 seedlings of local mangoes (known locally as Ayembe) and 50 of lemon (Acungwa), using banana fibre as potting bags. Most of them failed to grow, but using the profits from his now thriving seedling nursery, he bought better quality potting materials from Kampala.This time Gilbert was more successful, and he set about finding markets for his now flourishing fruit tree venture. Earlier this year, he attended a web 2.0 training session run by the Busoga Rural Open Source Development Initiative (BROSDI), and joined two online platforms at Facebook and Twitter. It was becoming increasingly clear that this approach held the key to tapping into a wider market. He received further training from the CTA-supported Women of Uganda Network (WOUGNET), learning how to find information on the Internet and use ICTs to connect with buyers.Today, Gilbert runs a booming fruit seedling nursery and is the sole supplier of grafting materials to the National Agriculture Research Organization (NARO) in Kawanda, with whom he makes regular contact via his mobile phone. He also uses his phone to receive payment, through the Mobile Money service run by Mobile Telephone Network-MTN (Uganda). And he has subscribed to MTN updates to receive the latest market prices.The path to success has not always been easy and challenges include poor infrastructure such as roads, processing and storage facilities. But Gilbert is confident that ICTs can help overcome most difficulties.\"The only solution to all the agricultural-related problems we face is access to the right information at the right time\" says the fruit farmer, who now owns 15 acres of land bought with his savings. Gilbert's goal is to launch a juice processing venture and provide jobs for more young people from his village.Based on the original essay: \"Increasing agricultural productivity through technology: A story of a young modern fruit grower in Apac, northern Uganda\" by Maureen Agena.Mukibi, J.K. ( 2001) Agriculture in Uganda, Vol II. Fountain Publishers Limited, Uganda. Verheij, E. ( 2006) \"Fruit growing in the tropics\", Agrodok Series, No. 5. Digigrafi, Wageningen, the Netherlands.I am a 24-year-old male Zambian. I am a social worker and ICT trainer and consultant and currently the Executive Director for Ndola Youth Resource Centre, an organization that specialises in using ICT for youth development. As I grew up, I came to learn that what separates a successful youth from another is simply the availability of relevant information. My desire is to have a skilled young generation that rely on ICTs to make well-informed decisions for sustainable livelihood development.Contact: www.facebook.com/Isaac.chandaW ith high youth unemployment in Zambia, government schemes are offering young people in the Copperbelt province easier access to agricultural land, inputs, livestock, training opportunities and in some areas, start-up capital. But limited market exposure continues to be a serious obstacle for many young farmers, whose lack of experience makes them an easy target for unscrupulous buyers and middle-men.One practical solution lies in an Internet-based platform designed to showcase young farmers and their products and to link them to markets. The Find the Young Farmer website could offer both audio and visual information and be developed using free and open source software such as Dreamweaver and easy Php for web design, MySQL for databases and Wikipedia for blogs and wikis.The platform would serve as a directory for agricultural commodities and services, allowing young farmers to advertise what they have to offer and consumers to search by agricultural product, service or location, using general or more refined criteria. As well as the name and contact details of young farmers and organizations, the website would offer space to post photographs of produce and links to blogs or Youtube videos.Isaac Chanda, Zambia, Southern AfricaICTs and particular sectors of development.The marketing tool would automatically connect interested buyers to the young farmer concerned and would also supply contact information such as mobile or fixed phones, as well as email and physical addresses. Links to social media networks would enable users and farmers to exchange knowledge and experiences and a separate section would enable visitors to download useful agricultural material and information such as research documents and newsletters.Circulated to government ministries, telecentres, organizations and via press and other media, the website would target both local and international audiences. As its popularity grew, so too would its power as an instrument for putting young farmers in touch with buyers.Young farmers in the Copperbelt province would be encouraged to receive training in basic ICT literacy before being invited to upload details including the nature of their business, type and category of products and contact information, as well as photos and videos of themselves and items offered for sale. To make the service sustainable, farmers would be expected to pay for space, in order to cover the cost of developing and managing the website. Expected results would be better market linkage for young farmers, more competition, more standardised prices for agricultural products and time savings for buyers looking for farm products and services.Based on the original essay: \"Find the young farmer: Locating young farmers without limitations\" by Isaac Chanda. T he prospects looked bleak when young Ivorian Euphrèm N'depo set out to launch his career after graduating in food chemistry and engineering. N'depo, 26, knocked on many doors to find his first job, but all were in vain. The odds were stacked against him. Jobs are increasingly scarce in both the public and private sectors of Côte d'Ivoire, and unemployment in the 15-24 age groups has risen to over 24%. For the 25-34 age range, the rate is 17.5%. In N'depo's sector the picture is even more grim. The jobless rate among graduates like him is now 42%. One in two Ivoirians are officially classed as living in poverty.Undaunted, N'depo decided to launch into the small livestock business, opting for rearing poultry and cane rats (grasscutters). Realising that he would need some technical knowledge to help him in his new venture, he set about investigating how to obtain some training. As the cost of the centres offering courses were way beyond his means, and the distances much too far, N'depo decided to turn to the Internet. Easier said than done in the rural community of Irobo where he lived, about 100 km from Abidjan. Here there was no landline connection to the Internet. The nearest one was at Dabou, 50 km away.N'depo has never been one to give up easily and is a young man full of resources. He resolved to get round the latest obstacle using bluetooth technology and a GPRS-enabled mobile phone to line to the Internet. He soon found all the information he needed.Euphrèm Akaffou N'depo, Côte d'Ivoire, West Africa Founder and owner of a poultry and cane rat farm set up with a group of young entrepreneurs. The income generated has financed my studies to become an agrifood engineer.\"The website of the Agromisa Foundation, through its downloadable publications, enabled me to become self-taught in poultry keeping, co-operative management and marketing farm products,\" he said. \"The website of Vétérinaires sans Frontières (Vets Without Borders) enabled me to find out about rearing agoutis.\"The young graduate's business plan was so impressive that he won funding from the local authorities and technical help from rural development agency ANADER to build chicken coops and cages for the cane rates and buy animal feed and breeding livestock to get started. With help from ANADER, N'depo launched a co-operative of young livestock keepers -nine young men and five women --all of them jobless graduates like himself. The venture was soon making enough to pay a small regular salary to each member of the co-operative. But there was no time for complacency. Faced with exorbitant costs for fodder to feed their growing livestock venture, the young farmers once again turned to the Internet, and once more they were rewarded, finding a better, less costly formula based on maize, soya, fishmeal, salt, bone-meal and snail shells, enriched with vitamin concentrates. The group is now busy planning other improvements, using information found on the Internet, of course.Based on the original essay: \"L'histoire d'un jeune producteur agricole vivant en milieu rural en Côte-d'Ivoire qui utilise les TIC avec succès, de manière novatrice pour son travail : leçons apprises et alternatives envisages.\" by N'depo Akaffou EuphrèmAgromisa Foundation : www.agromisa.org Vétérinaires sans Frontières : www.vsfe.org","tokenCount":"12467"} \ No newline at end of file diff --git a/data/part_1/0208614075.json b/data/part_1/0208614075.json new file mode 100644 index 0000000000000000000000000000000000000000..5232e4305e0dde2547a68c1e2a210bb8a866a8c9 --- /dev/null +++ b/data/part_1/0208614075.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c9eb528a780e2aadd1ab734af03f6339","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5c05e75f-8fc6-49fa-85f3-effd53062358/retrieve","id":"-952517651"},"keywords":[],"sieverID":"94cf460c-3fa1-48f8-8d8b-d2560a339617","pagecount":"35","content":"The que.tion most commonly asked by CIA rs supporters and collaborators Is \"What 15 CIAT dolng to eosure !hat the technology it i. develOPing will be put to productlve use? \", Indeed !his Is !he que$tion we coostantly ask oorselve., since our stated goal of increased productian and productivity cannot be achleved unl ... !he technology i. transt'erred throogh Its various stoyes in arder to be utilized by farmers, However, perallel to this question i, the Irequently expressed COnc8m !hat, in the;r rusll and ameiety to see !he fruits 01 !heir labor applied, the International Agricultural Research Centers will over-extend themsal ... , ovar'r.sthing their administrativa capacity, diluting !heir research efforts and moving into areas in which thay have less competenee .nd can perform le .. elfectively. Thus, there exists the dual coneero thet tho Intomational Centen will do too tittle and !hat !hev wíll do too much in !he are. 01 technology transfer, commonly referred to as \"outre .. h\". This underscores the nsed fO( CIAT to define what i. its strategy as a basi, lar deciding what it will do, or, probably even more important, what it will not do in this area, It i. partlcularly important to do so at this time when the Ceno ter has reached the ego at whieh !he growing amount 01 exciting new techoology belng generated by lIS programs needs to be effectively validated lo on•farm trials, adaptad by national institutions to local conditions, and tran.ferred to farmers.Tha purposo 01 thi. paper is to inform CIAr. Board 01 Trustee\" clientcountrie\" and the Consultati.e Group for loteroational Agricultural Re.eareh (CGIARl, 01 !he basic principies embodied in CIAT'. philosophy on !his subject, the strotagie, for achieving its technology transfer objectives, and plans for executing the stra• tegy during !he next five yaar. (T actie,).A clear understanding of our terminology is 6tsential. WhiJe we consíder the terms Uoutreach services u and Utechnology transfer\" practicaUy interchangeable far the discussion that follows, we have nol used the latter tarm In the title specifieally because it is often understood in the narrow sanse of Hextension\" to farmen. Ac• tual/y, !he teehool09Y tronsfer activities of an International Center are ehiefly thos. relatad 10 !he transfer 01 its technology to local institutions, along with sueh actívities as relate to strengtheníng these institutions to better perform their tasks 01 local adaptl.a rese.100%) (Cuadro 4).Los cultivares desarrollados en los últimos ciclos de mejoramiento para resistencia al achaparramiento, presentaron un comportamiento diferancial bien marcado con respecto a los híbridos y a las variedades tolerantes en los ambientes con alta incidencia de la enfem1edad. Los sintéticos SC3P73 R y NB-12 fueron los cultivares que sufrieron menos abatimiento del rendimiento al pasar de un ambiente de incidencia de la enfermedad a otro de alta incidencia. Por tanto con esta evidencia se tiene la certeza de que los cultivares puestos a disposición de los agricultores son superiores a los que están utilizando en la actualidad.Cuadro S. Efecto del achaparramiento en el rendimiento de grano en cultivares de maíz evaluados en la estación experimental H. Tapia B., Managua Nicaragua Ounio y septiembre de 1991).Evaluación de Materiales con Resistencia Múltiple a Cogollero, Barrenadores y Achaparramiento Rafael Obando l , Róger Urbina', John A. Mihm 2 y Marcos Mendoza'Con el objetivo de evaluar materiales con resistencia múltiple a cogollero, (Spodoptera jrujiperda Smith) barrenadores (Diatraea spp.) y al achaparramiento transmitido por la chicharrita (Dalbulus maidis D. & W.); se evaluaron cuatro víveros (2 de grano blanco y 2 de grano amarillo, ambos con líneas y cruzas simples) de CIMMYT en la estación experimental Santa Rosa, Nicaragua, en postrera de 1994. Las entradas se evaluaron en dos repeticiones en parcelas de 1 surco de 2.5 m de largo a 0.81 m entre surco y 0.25 m entre posturas. Los víveros se sometieron a infestación natural de plagas; el daño por cogollero se evaluó con una escala de 1-9 (l es poco daño y 9 tiene el cogollo destruido). El dafio de achaparramiento en las plantas se evaluó a los 75 días después de la siembra. A la cosecha se tomó el peso de campo y el número de mazorcas afectadas por achaparramiento. Las cruzas simples presentaron mayores rendimientos de grano. En el vívero de probadores resistentes al achaparramiento de grano blanco la mejor cruza rindió 9.6 tlha, con dafio de cogollero de 5, sin dafio de achaparramiento. Para los materiales de grano amarillo, la mejor cruza rindió 7.9 tlha, con dafio de cogollero de 6 y 15% de plantas con síntomas de achaparramiento y sin mazorcas afectadas por la enfermedad. En los víveros de testigos resistentes a barrenadores, cogollero y achaparramiento, en el de grano blanco la mejor cruza rindió 6.5 tlha con dafio de cogollero de 6, 5% de plantas con síntomas y ninguna mazorca afectada; en el de grano amarillo la mejor cruza rindió 5.8 t/ha, dafio de cogollero 6 , 21 % de plantas afectadas y 5% de mazorcas con síntomas de achaparramiento. Los resultados del estudio revelan buenas posibilidades de obtener en el futuro cultivares con niveles aceptables de resistencia múltiple a estas plagas.Entre los factores que afectan en mayor grado el rendimiento de grano en maíz en Nicaragua, se encuentran las plagas conocidas como cogollero (Spodoptera frugiperda J.E. Smith), barrenadores (Diatraea spp.) y el achaparramiento producido por micoplasmas y spiroplasmas transmitidos por el vector chicharrita del maíz (Dalbulus maidis D.& W.).Desde hace algunos años, el programa de Entomología (Resistencia de la Planta Huésped) del CIMMYT ha estado formando poblaciones de maíz para obtener resistencia múltiple a este complejo de plagas. Ya no se puede aceptar la idea que el desarrollo de plantas con buenas características agronómicas y alto rendimiento es suficiente para obtener resistencia automáticamente. Además, ya no se debe confiar a ciegas en los plaguicidas, los insectos desarrollan resistencia a ellos. Por tanto, se debe diseñar una serie de prácticas de combate en la que intervengan la resistencia de las plantas (Maxwell y Jennings, 1984).Entre los mecanismos de variabilidad en las plantas que se pueden usar para seleccionar resistencia se encuentran la hibridación y la herencia citoplásmica. Los avances en la genética y las evidentes ventajas de evitar pérdidas por las plagas y enfermedades de las plantas por el simple hecho de sembrar una variedad resistente en vez de una susceptible, hacen posible y muy deseable la producción de variedades resistentes (Agrios, 1989).En la postrera de 1993, con poblaciones naturales de plagas y enfermedades, en Nicaragua y El Salvador se tomaron datos en líneas derivadas de tres poblaciones; Pob.21 X Antigua, Pob.76 X RIM-BCA Pob.76 X RIM-Cogollero. Se identificaron líneas con resistencia múltiple a cogollero y achapimamiento en las 3 poblaciones. Estos datos combinados con calificaciones de resistencia a barrenadores bajo infestación artificial en CIMMYT-México, permitirá identificar líneas con resistencia múltiple a las tres plagas. Las líneas seleccionadas se usarán para avanzarlas a mayores niveles de endogamia, sintéticos e híbridos experimentales, así como para formar una población que se usará en el mejoramiento para resistencia múltiple a estas plagas (Mihm et al., 1994).El objetivo del presente estudio es evaluar la sanidad y el rendimiento de grano de germoplasma de maíz con resistencia múltiple a cogollero, barrenadores y achaparramiento.Procedentes de CIMMYT México, en la época de postrera (7 de octubre de 1994) se sembraron en la estación experimental Santa Rosa Nicaragua, cuatro viveros 2 de grano blanco y 2 de grano amarillo, cada uno formado por líneas y cruzas simples. Los viveros sembrados fueron: l. Probadores resistentes al achaparramiento, de grano blanco con 20 entradas (15 líneas y 5 cruzas simples). 2. Probadores resistentes al achaparramiento, de grano amarillo, con 29 entradas (cruzas simples). 3. Testigos resistentes al achaparramiento, barrenadores y cogollero, de. grano blanco, con 67 entradas (34 líneas y 33 cruzas simples). 4. Testigos resistentes al achaparramiento, barrenadores y cogollero, de grano amarillo, con 90 entradas (48 líneas y 42 cruzas simples).Cada vivero se evalúo con 2 repeticiones, sembrando cada entrada en un surco de 2.5 m de largo, espaciados a 0.81 m y entre planta 0.25 m. No se hizo ningún control de plagas para evaluar el daño ocasionado por las poblaciones naturales en los viveros. El daño de cogollero se evaluó en el follaje antes de la emergencia de la espiga, usando la escala de 1-9 (Mihm, 1984), la cual se describe a continuación: l. Pocos agujeritos 2. Varios o muchos agujeritos 3. Pocos agujeritos y 1 ó 2 lesiones elongadas 4. Varios agujeritos y unas cuantas lesiones elongadas 5. Varios agujeritos y lesiones elongadas 6. Muchos agujeritos, varias lesiones elongadas y unas cuantas porciones comidas 7. Varias lesiones, porciones comidas y áreas muriendo. 8. Lesiones elongadas, porciones comidas y áreas muriendo. 9. Cogollo casi todo comido, varias lesiones y áreas muriendo.La evaluación del daño de achaparramiento se hizo en plantas y en mazorcas. A los 79 días de sembrado se anotó el número de plantas que presentaba algún síntoma visible de achaparramiento. Al momento de la cosecha se anotó el número de mazorcas afectadas. Se calculó la heterosis y los coeficientes de correlación simple entre las variables en estudio, daño de cogollero, porcentaje de mazorcas y plantas achaparradas y al rendimiento de grano.Las cinco mejores cruzas que presentaron el mejor rendimiento de grano de este vivero se presentan en el Cuadro l. Solamente la cruza con el mayor rendimiento de grano superó la media de este grupo indicando que una sola cruza se separó muy por encima del resto. La mejor cruza presentó el valor más bajo de daño de cogollero, incluso debajo de la media, mientras que las otra presentaron daños de cogollero arriba de la media. La mejor cruza no presentó daño de achaparramiento en plantas ni en mazorcas, mientras que las otras presentaron daños en plantas y en mazorcas o solamente en plantas (Cuadro 1). Todas estas cualidades de la mejor cruza, menor daño de cogollero y sin daño de achaparramiento hicieron que se manifestara en el mejor rendimiento de grano, muy por encima de las demás.Las líneas que presentaron los mejores rendimientos de grano, no fueron los progenitores de las cruzas simples evaluadas (Cuadro 1). Esto indica que este grupo de materiales se debe seguir evaluando para seleccionar las mejores líneas que formarán otros nuevos materiales. Se encontró una correlación negativa y altamente significativa entre daño de cogollero y rendimiento lo mismo que entre porcentaje de plantas achaparradas y rendimiento de grano. También se encontró una correlación positiva y altamente significativa entre daño de cogollero y porcentaje de plantas achaparradas (Cuadro 1). Esto indica que tanto el daño de achaparramiento en plantas como el daño de cogollero están disminuyendo significativamente el rendimiento de grano y que los materiales que presentan el mayor daño de achaparramiento también presentan el mayor daño de cogollero al 0.01 de probabilidad.El rendimiento de grano, las diez mejores cruzas formaron un grupo más o menos homogéneo, el cual supera a la media (5.5 t/ha) entre 12 y 43%. El daño de cogollero oscila alrededor de la media entre 2 y 18% sobre la media. El daño de achaparramiento en plantas y en mazorcas fue menor en los materiales que ocuparon los primeros lugares. A medida que el rendimiento de grano disminuye alejándose del primer lugar el daño de achaparramiento aumenta (Cuadro 2).Se encontró una correlación negativa y altamente significativa porcentaje de mazorcas achaparradas y porcentaje de plantas achaparradas con el rendimiento de grano. También se encontró una correlación positiva y altamente significativa entre el porcentaje de plantas achaparradas y el porcentaje de mazorcas achaparradas (Cuadro 2). Esto indica que el achaparramiento disminuye significativamente el rendimiento de grano y que el aumento en el porcentaje de plantas achaparrados produce también un aumento en el porcentaje de mazorcas afectadas al 0.01 de probabilidad.Las diez mejores cruzas superaron la media del rendimiento (4.7 tlha) entre 3 y 39% Y presentaron heterosis entre 85 y 415% en relación al mejor progenitor. El dai10 de cogollero presentó valores negativos en los porcentajes de heterosis en la mayoría de los casos, aunque también hubieron casos neutros y positivos. El achaparramiento en plantas en todos los casos presentó valores de heterosis negativos y el achaparramiento en mazorcas presentó valores variados siendo la mayoría negativos (Cuadro 3). Estos resultados indican que las ganancias obtenidas en el rendimiento de grano por heterosis son altas, hasta de 415% en relación al mejor progenitor. Indica también que los mejores materiales en rendimiento de grano resultaron de la mayor disminución por heterosis en el daño de achaparramiento en plantas.Se encontró una correlación negativa y altamente significativa entre dai10 de cogollero, mazorcas achaparradas y plantas achaparradas con rendimiento de grano. También se encontró correlación positiva y altamente significativa dai10 de Cogollero con mazorcas achaparradas, dai10 de cogollero con plantas achaparradas y plantas achaparradas con mazorcas achaparradas (Cuadro 3). Estos valores de correlación indican que el dalio de cogollero y achaparramiento en mazorcas y plantas disminuye significativamente el rendimiento de grano. Indican también que las plantas susceptibles al dalio de Cogollero también son susceptibles al daÍ'io de achaparramiento en plantas y en mazorcas. --------------------------------------Mejor Progenitor Cuadro 4. Mejores materiales identificados en el v(vero testigos resistentes al achaparramiento, barrenadores y cogollero de granD amarillo. Santa Rosa, Nic.ragua, 1994 B. Las diez mejores cruzas superaron la media del rendimiento de grano (4099 Kg/ha) entre 2 y 33% Y presentaron una heterosis entre 54 y 528%. El dana de cogollero present6 valores de heterosis negativos en la mayoria de los casos, aunque tambien hubo valores neutros y positivos. El achaparramiento en plantas en todos los casos present6 valores de heterosis negativos, mientras que el achaparramiento en mazorcas present6 valores de heterosis variados siendo la mayoria positivos (Cuadro 4).Estos resultados indican que las ganancias obtenidas por heterosis en el rendimiento de grano son altas, hasta de 528%, en relaci6n al mejor progenitor. Indica tambien los mejores materiales en rendimiento de grano estuvieron influenciados por la mayor disminuci6n por heterosis en el dana de achaparramiento en plantas. CONCLUSIONES I. El rendimiento de grano en las cruzas se increment6 hasta en 528% en relaci6n al mejor progenitor. El dana de cogollero y achaparramiento en las cruzas disminuy6 por efecto de la heterosis, aunque' tambien hay casos en los cuales aument6. 25 2. El rendimiento de grano de las mejores cruzas fueron las que presentaron la mayor heterosis negativa en el dana de achaparramiento en plantas. Se encontr6 correlaci6n negativa y significativa entre el rendimiento de grano con las tres variables estudiadas; dana de cogollero, achaparramiento en planta y mazorca.3. Los materiales susceptibles al achaparramiento en planta tambien fueron susceptibles al achaparramiento en mazorca y dana de cogollero.Salvador Castellanos! y Luis Larios 2 La prueba de cruzas hibridas experimentales es importante para identificar nuevas combinaciones hfbridas que puedan ser utilizadas comercialmente. En 1994, el Programa de Maiz de ICTA realiz6 evaluaciones en tres ambientes de Guatemala de cuatro ensayos de hibridos (2 de grano amarillo y 2 de grano blanco) en colaboraci6n con CIMMYT, por medio del Programa Regional de Maiz (PRM). Los objetivos fueron: 1) identificar el potencial de cruces simples, triples y dobles de grano blanco y amarillo generados por CIMMYT en ambientes del tr6pico bajo de Guatemala; 2) identificar cruces hibridos y/o Iineas con potencial como cultivares per se 0 para incorporar germoplasma elite al ICTA. En general, los hibridos cruzas simples fueron superiores a los testigos incluidos, como era esperado por tener una mayor heterosis, sin embargo; estos hibridos no son una alternativa potencial a corto plazo para el agricultor tipico de Guatemala, por el alto costo de la semilla certificada. Los hibridos triples experimentales superiores se comportaron similares en potencial de rendimiento a los testigos comerciales y/o experimentales delICTA incluidos en las evaluaciones. Las Iineas que conformaron los hibridos simples y triples superiores se considera germoplasma basico para ser incorporado al ICTA y de esa forma estructurar nuevos cruzamiento con otras fuentes de germoplasma elite.El exito de la fonnacion de hibridos se da a traves del conocimiento de los mecanismos que controlan la herencia del rendimiento, siendo varios los aspectos importantes: la relacion de los efectos geneticos y como estos contribuyen a la heterosis total obtenida en una cruza determinada. El desarrollo de hibridos de maiz en escala comercial, puede involucrar la formacion de progenitores endogamicos y no endagamicos 0 una combinacion de los dos anteriores, variando el numero de sus componentes que puede ir de un minimo de dos a un maximo de cuatro padres. Los hibridos se pueden agrupar en dos grandes clases: hibridos convencionales y no convencionales (Vasal et. aI., 1988).El PRM ha generado hibridos experimentales con el Postdoctorado, Programa de Maiz, CIMjvlYT-Mexico; 2Fitomejorador, Programa de Maiz ICTA, Guatemala. DEL PRM 1993-95, VOL.5 (1997), p. 26-29. objetivo que los programas nacionales puedan utilizarlos de acuerdo a sus intereses, con el proposito de encontrar hibridos convencionales con alto rendimiento y buena adaptacion. Con este objetivo se establecieron cuatro ensayos de lubridos experimentales de grana amarillo y blanco en el tropico bajo de Guatemala para: 1) evaluar el potencial de cruces lubridos simples y triples de grano amarillo generados por CIMMYT, 2) identificar cruces hibridos y/o lineas con potencial como cultivares per-se o para incorporar gennoplasma elite al Programa de Maiz de ICTA, 3) mantener el vinculo de colaboracion en doble via con el CIMMYT para obtener informacion que sirva de base en la generacion de gennoplasma para el desarrollo de lubridos convencionales de lineas con adaptacion a la region de Centro America y el Caribe, y 4) continuar evaluando y desarrollando germoplasma del CIMMYT, como parte de las actividades del Proyecto de hibridos del PRM, donde el Programa delICTA coordina las actividades a nivel regional.Dentro de las actividades incluidas en el Plan Operativo 1994 del PRM, se consideraron cuarro diferentes ensayos proporcionados por el CIMMYT que incluyeron cruces simples y triples entre lineas elite de grano amarillo desarrollados por ese centro de investigacion. La evaluacion de estos ensayos se llevo a cabo durante el ciclo de temporal de 1994 en diferentes ambientes de Centro America y el Caribe, contandose con el apoyo fmanciero compartido entre los diferentes programas nacionales y el PRM. En este infonne unicamente se presenta la infonnacion obtenida de las evaluaciones conducidas en Guatemala.Los ensayos en mencion, CHTTY-94 y CHTIW-94, con 20 entradas en un disefio de bloques completos al azar con 4 repeticiones; el segundo set HTY-94 y HTW-94 con 25 entradas bajo un disefio de lattice simple 5X5 con 4 repeticiones. Los ensayos CHTTY-94 y CHTIW-94 fueron evaluados en las estaciones experimentales del ICTA en Cuyuta, y San Jeronimo, asi como tambien un ensayo conducido con fmanciamiento propio de la Compania Cristiani Burkard S.A. en la Finca Las Vegas en Tiquisate. En el caso de los ensayos HTY-94 y HTW-94 se condujeron en las estaciones del ICTA en Cuyuta y San Jeronimo.Los ensayos conducidos por ICTA tuvieron como parcela experimental I surco de 5 m de largo y el de Cristiani Burkard 2 surcos de 5 m, espaciados en todos los casos a 0.75 m entre surcos a una densidad de 5.33 plantas por m 2 • EI manejo agronornico de los ensayos respecto a control de plagas, malezas y fertilizacion dependio de la incidencia y las recomendaciones de investigacion de cada una de las localidades.EI germoplasma incluia lineas con diferentes estados de endogarnia y/o familias de hermanos completos derivadas de las poblaciones 24, 27, 36, 28, 79, Sintetico Amarillo para los hibridos arnarillos; y para los hibridos blancos lineas derivadas de las poblaciones 21, 22, 29 y 43, las cuales presentan adaptacion potencial para ambientes de Centro America y EI Caribe. como tambien caracteristicas agronornicas expresadas. Los hibridos superiores seleccionados y los dos testigos no mostraron diferencias significativas seglin la prueba de Tukey (P20 kg P/ha). El nitrógeno fue aplicado utilizando urea perlada a razón de 100 kg/ha y se mantuvieron los ensayos libres de plagas y de enfermedades.Los ensayos evaluaron 5 tratamientos a nivel regional y tratamientos adicionales de interés local (Cuadro 1)., sobre variación en el fraccionamiento y método de aplicación de urea. En el caso de 2 aplicaciones de urea, la mitad se aplicó a la siembra y la otra mitad a los 35 días después de la siembra (dds). En el caso de 3 fraccionamientos, el 40% se aplicó a la siembra, el 30% a los 25-30 dds y el restante 30% a los 40-45 dds. Cuadro l. Estructura de tratamientos del ensayo de eficiencia de uso de urea-N. En 5 localidades, en 12 plantas por parcela, se tomó mediciones del contenido de clorofila en la hoja de la mazorca a la floración con un clorofilómetro (modelo Minolta SPAD-502) (Figura 1). En estas mismas, se tomó una muestra de la lámina foliar de la hoja para análisis químico de % N en laboratorio. Estos datos se utilizaron posteriormente para calibrar el clorofilómetro en función del % N en la hoja. Esta calibración fue forzada a intercepto= O y fue de %N = 0.048 x CHL (~=0.99) (Gordón et al., 1993). Se midió el contenido de clorofila a la floración con el clorofilómetro, rendímiento y sus componentes, rastrojo, biomasa total e índice de cosecha. Debido al rendimiento relativamente elevado de las parcelas sin nitrógeno en estos ensayos, la eficiencia aparente de uso de N fue baja. Esta manera cruda de calcular la eficiencia de uso de N depende fuertemente del rendimiento obtenido en los tratamientos sin N, factor que puede causar errores significantes. Sin embargo, los r~sultados muestran que es factible mejorar la eficiencia de uso de N aplicado cambiando el método de aplicación. En resumen, se encontraron diferel]Cias entre métodos de aplicación, siendo el mejor método el enterrado (2 fraccionamientos), siendo el peor método el superficial al voleo, encontrándose respuestas positiva de 0.38 t/ha al incorporarse versus el voleo, aumentado la eficiencia del uso de.urea-N en un 18 %.El Cuadro 4 muestra los análisis individuales por cada localidad, pero solamente para los tratamientos extremos (Trtl y Trt3), para estimar la eficiencia de uso de N. Diferencias entre Trt4 y Trtl representan la ganancia en eficiencia debido a los cambios más extremos en el método de aplicación. Las ganancias con aplicación por postura (Trt2) o incorporado (Trt4) fueron menores. Estas diferencias en rendimiento entre el Trt3 y Trtl deberán compensar por el costo adicional de 2 fraccionamientos y el costo adicional de enterrar la urea en comparación con el voleo. En promedio, el efecto neto de mejorar la practica de aplicación de urea=N de voleo-voleo a chuzo-chuzo (Trt3-Trtl) fue de 0.27 t/ha. Las diferencias entre los tratamientos con 100 kg N/ha (Trt 1 al 4) contra el testigo absoluto (Trt5) permiten estimar la eficiencia de uso del fertilizante aplicado bajo los distintos métodos. El nivel de rendimiento del Trt 5 permite estimar la disponibilidad nativa del suelo y debe de usarse como nivel referencia para calcular las diferencias.La cantidad de N absorbido (f..N abs) relativo al testigo absoluto en proporción al N aplicado (lOO kg/ha) es la eficiencia de uso. El Cuadro 4 muestra estimaciones de la eficiencia de uso por localidad. Estas promediaron 45 y 27%, respectivamente, para Trt 3 Y Trt1. Aún a pesar de la variabilidad en la respuesta a N, los resultados muestran un aumento aparente de 18% en la eficiencia de uso entre el Trt 3 YTrt 1. sí lograron detectar diferencias entre estos (Cuadro 3). Los datos sugieren que la medición de clorofila y/o % N ayudan a diagnosticar diferencias en rendimiento temprano durante el ciclo del cultivo.El Cuadro 4 muestra las diferencias en rendimiento por localidad del Trt 3 Y Trtl en comparación al testigo absoluto (Trt5). La respuesta promedio fue de 1.34 t/ha (± 0.86 t/ha) para el Trt3 y de 0.96 t/ha (± 0.56t/ha) para el Trtl. También en estas comparaciones se detecta considerable variación a nivel regional, incluso localidades donde el efecto neto de aplicación de N fue negativo. Usando estas diferencias de rendimiento entre los tratamientos con 100 kg N aplicado y el testigo absoluto se puede estimar la eficiencia aparente de uso. El primer paso es calcular el contenido de N removido por el maíz. Entonces asumiendo un indice de cosecha cercano al 40% y contenido de N en el grano y rastrojo de maíz de 1.5% y 1.0% (promedio total de 1.2%), respectivamente, se puede calcular el diferencia de N absorbido.Cuadro 3. l\\1edias de rendimiento y sus componentes, clorofila y %N en la hoja de la mazorca a la floración para tratamientos de métodos de aplicación de N a través de 13 localidades de Centro América. Se encontró una regresión lineal fuerte y significativa lineal entre ambos (%N=O.048xCHL r=0.99). Esta relación puede usarse para transformar datos obtenidos con el clorofilómetro a unidades de contenido de N en otras localidades.La relación entre mediciones de clorofila y N en la hoja de la mazorca a la floración y el rendimiento final se muestra en la Figura 4 (a,b). Los resultados confirman la importancia del N en la elaboración del rendimiento final. Entre los tratamientos, las diferencias en el contenido de N en la hoja se detectaron con más precisión que las diferencias en rendimiento.valor promedio de U$ 0.50 por kg N-urea, esto significaría un ahorro en fertilizante de U$ 4/ha, para obtener los mismos rendimientos. Una extrapolación las 2 millones de hectáreas que se siembran anualmente en Centro América, pudiese signifcar un ahorro de U$ 8 millones anuales en N-urea. Otra manera de estimar el efecto económico, es evaluar e! grano adicional que se produjera por una mejor eficiencia de N. Asumiendo, 50 kg N/ha aplicados, 15 kg grano adicionales producidos por kg adicional de N absorbido, y una mejoría de 15% en la eficiencia de uso de N-urea, significaría aproximadamente una producción extra de 112 kg grano/ha, a U$ 1.5/kg, para U$34 millones anuales CONCLUSIONES A través de todos los ambientes se detectó una relación positiva altamente significativa entre el porcentaje de N en la hoja de la mazorca a la floración y el rendimiento final (r = 0.75**). Estos resultados sugieren que el porcentaje de N en la hoja de la mazorca a la floración tiene un valor altamente predicitvo del rendimiento final. Datos similares fueron obtenidos por Gordón et. al (1993) en estudios sobre la respuesta del maíz a la rotación con leguminosas de cobertura.Si los productores de maíz usaran métodos más eficientes de aplicación de N-urea que resultasen en un aumento en la eficiencia de! 25 al 40% (15% de mejoría), una aplicación promedio de 50 kg N/ha, y un 1. Se compararon métodos de aplicación de voleo, por postura e incorporado, sin detectarse diferencias significativas entre estos. El efecto de los tratamientos fue pequeño pero consistente ante la variabilidad experimental de los ensayos.2. El mejor método fue la aplicación de N-urea en dos fraccionamientos chuzeados (Trt3). El peor método fue el voleo en dos fraccionamientos (Trt1). La aplicación por posturas (Trt2) fue ligeramente superior al voleo. 4. Las lecturas del clorofilómetro se encontraron altamente correlacionadas con %N en la hoja de la mazorca a la floración, estableciéndose la siguiente relación: %N=0.048xCHL (r=0.99).5. La ganancia en rendimiento a 100 kg de N aplicado fue de 0.96 (± 0.56) Y 1.34 (± 0.86) t/ha para voleo e incorporado, respectivamente, equivalentes a eficiencias aparentes de uso de N de 27 y 45%, respectivamente. El análisis indica un aumento de 18% en la eficiencia de uso debido a la incorporación del fertilizante versus el voleo.6. Las ganancias en rendimiento fueron acompañadas por cambios en el contenido de clorofila y N en el follaje del cultivo. Se detectó una relación fuerte y significativa entre el rendimiento y el contenido de N en el follaje. A pesar que no se lograron detectar diferencias en rendimiento entre los métodos de aplicación, las mediciones del clorofilÓmetro y el % N del follaje si 169 detectaron diferencias entre el tratamiento de una manera significativa.7. Estos datos sugieren que le clorofilómetro se puede usar para detectar efectos en la economía de N del cultivo en etapas tempranas durante el ciclo vegetativo.REFERENCIAS FAO (1992). Fertilzer Use by Crop. IFAlIFDCfFAO, Rome, Italy. Este trabajo presenta las estrategias agrónomicas impulsadas por el PRM y los resultados experimentales más sobresalientes de los distintos proyectos de investigación de la red. La estrategia agronómica se basa en el uso de germoplasma con buen comportamiento, semilla de buena calidad, siembra a densidad apropiada, así como el uso de rastrojos como mantillo bajo labranza de conservación en laderas, la inserción en asocio simultáneo, relevo y/o rotaci6n de leguminosas de cobertura, así como el uso de modestos niveles de fertilización química.En la región de Centro América y el Caribe, se siembran cerca de 2 millones de hectáreas de maíz. El maíz es el cultivo de subsistencia más importante para los pequeños productores de escasos recursos. Cerca del 60 a 70% se siembra en monocultivo y el resto en asocio con otros cultivos como frijol, sorgo, ajonjolí, etc. La mayoría (cerca del 70%) se siembra en mayo-junio (primera) con el establecimiento de las lluvias, y el resto durante septiembre-octubre (postrera). Se estima que más del 60% del maíz se siembra en suelos de ladera, de baja fertilidad, con alto potencial de erosión y en sistemas agrícolas típicos de subsistencia con bajos insumos. En general, estos sistemas solamente tienen un buen potencial de rendimiento los primeros pocos años después de la limpia de la vegetación nativa, declinando rápidamente en pocos años con el uso de la tierra. Debido a la fuerte presión demográfica en la región, se espera que la cantidad de maíz cultivada en suelos marginales se incremente considerablemente en los próximos años.Los rendimientos de grano promedios de estos sistemas de subsistencia son inferiores a las 1.S t/ha de grano y 3.0-4.0 t/ha de rastrojos. Los agricultores usan variedades criollas de maíz, baja densidad de población ( 10-lS mil postums por hectárea), mal arreglo espacial (3-4 plantas por postura), siembra manual, poco o no fertilizante, poco o ningún insumo químico, control de malezas inadecuado, y pérdidas considerables de grano en condiciones postcosecha. La mayoría se destina al auto-consumo, una familia subsistiendo con una tonelada de grano por año. El rastrojo vegetal es sobre-pastoreado en la temporada seca o quemado antes de la siembra en la limpia del terreno. Los suelos quedan descubiertos gran parte del año, y sufren severas degradaciones fisicas y químicas así como una erosión acelerada.Cerca del 2S% del maíz en la región se siembra en parcelas de tamaño intermedio (lO-SO ha) con tecnologías intermedias: semilla mejorada (variedades o híbridos) con tratamiento químico, siembra en surcos con tracción animal o mecánica, densidad de siembra alta (SO mil pl/ha), control de malezas (herbicidas, cultivo), niveles intermedios de fertilízante (60-100 kg N/ha, >20 kg P/ha), e insumos químicos para el control de enfermedades y plagas. Los rendimientos promedios para este tipo de agricultor oscilan entre 2.0-2.S t/ha. El 10-lS% del área restante se siembra en parcelas grandes (>SO ha) por agricultores con altos insumos y una visión claramente comercial. El producto se destina a los mercados de alimentos humanos y animales del área. Estos usan semilla híbrida, siembra mecánica, alta densidad de siembra, y niveles altos de insumos. Los rendimientos promedios para estos tipos de agricultor oscilan entre 4.0-4.S toniha (Schmook, 1989;Rodriguez y Miranda, 1990).El Programa Regional de Maíz para Centro América y el Caribe (PRM) ha venido desarrollando estrategias agronómicas que favorezcan la sostenibilidad de los sistemas de producción importantes de la región. El PRM es una red colaborativa de investigación conformada por nueve programas nacionales de investigación de maíz y el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT) (Listrnan, 1994). Su fmalidad es incrementar la productividad sostenible de los diferentes sistemas de producción de maíz al desarrollar y parcialmente validar alternativas tecnológicas con un enfoque de agricultura sostenida (PRM, 1995). Debido a la naturaleza del problema, el reto ha sido proveer alternativas tecnológicas que aumenten la productividad pero manteniendo o mejorando el recurso base (suelo, agua, nutrimentos).El PRM ha impulsado el uso de germoplasma mejorado con densidades apropiadas, la labranza de conservación, la inserción de leguminosas de cobertura en asocio, relevo y/o rotación con maíz, y el uso eficiente de modestos niveles de fertilización química. Estas estrategias son relativamente fáciles de adoptar en la medida que las ventajas de la práctica sean percibidas por los agricultores. Los objetivos esenciales de la estrategia son: l. Promover el uso de germoplasma adaptado con buen potencial de rendimiento y tolerancia a los estreses bióticos (achaparramiento, pudrición de mazorca) y abióticos (sequía) prevalentes en la región, con manejo agronómico apropiado: altas densidades de siembra y el uso eficiente de niveles apropiados de insumos químicos para expresar al máximo el potencial productivo del suelo, el agua, y la radiación disponible.2. Mantener el suelo cubierto con un mantillo vegetal para proteger el suelo contra la erosión y mejorar el balance hídrico logrando la conservación del suelo y agua. Para esto es esencial evitar la quema anual de los rastrojos y el sobre-pastoreo durante la época seca.3. Insertar leguminosas de cobertura en asocio y/o relevo con el maíz para mantener el suelo cubierto, reducir la competencia por malezas, proveer una fuente de rastrojo y N para el siguiente ciclo y/o pastoreo animal durante la temporada seca, y aprovechar la radiación no usada por el maíz para fijar N atmosférico.Se estima que los rendimientos promedios de maíz de la región de Centro América oscilan de 1.5 a 2.0 t/ha (Schmook, 1989;Rodríguez y Miranda, 1990). Desde el punto de vista agronómico, el rendimiento por unidad de área de un cultivo de maíz depende del número de mazorcas cosechadas por hectárea (rnz/ha) y su peso promedio (Bolaños y Barreto, 1991). Dado que una mazorca de maíz puede pesar 100 g, esto significa que en promedio los agricultores solamente cosechan de 15 a 20 mil rnzlha para obtener esos rendimientos promedios. Si la densidad óptima de siembra es de 50 a 60 mil pllha, ~sto significa que muchas plantas no llegan a producir mazorca o mueren durante el ciclo. La baja densidad de población al momento de la cosecha está claramente asociada a los bajos rendimientos en la región (Rodríguez y Miranda, 1990;Bolaños y Barreto, 1991;Bolaños et al., 1993). Los ensayos regionales del PRM, usando relativamente altos niveles de insumos (la mejor variedad disponible, densidad apropiada de siembra, 100 kg Nlha, > 20 kg Plha, control de malezas, plagas y enfermedades), producen rendimientos promedios de 3.9 tonlha a través de 35 ensayos en campos de agricultores (Bolaños y Barreto, 1991). Ensayos de variedades conducidos por la red de mejoramiento en estaciones experimentales también obtienen rendímientos promedios de 4.0-4.5 tonlha (Urbina, 1993).Usando datos experimentales de 34 ensayos diversos de agronomía en la región de Centro América localizados en campos de agricultores y estaciones experimentales, Bolaños y Barreto (1991) mostraron la fuerte dependencia del rendimiento con el número de rnzlha cosechadas y el peso promedio de estas independiente de los tratamientos experimentales impuestos. A pesar que no detectaron una relación significativa entre rendimiento y pllha directamente, el número de rnz/ha estuvo lineal y directamente relacionado con el número de pl/ha (Bolaños y Barreto, 1991). El rendimiento promedio de los 34 ensayos fue 3.73 t/ha, con 43 mil pl/ha y 39 mil rnz/ha a la cosecha, y un peso de mazorca de 93 g. La población a la cosecha fue 15% menor que la densidad teórica establecida en los ensayos, aún con tratamientos específicos para mantener la densidad deseada. Turrent (1983), analizando los componentes de rendimiento de 11 campos de maíz de Las Tuxtlas (México) en siembras de secano, concluyó que la variación en rendimiento dependió más de la variación en la población final de plantas y/o mazorcas que del tipo de variedad usada, número de granos por mazorca o peso final de grano. En estos diagnósticos, los rendimientos fueron 1.5 ± 0.9 t/ha, la densidad inicial de siembra fue 44 mil pllha, la densidad final fue de 30 mil plha (32% de pérdida) y se cosecharon 27 mil mazorcas de 57 g en promedio.En parcelas de agricultores de subsistencia, todos los componentes de rendimiento normalmente reflejan problemas.Tomemos un agricultor que cosecha 30,000 plantas por hectárea, 0.75 mazorcas por planta (75 mazorcas de 100 plantas) y mazorcas de peso promedio de 75 g. El rendimiento sería: Rend = 30,000 pllha x 0.75 rnz/pl x 75 g/rnz = 1.7 t/ha Este valor se encuentra muy cerca a rendimientos promedios de agricultores típicos de subsistencia, donde las limitaciones son el producto de bajo número de plantas por hectárea, una buena proporción de plantas estériles (sin mazorca), y bajo peso promedio de las mazorcas. Un bajo número de plantas se puede deber a una baja densidad de siembra o a una pérdida de plántulas por estreses, en especial problemas de plagas. Un bajo número de rnz/pl (o número de granos por mazorca) se puede deber a estreses durante la floración, y estreses durante el llenado de grano afectan el peso final de grano. Es importante entender como a lo largo del ciclo del cultivo se forman sincrónica y sucesivamente los componentes de rendimiento (Bolaños y Barreto, 1991;Bolaños y Edmeades, 1993), lo cual permite entender de una manera fisiológica las limitaciones al rendimiento.Una gran proporción del maíz se siembra en suelos de ladera con baja fertilidad, alto potencial de erosión, y bajo condiciones de precipitación errática e insuficiente. Entre las prácticas más nocivas se encuentran la tala indiscriminada de los bosques, el sobre-pastoreo y/o las quemas anuales de rastrojos y la falta de protección del suelo durante las lluvias. Una de las practicas más sencillas para la conservación del suelo es la labranza de conservación, entendida esta como el uso de los residuos vegetales como mantillo superficial. La práctica más importante asociada con la labranza de conservación no radica en el número de operaciones primarias o secundarias de labranza, pero en la cantidad de rastrojo que queda sobre la superficie. En la labranza convencional, sólo entre 0-10% de los rastrojos quedan sobre la superficie. En comparación, entre 6S-80% en sistemas mecanizados de labranza cero, y casi el 100% en sistemas de chuzo con labranza cero por pequeños agricultores (Barreto et al., 1988).Por ejemplo, en Guayrnango, El Salvador, el uso de la labranza de conservación en un sistema de maízmaicillo, con manejo de rastrojos y sin quema, ha sido adoptada y ampliamente difundida entre los agricultores desde hace aproximadamente IS años en unas 3 mil hectáreas de maíz en una zona de laderas (Calderón et al., 1991;Choto y Saín, 1993;Mercado et al., 1994). En vez de chiapear y quemar los rastrojos en la preparación del terreno, los agricultores adoptaron la no-quema y el mantenimiento del rastrojo del sistema maíz-maicillo como mantillo vegetal cubriendo el suelo. Los agricultores siembran al chuzo encima del rastrojo del ciclo anterior, sin efectuar quemas o remociones del rastrojo. De una siembra en arreglo topológico irregular (mateado) adoptaron la siembra en hileras en curvas de nivel. Las variedades mejoradas e híbridos de maíz sustituyeron a las variedades criollas, y se empezaron a usar modestos niveles de fertilízante (80-100 kg N/ha, SO kg P/ha). Como consecuencia de estos cambios tecnológicos la productividad del sistema mejoró considerablemente. En 1974, antes de la adopción de las prácticas de conservación, los rendimientos de maíz eran de 1.0 t/ha con 0.7 t/ha de maicillo. Actualmente, los rendimientos promedios se han estabilízado en 3.2 t/ha de maíz y 2.1 t/ha de maicillo (Calderón et al., 1991, Choto y Saín, 1993;Mercado et al., 1994). Con el uso difundido del rastrojo como mantillo vegetal, el suelo ha paulatinamente mejorado su. $=.structura y fertilidad, y ahora permite la explotaeión' sostenible y eficiente de la tierra, a niveles bastante aceptables de productividad.La efectividad de la práctica de dejar el rastrojo como mantillo sobre el suelo para controlar la erosión y mejorar el balance hídrico se debe parcialmente al tipo de sistema de producción predominante en el área. El sistema maíz-maicillo produce por lo menos 10 t/ha de biomasa como rastrojo. Esta cantidad permite al agricultor pastorear parte del rastrojo durante la época seca dejando todavía suficiente para proteger el suelo contra la erosión. Medidas preliminares tomadas en el área indican que se pastorean cerca de 1.0-2.0 t/ha de rastrojo por mes, lo que permite que permamezca entre 4.0-6.0 t/ha de rastrojo como mantillo al fmal de la temporada seca en mayo-junio (Calderón et al., 1991;Choto y Saín, 1993). En otros sistemas donde se ha tratado de impulsar la labranza de conservación, la poca biomasa disponible de rastrojo y las necesidades de pastoreo en la época seca, son las principales limitaciones a la adopción de esta práctica. En sistemas de maíz en relevo con frijol, por ejemplo, la producción de biomasa del sistema es mucho menor, ya que el maicillo produce 4-S veces más biomasa que el frijol, y la biomasa del frijol normalmente se remueve del sistema durante la cosecha (para ser aporreado).La presencia de un mantillo vegetal altera muchas relaciones (Bolaños, 1988): a) Reduce la insolación, disminuyendo la temperatura y la evaporación superficial del suelo. Esto mantiene temperaturas más apropiadas para el desarrollo de las plántulas, especialmente en épocas de sequía y ayuda a mantener la humedad en el suelo. b) Aumenta la materia orgánica, nutrimentos y actividad biológica cerca de la superficie, con una marcada estratificación a través del perfil. Esto crea una mayor proliferación de las raíces del cultivo cerca de la superficie. c) Aisla la superficie del suelo, creando un microclima muy distinto debajo del mantillo (húmedo, temperatura baja, no insolación, no viento) que minimiza los efectos destructivos del ambiente sobre el suelo. d) Reduce la tasa de escurrimiento y erosión por agua y viento, por lo que aumenta la tasa de infiltración y reduce la erosión. e) Previene la formación de costras superficiales, protegiendo la superficie del suelo del impacto de las lluvias, incrementando la infiltración. f) Sin embargo, el mantillo puede ser hospedero de plagas y enfermedades (tal es el caso de pudrición de mazorcas), puede inmovilizar cantidades importantes de N del fertilizante químico, y plantea problemas de aplicación de fertilizantes al suelo (Barreta et al., 1988).Todas estas características tienen como consecuencia que los sistemas con mantillo son más eficientes en la captación, disponibilidad y eficiencia de uso del agua por los cultivos, y son la estrategia más práctica para mejorar el balance hídrico en ambientes secos o de precipitación errática. La sequía es una de las limitantes más importantes del maiz que se reportan en la región. Sin embargo, aún en las zonas más secas donde se siembra el maíz, la precipitación excede los 900 mm anuales y existen más de 120 días donde la precipitación excede la demanda evaporativa. Los problemas de sequía ocurren principalmente debido a una precipitación errática (períodos secos de más de 20-30 días), altas pérdidas por escorrentía, y el manejo inadecuado de los suelos. Las estrategias para mejorar la eficiencia de uso de agua son: a) mantener el suelo cubierto con mantillo para aumentar la infiltración, reducir la escorrentía, evitar el encostramiento superficial, reducir pérdidas por evaporación directa del suelo, reducir la erosión; b) sincronizar la fenología del cultivo a períodos de disponibilidad hídrica según patrones de clima (Bolaños, 1988), ya sea usando cultivares de ciclo corto que logren evadir los períodos de sequía prolongado.Los ensayos regionales del PRM han explorado la respuesta del maíz a distintos niveles de rastrojo como mantillo y su interacción con N (Sosa y Bolaños, 1993;Sosa et al., 1993;Zea y Bolaños, 1997). Los resultados muestran claramente que a dosis altas de N, el rendimiento de grano de maíz aumentó 0.25 y 0.30 t/ha con 10 Y 20 t/ha de rastrojo como mantillo (Sosa y Bolaños, 1993). Niveles de 30 t/ha de mantillo mostraron una interacción significativa con el ambiente, con un efecto positivo en el rendimiento en ambientes pobres, pero con una reducción en los ambientes con potencial de rendinliento superior a los 5.0 t/ha de grano. Esta interacción negativa entre niveles de mantillo con N ha sido confirmada en ensayos regionales conducidos en 1992-1994 (Sosa et al., 1993;Zea y Bolaños, 1997). A través de 42 comparaciones a nivel regional, respuestas positivas en rendimiento de grano se observan solamente a niveles altos de N (100 Y 150 kg N/ha). La presencia de un mantillo vegetal (5 o 10 t/ha de mantillo) puede reducir el rendimiento cerca de 50 kg/ha por cada tonelada de mantillo en ambientes pobres en N (50% de reducción) (Sosa et al., 1993). En algunos casos, el uso de rastrojo de maíz como mantillo puede reducir el rendimiento en más de 1.0 t/ha de grano.Zea y Bolaños (1997) presentan datos adicionales sobre la interacción mantillo x nitrógeno. En promedio, la respuesta del maíz a niveles de rastrojo como mantillo es pequeña en comparación con la respuesta a N. Incluso, el uso de rastrojo de maíz puede reducir sustancialmente el rendimiento en condiciones de baja disponibilidad de N. Estos datos sugieren que la presencia de un mantillo vegetal puede inmovilizar cerca de 50 a 60 kg N/ha. Por tanto, el manejo exitoso de los residuos y rastrojos como mantillo en sistemas de labranza de conservación debe considerar la economía de N del cultivo (Barreta et al., 1988;Zea y Bolaños, 1997).No cabe duda que el uso de leguminosas de cobertura como abonos verdes tienen un efecto benéfico en la sostenibilidad de los sistemas agrícolas. La leguminosa puede ser asociada en fOfila intercalada, en relevo y/o en rotación, según los patrones de uso y del sistema predominante. Los beneficios del asocio de cereales con leguminosas incluyen aportación de N por fijación directa, aprovechamiento de la radiación desaprovechada por el cultivo principal para producción de biomasa para abono verde, reducción de la erosión al mantener una mayor cobertura del suelo, reducción en la incidencia de malezas, preservación y mejora en las propiedades fisicas y químicas de los suelos y posible reducción de plagas y enfermedades.Desde 1988 el PRM ha evaluado el asocio, relevo y/o rotación de leguminosas de cobertura (abonos verdes) dentro de los sistemas de producción de maíz. Datos obtenidos en 24 ensayos uniformes durante 1989 y 1990 indicaron una tendencia marcada de las leguminosas de reducir el rendimiento de maíz en comparación con monocultivo cuando estas se establecen simultáneamente con el cultivo (Zea et al., 1991;Zea, 1992;Barreta, 1994). De las leguminosas evaluadas en asocio temprano (O a 10 días después de la siembra del maíz), Canavalia ensiformis presentó características sobresalientes para su siembra intercalada con maíz debido a su menor competencia con el monocultivo y menor variabilidad en comparación con la mucuna y la vigna (Stizolobium deerengianum y Vigna unguiculata) bajo las mismas condiciones (Zea et al., 1991;Zea, 1992;Barreto, 1994). Dado su hábito de crecimiento así como sus características morfológicas, la canavalia ha sobresalido para asocio temprano con maíz en forma intercalada y tiene buena reputación para soportar ambientes secos con precipitación errática (Bernal y Jiménez, 1990).Existen muchas razones teóricas y evidencia experimental que indica que la siembra simultánea de leguminosas con maíz casi siempre reduce el rendimiento de este en comparación al monocultivo. La reducción en rendimiento es mayor mientras mayor sea la competencia impuesta por el asocio. Solamente en la medida que la leguminosa capture radiación, agua y nutrimentos que el cultivo de maíz desperdicia (escurrimiento, lixiviación, drenaje, evaporación directa, malezas, baja población de plantas), redunda entonces el asocio en beneficios netos al sistema. Esta reducción en rendimiento por el asocio simultáneo fue reportada ampliamente en los ensayos regionales del PRM en 1988-1990(Barreto, 1994)).Sin embargo, el PRM ha documentado alternativas de asocio que minimizan la competencia con el maíz pero mantienen muchos de sus efectos benéficos sobre la cobertura del suelo, el control de malezas y su efecto residual. Ejemplos son la inserción de leguminosas a densidades más bajas para asocio simultáneo (ej, en surcos alternos) o la siembra tardía a surco continuo (2-3 semanas después de la siembra del maíz) (López et al., 1993;Gordón et al., 1993). Ambos ejemplos minimizan los efectos negativos del asocio de competencia sobre el maíz, pero aún producen suficiente efecto benéfico para compensar los costos del establecimiento. Otro ejemplo puede ser la alternativa del doble surco bajo investigación (PRM, 1995), la cual apunta a arreglos topológicos que optimizen la captura de radiación por el asocio en su conjunto, maximizando la producción de maíz y leguminosas.Para ser rentable, la reducción en el rendimiento del maíz causada por los tratamientos de asocio simultáneo deberá ser compensada por un flujo debido a varios efectos benéficos del asocio: a) una reducción en las labores de control de malezas, b) el valor de la producción de ejote y grano por la leguminosa, c) el valor residual de raíces y residuos como mulch estimados con el rendimiento de frijol en relevo, d) un incremento paulatino de la productividad a largo plazo por mejoría en las propiedades del suelo. El balance de estos flujos será un factor determinante para la adopción de estas tecnologías por los productores.No cabe duda que una de las ventajas del asocio más importantes percibidas por los agricultores es sobre el control de malezas. Sin duda, los tratamientos de asocio simultáneo normalmente tienen un enorme efecto positivo sobre el control de malezas, debido a la rápida cobertura del suelo en comparación al monocultivo. Este tipo de asocio simultáneo posiblemente redundaría en beneficios netos en sistemas con una alta presión de malezas, con alta precipitación y/o potencial de rendimiento, donde el maíz normalmente sufre una competencia fuerte por las malezas. Sin embargo, en ambientes limitados por sequía y/o baja fertilidad (típicos de muchos de los ensayos visitados), la alta densidad de la leguminosa en asocio competirá fuertemente con el maíz y redundará posiblemente en reducción del rendimiento.Otro de los objetivos mencionados del asocio es el uso de los residuos de la leguminosa como mulch para promover la labranza de conservación en siembras de relevo. El manejo del mulch sirve para mantener una cobertura sobre la superficie del suelo, mejorar el balance hídrico y aportar minerales y nutrimentos al suelo para cultivos siguientes. Sin embargo, las leguminosas tienen características que limitan su efectividad como mulch: a) una rápida descomposición bajo condiciones ambientales favorables dado su alto contenido de N (relación C:N baja); b) un alto riesgo de pérdidas de N por volatilización y/o escorrentía ya que la mineralización de los residuos ocurre en la superficie, c) una poca durabilidad relativa de los residuos de leguminosas como mulch. En comparación, los residuos de cereales (bajos en N) pueden durar mucho tiempo (6-8 meses) como mulch con buena cobertura del suelo antes de descomponerse. Otro asunto a considerar es la probabilidad de introducir plagas y pestes importantes al cultivo de frijol en relevo por residuos de leguminosas establecidas en asocio en el ciclo de primera.El efecto residual del mulch de la leguminosa como fuente de nutrimentos sobre el siguiente cultivo en relevo dependerá de la cantidad de biomasa y su composición química retornada al sistema en comparación con el monocultivo (Zea, 1993). Por ejempl9, en el caso de algunas leguminosas como la vigna (caupí), se puede cosechar y remover del sistema la producción de ejotes, grano, etc., y contabilizar el valor comercial de estos en el mercado (flujo de beneficio). Sin embargo, la cosecha de este producto comestible significa también una remoción del sistema de biomasa y nutrimentos (granos de frijol o caupí tienen 4-5% de N), obviamente reduciendo el efecto residual de este tratamiento. En el caso de la canavalia, donde no se remueve ningún producto comestible y toda la biomasa retoma al sistema, el efecto residual es máximo, pero no aporta ningún beneficio económico inmediato al agricultor. El manejo de estos factores experimentales de manera distinta puede complicar la comparación del efecto residual sobre los cultivos en relevo.En el Litoral Atlántico de Honduras se ha difundido desde hace más de 20 años el uso del frijol de abono o mucuna (Saín et al., 1993;Buckles et al., 1994a,b). Esta es una zona tropical de alta precipitación pluvial y los agricultores siembran maíz durante la época de postrera (septiembre-octubre) para cosecharlo durante los meses más secos de marzo-abril. El frijol de abono lo siembran en febrero-marzo con la dobla del maíz, durante la época de llenado de grano del maíz. Al cosechar el maíz, la mucuna se establece totalmente y cubre totalmente el terreno desde mayo a septiembre, aprovechando la época lluviosa. En estos 6-S meses de guarnil, la mucuna puede producir cerca de 10-15 ton/ha de biomasa (contenido de 200-300 kg N/ha). No toda esa cantidad de N en la mucuna es fijada de la atmósfera, pero sí una parte importante, y los nutrimentos que contiene esa biomasa retoman al sistema con la mineralización del residuo de la leguminosa cuando seca y muerta (Triomphe, 1997).Las ventajas que los agricultores perciben en el uso del frijol de abono son un aumento de la fertilidad del suelo, el control de las malezas, la reducción de la erosión, y el aumento de la humedad. Las desventajas más importantes son la pérdida del uso de la tierra para fmes comerciales cuando está en descanso con frijol de abono, y la posibilidad de derrumbes en las laderas (Saín et al., 1993;Buckles et al., 1994a.b). Al sembrar leguminosas en asocio y/o relevo con sistemas de maiz, el agricultor aprovecha la radiación no usada por el cultivo principal (maíz) para producir biomasa fijando N directamente de la atmósfera que retomará al sistema agrícola con el uso como abono verde.El maíz necesita adquirir nutrimentos del suelo para sostener la productividad. Por ejemplo, el nitrógeno (N) es normalmente el elemento más limitante a la productividad en muchos suelos. El fósforo (P) es también otro elemento limitante. Muchos de los suelos de la región tienen contenidos de potasio (K) altos, y los cultivos normalmente no responden a aplicaciones de este elemento. El contenido de N en la planta de maíz decrece casi linealmente a medida que la planta madura (acumula unidades de calor). Para una plántula recién germinada, el contenido de N puede ser cerca al 5% de la materia seca total, este valor decrece alrededor del 2.5% a la floración. Por consiguiente, un cultivo de maíz con 6.0 ton/ha de materia seca a la floración contiene cerca de 150 kg N/ha. Sin esta cantidad de N en el suelo (ya sea por mineralización nativa, adiciones en la lluvia, adiciones de materia orgánica, o adiciones de fertilizante) no será posible sostener esa producción de materia seca.El grano de maíz tiene un contenido de N alrededor de 1.5%, y el rastrojo alrededor de 1.2%. Si un agricultor cosecha 5 ton/ha de grano de maíz, este grano contiene cerca de 75 kg N/ha, y el agricultor remueve esta cantidad de N del sistema irreversiblemente. Desde el punto de vista de la sostenibilidad del sistema, es necesario retomarle al sistema por lo menos la misma cantidad. Si al producir este grano, produce además otros 6 ton/ha de rastrojo, necesitó otros 72 kg N/ha. Al quemar el rastrojo, la mayoría del N se volatiliza en forma gaseosa, y se pierde del sistema con un costo relativamente importante. O sea, el cultivo necesita consumir cerca de 150 kg N/ha para alcanzar esa productividad. Si el suelo no es capaz de mineralizar esta cantidad de N a la velocidad que la planta lo necesita, es necesario entonces aplicarlo en fOIT'1a de fertilizante químico o como adiciones de materia orgánica que contenga suficiente N. Consideraciones similares se pueden hacer con los otros nutrimentos, por ejemplo, el grano de maíz contiene cerca de 0.2-0.3% de P. Follaje verde, recién expandido, joven, tiene contenidos de N alrededor del 3%. Si asumimos una densidad específica del follaje del maíz de 6.0 mg/cm 2 (1 ha de follaje pesa aproximadamente 600 kg materia seca), esto significa que cada índice de área foliar (lea! area index) o cada hectárea de follaje cuesta cerca de 20 kg N/ha. Ya que el maíz tiene un índice de área foliar óptimo cerca de 4 a 5, esto significa un costo en N de SO-lOO kg N/ha para interceptar la radiación.Diversos estudios indican que la eficiencia de uso de los fertilizantes es baja en los sistemas de producción de maíz de la región (Larios et al., 1997). Las aplicaciones promedio de N oscilan entre SO-lOO kg/ha en una o dos fraccionamientos, normalmente con urea o sulfato de amonia. Una gran proporción de los pequeños agricultores aplican el fertilizante a la superficie del suelo al voleo o por posturas. Esta forma superficial de aplicación de fuentes de N amoniacas pueden conducir a pérdidas considerables por volatilización directa o por escorrentía, y así contribuir a la baja eficiencia de uso. Larios et al. (1997) compararon diferentes métodos de aplicación de N-urea (voleo, posturas, incorporado) detectando una mejoría consistente, pero pequeña, en la eficiencia de uso del N con la incorporación del N al suelo y su fraccionamiento. La ganancia en rendimiento por método fue 0.4 t/ha, la cual deberá compensar los costos adicionales de la aplicación de N. Sin embargo, estos autores reportaron una relación fuerte y significativa entre mediciones de N en la hoja de la mazorca a la floración (estimados con un clorofilómetro) con el rendimiento fmal a través de 19 localidades, confrrmando la importancia del N en la elaboración del rendimiento fmal. Gustavo Saín•El aumento de la productividad y la conservación de los recursos se anuncian como objetivos deseables de la investigación agrícola pero frecuentemente se los presenta como sustitutos. Alcanzar uno se debe hacer necesariamente a costa de sacrificar el otro. En este trabajo se presenta la idea de que ambos objetivos pueden ser complementarios entre si a través de la generación y transferencia de tecnologías que simultáneamente aumenten la productividad y conserven los recursos naturales (APeORE). Esta idea se ilustra con el caso del desarrollo y adopción de la labranza de conservación con manejo de residuos. Finalmente se presentan algunas características de costos y beneficios de tecnologías que se encuentran desarrolladas o en etapas avanzadas de desarrollo en la región.Para lograr una agricultura sostenible se debe afrontar un conjunto complejo de procesos interrelacionados. En el largo plazo, el desarrollo económico y el aumento de ingresos proporcionará la base para incrementar las inversiones en la conservación de recursos.Sin embargo, dada la situación económica actual en Centroamérica, es probable que en los próximos años se intensifique la presión sobre el uso y deterioro de los recursos naturales de la región. contrarrestar los efectos de estos factores en la investigación agrícola se postulan dos objetivos generales: aumentar la productividad y consávar los recursos naturales. A menudo, sin embargo, estos objetivos se plantean como competitivos entre si, dando lugar a nuevas tecnologías dirigidas a aumentar la productividad (tecnologías AP) a costa del deterioro de los recursos y, viceversa, nuevas tecnologías dirigidas a conservar los recursos (tecnologías CORE) a costa de disminuir la productividad. De esta manera, cuando se trata de seleccionar tecnologías, se considera que habrá que hacer ciertos sacrificios (trade-ofJs) con respecto a los objetivos de la investigación, dependiendo de los recursos que se deseen conservar.La importancia creciente de la conservación del medio ambiente ha llevado a que se piense cada vez más en términos de tecnologías que simultáneamente eleven la productividad del sistema y conserven los recursos tales como suelo, agua y nutrimentos. A este tipo de tecnologías se las ha denominado tecnologías que aumentan la productividad y conservan los recursos (tecnologías APCORE). Una premisa fundamental que gobierna la generación de este tipo de tecnologías es que los objetivos de aumentar la productividad y conservar la base de recursos no se pueden considerar en forma separada en el sistema de la finca. A. Intensificación y reorganización del uso de los recursos (tierra, mano de obra e insumos) ya existentes en la finca, incluyendo el manejo intensivo de la producción animal y forestal.Las causas del problema del deterioro del medio ambiente son profundas y demasiado complejas como para ser detalladas aquí. Sin embargo, se debe destacar la estrecha relación existente entre el deterioro de los recursos, la pobreza y el crecimiento de la población. De estos tres factores, la pobreza representa un papel central en la determinación de los otros dos. La experiencia histórica ha mostrado que la reducción de los niveles de pobreza contribuye significativamente a disminuir la presión sobre los recursos naturales y la tasa del crecimiento de la población y, por lo tanto, a reducir la presión sobre los recursos naturales. Para El Cuadro 1 presenta algunos ejemplos de tecnologías desarrolladas para la conservación de los recursos naturales que se usan en la actualidad o que están en proceso de desarrollo; no se trata de una lista completa, pues sólo se incluyen los ejemplos más relevantes. Estas tecnologías abordan problemas relacionados con la conservación de suelos, nutrimentos y humedad, la reducción del uso de productos químicos, la biodiversidad y la conservación forestal.Una de las características más importantes que los agricultores juzgan de la tecnología en general es el tiempo que transcurre desde el pago de los costos hasta que se perciben los beneficios. Aunque la distribución de los costos y beneficios a través del tiempo varía considerablemente de una tecnología a otra, muchas tecnologías tipo CORE requieren de costos inmediatos y tardan algunos años en producir beneficios. Por el contrario, las tecnologías tipo AP se caracterizan por tener un retorno a la inversión relativamente rápido.Cuando se consideran los usos alternativos de las tecnologías dirigidas a aumentar la productividad (AP), estas pueden comportarse simultáneamente como conservadoras de recursos (CORE), y viceversa, dependiendo de las circunstancias. El caso de la difusión de la labranza de conservación en Guaymango, El Salvador, provee un ejemplo de interacción entre ambos tipos de tecnologías. La Figura 2 describe la asignación de una cantidad de recurso, R (rastrojo del sistema), entre dos usos. competitivos: alimento para el ganado y mantillo para protección del suelo. RoRo representa la curva de transformación del residuo para un nivel inicial de productividad del sistema de cultivo. La pendiente de esta curva se denomina la tasa marginal de sustitución (TMS) entre alimento y mantillo. Cuadro 1. Características de costos y beneficios de algunas tecnologías de conservación de los recursos naturales. Esta tasa mide el costo de oportunidad, en ténnino de alimento para el ganado, de usar una unidad de rastrojo como mantill0 2 Dependiendo de las circunstancias internas y externas prevalecientes, un agricultor se puede situar en diferentes posiciones a lo largo de esta curva. Por ejemplo, puede usar todo el rastrojo como alimento si los precios son convenientes o, por el contrario, puede usar todo como mantillo si le da una gran importancia a la conservación del suelo. Si S* representa la cantidad mínima necesaria para un control efectivo de la pérdida de suel0 3 , entonces un agricultor situado en el punto B estará usando la cantidad de rastrojo OC como mantillo y OA como alimento para el ganado. Dado que la cantidad OC es menor que el mínimo S* el suelo se estará erosionando.Una forma de revertir esta situación sería modificar las circunstancias de los agricultores de manera que se corriera a una posición de la curva de transfonnación situada a la derecha del punto B, de manera que use como mantillo una cantidad de residuo mayor que el mínimo S*. Sin embargo, este camino es en general dificil en el corto plazo. Podría implicar, por ejemplo, modificar la percepción de los agricultores acerca del valor de la pérdida de suelo.Una segunda vía de alcanzar el requenmIento mínimo S* sería una nueva tecnología que eleve la productividad del sistema. Este cambio se ilustra en la Figura 2 como un desplazamiento de la curva de transfonnación hacia afuera hasta alcanzar la curva R]R I . Aún sin ningún cambio en las circunstancias, los agricultores se moverían a un punto como el D donde .el sistema pennite cumplir el mínimo requerimiento S*. De esta manera, una tecnología que aumenta la productividad pennite simultáneamente alcanzar un objetivo de conservación del suelo.En el caso de Guaymango, el equilibrio se logró alcanzar mediante una combinación de tecnologías dirigidas a aumentar la productividad (híbridos, fertilizantes y pesticidas) y otra dirigida a conservar el suelo (manejo de los rastrojos). De esta manera el paquete combinado se comporta como una tecnología APCORE (Choto y Sain, 1993;Sain y Barreta, 1994).Sin embargo, existen tecnologías que conllevan el aumento de la productividad del sistema y la conservación de los recursos en si mismas (APCORE) como lo es la inserción de leguminosas de cobertura.Un ejemplo del doble accionar de este tipo de tecnologías lo provee el sistema de abaneras en el Litoral Atlántico de Honduras (Buckles et al., 1992). La Figura 3 muestra el efecto de introducir la Mucuna sobre la productividad del sistema. No solo hay un aumento en la productividad promedio sino que también reduce considerablemente el riesgo.En general, existen condiciones económicas e institucionales que muchas veces imposibilitan que se alcance un uso racional de los recursos aún cuando los niveles de productividad del sistema se eleven considerablemente. Algunas de estas condiciones son: • La presencia de distorsiones (impuestos y subsidios) en los mercados de productos e insumos. Por ejemplo, subsidios a los fertilizantes y otros agroquímicos han llevado al abandono de la práctica de la abonera en algunas comunidades de Honduras (Flores, 1993; Matute y Abrego, 1995). • Fallas de los mercados de algunos Insumos y productos. Principalmente por problemas institucionales. Por ejemplo, el pastoreo libre de los rastrojos en algunas áreas de El Salvador lleva al agotamiento del rastrojo dejando al agricultor sin posibilidad de usarlo para proteger el suelo (Sain y Barreto, 1995). • Fallas (no existencia) de mercados de los recursos naturales. • Costos de transacción elevados.Aunque ya existe un acervo importante de conocimientos acerca de las tecnologías que fomentan una agricultura sostenible, con frecuencia los costos de introducirlas en los sistemas son elevados. Algunos de estos costos son cubiertos por el agricultor (mano de obra adicional), mientras que otros probablemente son sufragados por la sociedad en general (más investigación). Sin embargo, en muchos casos, dichos costos se distribuyen de distintas fonnas.La mayor parte de las tecnologías agrícolas tiene que ser adaptada a las condiciones locales, y esto es especialmente cierto en el caso de las tecnologías de conservación. En consecuencia, la investigación a nivel local y la extensión, así como las inversiones en la experimentación realizadas por la comunidad y los agricultores, son un componente importante de los costos de generar estas tecnologías. Una dificultad adicional es que, aunque problemas como la erosión y la deforestación son graves, existe muy poca información que ayude a asignar un valor económico preciso a estos procesos.Asimismo, resulta dificil atribuir los costos relativos de la degradación de recursos a los distintos sectores de Beneficios netosBeneficios Netos la sociedad y, por lo tanto, es muy dificil saber cómo se deben repartir los costos de revertir esos procesos.En el Cuadro 1 se presentan, a modo de ejemplos, las principales clases de costos que suelen surgir en el caso de las tecnologías orientadas a mejorar la productividad y proteger el medio ambiente. El tipo y el monto de estos costos varían dependiendo del tipo de tecnología que se trate. Una tecnología que requiera de un solo tipo importante de costos (por ejemplo, la mano de obra para construir terrazas) no necesariamente tiene mejores probabilidades de ser aceptada que otra que exige varios tipos de costos pero de menor magnitud. Figura 3. Distribución acumulativa de la probabilidad de los rendimientos de maíz sembrado bajo tres sistemas. Litoral Atlántico de Honduras.Los costos en que pueden incurrir los agricultores cuando adoptan nuevas tecnologías se pueden subclasificar en seis tipos principales:1. Conocimientos y organizaclOn. Algunas tecnologías requieren de bastante esfuerzo por parte del agricultor para combinar sus conocimientos con observaciones intensivas, a fin de adaptarlas a su sistema de finca (como en el caso del manejo de cultivo en callejones). Además, algunas tecnologías requieren que los agricultores se organicen dentro de sus comunidades, especialmente cuando se trata del manejo de un recurso común.necesario que los agricultores hayan alcanzado cierto nivel en el sistema educativo formal, o que sean adiestrados a través de actividades de extensión pública o privada (por ejemplo, capacitación en el manejo integrado de plagas).3. Mano de obra. Muchas tecnologías de conservación necesitan una inversión adicional en mano de obra; por 10 tanto, su viabilidad dependerá de su costo de oportunidad. Este puede variar de una zona a otra y de un país a otro y, en consecuencia, una tecnología que es aceptable en un lugar puede ser menos atractiva en otro.Pese a la tendencia general a reducir la cantidad de insumas comprados requeridos para las tecnologías de conservación, con algunas es necesario comprar químicos, o alquilar o comprar maquinaria nueva. A veces• es necesario importar estos insumos en cantidades suficientes por 10 menos al principio (por ejemplo, germoplasma para la implantación de barreras vivas).Algunas tecnologías requieren de bastante investigación especializada. Es necesario contar con políticas que dirijan estas investigaciones (ya sean públicas o privadas), de manera que se dirijan a lo.s sistemas agrícolas correctos según los objetivos nacionales de desarrollo.tecnologías modifican la secuencia de cultivos existentes con especies de menor valor económico, es probable que inicialmente hagan disminuir el valor de la producción total (por ejemplo, cuando en una rotación se sustituye un grano por un abono verde).186Algunas razones importantes por las cuales los agricultores no siempre invierten en la adopción de tecnologías destinadas a la conservación de sus recursos son: a) En general, cuanto más altos sean los costos iniciales y/o más bajos sean los beneficios inmediatos, y cuanto mayor sea el tiempo transcurrido entre ambos, menor será la probabilidad de que la tecnología sea aceptada, especialmente por agricultores de escasos recursos. b) La conveniencia para el productor de la tecnología depende de altas tasas de descuento que predominan especialmente entre los pequeños agricultores. Un horizonte de planificación demasiado corto es un caso especial donde la tasa de descuento es 10 suficientemente alta como para que las consecuencias económicas tengan un valor despreciable para el agricultor y su familia. c) Aun cuando los beneficios descontados se comparen favorablemente con la inverSlOn requerida, los agricultores podrían no estar dispuestos a invertir en la tecnología a menos que reciban pruebas fehacientes de que producirá beneficios a largo plazo. Es decir que los agricultores exigirán un valor adicional por la incertidumbre que predomina cuando los beneficios son esperados para dentro de 10 o 15 años. d) Los agricultores tienen que comparar los beneficios de largo plazo generados por las inversiones en mejoras a los recursos (como el control de erosión), con aquellos producidos por inversiones destinadas a aumentar la productividad a corto plazo, aun cuando éstas pongan los recursos naturales en peligro. Esta comparación es importante en general, pero lo es aún más en el caso de los agricultores más pobres, porque en muchos casos sus recursos son los que corren mayor peligro. e) Gran parte de los costos provocados por el deterioro de los recursos no afecta a los productores en forma directa, sino a otros sectores de la sociedad. Como por ejemplo, el caso de la contaminación del agua para consumo humano en las ciudades o la sedimentación de las represas para la generación de energía eléctrica. f) La presencia de políticas inefectivas promulgadas sin información precisa sobre las consecuencias económicas y sociales de las distintas maneras de solucionar o aliviar los problemas reales. g) La falta de derechos de propiedad bien definidos sobre algunos recursos naturales que en muchos casos lleva a la sobre-explotación del recurso. Por ejemplo, en aquellos casos donde hay libre acceso al pastoreo de rastrojos o pastos.No es razonable esperar que la tecnología por sí sola solucione el problema de la conservación de recursos. En la mayoría de los casos, la adopción de tecnologías de conservación se facilita cuando es apoyada por cambios simultáneos en las políticas económicas e institucionales.Muchos países han registrado éxitos notables con tecnologías que contribuyen tanto a la conservación de recursos como al incremento de la productividad, tales como la labranza de conservación, el manejo integrado de plagas y la inclusión de leguminosas intercaladas en el sistema de producción. No obstante ello, no hay soluciones mágicas, ya que el desarrollo de todas esas tecnologías requiere de tiempo y recursos considerables que siempre implican un balance entre costos y beneficios.Las tecnologías destinadas a aumentar la productividad (AP) y aquellas destinadas a conservar los recursos (eDRE) pueden comportarse en forma complementaria o competitiva entre sí dependiendo más de circunstancias exógenas que de sus características inherentes. Aunque se debe reconocer que siempre existirán sacrificios, la dicotomía entre ambos tipos de tecnologías es relativa. Si existen condiciones para •la generación y difusión de tecnologías que combinen ambos efectos (APCORE), estas deberían gozar de una alta prioridad en aquellas áreas donde la conservación de los recursos y el aumento de productividad son importantes.Se debe tener en cuenta, además, que existen límites biofisicos relacionados con el sistema agropecuario, los que imponen restricciones a ciertos parámetros de las tecnologías por ser generadas (variación en el potencial de las tierras de cultivo). En general, cuanto más pobre sea el ambiente de producción (por ejemplo, laderas en zonas secas), mayor será el costo de la generación de tecnología y menor será el aumento absoluto de rendimiento que se puede esperar. Así, al establecer las prioridades para la generación de tecnologías, es indispensable considerar las tecnologías específicas que se necesitan en los distintos ambientes e identificar las limitaciones que éstos imponen. Para esto se requiere de una zonificación agroclimática adecuada.Por último se debe recordar que la generación de tecnología es un proceso continuo en el sentido que no existen respuestas o soluciones que sean definitivas ni perfectas. La introducción de una tecnología destinada a solucionar un determinado problema a menudo provoca nuevos problemas que requieren de otras soluciones.Se agradece a Mario Jauregui, Olaf Erenstein y Héctor Barreto por sus comentarios y sugerencias.Buckles D., I. Ponce, G. Sain y G. Medina. 1992. Tierra cobarde se vuelve valiente. Uso y difusión del frijol de abono (Mucuna Deeringianum) en las laderas del Litoral Atlántico de Honduras. México D.F. CIMMYT.Choto C. y G. Saino 1993. El mercado de rastrojo y sus implicaciones para la adopción de la labranza de conservación. En: Bolaños, J., G. Sain, R. Urbina y H. Barreto (Editores). Síntesis de Resultados Experimentales del PRM 1992. Vol. 4 (1993), CIMMYT-PRM, Guatemala. Olal Erenstein 1 RESUMEN La clave de la labranza de conservación es el uso de los residuos como mantillo. Sin embargo, existe mucha confusión en relación al termino labranza de conservación, entre otras cosas por poner demasiado énfasis en la labranza. El laboreo es sólo uno de los factores que afecta la disponibilidad de los residuos en áreas tropicales. Por ende, la conservación de residuos parece un término más apropiado para estos ambientes. En México, la promoción de la labranza de conservación hasta la fecha enfatizó la no-quema y la no-inversión de suelo (el no barbechar). De hecho, estos dos factores son incompatibles con la conservación de suficientes residuos para formar un mantillo efectivo. Sin embargo, hay que destacar que para llevar a cabo la conservación de residuos es necesario ver todos sus usos en conjunto. O sea, no sólo la quema o el barbecho, sino también la extracción productiva, el total de la incorporación y el desgaste, además de la producción de residuos. El conjunto de usos alternativos y la producción se reúne en el balance de residuos y este balance es particular para cada localidad.La labranza de conservaclOn ha recibido mucha atención en los últimos años en México. Varias agencias, tanto gubernamentales como no gubernamentales, han estado investigando o promoviendo la tecnología a través del país. Toda esta atención favoreció la difusión de la tecnología al poner a los productores en contacto con la tecnología. Sin embargo, también tuvo sus inconvenientes: La gran cantidad de participantes involucrados generó un igual número de interpretaciones de en qué consistía la tecnología. Algunos interpr.etaban la, tecnología simplemente como la no-quema. Otros, como labranza cero o reducida (sin invertir). Sin embargo, la clave de la tecnología consiste en conservar suficientes residuos 1993-1995, VOL.5 (1997), p. 188-197. 188 como mantillo. En su ausencia, prácticas como la labranza cero pueden ser hasta contraproducentes. Por lo tanto, algunas de las experiencias fallidas fueron erróneamente atribuidas a la labranza de conservación.¿Donde se originó la confusión? De hecho \"un problema clásico relacionado con la labranza de conservación durante los años de su desarrollo ha sido su definición\" (Pierce, 1985). La confusión en cuanto a las definiciones se debe en parte a que existen distintas interpretaciones de \"conservación\" (¿conservación de qué? ¿del suelo, del agua, de los residuos?). Otra gran parte de la confusión se relaciona directamente con la palabra \"labranza\".De hecho, existen muchas métodos diferentes de labranza (incluyendo una amplia gama de herramientas y prácticas). Además, la presencia de la palabra \"labranza\" pone mucho énfasis en el laboreo del suelo. Al parecer, esto es lo más adecuado en los sistemas de producción en los Estados Unidos, donde se originó la tecnología. Allí, la incorporación de los residuos a través del laboreo era el principal destino de los residuos por lo que al disminuir el laboreo se quedaban automáticamente más residuos como mantillo. Sin embargo, en los' ambientes tropicales la labranza es sólo uno de los varios factores que afectan la disponibilidad de residuos. Es más, en algunos ambientes tropicales no hay ninguna forma de labranza (p.e. sistemas manuales en zonas marginales con siembra de espeque). Por lo tanto, •en los sistemas tropicales \"conservación de residuos\" parece un término más apropiado para denominar la tecnología. Esto hace hincapié en el componente crucial de la tecnología y no tanto en un componente'parcial. 1.El presente trabajo .da. ún resumen de las implicaeiones de la conservación de los residuos en las sis.temas de producción en México. •Esta ponencia se limita prindpalmente a lOs sistemas de producción de maíz, ya' que éste es' el cultivo más importáiite¡ .en México. Sin. embargo; antes de entral' al mane,lb de los residuos en México presentaremos'en tnayot detalle el papeJ.de los residuos en• la conservación 'de los 'suelos (y el agua).,)Los dos principales procesos de la erosión hídrica son el desprendimiento de partículas del suelo por el salpicamiento de la lluvia y el transporte por escurrimiento superficial. Los elementos primarios para su control son el mantenimiento de cobertura del suelo (para reducir el salpicamiento) y la maximización de la infiltración (para reducir el volumen y, por ende, la velocidad del escurrimiento) (Shaxson et al. 1989). Los residuos de la cosecha pueden proporcionar ambos elementos si se dejan en cantidades suficientes para formar un mantillo efectivo. Este mantillo es una arma de dos filos, al servir como lámina protectora sobre el suelo y al mismo tiempo, aumentar la infiltración a éste. El mantillo aumenta la infiltración al formar nuevas barreras fisicas contra el escurrimiento y al mejorar la estructura fisica del suelo (y por ende, su permeabilidad). Cuandd el 35% de la superficie del suelo está cubierto con residuos esparcidos de manera uniforme, la erosión por salpicamiento puede reducirse hasta en un 85% (comparado con un suelo desnudo) (Shaxson et al. 1989). La relación entre la erosión relativa por salpicamiento y la cobertura del suelo a bajo nivel aparece en el cuadrante 1 de la Figura l.El cuadrante 11 de la Figura 1 permite transformar la cobertura requerida a un nivel aproximado de residuos de maíz. Por ejemplo, para obtener una cobertura del 35% se requieren aproximadamente dos toneladas de residuos por ha. Aunque cantidades superiores a las dos toneladas sí incrementan la cobertura, la ganancia en términos de disminución de erosión es relativamente mínima. Por ejemplo, 4 toneladas de residuos darían una cobertura de aproximadamente 60% y una erosión relativa de menos del 5%. Por lo tanto, desde un punto de vista conservador, mayores cantidades de residuos sí conservan mejor al suelo. Sin embargo, desde un punto de vista económico, esa conservación de suelo se vuelve cada vez más cara en términos de las cantidades de residuos requeridas. El nivel de dos toneladas ha quedado establecido como el umbral mínimo para obtener una reducción considerable de la erosión relativa. El punto preciso para satisfacer este umbral es inmediatamente después de la siembra, es decir, después de establecer el cultivo pero antes de que éste genere suficiente cobertura vegetal para proteger el suelo.La idea de usar los residuos como mantillo se originó con el fin de conservar el suelo. Sin embargo, un aspecto importante de la degradación del suelo es que el daño es acumulativo. El efecto de la degradación en un año específico puede ser menor e insignificante, pero el efecto puede acumularse a través del tiempo (Lal, 1987). De igual forma, los beneficios al reducir la degradación a través de prácticas de conservación del suelo son acumulativos. Por otro lado, los pequeños productores en ambientes tropicales se enfrentan a carencias y necesidades que requieren satisfacer a corto plazo. Estos productores por lo general no están dispuestos a invertir grandes cantidades en medidas de conservación. Para que las prácticas de conservación del suelo sean viables en estos ambientes, deben representar costos adicionales limitados. Por lo tanto, cabe hacer notar que la conservación de residuos funciona además como una medida de conservación del agua ya que al disminuir las pérdidas de este líquido (menor escurrimiento, mayor infiltración, menor evaporación) aumenta la cantidad de agua disponible para el cultivo. En general, este efecto de conservación del agua es él que se nota primero en términos de un mejor rendimiento al adoptar prácticas de conservación de residuos. Este efecto es más evidente en las zonas que presentan un déficit de agua durante el ciclo de cultivo. Sin embargo, hay que destacar nuevamente que este efecto de conservación del agua depende principalmente de la presencia de los residuos como mantillo. Es decir, la conservación del suelo y el agua está en función de la conservación de los residuos.El efecto de la conservación del agua puede generar beneficios a corto plazo y así aliviar el costo de conservar los residuos. Sin embargo, este costo de adopción (y por ende, el potencial de la conservación de residuos) depende de varios factores locales que afectan directamente la disponibilidad de los residuos.A continuación se presentan los factores que influyen en la disponibilidad de residuos en México. Primero, se presenta el lado de la producción de residuos y a continuación los diferentes usos alternativos que se les dan a estos. La Figura 2 presenta esta información gráficamente.La producción agrícola en general se enfoca a la producción de uno o más productos primarios (p.e. grano de maíz). Sin embargo, esta producción del producto primario también genera residuos (p.e. rastrojo de maíz) que, por consiguiente, se pueden considerar derivados de la producción agrícola.11 +-=t::::-+--+-f-+-+-+-+--+==+=:1=::::¡::=f='I=-+o~+-+--+--l Cobertura suelo (%) Ym (tn mantillo/ha) Figura 1. Esquema de dos -cuadrantes con gráficas de la relación de la erosión relativa y la cobertura de suelo en el cuadrante I (Shaxson et al. 1989) Ym (tn mantillo/ha) 1 Insumo (unidad/ha) Figura 2. Esquema de tres -cuadrantes con gráficas de la relación del insumo y el rendimiento de grano IYgI en el cuadrante 1; el rendimiento de grano y el rendimiento de residuos [Yr] en el cuadrante 11; y el rendimiento de residuos y la cantidad de mantillo [Ym] en el cuadrante 111 (adaptado de Saín, 1996).En cereales como el maíz esta relación puede expresarse de la siguiente manera:Reorganizando esta relación se puede calcular la producción de residuos de la siguiente manera:El interés en la producción del producto primario se refleja, entre otras cosas, a través del índice de la cosecha, que expresa la producción del producto primario como una fracción de la biomasa total.Los factores ecológicos determinan en primera instancia la producción potencial de biomasa en cada ambiente. El factor primordial en zonas tropicales es la disponibilidad de agua y en segunda instancia, la disponibilidad de los diferentes nutrientes (de macro a micro nutrientes). La disponibilidad de estos factores está directamente relacionada con las características ecológicas del medio ambiente, como la precipitación, la evapotranspiración, el suelo, la temperatura, la altitud, la topografia, etc. Ceteris paribus, la cantidad de biomasa disponible (y por ende, la producción de residuos) es generalmente mucho mayor en el trópico húmedo que en el trópico árido; en el trópico bajo que en el trópico alto; en zonas con buen temporal que en zonas con temporal marginal (corto y/o irregular); etc. Las limitaciones impuestas por el medio ambiente pueden ser modificadas por las prácticas agronómicas. Lógicamente, la disponibilidad del agua no sólo se puede aumentar a través del riego sino también a través de prácticas de conservación del agua o de modificaciones en la época de siembra. Asimismo, no sólo se puede aumentar la disponibilidad de nutrientes a través de la fertilización sino también a través de otros cambios fisicos o químicos de los suelos. Ceteris paribus, la cantidad de biomasa disponible (y por ende, la producción de residuos) es generalmente mucho mayor en la agricultura de riego que en la de temporal; en los casos donde se usa fertilizante que con los mineros del suelo; etc. Esta relación muestra que la producción de residuos está directamente vinculada con la producción del producto primario. Además, el índice de cosecha para cereales como el maíz es relativamente constante para una variedad dada. Por lo tanto, para cereales como el maíz la producción de residuos es una función linear de la producción de grano (vea cuadrante II de la Figura 2).Vale la pena resaltar que el índice de cosecha sí puede variar bastante entre las diferentes variedades de un cultivo. Por ejemplo, una variedad criolla de maíz puede tener un índice de cosecha tan bajo como 30%, mientras que para una variedad mejorada este índice puede alcanzar el 50%. Así, al obtener el mismo rendimiento de grano, la producción de residuos en general será substancialmente más alta para una variedad criolla que para una variedad mejorada.La relación directa que existe entre la producción de grano y la producción de residuos implica que todos los factores que influyen en la producción de grano también influyen directamente en la producción de residuos. La producción de grano es una función de varios factores, incluyendo factores de naturaleza tanto agroecológica como socioeconómica.Sin embargo, las prácticas agronómicas no sólo influyen sobre la disponibilidad de los factores esenciales. El cultivo mismo determina en gran medida la respuesta en términos de producción a la disponibilidad de los factores de producción. En primer lugar, el tipo de cultivo tiene grandes implicaciones. Por ejemplo, un cultivo de cereales (p.e. maíz) produce potencialmente más biomasa que un cultivo de leguminosas (p.e. frijol). En segundo lugar, la variedad del mismo cultivo también influye. Una variedad mejorada de cereal en general responde mejor a los insumos que una variedad criolla. Además, las diferencias entre las variedades se reflejan a través del índice de cosecha (cuadrante II, Figura 2).Todos los factores agroecológicos en conjunto determinan la forma de la función de producción que aparece en el cuadrante 1 de la Figura 2.Las prácticas agronómicas alivian algunas de las limitaciones impuestas por el medio ambiente. Sin embargo, el uso de estas prácticas agronómicas se ve afectado directamente por factores socioeconómicos como los de precios de los insumos y de los productos y en especial por la relación entre éstos. El precio relativo del insumo (en relación al producto) determina en gran parte el nivel de su us0 2 • Pero no sólo los precios determinan el uso de los insumos. La orientación de la producción (mercado o autoconsumo) determina en gran medida la influencia de los precios sobre el uso de los insumos. Por otro lado, la disponibilidad de recursos también influye sobre el uso de insumos. Por ejemplo, aunque es económico echar 100 unidades de fertilizante por ha al cultivo, el productor algunas veces sólo puede echar 50 unidades debido a la falta de liquidez.Los factores socioeconómicos determinan en gran parte donde se ubica el uso de los insumos en el cuadrante 1 de la Figura 2. Por lo tanto, dado la función de producción, los factores socioeconómicos determinan el nivel de producción correspondiente.La producción de residuos no se traduce simplemente en su disponibilidad como mantillo. En las zonas tropicales, existen varios usos (o destinos) que se les dan a los residuos y que afectan directamente su disponibilidad como mantillo. Estos usos de los residuos pueden variar en forma considerable entre e, incluso, dentro de las regiones. Los diferentes usos alternativos de los residuos afectan las relaciones en el cuadrante III de la Figura 2. A continuación, presentamos los diferentes usos en mayor detalle. En la sección posterior veremos las implicaciones de estos usos sobre la conservación de los residuos como mantillo.Aunque los residuos de maíz en general se consideran derivados de la producción agrícola, éstos tienen varios usos productivos. El principal es su u~o En México, el uso de residuos de maíz como fuente de forraje en la estación seca es muy común, en especial a través del pastoreo en la parcela. La cantidad de residuos que se aprovecha es variable, aunque en general depende en gran parte de la presión ejercida por el ganado (intensidad y duración) y la existencia de otras fuentes de forraje (p.e. agostadero o cultivos forrajeros). En general, los residuos no son muy nutritivos como alimento animal y son más bien usados por necesidad. Esto es aún mas evidente si se compara el uso de residuos en zonas áridas con su uso en las zonas húmedas. En éstas últimas, generalmente existen mejores alternativas de forraje que los residuos, por lo que su uso es limitado. También el hecho de que el pastoreo del ganado sea relativamente selectivo refleja el bajo valor nutritivo de los residuos. En general, el ganado se come primero los elementos frágiles de los residuos (hojas y totomoxtle), dejando los elementos menos frágiles (caña) para el último.La quema es una práctica tradicional para eliminar los residuos (comúnmente denominados 'la basura '). En muchas áreas de México todavía es uno de los primeros pasos en la preparación del terreno para la siembra. Antes del ciclo de cultivo (que en general coincide con los finales de la época seca) se prende fuego a la biomasa seca de la parcela. Esta práctica se originó en los sistemas de roza, tumba y quema para deshacerse de las grandes cantidades de biomasa y aumentar la fertilidad disponible con la ceniza. No obstante, también en sistemas más sedentarios persiste la práctica, aun cuando las cantidades de biomasa ya sean mucho menores. Los productores siguentiemp03 y varios factores agroecológicos, como la humedad, la temperatura y la actividad biológica' en el suelo durante ese periodo. La naturaleza y el estado (fragilidad) de los residuos también son factores importantes que influyen sobre la rapidez/facilidad de la descomposición. Además de los procesos de descomposición, el desgaste también puede incluir elementos de erosión eólica e hídrica de los residuos. Esto puede ser importante en zonas con fuertes pendientes y/o vientos.En general, la suma de todos los posibles usos o destinos de los residuos no puede exceder la producción. Aunque teóricamente existe la opción de importar residuos a la parcela para formar un mantillo efectivo, esta opción en general no es viable económicamente a nivel de producción (Lal, 1989). También cabe señalar que estos usos (con excepción del mantillo) son irreversibles, aunque en sí no son mutuamente exclusivos. Por ejemplo, parte de los residuos puede ser utilizada para e¡' pastoreo (extracción productiva) y el resto podría incorporarse durante la preparación de la tierra. Por ende, el balance de residuos se puede formular coma:(3) P donde En ambientes cálidos y húmedos, el desgaste de los residuos entre los ciclos puede ser substancial. Sin embargo, en muchos ambientes mexicanos el desgaste está relativamente limitado por una combinación de factores. Por un lado, la distribución uni-modal de la precipitación en la mayoría de los ambientes implica un periodo seco largo y pronunciado (de hasta más de medio año). Sin embargo, e! desgaste está limitado durante esta época por la falta de agua. Por otro lado, en lugares más húmedos el tiempo entre los ciclos se reduce al tener la posibilidad de un segundo cultivo (p.e. de relevo). Además, el principal cultivo en México es el maíz y los residuos de maíz son poco frágiles relativamente, especialmente si se le cosecha manualmente.En los sistemas de labor en México es común el uso del barbecho (arado de disco) y la rastra (de discos). El barbecho es especialmente efectivo incorporando los residuos (80-90% según ACC y cnc, 1994), aunque varias pasadas con la ~astra también logran incorporar cantidades substanciales de residuos. quemando por varias razones. La principal razón es limpiar la parcela para facilitar• el resto de la preparación del terreno y la siembra. Esto es especialmente el caso en los sistemas manuales o de tracción animal, donde la incorporación de residuos es mínima, lo que subsecuentemente dificulta la siembra. Además, la quema también sirVe como control de plagas, enfermedades y malezas. En este respecto, la quema es un método de control de dos filos, ya que afecta directamente a los organismos (individuos o inóculo) y a su hábitat. Este último es particularmente importante en el control de plagas como los roedores.En los sistemas de labor, la preparación del terreno tradicionalmente implica el laboreo del terreno antes de la siembra. El principal propósito de este laboreo es dejar una cama de siembra limpia y homogénea, que facilite' la siembra y e! establecimiento del cultivo. Para lograr esto, se mezcla la parte superficial de! suelo y se incorporan los residuos presentes en la superficie. En los sistemas mecanizados, la incorporación puede ser substancial aunque la cantidad exacta depende en gran medida de las prácticas de labranza que se utilicen. En especial influyen los implementos lisádos, el numero de pasadas y la profundidad y rapidez de los labores (ACC y cnc, 1994). En general, los sistemas de tracción animal sí tienen algo de incorporación aunque de menor magnitud que en los sistemas mecanizados. En los sistemas manuales de cero labranza la incorporación es insignificante.En general, la quema es muy efectiva para deshacerse de los residuos. Sólo en casos con cantidades limitadas de residuos puede ser menos eficiente si el productor no se toma la molestia de juntarlos.Aun sin darles ningún uso específico, la cantidad de residuos disminuye a través del tiempo debido al proceso de desgaste. Este proceso es más que nada la descomposición de los residuos y es una función del P:producción; U E : extracción productiva; U Q : quema; U I : incorporación; UD :desgaste; U M : mantillo-.Este balance de residuos es particular de cada lugar porque tanto la producción como sus destinos son determinados por factores locales. Una complicación al determinar el balance de los residuos es que muchos de los destinos no se cosechan o miden habitualmente. Por consiguiente, algunas veces resulta dificil recopilar esta información de forma rápida. Sin embargo, existen varias técnicas que facilitan la medición de las cantidades de residuos. Dos métodos basados en observaciones de campo son el uso de fotografias con cantidades predeterminadas de residuos como referencia (p.e. Tripp y Barreto, 1993) Y la metodología de la línea de transecta (p.e. Shelton et al., 1994).Cabe destacar que el uso de residuos como mantillo siempre será residual. O sea, los otros usos/destinos en general determinan cuantos residuos sobran para su posible uso como mantillo. Anteriormente ya se vio que un mantillo necesita por lo menos 2 toneladas de residuos por ha para ser efectivo. Por lo tanto, podemos reorganizar la relación (3) para formular la siguiente condición para la conservación de residuos: (4) Si se satisface esta condición, se habrán conservado suficientes residuos como para formar un mantillo efectivo. Sin embargo, si no se satisface esta condición habrá que o aumentar la producción de residuos (P) o disminuir sus usos alternativos (¿:U) si se quiere formar un mantillo efectivo. A continuación revisaremos el potencial de estas opciones en términos generales, tomando en cuenta los posibles costos que implicaría para el productor. Cuanto más altos estos costos, más altos son los costos de oportunidad de los residuos como mantillo y menos atractiva será la adopción de la tecnología. Sin embargo, hay que resaltar que estos costos serán específicos para cada localidad.Aumentar la producción de residuos en primera instancia parece ser una opción que podría aumentar la posibilidad de satisfacer la condición de la conservación de residuos (4). Sin embargo, muchos de los usos están directamente relacionados con la cantidad total de residuos, como son la quema, la incorporación y el desgaste. Ceteris paribus, esto implicaría que un aumento en la producción resultaría también en un aumento de estos usos. Sólo en los casos 194 donde la extracción productiva es importante y de un nivel más o menos fijo (p.e. a través del pastoreo de la parcela) se podría aliviar la disponibilidad de residuos substancialmente al aumentar la producción. Por lo tanto, parece más prioritario disminuir usos como la quema y la incorporación primero.La promoción de la labranza de conservación en los sistemas de labor se ha enfocado en disminuir la incorporación. De allí también se originó el énfasis en la labranza• mínima y la labranza cero, que disminuyen substancialmente la incorporación de residuos en comparación con sistemas de labranza más intensivos. Una de las primeras metas al promover la labranza de conservación en los sistemas de labor es eliminar la práctica del barbecho.Disminuir el laboreo reduce substancialmente la incorporación de residuos. Además, puede generar un ahorro substancial de gastos en la preparación del terreno. Este puede ser uno de los mayores atractivos de la tecnología a corto plazo. Sin embargo, la reducción del laboreo también resulta en una cama de siembra más irregular cubierta con más residuos. La presencia de los residuos dificulta la siembra y la hace más tardía, tanto si es manual, con tracción animal ( 'tapa pie') o mecánica con sembradora convencional. Una sembradora directa soluciona este problema al poder sembrar a través de los residuos en un suelo no preparado (pero laborable). Sin embargo, hasta la fecha la disponibilidad de este tipo de maquinaria es relativamente baja en México, entre otras cosas por su elevado costo. Por lo tanto, la adopción de la labranza de conservación en los sistemas de labor en México ha estado orientada hacia los sistemas de labranza mínima. Esto tiene el inconveniente de que estos sistemas de labranza mínima todavía incorporan una parte substancial de los residuos (p.e. dos pasadas con rastra de discos podrían incorporar la mitad de los residuos presentes; ACC y cnc, 1994). Esto es especialmente problemático en las zonas de México donde la disponibilidad de residuos ya es limitada.Además, no es sólo el proceso de la siembra lo que se dificulta. Algunos cultivos simplemente no logran establecerse debajo de un mantillo de residuos del cultivo previo (p.e. garbanzo después de' maíz en Jalisco; Mendoza et al., 1992). Por lo tanto, el patrón de cultivo puede limitar la posibilidad de disminuir la incorporación. La falta de laboreo también puede generar problemas con las malezas perennes en los sistemas basados en cero labranza. Por otro lado, el no incorporar los residuos podría limitar el crecimiento de malezas si el mantillo es lo suficientemente grueso.La promoción de la labranza de conservación en los sistemas no laborables se ha enfocado en la eliminación de la quema de residuos. De hecho, la práctica de la quema es incompatible con la labranza de conservación, ya que ésta es tan eficiente deshaciéndose de los residuos que no deja los suficientes para un posible mantillo. Sin embargo, muchos de los productores asocian la incidencia de varias plagas del maíz (incluyendo plagas del suelo como la gallina ciega Phyllophaga spp., plagas de follaje como el gusano cogollero Spodoptera Fugiperda y roedores) con la no-quema de los residuos de maíz. El potencial para una mayor incidencia de plagas y enfermedades existe ya que la mayoría de las áreas de temporal en México tiene un patrón de cultivo de maíz -maíz continuo con un solo cultivo por año. Sin embargo, el dejar los residuos no sólo favorece las plagas y enfermedades dañinas, sino también a sus enemigos naturales y ayuda a establecer un nuevo equilibrio. De hecho, algunos estudios reportaron una incidencia igual o menor en algunas plagas (por ejemplo, una disminución en la incidencia del gusano cogollero según Violic, et al, 1989), mientras que otras aumentaron. Por lo tanto, todavía no está totalmente claro cómo el dejar los residuos como mantillo influye sobre los costos de control de estas plagas y enfermedades o el daño que causan.Algunos programas de labranza de conservación se han enfocado en dar incentivos y frenos para convencer a los productores de la no-quema. Por ejemplo, por un lado, el Gobierno del Estado de Chiapas ha estado distribuyendo incentivos como rociadoras de mochila, insumos y créditos para promover las prácticas de la no-quema. Por el otro, ha impuesto una ley que prohibe el uso de la quema en la preparación de la tierra (Cadena, 1995).Cabe resaltar que un productor dejará de quemar sólo si considera que los beneficios de la no-quema son mayores que los costos. Sin embargo, no es suficiente que el productor mismo se convenza de las ventajas de la no-quema y no queme sus residuos. Siempre que uno de sus vecinos siga quemando para preparar el terreno o regenerar la pastura, existe el riesgo de quemar accidentalmente el mantillo (es común oír en México que el productor no quemó pero que 'se pasó 195 la lumbre '). Por ende, si el productor quiere estar seguro de que sus residuos no se quemarán posiblemente tendrá que hacer inversiones adicionales en tiempo y esfuerzo para construir una guardarraya.Disminuir la extracción productiva de los residuos sólo es factible si el productor considera que los beneficios de no extraerla son mayores que los costos. Cabe destacar que como se trata de extracción productiva en general si existen verdaderos costos visibles al conservar los residuos. Además, se pueden distinguir varias posibilidades. Puede ser que el productor extraiga los residuos para su propio beneficio. En este caso, al reducir la extracción necesitará buscar alternativas de forraje o disminuir su hato. A primera vista esto no parece una opción muy atractiva.También puede ser que otros productores extraigan sus residuos. En este caso, los costos de disminuir la extracción dependen mucho del hecho de si los usuarios recompensarán al dueño. Es posible que la extracción sea gratuita. Por ejemplo, a través de un pastoreo comunal después de la cosecha, que es una práctica común en México y Centroamérica. Si es socialmente aceptable, el productor puede contemplar restringir el acceso de los animales a sus parcelas. Por ejemplo, cercando su parcela. Sin embargo, en este caso la necesidad de proteger sus residuos puede representar una barrera substancial de entrada en términos de costo.En otros lugares ya existe un mercado para los residuos de la cosecha, donde generalmente se vende la 'pastura' (los residuos) en pie. Los arreglos y precios son variables, dependiendo de la región (p.e. demanda y producción de residuos como forraje) y de los factores específicos de la parcela (p.e, la ubicación, el cercado, la disponibilidad de agua, la cantidad de residuos). En estos casos, los costos de disminuir la extracción de los residuos son especialmente obvios, ya que, en general, los productores tendrán que ceder la venta de los residuos. Esta es una limitación particularmente severa si los beneficios en relación a la venta de los residuos forman una parte substancial de la ganancia bruta (p.e. > 10%), como es el caso en algunas zonas semiáridas de México (p.e. la Mixteca oaxaqueña, Bravo et al.;1992).Cabe destacar que los arreglos de tenencia de la tierra en México generalmente también incluyen disposiciones respecto al destino de los residuos. Por lo tanto, puede ser imposible para un arrendador disminuir la extracción de residuos ya que ésta está completamente en los manos del dueño.Es dificil disminuir el desgaste ya que este proceso es autónomo y el resultado directo de las fuerzas de la naturaleza. El productor sí tiene la opción de influir algo en el proceso a través de la fragilidad de los residuos (p.e. la selección de cultivo; y método de cosecha) y el tiempo que están expuestos éstos al desgaste (p,e. la época de siembra). Sín embargo, parece que esta opción no genera grandes posibilidades para la conservación de residuos.En resumen, las opciones más realistas para poder satisfacer la condición de conservación de los residuos parecen ser la eliminación de la quema y la disminución de la incorporación (especialmente el barbecho en sistemas mecanizados). Ambas prácticas son muy eficaces en deshaciéndose de los residuos y por lo tanto, son incompatibles con la conservación de éstos. En México, la promoción de la labranza de conservación también enfatizó estos dos factores. Sin embargo, bien puede ser que aun con la no-quema y la labranza reducida no queden suficientes residuos como para formar un mantillo efectivo. En estos casos habrá que reducir la extracción productiva de los residuos, que en general parece ser una opción más costosa. El potencial de la tecnología en estos casos dependerá mucho del costo de oportunidad de los residuos como forraje. Las otras dos alternativas, aumentar la producción o disminuir el desgaste de los residuos, son relativamente menos promisorias.La clave de la labranza de conservación es el uso de los residuos como mantillo. Sin embargo, existe mucha confusión en relación al termino labranza de conservación, entre otras cosas por poner demasiado énfasis en la labranza. El laboreo es sólo uno de los factores que afecta la disponibilidad de los residuos en áreas tropicales. Por ende, la conservación de residuos parece un término más apropiado para estos ambientes.En México, la promoción de la labranza de conservación hasta la fecha enfatizó la no-quema y la no-inversión de suelo (el no barbechar). De hecho, estos dos factores son incompatibles con la '196 conservaclOn de suficientes residuos para formar un mantillo efectivo. Sin embargo, hay que destacar que para llevar a cabo la conservación de residuos es necesario ver todos sus usos en conjunto. O sea, no sólo la quema o el barbecho, sino también la extracción productiva, el total de la incorporación y el desgaste, además de la producción de residuos. El conjunto de usos alternativos y la producción se reúne en el balance de residuos. Este balance es particular para cada localidad así que es peligroso generalizar. Sin embargo, en el contexto mexicano, el balance de residuos por lo general no da mucho lugar a la conservación de residuos en zonas semiáridas. En estas zonas, los residuos generalmente son una importante fuente de forraje en la temporada seca, en tanto que la producción es limitada. Por ejemplo, en la región Mixteca (estado de Oaxaca), que es semiárida, Bravo et al. (1992) encontraron que la importancia de los residuos como forraje y el consecuente alto precio de los mismos representa una grave limitación para la conservación de residuos.Adys Pereira\\ Gustavo Sain,z y Yisela VilIarreal 3En 1983-84, lDlAP inició investigación y validación de la labranza de conservación en la zona de Azuero, recomendándose la chapia del terreno, la aplicación de un herbicida quemante y sembradoras de cero labranza. Este estudio se hizo en tres regiones maiceras de Azuero para estimar el grado de adopción de esta tecnología; identificar los factores que han incidido en la adopción y analizar sus implicaciones para los programas de investigación y transferencia. Se hizo una encuesta formal a 122 productores, con un muestreo estratificado por región y tamafio de parcela. Los resultados indican que el cambio tecnológico más importante ha sido la progresiva eliminación del arado y la reducción en el número de pases de rastra. En la Región l se encontraron niveles de adopción del 29% en cero labranza y de 37% en labranza mínima; en la Región 11 y 11I el nivel de adopción de la cero labranza ha sido muy bajo y 27% han adoptado la labranza mínima. Estas variaciones se explican por las diferencias regionales en los factores que inciden en la adopción. Los factores que influyeron positivamente son la accesibilidad o tenencia de maquinaria de cero labranza, el manejo o nivel de información que poseen los productores sobre la tecnologia, la tenencia de la tierra, la topografía plana del terreno y nivel de recursos de los productores, estimados a través de la superficie sembrada y el número de reses. Entre los factores que influyeron negativamente sobresalieron la tenencia de maquinaria convencional y la compactación del terreno.La producción de maíz en la Región de Azuero (que comprende las provincias de Herrera y Los Santos) se realiza a través de dos sistemas principales: el maíz mecanizado y el maíz a chuzo tradicional o de subsistencia, sembrada generalmente en áreas pequeñas caracterizado por un bajo uso insumos, escaso acceso al crédito y asistencia técnica.El sistema mecanizado objeto de este estudio puede caracterizarse de la siguiente manera: un sistema de producción con uso de insumos, maquinaria, semilla DEL PRM 1993-1995, VOL. 5 (1997), p. 198-220. 198 certificada, un nivel tecnológico alto, generalmente reciben asistencia técnica, tienen acceso a financiamiento, un porcentaje considerado de productores alquilan terrenos para realizar las actividades y la producción se destina en su totalidad al mercado.En la región de Azuero el hectareaje sembrado de maíz bajo este sistema mecanizado, ascendió a 11,669 ha, en el último año agrícola 1994-95 que equivale a un 80% de la superficie total de maíz mecanizado a nivel nacional. Esta actividad involucra aproximadamente 600 productores, y genera ingresos brutos en el área por un monto estimado de 8.5 millones de balboas en concepto de pago de mano de obra, ganancias al productor y compra de insumos y servicios requeridos en el proceso de producción.A inicios de la década del 80, los productores comerciales de maíz de la Región de Azuero preparaban sus terrenos mecánicamente utilizando lo que denominaremos la labranza convencional, que consiste en voltear el suelo con un arado de disco o rastra pesada, a una profundidad de aproximadamente 6 pulgadas, y realizar dos o más pases de rastra o Semi Roma hasta dejar el terreno en condiciones para la siembra, (Pereira de Herrera y col. 1990).El cultivo de maíz mecanizado se realiza en terrenos planos, con pendientes menores a 20 0 , y con una precipitación promedio (período 80-93) anual de 975.0, con altas precipitaciones en meses como agosto y septiembre (102.4 y 123.6 mm, respectivamente) que corresponden a los períodos de siembra y primeros estadíos del cultivo de maíz. Uno de los principales problemas encontrados en los campos de los productores que utilizan la preparación del terreno de manera convencional es la fuerte erosión y lavado de los suelos.En términos generales la labranza de conservación, definida como un sistema o secuencia de operaciones que reduce la pérdida del suelo o del agua, en comparación al sistema convencional (Kilmer, 1982); incluye sistemas que van desde la labranza cero hasta la labranza reducida.Atendiendo a las bondades de la labranza de conservaclOn:de reducir la erosión, conservar humedad del suelo, reducir costos de producción y que presenta menos limitaciones al momento de la siembra; el IDIAP inició a partir de 1984-85 un programa de investigación y validación de la tecnología de cero labranza, la cual se describe a continuación. Se recomendó la utilización de una chapia mecánica o manual del terreno, la aplicación posterior de un herbicida quemante (por ej. Gramoxone a razón de 2 lt/ha) una vez que la maleza inicia su rebrote, y la siembra después con máquina sembradora de precisión adaptada a este sistema de preparación. Si la maleza no alcanza alturas mayores de 0.50 m, se debe aplicar el herbicida sin corte previo. La siembra también puede ser realizada a chuzo dependiendo del tamaño de la parcela. En parcelas con problemas de malezas de hoja ancha como la Baltimora recta (cirulaca) se puede evitar el chapeo, si dos a tres meses antes de la siembra se aplica 2-4-D a razón de 1-2 lt/ha.Por su parte, el Ministerio de Desarrollo Agropecuario, (MIDA) ha difundido entre los productores del área esta tecnología, a través de parcelas demostrativas y actividades de transferencia. Por otro lado, algunas casas comerciales han introducido para la venta desde mediados de la década del 80, máquinas sembradoras de precisión las cuales se adaptan al sistema de labranza de conservación.Se tiene conocimiento informal que existen productores que han adoptado la cero labranza tal como se describió anteriormente; otros han adoptado parcialmente la labranza mínima modificando o adaptando el sistema (por ejemplo eliminando el arado y disminuyendo el número de pases de Semi Roma o rastra); y se conoce también de productores que no han adoptado la tecnología.Lo anteriormente expuesto, argumentó la necesidad de efectuar un estudio de adopción de la labranza de conservación en la Región de Azuero Los objetivos planteados para este estudio fueron los siguientes: a) Identificar el grado de adopción de la cero y mínima labranza de conservación en maíz en la Región de Azuero. b) Identificar los factores que influyen en la adopción de la cero y mínima labranza en maíz; y 199 c) Analizar las implicaciones de este estudio para el programa de investigación y transferencia en maíz en la Región de Azuero.Para determinar los niveles de adopción de la labranza de conservación y los factores que inciden en este proceso en la Región de Azuero, se utilizó una metodología de análisis descriptivo y la aplicación de un modelo de decisiones que permite explicar sus factores determinantes. Para efectuar estos análisis se utilizaron datos empíricos de una encuesta formal aplicada a 122 productores de las principales áreas maiceras de la Región de Azuero, donde prevalece el sistema de producción mecanizado y la producción se destina en su totalidad al mercado.A pesar de que existen diferencias climatológicas y de suelo no tan marcadas a nivel de las áreas del estudio, se tiene conocimiento a priori de que existen diferentes condiciones particulares en las áreas, que han permitido un mayor o menor grado de adopción de la práctica de la labranza de conservación. Estas características pueden ser sintetizadas de la siguiente manera: la variación en los tipos de labranza utilizados, la caracterización del productor a nivel de los recursos productivos (tamaño de la parcela, de maíz y de la finca, tenencia de ganado, acceso a maquinaria, entre otros), acceso a la tecnología de conservación.De acuerdo a la ubicación política-regional de Panamá el estudio se realizó en ocho distritos de las provincias de Los Santos y Herrera y 50 localidades distribuidas a lo largo de la zona costera maicera, (tal como se observa en la Fig. l).Tomando en consideración las diferencias por área señaladas, se estimó conveniente estratificar la muestra a utilizar en este estudio. Se utilizó un muestreo estratificado, considerando tres grandes estratos o áreas. La región 1, que comprende a los distritos de Las Tablas, Pedasí, Pocrí y Guararé en la Provincia de los Santos contempló 28 localidades; la región 11 conformado por los distritos de Los Santos y Macaracas en la Provincia de Los Santos, incluyó 12 localidades; y en la región 11, formado por los distritos de Chitré y Parita en la Provincia de Herrera, se realizaron encuestas en 10 localidades, Fig. l.En cada estr~to o área se estratificó en base al tamaño de la parcela más grande de maíz cultivadas por el productor. Para la selección de la muestra se utüizaron distintos rangos de tamaño de parcela (0.1 -2.5; 2.6 -5.0; 5.1 -10.0; 10.1 -30.0; 30.1 -50.0; 50.1 -100.0 Y> de 100 ha).Para determinar el tamaño de la muestra en cada rango de tamaño de la parcela se utilizó la siguiente fórmula:Número total de productores en cada rango de tamaño de la parcela. B es igual al error de estimación del muestreo, el cual fue considerado en un 15% de la desviación estándar del tamaño de la parcela, para el caso de la región 11 y II; en tanto que, para la región III se utilizó un 25%, ya que las desviaciones eran muy altas, elevando demasiado el tamaño de la muestra en un estrato.La información del número de productores y tamaño de las parcelas de maíz y su distribución regional que fue suministrada por el MIDA, quien recopila la información de todos los productores integrados al mercado. El estudio se realizó con una encuesta formal a 122 productores distribuidos en los tres estratos de la siguiente manera: 52 encuestas en la región 1; 46 en la región 11; Y24 encuestas en la región III. Esta muestra utilizada representó a nivel general un 21% del total de productores o fincas maiceras que producen para el mercado en la región de Azuero.En el análisis de los datos de la encuesta se utilizaron indicadores de estadísticas descriptivas, correlaciones, regresiones (para la estimación de las curvas de difusión y adopción) pruebas de t, tablas cruzadas entre otras. Se utilizó además un modelo logístico multivariado de decisiones permite explicar la adopción y sus factores detelminantes.La estimación de la curva de difusión se efectuó utilizando una función logística, que supone que el comportamiento del porcentaje acumulado de adopción sigue una forma de S, con un incremento inicial lento en el uso de la tecnología, seguido de un incremento más rápido y luego una desaceleración a medida que el porcentaje acumulado de adopción se acerca al porcentaje máximo esperado. Matemáticamente se expresa así: La encuesta se realizó en marzo y abril de luego del cielo agrícola del maíz (n correspondiente al año agrícola 1993-94. 1994, coa) CARACTERIZACION DEL SISTEMA DE PRODUCCIONEl área donde se realizó el estudio se ubica en la zona costera ( distancia de aproximadamente 20 km. de la costa) de la Región de Azuero (provincias de Herrera y Los Santos), Fig. 1. De acuerdo a los análisis de suelo de algunas localidades seleccionadas en el área de estudio, los suelos van de ácidos a ligeramente ácidos (pH 5.6 a 5.9); y la textura en la mayoría de los casos, es franco arcilla arenoso. El contenido de P es variable observándose valores que van de 1.2 a 5.7 ug/ml; en general los suelos tienen muy baja toxicidad de aluminio y bajo contenido de materia orgánica. En general, esta zona se encuentra a una altitud entre 10 Y 40 msnm; y la precipitación pluvial promedio anual oscila entre 1000 a 1500 mm (de mayo a noviembre) En cuanto a la topografia de las parcelas de maíz evaluadas en el estudio, en su mayoría son planas (65%); sin embargo, aproximadamente un 35% de las parcelas descritas por los productores ubicadas como onduladas en la región 1 y n. En la región III, prevalecen mayormente los terrenos planos (79%).K / (1 + e -a-bl), Características del Sistema de Producción:dondc: Vt = porcentaje acumulado de agricultores que han adoptado la tecnología en un tiempo t. K ~~el tope superior de adopción. B= una constante, relacionada con la tasa de adopción; y a .~una constante, relacionada con el tiempo en que comienza la adopción.El porccntaje de K se determinó de forma independiente.Para calcular los parámetros a y b se utilizó una regreslOn de cuadrados mlmmos, utilizando observaCIones reales sobre Yt, y transformando la curva logístíca en:El sistema de cultivo utilizado por los productores de maíz de Azuero que producen para el mercado, es la siembra del maíz en n coa (septiembre), y seguidamente a la cosecha se pastoreari los rastrojos de maíz. Durante la 1 coa (con el inicio de lluvias) se mantiene el ganado en pastoreo hasta la preparación del terreno para la siembra del maíz nuevamente en n coa.Los datos de la encuesta confirman lo anterior. En las tres regiones estudiadas, arriba del 90% de las parcelas tenían el sistema pastoreo-maíz n coapastoreo. En la región n, se encontró un 10% de los productores que sembraron en 1 coa maíz u hortalizas. La caracterización del componente ganadero y la importancia del mismo dentro del sistema de pmducción de maíz, puede realizarse tomando como base indicadores tales como el hectareaje dedicado a ganadería y el número de reses.En general se observa que la ganadería es un componente importante en todas las regiones. Un alto si TESIS DE RESULTADOS EXPERIMENTALES DEL PRM 1993-1995. VOL 5 (19')7) porcentaje (arriba del 70%) de los productores de maíz en los tres estratos son ganaderos, dedicando en promedio entre 60 y 91 hectáreas de terreno, tanto propias como alquiladas. Prevalecen desde pequeños ganaderos (con posesión de menos de 15 reses) hasta los ganaderos, que tienen amba de 100 cabezas de ganado. Sr bien la ganadería es importante en las tres regiones, se puede concluir que en la Región 1, los ganaderos son más grandes. Se encontró en la región 1, promedios más altos en número de reses por productor, respecto al resto de las regiones (101 vs 61 y 74, respectivamente).La importancia del componente ganadero en el sistema de producción de maíz se refleja también, en los tipos de arreglos que los productores de maíz que alquilan realizan con los dueños de los terrenos; y en el uso que se le dan a los rastrojos.El estudio se realizó sobre la base de la parcela más grande sembrada de maíz. Con respecto a la tenencia de la tierra, se encuentran diferencias a nivel de las regiones. En la región 1, existe un mayor porcentaje de tierras alquiladas en comparación con las regiones JI y III, donde prevalecen las tierras propias, Fig. 2.El alquiler de estas parcelas se realiza generJ Imenle durante el ciclo del cultivo. ya que los dueil s de l:ls mismas son gener:llmente ganad~ros y eXIgen el uso del mstrojo.En todas las regi De • los productores de rnaíz que cultivan en tierras propias utiliznt los rast1:oj s para alimentar el ganado (más de un 85% Je los productores) y aquellos que no son ganaderos [quilan estos rastrojos. Por otro lado, un alto p rcentaje de los productores que siembran en terrenos alquilados (aproximadamente 75% para las re~i nes 1 y fI Y de 86% para la región III) no tienen derecho a utillzar los rastrojos de maíz, ya que generalmente los dueños de estas tierras son ganaderos. Esta situación se da aún cuando los productores tienen varios años de . Iquil r la misma parcela. Por ejemplo en la región 1, un 44% de los productores que alquilaron terrenos para culti ar maíz, tenían más de cuatro años de alquilar la misma parcela; porcentajes un poco menores se encuentran también en las regiones JI y III. Los resultados de la encuesta, revelan la importancia que tienen los rastrojos de maíz para la alimentación del ganado durante la crítica época seca. Las características de tenencia de la tierra están vinculadas con el número y tamaño de las parcelas utilizadas en el cultivo de maíz.Se encontró una diferencia marcada en las superficies totales sembradas de maíz a nivel de las regiones, así como en el número de parcelas utilizadas. Como puede apreciarse en el Cuadro 1, en la región I los productores siembran superficies más grandes en relación con los dos estratos restantes. En las áreas de Las Tablas, Pocrí, Pedasí y Guararé, la superficie promedio fue de 47.2 ha; en comparación con 15.9 y 16.6 ha en las regiones n y III, respectivamente.Se encontró una diferencia estadística significativa entre la superficie sembrada promedio de la región I y la correspondiente a las regiones n y III; no así entre las superficies de las regiones n y III Cuadro 1.De acuerdo a la Fig. 3 en la región 1, un 25% de los productores sembraron áreas menores a 5 ha; en tanto que para las regiones n y III estos porcentajes ascendieron a 50 y 46% respectivamente. Por otro lado, se encontró en la región 1, que cerca de un 20% de la muestra sembraron superficies mayores a 100 ha; en contraste con las regiones n y In que solamente reportaron un 4%.El hecho de que los productores de la reglon 1 siembren áreas más grandes los obliga a realizar la actividad productiva en varias parcelas, y en mayor medida alquiladas, comparadas con el resto de las regiones. Al respecto, en la región 1, el número de parcelas utilizadas es mayor que en el resto de las regiones.En las regiones n y III el cultivo de maíz se concentra en una o dos parcelas (78.3 y 62.4%, respectivamente), en tanto que, en la región 1, un 32.7% de los productores sembraron de 3 a 5 parcelas; y un 19% sembraron más de seis parcelas.La descripción de la preparaClOn del terreno realizada por los productores de maíz durante 1994 pennitirá caracterizar los métodos de labranza utilizados actualmente y comprender mejor el proceso de adopción de la cero y mínima labranza.Se encontraron diferencias marcadas a nivel de las regiones en estudio, los cuales se pasan a describir.A nivel de los distritos de Pocrí, Pedasí, Las Tablas y Guararé (Región 1), se encontró un 25% de los productores han adoptado la tecnología de cero labranza. Un porcentaje considerable de los productores (43%) han realizado adaptaciones al sistema de cero labranza que se transfirió, eliminando el arado, efectuando uno o dos pases de Semi Roma y aplicando un herbicida quemante. Esta fonna de preparación del terreno la denominaremos mínima labranza.Es importante destacar que solamente un 14% de los productores utilizan el arado y rastra y correspondió a una localidad muy específica del distrito de Guararé. Un 19% de los productores utilizó tres pases de Semi Roma, lo cual constituye un sistema muy similar a una labranza convencional, con la diferencia que no se utiliza el arado, Fig. 4 De acuerdo a los resultados de la encuesta, la tecnología de cero y mínima labranza que actualmente están utilizando los productores de maíz puede ser descrita de la siguiente manera. Los productores que utilizan tanto cero como mínima labranza aplican un herbicida quemante, generalmente Round-up o Gramoxone, aplicado por la mayoría de los productores en los primeros 15 días antes de la siembra, principalmente para el caso de Round-up .. Hay que anotar que la chapia mecánica que fue parte de la práctica recomendada, no es una práctica común entre los productores de maíz, independientemente del tipo de labranza utilizado. El período en que los productores realizan el o los pases de Semi Roma varía generalmente en un lapso de un mes y 15 días entre un pase y otro. No obstante, un grupo de productores (38%) de los que realizaron dos pases de Semi Roma efectuaron los mismos de manera seguida. --------~--------------------- La siembra la realizan con una sembradora de ¡cero labranza, la cual a diferencia de la sembradora convencional utilizada en suelos preparados con arado o rastra pesada, posee discos corrugados que permiten la siembra en terrenos preparados bajo el sistema de cero o mínima labranza.También se utilizan sembradoras convencionales a las cuales se les han adaptado los discos. Un 70% de los productores entrevistados en la región 1 utilizaron la sembradora cero labranza o la convencional con discos adaptados, Cuadro 2.La mayoría de los productores manifestaron que tenían acceso a este tipo de sembradora tanto propia como alquilada, por lo que ésta no constituye una limitante de la adopción de la tecnología de cero labranza en este estrato.Paralelamente a los cambios en la preparación del terreno, se han dado los cambios en los tipos de sembradoras. Al respecto los productores de la región 1, cambiaron el uso de sembradoras de plato y las comerciales (John Deere 7,000 o Giraldi) por las sembradoras de cero labranza.Un 75% de los productores manifestaron que tenían cuatro o menos años de estar utílizando las sembradoras de cero labranza.Se encontraron diferencias marcadas en la preparación del suelo entre la región 1, y las regiones Il y III. En estas últimas regiones alrededor de un 45% de los productores continúan utilizando el arado de disco con uno o dos pases de rastra, tal como se aprecia en la Fig. 5; situacíón que se presentó muy esporádicamente en la Región 1. Es muy común también como forma de preparacíón del terreno el uso de la Semi Roma (dos y tres pases). Se observa una ligera tendencia a disminuir los pases de rastra en la región III versus la región Il (33% de los productores de la región III realizaron dos pases de Semi Roma en comparación con 20% para la región Il).En lo que respecta a los tipos de preparación objetos de estudios, como es la labranza de conservación, podemos hacer los siguientes señalamientos. Un 20% y 33% de los productores de la región Il y I1I, respectivamente, están utilizando la labranza mínima como ha sido definida (uno o dos pases de Semi Roma), Fig. 5. La cero labranza solamente la está realizando un 13% de los productores en los dos estratos. Como se analizará en el siguiente punto, este 205 porcentaje no es equivalente al de adopción de esta tecnología, ya que algunos de estos productores (con énfasis en la región Il), no han pasado por un proceso de uso de la labranza convencional, y luego una adopción de la cero labranza. Esta situación es diferente a la encontrada en la región 1, en donde todos los productores utilizaron la labranza convencional en períodos anteriores y luego pasaran a la cero labranza.Las modalidades en los tipos de preparación encontrados fueron los siguientes. En el caso del arado y varios pases de rastra, generalmente se dejan aproximadamente 15 días entre el arado y los dos pases de rastra seguidos.En otros casos, se encontró productores que realizan el arado y primer pase de rastra seguido, y luego en un período aproximado de 15 días realizan el segundo pase de rastra. Cuando los productores efectúan dos pases de Semi Roma, generalmente dejan un período de 15 días entre el primero y el segundo pase.No es muy común el uso de herbicidas quemantes, cuando los productores utilizan dos pases de Semi Roma, a diferencia de la región 1, donde el uso de la mínima labranza es acompañada del uso de herbicidas quemantes como Round-up o Gramoxone. Esto se explica, por una mayor presencia de las malezas, principalmente la pimentilla (Cyperus rotundus) en la Región 1, en comparación con la Il y III. Esto explica también el hecho de que los productores de las Regiones Il y III que preparan sus terrenos en cero labranza utilizan como herbicida quemante el Gramoxone y no Round-up, como se encontró en la Región 1.La forma de siembra y el uso de sembradoras vario considerablemente a nivel de las regiones. En los distritos de Los Santos y Macaracas (región Ir), encontramos un porcentaje considerable de productores (41 %) que utilizan el método de siembra a chuzo, y en menor medida en el distrito de Parita (región I1I). Por otro lado, se observa en los dos estratos que prevalece el uso de sembradoras de plato y convencional utilizadas mayormente en terrenos preparados bajo el sistema convencional, utilizando arado y rastra, Cuadro 2.Esto indica que la adopción de la mínima labranza en las regiones Il y I1I, no se ha dado en el uso de sembradoras de cero labranza, como es el caso de la región l. Incluso, aquellos productores que preparan sus terrenos bajo el sistema de cero labranza, realizan las siembras a chuzo. El uso de las sembradoras está vinculada a la disponibilidad de las mismas en el área.En esta parte del trabajo, se tratará de caracterizar el proceso de difusión de la te nología de mínima y cero labranza en las distinta regiones en estudio, y la construcción de las curvas de difusión.En la evaluación de la adopción de la labranza de conservación se considerarán como adoptadores de esta tecnología, a aquellos productores de maíz que han cambiado de un sistema de preparación tradicionalmente convencional (con utilización del arado y varios pases de rastras) al uso de la cero o mínima labranza. En este sentido se excluyen de la muestra a los productores que tradicionalmente han realizado la cero labranza, (uso de chapeo o herbicida quemante, y siembras a chuzo) y que nunca han utilizado la labranza mecanizada. Estos productores siempre han utilizado la cero labranza; por tanto, no pueden ser considerados como adoptadores, m tampoco como no adoptadores.Se investig' entre [os productores los cambios que habían realizado los productores en la preparación del suelo en los últimos seis años, sobre la base de que a partir de 1987-88 se da con mayor énfasis el proceso de difusión de la tecnología, a pesar de que los trabajos de validación se inician desde 1984-85.El proceso de cambio más importante y más dinámico se ha verificado en 1;, región 1. En este aspecto se encontró que un 70'>ó de los productores han efectuado cambios en la preparación del suelo en los últimos seis años.La mayoría (76%) de estos productores efectuaron los cambios en los últimos tres años, lo cual es un indicador del dinamismo de estos cambios en años recientes.. Los cambios más relevantes observados se refieren a la eliminación del arado, la reducción del número de pases de rastra o Semi Roma y la adopción de la labranza mínima o \"cero labranza\", Cuadro 3. Los niveles de adopción de la cero y mínima labranza en la Región 1 ascendieron a 29 y 37%, respectivamente. En las regiones II y III , los cambios verificados no han sido tan dinámicos comparados con la región 1, ya que solamente alrededor de un 50% de los productores han cambiado sus métodos de preparación del suelo en los últimos seis años. La rapidez con que se han dado estos cambios ha variado un poco a nivel de las regiones II y III. Por ejemplo, en la región II, el 90% de los que han cambiado, lo han realizado en los últimos tres años; en comparación con la región III donde los cambios los han efectuado de 3 a 5 años atrás. Esto puede atribuirse a lo siguiente. La Región 11 corresponde a las áreas de Los Santos y Macaracas que están más cercanas a las áreas de la región 1 donde 207 el proceso de adopción ha sido más dinámico Esto se ha dado a pesar de que la transferencia o difusión de la tecnología ha sido más escasa en comparación con el resto de las regiones. Por otro lado, en el caso de Parita, que geográficamente está más alejado de la región 1 y II, se impulsaran estas tecnologías de conservaclOn, como parte de un programa de transferencia años atrás; sin embargo, no se han dado las condiciones de disponibilidad de sembradoras de cero labranza que permita avanzar en este proceso.En cuanto a los tipos de cambios en la preparación del suelo experimentados en las Regiones II y I1I, se puede señalar que los más relevantes se refieren a la eliminación del arado, y la incorporación de las Semi Romas, con uno o varios pases, Cuadro 4.Respecto a las tecnologías de la labranza de conservación, objeto de este estudio se obtuvo niveles de adopción de 17.4 y 20.8%, en la región 11 y III respectivamente, en el uso de la mínima labranza, principalmente con la utilización de dos pases de Semi Roma, Cuadro 4. Por otro lado, se encontró en las regiones 11 y III porcentajes muy bajos de adopción de la cero labranza, de 4% solamente. Este porcentaje de adopción es mucho menor que el porcentaje de productores que utilizan actualmente el sistema de cero labranza en la producción de maíz en estas regiones.Esto indica que, hay un grupo de productores ( 6) que realizan la cero labranza tradicional, es decir, uso de herbicidas quemantes o chapeo manual y siembras a chuzo sin haber sido sujetos de un proceso de cambio tecnológico de la labranza convencional a la cero labranza.Se encontró una ligera tendencia a incrementar los rendimientos d~las parcelas donde se adoptó la cero y mínima labranza, aunque no se tiene evidencia que los mismos obedecen al uso de la labranza de conservación. El rendimiento promedio entre productores que utilizaron la labranza de conservación ascendió a 76 qq/ha; en comparación con 64 qq/ha en aquellos productores que no adoptaron, Cuadro 6.Los niveles de adopción de la mínima y cero labranza son muy diferentes a nivel de las regiones estudiadas. En las Regiones 11 y III se ha adoptado parcialmente la mínima labranza, no así la cero labranza; en comparación con la Región I (Las Tablas, Pedasí, Pocri y Guararé) donde se ha dado un alto nivel de adopción de la mínima y cero labranza, Fig. 6 Lo anterior, permitió calcular las curvas de difusión de la labranza de conservación (cero y mínima) para la región 1, Fig. 7, Ypara las regiones 11 y I1I, Fig. 8 Para estimar la curva de difusión de la adopción de la labranza de conservación (mínima y cero) se utilizó la curva logística descrita en la sesión metodológica de este documento.Cuadro S. Utilización de insecticidas a la semilla de maíz entre adoptadores y no adoptadores de la labranza de conservación, Azuero, Panamá, 1994. Cuadro 6. Rendimiento promedio (tlha) de maíz, de adoptadores y no adoptadores de la labranza de conservación, Azuero, Panamá, 1994. La tecnología de cero labranza fue asociada inicialmente con la utilización de insecticidas comoo el tratamiento a la semilla, por la mayor presencia de plagas como la gallina ciega que podrían darse con la mayor cantidad de residuos en el suelo, y agudizado por los efectos del componente ganadero que caracteriza este sistema. Al respecto, el estudio demostró que no hay una asociación significativa en el uso de insecticidas del suelo entre los productores que adoptaron la cero y mínima labranza y aquellos que no adoptaron. Se observa en el Cuadro 5 que, del total de productores que utilizaron insecticidas el 47.27% fueron adoptadores de la labranza de conservación y el 52.73% no adoptaron; por lo que no hay una relación directa entre adoptadores y utilización de insecticidas.Otro de los aspectos que se relacionó con la tecnología de la cero labranza, fue la creencia de que el uso de esta tecnología podría disminuir a corto plazo los rendimientos. Al respecto, y contrariamente a lo considerado, el estudio demostró que hay diferencia significativa entre las medias de rendimiento de maíz de los productores que adoptaron la labranza de conservación y aquellos que no adoptaron, Cuadro 6. ----------------------- -------------------------l 40 t --------------------------l 30 t-----------------=JII\"\"\"'--.,..------l 20 t------------~~to y Osi t<=t o ; finalmente, ~o, ~I Y ~2 son parámetros a ser estimados. El valor de ~I da la tasa de crecimiento en el primer período (1969)(1970)(1971)(1972)(1973)(1974)(1975)(1976)(1977)(1978)(1979)(1980) mientras que la suma 2 En realidad a nivel de finca individual la decisión de usar una semilla mejorada implica un cambio en la función de producción del maíz y como tal no se puede hablar de una función de demanda derivada como si fuera un cambio a 10 largo de la. función de producción. Sin embargo a nivel regional o nacional, sí existe una función de demanda de semilla a medida que fincas individuales deciden adoptar la semilla mejorada a una densidad de siembra determinada.representa la tasa de crecimiento correspondiente al segundo período (1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992). La hipótesis de un cambio estructural en la tendencia entre ambos períodos corresponde entonces a probar la hipótesis que ~2 es diferente de cero. Los resultados obtenidos de la estimación mediante el método de los cuadrados mínimos ordinarios para las tres variables se muestran en la Cuadro l.De acuerdo con estos resultados, a partir de 1980 se produce un cambio importante en la tasa de crecimiento de los rendimientos y de la producción de maíz. Entre 1961 y 1980 la producción y los rendimientos crecieron a tasas superiores al 3%, mientras que entre 1981 y 1991 la tasa de crecimiento de la producción cayó en un 1.5% y los rendimientos permanecieron estables.Dadas las condiciones de oferta limitada de tierra en El Salvador, el proceso de aumento de la producción basado en aumentos de la superficie cultivada es insostenible en el mediano y largo plazo. Es necesario entonces identificar las causas del estancamiento de los rendimientos a fm de tomar las medidas necesarias para revertir esta situación y continuar con un crecimiento sostenido de la producción de maíz.Las ganancias en los rendimientos de maíz durante el período 1961-1980 fueron el resultado del proceso de extensa difusión masiva de un paquete tecnológico cuyos componentes principales lo formaron nuevos materiales híbridos y la fertilización con nitrógeno y fósforo (Walker, 1980;Soza y Moscardi, 1977). Cuadro 1. Resultados de la estimación de las tasas de crecimiento de la producci6n, superficie y rendimiento de maíz en El Salvador, 1961Salvador, -1991 1961196319651967196919711973197519771979198119831985198719891991 Afto Afto Fuente: Dirección General de Estadistica Agropecuarias Figura l. Evolución y tendencia de la superficie cultivada y producción de maíz a nivel nacional en El Salvador, durante los aftos 1961-1992.•. . 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 Año Figura 2. Rendimientos de maíz a nivel nacional en El Salvador, 1961-1992.La relación entre la difusión de materiales híbridos y la evolución de los rendimientos de maíz se ilustra en la Figura 3, en donde la difusión de híbridos de maíz• se mide en términos del porcentaje de la superficie total que es cultivada con estos materiales durante el período 1954-1992. Para el análisis se han diferenciado tres épocas. La primera época se extiende desde 1954 hasta 1967, la segunda va desde 1968 hasta 1980 y la tercera comienza en 1981 y se extiende hasta 1993. Las dos primeras épocas corresponden a la expansión de los materiales híbridos y al aumento de los rendimientos.Durante la tercera época (1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993), la superficie cultivada con materiales híbridos se estabiliza al comienzo del período y posteriormente declina mientras que los rendimientos se mantienen estables.En la fase que va desde 1954 a 1967 se liberan comercialmente los primeros híbridos producidos en el país. En 1955 se libera el híbrido H-l, en 1963 se libera el H-3 y en 1965 el H-5. Con la producción comercial de semilla de estos dos últimos híbridos comienza la difusión masiva por parte del Gobierno de El Salvador de estos nuevos materiales acompañada de campañas de divulgación para la aplicación de fertilizantes y herbicidas (Waiker, 1980). En 1967 comienza la segunda época, que se caracteriza por una rápida difusión de los nuevos materiales. Estos pasan de ocupar aproximadamente el 10% de la superficie total cultivada con maíz al comienzo del período hasta alcanzar casi el 70% en 1980. Durante este período se liberan algunos nuevos híbridos y se mejora el H5 aunque se le sigue comercializando con el mismo nombre (Adán Aguiluz, comunicación personal).A partir de 1981 se inicia una etapa que se caracteriza por el estancamiento y disminución del proceso de difusión de los híbridos, hasta alcanzar el 55% del total de la superficie cultivada en las últimas campañas. En esta fase se liberan comercialmente al menos tres nuevos materiales: el Hl7 en 1987, y el H53 Y H56 en 1990, los cuales han tenido una buena aceptación entre los agricultores y podrían jugar un papel importante en la recuperación de los rendimientos y de la industria semillera en El Salvador Trabajos previos han demostrado la relación que existe entre el nivel de rendimientos a nivel nacional y el porcentaje de la superficie total de maíz que es cultivada con variedades mejoradas (López-Pereira y Espinosa Calderón, 1993). Para estimar esta relación se procedió a estimar la siguiente ecuación: donde InY t representa el logaritmo de los rendimientos en el año t; H l es el porcentaje de la superficie cultivada con híbridos en el año t; a o y al son parámetros a ser estimados y El es un término de error. Se debe notar que al mide el cambio porcentual en los rendimientos inducidos por un cambio en el porcentaje de la superficie total que es cultivada con híbridos.Para estimar esta relación se procedió primero a eliminar de ambas series las variacines anuales que podrían ser causadas por factores climáticos 3 y luego se estimaron los parámetros mediante el método de los cuadrados mínimos ordinarios. El resultado se presenta a continuación: [3] lnY t = 0.058 + 0.009 H t (13.9)** R 2 = 0.87; n=29 donde el valor entre paréntesis corresponde al estadístico t, y ** significa que el coeficiente es diferente de cero con 99% de confianza.Los resultados confirman la asociación entre ambas variables. Los rendimientos promedios a nivel nacional crecen a razón del 0.9% por cada punto porcentual en que se incrementa el porcentaje de la superficie total cultivada con materiales híbridos. Por lo tanto, un aumento del 10% en la superficie cultivada con híbridos trae aparejado un aumento del 9% en los rendimientos promedio.En un estudio realizado en 1992 por el Departamento de Economía Agrícdla del Centro Nacional de Tecnología Agropecuaria y Forestasl (CENTA) con una muestra de más de 250 agricultores productores de maíz a nivel nacional, se encontró que durante ese año alrededor del 70% de los agricultores declararon usar semillas de maíces híbridos 4 • Sin embargo, el uso de semillas híbridas varía considerablemente de acuerdo con la región geopolítica que se trate (Figura 4).En las regiones I y 11 (Occidental y Pacífico) las cifras indican un uso masivo de híbridos, mientras que en la región IV (Oriental) sólo el 30% de los agricultores declararon usar materiales híbridos. La región III (Norte) se mantiene un poco por debajo del promedio nacional. Los bajos porcentajes de uso de semillas híbridas en la región IV pueden explicarse por el mayor riesgo de sequía y porque esta región se vio fuertemente afectada por el conflicto político militar de la década de los 80. Este último factor, que también desempeñó un papel importante en la región I1I, provocó que tanto la investigación y la extensión así como el normal aprovisionamiento de los mercados de insumos y semillas se concentraran, durante la década de los 80, en las regiones I y 11. En cuanto a los híbridos más usados en 1992, tanto a nivel de las regiones como a nivel nacional, fueron el H5 y el H3 (Figura 5).Resultados similares arrojó un estudio reciente sobre el manejo del cultivo de maíz en el Departamento de Ahuachapán en la región Occidental. El 56% de los agricultores usaron en 1994 semillas de maíces híbridos. 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 Fuente: Dirección General de Estadísticas Agropecuarias Figura 3. Difusión de materiales híbridos y evolución de los rendimientos de maíz en El Salvador, 1954Salvador, -1991. . Sin embargo, si se considera la generaclOn de semilla utilizada, 47% de los agricultores usó semilla de híbridos de primera generación y 9% usó semilla híbrida de generaciones posteriores. El 80% de los agricultores utilizaron el híbrido H5, y en menor escala aparecen el HB83 (8%) Yel C385 (8%) (Choto, Sain y Montenegro, 1995). La conveniencia económica para el agricultor de cambiar la semilla que está usando puede ser evaluada en forma sencilla calculando cuál sería el precio máximo que el agricultor podría pagar por la nueva semilla y mantener el cambio rentable (CIMMYT,1988). necesaria para inducir al agricultor al cambio (CIMMYT, 1988).Si el precio calculado de acuerdo con la ecuación [4] es igual o menor que el que los agricultores realmente pagan por la semilla mejorada, quiere decir que la semilla se encuentra accesible en términos económicos para el agricultor. Los resultados obtenidos usando valores promedios de rendimientos experimentales de los híbridos más difundidos muestran una clara ventaja económica de los híbridos sobre las variedades criollas aún usando tasas de descuento de hasta un 400%. [4] El precio maXlmo que los agricultores estarían dispuestos a pagar por la semilla mejorada (P'I) se calcula como:donde (R -~) representa la diferencia en rendimiento I entre la variedad mejorada (R 1 ) y aquella a la cual reemplaza (~); P m YP,o representan el precio del maíz y el precio de la semilla que el agricultor está usando; S es la cantidad de semilla usada por unidad de tierra (densidad de siembra) y M es la tasa mínima de retomo Esta elevada rentabilidad resulta fundamentalmente de la ganancia en rendimientos de los híbridos sobre los criollos que alcanza el 150% (Cuadro 2) y a los bajos precios de la semilla híbrida en El Salvador (Cuadro 3). La relación precio semilla híbrida:precio grano pone a El Salvador entre los países que tienen más bajos precios relativos de semilla hibrida (CIMMYT, 1987;López-Pereira y Espinosa Calderón 1993;ASPRüDES, 1990). Tres factores de política económica e institucional que afectaron la demanda de semillas mejoradas durante la década de los 80 son : a) la política de precios, incluyendo el precio de las divisas (tasa de cambio) y el nivel general de precios (tasa de inflación), b) la disponibilidad de crédito agrícola y la tasa de interés, y c) el conflicto político-militar (Hugo, Andrews y Stimpson, 1991).Durante las década de los 60 y 70, el uso de semillas híbridas y fertilizantes se difundió rápidamente gracías al ambiente económico de crecimiento y estabilidad existente, y a un programa de crédito dirigido que subsidiaba el uso de los nuevos componentes tecnológicos. El Banco de Fomento Agropecuario (BFA), otorgaba crédito que muchas veces se entregaba en forma de insumas: semilla híbrida y fertilizantes. Estos créditos se otorgaban a tasas de interés menores que las tasas de inflación, por lo que la tasa real de interés era nula o negativa. Además, durante la década de los 70 y la mayor parte de los 80, la tasa de cambio sostenida por el Gobierno mantuvo al colón por arriba de su valor de equilibrio lo que abarató artificialmente la importación de insumas como fertilizantes y otros agroquímicos.Sin embargo, a partir de 1980 las condiciones económicas comenzaron a cambiar. El Producto Bruto Interno (PBI) se estancó o decayó, y el país comenzó a registrar tasas de inflación elevadas. La combinación de inflación alta y tasa de cambio sobreva1uada castigó al precio del maíz recibido por el productor. El índice del precio real del maíz en finca declinó más rápidamente que el costo real de producción del maíz, lo que trajo como consecuencia una pérdida neta de ingresos para el productor y por lo tanto provocó una contracción de la demanda de insumos externos a la finca (Hugo, 1991).Los datos del Cuadro 3 muestran que la caída registrada en el uso de híbridos no estuvo asociada a los precios de este insumo. La tendencia de los precios relativos de los híbridos siguió un patrón decreciente en el período 1981 -1991. Al comienzo de la década de los 80's se necesitaban casi 5 kg de maíz para comprar 1 kg de semilla híbrida, mientras' que al comienzo de los 90 sólo se necesitaban 3 kg.Un factor que parece estar más ligado al uso de los materiales híbridos por los agricultores, es la disponibilidad y precio del crédito. La Figura 6 muestra la estrecha relación que existe entre la disponibilidad de crédito, medida por el porcentaje de la superficie total de maíz, cultivada con crédito del BFA, Y el porcentaje de la superficie cultivada con híbridos.La estrecha asociaclOn entre ambas series, correlación del 90%, a través de todo el período, indica que un cambio en la disponibilidad de crédito conlleva un cambio en la misma dirección en el uso de semilla híbrida. Por 10 tanto, uno de los efectos inmediatos de la política económica aplicada durante los años 80 al reducir drásticamente la disponibilidad de crédito a los pequeños agricultores fue la de disminuir la adquisición de nueva semilla híbrida a nivel del agricultor. 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 Año Fuente: Dirección General de Estadístícas Agropecuarias y Hugo, Andrews y Stimpson, 1991.Figura 6. Asociación entre la superficie con maíz cultivada con crédito y la superficie cultivada con híbridos.El Salvador, 1964Salvador, -1991. . LA OFERTA DE SEMILLA MEJORADA En esta sección se examinan los factores que influyen sobre la oferta de semilla mejorada, a través del análisis de la evolución histórica de la producción de semilla mejorada y de la estructura de la industria de producción de semilla. nacional, es posible estimar la proporción de la superficie cultivada con híbridos de primera generación y con híbridos de generaciones posteriores.Para estimar la superficie cultivada con híbridos de primera generación, se estima primero la disponibilidad de semilla mejorada en el año t (St) como:La producción de semilla certificada durante el período /980-/992[5]La producción total de semilla certificada decreció durante el período 1980-92 a una tasa anual del 4.8 % (Figura 7). A comienzos de los 80 la producción nacional osciló entre 3,000 -3,500 toneladas anuales, mientras que a comienzos de los 90 la producción fluctuó entre 2,200 -2,400 toneladas por año.Esta caída de la oferta disponible de semilla tiene implicaciones sobre la superficie total de maíz que puede ser sembrada con semilla híbrida de primera generación.donde (Qt-') es la producción doméstica de semilla certificada en el año anterior y (E t -J t ) corresponde a las exportaciones netas (exportaciones menos importaciones) en el año 1.Si se supone que toda la disponibilidad del año t (St) se usa en ese mismo año con una densidad de siembra constante (d), la superficie sembrada con híbridos de primera generación en el año (SRl t ) se calcula como: Partiendo de las cantidades de semilla certificada producidas en un año determinado y de la superficie total cultivada con materiales híbridos reportada a nivel La superficie sembrada con híbridos de generaciones avanzadas (SH2 t ) se estima entonces como diferencia entre la superficie total reportada con híbridos a nivel nacional (SH t ) y el estimado de la . superficie con híbridos de primera generación:El Cuadro 4 muestra los resultados de la estimación. Al comienzo de la década de los 80 la proporción de la superficie total sembrada con híbridos de primera generación fue de aproximadamente un 70%, mientras que menos del 10% de la superficie total se sembró con híbridos de generaciones avanzadas. A comienzo de los 90, la situación cambió completamente. La proporción de la superficie total reportada con híbridos disminuyó a un 55%, de los cuales un 35 % correspondió a híbridos de primera generación y alrededor del 20% a híbridos de generaciones posteriores.Dos híbridos, el H3 y el H5, han dominado la producción de semilla certificada durante el período 1980-1992 (Figura 8).. En 1980 ambos materiales conformaban casi el 90% de la producción total de semillas, siendo el H3 el principal material producido. A partir de 1981 el H5 comenzó a desplazar al H3, aumentando su participación relativa hasta alcanzar, al comienzo de los años 90, casi un 80% del total producido. A partir de 1982, la producción de H3 decayó hasta llegar a 1992, cuando se produjeron menos de 100 toneladas de semilla de este material.A partir de 1990 se comenzó a producir semilla de-los híbridos H17 y H53. Estos materiales tuvieron un crecimiento singular, alcanzando casi el 20% en 1992 lo que provocó que el híbrido H3 prácticamente desapareciera del mercado. Si esta tendencia se mantiene es probable que estos materiales comiencen también a desplazar al H5 dentro del mercado de semillas híbridas. Sin embargo, una característica notable de la producción de semilla en El Salvador es la aparición esporádica de semilla de híbridos que solamente permanecen en producción unos pocos años para luego desaparecer. En los 13 años considerados, los únicos materiales que se produjeron en forma continua durante todo el período fueron el H3 y H5. Los demás materiales reportados se produjeron por un lapso promedio de sólo 3 años. En El Salvador existe actualmente una industria con una estructura institucional y funcional consolidada, como resultado de un largo proceso que comenzó a mediados de la década de los 40 cuando se inició en el país el mejoramiento genético. Este esfuerzo dio sus primeros frutos 10 años más tarde con la liberación de los primeros híbridos comerciales. A partir de ese momento surgen las primeras estructuras de organización de la industria.La producción de semillas certificada se iníció en la década de los 50 por el Ministerio de Agricultura y Ganadería (MAG), organismo que inicialmente distribuía semilla de variedades mejoradas. La liberación del híbrido Hl en 1955, y posteriormente los híbridos H3 y H5 en 1963 y 1965, motivó la necesidad de la certificación de semillas. Dada la ausencia de organizaciones nacionales de certificación, fue necesario recurrir al sistema internacional para controlar la producción comercial de los híbridos. En enero de 1956 se organizó la Sección Profesional para la Certificación de Maíz Híbrido, bajo la supervisión de la Misión de Agricultura de los Estados Unidos de Norteamérica. En setiembre de ese mismo año, se creó el primer organismo estatal de control, el cual se denominó Servicio de Maíz Híbrido. A partir de 1958 se ampliaron sus responsabilidades a la certificación de semillas de otros cultivos, por lo que se le cambió el nombre a Servicio de Certificación de Semillas.Posteriormente, la rápida expansión del área sembrada con los nuevos híbridos trajo aparejada la dificultad de cubrir la creciente demanda de semilla mejorada, por lo cual, en 1971, el sector público abrió las puertas a la empresa privada a la producción de semilla. Simultáneamente, se promulgó la Ley de Certificación de Semillas y Plantas que dió origen a la estructura actual de la industria de producción de semilla en El Salvador (López Sánchez, 1978;ASPRODES, 1990). De acuerdo con esta ley, que se mantuvo vigente hasta 1992, el organismo encargado del control y supervisión de la calidad de la semilla era la División de Certificación de Semillas y Plantas. Hasta ese año la producción de semillas certificada estaba formada por una estructura mixta en donde las funciones de desarrollo y liberación de híbridos eran ejercidas por el sector público, mientras que la 231 reproducción y comercialización estuvieron principalmente en manos del sector privado con una presencia mínima del sector público. En 1993 se promulgó una nueva ley que reemplazó a la vigente desde 1971 y por medio de la cual el sector público se retiró de la actividad de producción de semillas pero retuvo las funciones de control y fiscalización a través del proceso de certificación de la semilla. La Figura 9 presenta la estructura institucional actual que regula el proceso de certificación de semilla.Un organismo dentro de la estructura de la industria de producción de semillas que no se muestra en la Figura 9, es la Comisión Nacional de Semillas (CNS). Este es un organismo colegiado, constituido por representantes de los diferentes grupos de productores privados y por el MAG, que actúa como organismo asesor de la División de Tecnología de Semilla y Certificación de Semilla en aspectos tales como definición de áreas de siembra, cuotas de exportación, y precios de ventas de semillas. Sin embargo, con la Ley de autonomía del CENTA el CNS no se encuentra aún en funcionamiento. La producción de semilla certificada es un proceso en donde la semilla pasa de ser un producto de una fase a ser un insumo de la siguiente. Córdova et al., 1992 indica que en ese proceso se deben reconocer cuatro categorías o clases de semillas: i) semilla genética o del fitomejorador, la cual es el resultado final del proceso de mejoramiento efectuado por el genetista o fitomejorador; ii) semilla básica o de fundación, es la primera multiplicación en el campo a partir de la semilla genética; iii) semilla registrada, es la primera multiplicación de la semilla básica; y iv) semilla certificada o comercial, es la última etapa en el proceso de multiplicación de semillas (Veliz, 1993). La Figura 10, muestra esquemáticamente el funcionamiento del sistema de producción y mercadeo de semilla certificada. El CENTA produce semilla básica a partir de la semilla genética o del mejorador, la cual es procesada y vendida a través de la Unidad de Tecnología de Semillas a los productores de semilla registrada y certificada, previa licencia de producción otorgada por la División de Certificación de Semillas y Plantas. Durante el proceso de producción, estos productores son supervisados por los técnicos de la División de Certificación quienes avalan y garantizan la calidad e identidad genética de la semilla certificada. Los productores deben cumplir las normas específicas para la producción de semillas certificadas del Reglamento General de Certificación de Semillas y Plantas que establece las tolerancias de campo permitidas para la certificación de la semilla. Debe notarse que los productores de semilla tienen la opción de comprar el material genético básico al CENTA o importarlo. 1\"A groservicios --.\"~~r-------í/ I A gricultores ~------------Figura 10. Funcionamiento del sistema de producción y mercadeo de semilla certificada en El Salvador.Los materiales más vendidos desde 1990 a 1994 corresponden a aquellos para la producción de semilla del híbrido H5 (Cuadro 5). Se deben notar también algunos cambios registrados en años 1993 y 1994 en los cuales no se vendió semilla para la producción de los híbridos H3 y H17. El H53 pasa de producirse como híbrido triple a producirse como doble. Finalmente aparecen en el mercado dos nuevos materiales: los híbridos H56 y H104.Dentro del sector privado de producción de semilla certificada se encuentran tres tipos de actores: cooperativas de productores, empresas productoras grandes y pequeños productores individuales que pueden entrar y salir esporádicamente del mercado. Todos ellos se encuentran agrupados dentro de la Asociación de Productores de Semillas de El Salvador (ASPRODE). La importancia relativa en el mercado de cada uno de estos actores ha cambiado substancialmente a lo largo de los últimos 10 años (Figura 11). En 1980 más del 80% de la producción de semilla procedió de pequeños productores individuales (englobados en la Figura 11 como \"Otros\"). A partir de 1981 los agricultores agrupados en cooperativas del sector reformado pasan a ser los principales productores de semilla certificada, alcanzando en 1982 el 80% del mercado. Sin embargo, a partir de ese año las cooperativas van perdiendo su participación relativa en favor de las empresas Semillas S.A. y Prosela S.A., las cuales capturan al final del período alrededor del 45% del mercado, sobrepasando a las cooperativas que quedan con un 40%, mientras que los productores individuales capturan el restante 15%.El número total de productores de semilla fluctuó alrededor de 15 miembros y ha seguido una tendencia levemente declinante durante la década. Es decir que la industria declina durante la década en término de los volúmenes producidos pero el número de actores permanece relativamente estable, con entradas y salidas esporádicas de productores individuales. Esto muestra una cierta movilidad en la industria que podría estar relacionada a la rentabilidad relativa de la actividad y a la liberación comercial de nuevos materiales que no tienen aceptación en el mercado y desaparecen después de un cierto número de años.Se puede apreciar entonces que con anterioridad a la vigencia de la ley en 1993, el CENTA intervino en la venta de semillas certificadas comercializando, durante los 80, entre el 1 y el 5% del total de semilla certificada. A partir de la ley en 1993, el sector público no participa en la producción y venta de semillas certificadas.Se debe notar que no todos los productores de semilla que operan en el mercado adquieren semilla básica del CENTA. Por ejemplo, en la campaña 1994/95 operaron 12 productores en el mercado, pero solamente 6 de ellos adquirieron material básico del CENTA.Los volúmenes promedios de semillas producidos por establecimiento varían de acuerdo con el tipo de semilla. Los volúmenes mayores corresponden al H5, con alrededor de 200 toneladas de semilla por productor, y el H3, con alrededor de 70 toneladas. La semilla certificada producida puede ser vendida en el mercado interno o exportada. En el mercado interno es vendida a agroservicios, transportistas, o directamente a los agricultores. Sin embargo es común que primero la semilla producida sea almacenada en alguna de las tres plantas de procesamiento existentes en el país. Una de estas plantas pertenece al CENTA, mientras que las otras dos son privadas (Semillas S.A. y Prosela S.A.) y tienen una capacidad instalada para procesar 32 t/día cada una y para almacenar un total de 3,864 t de semilla bajo condiciones naturales.Cuadro 5. Semilla de materiales parentales para la producción de diferentes híbridos vendidos por C ENTA, ] 990-] 994. El Reglamento General de Certifiéación de Semillas y Plantas establece también normas específicas para el procesamiento de semillas, regulando las acciones de estas empresas.La cadena de comercialización finaliza con la venta de semilla certificada a los usuarios finales: los agricultores. Esta venta se realiza a través de tres canales. El canal más importante en términos del volumen comercializado es aquél donde el productor vende la semilla certificada a uh distribuidor mayorista que a su vez vende a agroservicios (minoristas) o al agricultor.Aproximadamente el 60% de la semilla certificada se comercializa a través de este canal. El 40% restante es vendido por el productor directamente a los agroservicios (35%) y a los agricultores (5%).Los precios a los que el productor vende la semilla certificada varían de acuerdo con el tipo de semilla y comprador (Cuadro 6). El margen promedio entre el mayorista y el agricultor es de aproximadamente 20%. Sin embargo, el margen es substancialmente menor para el H5.Adopción y Uso de Semilla Mejorada de Maíz entre Pequeños Agricultores del Sudeste de Guatemala Gustavo Saín l , Fabío Herrera 2 y Julio Martíne:t RESUMEN La mayor parte de los productores de maíz de Guatemala no tienen acceso a insumos agrícolas. En 1987 sólo el 16% de la superficie total fue sembrada con semilla mejorada. Este trabajo intenta identificar intensidad, formas de uso y patrón de difusión de la semilla mejorada, y los factores que influyen sobre su adopción en el departamento de Jutiapa, Guatemala. Los resultados muestran que DIGESA (agencia de extensión) tuvo un impacto significativo en la adopción y difusión de semilla mejorada en el departamento. Este impacto se refleja por la tasa de crecimiento en el uso de variedades mejoradas a partir de 1986. El uso de variedades mejoradas también se encuentra asociado a la siembra de maíz en monocultivo. Agricultores con parcelas pequei\\as tienen menos probabilidad de usar semilla mejorada. Si bien la propiedad de la tierra es un factor que afecta el uso de variedades mejoradas en forma significativa, su importancia relativa no es tan considerable como los anteriores. Un resultado importante es que se tiende a usar semillas mejoradas más en tierras planas que en laderas. La edad del agricultor resultó importante solamente en el caso de adopción total. Los agricultores jóvenes además de ser menos adversos al riesgo, tienen menos dependientes y más probabilidades de usar la semilla mejorada en la totalidad de la superficie dedicada a maíz.Guatemala produce el 42% DEL total de maíz de la región centroamericana. La importancia del cultivo en la economía guatemalteca se refleja en el hecho de que durante la década de los 80 el valor de la producción de maíz representó aproximadamente el 10% del valor total de la producción agrícola del país. (Cuadro 1).La mayor parte de los productores de maíz de Guatemala son pequeños agricultores de subsistencia. Aproximadamente un 60% de las explotaciones productoras de granos básicos en Guatemala son minifundios caracterizados principalmente por un tamaño que muchas veces resulta insuficiente para satisfacer las necesidades alimenticias básicas de una familia típica (5 a 6 personas). La importancia numérica de este grupo, su situación alimenticia precaria y su crecimiento demográfico urgen una atención permanente para mejorar el nivel tecnológico de estos productores y con ello, sus ingresos (Herrera y Jiménez, 1992).De ahí la importancia de incorporar a los sistemas de producción de maíz nuevas tecnologías que contribuyan a mejorar los rendimientos y de esa manera propicien el incremento en los ingresos de los agricultores. Una estrategia para aumentar los rendimientos en forma rápida y efectiva es promocionar un mayor uso de semilla mejorada por los pequeños agricultores. Aunque la disponibilidad de semilla mejorada de maíz a través del sistema de producción convencional creció durante el período comprendido entre 1981 y 1992 (Cuadro 2), este crecimiento ha sido irregular e insuficiente para cubrir las necesidades potenciales de semilla mejorada limitando seriamente el acceso de los pequeños agricultores a ésta y a otros insumos agrícolas.Por ejemplo, en 1987 la superficie cosechada de maíz en Guatemala sembrada con semilla mejorada fue de sólo un 16% siendo agricultores medianos y grandes los principales usuarios de este insumo (Echeverría, 1990). En los últimos 20 años el rol del sector público en la producción de semillas certificadas de granos básicos disminuyó en términos relativos. Por ejemplo, la participación del Instituto de Tecnología Agropecuaria (ICTA) en la producción de semilla certificada de granos básicos disminuyó de un 25-30% en 197525-30% en -197925-30% en , a sólo el 1% en 1985 (Veliz) (Veliz). Dado que los precios de la semilla mejorada proveniente del sector privado son, en términos generales, mayores que los precios de semilla provenientes del sector público, la disminución del papel del sector público en la producción de semilla mejorada puede haber influido en el uso de semilla mejorada por pequeños agricultores.Cuadro l. Area cosechada, producción, rendimiento, valor y porcentaje de la producción agrícola total del maíz en Guatemala. 1976 Con el fm de mejorar el acceso de los pequeños agricultores a la semilla mejorada mediante el incremento de las actividades de transferencia de tecnologías agrícolas, se puso en funcionamiento, a partir de 1986, el Proyecto de Generación y Transferencia de Tecnología Agropecuaria y Producción de Semillas (PROGETTAPS). Aunque el proyecto cubrió inicialmente 7 departamentos, a partir de 1989 se incorporan 8 más para un total de 15 departamentos (Figura 1).El proyecto puso énfasis en la promoción y transferencia de nuevos materiales genéticamente mejorados los cuales eran producidos por el Instituto de Ciencia y Tecnología Agrícola (ICTA) y transferidos por la Dirección General de Servicios Agrícolas (DIGESA). Ambas instituciones se integran en la ejecución de PROGETTAPS y aprovechan el vínculo entre investigadores y extensionistas para promover un efecto multiplicador a través de la participación de agricultores en la prueba, adopción, integración y transferencia de tecnología (Córdova el al., 1992, Ortiz ).A partir de 1987, el Programa cobra vigor mediante la implementación, a nivel nacional, de estrategias y mecanismos de transferencia de tecnología destinadas a generar un sector productivo de semilla mejorada con la participación de los pequeños agricultores a nivel de 237 sus propias comunidades rurales, para que de esa manera, este sector tuviera acceso en cantidades suficientes a la semilla de nuevos materiales mejorados (Córdova el al., 1992).Aunque no estaba programada en la formulación inicial del Proyecto, una estrategia de acción que surgió durante su ejecución fue la del Programa de Producción Artesanal de Semilla Mejorada. Este programa fue planteado y ejecutado como una estrategia para hacer accesible la semilla mejorada a los agricultores que no tenían suficientes recursos para su compra o para aquellos que no la tenían disponible en su comunidad (Ramiro Ortiz. Comunicación Personal).Así, el número de parcelas de transferencia realizadas a nivel nacional por PROGETTAPS para los distintos cultivos involucrados pasa de 506 en 1986 a 4630 en 1989 (Ortiz el al., 1991). En estas parcelas los agricultores utilizaban principalmente semilla mejorada como único insumo del paquete tecnológico recomendado. Como consecuencia de la intensa actividad desarrollada en el período, la producción artesanal de semilla certificada de maíz a través de PROGETTAPS creció a una tasa anual del 22% pasando de 26.1 toneladas en 1986 a 138 toneladas en 1992 (Cuadro 2). PROGETTAPSl! convencional!! de difusión de este insumo entre los pequeños agricultores. El estudio contribuye además a conocer cual es la intensidad del uso, preferencias en cuanto a formas de uso de semilla mejorada, e identificar el patrón de difusión histórico del 'uso de variedades mejoradas y materiales híbridos en la región.La información generada es de utilidad para los diferentes sectores relacionados con la industria de producción y distribución de semilla así como para los fitomejoradores, y en forma, para los responsables de orientar y mejorar el diseño de los sistemas de suministro de semillas mejorada para los agricultores más pobres.Fuentes:---l' Años 1981 -1992,Veliz 1993. fJ. Años 1985-1990, Valladares y Sain, 1993. Años 1991 -1992, Veliz 1993 El objetivo general del trabajo es el identificar los factores que influyen sobre la decisión de usar o no semilla mejorada por pequeños Qroductores de maíz en Jutiapa, Guatemala . Se pretende conocer el impacto que ha tenido el programa de DIGESA como un medio 238 En este trabajo los datos primarios provienen de una encuesta realízada durante los meses de junio-y julio de 1991 coordinada por un equipo de técnicos del Centro Internacional de Agricultura Tropical (CIAT), y DIGESA bajo el patrocinio conjunto del Centro Internacional de Agricultura Tropical (CIAT), del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), y del Programa Regional de Maíz (PRM).Número y proporclOn de fincas en la población en la muestra por Municipio en el Departamento de Jutiapa, Guatemala La encuesta se realizó con extensionistas de DIGESA previamente capacitados para recolectar la información adecuadamente. El tamaño de la muestra fue de 208 agricultores diseminados en los 18 mumcipios del departamento de Jutiapa que corresponde aproximadamente al 2% del total de fincas en el Departamento. El número de agricultores en cada Municipio se determinó de acuerdo con la proporción del número total de fincas en cada uno de ellos (Cuadro 3). Dentro de cada Municipio los agricultores fueron seleccionados al azar. El diseño de la encuesta fue coordinado por el CIAT (Baltensweiler, 1992).El departamento de Jutiapa se encuentra ubicado en la región sudeste de Guatemala (Figura 1) Y tiene una superficie aproximada de 322,000 hectáreas. Existen alrededor de 33,000 fincas familiares con un área promedio de 6.70 has; sin embargo, un 77% de esas fincas tienen menos de 3.5 has (Baltensweiler, 1992).La región produce alrededor del 12% del maiz, 37% de sorgo y 39% de frijol cultivado en Guatemala. El uso de insumos agrícolas es bajo lo que se refleja en la productividad de los principales cultivos que ha permanecido estancada en los últimos años y es altamente dependiente de factores climáticos y 239 edáficos. Sin embargo, estos productos representan la mayor parte del ingreso y fuente alimenticia de una familia rural típica en la zona (Thornton y Hoogenboom, 1990).Aunque el promedio de lluvias anuales en el Departamento oscila entre 1100 y 1450 mm/año dependiendo del municipio, Jutiapa puede ser considerada como una región en donde la humedad es un factor limitante para la agricultura. Esto se debe principalmente a que la precipitación se concentra en los seis meses que van de mayo a octubre cuando cae más del 80% del total anual (Figura 2) (Simmons et al.,1959, Thornton y Hoogenboom, 1990).Los suelos de Jutiapa se dividen en tres clases. Suelos de la Altiplanicie Central que comprenden un 85% de la superficie total del Departamento son suelos pedregosos e inclinados, aptos sólo para pastos y bosques. Suelos del Litoral del Pacífico, que comprenden sólo el 504% de la superficie total, son suelos fértiles, productivos y fáciles de manejar. Finalmente, existe una clase miscelánea (9.6%) que incluye áreas donde no domina ninguna clase particular de terreno. En general son suelos aptos para la agricultura.La mayoría de los agricultores poseen la tierra en propiedad (61 %), mientras que un tercio de ellos la alquilan (Cuadro 4). El tamaño promedio de las fincas es de 2.3 hectáreas aunque existe una cierta variación de acuerdo con la forma de tenencia. Los propietarios tienen una propiedad con un tamaño promedio de 2.7 ha mientras que los arrendatarios alquilan un promedio de lA ha (Cuadro 2). Estas cifras ponen de manifiesto el carácter minifundista de las fincas predominantes en la región.La superficie total de la finca se dedica en un 60% a actividades permanentes en donde predominan los pastos y bosques y barbechos. Dentro de los cultivos anuales (40%), la producción de granos, principalmente l11aíz -y frijol, ocupa el mayor porcentaje de la superficie con un 39% del total de la superficie de la finca (Cuadro 5). Cuadro 4. Tenencia de la tierra y superficie de la fincas, Jutiapa, Guatemala 1991 Tenencia Porcentaje de agricu Ito res Consultados sobre sus expectativas de cambios en el uso de la tierra, la mayoría de los agricultores (53%) piensa que continuará sembrando la misma superficie que en la actualidad mientras que un tercio (29%) tienen la intención de aumentar la superficie cultivada con granos básicos y tubérculos. Aunque no existen estadísticas oficiales sobre la superficie total cultivada con maíz en el Departamento, un estudio reciente indicó que en 1989 había un total de 21,579 productores que en total cultivaban 32,170 hectáreas de maiz (SPADA citada por Viana, 1990).\"Medianero: comparten costos y ganancias en mitad y mitad Cuadro 5. Uso de la tierra por pequeños agricultores en Jutiapa, Guatemala, 1991Porcentaje de la superficie totalEl maiz se siembra bajo dos sistemas: el sistema tradicional donde el maíz se siembra asociado a otro cultivo y en monocultivo. En el primero, el maíz se asocia generalmente con frijol, sorgo u ocasionalmente algún tubérculo. En el área hay dos épocas de siembra naturales para el cultivo del maíz las cuales están relacionadas al patrón de lluvias. La primera época coincide con el inicio de la temporada lluviosa y se extiende desde el fin de abril hasta mediados de mayo y la segunda durante el mes de agosto (Figura 2). Figura 2. Precipitación media, máxima y mínima mensual. Jutiapa, Guatemala Cuadro 6. Tipos de semilla de maiz entre los Agricultores del departamento de Jutiapa. I época de siembra, 1991La segunda época se considera de mayor riesgo por la disponibilidad de agua durante el llenado de la mazorca por lo que los agricultores, en su gran mayoría, solo siembran durante la primera época de síembra. Casi el 90% de todos los agricultores en la muestra, usan las dos primeras semanas de mayo para establecer su cultivo. De esa manera se previenen de situaciones de lluvia errática o de sequía, y tienen suficiente tiempo para establecer un segundo cultivo anual durante la segunda época de siembra. Casi tres cuartos de los agricultores del Departamento de Jutiapa utilizaron semilla criolla durante la siembra del maíz en 1991, mientras que más de un tercio de ellos usaron semilla de maíces híbridos y de variedades mejoradas (Cuadro 6, panel a). Sin embargo, cuando se desagrega la información, se observa un panorama un poco más complejo ya que un 35'% de los agricultores usaron dos o tres tipos diferentes de semilla (Cuadro 6, panel b). Un poco más del 40'% de los agricultores utilizaron sólo semilla criolla siguiéndole en orden de importancia aquellos que sembraron semilla criolla y mejorada y en tercer lugar aquellos agricultores que sólo sembraron híbridos. La diferencia en las cifras entre agricultores que sólo siembran materiales híbridos en relación con aque110s que sólo siembran materiales mejorados pareciera indicar la tendencia de que los primeros tienden a ser sembrados en exclusividad mientras que los materiales mejorados se siembran en adición a los materiales criollos.Los agricultores reportaron usar al menos 30 variedades criollas. Sin embargo, ocho de estas treinta cubren el 85% del área cultivada con este tipo de semillas. La variedad más popular es la denominada Arriquín cultivada por la mitad de los agricultores usando el 56% de la superficie dedicada a variedades criollas. Las otras siete variedades criollas usadas con mayor frecuencia (29%) se conocen como: Ulupilse, I3ayonil, Americano, Maizón, San Marceño, Cola de rata y Candela (Cuadro 7).Sin embargo, cuatro clases, dos variedades y dos híbridos, son utilizados por un 89% de los productores y ocupan el 90% del área total sembrada con semilla mejorada. Las semillas mejoradas mas usada correspondieron a las variedades B-1 y B-5 Y a los híbridos H-5 y H-3 (Cuadro 8).En el caso del maíz mejorado, los agricultores reportaron usar un total de 9 clases de semilla mejorada, de las cuales cinco son híbridos y cuatro son variedades.El patrón de difusión de la semilla mejorada de maíz en el Departamento de Jutiapa se estimó mediante la recolección histórica' entre los agricultores en la muestra de información sobre cuando comenzó a comprar o intercambiar semilla de variedades mejoradas o híbridos (No se distinguió entre variedades mejoradas y materiales híbridos por lo que el patrón de difusión se refiere a materiales mejorados en general). Para minimizar los errores relacionados con este tipo de información se usaron ayudas visuales en donde se ubicaron en el tiempo eventos especiales ocurridos en el área. Los resultados reflejan parcialmente el impacto que tuvo el programa de DIGESA-PROGETTAPS (Figura 3). cosecha anterior, y cambiarla con otros agricultores. Aunque la mayoría (75%) de los agricultores practican una sola forma de adquisición, el 25% restante adquiere la semilla de dos o más formas diferentes.Cuadro 8: Variedades mejoradas e híbridos usados durante la primera época de siembra. Jutiapa, Guatemala, 1991 Porcentaje de Agricultores SuperficieEn los primeros 8 años (1977 -1985) el porcentaje de agricultores que usaban semillas mejoradas aumentó en un 11% mientras que en los 6 años siguientes (1986 -1991) la difusión de semilla mejorada en el departamento se aceleró y aumentó en un 38%, es decir a razón de un poco más del 6% anual.Existen tres formas de adquisición de semilla para la siembra de maíz: comprar la semilla, guardarla de la 1!m-1ffi2 1ffi3-1935 1ffi)-1~1003 -1001 Peíab Figura 3: Patrón de difusión de la semilla mejorada de maíz en Jutiapa, Guatemala, 1977-1991 La forma más común es la de guardar la semilla de la cosecha anterior para utilizarla en la próxima sicmbra. El 66'% de los agricultores guarda parte de su producción de maíz como material de siembra para la próxima cosecha. un 26'% de los casos compra la semilla de maíz y un 8% la cambia por otros productos.Aqucllos agricultores que siembran semilla híbrida tienden más a comprarla que aquellos que siembran materiales mejorados (Cuadro 9). Esto es consistente con las mayores pérdidas en productividad asociadas con el uso de semilla híbrida de generaciones avanzadas.obtener semilla nueva de las variedades que ya cultivan, y por tanto se requeriría un sistema activo de producción de semilla con nexos cercanos a la investigación y extensión para lograr una reposición más rápida (Heisey 1990).La información sobre las formas de adquisición y uso de la semilla mejorada permitió estimar que más del 85'>i, de los agricultores reemplazan la semilla mejorada (variedades o híbridos)' en tres o menos ciclos de cultivo, mientras que casi un 25%, de los agricultores cambian la semilla después de un ciclo de uso (Cuadro 12).Dentro del grupo de agricultores que compran semilla de maíz. los lugares más comunes donde el agricultor adquiere la semilla también varía de acuerdo con el tipo de semilla que usa (Cuadro lO).Cuadro 9. Tipo de semilla mejorada y forma de adquisición. Jutiapa, Guatemala, 1991 Cuando se les preguntó a los agricultores, cual( es) es (son) lar s) formar s) de adquirir semilla mejorada 2 que ellos prefieren, las preferencias de los agricultores en la muestra se volcaron hacia la producción de su propia semilla ya sea por selección del mejor grano o por producción artesan~l (Cuadro 11).Estos resultados son consistentes con los encontrados en estudios similares en donde los agricultores utilizan el sistema convencional de semIllas más para cambiar sus variedades que para En el caso de la semilla criolla, otros agricultores de la misma o de otra aldea son la fuente de origen para la adquisición de semilla mientras que en el caso de semilla mejorada. ya sean materiales híbridos o variedades mejoradas, la compra en casas comerciales y a otros agricultores son las fuentes principales para la adquisición de la misma.I.as preferencias sobre las dos primeras formas de adquisición tienen en común que en ambos casos la semilla se obtiene de dentro de la finca pero se dIferencian fundamentalmente en que, producirla artesanalmente, implica cumplir con los requisitos y controles que PROGETAPPS exige a un agricultor para ser beneficiario y recibir la asistencia técnica e insumos que brinda el proyecto, mientras que, la preferencia por seleccionar el mejor grano de la cosecha implica continuar con los métodos tradicionales del agricultor para producir la semilla., N\" Sl' dISI111~UIÓ entre variedades mejoradas y materiales hibridos pur 1\" que las preláeneias respecto a la formas de adquisición se n.:J\"Il'rC a Illuknaks 1l1c.10radns en general Esta información es importante ya que el horizonte de tiempo en el cual los agricultores reemplazan sus semillas es muy importante para el establecimiento de políticas agrícolas ya que los períodos de reemplazo considerados como óptimos por los fitomejoradores y agentes proveedores de semilla a menudo subestiman la duración del ciclo de reemplazo usado por el agricultor (Heisey y Brennan 1991).Una de las condiciones que los agricultores consideran importante en la determinación del número de ciclos a usar es el precio de la semilla. Un 74% de los agricultores manifestaron no estar de acuerdo con el precio que conocen de la semilla mejorada. Sin embargo, al consultarles sobre cuál sería el precio máximo que pagaría por ésta, el promedio resultó ligeramente superior al promedio del precio que ellos revelaron conocer de la semilla (Cuadro 13).Si se comparan los precios que los agricultores dicen conocer con los precios reales de la semilla (Cuadro 14) se aprecia que los agricultores de Jutiapa tienen una idea bastante acertada del valor comercial de la semilla mejorada y que estarían dispuestos a pagarlo si las condiciones de los demás aspectos relacionados con la comercialización fueran de su conveniencia.Precio Precio de la grano' semilla mejorada 2 (Q/kg.) (Q/kg.) Varo Híb.Híb.Ciclos de uso de la semilla Porcentaje de me.iol•ada agricultores Precios (Q/kg.) Conocido por agricultor Máximo que pagaría Cuadro 12, Número de ciclos de siembra que los agricultores usarían la semilla mejorada Cuadro 13. Precio conocido y precio máximo que el agricultor estaría dispuesto a pagar por semilla mejorada, Jutiapa, Guatemala, 1991.Para explicar el modelo conceptual usado para estimar la demanda de semilla mejorada se considera que el agricultor se enfrenta con la decisión de elegir entre dos alternativas: usar semilla criolla (j=0) o usar semilla mejorada (j=I). La elección de un determinado tipo de semilla depende de la utilidad que las características o atributos de la semilla tengan para el agricultor i-ésimo (X ij ) y de las características (circunstancias internas y externas) del agricultor y su finca (C¡). Es decir, que cada agricultor valora en forma diferente las características de las alternativas de acuerdo con las circunstancias internas y externas que enfrenta. De esa manera, la utilidad de un determinado tipo de semilla j para el i-ésimo agricultor (Vij) se representa por la función:donde X¡j representa el conjunto de características de cada una de los tipos de semillas alternativos y C¡ el conjunto de características del agricultor. El subíndice i mdica quc tanto el conjunto de alternativas como el de características puede ser diferente para distintos agricultores.En una muestra aleatoria de agricultores es casi imposible que el investigador pueda observar todos los elementos de X,] (J de C¡ o que conozca con exactitud cual es la función de utilidad de los agricultores. Entonces es posible dividir la función de utilidad en dos partes: una parte determinística o sistemática formada por la función [1] Y otra parte aleatoria que representa todos los elementos no observados y toda la incertidumbre del investígador respecto a aquellos aspectos de la función de utilidad que son desconocidos. Es decir:donde, ~es un vector de parámetros a ser estimados, y E¡] un vector de variables aleatorias.De acuerdo con Manski (1977) hay cuatro fuentes de incertidumbre que justifican la presencia de E¡j : 1) características no observables. Ni el investigador ni el propio agricultor conocen perfectamente el vector de características de las semillas; 2) variaciones no observadas en las preferencias de los agricultores. Las preferencias individuales varían entre los agricultores dentro de un dominio de recomendación y esta variabilidad es capturada en este término aleatorio; 3) errores en las medición tanto de las características de las alternativas tecnológicas como en las circunstancias de los agricultores; y 4) error en la especificación de la forma de la función de utilidad. Usualmente se asume una fonna lineal lo cual puede inducir a errores.La introducción del termino aleatorio significa que aun conociendo la parte sistemática de la utilidad el investigador no podría estar seguro de cual sería la elección de un determinado agricultor. En su lugar, se puede representar la probabilidad de que el agricultor iésimo elija cada una de las alternativas como: La parte derecha de la desigualdad corresponde a la parte sistemática de la función de utilidad y se puede definir como un índice de utilidad lj. Cuanto más grande sea este índice mayor será la diferencia entre las partes sistemáticas de las utilidad derivada de la alternativa 1 sobre la alternativa O y mayor será la probabilidad de que el agricultor adopte la semilla mejorada. Suponiendo que la parte sistemática de la utilidad es una función lineal en los parámetros de las características de la semilla y del agricultor, el índice de utilidad se puede expresar: La parte izquierda de la desigualdad está formada por la diferencia de dos variables aleatorias por lo que es también una variable aleatoria. Sustituyendo la expresión [5] en la [4], y haciendo e¡ = (E¡O -E¡¡) se tiene:Por lo tanto la probabilidad de que la alternativa 1 sea adoptada es igual a la probabilidad de que la variable aleatoria definida por la diferencia entre los términos aleatorios de las alternativas sea menor o igual al índice de utilidad l¡. La probabilidad de que una variable aleatoria sea igual menor que un valor determinado está dado por la función de distribución cumulativa (fdc) de esa variable aleatoria. Por 10 tanto:Asumiendo que la variable aleatoria e¡ tiene una función de distribución logística se obtiene: 1 [3 ] La función [8] es la base del modelo logit usado en el modelo empírico de este trabajo para estimar la probabilidad de adopción de las variedades mejoradas.Es decir que el agricultor elegirá el tipo de semilla que le de la mayor utilidad. Dado el modelo de utilidad' aleatoria (MUA) especificado en la expresión [3] es posible expresar la probabilidad de que el i-ésimo agricultor elija usar la semilla mejorada (alternativa l) como: 245Adopción: Los factores observados en la encuesta no estaban diseñados con la precisión suficiente para discriminar en la decisión del agricultor de adoptar o Categoría PorcentajeCuadro 15. Variable dependiente, proporción de cada categoría en la muestra una variedad mejorada o un híbrido, por esta razón se decidió agrupar a estos materiales en una sola categoría: variedades mejoradas. De esta manera el modelo empínco propuesto intenta determinar los factores que influyen en la decisión de adoptar en forma parcial o total un material mejorado sin diferenciar entre si se trata de un híbrido o una variedad mejorada.No adoptador (Yi =0)Parcialmente adoptador (Yi = 1)Totalmente adoptador (Yi = 2) 47.8 33.2 19.0La variable dependiente es una variable cualitativa que clasifica a los agricultores en tres categorías. El valor O representa al agricultor que no ha adoptado una variedad mejorada. El valor 1 representa al agricultor que ha adoptado la semilla mejorada en forma parcial, es decir, que sembró parte de la superficie con maíz con semilla criolla y parte con semilla mejorada. El valor 2 representa al agricultor totalmente adoptador que siembra toda la superficie con variedades mejoradas. El Cuadro 1S muestra las proporciones de cada una de estas categorías encontradas en la muestra.Para estimar la probabilidad de adopción parcial o total se normaliza la expresión [6] en términos de las alternativas de no adopción y se estiman las dos funciones logit siguientes (Gugajarati 1988, Train 1990):El impacto de las variables individuales sobre la probabilidad de adopción parcial o total se estima mediante el calculo de las elasticidades. La elasticidad E mide el cambio porcentual en la probabilidad de adopción ante un cambio porcentual en el factor. Se calcula como:impacto marginal del factor i.A continuación se describen las variables independientes incluidas en el modelo, sus efectos esperados y sus principales características en la muestra.Sistema: Es una variable dicotómica que toma el valor 1 si los agricultores siembran alguna parcela de maíz en monocultivo, y O si todo e! maiz se siembra asociado a otro cultivo. Se espera que los agricultores que siembren alguna parcela en monocultivo tiendan a usar más semilla de maíz mejorado que aquellos que siembran maíz en asocio. Es probable que el cambio del sistema tradicional a monocultivo esté impulsado por motivos relacionados con el incremento en productividad y rentabilidad y, por lo tanto aquellos agricultores que cambian el sistema también cambian a variedades mejoradas buscando una rentabilidad mayor.Distancia: Esta variable representa la distancia en km. de la parcela del agricultor al municipio donde se encuentra la plaza comercial más cercana donde adquiere insumos y vende su producto. Tanto la distancia como el tiempo que tarda el agricultor en recorrerla, son circunstancias que determinan en mucho la facilidad de! campesino para obtener insumos agrícolas, vender sus productos y recibir servicios de asistencia técnica. Como circunstancia de vida este factor juega un importante rol en la decisión de un agricultor para usar o no semilla mejorada de maíz y otros insumos agrícolas. Se considera que a mayor distancia, mayores serán los costos no solo de adquisición de la semilla, sino también de adquirir o recibir información (asesoría técnica) sobre sus características y manejo. Por lo tanto se espera una . relación inversa: agricultores ubicados a mayor distancia del municipio tendrán menor probabilidad de adoptar la semilla mejorada.Se consideró que la relación entre distancia y costos de transacción no era lineal por lo que se incluyó además un término cuadrático para capturar este efecto. DIGESA: Variable dicotómica que toma el valor 1 si el agricultor conoce por al menos un año el programa de producción artesanal de semilla desarrollado por DIGESA, y O si no 10 conoce. Esta variable captura el grado de información de los agricultores sobre la producción artesanal de semilla por 10 que se espera una relación directa entre esta variable y la probabilidad de adopción.Familia: Tamaño del núcleo familiar medido por el número de personas que viven en la casa del agricultor. Se espera que entre más numerosa sea la familia menor será la probabilidad de usar semilla mejorada. El sustento de esta hipótesis se basa en dos argumentos. Por un lado, familias más numerosas necesitan mayores cantidades de maíz para satisfacer el consumo interno el cuál se realiza preferentemente con maíz criollo. Por otro lado, familias más numerosas destinan mayor proporción del ingreso total a satisfacer necesidades vitales y por 10 tanto es probable que tengan mayores restricciones presupuestarias para la adquisición de semilla mejorada.Tamaño: Tamaño en hectáreas de la finca. Numerosos trabajos anteriores incluyen al tamaño de la explotación como una de las características de la fmca más relacionada con la adopción de nuevas tecnologías. Es usada también para caracterizar el sesgo distributivo de la nueva tecnología. Se espera que a mayor tamaño menores serán las restricciones de recursos financieros y de tierra para su adopción y por 10 tanto mayor será la probabilidad de adoptar la semilla mejorada.Tenencia: Variable dicotómica que toma el valor 1 si el agricultor posee al menos parte de la finca en propiedad, y Osi no posee ninguna. La tenencia ha sido un factor importante mencionado en la literatura sobre adopción de nuevas tecnologías especialmente en casos de aquellas dirigidas a la conservación de recursos o que requieren de una inversión inicial considerable. En el caso de semillas mejoradas se espera una relación positiva entre la propiedad de la tierra y la probabilidad de adopción debido al efecto riqueza. Aquellos agricultores con tierra en propiedad son mas ricos que los que no tienen y por ello más probable que adopten la semilla mejorada.Asociación: Variable dicotómica que toma el valor 1 si el agricultor pertenece a ninguna organización local (asociación, cooperativa, comité comunal, etc.) y O si no pertenece a alguna organización. En la literatura sobre adopción de nuevas tecnologías, la afiliación de los campesinos a organizaciones locales o regionales 247 frecuentemente se reporta como un factor muy relacionado a la adopción de nuevas técnicas de producción. Se espera que una mayor participación en organizaciones campesinas incrementa las alternativas de obtener servicios de asistencia técnica, crédito u otras formas de asistencia económica reduciendo los costos de adquirir información e incrementar la probabilidad de adopción de semilla mejorada.Finanext: Variable dicotómica que toma el valor 1 si el agricultor usa alguna fuente de financiamiento externo a la fmca para la producción de maíz y O si no 10 hace. Esta es otra variable que también se reporta en la literatura como un factor importante sobre la decisión de adopción. Se espera que el acceso al crédito facilite el uso de estos insumos comprados fuera de la fmca como la semilla mejorada.Edad: Edad del agricultor en años. La edad es una de las características del agricultor que se menciona frecuentemente en la literatura como un factor de importancia en la adopción de nuevas tecnologías . Aunque los resultados encontrados en trabajos anteriores no son concluyentes, se espera que los agricultores jóvenes sean más receptivos a las nuevas tecnologías y por tanto más innovadores.Educación: Variable dicotómica que toma el valor 1 si el agricultor tiene al menos un año de escuela y O si no tiene educación formal. El nivel de educación es otra característica del agricultor, además de su edad, que más frecuentemente se relaciona en la literatura con mayores tasas de adopción de nuevas tecnologías. Un alto nivel educativo se ha vinculado consistentemente con mayores tasas de adopción.La variable que más se ha usado para reflejar el nivel de educación es el número de años de educación del agricultor, sin embargo, muchos de estos casos corresponden en su mayoría a trabajos realiZados en países desarrollados donde esta variable presenta una variabilidad razonable. En el caso del presente trabajo el nivel de educación formal de los agricultores en la muestra fue muy bajo. Un 43% de los agricultores no posee ningún tipo de escolaridad y un 54% de ellos recibieron un promedio de dos años de educación primaria y sólo un 3% tiene educación secundaria.Plana: Porcentaje de la superficie cultivada con maíz que el agricultor considera plana. Estudios previos recientes (Bellon y Taylor, 1993) han mostrado la importancia de la clasificación campesina de los suelos sobre la adopción de nuevas tecnologías especialmente cuando existe adopción parcial. Se espera una asociación positiva entre esta variable y la probabilidad de adopción de variedades mejoradas ya que es probable que el agricultor invierta más en tierras planas con mayores probabilidades de altos retornos que en aquellas tierras en laderas.Mala: Porcentaje de la superficie cultivada con maíz que el agricultor no considera como una buena tierra para el cultivo de maíz. Además de las características topográficas los agricultores también clasificaron la tierra de cultivo en tres categorías de calidad: pedregosa, erosionada, y buena (Cuadro 16). Para la definición de esta variable se agruparon las categorías pedregosa y erosionada en una sola que define a la tierra como no buena en el criterio del agricultor. Se debe considerar que una tierra pedregosa no necesariamente tiene una baja fertilidad. Esta variable dice simplemente que el agricultor no la considera como buena. En este caso se espera una relación inversa por la misma razón esgrimida anteriormente: es mas probable que el agricultor invierta en tierras que él/ella considere de mejor calidad que en aquellas que considera de menor calidad.Cuadro 16. Caracterización campesina de las parcelas de maíz Pedregosa Erosionada Buena Los Cuadros 17 y 18 resumen las variables incluidas y sus características mas importantes en la muestra.Los resultados de la estimación mediante el método de máxima verosimilitud de las ecuaciones 8 y 9 pueden considerarse satisfactorios. El modelo ajusta bien de acuerdo con las distintas pruebas estadísticas propuestas en la literatura. La mayor parte de las variables incluidas tienen los signos esperados y son estadísticamente significativas (Cuadro 19).La ecuación 6 fue usada para estimar la probabilidad de adopción de semilla mejorada para un agricultor típico y otros tipos de agricultores calculada a los valores promedios de las variables cuantitativas (Cuadro 20). De acuerdo con los valores más frecuentes encontrados en la muestra un agricultor típico de maíz en Jutiapa se caracteriza por tener parte de la tierra en propiedad (69%), no participar en ninguna asociación (86%), no conocer a DIGESA (74%) y sembrar todo su maíz en asocio con otro cultivo (58%). Los otros tipos de agricultores son definidos por cambios en las variables cualitativas cuyos coeficientes resultaron diferentes de cero: sistema de cultivo, información sobre DIGESA, participación en una asociación y tenencia de la tierra.Las probabilidades asociadas con cada uno de ellos reflejan cambios en la probabilidad de adopción respecto al agricultor típico ante un cambio en el nivel de la variable cualitativa que se trate manteniendo las demás al nivel definido para el agricultor típico. Efecto esperado Proporción en la muestra Sistema. Toma el valor 1 si el maíz se siembra en monocultivo. Educación. Toma el valor 1 si el agricultor ha ido a la escuela. Digesa. Toma el valor 1 si el agricultor tuvo información sobre el programa de DIGESA. Tenencia. Toma el valor 1 si el agricultor posee parte de la finca en propiedad. Asociación. Toma el valor 1 si el agricultor participa en al menos una asociación local. Crédito. Toma el valor 1 si el agricultor hace uso del crédito en la producción.. De acuerdo con los resultados sobre la probabilidad de adopción de semilla mejorada reflejados en el Cuadro 20, para un agricultor típico de Jutiapa, la probabilidad de usar semilla mejorada en fonna parcial es de un 24% y en fonna total de un 18%. Un factor que incide en fonna significativa en la probabilidad de adopción es el hecho de si el agricultor decide sembrar al menos parte de su maíz en monocultivo. En este caso, tal como fuera postulado, la probabilidad de que el agricultor use semilla mejorada en fonna parcial se incrementa en un 80% y entre un 40 y un 50% que la use en fonna total. Este resultado indica la posibilidad que el cambio de sistema de cultivo, en parte o en el total de la superficie, y la decisión de adoptar semilla mejorada sea una decisión conjunta. 249 Dos factores que tienen un impacto similar al anterior sobre la probabilidad de adopción de un agricultor típico se relacionan con el nivel de infonnación que posee. Uno de ellos se refiere directamente al conocimiento que tiene al agricultor del programa de DIGESA. En este caso el impacto sobre la probabilidad es similar al encontrado para el cambio del sistema de cultivo. El otro factor, es la participación en organizaciones locales. En este caso el impacto se destaca en la decisión de usar semilla mejorada en la totalidad del área dedicada a la siembra del maíz. La presencia de este factor casi duplica la probabilidad de que el agricultor típico siembre la totalidad de la superficie dedicada a maíz con semilla mejorada. Los coeficientes asociados con las variables relacionadas con la participación en organizaciones comunales y con conocimiento del programa de DIGESA resultaron con los signos esperados y significativos por lo menos al 5% de probabilidad tanto para adoptadores parciales como totales. La participación en organizaciones comunales disminuye los costos de adquirir infonnación y aumenta la probabilidad de adopción de semilla mejorada. Este resultado coincide con aquellos encontrados por Harrington el al., 1992, Belknap y Saupe 1988, Herdt y Capule, 1983. La importancia del programa de DIGESA puede ser medida a través del impacto asociado a un cambio en esta variable.El cuarto factor que resultó importante en la decisión de usar semilla mejorada fue la propiedad de la tierra. Si el agricultor no tuviera tierra propia la probabilidad de usar semilla mejorada en forma parcial o total se reduce en un 60%. Es importante reconocer que aun cuando los retornos a la inversión en semilla mejorada se recuperan inmediatamente, este resultado estaría indicando la importancia de restricciones financieras. Es probable que las tasas mínimas de retornos para aquellos agricultores que no poseen tierras propias sean demasiadas elevadas como para inducirlos a invertir en nuevas semillas.Tamaño: Es la variable que tiene un mayor impacto sobre la probabilidad de adopción. Un aumento del 10% en la superficie total de la finca conlleva un aumento de aproximadamente el 5% en la probabilidad de adopción total o parcial. El tamaño de la finca y el hecho de tener tierra en propiedad son dos características que afectan positivamente la probabilidad de adopción ya sea en forma parcial o total. Una mayor superficie de la finca y la propiedad de tierras son indicadores de mayor riqueza e ingreso que, a su vez, está muy relacionado con la posibilidad de adquirir más y mejores insumos agrícolas. Estos resultados son consistentes con aquellos encontrados en otros trabajos sobre adopción de nuevas tecnologías. (Brush et al., 1990, Belknap y Saupe 1988, y Rahm and Huffman, 1984).Agricultor típico Parcial Total Cuadro 21. Elasticidades de la probabilidad de adopción (cambio porcentual en la probabilidad de adopción ante un incremento de 1% en el factor) El Cuadro21 muestra la elasticidad de la probabilidad de adopción respecto a las variables cuantitativas que resultaron estadísticamente significativas. Las elasticidades se calcularon, usando la ecuación 9, para el caso del agricultor típico. A continuación se analizan las variables agrupadas por tipo.Finanext:. Aunque los coeficientes asociados con la disponibilidad de financiamiento extra finca tuvieron signos contrarios a lo esperado tanto en el caso de adopción parcial como total, no resultaron estadísticamente significativos a ningún nivel relevante de probabilidad. Una posible explicación para este resultado es el bajo nivel de uso de fuentes de Clasificación campesina de los suelos: De las dos variables incluidas para capturar el efecto de la clasificación campesina de los suelos solo aquella relacionada con la topografia resultó significativa. Un incremento del 10% en la proporción de tierra dedicada al maíz considerada por el agricultor como plana, eleva en poco mas del 3% la probabilidad de adopción total o parcial de semilla mejorada. La clasificación campesina relacionada con la calidad de suelo (tierra pedregosa o erosionada) no parece afectar en forma significativa la probabilidad de adopción de variedades.Estos resultados son parcialmente consistentes con aquellos reportados por Bellon y Taylor quienes encontraron una clara asociación entre calidad de suelos y adopción de variedades mejoradas de maíz en Chiapas, México (Bellon y Taylor 1993).Familia: Tal como fuera mencionado con anterioridad el número de integrantes del núcleo familiar afecta negativamente la adopción de semilla mejorada en el caso de adopción total; sin embargo, no juega un papel importante en la adopción parcial. Este resultado es consistente con la hipótesis sobre la importancia del maíz criollo en el autoconsumo. En el caso de la adopción parcial el numero de miembros de la familia no es importante ya que las necesidades se satisfacen con el maíz criollo sembrado. Este resultado es consistente con los hallazgos de Brush et al., 1990 y de Rauniyar y Goode, 1990. Distancia: Tal como fuera esperado, una mayor distancia a los mercados afecta negativamente la probabilidad de adoptar semilla mejorada. Un aumento del 10% en la distancia reduce la probabilidad de adopción parcial o total por parte de un agricultor típico en un poco más del 3%. Estos valores son consistentes con los encontrados por Gottret et al., 1993. financiamiento afuera de la finca. Sólo un 17% de los agricultores posee algún tipo de financiamiento extra finca los cuales provienen de el crédito brindado por el Banco Desarrollo Agrícola (11 %) Y el alquiler de servicios de bueyes y mano de obra (6%).Edad: El coeficiente asociado con la edad del agricultor no resultó estadísticamente significativo en el caso de la adopción parcial, sin embargo si existe una asociación inversa significativa entre la edad y la siembra de toda la superficie de maíz con semilla mejorada. Es decir que son los agricultores más jóvenes los que tienen mas probabilidad de cambiar la variedad en forma total aunque su impacto no es muy importante. Un incremento de un 10% en la edad del agricultor reduce la probabilidad de usar variedades mejoradas en toda la superficie en solo 0.4%.Educación: Los coeficientes relacionados con el nivel de educación de los agricultores no resultaron estadísticamente significativos a ningún nivel relevante de probabilidad en ninguna de las dos ecuaciones. Contrariamente a lo encontrado en otros trabajos sobre adopción de tecnologías el nivel de educación no resultaron significativas a ningún nivel relevante de probabilidad en el caso de la adopción parcial, sin embargo si existe una asociación inversa entre la edad y la siembra de toda la superficie de maíz con semilla mejorada.Los agricultores del departamento usan y prefieren dos variedades mejoradas de polinización abierta (B-l y B-5) Y dos híbridos (H-5 y H-3). Si bien no se tiene información sobre el numero real de ciclos que el agricultor usa estos materiales, sin embargo las formas de adquisición reportadas y preferencias indican que la mayoría de los agricultores usan la semilla entre 1 y 3 ciclos agrícolas. Los niveles de precios relativos de la semilla mejorada encontrados (entre 3.5 y 5) son considerados adecuados para los agricultores.Los resultados muestran que el programa tuvo un impacto significativo en la adopción y difusión de semilla mejorada en el departamento. A nivel de agricultor, involucrarse con el programa por un mínimo de 1 año incrementa en forma significativa la probabilidad de usar semilla mejorada. Este impacto se refleja a nivel agregado por el incremento de la tasa de 251 crecimiento en el uso de variedades mejoradas que se registra a partir de 1986. También relacionado con el nivel de información que maneja el agricultor, se encontró que aquellos agricultores que participan en asociaciones comunales también incrementan la probabilidad de usar semillas mejoradas.El uso de variedades mejoradas se encuentra asociado a un cambio en el sistema de siembra de maíz asociado a maíz en monocultivo.Un agricultor que siembra parte o toda su parcela en monocultivo incrementa en forma significativa la probabilidad de uso de semilla mejorada. Es probable que el agricultor que siembra en monocultivo destine el producto exclusivamente al mercado por lo que la productividad de la parcela juegue un rol preponderante en la decisión de que variedad usar, mientras que preferencias sobre el consumo jueguen un papel secundario. Esta hipótesis es apoyada por el resultado encontrado sobre el impacto del numero de miembros en la familia campesina. Este factor no es importante en la adopción parcial pero si es limitante en el caso de adopción total. Dos factores importantes para la estrategia de extensión usada en el programa son: la influencia que tiene el costo de adquirir insumas e información reflejados por la distancia del agricultor al centro de abastecimiento y el tamaño de la finca. Los resultados confirman que aquellos agricultores mas lejanos a los centros tienen menos probabilidad de usar semilla mejorada. Lo mismo para aquellos agricultores más pequeños.Las futuras estrategias de extensión deben considerar estos factores al establecer sus prioridades. Una difusión más rápida requiere mayor esfuerzo promocional de los extensionistas agrícolas, y aumentar los canales de distribución. Si bien la propiedad de la tierra es un factor que afecta el uso de variedades mejoradas en forma significativa, su importancia relativa no es tan considerable como los anteriores.Un resultado importante por sus implicaciones para investigación y extensión es el hecho de que los agricultores del departamento tienden a sembrar semillas mejoradas en tierras planas más que en las laderas. Este hallazgo es consistente con la hipótesis mencionada anteriormente sobre la inversión en nuevas tecnologías.La edad del agricultor resultó importante solamente en el caso de adopción total. Este resultado confirma la aseveración realizada respecto a la importancia del uso final del producto. Los agricultores jóvenes además de ser menos adversos al riesgo, tienen menos dependientes y por lo tanto tienen mas probabilidades de usar la semilla mejorada en la totalidad de la superficie dedicada a maíz.Los autores desean agradecer a Robert Tripp, Mike Morris, Ramiro Ortiz, Mario Jauregui, Héctor Barreto, Jerome Fournier, Porfirio Masaya, Elio Durón y Giancarlo de Piccioto por sus comentarios y sugerencias realizadas a una versión preliminar que permitió mejorar enormemente este trabajo. También desean agradecer a la Cooperación Suiza para el Desarrollo (COSUDE), a la Fundación Ford (FF), y al Banco Interamericano de Desarrollo (BID) por el apoyo financiero a las actividades del CIMMYT y el PRM. Sin su generosa contribución este trabajo no hubiera sido posible. Finalmente al JCTA, y al CJMMYT por brindar el apoyo institucional necesano para tener un excelente ambiente de trabajo.José Luis Quemé!, Rolando Ochoa 2 , Carlos Acosta 3 , Kurt Schneider 4 y William Quemé 5El maíz juega un papel importante en la alimentación de los guatemaltecos. En la producción de este cereal parte de la problemática principal son las deficientes y/o limitadas prácticas de manejo de la postproducción. La Cooperación Suiza al Desarrollo en 1990 inició un proyecto de postcosecha conjuntamente con la Unidad de Postcosecha de DIGESA de Guatemala, surgiendo la presente investigación la cual se ejecutó en los aílos 1990-91, cuyos objetivos fueron cuantificar el porcentaje de daílo, pérdida de grano, factores que influyen en el grano daílado, identificación de insectos, caracterizar cada sistema e identificar alternativas de almacenamiento. El trabajo consistió en evaluar las siguientes estructuras de almacenamiento:Troja Tradicional (TT), Troja Tradicional con Manejo Mejorado (TTMM), Troja Tradicional con Patas (TTCP), Caseta de Secado (CS) y Silo Metálico (SM), dicho estudio se realizó con 88 agricultores en JO municipios del departamento de Chimaltenango en Guatemala. Entre los resultados relevantes se tiene que el Silo Metálico fue la mejor alternativa con porcentajes de daílo y pérdida acumulada menores del J%, la caseta de secado funcionó adecuadamente en el secado del grano, los factores adversos que más afectaron fueron los roedores, insectos y hongos, y entre los géneros de insectos de mayor importancia están: Sitotroga y Sitophilus. Además se determinaron las características del manejo del cultivo después de la madurez fisiológica, así como el manejo y las características de cada estructura almacenamiento.El maíz juega un papel importante en la alimentación de los guatemaltecos, ya que la población, principalmente rural obtienen de este cereal alto porcentaje de sus requerimientos proteicos y energéticos.En Guatemala, el maíz se siembra en un área aproximada de 928 mil manzanas lo que representa el 87% del total de área dedicada a los cereales. El rendimiento promedio nacional es de aproximadamente 28 quintales por manzana, esta baja producción se debe DEL PRM 1993-1995, VOL. 5 (1997), p. 254-267. 254 a varios factores entre los que se pueden mencionar factores socioeconómicos, uso de variedades criollas y/o degeneradas, de bajo potencíal de rendimiento, características agronómicas indeseables, deficientes y/o limitadas prácticas de manejo agronómico y postproducción.La postproducción es uno de los factores más importantes a tomar en cuenta para su mejora, ya que de lo contrario se tiene la problemática de pérdida de alimentos, disminucíón de la productividad del cultivo y en algunos casos pérdida de ingreso de divisas.La Cooperación Suiza al Desarrollo (COSUDE), consciente de la problemática de la postproducción, inició en 1990 un proyecto bilateral de postcosecha en Guatemala. Fue así como surgió el trabajo de la evaluación de diferentes estructuras de almacenamiento en diferentes áreas del departamento de Chimaltenango.Dicho trabajo se justificó porque en el altiplano central de Guatemala (donde se ubica Chimaltenango), existe una agricultura de subsistencia, con limitados recursos económicos y de tierra, y sobre todo, la mayoría de los agricultores que son pequeños y medianos productores, utilizan estructuras de almacenamiento tradicionales inadecuados para el buen almacenamiento del grano de maiz, provocando pérdidas, ventas del producto a bajo precio y compras con elevados precios en época de escasez.Otra justificación es debido a que caSUDE en trabajos bilaterales con otros países ganó experiencia y además identificó alternativas de almacenamiento, silo por ejemplo, los cuales reducen las pérdidas hasta cerca de cero porciento, siendo éste una buena alternativa para Guatemala.Este trabajo se ejecutó en los años 1990-91, evaluando cinco estructuras de almacenamiento, troja tradicional (TI), troja tradicional con manejo mejorado (TIMM), troja tradicional con patas (TICP), caseta de secado (CS) y silo metálico (SM). La evaluación se realizó con 88 agricultores en 14 comunidades, ubicadas en 10 municipios del departamento de Chimaltenango, Guatemala.l. Cuantificar el porcentaje de daño y pérdida del grano almacenado bajo diferentes estructuras de almacenamiento.2. Identificar los factores que más influyen en el porcentaje de grano dañado. 3. Identificar los insectos que se presentan en las diferentes estructuras de almacenamiento.4. Contar con la información de las características de cada sistema previo a su difusión masiva.5. Identificar la(s) mejor(es) altemativa(s) mejoradas de almacenamiento adaptables a las condiciones de las localidades de estudio.1. El comportamiento de la TI es' similar a las estructuras mejoradas.2. La CS disminuye el porcentaje de humedad sin afectar el grano de maíz.En el Cuadro 1, se describen los 10 mUnICIpIOS donde se realizó la evaluación, estando comprendidos entre 1,785 a 2,310 msnm, ubicados entre 14°36' 30\" Y 14°47' 24\" de latitud; y entre 90°47' 35\" Y 91°0 0' 53\" de longitud.La evaluación se realizó a finales del año 1990 y todo el año de 1991.Con base a la prueba de concepto, los agricultores se seleccionaron a partir de la población de pequeños y medianos productores.En el Cuadro 2, se detallan los municipios y comunidades donde se realizó la investigación, seleccionando 28 agricultores para evaluar la TI, 15 para la TICP, 14 para la CS, 15 para la TTMM y 16 para el silo metálico.Esta no sufrió ninguna modificación, se dejó al agricultor que la manejara tal como él 10 viene realízando a través de los años.Se utilizó la TI, modificando en lo que se refiere a selección de las mazorcas, desinfestación de la estructura con Actellic líquido 50 EC a razón de 50 cc/galón de agua; aplicación de Actellic en polvo al 2% a las mazorcas a razón de 29 gr/250 mazorcas.La construcción fue de acuerdo a las recomendaciones de la unidad de postcosecha (UP), incluyendo además las modificaciones especificadas en la TIMM.La construcción se realizó de acuerdo a las recomendaciones de la UP, se le hizo las mismas modificaciones de la TTMM y además, el maíz se almacenó con alta humedad (24%).La construcción y manejo del silo fue de acuerdo a las recomendaciones de la UP, utilizando silos de 18 y 30 qq de capacidad y aplicándoles fosfuro de aluminio a razón de 4 pastillas/18 quintales de maíz almacenado.Los muestreos se realizaron a intervalos de 30 días, durante todo el año de 1991, siendo el tamaño de la muestra de 10-12 mazorcas las cuales se tomaron del área donde se extrae el grano para el consumo. Seguidamente las muestras se enviaron al laboratorio de la UP para su análisis.Para la toma de datos se utilizaron tres boletas, la primera para el registro inicial, la segunda del registro periódico y la tercera para el análisis de laboratorio. Santa Apolonia 2.Tecpán Guatemala (PGS/NGS) * NGdnr (PGS/NGS) * NGD * PGS El 78% de los agricultores que almacenaron en la TI realizaron la práctica de \"dobla y despunte\", el 7% solo doblaron y el 15% no realizó la dobla y despunte. Este tipo de manejo la ejecutaron la mayoría de los agricultores en los meses de octubre y noviembre.Cosecha P = Pérdida PGS = Peso de grano sano al 15% de humedad NGS = Número de granos sanos NGd = Número de granos dañados NGdnr = Número de granos dañados no recuperables Para determinar el porcentaje de grano dañado se hizo mediante el conteo del número de granos dañados de una muestra de 1,000 granos expresada en porcentaje.En esta parte se presentan algunos resultados en promedios y frecuencias, relacionados con la post 257 El 46% cosecharon en diciembre, el 50% en enero y el 4% en el mes de febrero. La mayoría cosechan sin tuza (67%); 26% con y sin tuza ; y en menor porcentaje existen agricultores que cosechan con tuza (7%).Todos los agricultores utilizan variedades criollas, cuyos colores de granos se describen a continuación: amarillo (11% de las trojas), amarillo-blanco (11%), amarillo-negro (3%); amarillo-blanca-negro (43%), blanco-amarillo (14%), blanco-amarillo y negro (18%).El 100% de agricultores no desgrana para almacenar, secando el maíz al sol en promedio de 13 días.El 68% de las trojas, fueron construidas el piso y las paredes con madera rústica; el 21 % de piso de madera rústica y paredes con caña de milpa; el 4% con piso y pared de caña de milpa; otro 4% con piso de madera y paredes de adobe y 3% con otros materiales. Para el techo utilizaron lámina (89%) y teja de barro (11%). Las dimensiones fueron de 1.75, 1.94 Y2.38 m. para la altura, ancho y profundidad de la troja respectivamente; con capacidad de 8.08 m 3 • Algunas trojas se construyeron sobre el suelo a una altura promedio de 0.27m.La condición del almacén se consideró buena en la mayoría de las trojas (93%) y regular en las restantes (7%). La cantidad de maíz almacenado en promedio fue de 40.22 qq, ocupando el 55% del volumen total de la troja. En promedio la fecha de entrojado fue el 25 de enero, con fecha mínima del 23 de diciembre y máxima del 22 de febrero.La mayor parte de las troj as no presentaron evidencias de roedores (93% de las trojas), lo mismo sucedió con los insectos (86%), maíz germinado (100%), calentamiento (96%) y evidencia de moho (79%). En cuanto al control de plagas, el 43% no hace ningún control, el 7% utiliza cal (5 lbs/troj a); 39%, utiliza malathion al 5% (1-2 lbs/troja); el 4% aplica sevin (0.5 lbs/troj a); efectuando el control al momento de entrojado.Los datos para el manejo provienen de 10 agricultores que utilizaron la TTMM, ya que no se pudo obtener información del total (15). El 10% despuntan y doblan; el 40% doblan y el 50% despuntan, ejecutando dichas prácticas en los meses de octubre, noviembre y diciembre.El 7% cosecharon en octubre, 14% en noviembre y el 7% en diciembre, 64% en enero y 7% en febrero. Sin tuza cosecharon el 57% de los casos, con y sin tuza el 7%; y con tuza el 36%.El 100% utilizaron variedades criollas con los siguientes colores de granos: amarillo (7%), amarilloblanco (13%), amarillo-blanco-negro (20%), blanco (7%), blanco-amarillo (20%), blanco-amarillo-negro (33%).El 100% de agricultores no desgranan para almacenar, secando el maíz al sol en promedio de 11 días.El 14% de las trojas, fueron construidas el piso y las paredes con madera rústica; el 65% con piso de madera y paredes de caña de milpa; y el 21 % construidas con caña de milpa tanto para el piso como para las paredes. Para el techo todas las trojas tuvieron lámina. Las dimensiones fueron de 1.43, 1.98 Y 1.94 m. para la altura, ancho y profundidad de la troja respectivamente; con capacidad de 5.43 m 3 •El 73% de las trojas estaban bajo condiciones buenas y el 27% en condiciones regulares. La cantidad de maíz almacenado en promedio fue de 20.66 qq, ocupando el 43% del volumen total de la troja. En promedio la fecha de entrojado fue el 26 de enero, con fecha mínima del 27 de noviembre y máxima del 22 de febrero.La mayor parte de las trojas presentaron evidencias de roedores (73%) , evidencia de insectos (73%), maíz germinado (25%), evidencia de moho (54%) y cero porciento para el calentamiento. Para el control de plagas, se utilizó Actellic 50EC líquido y Actellic 2% en polvo, efectuando el control al momento del entrojado.El 7% de los agricultores que almacenaron las TTCP efectuaron despunte y el 50% dobla y despunte y el 43% no realizó ninguna práctica. El manejo lo ejecutaron en los meses de noviembre y diciembre.El 7% cosecharon en octubre, 13% en noviembre y el 33% en diciembre y 47% en enero.El 93% cosecharon sin tuza y el 7% restante lo hicieron con hlza.El 53% de los agricultores utilizaron variedades criollas, 27% variedades mejoradas y 20% utilizaron criolla y mejorada. En cuanto al color de granos, el 46% de los casos fue amarillo-blanco, 40% amarilloblanco-negro; 7% blanco y 7% blanco-amarillonegro.La totalidad de los agricultores no desgranan para almacenar, secando el maíz en promedio 15 días.El 100% de las TTCP fueron construidas con madera rústica para el piso y la paredes, mientras que para el techo se utilizó lámina. Las dimensiones fueron de 1.77, 1.89 Y 2.20 m. para la altura, ancho y profundidad de la troja respectivamente; con capacidad de 7.36 m J .Las condiciones de las trojas fueron buenas para el 100% de los casos, la cantidad de maíz almacenado en promedio fue de 30.28 qq, ocupando el 30% de la troja. La fecha de entrojado fue el 25 de enero, con fecha mínima del 18 de diciembre y máxima del 22 de febrero.El 31 % de las trojas presentaron evidencias de roedores, 84% con evidencia de insectos, 84% con evidencia de moho, 25% con maíz germinado, y sin 259 calentamiento. Para el control de plagas se utilizó Actellic 50EC líquido y Actellic 2% en polvo, efectuando la aplicación al momento del entrojado.El 60% de los agricultores efectuaron dobla y despunte, el 40% restante no efectuó ningún manejo. La dobla y el despunte lo efectuaron en los meses de noviembre y diciembre.El 10% cosecharon en noviembre, el 30% en diciembre y 60% en enero. La cosecha la realizaron sin tuza en el 60% de los casos y con tuza lo hicieron el 40% de los agricultores.El 100% de los agricultores utilizaron variedades criollas con los siguientes colores de grano: amarillo (10%), amarillo-blanco (40%), amarillo-negro ( 10%) Yblanco-amarilla-negro (10%).No desgranan para almacenar, secando el maíz al sol por un espacio de 11 días en promedio.El 33% de las casetas utilizaron madera rústica para el piso y las paredes; 22%, madera para el piso de madera y caña de milpa para las paredes; y el 45% madera para el piso y otros para las paredes. Las dimensiones fueron de 1.58, 0.81 Y 2.70 m. para la altura, ancho y profundidad respectivamente; con capacidad de 3.45 m 3 .Las condiciones de las casetas fueron buenas en su totalidad, almacenado 23.09 qq, ocupando el 56.35% del volumen de la caseta.La fecha de almacenamiento promedio fue el 21 de diciembre, con fecha mínima del 7 de diciembre y máxima del 22 de enero.En el 30% de las casetas existió evidencias de roedores, insectos el 20%, moho 90%, maíz germinado 40% y calentamiento el 10%. Para el control de plagas se utilizó Actellic 50EC líquido y Actellic 2% en polvo, efectuando la aplicación al momento del almacenamiento.El 27% de los agricultores doblaron, el 64% despuntaron y el 9% doblaron y despuntaron.El manejo lo ejecutaron en los meses de noviembre, diciembre y enero.El 7% cosecharon en noviembre, el 54% en diciembre y 39% en enero. La cosecha la realizaron sin tuza en el 31 % de los casos y con tuza el 69%.La totalidad de los agricultores utilizaron variedades criollas, cuyos colores de granos se describen a continuación: amarillo (15%), amarillo-blanco (8% ), amarillo-blanco-negro (8%), blanco (54%), blancoamarillo (8%) y blanco-amarillo-negro (7%).El 42% desgrana en forma manual y el 58% utiliza maquinaria. El secamiento al sollo hacen por espacio de 6 días en promedio.Las condiciones de los almacenes se consideraron buenas en el 100% de los casos, almacenado 16.08 qq en promedio. La fecha promedio del almacenamiento fue el 20 de febrero con fecha mínima del 12 y máxima del 28 de febrero.En el 70% de los casos existió evidencias de roedores, 100% con evidencia de insectos, 100% con moho, 8% con calentamiento, y sin maíz germinado.De acuerdo a la información de las cinco estructuras de almacenamiento en estudio, los agricultores realizan la práctica de \"dobla y despunte\", efectuando dicha actividad en el mes de noviembre y cosechan en los meses de diciembre y enero. Es común observar también que más del 60% de los agricultores cosechan y secan al sol las mazorcas sin tuza, durando el secamiento aproximadamente 11 días en promedio.El maíz almacenado en las diferentes estructuras es criollo, cuyas mazorcas en la mayoría de los casos tienen mezclas de color de grano (blanco, negro y amarillo) predominando el color amarillo seguidamente el color blanco.Una característica importante en las troj as, es que no se ocupa toda la capacidad de éstas, utilizando el espacio restante en alguno casos, para colocar sobre el maíz almacenado herramientas, equipo de campo y otros.La cantidad de maíz almacenado en las diferentes estructuras tipo troja, varió desde 5.28 qq/troja hasta 125 qq (ver Cuadro 3). El intervalo de la producción coincide con los rendimientos que obtienen los agricultores en las microfmcas y fincas subfamiliares, que son los agricultores meta del proyecto. El área de las microfmcas oscila entre O y 0.7 ha y las subfamiliares entre 0.7 a 7 has., concentrándose el 85% de los agricultores con el grupo que posee de O hasta 2.2 ha. siendo el rendimiento promedio de 30.80 qq/ha, por lo tanto, la cantidad de maíz sujeta a almacenamiento será en promedio de unos 40 qq.Un resumen del inicio y final del almacenamiento se observa en la Figura 2, en donde cada línea representa una estructura, siendo común el inicio del almacenamiento en enero y febrero para las estructuras TI, TIMM, TICP Y CS; los que almacenaron en silo lo hicieron todos en el mes de febrero. Para la mayor parte de las estructuras, el final del almacenamiento se dio en los meses de julio y agosto.En el Cuadro 3 y Figura 3 se presentan los promedios del maíz que se almacenaron en cada estructura, así también, como el maíz mulco que se identificó antes del almacenamiento, aclarando que éste último no se almacenó.En promedio el maíz muleo representa un 15% del total del maíz, valor que puede ser un poco más bajo (quizás un 10%) ya que, este cáleulo se realizó con el maíz almacenando sin considerar el total del maíz cosechado.En el Cuadro 4 y Figura 4 se describen algunas características que identifican la diferencia entre el maíz muleo y el maíz almacenado. En general el MM presenta 12 veces más porcentaje de pérdida con respecto al MA, o sea una relación 12: 1. Así también, se puede notar que el MM tiene menos granos sanos; mayor número de granos dañados; mayor número de granos no recuperables; menor peso de 1,000 granos, lo cual queda reflejado en el peso hectolitro (69 HL) siendo 7.4 HL menos que el maíz almacenado (76 HL).La humedad del grano del MM (15%) fue 3% menos que el maíz almacenado (18%) pudiéndose deber a que el MM fue dañado en mayor proporción por insectos (Anexo 1), los cuales se alimentan de una parte del grano con mayor humedad (endospermo). Otra razón puede ser que por el tamaño del grano (pequeño) pierda más fácilmente el contenido de agua.Los insectos que se identificaron fueron:_Sitophilus zea mais, Sitophilus oryzae, Sitotroga cerealella. La presencia de insectos, hongos y el tamaño pequeño del grano, caracterizaron a las muestras en la mayoría de los casos con olor y apariencia anormal.En el Cuadro 5, se presenta el flujo de maíz a través del tiempo para diferentes estructuras, observando que para el mes de agosto se han consumido la mayor cantidad (68%) del maíz almacenado; esto es de esperarse, ya que consumen aproximadamente 3.60 qq por mes, de los cuales el 65% se destina para alimentación humana y el 35% para consumo animal. La mayoría no vende maíz a excepción de algunos casos en donde almacenan cantidades superiores a la media.Esta situación obliga a pensar que para satisfacer la demanda de la familia del agricultor se necesitan que almacene por lo menos 43qq de maíz.El porcentaje de daño y pérdida ocasional (Cuadro 6) se aCl?ntúa a partir del mes de julio; esta situación quizá obliga a los agricultores a que saquen la mayor cantidad de maíz a partir de dicho mes. La TT es la estructura que presenta los valores más altos llegando a 47.7% de daño y 38.6% de pérdida; siendo el silo 261 metálico el que presenta los valores más bajos 6.6 y 3.4% respectivamente.Analizando las variables más importantes de este estudio, el porcentaje de daño y pérdida acumulada (ver Cuadro 7, Figura 5), se puede decir que la TI presentó los valores más altos 13.90 y 5.14% respectivamente, resultando el silo metálico como la estructura más. adecuada para el almacenamiento del grano del maíz (0.81 de daño y 0.66 de pérdida). Algo importante que se observa en las TTMM, TICP y CS es que presentan bajos valores de daño y pérdida, lo cual confirma que con sólo mejorar algún componente de la TI se disminuye significativamente el daño y la pérdida, resultando estas trojas mejoradas una buena alternativa para el almacenamiento.En el Cuadro 8 se presentan algunos de los agentes que más causan daño en el grano almacenado (insectos y hongos) observando que la TI es la que resulta más afectada por insectos, llegando a tener daños de 22%. Una situación contraria se presenta en el silo, en donde el daño por insectos no llega ni al 1% (ver Figura 6). La TIMM, TICP y CS, también presentan valores muy bajos de daño por insectos, lo cual indica que el tratamiento químico que se les hace a las paredes de las trojas y al maíz, es efectivo.En donde no hay diferencias entre estructuras es en el porcentaje de daño por hongos (ver Cuadro 8 y Figura 7), esta situación nos indica que en el futuro se le tiene que dar mayor énfasis a esta variable, para así lograr un almacenamiento adecuado.Otro agente que provoca daño son los roedores, quizá es uno de los problemas que más se le tiene que poner atención cuando se almacena en las TI, TTMM, TICP y CS, ya que la evidencia de roedores en las trojas se da en casi el 100% de los casos en los meses de mayo y junio.Los insectos que se identificaron y que más afectan al maíz son: 2. No se rechaza la segunda hipótesis ya que el grano se almacenó en la caseta de secado a 24% de humedad y luego en 50 días bajó al 15% sin dañar el grano.3. La TT fue la estructura que presentó los valores más altos de porcentaje de daño y pérdida acumulada, 13.90 y 5.14 respectivamente.5. La TTMM, TTCP y CS son también buenas alternativas de almacenamiento ya que presentaron valores bajos de porcentaje de daño y pérdida.6. Se identificaron que los factores que más ocasionan grano dañado son los roedores, insectos y hongos.7. Entre los insectos que más afectan están Sitotroga cereallela, Sitophilus zea mais y Sitophilus oryzae.8. Se cuenta con suficiente información que garantiza recomendaciones de las estructuras mejoradas en forma masiva.4. El silo metálico fue la mejor estructura con porcentajes de daño y pérdida acumulada menores del 1%.Evaluación de Distintas Epocas de Siembra y la Incidencia del Achaparramiento en Maíz, Azuero, Panamá, 1993-94Román Gordón l , Nivaldo de Gracia 2 , Jorge Franco 3 y Andrés Gonzáler RESUMEN Se realizó un experimento en dos localidades de la Región de Azuero (Las Tablas y Guararé) a partir de la primera coa (junio de 1993), con el objetivo de observar el ataque de la enfermedad conocida como achaparramiento del maíz. El diseilo experimental utilizado fue de parcelas divididas en un arreglo de bloques completos al azar con tres repeticiones. Las parcelas principales consistieron de las distintas épocas de siembra. Estas parcelas se sembraron cada 15 días, iniciándose el 15 de junio (Guararé) y elIde julio (Las Tablas) para un total de 7 y 6 épocas de siembras, respectivamente. En las subparcelas se evaluaron tres cultivares P-8812, X-304 e, y NB-12. En ambas localidades se observó un efecto muy marcado de la enfermedad según las épocas de siembra. Las siembras realizadas antes del 15 de agosto fueron las que mostraron mayor porcentaje de plantas afectadas por el patógeno (con síntoma) y mayor porcentaje de mazorcas afectadas. El mayor porcentaje de plantas achaparradas en Las Tablas y Guararé se dio en la siembra del 1 y 15 de julio con 64.6 y 21.8%, respectivamente. Luego éste fue disminuyendo hasta alcanzar un valor de 5.5 y 1.5% en las siembras del 15 de septiembre.Todos los cultivares evaluados presentaron síntomas de la enfermedad. En Las Tablas en donde la incidencia de la enfermedad fue más alta, presentarón un porcentaje de dailo promedio de todas la épocas de siembra de 30.03% (P-8812), 23.40% (X-304 C) Y 11.81 % (NO-t2). De acuerdo al conteo de la población del Dalbulus maydis se encontró que ésta es altamente virulenta, ya que a pesar de las bajas poblaciones encontradas, se observa un alto porcentaje de plantas afectadas con los síntomas del achaparramiento.En 1992 se observó en varias parcelas de maíz de la Región de Azuero, una alta incidencia de la enfermedad conocida como achaparramiento. Gordón et al (1993), encontraron que esta enfermedad se presentó en todas la áreas de cultivo de la región, pero con diferente intensidad. Estos mismos investigadores encontraron que la época de siembra fue el factor que más influyó para favorecer la incidencia de la enfermedad; y que la interacción encontrada en los cultivares se debió que uno de los materiales más sembrados no se dio en la época de mayor incidencia de la enfermedad (siembras antes del 15 de agosto).La enfermedad conocida como achaparramiento fue reportada por primera vez como una enfermedad nueva del maíz en Río Grande, Valle de Texas en 1956. El complejo del achaparramiento está compuesto de tres agentes causales a) Spiroplasma kunkelii o raza Río Grande (Corn stunt spiroplasm CSS), que causa la proliferación de mazorcas y bandas cloróticas comenzando de la base de las hojas; b) micoplasmas (Maize bunshy stunt micoplasm, MBSM), que producen el típico síntoma de enrojecimiento de las hojas; y c) el virus del rayado fmo, que causa las típicas Lbandas cloróticas en las hojas (Nault and Bradfute, 1979). Este complejo del achaparramiento es transmitido por chicharritas de la especie Dalbulus maydis (Homoptera: Cicadellidae).El principal hospedero de este insecto es el maíz, pero puede sobrevivir en plantas de teosinte (zea spp), Tripsacum e incluso sorgo (Nault and Bradfute, 1979;Sveinhaug and Jorgensen, 1988). El ciclo de vida de este insecto desde huevo hasta adulto es de 23 días. Los adultos de esta especie son muy sedentarios. Los movimientos y dispersión de los adultos se debe a cambios en la temperatura o disturbios mecánicos. Las hembras son más móviles que los machos y requieren más nutrientes para la producción de los huevos (Nault and Bradfute, 1979). Climas cálidos, baja humedad relativa y escasa precipitación son favorables para el desarrollo de altas poblaciones del vector. En Nicaragua Sveinhaug and Jorgensen, (1988) encontraron que las poblaciones de Dalbulus maydis se incrementaron a partir de septiembre, mientras que las más bajas se dieron en los meses de julio a agosto.El objetivo de este trabajo fue el de determinar las épocas de siembras que son afectadas por el ataque de esta enfermedad. Otro objetivo fue el de determinar la susceptibilidad de dos cultivares sembrados comercialmente en el país y compararlos con un material que presenta buena tolerancia Se realizó un experimento en dos localidades de la Región de Azuero (Las Tablas y Guararé) a partir de la primera coa o época de siembra Uunio de 1993). El diseño experimental fue de parcelas divididas en un arreglo de bloques completos al azar con tres repeticiones. Las unidades experimentales fueron parcelas de cuatro surcos de 5.5 m de largo. La distancia de siembra fue de 0.75 m entre hileras y de 0.50m entre golpes, dejando dos plantas por golpe, para alcanzar una densidad teórica de 5.33 pVm 2Las parcelas principales consistieron de las distintas épocas de siembra. Estas parcelas se sembraron cada 15 días, hasta llegar a la última siembra, la cual se realizó el 15 de septiembre. Las mismas se iniciaron el 15 de junio (Guararé) y elIde julio (Las Tablas) para totalizar 7 y 6 épocas de siembras, respectivamente. En las subparcelas se evaluaron tres cultivares a saber: P-8812, X-304 C y NB-12. El primero es un híbrido del Programa Nacional y el segundo es un híbrido importado, ambos cultivares son sembrados de manera comercial en el país. El tercero es una variedad de grano blanco, proveniente del Nicaragua, la cual es tolerante al achaparramiento y es sembrada comercialmente en ese país.Las semillas de los tres cultivares fueron tratadas con el insecticida furatiocarb a razón de 8 g i.a.fha. El abonamiento de todas las épocas consistió de 227 kg de 15-30-8fha al momento de la siembra más 227 kg de urea a los 30 días después de la siembra (dds). El control de malezas se realizó con la aplicación de la mezcla de atrazina más pendimentalina a razón de 3.0 + 3.0 lIha en Las Tablas y con glifosato a razón de 4.0 lIha en Guararé.Se tomaron datos de rendimiento de grano, número de plantas y mazorcas cosechadas, número de plantas y mazorcas que presentaban el síntoma de la enfermedad y el número de D. maydis por planta. La precipitación pluvial durante el período que duró el ensayo se tomó en la localidad de Guararé (Cuadro 1).La intensidad con que se presentó la enfermedad en este experimento no fue uniforme en las dos localidades evaluadas. La intensidad de la enfermedad fue mayor en Las Tablas (21.75% de plantas con síntoma), mientras que en Guararé a pesar que la enfermedad se presentó en una intensidad baja (6.1'Y0 de plantas con síntomas), los resultados son similares como los observados en Las Tablas.Cuadro 1. Precipitación y número de días con lluvia en Guararé de mayo a diciembre de t993. Al realizar un análisis de correlación entre todas las variables medidas y el rendimiento de grano, se encontró que las variables que representan el síntoma de la enfermedad (plantas y mazorcas afectadas), presentaron un coeficiente de correlación negativos con valores de 0.55 y 0.58 (significativos a P< 0.001), respectivamente, lo que demuestra que la enfermedad tiene un efecto directo sobre los rendimientos del cultivo. El peso de la mazorca fue el factor o componente del rendimiento más afectado. Al realizar el análisis de correlación con el peso de la mazorca, se encontró que estas variables tuvieron un coeficiente de correlación negativo de 0.43 y 0.44, para el porcentaje de plantas y mazorcas afectadas, respectivamente.En ambas localidades se observó un efecto muy marcado de la enfermedad según las épocas de siembra. Las siembras realizadas antes del 15 de agosto fueron las que mayor porcentaje de plantas afectadas por el patógeno (%plantas con el síntoma) y mayor porcentaje de mazorcas afectadas presentaron. Resultados similares obtuvieron Gordón et al (1993) en donde se observó en el muestreo realizado en toda la Región de Azuero, que la enfermedad atacó más fuerte o tuvo su mayor incidencia en las siembras anteriores al 15 de agosto.El mayor porcentaje de plantas achaparradas en Las Tablas y Guararé se dio en la siembra del 1 y 15 de julio con 64.62 y 21.85%, respectivamente. Luego éste fue disminuyendo hasta alcanzar un valor de 5.50 y 1.48% en las siembras del 15 de septiembre, para las Tablas y Guararé, respectivamente. Estos últimos porcentajes son considerados de una intensidad o incidencia normal en las siembras realizadas tradicionalmente en esta Región. En relación al porcentaje de mazorcas afectadas por la enfermedad, se encontró que, el mayor daño se dio en la siembra del 1 de agosto, para ambas localidades con 25.57 y 30.56% (Las Tablas y Guararé) y al igual que en el porcentaje de plantas afectadas, el mismo fue disminuyendo hasta alcanzar un nivel de 9.32 y 4.62% en las siembras del 15 de septiembre (Cuadro 2). El análisis estadístico para ambas variables demostró diferencias significativas (Cuadro 3).La proliferación de jilotes por plantas (mazorcas en formación), el cual es el otro síntoma que esta relacionado con la enfermedad, mostró un incremento en las tres primeras épocas de siembra, en el caso de Las Tablas. Esta sintomatología alcanzó el máximo valor en la siembra del 1 de agosto con 1.32 jilotes/planta, luego de esta época la misma disminuyó hasta lograr un promedio de casi un jilote/planta. En Guararé la siembra del 15 de julio, fue la que alcanzó el máximo nivel de jilotes/planta y luego mostró la misma tendencia observada en Las Tablas.En relación al rendimiento de grano, se observó que hubo diferencias altamente significativas entre las distintas épocas de siembra. En Las Tablas el menor rendimiento se obtuvo en la siembra del 1 de julio (1.96 t/ha), mientras que los mayores rendimientos se obtuvieron en el período del 15 de julio al 15 de agosto (3.86, 3.27 y 3.73 t/ha, respectivamente). Estos resultados parecen indicar que no hubo relación entre la incidencia de la enfermedad y el rendimiento obtenido, pero hay que señalar que las dos últimas siembras (1 y 15 de septiembre) fueron muy afectadas por la escasa precipitación del mes de septiembre el cual mermó la producción de granos. Otro factor que parece indicar el mejor rendimiento obtenido en estas tres épocas es el número de mazorcas cosechadas/m 2 (r =0.49) los cuales alcanzaron los más valores más altos en estas épocas, en comparación con las otras. En Guararé los rendimientos más bajos se obtuvieron en las siembras realizadas antes del 1 de agosto (inclusive). Al igual que en Las Tablas el número de mazorcas cosechadas/m 2 puede ser un factor que influyó en el bajo rendimiento obtenido (r = 0.63).Los resultados obtenidos en relación al porcentaje de plantas afectadas indican que hubo una diferencia altamente significativa entre ellos. Todos los cultivares evaluados presentaron síntomas de la enfermedad. El resultado de este experimento indica que los cultivares que se siembran en el país a nivel nacional son susceptibles, ya que, en Las Tablas, donde la incidencia de la enfermedad fue más alta, presentaron un porcentaje , de-' daño promedio de todas la épocas de siembra de 30.03% (P-8812) y 23.40% (X-304 C), mientras que la variedad nicaragüense NB-12 presentó un porcentaje de daño mucho menor (11.81), lo que podría catalogarla como tolerante a la enfermedad (Cuadro 4). En Guararé se observó la misma tendencia para esta variable con promedios de plantas afectadas para el P-8812, X-304 C y el NB-12 de 7.55, 7.19 y 3.53%, respectivamente. En Las Tablas el comportamiento se mantuvo igual en todas las épocas de siembra, es decir, el P-8812 siempre mostró porcentajes de plantas afectadas mayores que el X-304 C, y éste a su vez, superó en relación al daño a la variedad NB-12. En Guararé la tendencia fue similar, aunque en la siembra del 1 de julio el P-8812 presentó el promedio más bajo de plantas afectadas que el NB-12 Y X-304 C (15.00% vs 18.20 y 19.41%, respectivamente).En relación al porcentaje de mazorcas afectadas se observó diferencias altamente significativas entre los cultivares. El material menos afectado en ambas localidades fue el NB-12 con 3.90 y 6.96% de daño (promedio de todas las épocas). En general esta variedad mostró un porcentaje bajo de mazorcas enfermas, sólo en la época de siembra del 1 de agosto, el porcentaje de daño fue relativamente alto (31.63%), en el resto de las épocas su daño fue menor del 10%, lo que demuestra su tolerancia a la enfermedad.El híbrido nacional P-8812 fue el que más daño presentó con 26.50 y 12.69% de mazorcas afectadas en Las Tablas y Guararé, respectivamente. El X-304 C, obtuvo un valor promedio entre estos dos cultivares en las dos localidades (15.78 y 8.86%), Este híbrido (X-304 C) alcanzó hasta un 30.8% de mazorcas afectadas y 65.5% de plantas con el síntoma en las épocas en donde la enfermedad se presentó con intensidad alta, lo que indica que el éste no es resistente (Cuadro 5).En relación al rendimiento de grano, en Las Tablas se observó que el NB-12 superó a los dos híbridos evaluados en las siembras del 15 de julio al 15 de agosto. En las siembras del mes de septiembre y del 1 de julio los híbridos superaron a esta variedad. Exceptuando la siembra del 1 de julio, en donde a pesar de que la enfermedad se presentó con alta incidencia se observó que en las épocas en donde se presentó con alta incidencia la enfermedad la variedad por su tolerancia permitió rendimientos superiores (Cuadro 6). Debemos señalar que este bajo rendimiento de la variedad se debió principalmente por la baja germinación de las semillas, dando por resultado una baja población de plantas al fmal de la cosecha (4.16 plantas/m 2 ), en comparación con los híbridos (5.29 y 5.09 plantas/m 2 ). Esta situación se mejoró en las siguientes épocas, a través de la siembra de más semillas por golpe en el caso del NB-12.El conteo de las poblaciones del insecto transmisor de la enfermedad, se realizó en todas las épocas a partir de los 15 dds, con una frecuencia de un muestreo semanal. El resultado de este conteo indicó que las poblaciones encontradas del vector no superaron el promedio de un Dalbulus maydis por planta. Este promedio indica que la población existente en la región es altamente virulenta y bastan unos cuantos insectos para que la enfermedad se convierta en una limitante para la producción de este cultivo.A pesar de que las siembras se realizaron escalonadamente, se esperaba que la población del insecto fuera en aumento hasta alcanzar la máxima población en las siembras del 15 de septiembre, situación que no se dio. A partir de las siembras del 1 de septiembre no se logró detectar especímenes de esta especie. Lo que indica, que existe algún factor que está regulando las poblaciones del vector de manera efectiva y natural. Este estudio pretende contribuir al entendimiento de la elaboración del rendimiento y sus componentes en sistemas de producción de maíz de la Luperón, República Dominicana. Se efectuó un monitoreo dinámico en 21 campos de agricultores durante 1993 y 1994, lo que permitió el levantamiento de las informaciones aquí presentadas. El objetivo es identificar problemas claves que limitan la elaboración del rendimiento en maíz. Para la toma de datos se establecieron 5 estaciones fijas de 5 m lineales en un área pre-seleccionada de 100 mI y 5 estaciones adicionales de 3 m elegidas al azar dentro del predio del agricultor. La densidad promedio de siembra fue 6.55 pI m-l , perdiéndose el 26% de estas durante el desarrollo del cultivo, para una densidad final a la cosecha de 4.73 pI m-l. En promedio, el 14% de las plantas no produjeron mazorca para una cosecha final de 4.0 mz m-l. En los primeros 25-35 días del cultivo se perdieron el 24% de las plantas, debido a una combinación de fuerte ataque del gusano cogollero así como la fuerte presión de las malezas.. Los datos son consistentes con datos regionales del PRM, confirmando que el bajo número de plantas y mazorcas a la cosecha explica los bajos rendimientos de maíz en campos de agricultores.Desde el punto de vista agronómico, el rendimiento por unidad de superficie del maíz depende del número de mazorcas cosechadas por unidad de área y su peso promedio (Bolaños y Barreto, 1991). La baja densidad de población al momento de la cosecha es una de las razones más importantes de los bajos rendimientos en campos de agricultores de la región (Rodríguez y Miranda, 1990;Bolaños y Barreto, 1991;Beauval, 1992a). Diferentes estudios (Turrent, 1983;Beauval, 1992) han sugerido que rendimientos de maíz menores a 2-2.5 ton ha-1 están asociados a un bajo número de plantas por hectárea así como una alta proporción de plantas infértiles. Un bajo número de plantas ha-I se puede deber a una baja densidad de siembra o la pérdida de plantas por estreses,en especial por problemas de plagas. Un bajo número de mazorcas por planta (o número de granos por mazorca) se puede I Investigador, D1A-CESDA, IExtensionista Agrícola, SEA, Luperón,. 3Agrónomo Regional, ClMMYT-Guatemala:. Publicado en' SÍNTESIS DE RESULTADOS EXPERIMENTALES DEL PRM 1993-1995, VOL. 5 (1997), p. 274-278. 274 deber a estreses durante la floración, y estreses durante el llenado de grano afectan el peso final de grano. Es importante entender como a lo largo del ciclo del cultivo se forman sincrónicamente y sucesivamente los componentes de rendimiento (Bolaños y Barreto, 1991;Bolaños y Edmeades, 1993).Los objetivos del presente estudio son entender los procesos de formación del rendimiento y las causas de la variabilidad en sus componentes a través del ciclo del maíz y sus limitantes en campos de agricultores típicos de Luperón.Estas actividades y/o ensayos no envolvieron el establecimiento de ensayos con tratamientos experimentales especificos o diseños estadísticos como en la experimentación tradicional. En estos, se efectuó un diagnóstico agronómico dinámico en 21 campos de agricultores y/o parcelas de validación de maíz representando diversos ambientes, condiciones socioeconómicas, practicas culturales, variedades, etc, para monitorear los procesos de elaboración del rendimiento en la zona de Luperón, República Dominicana (Cuadro 1). Dentro de cada parcela seleccionada, se escogió un área relativamente homogénea de 10 x 10m donde se efectuó el diagnóstico dinámico visitándose la parcela 6 veces en total: siembra (visita 1), establecimiento (visita 2), fase vegetativa (visita 3), floración (visita 4), llenado de grano (visita 5) y cosecha final (visita 6). Dentro de esta área de 10 x 10m, se marcaron 5 estaciones de 1 surco de 5 m lineales donde se efectuó un monitoreo continuo y repetitivo del cultivo. En cada visita también se escogieron al azar 5 estaciones adicionales de 1 surco de 3 m lineales, pero afuera del área marcada de 10 x 10m pero aún dentro de la parcela del agricultor. visita a la floración (visita 4), en 12 plantas al azar se midió el largo (L) y ancho máximo (A) de la hoja de la mazorca y se estimó el área foliar como L x A x 0.75, se contó el número de hojas verdes (NHV) presentes debajo de la mazorca, y en 12 jilotes al azar se detenninó el número de hileras y el número de granos por una hilera.Se recopiló un calendario de las actividades culturales realizadas por el agricultor en la parcela, y las herramientás, los insumos y el trabajo Uornales) para su realización. Para cada localidad, se tratará de conseguir toda la infonnación meteorológica disponible (lluvia, temperatura, humedad, radiación). en la estación, el número total de plantas con acame, el número total de mazorcas, el número de mazorcas podridas, y el peso de campo respectivo. En 12 mazorcas al azar, se determinó el índice de desgrane, la humedad de grano por Dickey-john, el número de hileras y número de granos por hilera y el peso de 200 granos.Se cosecharon 24 plantas al azar al pie de cada base detenninándose su peso fresco. Con una estimación de humedad obtenida en una submuestra de 6 plantas se detenninó el peso seco, sumándosele 20% para contabilizar un estimado de las hojas perdidas durante el ciclo. El índice de cosecha (lC) se calculó como la fracción de grano de la biomasa total después de descontar el olote. Con los datos de la cosecha se calcularon los componentes estándares de rendimiento. Al momento de la cosecha, se detenninó el rendimiento final y sus componentes en todas las estaciones lineales y en el área marcada de 10 x 10m. En las 5 estaciones fijas de 5 m, en 5 estaciones al azar de 3 m, y en la parcela de 10 x 10 m, se detenninó una distancia promedio entre surcos y se contó el número total de plantas.La mayoría de los agricultores muestreados usan la variedad Francés Largo, un criollo mejorado de olote muy delgado y grano amarillo dentado. Esta variedad tiene buena aceptación en la zona (Cuadro 1). Una característica sobresaliente es la unifonnidad en el arreglo topológico de siembra, en fonna manual a una distancia promedio entre surcos mayor que 1 m con un arreglo mateado con 3-4 plantas por golpe. Esta característica difiere de los reportes regionales del PRM, donde predomina un arreglo topológico con 1-2 plantas por golpe (Bolaños et al., 1993).El Cuadro 2 muestra la densidad inicial de siembra, la densidad final, el rendimiento y sus componentes (rnz/m 2 , rnz/pl, número de granos por mazorca, peso de 1 grano, peso de mazorca, rendimiento), la biomasa y el índice de cosecha, el porcentaje de pudrición de mazorca, para los 21 agricultores muestreados. Relaciones gráficas entre estas variables se muestran en la Fig. l.El rendimiento promedio de los 21 agricultores muestreados fue 2.58 tlha, debido a una población final de 4.73 pl/m 2 y de 4.00 rnz/m 2 con peso de 69 g/rnz. Se detectaron correlaciones muy pobres en el rendimiento final y la densidad de plantas o mazorcas, pero correlaciones significativas con el peso de mazorca y la biomasa final. La relación entre rendimiento e índice de cosecha mostró una relación curvilínea. Estos datos confinnan resultados obtenidos por el PRM (Bolaños et al., 1993).La mayoría de los agricultores muestreados tuvieron cerca de 4.0 pl/m 2 a la cosecha, con una mayor variabilidad en el número de mazorcas cosechadas (Fig. 1). Sin embargo, fue el peso de mazorca (y/o índice de cosecha) el factor más detenninante en explicar la variabilidad en rendimiento observada. Cuadro 2. Componentes de rendimiento y parámetros agronómicos en 21 campos de agricultores en la zona de Luperón, República Dominicana, durante 1993-94. • ...., , . Figura 1. Relación entre rendimiento de grano (t/ha) y la densidad final de plantas (pl/m2) y mazorcas (mz/m2), el número de mazorcas por planta (mz/pl), el peso promedio de mazorcas, la biomasa final y el índice de cosecha para diagnósticos dinámicos agronómicos efectuados en 1993-94 en 21 campos de agricultores en la zona de Luperón, República Dominicana.Es obvio que rendimientos inferiores a 2.0 t/ha están asociados con una reducción en el peso de la mazorca y una caída drástica en el índice de cosecha (Fig. 1). Estos datos confirman el nivel crítico de rendimiento cercano a las 2.0 tlha reportado anteriormente por Bolaños et al. (1993).La Figura 2 muestra la dinámica promedio de población de plantas y mazorcas a través de los diferentes estadios de desarrollo del cultivo.El número de plantas se reduce 30% de la siembra al establecimiento, 15-20 días después. Esta reducción en el número de plantas coincide con una gran incidencia del gusano cogollero, Spodoptera spp., la que obliga a muchos agricultores a resembrar. A partir de esto, la densidad de plantas decrece hasta la cosecha, pero a una tasa lineal y lenta. El número de rnz/m 2 también decrece a la misma tasa promedio que la densidad de plantas. El monitoreo dinámico confirmó los datos encontrados en 1992 en parcelas de campos de agricultores (Bolaños et al., 1993). Se encontró una dependencia relativamente pobre del rendimiento final con la densidad final de plantas y mazorcas, pero una correlación muy fuerte con el peso de mazorcas y con la biomasa final. Figura 2. Dinámica promedio de la densidad de plantas y mazorcas a través del ciclo del maíz para los 21 agricultores muestreados en 1993-94.S=siembra, E=establecimiento, V=fase vegetativa, F=f1oración, L=lIenado de grano, C=cosecha.Estadio de desarrollo 2 s E v F L e 277 2. Los datos confirman la sugerencia que parece existir un rendimiento crítico cercano a 2.0 tlha, rendimientos inferiores a 2.0-2.5 tlha asociados con una proporción alta de plantas infértiles, bajo número de mazorcas por planta y por ende una caída drástica en el índice de cosecha. Rendimientos superiores a este nivel crítico tienen 1 rnz/pl e le superiores a 0.35.El Achaparramiento del Maíz: Patógenos, Síntomas y Diagnóstico Priscila Henríquez l y Dan Jeffers z RESUMEN El achaparramiento, una enfermedad del maíz, causa pérdidas severas en varios países de América Latina. Este complejo agrupa tres patógenos: el spiroplasma .del achaparramiento (Spiroplasma kunkelil), el Phytoplasma del Enanismo Arbustivo del Maíz y el Virus del Rayado Fino, los cuales son transmitidos por cicadélidos del género Dalbulus. Entre los síntomas causados se encuentran la reducción del tamafto de los entrenudos, coloraciones rojizas en las hojas, bandas cloróticas en la base de las hojas, amarillamiento, proliferación de mazorcas y proliferación de hijos en la base del tallo. Frecuentemente ocurren infecciones mixtas y la sintomatología suele ser semejante y parece depender del germoplasma y las condiciones ambientales. Por estas razones, el diagnóstico de campo suele ser inadecuado y es necesario realizar pruebas de laboratorio para identificar la presencia de los patógenos. Reacciones antígeno-anticuerpo, especialmente ELlSA, son utilizadas para detectar agentes fitopatógenos por su relativa facilidad de operación y bajo costo. Recientemente técnicas de diagnóstico basadas en el uso de ácidos nucleicos han sido desarrolladas con mucho éxito, siendo éstas muy sensitivas y específicas para diagnosticar la enfermedad.El complejo de enfermedades conocido como achaparramiento es de creciente preocupación para los productores de maíz del trópico y subtrópico en el continente Americano. En Florida se reportaron pérdidas de $60 millones en producción de semilla de híbridos de maíz en 1979-80 (Bradfute et al., 1981). El problema que la enfermedad causa en los trópicos es aún mucho más grave. Por ejemplo, en 1986-87 en el pacífico de Nicaragua la enfermedad afectó 28 mil ha. del cultivo causando pérdidas de U$ 3-4 millones (MINDIRA-DGA, 1986). Otras epidemias se han reportado en El Salvador (Anaya García, 1975), Panamá (Gordón et al., 1993), República Dominicana, Haití, Honduras y México, las cuales han causado pérdidas considerables. Recientemente, grandes áreas de Brasil, en donde se siembran híbridos susceptibles, están siendo seriamente afectadas por esta enfermedad (F. Tavares Femandes 1996, Comunicación Personal).El achaparramiento fue observado por primera vez en Río Grande, Texas, por Alstatt (1945) en plantas de maíz que presentaban entrenudos cortos, proliferación de hijos y enrojecimiento de las hojas. Alstatt envió muestras de plantas infectadas con esta \"enfermedad del Río Grande\" a Kunkel quien llamó a la enfermedad achaparramiento, considerando al agente causal como un virus, y estableciendo que el vector era Dalbulus maidis. Posteriormente, Maramorosch (1955) estudió plantas de maíz colectadas en la meseta central de México. Estas plantas mostraban algunos síntomas diferentes de los producidos por la \"enfermedad del Río Grande\", ya que además presentaban abundante proliferación de hijos, por ello se le consideró como otra cepa del achaparramiento y se le llamó \"Mesa Central\". En 1961 la enfermedad se identificó en El Salvador (Ancalmo y Davis, 1961), en donde producía plantas con entrenudos cortos y bandas cloróticas.La confusión perduró durante los años setenta en cuanto a si la enfermedad era causada por un sólo agente con varias cepas, o por distintos patógenos (Davis, 1977). Granados et al. (1968), trabajando con dos \"cepas del achaparramiento\", una de Louisiana y la del Río Grande, demostraron que los agentes causantes eran prokariotes, carentes de pared celular y susceptibles a tratamientos con tetraciclina. Estos investigadores detectaron los organismos en plantas y en las glándulas salivares de insectos infectados. En 1975, dos grupos de investigadores lograron independientemente aislar y cultivar in vitro al spiroplasma, al cual se le llamó Spiroplasma kunkelii (Chen and Liao, 1975;Williamson, 1975).Mucho progreso en el campo de la virología y bacteriología permitió entonces distinguir entre los virus y los prokariotes de la clase Mollicutes, que agrupa organismos dificiles de cultivar o totalmente no-cultivables. Avances en microscopía electrónica, purificación de virus y técnicas de transmisión usando los saltahojas vectores, permitieron establecer que S. kunkelii es miembro de un complejo de patógenos que causan el achaparramiento, siendo otro mollicute, el phytoplasma del enanismo arbustivo, el agente etimológico relacionado con el síndrome de la cepa Mesa Central (Bradfute and Robertson, 1977;Bascope y Galindo, 1978;Nault, 1980). Igualmente, acelerado progreso se ha logrado en la caracterización del otro miembro del complejo, el virus del Rayado Fino (Gámez, 1977), que es también transmitido por D. maidis y al cual inicialmente se consideró como una cepa más de achaparramiento. Los nombres Río Grande y Mesa Central han caído en desuso, y ahora se usa el término \"achaparramiento\" para el complejo de patógenos transmitidos por cicadéllidos del género Dalbulus.Infecciones mixtas de los tres patógenos parecen ser frecuentes, especialmente cuando 1M niveles poblacionales del vector son altos. Por ello los síntomas producidos por los patógenos suelen mezclarse o enmascararse, y el diagnóstico de achaparramiento bajo condiciones de campo resulta inapropiado y a menudo dudoso. Se desconoce además la reacción de diferentes germoplasmas de maíz a los componentes individuales del complejo que pueden influir en los síntomas observados.Los patógenos que han sido asociados con el achaparramiento son los mollicutes spiroplasma del achaparramiento (CSS) y Phytoplasma del Enanismo Arbustivo del Maíz (MBS), y el Virus del Rayado Fino (MRFV). Estos patógenos son transmitidos en forma persistente por chicharritas del género Dalbulus (Homoptera: Cicadellidae), especialmente por la chicharrita del maíz, D. maidis. Algunos autores (Whitcomb, 1989) también consideran al Virus del Enanismo Clorótico del Maíz (MCDV), transmitido por especies de Graminella como miembro del complejo en Norte América. A continuación se describen brevemente las características de los organismos.Spiroplasma kunkelii Saglio et. al. (CSS), posiblemente ocurre en todos los países donde también ocurre su vector D. maidis, desde el sur de Estados Unidos hasta Argentina (Whitcomb, 1989). Spiroplasma kunkelii pertenece a la clase Mollicutes, 284 orden Spiroplasmatales, familia Spiroplasmataceae. Las células de S. kunkelii son móviles, de forma helicoidal, de 5 a 10 ¡.lm en longitud, poseen una sola membrana y carecen de verdadera pared celular.La etiología de CSS ha sido confirmada por los postulados de Koch. Este organismo pasa a través de un complejo ciclo biológico que involucra la ingestión por el vector desde las células del floema de la planta enferma, el pasaje y multiplicación en el canal alimenticio, epitelio, membrana basal y hemocelo hasta las glándulas salivares del insecto, desde donde es inoculado nuevamente a una planta sana cuando éste se alimenta. La eficiencia de D. maidis para transmitir CSS alcanza 100% (Markham and Alivizatos, 1983). A través de este proceso se produce la infección a la planta pero no al insecto (Whitc.omb and Williamson, 1979). En la planta, el patógeno se encuentra limitado al floema, traslocándose a puntos activos de crecimiento. Estudios de transmisión con D. maidis infectados con CSS y usando la técnica de ELISA como diagnóstico, detectaron el patógeno 14 días después de infección con chicharritas, dos semanas antes del aparecimiento de síntomas (Gussie et al., 1995). El patógeno se encontró primero en hojas jóvenes, en las espigas en desarrollo, y en grandes concentraciones en las raíces. Debido a que CSS está presente en la planta enferma antes de que los síntomas sean aparentes, CSS puede ser adquirido por las chicharritas antes que la enfermedad sea reconocida por síntomas en el campo.El rango de hospederos naturales de CSS consiste de maíz y teosinte (Zea mays mexicana y Z. m. parviglumis). Algunas especies perennes como Z. diploperennis, Z. luxurians y Z. perennis han sido infectadas experimentalmente y es posible que sirvan de reservorios en el campo. Usando la especie europea de saltahojas Euscelidius variegatus, el patógeno ha sido transmitido experimentalmente a especies no gramíneas incluyendo frijol haba (Vicia faba), \"chula\" (Catharanthus roseus), arveja (Pisum sativum), rábano (Raphanus sativus) y espinaca (Spinacia oleracea) (Alivizatos, 1984;Markham et al., 1977).Las primeras descripciones de los síntomas causados por CSS son las de Alsttat (1945) quien reportó plantas enanas, bandas rojas extendiéndose a todo lo largo de las hojas, y clorosis. En sus primeros experimentos usando D. maidis infectados con éste patógeno en el invernadero, Kunkel (1946) reportó que el primer síntoma observado es el aparecimiento de bandas cloróticas en la base de las hojas que a medida que la enfermedad progresa se extienden a lo largo de la misma. Algunos reportes de sintomatología causada por CSS dan lugar a confusión ya que puede haberse tratado de una infección mixta con el phytoplasma, con el virus del rayado fino, o con otro patógeno. Aún más, síntomas también dependen de condiciones de temperatura y genotipo de maíz. Por ejemplo, en maíz dulce en condiciones controladas del invernadero, el patógeno induce el acortamiento de los entrenudos y la formación de bandas cloróticas en las hojas, pero produce muy poco enrojecimiento (Nault, 1980). En ensayos realizados en la estación experimental de Poza Rica donde se liberaron D. maidis infectados solamente con CSS para evaluar líneas avanzadas de CIMMYT, se estableció que los síntomas más prevalentes en plantas infectadas fueron la coloración rojiza de las hojas (20%), entrenudos cortos (20%), bandas cloróticas (16%), proliferación de mazorcas (15%) Y espiga deforn1ada (13%). Debido a la variedad de síntomas observados en díferentes germoplasmas no resulta posible diagnosticar la presencia de CSS basándose en la observación de síntomas, sino que es necesario hacer, los adecuados análisis de laboratorio para su diagnóstico.Los phytoplasmas son organismos pertenecientes a la clase Mollicutes, y por mucho tiempo fueron conocidos como \"organismos parecidos a mycoplasmas\" debido a su semejanza morfológica con mycoplasmas patógenos de animales. Los phytoplasmas son orgamsmos pleomórficos, transmitidos por Cicadéllidos, y habitan el floema de la planta, en donde se multiplican. A diferencia de los spiroplasmas y mycoplasmas, hasta ahpra los intentos de cultivar phytoplasmas in vitro no han sido exitosos, debido probablemente a que se desconocen sus requerimientos nutricionales. Al igual que los spiroplasmas, el control químico de estos organismos no resulta viable debido a que la tetraciclina solamente es bacteriostática y no elimina completamente estos patógenos.El phytoplasma del enanismo arbustivo del maíz es transmitido por varias especies de Dalbulus, y experimentalmente por Graminella nigrifrons y G. sonorus (Granados et al., 1968). Al igual que S. kunkelii, MBS tiene como únicos hospederos a maíz y teosinte, Tripsacum no ha demostrado ser susceptible al patógeno. En maíz dulce y bajo condiciones de invernadero, el período de incubación del patógeno es de 9.5 a 18,9 días (Nault, 1980). Los primeros síntomas 285 reportados en maíz dulce son clorosis en el margen de las hojas en desarrollo, seguido de enrojecimiento de las puntas de las hojas viejas. A medida que la infección progresa, las hojas presentan clorosis del margen, enrojecimiento, deformación, y acortamiento, se producen numerosos hijos en la base del tallo y axis de las hojas, y proliferación de mazorcas.El rango geográfico de MBS incluye los Estados Unidos, México, Costa Rica y Perú (Nault and Bradfute, 1979). Por mucho tiempo se consideró que en México, este patógeno estaba limitado a elevaciones altas con climas templados (Whitcomb, 1989). Sin embargo, análisis usando sondas radioactivas identificaron el phytoplasma en muestras de maíz colectadas en Poza Rica, la estación experimental de CIMMYT a baja elevación y de clima tropical (Gordon, sin publicar). Además se ha diagnosticado el patógeno también en muestras de localidades en los trópicos bajos de El Salvador, Nicaragua, Panamá y Belice (Henríquez, sin publicar).El virus del rayado fino está formado por una sola cadena de ARN (León y Gámez, 1981). Los viriones son isométricos, de 22-30 nm de diámetro, las partículas sedimentan en dos componentes: un componente conteniendo cápsidos vacíos de proteína y otro que contiene la nucleopreoteína infectiva.El virus es transmitido por D, maidis en forma persistente. No se ha demostrado transmisión mecánica, aunque Louie (1995) logró un porcentaje muy bajo de transmisión (1-25%) en forma experimental en semillas usando micro agujas. MRFV se multiplica dentro del vector (Rivera et al., 1981;Gingery et al., 1982) pero no es transmitido transovarialmente.MRFV induce la formación de finas manchitas cloróticas en las hojas que se consideran características de la enfermedad. Las primeras manchitas ocurren en las hojas del cogollo, y progresivamente se unen para formar manchas alargadas en toda la hoja, produciendo el rayado característico (Nault and Bradfute, 1979). En genotipos muy susceptibles puede llegar a producir reducción del tamaño de la planta, y por ello puede confundirse con infección de CSS o MBS. Los primeros síntomas ocurren de 8-14 días después de la inoculación, pero en invernaderos y con temperatura coritrolada hemos observado síntomas a los 5-6 días en maíz Tuxpeño Sequía (Jeffers, sin publicar). Los síntomas son más severos cuando las plantas son inoculadas a más temprana edad.El virus está restringido a maíz, teosinte y Tripsacum, y se encuentra distribuido geográficamente en asociación con D. maidis desde Texas y Florida hasta Brasil, Perú y Paraguay. La estimación de las pérdidas debidas al virus en las planicies costeras de Centro América resulta problemática debido a la combinación de síntomas causados por los otros dos patógenos ya descritos. Sin embargo, se ha estimado que MRFV puede inducir pérdidas de rendimiento de hasta 50% en peso de mazorcas maduras, y en Colombia se observó incidencia del 100% en cultivares muy susceptibles (Gámez, 1977).Las chicharritas del género Dalbulus pertenecen a la familia Cicadellidae, Orden Homóptera. Estos insectos poseen un aparato bucal chupador y son estrictamente fitófagos. Dalbulus maidis es un especialista en maíz aunque es capaz de sobrevivir en otras gramíneas, y ocurre en la mayoría de los países de América Latina donde se siembra este cultivo. D. maidis es el principal vector de los patógenos del achaparramiento, pero seis otras especies de Dalbulus también transmiten los patógenos con diferentes grados de eficiencia. Una razón para ello es que CSS es patogénico para todas las especies de Dalbulus, exceptuando D. maidis (Madden and Nault, 1983). Aunque con efectos menos severos, MBS es patogénico para D. maidis y otras especies de Dalbulus a excepción de D. gelbus y D. elimatus.El ciclo de vida de D. maidis está severamente influenciado por la temperatura. Tsai (1988) reportó ~inco estadías ninfales, los cuales se acortan con el incremento de temperatura.En invernaderos de CIMMYT, con temperaturas promedio de 38.5°C máxima y 12.3°C mínima, hemos observado que el período de huevo es de 7 días, el período total de ninfa a adulto de 27 días y los adultos pueden sobrevivir hasta 3 meses (Jeffers, sin publicar). En Centro América, siembras tardías, precipitación escasa, baja humedad relativa y altas temperaturas son favorables para el desarrollo de altas poblaciones de D. l1Ioidis.MCDV es transmitido en forma semipersistente por especies de Graminella, y aparentemente se encuentra limitado a zonas templadas de Norte América (Gordon and Nault, 1977). En maíz produce síntomas semejantes alas del achaparramiento, incluyendo amarillamiento y enrojecimiento de las hojas, y enanismo. Otro hospedero importante es Sorghum halepense, desde el cual el virus puede ser transmitido a maíz. No se tienen reportes de MCDV en Centro América.MDMV pertenece al grupo de los potyvirus, estando su genoma compuesto por una sola cadena de ARN. Se han reportado cinco cepas de este virus: la cepas A (cepa tipo), B, C, D, Y F, las cuales pueden ser distinguidas de acuerdo a su reacción al antisuero contra la cepa A, y por la frecuencia de transmisión de sus distintos vectores (AAP Description of Plant Viruses, 1990). MDMV es transmitido por al menos 25 especies de áfidos (Knoke et al., 1983): incluyendo Aphis gossypii, Acyrthosiphon pisum, Rhophalosiphum padi, R. maidis y Brevicoryne brassicae. La transmisión es de manera no-persistente pues los áfidos deben alimentarse de la planta enferma por solamente unos minutos, reteniendo el virus durante una o dos horas.El virus infecta varias especies de gramíneas, incluyendo maíz, sorgo y zacate Johnson (SOIghum halepense) desde donde es transmitido a maíz (Knoke et al., 1983). MDMV puede sobrevivir en gramíneas perennes o en las semillas de gramíneas anuales, lo cual representa una importante reservorio natural para el virus y los áfidos que se alimentan de dichas plantas.Se ha reportado considerable variación en la manifestación de los síntomas en maíz. Durante las primeras etapas de desarrollo de la enfermedad, se desarrollan manchas verde oscuras en las hojas, que a medida que la enfermedad progresa, se vuelven más intensas y llegan a formar mosaicos con bandas difusas. El patrón de este mosaico generalmente se inicia en la base de la 'hoja y puede ser irregular y difuso (Tsai and Brown, 1989). La cepa A produce mosaicos que usualmente están límitados al área entre las nervaduras y forman bandas, que también son evidentes en las hojas de la mazorca. El virus puede producir enanismo y poco llenado de las mazorcas.Como se ha mencionado, el diagnóstico del achaparramiento solamente basándose en síntomas observados en el campo, resulta inadecuado debido a la complejidad de la sintomatología y porque las infecciones mixtas son muy comunes (Leirgulen and Myrstad, 1991). Por ello, fitopatólogos del CIMMYT en cooperación con otros institutos de investigación, están realizando trabajos para obtener técnicas más apropiadas para el diagnóstico de los patógenos del achaparramiento con el objetivo de poner dichas técnicas al servicio de los mejoradores. Las técnicas se agrupan bajo dos grandes enfoques: técnicas de serología (Inmunosorbencia con enzimas conjugadas, ELISA) y técnicas moleculares (Reacción en cadena de la polimerasa, PCR).Esta técnica se basa en una reacción antígenoanticuerpo, y es usada ampliamente en muchos laboratorios de diagnóstico debido a su facilidad de ejecución, sensibilidad y especificidad. ELISA vino a revolucionar la detección de patógenos en plantas, especialmente virus (Clark and Adams, 1977) y otros organismos no cultivables para los cuales otras técnicas, como el uso de microscopio, no eran factibles.En una reacción de ELISA, el antígeno o bien el anticuerpo se adhieren a una superficie sólida, y la sensibilidad de la reacción antígeno-anticuerpo se incrementa con la adición de una enzima, usualmente a la fracción de inmunoglobulina G (IgG) del anticuerpo. Cuando la reacción es positiva, la enzima se detecta observando una reacción de color que sigue a la adición de una sustrato apropiado.Para la detección de CSS y MRFV hemos usado ELISA de doble sandwich (DAS-ELISA) con unidades F(ab'h, antisueros polic1onales y protocolos obtenidos del Dr. Don Gordon (Ohio Agricultural Research and Development Center, Ohio State University). En esta prueba de ELISA las paredes del pozo de la placa de polystyreno se cubren primero con las unidades F(ab')2 del anticuerpo, previamente purificadas, y aquellas unidades que no se absorben son lavadas con una 287 solución buffer de fosfato. La muestra conteniendo el patógeno (antígeno) se agrega al pozo y se incuba, lavándose los antígenos que no son retenidos por las unidades F(ab')2. Posteriormente se agrega el anticuerpo de detección y este se marca con Proteína A biotynilada. Después de lavar la placa se marca la Proteína A biotynilada con Conjugado de Horseradish Peroxidasa Straptividina seguido de un substrato que es hidrolizado a un color específico cuando se produce la reacción con la enzima. El color de la reacción se mide con un espectofotómetro. Las muestras en donde el patógeno está presente desarrollan coloración, y la intensidad de este color es indicativo de la concentración del patógeno.Esta técnica ha demostrado ser muy útil para diagnosticar CSS y MRFV de muestras colectadas en Centro América y México, ya que puede emplearse en muestras frescas, congeladas o liofilisadas. Se requiere un gramo de tejido fresco y pueden procesarse muchas muestras a la vez, y los resultados se obtienen en dos días.Pruebas con antisueros polic1onales desarrollados a partir de la inoculación en conejos con extractos de plantas de maíz infectadas únicamente con MBS, hasta la fecha no han sido satisfactorias debido a la reacción cruzada del antisuero con plantas sanas. Sin embargo, se continúan las investigaciones para desarrollar un antisuero que sea sensitivo y específico para este patógeno (Hemíquez et al., sin publicar).La reacción en cadena de la polimerasa es una importante técnica en biología molecular, que consiste en sintetizar millones de copias de una secuencia de ADN en término de unas horas. Desde su introducción a mediados de 1980 (Mullis and Faloona, 1987) la PCR ha simplificado, acelerado y mejorado el diagnóstico de muchas enfermedades en humanos, animales y plantas.El genoma de prokariotes y eucariotes consiste de dos cadenas de ADN enlazados por puentes de hidrógeno entre los pares de bases complementarios. En el primer paso de PCR, el DNA es calentado a una temperatura de 94oC para separar las dos cadenas. Dos \"iniciadores\" (pequeñas piezas de ADN de una sola cadena diseñados para acoplarse a los terminales de la región del genoma que se va a amplificar) se agregan a la reacción. Los iniciadores solamente se anillan a las regiones de ADN que poseen las respectiva secuencia de bases complementarias. El anillado se produce a una temperatura entre 40°C y 65°C, dependiendo de los iniciadores usados. La segunda cadena de ADN se extiende entonces a partir de los iniciadores por la enzima Taq polimerasa, usando como unidades de construcción una mezcla de 5'-trifosfatos de desoxinucleósidos (dNTPs). Este tercer proceso de extensión de la cadena se efectúa a n°c. Al final del primer ciclo de la reacción de PCR, se obtienen dos copias de la secuencia del ADN que se quiere amplificar. Las dos copias entonces entran a un segundo ciclo de amplificación y •luego a un tercero y así sucesivamente, hasta que después de 25 ciclos que toman apenas unas horas, cerca de un millón de copias de la secuencia inicial se han producido. Al final de la reacción, la presencia del ADN amplificado se confirma por electroforesis en una gel de agarosa tiñendo el ADN con bromuro de etidio.En la práctica el procedimiento es sencillo. El ADN de la muestra a analizar, buffer, MgCl z , dNTPs, iniciadores y enzima Taq se mezclan en un tubo y se colocan en una unidad de calentamiento (termocicler) controlado por una computadora. Este termocicler puede ser programado para cambiar las temperaturas que se requieren para la reacción. El componente crucial del sistema son los iniciadores, los cuales determinan la especificidad de la reacción. Es imperante conocer la secuencia al final del fragmento de ADN que se desea amplificar para diseñar los iniciadores adecuados, ya que la amplificación del ADN ocurre solamente cuando los iniciadores pueden anillarse.En los laboratorios de CIMMYT hemos usados la PCR para detectar los patógenos del achaparramiento. Los iniciadores han sido gentilmente donados por investigadores de varios países (para CSS: Dr. Colette Saillard; INTA, Bordeaux, France; para MBS: Dr. Nigel Harrison, Univeristy of Florida; y para MRFV: Dr. Rose Harnmond, USDA).La limitante principal es evitar contaminación entre .Ias muestras por lo cual se debe poner mucho cuidado especialmente cuando se extrae AON de muchas muestras a la vez, lo cual limita el número de muestras que una persona es capaz de procesar a 40 por día. Los resultados se obtienen a los tres días y para esta técnica se usan solamente 0.2 g de tejido fresco tomado de la base de la segunda hoja superior de la planta.Con el objetivo de asegurar la producción sostenida de maíz en zonas en donde el achaparramiento representa una amenaza potencial, el CIMMYT y el Programa Regional de Maíz para Centro América y El Caribe (PRM) han puesto interés especial en el desarrollo de variedades tolerantes al achaparramiento. Así, varias poblaciones han est~do bajo mejoramiento en esquemas de selección recurrente con evaluaciones llevadas a cabo bajo presión natural de achaparramiento en varios ambientes de Centro América. Bajo este enfoque se han obtenido logros substanciales en producción y reducción en el porcentaje de plantas con síntomas. Es por lo tanto importante contar con técnicas de diagnóstico que puedan discriminar e identificar separadamente dichos componentes. Este trabajo se está realizando en apoyo a los mejoradores de CIMMYT y del PRM, y se espera sea una contribución en la búsqueda de resistencia a esta enfermedad.Jorge Bolaños l RESUMEN Este trabajo presenta un modelo simple de la productividad primaria de los cultivos anuales, usando como ejemplo el maíz (Zea mays L.). El rendimiento es producto de la radiación interceptada por el follaje durante el ciclo, su conversión en biomasa a través de la fotosíntesis y la distribución de materia seca hacia la fracción cosechable. El marco conceptual y estimados razonables de los parámetros se esquematizan con casos hipotéticos de maíz tropical bajo distintas condiciones ambientales y de manejo. La duración del ciclo, el nivel de radiación disponible, la intercepción de radiación por el follaje, la eficiencia de conversión y el índice de cosecha son las variables necesarias para estimar rendimiento. En gran medida, la productividad del cultivo depende más en la cantidad de radiación que logre interceptar durante el ciclo, que en la eficiencia de conversión. Asimismo, el marco conceptual provee los elementos para una examinación ex-ante de los efectos de distintas estrategias agronómicas sobre la productividad.Este trabajo presenta un modelo simplificado de la productividad potencial de los cultivos anuales. En este, el rendimiento es el resultado de la asimilación neta de dióxido de carbono y su distribución hacia la fracción cosechable del cultivo, integrada a lo largo de la duración del ciclo (desde la emergencia a la cosecha). Dicho en forma matemática: R = IC J A dt donde R es rendimiento (fracción cosechable), IC es índice de cosecha o la proporción de R en la biomasa total, A es la asimilación neta por unidad de área, y t es tiempo (Monteith, 1990;Loomis and Connor, 1992). O sea, la acumulación de biomasa depende de la radiación incidente, la fracción de esta interceptada por follaje verde, la eficiencia de conversión en biomasa a través de la fotosíntesis y su distribución a la parte cosechable del cultivo. Por tanto, R también se puede expresar de la siguiente manera: R = t X Rs X %RI X E X IC donde t es la duración del cultivo en días; R. es el promedio diario de la radiación incidente (MJ m-2 día-]), %RI es el porcentaje de la radiación interceptada por follaje verde durante el ciclo, E es la eficiencia de conversión promedio (g MJ\") Y IC es el índice de cosecha. Este marco conceptual permite estimar el rendimiento con bastante precisión (± 1-2 t hao]) usando estimados razonables de los parámetros %RI, E Y IC, y además provee un marco conceptual para una examinación ex-ante del impacto pQtencial de distintas estrategias agronómicas sobre la productividad.La radiación solar (R.) (onda corta) incidente sobre los trópicos (0-30 grados de latitud) varía entre 10 y 25 MJ m-2 día-!, (1 MJ=10 6 Joule y 1 Joule=0.24 calorías), principalmente por cambios en la nubosidad y el día del año (Gates, 1980). La proporción del R. total (onda corta) que es fotosintéticamente activa (PAR) (400-700 nm) es casi siempre el 48-52% (Loomis and Connor, 1991). La constante solar (la radiación incidente afuera de la capa atmosférica de la tierra) es cerca a 30 MJ m-2 día-!, pero la atenuación por las partículas atmosféricas típicamente reducen R. a 20-25 MJ m-2 día-I para días claros, sin nubosidad, de verano, y a 5-10 MJ m-2 día-] o más para días nublados y lluviosos. La radiación se mide típicamente por piranómetros en estaciones meteorológicas, pero puede ser estimada conociendo la latitud, el día del año y la proporción de horas brillantes a horas con nubosidad (Gates, 1980). Por ejemplo, en un ambiente con un valor promedio de R. de 20 MJ m-2 día-], un cultivo de 120 días dispondría de 2400 MJ m-2 durante el ciclo. En gran medida, la productividad potencial estará determinada por la radiación capturada por el cultivo de este total disponible.En los cultivos anuales, el desarrollo del follaje y su intercepción de radiación a través del tiempo dependerá de la densidad de siembra, la tasa de expansión del follaje, la arquitectura foliar, el arreglo espacial, y muchos otros factores ambientales y genéticos. La radiación interceptada por un cultivo depende de la radiación solar incidente (R,) y el porcentaje de esta interceptada por el follaje a lo largo del ciclo (Monteith, 1990). En los cultivos anuales, la intercepción de radiación aumenta exponencialmente después de la siembra a medida que la planta crece y el follaje se expande, eventualmente cubriendo casi totalmente el suelo y capturando casi toda la radiación incidente (ver Figura 1). En los estadios iniciales del desarrollo del cultivo, mucha de la radiación incidente no es interceptada por el follaje y la producción de biomasa se encuentra limitada por el tamaño del follaje (Hsiao, 1982). Dada la arquitectura de la mayoría de los cultivares de maíz, intercepción total de la radiación incidente ocurre con índices foliares (lea! area index, LA/) (m 2 de follaje por m 2 de suelo) que oscilan de 3-4 para cultivares con hojas laxas y grandes, y de 5-6 para cultivares con hojas pequeñas y erectas (Fischer and Palmer, 1984). Normalmente, el maíz se siembra a densidades de 4 a 7 plantas m-2 (Fischer and Palmer, 1984). La intercepción de radiación disminuye durante el estadio de llenado de grano debido a la senescencia del follaje y la pérdida de área foliar verde.La suma acumulativa de la radiación interceptada por el follaje a lo largo de todo el ciclo es el principal factor que determina la biomasa total producida, y no la intensidad en un momento dado (Monteith, 1990;Loomis and Cannor, 1992). Existe una relación muy estrecha entre la suma acumulativa de la radiación interceptada por el follaje y la biomasa total producida en muchos cultivos, así como el consumo de agua (Monteith, 1990). Para maximizar la productividad en ambientes sin limitaciones hídricas, el cultivo deberá cubrir el suelo rápidamente y mantener su área verde foliar por un período largo.Si el cultivo experimenta estrés al comienzo del ciclo (aún si el estrés es muy ligero), estos efectos normalmente se acumulan a lo largo del tiempo, reduciendo significativamente la cantidad total de radiación interceptada por el cultivo durante el ciclo (Hsiao, 1982). Estos principios se esquematizan con los casos A, B Y e de cultivos de maíz en la Figura 1.Los porcentajes mostrados se refieren al total de la radiación disponible interceptada por el follaje desde la emergencia a la cosecha en cada caso, o sea, el área mostrada baJo cada curva (%RI).-'#. El cultivo A de maíz ejemplifica condiciones de un buen manejo agronómico, buena fertilidad y buen manejo de malezas. El follaje cubre rápidamente el suelo y llega a interceptar cerca del 95% de la radiación solar disponible con la cobertura final del suelo por el follaje. Sin embargo, este cultivo solamente intercepta el 54% de la radiación total disponible a lo largo del ciclo.La línea punteada refleja cambios por uso de un cultivar con mejor mantenimiento del área verde foliar (staygreen), por lo que captura 4% más de radiación que el cultivo A, o 58% del total disponible. Por tanto, para maíz en condiciones típicas del trópico, aún con el mejor manejo agronómico posible, el cultivo solamente llega a interceptar un máximo del 50-60% de la radiación total disponible. El cultivo B de maíz tipifica muchos agricultores de bajos recursos con mal manejo agronómico, baja fertilidad, mal control de malezas, y otros factores limitantes, cuya consecuencia es que el follaje no cubre totalmente el suelo y no intercepta la radiación total disponible por día. El efecto de este desarrollo incompleto del follaje se acumula a través del tiempo, y la cantidad total de radiación interceptada por el cultivo decrece fuertemente, interceptando solamente el 32% de la radiación disponible durante el ciclo, 22% menos que el cultivo A. Si hay malezas presente, la radiación no interceptada por el cultivo será interceptada por ellas, con implicaciones que estas también usarán parte del agua y N disponible.El cultivo C de maíz representa el desarrollo del follaje bajo un caso aún más extremo y severo de mal manejo agronómico y presencia de estreses ambientales. Esta curva ejemplifica condiciones donde el desarrollo del follaje es reducido desde muy temprano en su desarrollo por sequía, baja fertilidad, y/o competencia por malezas. Los estreses se acumulan a través del tiempo, y el cultivo C solamente intercepta el 19% de la radiación total disponible durante e! ciclo, 35% menos que el cultivo A.Por tanto, aún con el mejor manejo agronómico posible (ej., cultivo A), 60-65% parece ser el máximo de! total de la radiación disponible durante el ciclo que el follaje de maíz logra interceptar en su desarrollo, ya que hay pérdidas substanciales durante la fase inicial después de la siembra y durante el llenado de grano cuando las hojas comienzan su senescencia (Muchow, 1989;Monteith, 1990). Cultivos con mal manejo agronómico interceptarán aún menor cantidad de radiación (ej., 30-40% para el cultivo By 20% para e! cultivo C). Estos estimados de %RI para los casos A, B y C se comparan favorablemente con reportes de 55-60% para %RI en condiciones de buen manejo agronómico y valores de 30-40% bajo condiciones de estrés hídrico o de N (Muchow and Davis, 1988;Muchow 1989a;Muchow, 1989b). En otro estudio de más de 100 líneas SI de maíz de origen tropical y templado, %RI promedió 39% y tuvo un rango de 30-46% (Chapman and Edmeades, 1996).En el caso de cultivos en asocio, la radiación desaprovechada por el cultivo principal puede ser aprovechada por el cultivo en asocio. Por ejemplo, si sembramos una leguminosa de forma simultánea con el maíz (ej., canavalia en surcos alternos), la radiación no utilizada por el maíz al inicio del ciclo, o al final del ciclo, podrá ser usada por el cultivo en asocio. Asumiendo que el maíz intercepte alrededor del 60% de la radiación disponible, y otro 15% no será aprovechada por ineficiencias del sistema, entonces alrededor del 25% de esta radiación podrá ser aprovechada por el asocio para producir biomasa.La eficiencia con que distintos cultivos o cultivares de maíz convierten radiación (R,) en biomasa se denomina la eficiencia de conversión (E) y tiene unidades de gramos de biomasa producidos por MJ interceptados. La productividad potencial de una superficie de cultivo es de 1.7 g Ml 1 (3.4 g Ml ' PAR) en base a cálculos teóricos, pero aún los valores récord reportados sobre la productividad de diversos cultivos solamente alcanzan el 50-60% de este potencial teórico (Loomis and Connor, 1992). En general, la eficiencia de conversión (E) es un parámetro bastante conservador en la naturaleza (Monteith, 1990;Muchow et al., 1990). Cultivos con metabolismo C 4 tienen valores de E alrededor de 1.0-1.5 g Ml1, Ycultivos con metabolismo C 3 de 0.5-1.0 g Ml 1 (Monteith, 1990).Para maíz, valores de E de 1.2-1.5 g Ml 1 son normales para buen manejo agronómico (Muchow et al., 1990;Loomis and Connor, 1992). Sin embargo, los ambientes templados disponen de mayor radiación por unidad de tiempo termal que los ambientes tropicales, caracterizados por temperaturas altas y un desarrollo fenológico rápido del cultivo, y altas tasas respiratorias (Fischer and Palmer, 1984). A través de diversos ensayos, E promedió 1.0-1.2 g MJ-' para maíz en buenas condiciones agronómicas y 0.4-0.6 g Ml ' para maíz bajo estrés hídrico o deficiencias de N (Muchow and Davis, 1988;Muchow, 1989a;Muchow, 1989b).Estos mismos autores reportaron una relación lineal entre E y el contenido específico de N para hojas de maíz y sorgo a través de un rango amplio de disponibilidad de N (Muchow and Davis, 1988). Debido que el contenido de N decrece a medida que la planta envejece, E también decrecerá con el desarrollo del cultivo. También hay reportes que E decrece a medida que la humedad del ambiente se reduce (Muchow et al., 1990).En ciclos de selección de Tuxpeño, Bolaños y Edmeades (1993) reportan valores de 0.8 g Ml' bajo riego normal y 004 g Ml' bajo sequía en Tlaltizapán, México, un sitio con conocidas deficiencias de hierro. En otro estudio, los valores promedios de E fueron cerca de 1.0 g Ml' a través de 10 poblaciones, sintéticos y variedades tropicales de maíz, detectándose muy poca variabilidad genética para E (Lafitte, comunicación personal).Por tanto, para follaje de maíz sin limitaciones, un buen estimado para E puede ser 1.2 g Ml 1 para condiciones de trópico. Los valores máximos reportados de E para maíz (en su fase vegetativa) en la literatura son de lA g Ml' (Muchow, 1989;Muchow et al., 1990). Sin embargo, en condiciones de baja fertilidad, estrés hídrico, etc., E puede bajar a 0.5 g Ml' o aún más (Muchow et al., 1990).Para un día típico en el trópico, con un promedio de 20 MI m-2 día-' de radiación solar, intercepción completa por el follaje de maíz (100% de cobertura del suelo), y una eficiencia de conversión (E) de 0.5-1.0 g Ml', la producción diaria de biomasa por un cultivo de maíz sería de 100 a 200 kg ha\" por día.El maíz produce biomasa a través de la fotosíntesis, pero la materia seca tiene que ser redistribuida hacia la mazorca, que es la fracción cosechable. Híbridos disponibles en la zona templada tienen IC's de 50-55%, pero la mayoría de los maíces tropicales tienen IC's de 40-45% (Fischer and Palmer, 1984;Bolaños and Edmeades, 1993). Sin embargo, si hay estrés durante la floración, IC puede reducirse drásticamente (15-20%), ya que el aborto de granos y/o mazorcas por planta aumenta (Fischer and Palmer, 1984). Cultivares de maíz criollos tienen índices de cosecha inferiores a maíces mejorados.Modelo simple de la productividad En base a las consideraciones anteriores, la productividad potencial (materia seca o biornasa) y el rendimiento de grano (matería seca total multiplicada por el índice de cosecha) se pueden estimar así: Biomasa total ~t x R,. x %RI x E R == t x R,. x %RI x E x IC donde t (tiempo) es la duración del cultivo en días, que puede variar según la precocidad, el fotoperíodo, y la temperatura (de 90 a 120 días para maíces tropicales); R, es la radiación solar diaria (de 10 a 20 MI m-l día-', fundamentalmente dependiendo de la nubosidad); %RI es el porcentaje de la radiación interceptada por el cultivo (de 0.6 para buen manejo agronómico hasta 0.2 por mal manejo agronómico, Fig. 1); E es la eficiencia de conversión de radiación en materia seca (1.2 g Ml' para follaje sin estrés y 0.5 g Ml' en situaciones limitantes marginales); y le es el índice de cosecha, que depende de la fracción de la biomasa destinada a la mazorca (45-50% máximo, pero estreses durante la floración lo reducen).El cultivo A interceptó el 54% de la radiación disponible (20 MI m-2 día-' x 120 días x 0.54 = 1296 MI mol), o sea, casi 1300 MI m-l durante el ciclo. Con una eficiencia (E) cercana a 1.0 g Ml', esto significa que este cultivo producirá 1300 g m-l, o sea, 13.0 ton hao' de biomasa. Con un índice de cosecha (IC) de 0.5, esto significa una producción de grano de 6.5 ton ha-l. Este valor concuerda bastante bien con los potenciales para cultivares de maíz de 120 días en el trópico.El cultivo B interceptó el 32% de la radiación disponible (20 MI m-2 día-' x 120 días x 0.32 = 768 MI m-2 ), o sea, un total de 768 MI m-ldurante el ciclo. Con una eficiencia (E) de 0.7 g Ml' (asumiendo una reducción en E debido a estreses), entonces, esto significa una producción de biomasa de (768 MI m-l x 0.7 g Ml' = 538 g mol), o sea, 504 ton ha-l. Con un índice de cosecha (IC) de 0.5, esto significa una producción de grano de 2.7 ton ha-l.El cultivo C interceptó el 19% de la radiación disponible (20 MI m-l día-' x 120 días x 0.19 = 456 MI mol), o sea, solamente 456 MI m-l de un total disponible de 2400 MI m-l a través del ciclo. Con una eficiencia (E) de 0.5 g MI-',(menor por mayor estrés), esto significa una producción de biomasa de 2.3 ton ha-l. Si asumimos un índice de cosecha (lC) de 0.5, esto significa una producción de grano de 1.1 ton ha'\" la cual sería menor con un le; menor. Es sorprendente que este simple modelo de productividad estime con realismo la productividad de muchos campos de agricultores de maíz de la región.En resumen, el rendimiento de grano es el producto de los siguientes factores (cultivos A, B YC):A: 120 x 20 x 0.54 x 1.0 x 0.5 = 648 g m-2 = 6.5 tha\" B: 120 x 20 x 0.32 x 0.7 x 0.5 = 269 g m-2 = 2.7 C: 120 x 20 x 0.19 x 0.5 x 0.5 = 110 g m-2 = 1.1La manipulación de las distintas variables permiten evaluar el impacto de diversos cambios sobre la productividad, por ejemplo, evaluar cambios genéticos (mejor índice de cosecha, mayor estabilidad, staygreen, rápida expansión vegetativa, etc.), cambios agronómicos (cambios en E y %RI), cambios en la duración del cultivo, cambios en la radiación solar disponible (días largos vs cortos), etc.El follaje consume agua al interceptar radiación, ya que toma el equivalente de una radiación incidente de 2.4 MI m-2 día-' para evaporar l mm de agua por día (se necesitan 683 calorías para evaporar 1 g de agua a 20 oC) (Gates, 1980). Mientras la superficie se encuentre húmeda o mojada o actúe como una superficie húmeda (ej., cubierta por el follaje de plantas, cultivos, pastos, bosques, etc.), más del 90% de la radiación incidente se disipará en la energía liberada a través de la evapotranspiración (ET) y muy poca a través del calor sensible (se denomina sensible porque se siente a través de un incremento en la temperatura). Si la superficie se encuentra seca (ej., suelo seco), entonces la energía incidente tendrá que disiparse como calor y la temperatura aumentará considerablemente (por ejemplo, al mediodía, compare la temperatura de arena mojada y arena seca en la playa, o la de un pasto verde con un piso de concreto o pavimento, etc.).Por tanto, el porcentaje del área de la superficie que actúa como superficie húmeda es una buena primera aproximación para estimar el porcentaje de la radiación incidente que se disipará en ET. Este principio le da base al concepto de coeficientes de cultivo (Kc) , usados para calcular 1\"1 ET de un cultivo en base al ET potencial o ET o (Dorenboos and Pruitt, 1984). El porcentaje del área que se encuentre seca no podrá disipar la energía incidente como ET, sino como calor sensible. En caso de advección, cuando el área se 295 encuentra rodeada de áreas extensas secas y calientes, entonces el ET (expresado en unidades energéticas usando 1 mm = 2.4 MI m-2 ) podrá exceder a R. por 20-40% debido al calor sensible adicional proveído por la advección.Con estos estimados se puede predecir la demanda potencial de agua (ETo' o evapotranspiración potencial) para distintos ambientes. En general, en los trópicos, ET o podrá variar desde 3-4 mm día-) en lugares nublados, húmedos, 5-6 mm día-) en lugares tropicales de verano; y 7-8 mm día-) en lugares muy cálidos y áridos (Gates, 1980).El maíz necesita adquirir nutrimentos del suelo para sostener la productividad descrita anteriormente. El nitrógeno (N) es normalmente el elemento más limitante a la productividad. El fósforo (P) es también otro elemento limitante. Muchos de los suelos de la región tienen contenidos de potasio (K) altos y los cultivos normalmente no responden a aplicaciones.Por ejemplo, follaje verde, recién expandido, joven, tiene contenidos de N alrededor del 3%. Si asumirnos una densidad específica del follaje del maíz de 6.0 mg cm-2 (1 ha de follaje pesa 600 kg de materia seca), esto significa que cada índice de área foliar o cada hectárea de follaje cuesta cerca de 20 kg N ha-l. Ya que el maíz tiene un índice de área foliar óptimo cerca de 4 a 5, esto significa un costo de 80-100 kg N hao' para interceptar la radiación.El contenido de N decrece casi linealmente a medida que la planta madura o acumula unidades de calor. Una plántula recién germinada tiene alrededor de 5% N en la materia seca, el cual se reduce a 2.5% para la floración. A la madurez, el grano de maíz tiene alrededor de 1.5% de N y el rastrojo alrededor de 1.0-1.2% de N. Por consiguiente, para producir 5 ton hao' de grano de maíz (contiene cerca de 75 kg N hao') y 6 ton hao) de rastrojo (otros 72 kg N ha-'.) se necesita esa cantidad de N. Si el suelo no es capaz de mineralizar esta cantidad de N a la velocidad que la planta lo necesita, es necesario entonces aplicarlo (fertilizante químico o materia orgánica que contenga suficiente N), o no será posible sostener esa producción de materia seca. La misma lógica se puede aplicar para otros nutrimentos, ejemplo, el grano de maíz contiene cerca de 0_2-0.3% de P, etc.. Desde el punto de vista de la sostenibilidad del sistema, es necesario retornar al sistema por lo menos la cantidad que se remueve como grano, rastrojo, del sistema para consumo humano o animal. Al quemar el rastrojo, la mayoría del N se volatiliza en forma gaseosa y se pierde del sistema con un costo relativamente importante.Leguminosas de cobertura (ej., Stizolobium deerengianum, mucuna o frijol de terciopelo), pueden producir cerca de 10-15 ton ha' I de materia seca a lo largo de 6-8 meses en las épocas lluviosas (ej., aboneras en el Litoral Atlántico de Honduras). Usando el modelo simple para estimar la productividad y estimados razonables se puede calcular: Biom Leg= 180 días x 15 MI m' z día• 1 (R.) x 0.75 (%RI) x 0.7 (E) = 14 ton ha• l . Esta biomasa contiene cerca de 2.5% de N para un total cercano a 300 kg N ha• l . Esta cantidad de N puede sustituir el uso de fertilizantes químicos y es suficiente para sostener la productividad de un cultivo de maíz. La cantidad de materia seca producida durante varias etapas del crecimiento del maíz es una variable importante de conocerse. Sin embargo, la falta de instalaciones de secado dificulta su medición en muchos campos. Un método simple para convertir el peso fresco de un cultivo a peso seco en el campo resolviera este problema. En este estudio, se calcula la relación entre el peso fresco y seco del rastrojo de maíz a través de su desarrollo fenológico para ocho cultivares de maíz con diferentes vigores y periodos de madurez en dos localidades de México. Para todos los cultivares, el porcentaje de materia seca en el rastrojo (MS%) fue alrededor de 15% desde la siembra hasta la segunda mitad del llenado de grano, cuando aumentó rápidamente hasta la cosecha. Las diferencias entre cultivares fueron más notorias en la segunda mitad del llenado, cultivares tardíos con menos humedad que los precoces. La regresión de MS% contra el estadio de desarrollo expresado en forma relativa contra la antesis (R, días al muestreo/días a la antesis). Las ecuaciones con mejores resultados (R2 = 0.97 -0.99) fueron: Precoces: MS% = 12.6 + 0.94R 2 + 1.68R 4; Tardíos: MS% = 16.1 -4.00R 2 + 3.36R 4 • No hubo diferencias constantes entre VPLs o híbridos, aunque se notaron ciertas diferencias entre localidades atribuidas a diferencias en la humedad relativa. Se describe un protocolo para determinar el peso seco del rastrojo de maiz por unidad de área (ton ha'l) cuando no se dispone de condiciones de secado, utilizando únicamente una báscula y una regla.Muchas veces se necesita información sobre el peso seco del cultivo en etapas específicas de su crecimiento. Sin embargo, la falta de secadoras en muchas estaciones experimentales de los progrmas nacionales de investigación agrícola de la región de Centro América o en campos de agricultores dificulta la obtención de este tipo de dato. Las pocas secadoras y hornos existentes se encuentran generalmente en algunas estaciones experimentales, algunas veces lejos del lugar donde se llevan a cabo los experimentos.J Fisiólogos de Maíz, CIMMYT, México. 2Agrónomo/Fisiólogo de Maíz, Programa Regional de Maíz, CIMMYT, Guatemala. DEL PRM 1993-1995, VOL. 5 (1997), p.297-302. 297 Incluso cuando las instalaciones de secado se encuentran cerca, los problemas para transportar grandes cantidades de material fresco al laboratorio, la necesidad de obtener sub-muestras apropiadas y la capacidad inadecuada de las secadoras ocasionan que el investigador no obtenga la información necesaria. Por todas estas razones, sería muy útil poder convertir los pesos frescos a pesos secos en finca, utilizando la relación entre el contenido de humedad o de materia seca de la planta y su etapa de crecimiento.En un cultivo anual y determinado como el maíz (Zea mays L.), la proporción de materia seca cambia a medida que el cultivo pasa por sus distintos estadios fenológicos de desarrollo. Un método conveniente para comparar maíces con distintos ciclos de desarrollo es expresar la fecha de muestreo relativa a cierto estadio fenológico estándar, por ejemplo, los días a la antesis. Utilizando esta medida, llamada estadio relativo de desarrollo fenológico (R), el cultivo alcanza R=l.O en la antesis. Otros valores de R, por ejemplo, al inicio del espigamiento (R=O.4), a la mitad del llenado de grano (R=1.5), a la madurez fisiológica (R=1.9) y la cosecha del grano se lleva a cabo aproximadamente a R=2.2, cuando el porcentaje de materia seca en el grano es alrededor del 80% (o 20% de humedad).La proporción de agua en las plantas es alta cuando éstas son jóvenes y disminuye conforme envejecen, alcanzando un nivel mínimo en la madurez. En las plantas jóvenes, el tejido foliar, que tiene un gran contenido de agua debido a sus importantes funciones de metabolismo, intercambio de gases, fotosíntesis y transporte de nutrimentos y minerales, constituye la mayor parte del peso fresco. Si el contenido de agua en las hojas disminuye por debajo del 30% de su valor máximo debido a la sequía, las hojas morirán (Ludlow y Muchow, 1990;Loomis y Connor, 1992).Conforme la planta crece, el tallo representa una mayor proporción del peso seco y la planta se vuelve más fibrosa ya que aparecen los materiales estructurales con un contenido de humedad más bajo. Aproximadamente de lOa 14 días después de la polinización, el almidón empieza a acumularse y de manera simultánea, el agua es desplazada del grano.Esto provoca un rápido aumento en el porcentaje de materia seca de la mazorca, del 17% durante la antesis a más de 70% a los 50 días después de la polinización aproximadamente (valor R=1.9). Como el peso seco de la mazorca aumenta de menos del 1% del peso seco total de la planta a aproximadamente al 50% durante este mismo tiempo, este incremento en el porcentaje de materia seca se refleja en el contenido de materia seca de toda la planta. Al mismo tiempo, las hojas se vuelven más anchas y aumenta el nivel de fibra en los tallos. Juntos, estos cambios dan como resultado un fuerte incremento en el porcentaje de materia seca de toda la planta durante el llenado de grano (o una disminuición del porcentaje de humedad). El porcentaje de materia seca puede aumentar de cerca del 20 al 50% desde la antesis a la madurez fisiológica (R=I.9). En esta etapa, el contenido de materia seca del grano es aproximadamente 67% y el del resto de la planta alrededor de 42%. Para cuando el contenido de materia seca del grano alcance el 80% (R=2.2), el de la planta entera será del 65 al 70% (Daynard y Hunter, 1975;Fairley, 1980). Subsecuentemente, la planta muere y sus componentes, con la excepción del grano, pierden agua rápidamente hasta alcanzar un contenido de materia seca estable de 3 a 8% menor al del grano unas semanas después de la madurez fisiológica, cuando R=2.5.En cualquier etapa del crecnmento, el ambiente puede alterar el porcentaje de materia seca en el cultivo. Por ejemplo, si la planta está sometida a una fuerte demanda evaporativa, su contenido de agua puede disminuir un 10% durante el llenado y tal vez un 15% en la etapa posterior a la floración (Loomis y Connor, 1992). La muerte prematura del cultivo provocada por la sequía o las heladas también cambia la relación entre la materia seca de la planta y la etapa de crecimiento.El objetivo de este estudio es determinar la relación entre el peso fresco y el peso seco del rastrojo de maíz en varias etapas de desarrollo fenológico. El trabajo reporta resultados de evaluación de ocho cultivares con diferentes periodos de madurez. a través de dos localidades en la temporada de lluvias de verano en México. El estudio fue una actividad conjunta entre el CIMMYT, México y el Programa Regional de Maíz (PRM) de Centroamérica y el Caribe.Los experimentos se llevaron a cabo en las estaciones experimentales de Tlaltizapán (TL) Y Poza 298 Rica (PR) en la estación de lluvias de verano (juniooctubre) de 1994. TL se localiza a 19°N, a una altitud de 940 m. Su temporada de cultivo del verano se caracteriza por valores de temperatura máxima y mínima diarios de 31°C y 17°C Y una radiación de 21 MJ m-2 • Por el contrario, PR se localiza cerca del Golfo de México a 21°N Y a 60 m de altitud. Su temporada de verano tiene valores promedios de temperatura máxima, mínima y de radiación de 32°C, 22°C Y 22 MJ m-2 • En general, PR es más húmedo que TL, incluso durante la temporada de lluvias. El suelo en PR es franco arenoso (Troplofluvent) y el de TL es arcilloso calcáreo (Isotherrnic Udic Pellustert).Se sembraron ocho cultivares de maíz: cuatro variedades de polinización libre (VPLs) y cuatro híbridos cruza simple (Cuadro 1), en un diseño de látice 2x4 (0,1) con tres repeticiones en ambas localidades. Los cultivares representaban diferentes vigores y periodos de madurez típicos de ambientes tropicales en Centro América (VPLs contra híbridos). Las parcelas eran de cinco surcos con una separación de 0.75 m y una longitud de 10.5 m con una densidad de 5.3 plantas m-2• Al cultivo se le mantuvo libre de malezas, insectos y enfermedades.En siete ocasiones se hicieron colectas de 9 plantas (1.7 m 2 ) de los tres surcos centrales de cada parcela (aproximadamente a los 26-40 días después de la siembra; 1 día después del 50% de la antesis, 70, 85 Y 90 días después de la siembra y en la madurez fisiológica. En cada colecta, las plantas fueron cortadas a nivel del suelo aproximadamente a las 10 AM y se les llevó a un laboratorio de campo para determinar el peso fresco. El tiempo que transcurrió entre cortar la planta y pesarla fue de menos de 10 minutos. En caso de estar las hojas mojadas por la lluvia, la colecta se posponía hasta que las hojas se hubieran secado. Las plantas de cada parcela se cortaron en pedazos pequeños y se secaron a 80°C en un horno durante cinco días y después se pesaron. Para las primeras cuatro colectas no se separó ninguna parte de las plantas por lo que el peso del rastrojo de estas recolectas fue el equivalente al peso total de la planta (sin incluir raíces). En las recolectas realizadas 85 y 99 días después de la antesis, solamente se pesó el rastrojo fresco sin incluir la mazorca (tallos, hojas, espigas y brácteas). Las mazorcas fueron secadas, desgranadas y pesadas para calcular el rendimiento de grano durante la colecta. En la madurez fisiológica, se colectaron 18 plantas (304m 2 ), y se tomó el peso fresco total del rastrojo y las mazorcas. Cada una de las partes se secó por separado y se calculó el rendimiento del grano.Se registraron los días que transcurrieron desde la siembra hasta el 50% de la antesis de 38 plantas útiles en cada parcela. Las fechas de colecta para determinación de pesos frescos y secos se expresaron en unidades R (i.e.,[días transcurridos desde la siembra hasta el muestreo)/(días transcurridos desde la siembra hasta el 50% de la antesisD, para confirmar que las comparaciones se hicieran entre cultivares y localidades con una etapa de desarrollo similar. El contenido de materia seca del grano en la madurez también se detem1inó pesando y secando una muestra de grano de 5 mazorcas localizadas en los surcos bordos de cada parcela durante la última colecta. El rendimiento de grano se determinó por medio de una muestra de 24 plantas por parcela.El porcentaje de materia seca del rastrojo (MS%) se expresó como [100. *peso seco/peso fresco] y se realizó análisis de regresión entre MS% contra R para cada parcela, usandose una regresión polinomia de la cuarta potencia, resultando MS% = a+bR 2 +cR 4 (R 2 = 0.97-0.99) la mejor ecuación. Los coeficientes de regresión (a, b, c) de cada parcela fueron sometidos a un análisis combinado de varianza utilizando un modelo fijo. Del mismo modo, se utilizararon valores promedios de los coeficientes para comparar la respuesta de MS% a R para los cultivares y lugares.Una unidad de R para todo el ensayo fue, en promedio, de 56.6 días. Los rendimientos del grano obtenidos (expresados a cero humedad) fueron normales para estas localidades (Cuadro 1). La evolución del contenido de materia seca del rastrojo de cada cultivar se resume en el Cuadro 2 y reflejan las diferencias (de hasta 14 días) en la fecha al 50% antesis de las distintas entradas. Los coeficientes de regresión que se presentan son promedios de 6 parcelas (2 localidades x 3 repeticiones). Las regresiones se usaron para predecir los valores de MS% para distintas etapas de R, valores que se presentan en el Cuadro 2. Todos los cultivares mostraron el mismo MS% durante las etapas tempranas del desarrollo, notándose diferencias hasta más o menos el 70% del llenado de grano, 299 cuando R>1.67. Las diferencias entre los cultivares a R=2.0 (una semana después de la madurez fisiológica) fueron muy notorias, variando del 40.7% (Selección Precoz Ció) al 60.5% (La Posta Sequía C 3 ), aunque no se detectaron diferencias notorias entre híbridos y VPLs en el DM% esperado. Hubo una tendencia de los cultivares de madurez precoz (Selección Precoz C 6 y C 16 ) a contener más agua que los cultivares de madurez tardía en las etapas de R=1.67 hacia arriba. Este hecho podría deberse a que los cultivares de madurez tardía estaban madurando cuando las lluvias estaban a punto de terminar y la humedad relativa del aire iba en descenso, mientras que los dos cultivares precoces completaron el llenado cuando todavía había lluvias abundantes, a una mayor humedad relativa del ambiente. Las VPLs tardías también mostraron una tendencia a tener mayor MS% hacia el final del llenado que los híbridos, tal vez reflejando su periodo de llenado más corto (Bolaños, 1995) y senescencia más rápida.El análisis de varianza de los coeficientes de regresión y los valores predichos de MS% (Cuadro 2) muestra que TL difería de PR en que las plantas tenían menor MS% desde la antesis hasta la mitad del llenado y mayor MS% en cualquier otro periodo fuera de este intervalo. Es probable que esto refleje las diferencias del tiempo que se tomó entre cortar las plantas y calcular los pesos frescos. Es evidente que el intervalo entre el corte de las plantas y el pesarlas debe ser corto pero razonable, ya que las plantas pierden agua a través de las hojas a un paso acelerado, especialmente cuando se encuentran expuestas al sol.La importante interacción cultivar x localidad para los coeficientes de regresión b y e (Cuadro 2) puede explicarse con las diferencias entre los patrones de humedad relativa en las dos localidades, lo que afectó de distintas maneras a cultivares de diferente períodos de madurez. Fue muy afortunado que este ensayo se realizara en dos localidades para que esos ambientes, típicos de las localidades más húmedas (PR) y más secas (TL) de Centro América, quedaran debidamente representados.Conocer el contenido total de materia seca (MST%) también es necesario si un investigador necesita calcular la biomasa total durante la segunda mitad del llenado de grano, cuando el contenido de materia seca del grano es significativamente mayor que el del resto de la planta (Daynard y Hunter, 1975 • Seleccionar aleatoriamente varias (6-8) áreas representativas en el campo para muestreo; • Identificar, marcar y medir las dimensiones del área en unidades de m 2 (Area). • Cortar las plantas dentro de cada área, juntarlas en un hato y cuando hayan pasado 10 minutos después del corte, detenninar el peso fresco en kg con una báscula de campo. Registrar el peso y la fecha. • Registrar los días desde la siembra a la antesis (DA) y a la fecha de muestreo (DM), y calcular R como R=DM/DA. • Calcular MS% con la ecuación apropiada según la madurez del genotipo (precoz vs tardío). En caso de necesitar el MST%, sumar al valor calculado de MS% la corrección apropiada según la etapa de desarrollo del Cuadro 3. • Convertir el peso fresco (PF) a peso seco de rastrojo (PS; kg) así: PS=PF*MS%. Para obtener el peso seco total, incluyendo las mazorcas, convertir el peso fresco total (PFT) a peso seco total (PST; kg) así: PST=PFT*MST%. Calcular materia seca por unidad de área (ton ha'!) de la siguiente manera, PS* 101Area.Se debe prestar mucha atención durante muestreos después de R=2.0, ya que existe un relativamente alto grado de error relacionado con MS% en esta etapa. La probabilidad de error es igualmente alta si las plantas están muy afectadas por la sequía u otros estreses, especialmente al final del ciclo del cultivo. . . 60 . .. ..~4 0 i El cuidadoso examen de la relación humedad/peso seco de toda la planta y el grano presentado por Daynard y Hunter (1975) y del peso seco contra R (calculado con las curvas de crecimiento presentadas por Edmeades, 1972) dió como resultado una tabla de valores porcentuales de la materia seca para sumarlos a los valores esperados de MS% para obtener el MST% (Cuadro 3). Es así que se calcula que MS% a R=2 sea del 48%. Para obtener el MST% en esta etapa, se suma el valor correspondiente del Cuadro 3 (6%) para que resulte un MST% de 54%. Este valor concuerda con los publicados por Daynard y Hunter (1975).• Promediar la producción de peso seco de cada una de las 6-8 sub-muestras para obtener una muestra representativa de todo el campo.Ricardo Radulovich l , Edwin Solórzano l y Jorge Bolaños 2La medición de la humedad del suelo es fundamental para una serie de aplicaciones, lo cual debe realizarse con prontitud para actuar en base a los resultados. Este trabajo reporta la calibración empírica en suelos tropicales del método de medición de humedad por retlectometría por dominio temporal (conocida en inglés como time-domain retlectometry, o TDR), comparando los resultados contra valores de humedad volumétrica obtenidos por muestreo gravimétrico. Se realizaron mediciones en cuatro suelos de Costa Rica, dos Andisoles, un Alfisol y un Inceptisol, todos ellos de la zona con marcada sequía estacional. Los valores de humedad volumétrica brindados por el TDR fueron de mucha precisión y su exactitud en retlejar la humedad volumétrica obtenida por muestreo gravimétrico se demostró por valores de correlación de Pearson altamente signiticativos, entre 0.90 y 0.95 para los cuatro suelos, y entre 0.84 y 0.99 para las tres profundidades medidas en cada suelo. Sin embargo, las pendientes de la relación linear (tipo y = mx + b) fluctuaron entre 0.73 y 1.29 entre los cuatro suelos y, además, substancialmente para las tres profundidades dentro de cada suelo. Esto indica la necesidad de obtener una curva de calibración no solo para cada suelo sino para cada profundidad en la que se utiliza el aparato. Tras estas consideraciones y otras mencionadas en el texto, el método del TDR es confiable para ser utilizado en los suelos que predominan en la región con sequía estacional de Centroamérica.La humedad del suelo es un parámetro fundamental para conocer o estimar los efectos del déficit hidrico en el desarrollo de los cultivos y, entre otras aplicaciones, permite determinar la necesidad de riego de acuerdo a niveles de consumo que se establezcan. El método estándar o de referencia para determinar la humedad del suelo es el muestreo gravimétrico, con valores que se convierten a humedad volumétrica mediante la densidad aparente. Este método, que es manual y laborioso, además de ser destructivo y conllevar valores de variabilidad a menudo altos, tiene la desventaja que no brinda resultados sino hasta que la muestra es llevada al I Profesores, Escuela de Ingeniería Agrícola, Universidad de Costa Ríca y 2 Agrónomo Regíonal de CIMMYT para Centro América y El Caribe. DEL PRM 1993-1995, VOL. 5 (1997), p. 303-306. laboratorio, pesada, secada por 48 hr y vuelta a pesar. En vista de que las decisiones en función del agua a menudo requieren de prontitud, esta limitación de tiempo resta aplicabilidad al método. Es por ello que se realizan esfuerzos para diseñar aparatos que eliminen o disminuyan dichas limitaciones, permitiendo tomar mediciones confiables e instantáneas en el campo mismo.El método de reflectometría por dominio temporal (conocido en inglés como \"time-domain reflectometry\" o TDR), fue propuesto en 1975 por Davis y por Davis y Chudobiak para su uso en suelos y ha sido desarrollado formalmente desde Topp y otros (1980), utilizándose cada vez con mayor aceptación por su confiabilidad y facilidad de uso (Gardner y otros, 1991). El método consiste en la medición de la constante dieléctrica del suelo, la cual está dominada principalmente por el contenido de agua. Mediante el uso de dos varillas de acero que se entierran, se propaga una señal eléctrica a través del suelo y el intervalo de tiempo de la velocidad de propagación es un indicador directo del contenido volumétrico de agua en el suelo (Topp y Davis, 1985). Entre las ventajas del método es que el aparato de TDR es portátil y brinda medidas directamente en el campo, las cuales son almacenables en memoria. La principal desventaja es el alto precio del aparato que se comercializa.El método de TDR no ha sido probado aún extensamente en suelos tropicales, lo cual es necesario de realizar antes de proceder a su uso en experimentación de campo. Este trabajo reporta sobre dicha calibración contra muestreo gravimétrico, con [mes de validar el uso del método en diversos suelos tropicales.El trabajo fue realizado en Costa Rica, durante los meses de enero a abril de 1996. Se utilizaron cuatro suelos agrícolas en el régimen climático del Pacífico, que tiene marcada sequía estacional. Todo el trabajo se realizó directamente en el campo, alterando los contenidos de humedad del suelo mediante riego en diversas fechas, midiendo en todas las instancias por lo menos 48 hr después de cada riego. Los suelos utilizados, junto con su clasificación tentativa y algunas características fisicas se describen en el Cuadro 1. Se aprecia que tres de los suelos son arcillosos y uno franco arenoso. Esto, junto con el hecho de que se muestrearon tres órdenes, permite considerar que los resultados son extrapolables a un amplio rango de suelos tropicales.El diseño experimental seguido consistió en tomar pares de muestras consistentes de: Una medición con un aparato de TDR (Trase System 1, Soil Moisture Corporation) a las profundidades determinadas por el largo de las varillas de acero, que son de 15, 30 Y45 cm de largo, lo cual da mediciones de humedad volumétrica de O a 15, O a 30 y O a 45 cm de profundidad del suelo. Cada medición o muestra con el TDR consistió de cinco lecturas para cada profundidad, tomadas dejando un intervalo de doce segundos entre cada medición. El valor de cinco lecturas se adoptó debido a que la gran precisión del aparato hizo innecesario utilizar un mayor número de submuestras. Esta precisión se refleja en valores de coeficiente de variación para grupos de cinco lecturas que fluctúan entre 0.16 y 2.68 %, con un promedio de 0.88 %.Una muestra de humedad gravimétrica tomada para las profundidades de Oa 15, 15 a 30 y 30 a 45 cm. Cada muestra consistió de dos submuestras para cada medición del TDR, tomadas en un radio de 5 cm de las varillas. Las muestras gravimétricas fueron llevadas al laboratorio, pesadas con precisión de 0.01 g, secadas por 48 hr a 105 C, y vueltas a pesar, tras lo cual los valores de humedad gravimétrica fueron convertidos a humedad volumétrica utilizando valores de densidad aparente medidos para cada profundidad.Un aspecto del trabajo consistió en evaluar la factibilidad de utilizar el aparato de TDR dejando varillas enterradas permanentemente en el campo, en vez de enterrarlas cada vez que se utilizan. Para ello, se calibraron en los dos Andisoles varillas de acero hechas en Guatemala contra las originales del aparato, para lo cual se obtuvieron los resultados mostrados en el Cuadro 2, que expresan una validez totalmente aceptable de las' varillas locales contra las originales, en correlaciones altamente significativas que son prácticamente de una a una.Las correlaciones entre los valores de humedad volumétrica por muestreo gravimétrico y aquellos que brinda el aparato de TDR fueron extremadamente altas y significativas para los cuatro suelos y las tres profundidades en cada uno de ellos, según se muestra en el Cuadro 3. La relación linear (y = rnx + b) fue escogida por brindar consistentemente los valores más altos de correlación; sin embargo, en aproximadamente 40% de los casos la relación exponencial brindó valores de r ligeramente superiores a la relación linear. De acuerdo a las pendientes para tres de los suelos, que fueron inferiores a 1.00 excepto un caso, el aparato de TDR subestimó el contenido de humedad volumétrica (Cuadro 3). Sin embargo, esta tendencia se revertió para el suelo Haplustalf de Grotina, en el cual el aparato sobrestimó el contenido de humedad volumétrica, con pendientes mayores a 1.00; también en este suelo se dieron interceptos negativos. Hook y Livingston (1996) han notado la necesidad de considerar diferentes pendientes e interceptos en diversos suelos, e incluso atribuyen algunas diferencias en mediciones a contenidos de agua inmovilizada en suelos arcillosos. lnteresantemente, los valores medidos de O a 15 cm de profundidad dieron consistentemente altas correlaciones para los cuatro suelos, lo cual puede ser el producto de una mayor homogeneidad de la capa de suelo bajo medición (Cuadro 3).Las grandes diferencias en las ecuaciones del Cuadro 3, que son considerables en pendientes tanto entre suelos (hasta un 50% de variación) como dentro de cada suelo (incluso >30% de variación), indican la necesidad de realizar una calibración del aparato no solo para cada suelo sino también para cada profundidad con la que se trabaja. De no realizarse dichas calibraciones, se podrá incurrir en discrepancias entre suelos de más del 50% y 305 dentro de cada suelo de hasta más del 30%, según las diferencias en pendientes notadas en el Cuadro 3. Estas grandes diferencias, aparte de sugerir interesantes características para los suelos utilizados, no ameritaron mayores estudios en vista de que se dieron también dentro de cada suelo y, sobre todo, considerando que para todos los casos las mediciones del aparato de TDR correlacionaron excelentemente con las de medición por muestreo gravimétrico Respecto a la factibilidad de utilizar varillas enterradas pennanentemente en vez de enterrarlas para cada medición, se determinó que es preferible enterrarlas para cada medición ya que las varillas enterradas pennanentemente pueden introducir errores en la medición al separarse del suelo, lo cual puede ocurrir tanto por manipulación como por procesos de encogimiento del mismo. Los grandes errores introducidos en la medición por dichas separaciones entre varillas y suelo han sido notados por Whalley (1993) y por Gregory y otros (1995).En conclusión, el método del TDR es preciso y exacto para las condiciones y suelos estudiados, y se recomienda su uso en experimentación de campo. Para ello, deberá realizarse una calibración para cada suelo y profundidad y, preferiblemente, las varillas de acero deberán enterrarse para cada medición en vez de ser dejadas enterradas permanentemente en el campo.Cristina Choto, Tito Montenegro 1 y Gustavo Sain 2 Figura 1. Difusión de la labranza de conservación en Guayrnango, El Salvador. introducción de leguminosas en el sistema e investigar la interacción entre el mantillo y N.Guaymango es un tesoro para la investigación, no solo por su valor demostrativo, en lo que la labranza de conservación puede hacer para mantener la productividad del suelo bajo un sistema de cultivo intenso sino que permite la coexistencia con respeto al sistema de finca a través de un pastoreo cuidadoso de los residuos y de la protección del suelo (Choto y Sain, 1993). Desde los 1980's, días de campo en el área se han realizado continuamente.Los impactos más sobresalientes de este esfuerzo conjunto de varias instituciones públicas y privadas trabajando con los agricultores fueron el incremento de la productividad del sistema agrícola y la adopción masiva de la labranza de conservación (manejo de los residuos). Por ejemplo, en el caso del maíz los rendimientos aumentaron en 235% en un período de 15 años, mientras que los de sorgo aumentaron en un 200% en el mismo periodo. El patrón de difusión de la labranza de conservación en Guaymango se muestra en la Fig. l. La adopción masiva de la labranza de conservación durante los años 70 y 80 pe¡mitió que, con el correr del tiempo, los agricultores \"vieran\" el efecto sobre la mejora en la calidad de los suelos, creándose una conciencia colectiva sobre la importancia de los residuos en el cuidado del suelo. Este trabajo presenta los resultados de la Primera Feria de la Labranza de Conservación realizada en Guaymango, El Salvador. Los agricultores del área adoptaron las prácticas de la no-quema y el uso del rastrojo de los ciclos anteriores como mantillo superficial para proteger el suelo, además de la adopción de híbridos de alto potencial de rendimiento y modestos niveles de fertilización química. Este sitio ha sido visitado por muchos técnicos, extensionistas, agricultores, y ha servido de punto focal para la promoción de estas tecnologías sostenibles a nivel nacional, regional e internacional.La historia de la adopción y difusión de la labranza de conservación comienza a inicios de la década los 70's con la creación de la Agencia de Extensión Agropecuaria (AEA) de Guaymango. Este caso ha sido bien documentado (Calderón, 1973;Mendoza et al., 1991;Calderón et al., 1991;Sain y Barreta, 1995) yes ampliamente conocida. En 1973 la AEA, en colaboración con otras instituciones que trabajaban en el área, puso en marcha un ambicioso programa destinado a mejorar la productividad del sistema de cultivo maíz -sorgo prevaleciente entre los agricultores de la región. El programa creó y promovió grupos de agricultores, estableció un sistema de incentivos y difundió un paquete tecnológico destinado a incrementar la productividad del sistema y a conservar el suelo mediante el manejo de los residuos en la época seca (Calderón et al., 1991).A comienzos de los años 80 el Centro Nacional de Tecnología Agropecuaria (CENTA), en colaboración con el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), comenzó a trabajar en campos de agricultores en Guaymango en temas considerados como prioritarios: Generar y difundir nuevos híbridos, mejorar la eficiencia de la fertilización con N y P, mejorar el control de malezas y pestes. Posteriormente el énfasis de la investigación cambió hacia la En estos eventos, los agricultores de otras áreas del país tienen la oportunidad de observar el manejo que los agricultores de Guaymango dan a los residuos del sistema maíz -sorgo y escuchar de los propios labios de los agricultores sus experiencias con la tecnología de conservación.Dado que en los días de campo la participación de la comunidad se limita a los sitios que se visitan, nació la necesidad de organizar un evento que involucrará más ampliamente a la comunidad de Guaymango, y que al mismo tiempo sirviera a la difusión de la práctica de conservación del suelo mediante el buen manejo de los residuos. De esta manera, el CENTA en colaboración con el CIMMYT y el PRM, con el auspicio financiero de la Fundación Ford y de la Cooperación Suiza al Desarrollo (COSUDE), decidieron organizar la Primera Feria de la Labranza de Conservación en Guaymango. La Feria se realizó el 7 de abril de 1995, a más de 20 años del comienzo del programa de conservación y productividad.La Feria perseguía los siguientes objetivos específicos: l. Dar a conocer los logros obtenidos en la conservación de los recursos naturales mediante el buen uso del rastrojo, a otros agricultores y a un amplio espectro de instituciones gubernamentales, no gubernamentales, empresas privadas, y otras.2. Permitir que entidades públicas y privadas nacionales, regionales e internacionales mostraran sus avances tecnológicos aplicados a la conservación de los recursos suelo yagua.Involucrar e incentivar a la comunidad de Guaymango, pionera de esta práctica, para que continúe con la realízación de la misma.La organización de la Feria estuvo a cargo de un comité integrado por miembros de las tres instituciones organizadoras: CENTA (Centros de Desarrollo Tecnológico (CDT) de Iza1co y San Andrés), PRM y CIMMYT.Dado que el evento estuvo dirigido a que los participantes conozcan las nuevas prácticas de producción y conservación de los recursos, el comité dispuso organizar la Feria tomando un conjunto de exhibiciones como centro. En las mismas las instituciones participantes montaron sus exposiciones y realizaron demostraciones de sus productos para que los participantes pudieran llegar a observar y preguntar sobre los temas que les interesasen.Fueron invitadas las instituciones públicas, privadas y ONGs que trabajan tanto dentro del ámbito nacional como regional (Cuadro 1). El Cuadro 2 muestra la lista de instituciones invitadas. Para la difusión masiva de la Feria, la comisión publicó en los medios de difusión escritos una invitación abierta a concurrir al evento. Además, se publicó una serie de artículos explicando los objetivos y a1cances de la Feria. Por otra parte, algunos comerciantes de Guaymango pagaron publicidad en los medios masivos de comunicación invitando a las comunidades a asistir a la Feria. Cuadro 1. Lista de instituciones y proyectos invitadas a la Primera Feria de la Labranza de Conservación. Guayrnango, 7 de abril de 1995. Participaron en la Feria más de 300 agricultores del área de Guaymango y comunidades vecmas, y una gran cantidad de funcionarios de organizaciones públicas y privadas.LA FERIA La comISión puso énfaSIS en involucrar a la comunidad de Guaymango en todos los aspectos de la organizaCIón y ejecución de la Feria. Se incentivó su participación en diferentes actividades relacionadas con el evento. Las escuelas fueron involucradas en el ordenamiento de los participantes. las calles fueron ornamentadas. y se incentivó la venta de comidas y hebldas por parte de amas de casa y locales de venta de alimentos. La Po licia Nacional Civil prestó la seguridad necesaria en el evento, Además. fueron especialmente invitados 54 agricultores cooperadores en el proyecto de investigación sobre los impactos de la lahranza de conservación que el CENTA. el PRM Y el CIMMYT llevan a cabo en el área. a fin de entregarles un reconocimiento público por su actitud cooperadora. La Feria dio comienzo con un acto protocolario de inauguración presidido por el Sr. Viceministro de Agricultura, Ingeniero Ernesto Jaimes, quien en su discurso de inauguración enfatizó la importancia de la labranza de conservación como una tecnología útil para aliviar el problema de la degradación de los suelos que enfrenta El Salvador. El Ingeniero Jaimes hizo un ferviente J1amado a que el ejemplo de Guaymango se propague en otras áreas.El CENTA, a través de su Director General, Dr. Roberto Arias Milla, lanzó el primer Concurso Nacional de Conservación de Suelos con el objetivo de promover la difusión de la labranza de conservación mediante el otorgamiento de estimulos en fom1a de premios a los agricultores que mejor implementen las prácticas de conservación en sus parcelas. Entre los premios de este concurso cabe destacar una visita a la sede central del CIMMYT en Texcoco, México, con el propósito de observar los trabajos de conservación que se realizan allí.Luego del breve acto de inauguración, los asistentes comenzaron el recorrido por los diferentes exhibiciones y visitas guiadas a parcelas de agricultores del área. En estas últimas, los participantes pudieron observar el efecto de la labranza de conservación sobre la calidad del suelo cuando se realiza en forma continua por varios años. Se destaca también la demostración que el Programa de Fomento de la Tracción Animal (FOMENTA) realizó de la siembra con cero labranza mediante tracción animal. Durante las visitas a los \"stands\", los agricultores y otros visitantes pudieron tener acceso a una gran cantidad de información disponible en forma de publicaciones.La Primera Feria de la Labranza de Conservación en Guaymango resultó un éxito si se juzga por la concurrencia, el entusiasmo de los participantes y el grado de involucramiento de la comunidad de Guaymango.DieCIocho exhibiciones fueron montadas por instituCIOnes públicas y privadas asi como proyectos nacionales, regionales e internacionales interesados en difundir sus resultados y productos. La participación de los agricultores y de la comunidad fue excelente.En las horas del mediodía y de la tarde la Feria se vio animada por la presencia del Ballet del Instituto Salvadoreño de Turismo, el grupo de teatro de FOMENTA integrado por artistas nicaragüenses, y de una marimba integrada por miembros de la comunidad de Guaymango, Durante la Feria se realizaron varios actos de premiación y donaciones. Además de los ya realizados en el acto de inauguración, FOMENTA donó al CENTA el módulo de exhibición que había sido fabricado en Nicaragua. El PRODETEC INTA-FINNIDA rifó entre los agricultores participantes una sembradora PROMECH adaptada para cero labranza y promovida por ese proyecto de cooperación entre Finlandia y Nicaragua. Finalmente, el PRM premió a cada uno de los 54 agricultores colaboradores con desgranadoras manuales fabricadas por FOMENTA. El CENTA, a través de sus exhibiciones, donó a los agricultores diversas muestras de los productos exhibidos. Lo mismo hicieron algunas de las casas comerciales presentes en la Feria.La participación de la comunidad de Guaymango fue activa mediante la visita a la feria y la venta de comidas tipicas. La actividad se prolongó hasta la noche.Queda la pregunta sobre si habrá o no una segunda, o tercera, o enésima Feria de la Labranza en Guaymango. Es decir, podrá la Feria hacerse sostenible? No hay todavía una respuesta cierta a estos interrogantes.Sin embargo, sí existen algunas propuestas concretas en ese sentido.Para la segunda Feria existe la alternativa de realizarla como un día de campo de la XLII Reunión Anual del Programa Cooperativo Centroamericano para el Mejoramiento de Cultivos y Animales (PCCMCA) que se realizará en El Salvador en 1996. En este día de campo, además de las exhibiciones de las instituciones y proyectos, se podrían presentar algunos de los afiches relacionados al tema de la conservación del suelo y el agua. De esa manera se estaría realizando una innovación en el PCCMCA mediante la combinación del día de campo con la presentación de afiches. Esta idea está siendo considerada por el CENTA, que es la institución responsable de la organización del próximo PCCMCA. Para la tercera Feria y otras posteriores, una posibilidad para hacerlas sostenibles a nivel de la comunidad sería realizarlas conjuntamente con la fiestas patronales de Guaymango.Cualquiera que sea la alternativa que prevalezca, para que la Feria tenga un futuro sostenible es necesario que las organizaciones locales y fuerzas vivas de Guaymango se involucren intensamente en su organización y la asuman sientan con la misma determinación con que hace más de 20 años adoptaron la práctica del buen manejo de los residuos para la conservación del suelo y el agua.Las instituciones organizadoras de la 1 Feria, desean expresar su profundo agradecimiento a las distintas personas y organizaciones que mediante su aporte hicieron posible la realización del evento.A la Fundación Ford y a la Cooperación Suiza al Desarrollo, cuyo generoso financiamiento permitió la realización de la Feria. A las instituciones públicas y privadas nacionales, regionales e internacionales que, a través de su esfuerzo y dedicación en el montaje de los \"stands\", hicieron posible el éxito de la Feria. A todo el personal de la Agencia de Extensión Agropecuaria y Forestal de Guaymango, por el esfuerzo y dedicación en la organización y montaje de la estructura fisica de la Feria. A la comunidad de Guaymango, por el apoyo y entusiasmo demostrado antes, durante y después del evento. Finalmente a los agricultores del área de Guaymango, por su generosidad y colaboración. La evaluación participativa de un ensayo de arreglo topológico de maíz-caupí del INTAlPRM, realizada durante la primera de 1995, mostró que entre los tratamientos innovadores de doble surco, el arreglo de doble surco de maíz con 40 cms entre los surcos goza de una mayor aceptación por parte de los agricultores. Sin embargo, el arreglo preferido por los productores fue el maíz en monocultivo. Se obtuvo también información de los agricultores sobre las nlzones de sus preferencias y sobre alternativas en cuanto al patrón de cultivo (\"arreglo\") se refiere. La mitad de los campesinos entrevistados hubiera sembrado frijol común en lugar del caupí. La evaluación participativa ayudó a identificar posibles colaboradores entre los productores para una posterior fase de adaptación de la tecnología a nivel de finca.En ocas\\on de una gira de intercambio en agronomía sostenible de maíz durante la cual se visitó y analizó un ensayo de arreglo topológico de maízleguminosas del INTAl PRM, se acordó realizar una evaluáción participativa de dicho ensayo. Esta propuesta respondió, al mismo tiempo, a una inquietud de fomentar el uso de los métodos de evaluación participativa en los trabajos de validación que están llevando a cabo las insituciones de investigación y transferencia.El ensayo tenía por objetivo evaluar la alternativa del doble surco de maíz, contra maíz en monocultivo y asocio tradicional. Todos los tratamientos tenían la misma densidad de siembra de maíz y de asocio la misma densidad de la leguminosa. La variante es su arreglo topológico. El PRM está interesado fundamentalmente en la productividad del maíz, permitiendo variación local en la escogencia de la leguminosa. Los tratamientos eran: TI Maíz en monocultivo T2 Maíz en asocio con caupí, arreglo tradicional (maíz en surcos de 80 cros y caupí en medio de cada surco) T3 Doble surco de maíz; maíz a 20 cros entre surcos 2 hileras de caupí a 50 cros ' T4 Doble surco de maíz; maíz a 40 cros entre surcos 2 hileras de caupí a 40 cros 'En los tratamientos de monocultivo (TI) Y asocio tradicional (TI), la distancia entre surcos de maíz es uniforme y el follaje eventualmente \"cierra calle\" con una cobertura casi total del suelo. En comparación, en los tratamientos de doble surco (TI y T4), el maíz probablemente no \"cerrará calle\", por lo que capturará menos radiación, significando potencialmente una menor productividad. Sin embargo, esta pérdida de radiación no interceptada por el maíz en los arreglos de doble surco debe ser compensada parcialmente por radiación lateral adicional capturada que es posible por el tamaño reducido de la leguminosa en asocio (caupí). La hipótesis que gobierna el ensayo es el rendimiento del maíz deberá ser similar en el doble surco que en los otros tratamientos.Sin embargo, se espera que los tratamientos de doble surco difieran sustancialmente de los otros en el rendimiento de la leguminosa en asocio. En el doble surco, la leguminosa interceptará bastante más radiación que en el asocio tradicional, posibilitando una mayor producción total de biomasa y/o rendimiento fmal (rastrojo y/o grano) de esta. O sea, la hipótesis de trabajo es que el doble surco apunta a una productividad total mayor del sistema debido a una mejor eficiencia en la captura total de radiación vis a vis los tratamientos testigos. Esta productividad mayor solamente se verá realizada en la medida que el agua y los nutrimientos necesarios para sostener esta productividad no se encuentren limitados.Es esencial enfatizar que este arreglo topológico del doble surco ha sido diseñado para sistemas de siembra manual (chuzo) y para suelos de ladera. Este arreglo obviamente presenta muchas dificultades en su adopción para la siembra mecanizada. Sin embargo, esta estrategia puede tener un impacto positivo para el control de la erosión en suelos de ladera, donde el doble surco de maíz puede actuar como una especie de barrera viva. Es importante considerar estos criterios para la identificación de futuros agricultores colaboradores en una etapa posterior de prueba en finca.El ensayo evaluado pertenece a la fase de experimentación. Tradicionalmente, no se contempla una evaluación por los productores de ensayos correspondientes a esta etapa inicial de experimentación. El modelo clásico de generación-en la estación experimental-y de transferencia-a la fil/ca-de tecnologías, aún vigente en muchas partes, prácticamente excluye la intervención de los agricultores en una fase temprana de la investigación tecnológica. Este modelo, sin embargo, ha venido siendo ampliad0 2 • Hoy en día, en muchas instituciones de generación y difusión de tecnología ya no son hechos aislados cuando los productores (o productoras) visitan la estación experimental para evaluar los trabajos de experimentación, los cuales están diseñados para solucionar posteriormente un problema de producción en las fincas de una determinada región.2Véase la importancia que ha venido ganando la experimentación campesina en Nicaragua (PCaC, UNICAM o recientemente el mismo INTA, apoyado por el PRlAG). También aportan elementos de juicio los siguientes trabajos: Ashby, Jacqueline. Manual para la evaluación de tecnologias con productores. CIAT. Publicación No. 188. Cali. 1992 3. Estimar el potencial de aceptación de la tecnología. 4. Poder definir mejor los próximos pasos en el proceso de introducción de la tecnología. 5. Estimular la experimentación propia del campesino. 6. Fomentar la colaboración entre los productores y los técnicos.El presente ensayo, se basa en una serie de antecedentes e hipótesis agronómicos interesantes en cuanto a los arreglos de doble surco se refiere. Sin embargo, la tecnología innovadora de doble surco iba a ser transferida de la estación experimental al campo eventualmente. Por esta razón, se acordó realizar una evaluación participativa del ensayo para (1) permitir una intervención temprana de algunos productores en un proceso de generación y adaptación de una tecnología y (2) introducir un método de evaluación participativa con la finalidad de capacitar a los técnicos participantes.El evento fué planificado conjuntamente por el INTA, PASOLAC y el PRM y preparado logísticamente por INTA. De parte del INTA intervino personal de la Agencia de Carazo (Región A-2), de la Regional A-2 y del Programa Nacional de Suelos y Agua. Se invitó a 20 productores de diferentes 'partes atendidas por la Agencia de Carazo.Desarrollo del Evento l. Bienvenida a los agricultores 2. Introducción: Breve explicación del ensayo; aclaración del objetivo de la reunión con los productores 3 ; explicación del procedimiento a los agricultores.3. Formación de cuatro grupos de agricultores; cada grupo contaba con 5 productores y un técnico; cada grupo observa las 4 repeticiones del ensayo, analiza los )\"No es un dia de campo, durante el cual el Instituto le recomienda alguna tecnología al productor, cs una reunión con los productores para que ellos evalúen diferentes formas de sembrar maíz y caupí y nos den a conocer su coneepto y su preferencia. El doble surco a 40 cm (T4) tendrá un mayor potencial de aceptación por los productores entre los dos tratamientos de doble surco, al llevarse esta prueba a nivel de fmca. Sin embargo, el doble surco, en cualquiera de sus dos modalidades, quizás no es una práctica que convenza facilmente a los productores.2. Cuáles han sido las razones de escogencia de un determinado tratamiento? El Cuadro l contiene las razones más importantes en favor y en contra de cada arreglo, de acuerdo a como los productores se han pronunciado.Nota: el total entre todos los tratamientos de la selección positiva supera el 100% debido a la posibilidad de mencionar mas de un tratamiento. Lo mismo se aplica en el caso de la selección negativa. 3. Porcentaje de selección positiva menos porcentaje de selección negativa o el índice de valorización global. La mayoría de las razones mencionadas tiene que ver con el cultivo de maíz, su desarrollo, la manera de sembrarlo y el rendimiento esperado. Relativamente pocos comentarios están relacionados con los efectos (positivos o negativos) de la leguminosa 4• Además, tal como las opiniones han sido algo divididas en cuanto a la preferencia de los arreglos, se encuentran también razones opuestas referente a un mismo tratamiento. 4. A los productores se les hizo la pregunta qué iban a sembrar una vez que se haya terminado el ciclo vegetativo del caupí (o también después de su cosecha)? Un 35% señaló que no iba a sembrar nada en los espacios dejados por el caupí, mientras un 65% sembraría de nuevo. De estos últimos, un 77% sembraría frijol común, 15% otra leguminosa y un 8% un cereal. Al sembrar de nuevo, varios agricultores indicaron que lo harían con espeque y doblando previamente el maíz. 5. Finalmente, se quiso saber si los productores visitantes hubieran sembrado arra cultivo en lugar del caupí? 22% dijo que no, mientras el 78% manifestó que sí. De estos, 64% hubiera sembrado frijol común, 14% \"frijol abono\", 14% \"trigo\" (sorgo) y un 7% yuca.Interpretación. El frijol común ocupa dos veces el primer lugar. Primero, cuando se trató de buscar un cultivo que se podría sembrar despúes del caupí. Segundo, al buscar una alternativa al caupí. 4Este hecho podría indicar que los productores carecen dc información acerca de las funciones que cumplen las leguminosas en los sistemas asociados con maíz. útil por su demanda en el mercado, su aptitud para el autoconsumo, por la costumbre de sembrarlo y por la posibilidad de sacar doble cosecha (frijol y maíz) de un área reducida de tierra. El caupí no comparte todas las ventajas que reúne el frijol común. Entonces, lo que para el productor está bajo evaluación no es solamente el efecto agronómico de la incorporación de una leguminosa en el maíz, mas bien los usos potenciales de dicha leguminosa, incluyendo el consumo humano y la comercialización.6. En la reumon final, algunos productores manifestaron su interés en implementar un ensayo de arreglo topológico en su finca. La mayoría de los productores quiere volver a visitar el ensayo en el momento de la cosecha. Se mencionó otro posible arreglo, consistiendo en 3 a 4 surcos de frijol, alternándose con un surco de maíz. Otra idea de un campesino fué la de asociar sorgo con una leguminosa, bajo diferentes arreglos de siembra, siendo el sorgo un cultivo importante en su zona. Se habló también de la necesidad de llevar el trabajo a otras zonas agroecológicas. Finalmente, los productores hicieron entender que el evento les había gustado y que se debería llevar a cabo más frecuentemente este tipo de reuniones.CONCLUSIONES Los 4 arreglos topológicos de maíz, tres de ellos en asocio con caupí, no provocaron una clara tendencia de opinión entre los agricultores. No obstante, el arreglo maíz monocultivo goza de la mayor aceptación. El doble surco de maíz con distancia de 20 cm entre surcos fué el tratamiento que provocó más reprobación. El doble surco a 40 cm casi ocasionó igual número de pronunciamientos en favor como en contra.La mayoría de las razones mencionadas por los productores en ocasión de su selección (positiva o negativa) de tratamientos tiene que ver con el cultivo de maíz, su estado de desarrollo y el rendimiento esperado. Pocos comentarios se refieren a los efectos (positivos o negativos) de la leguminosa. La mayoría de los productores (65%) sembraría otro cultivo al terminarse el ciclo vegetativo del caupí. Dentro de estos agricultores, 77% se decidiría por el frijol común.La mayoría de los campesinos entrevistados-un 78%-hubiera, incluso, sembrado otro cultivo en lugar del caupí: 64% de ellos frijol común, la parte restante \"frijol abono\", sorgo o yuca.l. Al terminar el ciclo del caupí, se podría contemplar sembrar frijol común, ya que los campesinos se mostraron interesados en este patrón de cultivo.2. Al llevar el ensayo a nivel de fincas, se debería incluir los tratamientos TI, T2 YT4 solamente.3. Se debería analizar, si no valdría la pena asociar maíz con frijol común (en lugar de caupí). En este caso, incluso, se podría añadir como cuarto tratamiento el arreglo maíz-frijol intercalado (3-4 surcos de frijol, un surco de maíz), sugerido por un agricultor.4. Sería oportuno insertar eventos de evaluación participativa en otros casos, por ejemplo en el mismo ensayo, montado en otras regiones o paises (PRM) y también en otros trabajos, particularmente de 315 validación (INTA). En general, los informes sobre los ensayos deberían íncluir los resultados de evaluaciones hechas por los productores, a parte de la ya acostumbrada información técnica y económica. Agroecología del Sistema de Aboneras en el Litoral Atlántico de Honduras Bernard Triomphe l RESUMEN En el litoral atlántico de Honduras se ha documentado un sistema de aboneras con la rotación de maíz con mucuna. Para duplicar este sistema en otras partes, se necesita una base teórica sólida. El presente estudio intenta proveer la información básica sobre el sistema de aboneras, en especial la dinámica de nutrimentos. También se analizan tendencias a largo plazo de la fertilidad química y física de los suelos. La metodología se basó en estudiar parcelas con distintas historia de uso de esta rotación con aboneras para detectar cambios a largo plazo. Se describe brevemente el sistema de aboneras y se analizan las fracciones de la dinámica de nutrientes a lo largo del año, la acumulación y mineralización de la biomasa de mucuna, así como la dinámica del N en el I}ertil del suelo. Finalmente, un examen preliminar de los datos permite concluir que los suelos han mejorado después de 12 años de rotación continua, debido a la acción multiforme del mulch de la mucuna mantenido sobre el suelo. Si bien este sistema de aboneras es demasiado específico para extrapolarlo directamente a otras regiones, el mantenimiento de una cobertura casi perenne parece constituir un punto crítico para lograr una buena productividad y sostenabilidad agrícola.En Centro América, hay mucha experiencia práctica por parte de los agricultores y de varias üNGs sobre el uso de rotaciones de cultivos, incluyendo cultivos de cobertura (Bunch. 1993;Thurston et al., 1994). Estas rotaciones parecen conllevar numerosos beneficios tanto desde el punto de vista del agricultor (baja inversión inicial, ganancias a corto plazo, ayuda en el control de malezas, etc.) como desde el punto de vista técnico (control de la erosión, buena productividad, etc.). Sin embargo, la caracterización sistematica y cuantitativa de estos factores es insuficiente todavía, impidiendo conceptualizar claramente el potencial y las limitaciones de dichos sistemas fuera de las zonas donde han sido desarrollados y adoptado espontáneamente por los mismos agricultores. Dentro de este contexto, el objetivo de esta ponencia es presentar algunas evidencias iniciales I SCAS, Comell University, lIhaca, New York. DEL PRM 1993-1995, VOL. 5 (1997), p. 319-328. 319 sobre el funcionamiento biológico del agroecosistema Maíz de postrera/Mucuna spp. tal como se practica en la costa norte de Honduras. En particular, se analiza la dinámica de nutrientes (especialmente la del nitrógeno) tanto en sus aspectos a corto plazo (ciclo anual) como en los de largo plazo (10 a 15 años). Finalmente, se discuten algunas implicaciones de nuestras observaciones sobre el diseño de sistemas de producción 30stenibles. METODOLOGIA Brevemente, los puntos siguientes resumen el marco general dentro del cual este estudio se llevo a cabo (para mas detalles, véase Triomphe, 1996).(1) caracterizar la rotación maíz/mucuna en sus aspectos agronómicos, (2) determinar los efectos a largo plazo de dicha rotación sobre la fertilidad del suelo y (3) explorar la dinámica del nitrógeno a lo largo del ciclo del maíz.La fertilidad química y fisica del suelo en parcelas de agricultores sometidas a la rotación maíz/mucuna.A nivel espacial, el estudio abarco cuatro niveles distintos: la región (el litoral Atlántico de Honduras); la comunidad (San Francisco de Saco, Las Mangas, El Recreo y Piedras Amarillas), la parcela y la falda uniforme (una posición topográfica particular seleccionada dentro de cada parcela).A nivel temporal, el estudio abarco dos escalas: el corto plazo (i.e. la temporada agrícola) y el largo plazo (lOa 15 años de uso continuo de la rotación maíz/mucuna).GENERALIDADES Todo el estudio se realizo bajo el esquema de \"investigación en campos de agricultores\". Los principales métodos de trabajo incluyeron (1) un monitoreo de sitios de observación a lo largo del ciclo de cultivo, que consistió en varias visitas en fechas claves de la rotación maíz/mucuna durante las cuales se miden u observan los principales factores y condiciones determinantes de los rendimientos de maíz (Byerlee et al., 1991), ( 2) una serie de ensayos de respuesta a N y P acoplado con un seguimiento de la dinámica del N mineral en el perfil de suelo, y (3) la constitución de \"cronosecuencias\", o sea conjuntos de parcelas de distintas edades (desde O hasta IS años de uso continuo de mucuna) que permitan \"representar\" la evolución de la rotación maíz/mucuna en el tiempo. El propósito de usar una cronosecuencia es poder entender las tendencias a largo plazo ahorrando el tiempo que llevaría necesariamente un experimento a largo plazo: por esta razón algunos autores hablan de substitución espacio-par-tiempo (Pickett, 1988).Una combinación de entrevistas individuales y colectivas, observaciones cualitativas y mediciones cuantitativas fue usada para recolectar información. Los principales rubros de la recolección incluyeron las practicas de los agricultores y su racionalidad, mediciones de biomasa de la mucuna, así como su contenido de nutrientes, su CN, y su riqueza en C 13 , estimaciones de los rendimientos de maíz y sus componentes, así como mediciones de su crecimiento y su estado nutricional. La fertilidad de los suelos se caracterizo a nivel químico por la determinación de las cantidades de N mineral (7 a 10 fechas muestro/ ciclo), del pH, del C orgánico, N total, C/N, c 13 , bases intercambiables, Al, P disponible, y micronutrientes. En cuanto a física de los suelos, se determinaron las tasas de infiltración, la densidad aparente, la macroporosidad, el contenido de agua y la temperatura a varias profundidades.La mayoría de esas mediciones se repitieron durante dos ciclos de cultivo. La intensidad de recolección vario de una comunidad a otra: los estudios mas detallados se hicieron en San Francisco de Saco mientras que en El Recreo y en Piedras Amarillas, el estudio fue mucho menos extenso. 320 El contexto socio-economlCO y agroecológico en las laderas del litoral Atlántico a) Contexto socio-económico La Costa Norte tiene una historia de inmigración desde regiones mas pobres del país; todavía es zona de frontera agrícola y a la vez esta sujeta a una marcada expansión ganadera abarcando cada vez mas tierras con pendientes moderadas (Humphries, 1994).En promedio, los niveles de educación capacitación son relativamente bajos, con limitada acción oficial de apoyo al medio rural (infraestructura, crédito, extensión, investigación).A pesar de estas :::ondiciones, la producción agrícola esta fuertemente orientada hacia la comercialización, incluyendo el caso de los granos básicos.La mayoría de las tielTas \"agrícolas\" presentan pendientes fuertes (de 2S-30 a 100 %). Sin embargo, los suelos son relativamente profundos y fértiles, clasificados en su mayoria como Alfisoles, Inceptisoles o Entisoles. Los suelos ácidos (Ultisoles) son mas escasos.Las lluvias son copiosas (2S00 a 3S00 rnm/año), permitiendo 2 ciclos agricolas al ai'io. Hay una temporada \"seca\" que se extiende de febrero a mayo (SO a ISO rnm/mes) y una larga estación lluviosa en la cual la precipitación mensual rebasa fácilmente los 400-S00 mm, especialmente entre septiembre y diciembre.Este clima tropical húmedo ofrece condiciones favorables para producir una gran diversidad de cultivos tanto anuales como perennes (PDBL,1991).A raíz de las condiciones anteriores, la agricultura de ladera en la Costa Norte esta caracterizada por (1) una gran sensibilidad a la erosión de las tierras cultivadas y (2) un esquema productivo en el cual la deforestación y la agricultura migratoria siguen siendo dominantes, a la vez que la gran mayoría de los agricultores solo se dedican a la producción tradicional de granos básícos.En este contexto, el desarrollo y la subsecuente adopción de un sistema de producción novedoso, como lo es el sistema de aboneras, representa un avance indiscutible, que requiere de atención especial, toda vez que entender bien estos sistemas permitiría su posible extrapolación fuera de la Costa Norte.Básicamente, el sistema de aboneras es una rotación (o quizás mejor dicho, una asociación) entre un cultivo de mucuna durante la principal estación lluviosa (primavera) y un maíz de temporada seca (postrera) (Flores, 1987). Una vez establecida la rotación en una parcela, las principales etapas son las siguientes: a) El fin del ciclo de la mucuna esta detenninado por su madurez fisiológica \"natural\" entre mediados de noviembre y mediados de diciembre (i.e. cuando empieza a secarse, después de haber producido semilla), momento después del cual los agricultores chapian la mucuna con todo y vainas, sin quemar este material. b) Inmediatemente después de la chapia, siembran el maíz con espeque a través del grueso colchón de mucuna seca, entre diciembre y enero. c) Siguen generalmente uno a dos controles de malezas (generalmente manual, pero a veces con Paraquat), para beneficio del maíz y también de la mucuna, que se restablece naturalmente en las parcelas a partir de febrero (genninación espontanea de las semillas producidas en noviembre/diciembre y que acabaron de madurar en el colchón). Muy pocos agricultores resiembran la mucuna año tras año. Una minoría aplica un poco de urea a los 40-50 días despues de la siembra del maíz. d) En este momento y sin contar la poda que se le da a la mucuna (en dado caso de que se desarolle mucho), es solo cuestión de esperar la cosecha a partir de [males de abril. Al finalízar la tapisca, la parcela vuelve a estar dominada por la mucuna, que crece vigorosamente y sofoca gradualmente todas las malezas que habían prosperado después de la ultima limpia, a la vez que bota todas las cañas de maíz al treparla. No hay ninguna intervención mas en la parcela hasta que regrese el tiempo de la chapia. Cabe enfatízar el hecho que el sistema de ab.oneras es un sistema de cero labranza, sin quema y con muy pocos insumos externos (un poco de herbicida y fertilizante, si es que se usan del todo).Las principales ventajas de este sistema son las siguientes: a) Requiere poca mano de obra tanto para el establecimiento del sistema como para su mantenimiento b) Permite aprovechar el mejor ciclo para el maíz (periodo seco & precio de venta) c) No se quema la parcela; el suelo queda cubierto todo el año (lo que evita la erosión y conserva agua en el perfil de suelo) d) Provee cantidades apreciables de nitrógeno y otros nutrientes al descomponerse el mulch de mucuna. e) El mulch ayuda en el control de malezas t) Los rendimientos de maíz son buenos (2.5 a 3.5 t/ha en promedio, o sea 100% mas comparado con parcelas sin mucuna) y empiezan a subir desde el primer año de establecida la rotación; posiblemente, sean más estables de un año para otro.En cuanto a desventajas tales como las señalan los agricultores (Buckles et al., 1992), cabe destacar: 1) La limitación más clara consiste en la perdida de un ciclo agrícola al año, en el sentido que la mucuna (que hasta la fecha no ha recibido ningún otro uso que el de servir como mu1ch) ocupa la parcela por 8 meses, un tiempo durante el cual se podría teóricamente producir otro cultivo. Existen algunas experiencias con 2 ciclos de maíz al año en rotación con mucuna, pero no queda muy claro todavía como acortar el ciclo de esta ultima sin afectar marcadamente la producción de biomasa o de semilla.2) Varios agricultores mencionan los derrumbes durante los periodos de lluvias intensas (mas de 200-300 mm en uno o dos días) en las partes con pendientes muy fuertes (> 60-70%), debido supuestamente al ablandamiento del suelo propiciado por la mucuna. Pero estos mismos derrumbes se observan en parcelas sin mucuna y hasta en los bosques vírgenes...las laderas de la Costa Norte no son muy estables y cultivarlas año tras año con o sin mucuna seguramente acentúa los riesgos de derrumbes.3) La proliferación de ratones: pt;ro ,esta situación parece ser cíclica y afecta también las partes sin abaneras En la práctica, las ventajas superan ampliamente las dcs\\fentajas y hacen de este sisterna,una .alternativa muy deseable (vease criterios descritos en Buuch, j 993 j, explicando la popularidad excepcional de este sistema entre los agricultores del litoral Atlántico: la tasa promedio de adopción casi alcanza, 70% (Buckles et al., 1992).Al mismo tiempo que se reconocen los logros y cuaJidades indiscutibles del sistema de abaneras, surgen numerosas preguntas y dudas sobre las posibilidades de mejorarlo y adaptarlo (o cuando meJ,1os sus principios) a otras condiciones agroecologicasen y lo fuera de Centro América (Thurston et al., 1994). Sin embargo, no es fácil querer adoptar o mejorar las .practicas de los agricultores de la Costa Norte, sin entender primero los mecanismos biológicos que constituyen la base del funcionamiento interno del sistema de abonerasy que condicionan las mismas prácticas. compartimientos activos durante distintos periodos del año..' Para simplificar la presentación, nos limitaremos a• indicar •los• principales puntos a considerar sobre el ciclo de nutrientes (Cuadro 1).Al analizar eLCuadro 1, uno puede darse cuenta de:(1) La importancia capital del mulch en todas las etapas del ciclo ya sea como fuente o como pozo de nutrientes, lo que lo califica como regulador principal del ciclo de los nutrientes en el sistema de abaneras. Su contribución esta estrechamente relacionada con la intensidad de la mineralización y el aporte periódico de material orgánico fresco.También .participa activamente en las redistribuciones internas que to111an lugar permanentemente entre el mulch, la materia orgánica del suelo, la biomasa microbiana' y la solución del suelo.(2) El papel de las malezas, que inmovilizan nutrientes al absorberlos durante su crecimiento y los restituyen al ser nuevamente incorporadas al mulch durante las limpias. (3) El papel de las' prácticas de los agricultores en la alimentación del mulch y la exportación de nutrientes.En base a la defin,ición anterior, se vuelve mas fácil identificar los varios compartimientos (\"pools\" en, in,gJes) t,mto internos cQmo externos que participan en el ciclo de nutrientes, ya s,ea como fuentes.o corno• pozos (i.e. sitios donde se acumulan los nutrientes). Puesto que esta situación es dinámica (i.e. cambia con el tiempo), es necesario diferenciar cuales son los El sistema de abonera es muy complejo: para simplificar la discusión. solo se hará hincapié en algunos aspectos relacionados con la dinámica de nutrientes a corto plazo. en base a tendencias promedio observadas en San FranCISco de Saco. Ya que este tipo de análiSIS depende de cómo están definidas las Ji'onteras dcl sIstema. vamos a considerar para la discusión subsecuente un sistema abierto conformado por el perfil lk -udo (O a 100 cm), con una capa de mu!ch (i.e. material muerto) encima. Todos los demás componentes, como por ejemplo la mucuna en crecimiento o• el N lixiviado, son por definición considerados externos al sistema y como tal, representan entradas o salidas.de nutrientes y tra114ónnació¡l.Quizá la forma mas sencilla de analizar el papel desempeñado por el ciclo de la mucuna es considerando este ultimo como una fase de acumulación y reciclaje de nutrientes (N claramente, pero también P, K, Ca y micronutrientes).Una de las preguntas-claves es que tan rápido toma lugar esa acumulación durante el ciclo de la mucuna. No podemos cualificar el ritmo detallado durante todas las etapas de desarollo de la mucuna, ya que solo medimos biomasa entre floración (octubre) y chapia (diciembre) durante un solo año. Resulta que la mucuna parece acumular activamente biomasa (en base a materia seca) en este periodo, con un aumento promedio aparente de 40% en menos de 3 meses: de 10.0 tlha a 14.2 t/ha. En términos de nitrógeno, el aumento es menor: solo 26% en promedio, pasando de 0,24 a 0.31 t/ha, reflejando probablemente la mineralización activa que toma lugar aun durante el ciclo de la mucuna y también la importancia de la redistribución interna del N acumulado hasta octubre. Una conclusión pnktica importante es que seria algo arriesgado querer acortar el ciclo de la mucUila (considerando que 8 meses es un lujo) ya que• se perderían cantidades considerables de biomasa y' 'de nutrientes, lo que posiblemente afectaría el poténcial de rendimielli1il del maíz. Cuadro 1: Principales fuentes y pozos de nutrientes en el sistema de aboneras, Litoral Atlántico de Honduras. Al chapiar la mucuna, el agricultor propicia su descomposición bajo la acción conjunta de la flora y meso y microfauna (insectos, hongos, bacterias, etc.) presentes en o cerca de la superficie del suelo. Al descomponerse, el mulch de mucuna libera los nutrientes que esta ultima había acumulado durante su ciclo.Al volverse disponibles nuevamente en solución, estos nutrientes son absorbidos total o parcialmente por una serie de organismos (animales o vegetales) que los necesitan para su crecimiento y desarrollo: entre ellos, el maíz pero también las malezas, o los propios microorganismos del suelo. Los nutrientes no asimilados pueden perderse por volatilización, lixiviación, o también ser incorporados en la materia orgánica estable (el \"humus\") después de transformaciones sucesivas.Cabe recordar que el proceso de descomposición es gradual y sujeto a la influencia de las condiciones climáticas: en particular, las condiciones muy secas frenan la descomposición, hecho importante que considerar debido a que el mu1ch queda totalmente expuesto a la desecación por estar ubicado a la superficie del suelo.Al igual que en el caso de la acumulación de nutrientes, una pregunta critica es saber cual es la tasa de descomposición del mulch. Mediciones realizadas entre diciembre 93 y mayo 94 (un ano excepcionalmente seco) permiten estimar indirectamente tasas de descomposición (en base a materia seca) del 33% en los 80 primeros dias después de la chapia y 17% adicionales entre los 80 y 160 días 323 (cuando la sequía fue casi total). En términos de nitrógeno, las tasas son del 40% y del 18% respectivamente para los mismos periodos, correspondiendo a una liberación promedio de 103 Y 28 kg de N por hectárea, probablemente inferior a la que se da durante una postrera más húmeda.Debido a la importancia capital de la mineralización para el ciclo del N en el sistema de abaneras, vale la pena conocer la intensidad y dinámica de este proceso, especialmente durante la fase de redistribución del N, ya que nos interesa mas que nada el N disponible para el cultivo de maíz. Una primera aproximación consiste en seguir el contenido de N mineral de la solución del suelo durante el ciclo del maíz. Sin entrar en detalle, la Figura 1 sintetiza los datos obtenidos durante dos años consecutivos (postreras 92/93 y 93/94) en parcelas con varios años en la rotación maíz/mucuna. El N mineral (expresado en kg de N por hectárea) representa la suma del N03 y del NH4 encontrados en cada fecha en muestras de suelo colectadas entre O y 60 cm de profundidad.Cabe señalar que esta evaluación no toma en cuenta el N directamente absorbido por las raíces (de maíz, de malezas) presentes en el mulch y también el N orgánico presente en la solución del suelo, cuya contribución parece ser del mismo orden de magnitud que la del N mineral.En base a la figura 1, cabe destacar lo siguiente: a) A pesar de la variabilidad entre parcelas en cuanto a niveles de N, puede considerarse que todas las parcelas muestreadas presentan un comportamiento bastante uniforme.Cuadro 2. Respuesta del maíz a una aplicación de 50 kg N-urea/ha en el sistema de aboneras, Litoral Atlántico, Honduras. b) Poco después de la chapia de la mucuna y por unas 3 a 4 semanas, hay un marcado incremento en la disponibilidad de N mineral en el perfil de suelo, con niveles máximos alrededor de 0.1 tlha-1 • c) Hay una buena sincronización entre la demanda de N por parte del maíz en crecimiento y la liberación de N que se origina de la mineralización del mulch y de la materia orgánica del suelo. La disminución del N disponible en el perfil se debe seguramente en gran parte a la absorción activa de N por el maíz o las malezas durante este periodo (absorción típica alrededor de 0.1 tl.ha-I en las partes aéreas del maiz a madurez fisiológica). (n) numero de parcelas de ensayo (NTC) No, Total al Chapiar l/ha e) La mayoría del N disponible se encuentra en los primeros lOa 15 cm del perfil, a la vez que la cantidad de N en los horizontes mas profundos es relativamente baja, dando a pensar que las perdidas por lixiviación deben de ser modestas. d) Hay bastante N disponible en el suelo durante todo el año, aun cuando no hay demanda por parte del maíz: este N es muy probablemente reciclado parcial o totalmente por la propia mucuna, lo que invita a interrogarse sobre la importancia real de la fijación simbiótica en el sistema de abaneras. f) Finalmente, hay una tendencia a encontrar menos N mineral en el pe~fil en 93/94 comparado con 92/93 para periodos similares del ciclo de maíz (por ej. alrededor de 0.05 tlha a los 45 dds vs. 0.07 t/ha resp.).Rainfall mm 140-,-------r''\"T'\"T\"\"\"-\"T\"\"T\"'\"T\"T\"\"T\"\"T-'T\"\"'1r-r------,-0Sampling dale (O = 1/Dec) Aunque la respuesta a N fue muy variable de una parcela para otra, la respuesta promedio fue mas fuerte en 93/94 comparado con el año anterior (Cuadro 2), lo que esta en acuerdo con las tendencias detectadas en cuanto a disponibilidad de N mineral en el perfil (véase dinámica del N mineral). Ya que el N total acumulado por la mucuna al momento de la chapia fue similar entre los 2 años, una interpretación razonable permite relacionar la amplitud de la respuesta con la precipitación recibida durante la postrera. Durante una postrera relativamente humeda como la del 92/93, Desde el punto de vista del cultivo de maíz, no importa mucho de donde viene el nitrógeno, con tal de que haya lo suficiente en la solución del suelo durante los tiempos en que la planta lo requiere para su crecimiento. Una forma relativamente sencilla de determinar si hay suficiente N es agregándolo al suelo y ver si la planta responde a esta adición: si no y asumiendo que no interactuaron otros factores con la respuesta al N, uno puede concluir que el suministro \"natural\" de N cubre las necesidades del cultivo. Si la respuesta es significativa, esto indica que el suministro de N durante el ciclo del maíz no fue adecuado ya sea en términos de cantidades o de disponibilidad instantánea. hubo una mineralización activa del mulch proporcionando cantidades de nitrógeno suficientes para el maíz, mientras que durante una postrera muy seca como la del 93/94, la mineralización fue menor por falta de agua, conduciendo a cierta deficiencia en N, que pudo ser compensado por un aporte externo de urea.Cabe recordar que en la Costa Norte, la probabilidad de tener una postrera muy seca es relativamente baja, indicando que en promedio, habría poca necesidad de aplicar urea en parcelas con producción abundante de biomasa de mucuna, cuando menos bajo el manejo seguido por la mayoría de los agricultores en la actualidad.A LARGO PLAZO Los efectos a largo plazo son una consecuencia de la repetición año tras año de los mecanismos parcialmente analizados en el párrafo anterior. Representan el balance neto dejado por los 2 mecanismos opuestos de acumulación de materia orgánica y nutrientes por un lado y de descomposición de esta materia orgánica y salidas definitivas de nutrientes del sistema del otro lado. Debido a la metodología empleada para caracterizar estos efectos (el uso de un esquema de cronosecuencias), no podemos hacer mas que deducir de manera indirecta las tendencias aparentes de la evolución de algunas de las características del suelo de parcelas sometidas al sistema de aboneras. Finalmente cabe destacar que en una perspectiva de sostenibilidad y específicamente de conservación del medio ambiente, lo que importa es predecir cambios negativos eventuales, indicativos de una degradación del recurso suelo. Por el contrario, características estables o mejoradas indican que el sistema es sostenible en su forma presente.Hay varias formas de caracterizar los cambios que afectan la materia orgánica en el sistema de aboneras: una forma es analizando las cantidades totales de m.o. presentes y la otra es analizando su calidad, tal como la refleja por ejemplo su composición. En esta discusión, vamos a usar datos colectados en San Francisco de Saco, por ser mucho mas detallados que los de cualquier otro sitio. 325 Cuadro 3. Distribución del carbono orgamco ('X.) en los primeros 15 cm del suelo en parcelas con O hasta 15 años en el sistema de aboneras, San Francisco de Saco, Honduras. * 1 hor. 0-2.5 cm; 2 hor. 2.5-5 cm; 6 -hor. 12.5-15 cm Los datos presentados en el Cuadro 3 son típicos de los cambios que afectan un perfil en un sistema de cero-labranza (Barreto, 1989). Ya que el aporte de materia orgánica se hace por encima del perfil, sin ninguna incorporación, los primeros 5 cm del perfil son donde se nota claramente la acumulación de m.o., mientras que a profundidades mayores de 10 cm, casi no pueden detectarse diferencias.Usando una muestra mas completa de parcelas, se observaron los cambios siguientes en el horizonte 0-10 cm: el C orgánico aumenta de 2.13% en parcelas sin mucuna a 2.39% en parcelas de 4-6 años con mucuna y 2.76% en parcelas con mas de 12años. Acompañando los cambios en C orgánico, hubo cambios simultáneos en las cantidades de N total presentes en el perfil (0.21 %, 0.24% Y0.29% respectivamente), reflejándose en la estabilidad relativa de la relación C:N: 10, 10.1 Y 9.4 respectivamente para los mismos grupos de parcelas.También vale la pena destacar que a medida que van aumentado los niveles totales de N, su disponibilidad (para mineralización y reciclaje) parece ir aumentando, tal como lo indican los datos de potencial de mineralización: 31 ppm de N para parcelas sin mucuna vs. 41 ppm para abaneras viejas. Es interesante evaluar las tasas netas anuales de almacenamiento de C y N en los 10 primeros cm del perfil. Para carbono, se trata de un promedio de 0.05% anuales (in: 0.016 y mas: 0.106), representando un almacenamiento promedio de mas de 112 t.ha-1 de C en este horizonte cada año.Para N, la tasa anual de almacenamiento neto alcanza 0.006% (min: 0.0022 y max: 0.0105 %), o sea alrededor de 70 kg de N.ha-1 almacenados en el horizonte 0-10 cm cada año.La Figura 2 indica sin ambigüedad que no hay ninguna tendencia hacia la acidificación del perfil con el tiempo, al contrario, como lo comprueban la estabilidad o ligero aumento de pH, el incremento en la cantidad de bases intercambiables y los niveles insignificantes de Aluminio.Esta acidificación hubiese podido manifestarse debido a la grandes cantidades de N liberadas por la mucuna y potencialmente disponibles para ser lixiviadas. El hecho de que no se detectó acidificación alguna parece confirmar las observaciones hechas en 4.4 y resalta la probable importancia del eficiente reciclaje de N en el sistema de abaneras.En cuanto a la tendencia a tener más fósforo disponible con el tiempo, una interpretación posible involucraría el proceso de solubilización del P del suelo propiciado por la mucuna y su subsecuente retención y reciclaje en el mulch y en los primeros cm del suelo (Schlather and Duxbury, 1994).La evaluación llevada a cabo en este estudio fue menos sistemática que en el caso de las propiedades químicas, e incluyo menos parcelas, por razones logísticas obvias. También cabe destacar la fuerte variabilidad intra-parcela de las propiedades físicas, un hecho ampliamente documentado en la literatura. 0-10 30-60' 0-10 30-60' 0-10 30-60' 0-10 30-60 Sn Feo Mangas Cuero Piedras Site and Horizon Finalmente y aún que no podamos presentar datos cuantitativos al respecto, cabe destacar el hecho de que no parece haber erosión alguna en el sistema de aboneras, si uno acepta los derrumbes locales y otros signos de degradación como fenómenos irremediables que afectan periódicamente algunas parcelas ( con o Sin embargo, es todavía posible detectar algunas tendencias índicativas de la dinámica que afecta las propiedades físicas del perfil de suelo. Por ejemplo, las tasas de infiltración parecen haber aumentando en parcelas con muchos años en el sistema de aboneras, pasando de 46 mm/hora en promedio para parcelas sin mucuna o con menos de 2 años en el sistema, a unos 67 mmJhora para parcelas entre 5-7 años y 8 l mm/hora para parcelas con mas de 10 años. Simultáneamente, las tasas de escurrentiá respectivas (obtenidas después de haber aplicado lluvias artificiales con una intensidad alrededor de 100 mmJhora, un nivel fuerte aún para el litoral Atlántico) alcanzaron 49%, 32% Y 24% para las mismas parcelas (van Es el al., 1994).Lógicamente, la porosidad total del horizonte 0-10 cm (el opuesto de la densidad aparente) parece haber aumentado ligeramente con el tiempo transcurrido en el sistema de aboneras, pasando de menos de 52% a 55% y a 57% siempre para los mismos 3 grupos de parcelas. Este incremento no parece traducirse en una macroporosidad significativamente mas importante en los primeros 10 cm del perfil, sin embargo. Globalmente, estos datos confirman la percepción de los agricultores quienes hablan de \"ablandamiento\" del suelo bajo la rotación maíz/mucuna, cuyo origen no queda muy claro (acción de las raices de la mucuna vs. actividad de los lombrices y otros miembros de la mesofauna del suelo por ejemplo). Al cabo de esta presentación, en la cual se discutieron algunos de los mecanismos y efectos observados en el sistema de abaneras, vale la pena reflexionar sobre las lecciones que nos enseñan tanto el funcionamiento de este sistema como la historia de su adopción (Buckles et al., 1992) en cuanto a la concepción de sistemas de cultivos sostenibles.Cabe enfatizar una vez mas algunas de las ventajas indiscutibles del sistema de aboneras. Requiere poca mano de obra y pocos insumas externos. Ofrece al agricultor una buena productividad fisica en su forma presente (rendimientos promedios de 2.5 a 3.5 t/ha) y a la vez un alto potencial productivo a futuro (los mejores rendimientos observados superan los 6 t/ha). Estas ganancias en productividad (en otras palabras, esta intensificación) comparado con el sistema tradicional se logran sin ninguna degradación del recurso suelo. Finalmente, es una innovación fácil de adoptar aún sin ayuda de parte de un sistema oficial de extensión, lo que obviamente constituye una de sus características mas deseables, esto en un contexto de disminución de las capacidades públicas de intervención en la agricultura campesina.Mucha gente sueña con duplicar los resultados obtenidos en la Costa Norte en otras regiones de Centro América y tienen tendencia a considerar la mucuna como una receta universal. Sin embargo, tal actitud es peligrosa ya que el sistema de abaneras constituye una adaptación única a un conjunto de factores y condiciones relativamente específicos de la Costa Norte de Honduras. Hay pocas otras regiones con lluvias tan abundantes y tan bien distribuidas, con suelos tan fértiles, con condiciones de mercado tan ventajosas y con presión demográfica moderada, permitiendo dedicar sin mayor problema hasta la fecha parcelas enteras a lo que se puede considerar como un 327 ciclo de \"barbecho mejorado\" de 8 meses de duración. Lo que si puede extrapolarse son los principios que forman la base del sistema de abaneras, quedando como trabajo diseñar sistemas específicos que permitan hacer uso de ellos.El mulch, ¿un principio con validez general? Claramente, la clave del sistema de abaneras esta constituida por la creación y el mantenimiento de un mulch casi perenne que cumple múltiples funciones cruciales: dispositivo anti-erosivo eficiente y barato, ayuda en la conservación de agua y el reciclaje de nutrientes y ayuda en el control de malezas. Contrariamente a muchas propuestas concebidas por agrónomos que pretenden aumentar la productividad agrícola en base a la adopción de todo un paquete tecnológico complejo, la integración de tan solo una innovación (el mulch), permite transformar positivamente en un solo golpe casi todos los aspectos del sistema de producción. Ahora bien, hay que reconocer que producir y mantener un mu1ch suficiente representa un gran reto para los que trabajan en regiones con un potencial limitado para la acumulación anual de biomasa vegetal y en donde la competencia para acceso a la tiena es fuerte (por el ganado o los propios agricultores) (Buckles and Baneto, 1995).Ojalá este estudio haya servido para ilustrar una vez mas los grandes beneficios que pueden derivarse al aceptar partir de la experiencia y la realidad de los agricultores, para concebir y mejorar los sistemas de cultivos presentes con su participación activa. En mi opinión, es menester y justificado muy a menudo salir del esquema tradicional del tipo 'transferencia de tecnología', especialmente cuando el cliente principal de este proceso vive algo al margen de la sociedad industrial-comercial de donde suele funcionar el modelo de transferencia.Otra lección importante consiste en reconocer la utilidad de trabajar con un enfoque de \"sistemas\" para maximizar la probabilidad de identificar los problemas y las oportunidades mas relevantes para desarrollar alternativas atractivas para los agricultores. Desafortunadamente, sigue habiendo un énfasis exagerado en los círculos académicos y profesionales hacia estudios y acciones muy disciplinarias, sin considerar de cerca las interacciones con otros componentes y factores. Hay que seguir luchando por crear condiciones adecuadas para que los agrónomos estudien y adopten un enfoque de sistema, no por ser una moda intelectual sino por ser una necesidad metodológica de rutina.Al mismo tiempo, es muy necesario dedicar esfuerzos especiales para analizar adecuadamente los mecanismos biológicos que forman la base de los efectos o resultados encontrados en los estudios agronómIcos llevados a cabo en parcelas de agricultores o en las mismas estaciones experimentales. Sin este entendimiento, los agrónomos están condenados a repetir trabajos cuya única originalidad consiste en el sitio o el año en que se desarrolla, sin ofrecer posibilidades claras de extrapolar resultados a otros sitios o años. Claramente, queda mucho por hacer en este sentido y se requiere de inversiones significativas a varios niveles para lograr mejorar esta situación.Finalmente, considerando las fuertes limitaciones practicas que afectan a las instituciones de muchos países tropicales, parece aconsejable reconsiderar la forma en que los recursos están distribuidos dentro de aquellas instituciones encargadas de la investigación agronómica. En mi opinión, sería probablemente mas eficiente a largo plazo trabajar relativamente a fondo en pocos sitios y sobre pocos temas, con métodos y herramientas de bajo costo (pero bien adaptados a los objetivos), que seguir esparciendo recursos minúsculos entre innumerables temas o sitios, alcanzando en el proceso mas frustraciones que verdaderos logros. A manera de ilustración, no creo que se lograrán grandes avances en el tema de cultivos de cobertura sin invertir recursos (humanos, financieros) significativos.Antes de todo, quisiera mencionar la contribución esencial que tuvieron a lo largo de este estudio los agricultores de San Francisco de Saco (Atlántida) y especialmente Don José María Ayala Enríquez, no solo por haber compartido pacientemente sus experiencias y parcelas conmigo, sino también por estar dentro de los principales creadores del sistema de abaneras. La investigación reportada en este documento ha sido financiada conjuntamente por el ClRAD (Centre de Cooperation Intemationale en Recherche Agronomique pour le Developpement, Francia) y el CIlFAD (Comell Intemational Institute for Food, Agrículture and Development, Estados Unidos) y constituye una parte de mi tesis de doctorado con la Universidad de Comell, bajo la asesoría de los Ores. Bouldin y MI. Pleasant. Personas de varias instituciones participaron activamente en este proyecto: especialmente a Marco-Antonio Ponce, Luis Brizuela, Secarlos Padilla, estudiantes del Departamento de Suelos del CURLA/UNAH, a Manuel Lopez y Osear Espinal, profesores del mismo Departamento, al Ing. Orly La Mustia Hilachosa del Frijol Común (Pllaseolus v/llgaris L.) es causada por el hongo basidiomiceto rhallatephorus c/lc/lmeris (Frank) Donk (anamosfo = Rhizoctollia solalli Kuhn). La enfermedad está distribuida en todas las zonas productoras de frijol en Centro América y el Caribe causando pérdidas en la producción y calidad de granos de variedades de origen Mesoamericano y Andino. El hongo se disemina de manera efectiva por basidiosporas, contacto por micelio de planta a planta, salpique de esclerocios y residuos de cosecha y/o suelo infestado y semillas. Las medidas de control de la enfermedad son ineficientes y costosas sobre todo para los pequeños y medianos productores. Las variedades comerciales que se siembran en la región son susceptibles a la Mustia Hilachosa. El mejoramiento varietal para la resistencia a la enfermedad no ha sido efectivo debido a que se desconoce lo suficiente sobre la variabilidad de este patógeno y los mecanismos de resistencia. El hongo R. sola11i posee una amplia variabilidad genética manifestándose en características morfológicas, culturales, patogénicas, ecológicas y epidemiológicas. La anastomosis del micelio es el criterio utilizado para agrupar los aislamientos del hongo con compatibilidad genética. Los grupos de anastomosis (AG) son considerados como poblaciones genéticamente independientes y su distribución depende de los hospederos predominantes en una zona determinada.En los últimos ai10s se han observado variabilidad en la reacción de cultivares resistentes en evaluaciones de lo~Viveros Internacionales, debido a los pocos estudios sobre el patógeno, no se sabe si esto es debido a la variabilidad del patógeno y al medio ambiente, o la interacción entre ambos. Las investigaciones sobre el agente causal de la Mustia Hilachosa en la región ha sido muy limitada y escasa. El propósito de nuestro estudio es: Entre el otoño de 1993 y la primavera de 1994 se inició la primera fase de la colección de muestras de la parte aéreas de plantas de frijol con síntomas de Mustia Hilachosa en República Dominicana, Panamá, Guatemala, Honduras, Puerto Rico y Cuba. Lam uestras fueron transportadas en fundas de p\"rd y procesadas en el laboratorio de fitopatolog;\" dd Centro de Investigaciones Agrícolas del Surve;;te (CIAS), San Juan de la Maguana.Porciones de tejido infectado se examinaron microscópicamente y/o colocaron directamente en planchas petri conteniendo medio semiselectivo consistente en 2% de Agar Agua (Difco Co.) al que se añadió 30 l/L de Metalaxyl (Ridomil 2E, 25% a. i) y 60 l/L de sulfato de Estreptomicina (1 gr/ml agua dest. estéril). Las placas fueron incubadas a temperaturas de 25-280C por 48 horas. Micelio de las colonias con características morfológicas de Rhizoctonia fueron transferidas al medio Papa-Dextrosa-Agar (Difco Co.), para confirmación de la especie R. solani y otras características culturas (Sneh el. al., 1991). Sub muestras de las aislamientos representativos de las diferentes zonas frijoleras de los seis países se utilizaron para determinar su condiciones nuclear y grupo de anastomosis, otras muestras colectadas posteriormente en Costa Rica, Nicaragua, El Salvador, Guatemala, Honduras y México serán examinadas genéticamente en una segunda etapa, aunque fueron incluidas en los ensayos de virulencia y patogenicidad.La virulencia de los aislamientos se determinó en plántulas de frijol de los cvs. PC-50 e l(~A-PIJAO y patogenicidad en raíz cv. CESDA 88 y Soya cv. Kenwood. Las hojas primarias de las plántulas fueron inoculadas con micelio (Godoy et al., 1992) y mantenidas bajo condiciones de humedad >95% y temperatura 25-28°C. Las lesiones se midieron a las 48 horas después de la inoculación del frijol y la soya y a las '72 horas en las de maíz. Cada tratamientos (aislamiento) fue repetido cuatro veces.El agente causal de la Mustia Hilachosa Thanatephorus cucumeris (Frank) Donk mostró variabilidad en cuanto a los grupos de anastomosis y sub grupos dentro y entre países. Aún con un número limitado de aislamientos, se encontró una población genéticamente diversa. En países tales como Cuba y Honduras no se habia confirmado la presencia del hongo hasta el presente.Aunque la cantidad de muestras tomadas por país fue suficiente, en muchos casos el aislamiento del hongo no fue posible debido a que las muestras estaban deshidratadas ó fueron afectada por descomposición de las hojas. Sin embargo muchas de las hojas se recibieron en buenas condiciones, pudiéndose observar dos tipos de lesiones. Las lesiones más típicas fueron aquellas en las que se observaron manchas acuosas, extensas y áreas necróticas acompañadas de micelio.Otras lesiones pequeñas y delimitadas mostraron similitud a aquellas que resultan de infección por basidiosporas. Este tipo de lesión fue observado en muestras de hojas tomadas en Panamá, Rep. Dominicana y Costa Rica. En estos países se ha observado con frecuencia el desarrollo del estado sexual (Gálvez et al., 1989;Godoy-Lutz et al., 1994).Solo se obtuvieron colonias multinucleadas del estado asexual de R. solani. De los 73 aislamientos seleccionados para el estudio genético, 39 fueron asignados al grupo AG-l con sus respectivos subgrupos y 34 al grupo AG-2-2.Los aislamientos de AG-2-2 fueron obtenidos de lesiones similares a las causadas por basidiosporas. De los aislamientos pertenecientes a AG-l, 24 fueron clnsifieados en el subgrupo AG-I-IB tipo macroesclerocio (0.5-2.0 cm) y 13 tipo microesclerocio « 0.1 cm). Los únicos aislamientos recuperados de lesiones en un campo de Cuba produjo un tipo de esclerocio distintivamente diferente en tamaño (0.2-0.5 cm), formn y textura. 330 Estos aislamientos fueron clasificados como AG-l-lA (S. Naito, comunicación personal) (Ogoshi, 1987;Sherwood, 1969;Sneh et al., 1991) aislamientos de este subgrupo han sido asociados con el tizón del tallo del arroz en Japón pero no con Mustia Hilachosa del Frijol Común (Ogoshi, 1987).Las características culturales de los aislamientos de AG-l y AG-2-2 se mantuvieron estables aún después de transferencias múltiples en medio y reaislamiento de las diferentes inoculaciones.La caracterización del patógeno que causa la Mustia Hilachosa tiene implicaciones importantes en las estrategias del control de la enfermedad, ya que los diferentes grupos y subgrupos difieren en la ecología y epidemiología (Ogoshi, 1987). En soya y arroz, los tizones foliares son causados por diferentes aislamientos de AG-llA y AG-I-IB, respectivamente. La diferenciación de estos, aunque causan sintomas similares, fue crítica para establecer la relación densidad de inóculolincidencia de la enfermedad y para tomar decisiones sobre cultivos de rotación y/o asociados para ambos cultivos. Se determinó que la temperatura optima, sensibilidad a fungicidas y otras condiciones que favorecieran la supervivencia de propágulos variaba entre estos subgrupos (Jones et al., 1989;Ogoshi, 1987).En campos frijoleros donde la Mustia Hilachosa es causada por aislamientos de AG-2 ó AG-I-IB (tipo microesclerocio) los propágulos producidos en la parte aérea de la planta y diseminados por el viento tendrian una mayor importancia en el ciclo de vida del patógeno y el desarrollo de epidemias que aquellos distribuidos en el suelo. Por lo tanto, medidas tendientes a reducir la esporulación, crecimiento micelial y desarrollo de microesclerocios en el follaje serian más efectivas que aquellas tendiente a reducir los propágulos en el suelo.El uso de coberturas es una práctica recomendada para reducir los propágulos en el suelo que se diseminan por medio del salpique causado por lluvias, sin embargo, la misma no ha sido efecti\\'a en algunos países ó zonas donde predomina la fase sexual y la diseminación es más efectiva por vía aérea.Los aislamientos por país, inoculados en los cultivares de frijol, soya y maíz variaron en cuanto virulencia y patogenicidad. Los aislamientos del grupo AG-l, colectivamente, crecieron más rápido que los de AG-2 a temperaturas de 20, 2S y 30°C Y fueron más virulentos en frijol que los de AG-2. Estos resultados concuerdan con reportes de los campos donde aislamientos de AG-l incitan síntomas severos de Mustia Hilachosa tales como defoliación rápida e infección de vainas y semillas (Gálvez et al., 1989;Godoy-Lutz et al., 1994).Todos los aislamientos fueron patogénicos al maíz y produjeron lesiones acuosas. E l hongo desarrolló micelio abundante en las plántulas de maíz infectadas cuando fueron mantenidas en cámara húmeda por 72 horas.Micelio del patógeno asociado con residuos de maiz fue infectado en plántulas de frijol aún después de haber sido mantenido a 10°C por tres semanas. El maíz es un cultivo importante en Centro América y se utiliza como cultivo de rotación en el manejo integrado de la Mustia Hilachosa (Gálvez el al., 1989).Nuestros estudios sugieren que residuos de maíz, aunque el cultivo no es infectado por el hongo que causa la Mustia Hilachosa del frijol bajo condiciones de campo, pueden servir como reservorio del hongo y como fuente de inóculo primario en las primeras etapas de 1a enfermedad.Los estudios sobre la variabilidad de T cucumeris continuarán con un mayor número de aislamientos. Estas investigaciones beneficiarán a fitomejoradores y agrónomos de la región en la búsqueda de fuentes de resistencia y el desarrollo de estrategias de manejo más eficientes.Identificación de Razas de Xanthomonas campestris pv.Phaseoli en Hojas de Phaseolus Vulgaris Mildred Zapata lLa bacteriosis o tizón común del frijol constituye una limitante en muchos paises de Centro América y el Caribe. Al presente no existen variedades comerciales resistentes al patógeno Xallthomollas campestris pv. phaseoli (Xcp). Se ha reportado sobre cultivares de frijol común con inestabilidad en la resistencia y variabilidad en la virulencia de la bacteria, pero casi no se ha estudiado la interacción huésped-patógeno. Para este caso, se coleccionó Xcp en Costa Rica, Cuba, República Dominicana y Puerto Rico. Las colecciones se inocularon en genotipos purificados de P. vulgaris. La respuesta a la inoculación foliar de Xcp mostró la presencia de genotipos útiles en la diferenciación de razas fisiológicas de la bacteria. Por otro lado, también se logró identificar materiales con resistencia a múltiples razas de Xcp. Por tanto, se establece la presencia de razas fisiológicas basado en la respuesta foliar de P. vulgaris al grupo de la colección de Xcp de Costa Rica, Cuba, República Dominicana y Puerto Rico.La bacteriosis o tizón común es uno de los problemas de mayor importancia en la producción del frijol, Phaseolus vulgaris L. en casi todos los países donde se cultiva esta leguminosa. Tiene distribución mundial (Bradbury, 1986). El agente causal de la enfermedad, la bacteria Xanthomonas campestris pv. phaseoli (Xcp) (Smith) Dye ataca las hojas de la planta, destruyendo a veces de un 35-40% de ellas (CIAT, 1985), lo cual reduce el área fotosintética de la planta, también puede atacar la vaina y la semilla, lo cual reduce el valor comercial de los frijoles. Las pérdidas en cosecha se han estimado entre 10-45k (Saettler, 1989), causando pérdidas de millones de dólares en muchos países (Vidaver, 1993). Por otro lado, el control es dificil ya que la bacteria es transmitida a través de la semilla Xcp fue descrita por primera vez en 1897. Aunque se conoce bastante sobre la biología, epidemiología, I BacteriÓJoga. Depto. Protección de Cultivos. Univ. de Puerto Rico. Mayaguez, Puerto Rico. DEL PRM 1993-1995, VOL. 5 (1997), p. 332-338. 332 rango de huéspedes y otras propiedades (Zaumeyer y Thomas, 1957;Schuster y Coyne, 1981) poco se sabe sobre la variabilidad patogénica de la bacteria. El objetivo general de esta investigación es determinar si existe variabilidad patogénica en Xcp utilizando colecciones del patógeno provenientes de Centro América y El Caribe.El diagnóstico preliminar se basa en síntomas, especialmente de las hojas. Sin embargo, la confirmación requiere identificación del patógeno y otras pruebas. Gilbertson et al. (1989), desarrollaron una sonda de ADN para la identificación de la bacteria basada en una secuencia de un plásmido obtenido de cepas representativas de 50 zonas geográficas. Dicha técnica está siendo evaluada por varios investigadores.Algunas de las dificultades para evaluar resistert\"íJ al patógeno son las siguientes: la resistencia dl' l,b hojas y vainas se hereda independientemente (Coyne y Shuster, 1983, Park y Dhanvantari, 1987); el largo del día afecta la susceptibilidad de algunos genotipos en ambientes diferentes (Webster et. al;1983, Saettler, 1989)); no existe uniformidad en los métodos de inoculación utilizados; algunos investigadores no han observado la reacción de inmunidad (sin síntomas) en los genotipos de P. vulgaris utilizados (Coyne y Shuster, 1983;Park y Dhanvantari, 1987); existen diferencias en virulencia (Shuster y Coyne, 1981, Saettler, 1989) y existen poblaciones epífitas del patógeno (Saettler, 1989;Ishimaru et a1.,1991 ).Se han descrito interacciones específicas cultivarraza caracterizada gene-gene para varias Xanthomonas spp. y sus huéspedes. La respuesta de resistencia está controlada por un gene avirulento del patógeno y el gene correspondiente del huésped (Flor, 1955;Ellingboe, 1976). Al presente se han clonado los genes de avirulencia en Xc pv. vesicatoria (Swanson et al., 1988, Wallen et al., 1988; Banas et al., 1989; Minsavage et al., 1990; Canteros et al., 1991), Xc pv. malvacearum (DeFeyter y Gabriel, 1991), Xc pv. campestris y X orizae sv. oryzae.En el Centro Internacional de Agricultura Tropical (CIAT) se ha utilizado la cepa de mayor virulencia para estudios de determinación de resistencia. En 1981, CIAT informó una metodología modificada de las cuchillas impregnadas con bacterias según informada en 1979. Luego de. comparar la nueva metodología usando ó cultivares de Phaseolus vulgaris concluyeron que dicho procedimiento era mas rápido, fácil de utilizar e uniforme. Sin embargo, no discriminaba dentro de los niveles de resistencia. En 1988, CIAT vuelve y modifica la técnica informada en 1981. Dicha técnica requería luego de la inoculación manual con cuchillas aspersionar inóculo en la tarde. otros métodos utilizados para la inoculación envuelven multi-agujas, laceraciones en los tejidos y aspersión a presión con arena impregnada de inóculo (Zapata et al., 1985). Estos últimos permiten una mejor evaluación de diferencias en respuesta a la inoculación del patógeno debido a que el tejido no sufre mucho daño mecánico.El concepto de raza se ha utilizado para identificar variación dentro de una especie. Sin embargot este ténnino no se reconoce como una taxa por el Código Internacional de Nomenclatura Botánica (Hawksworth, 1974). La variación intraespecífica se identificó inicialmente en hongos por estudios de especialización patogénica usando diferentes huéspedes ( Erikson y Henning, 1896) y subsecuentemente en diferentes genotipos de una misma especie (Barros, 1911). Después de Stakman, 1914 el concepto raza fisiológica (raza) fue aceptado para tipos especializados a distintos genotipos dentro de una especie.Estas entran en dos grupos: diferenciales de un gene y aquellos cuyo número de genes de resistencia se desconoce. Lo mas importante es poder d~terminar el número de genes de resistencia detectables. Esto es, el número detectable de los fenotipos avirulentos que posee la población del patógeno. Por otro lado, si un 333 gene de resistencia no es pareado por virulencia, el gene en particular y el cultivar no será útil en revelar la diversidad genética del patógeno, sino que también habrán efectos epistáticos, y otros genes en el cultivar no serán detectados. A veces la resistencia enmascarada puede dar una reacción diferente a la normal. Idealmente cuando se buscan diferenciales aquellos que contienen un solo gene son los mejores para medir diversidad en una población. Cualquier agrupamiento en la distribución de genes de resistencia limita la capacidad del diferencial para detectar diversidad.Originalmente esta especie estaba restricta al agente causal de la pudrición negra de las crucíferas. Sin embargo, existen otros patógenos muy similares que se encuentran dentro de esta especie designados como patovares. En el grupo de Xc se han identificado algunas razas de patovares como: pv. cerealis (Hagborg) Dye. Varias razas patogénicas se han descrito. Wallin, diferenció ó razas por reacción en 5 variedades de avena. pv. oryzae (Ishiyama) Dye. La especialización patogénica del agente causal del arroz ha sido demostrada en cultivares de arroz que tienen genes específicos para resistencia a la enfermedad (Barton, Willis, 1989). En Japón Xco se ha clasificado en o razas en base a las reacciones de cinco cultivares diferenciales con cuatro genes de resistencia individuales o en combinación. En la interacción entre arroz y Xco, la respuesta hipersensitiva no se desarrolla (Klement et al., 1982;Parry, 1986) y lo que se considera os el desarrollo de la lesión (Ou, 1985).pv. malvacearum (Smith) Dye. La enfermedad causada por esta bacteria es conocida como mancha angular de la hoja, pero puede presentar síntomas de pudrición y necrosamiento en la planta de algodón. Afecta cotiledones, hojas, y tallos.La interacción diferencial entre razas y cultivares resistentes se ha esclarecido y la variación de virulencia se ha analizado genéticamente. Hay dos tipos de algodón: diploide y tetraploide. Estos tipos contienen muchas especies y cada especie tiene respuestas inmune, resistentes, tolerantes y susceptibles.La resistencia vertical del algodón a la enfermedad esta determinada por 16 genes de resistencia. Por otro lado, la resistencia horizontal está controlada por un complejo de polígenes.pv. phaseoli (Smith) Dye. Xcp y la variante Xcp (fuscans) inducen síntomas en hojas, tallos, vainas y semillas (Zaumeyer y Thomas, 1957;Saettler, 1989Saettler, , 1991)). Se informó variación patogénica en Xcp y Xcp fuscans basado en ó cultivares de Phaseolus vulgaris (Ekpo y Saettler, 1977). Las plantas en la etapa reproductiva fueron mas susceptibles a una de las cepas. Zapata et al. (1985), encontraron reacciones específicas entre Xcp y genotipos de Phaseolus vulgaris que fueron evaluados para resistencia al patógeno.Se han identificado 7 razas de Xcp, cinco de ocurrencia natural y 2 inducidas químicamente mediante la utilización de Phaseolus acutifolius L. como planta diferencial (Zapata y •Vidaver 1987;Zapata, 1989). Freytag (1989), describió en P. acutifolius un gene dominante pata resistencia a tres cepas de Xcp.1. Identificar las razas de Xcp prevalecientes en los países de Centro América y E1 Caribe. 2. Identificar los genotipos de Phaseolus vulgaris con potencial diferencial de la bacteria Xcp. 3. Identificar genotipos de Phaseolus vulgaris con altos niveles de resistencia a múltiples razas de Xcp (prevalecientes en la región de Centro América y El Caribe).Se coleccionó material de frijol infectado con XCP en noviembre de 1993 en Costa Rica (924 y 931), Cuba (957 y 958), República Dominicana 872 y Puerto Rico (974, 975, 980 Y 981). Se realizaron los procedimientos necesarios de aislamiento y purificación. Cada aislamiento se inoculó en plantas indicadoras de patogenicidad, o sea, genotipos susceptibles a Xcp. Para determinar la presencia de razas, genotipos diferenciales, y genotipos resistentes a múltiples razas se inoculó cada aislamiento bacteriano en tres sitios diferentes a un lado de la hoja y el otro lado de la hoja se inoculó de igual forma, pero sin 334 bacteria, dejando tres sitios de la hoja como control e indicador del daño mecánico.La primera fuente de genotipos utilizados para evaluar a nivel de invernadero consistió de 120 genotipos de Phaseolus vulgaris pertenecientes al Vivero de Fuentes de Resistencia de Centro América. Dicho vivero fue obtenido del Dr. Federico Rodríguez de la Secretaría de Recursos Naturales, en Danlí, Honduras. Dentro de este vivero hay materiales seleccionados para los proyectos de Apion, Mosaico Dorado, Antracnosis, Bacteriosis, Empoasca. Rendimiento Baja fertilidad, Precocidad Mancha angular, y otros. Los materiales se sembraron en tres replicados utilizando la mezcla de suelo comercial (Sunshine 1) y se irrigaron por un sistema de riego por goteo. Las plantas se inocularon en la hoja trifoliada a los 21 días, utilizando una punta de pipeta y cultivos de Xcp de 24 horas crecidos en agar nutritivo. Los datos se tomaron a los 14 y 21 días después de la inoculación. La escala utilizada varió de 1-5 siendo, 1=resistente y 5 = altamente susceptible.Se evaluaron los genotipos resistentes a bacteriosis común (WBB-35, W-BB-11, W-BB-20, W-BB-52, W-BB-56) liberados en Puerto Rico en 1991 (Zapata et al., 1991), Great Northern No.1, Sel 27, y la línea comercial Great Northern (utilizada en la zona templada). También fueron evaluadas líneas derivadas de cruces interespecíficos y las variedades de Guatemala: ICTA-Ostua, Chapina y Santa Gertrudis. El propósito de la evaluación fue seleccionar genotipos de mayor o igual resistencia al Great Northern No.1 Sel 27 ya que este genotipo representa una de la fuentes de resistencia mas importantes reconocidas al presente.Durante el primer ensayo se realizaron selecciones de plantas individuales, bajo condiciones de invernadero para purificar la semilla. Por otro lado, algunos materiales se descartaron debido a la propensidad a enfermedades de la r.aíz causada por hongos. Se ha continuado con la purificación de semilla mediante el incremento de semillas de plantas individuales para proceder con la evaluación de otros aislamientos.SS, RR, Y RS y se separó 1 qrupo de plantas diferenciales para estas razas (Cuadro 4). Cuadro 1. Variabilidad patogénica de Xanthomonas Campestris pv. Phaseoli en diferentes genotipos de frijol común.La evaluación de la colección de Xcp de Cuba 957 y 958 mostró 3 patrones de interacción (SS, RR, Y SR), respectivamente. Se encontró un solo genotipo funcional como diferencial ( Cuadro 5). Sin embargo en algunos casos la semilla cosechada no resultó suficiente para hacer todas las evaluaciones que se presentan en los cuadros de los resultados.Se logró coleccionar, aislar y purificar algunos aislados de Xcp representativos de los países de Centro América y El Caribe. Se determinó la patogenicidad para todos los cultivos antes de ser utilizados para los experimentos de diferenciación de razas, genotipos diferenciales y genotipos con resistencia a múltiples razas.Mediante la evaluación de los 120 genotipos de P. vulgaris con Xcp de Puerto Rico 484at República Dominicana 872 y Costa Rica 924 se identificaron por lo menos 7 genotipos con potencial diferencial de las colecciones de bacteria arriba mencionadas (Cuadro 1). Al mismo tiempo dichos genotipos evidencian que las colecciones de Xcp de Puerto Rico 484a, República Dominicana 872 y Costa Rica 924 son específicos en patogenicidad a genotipos de la especie vulgaris, por lo cual representan razas fisiológicas de la bacteria.En 1994 se diferenciaron 5 respuestas de interacción a las colecciones de República Dominicana 872, Costa Rica 924, y Cuba 957 y 958 (Cuadro 2). De acuerdo a las respuestas de resistencia y susceptibilidad de 17 genotipos se determinaron las siguientes patrones de interacción: RRSs' SRSS, RSSR, RRRR y SSSS, respectivamente. Por otro lado, se identificaron 3 grupos de diferenciales que fueron funcionales para identificar las Xcp probadas.Los resultados del experimento de evaluación de las colecciones de Xcp de Puerto Rico 974, 975, 980, Y 981 mostraron o patrones de interacción: SSRS, SSSR, RRRR, SRSR, SRSS., y SSSS con 4 grupos de plantas diferenciales (Cuadro 3).La evaluación de las colecciones de Xcp de Costa Rica 931 y 924 mostraron 3 patrones de interacción: Escala de severidad: 1 -resistente, 2 -leve susceptible, 3moderada susceptibilidad, 4 = susceptible, 5 = alta susceptibilidad. Sin embargo en algunos casos la semilla cosechada no resultó suficiente para hacer todas las evaluaciones que se presentan en los cuadros de los resultados.Se logró coleccionar, aislar y purificar algunos aislados de Xcp representativos de los países de Centro América y El Caribe. Se determinó la patogenicidad para todos los cultivos antes de ser utilizados para los experimentos de diferenciación de razas, genotipos diferenciales y genotipos con resistencia a múltiples razas.Mediante la evaluación de los 120 genotipos de P. vulgaris con Xcp de Puerto Rico 484at República Dominicana 872 y Costa Rica 924 se identificaron por lo menos 7 genotipos con potencial diferencial de las colecciones de bacteria arriba mencionadas (Cuadro 1). Al mismo tiempo dichos genotipos evidencian que las colecciones de Xcp de Puerto Rico 484a, República Dominicana 872 y Costa Rica 924 son específicos en patogenicidad a genotipos de la especie vulgaris, por lo cual representan razas fisiológicas de la bacteria.En 1994 se diferenciaron 5 respuestas de interacción a las colecciones de República Dominicana 872, Costa Rica 924, y Cuba 957 y 958 (Cuadro 2). De acuerdo a las respuestas de resistencia y susceptibilidad de 17 genotipos se determinaron las siguientes patrones de interacción: RRSS, SRSS, RSSR, RRRR y SSSS, respectivamente. Por otro lado, se identificaron 3 grupos de diferenciales que fueron funcionales para identificar las Xcp probadas.Los resultados del experimento de evaluación de las colecciones de Xcp de Puerto Rico 974, 975, 980, Y 981 mostraron o patrones de interacción: SSRS, SSSR, RRRR, SRSR, SRSS., y SSSS con 4 grupos de plantas diferenciales (Cuadro 3).La evaluación de las colecciones de Xcp de Costa Rica 931 y 924 mostraron 3 patrones de interacción: Escala de severidad: 1 = resistente, 2 = leve susceptible, 3 moderada susceptibilidad, 4 = susceptible, 5 = alta susceptibilidad. Cuadro 2. Genotipos de Phaseolus vulgaris diferenciales de Xanthomonas campestris pv.phaseoli coleccionadas en República Dominicana, Costa Rica y Cuba. PRM 1993-1995, VOL. 5 (1997) Cuadro 3. Diferencíacíón de razas de Xanthomonas campestr;s pv. phaseo/i coleccionadas en Puerto Rico. (Zapata y Vida eT, 1987;Zapata, 1989). Aunque se hablan bservado reacciones específicas a Xcp en algunos genotipos de frijol (Zapata et aL, 1985) no se había pr fundizado como en el presente estudio para docwnentar la presencia de razas fisiológicas con la especie. La det rm.i.nación de razas mediante el so de pJ¡aseolus vulgaris presenta un cua ro diferente de especifidad patogénica. Esta nvuelve la reacci.ón de inmunidad (no síntomas) versus susceptibilidad la cual no se habia oficializado hasta el presente.La interacción patogénica de las diferentes razas detectada en algunos genotipos de P. vulgaris expltca la inestabilidad de la resistencia de algunos genotipos cuando se siembran en países diferentes donde pueden existir razas distintas de la bacteria ( Figuras 1 y 2). Los resultados obtenidos establecen la presencia de razas fisiológicas dentro del grupo de la colección de Xcp de Costa Rica, Cuba, República Dominicana y Puerto Rico. Además quedó establecida la ex.istencia de genotipos de P. vulgaris útiles en la diferenciación de Xcp. Dichos genotipos abren un campo de investigación hacia la determinación del número de genes envueltos en la resistencia a Xcp en los genotipos de P vulgaris.Figura I. Hoja trifol.iada que presenta el foliolo izquierdo con respuesta de resistencia a Xcp de República Dominicana 872, foliolo central con susceptibilidad a Xcp de Costa Rica 931 y foliolo derecho que representa el control con una respuesta de resistencia o no Sintomas. Los foliolos fueron inoculados con bacteria en el lado derecho con excepción del control donde aparece el daño mecánico en ambos lados de la hoja.337 Figura 2. Hoja trifoliada que pre enta el folioJo izquierdo con respuuta de usceptibiUdad a Xcp República Dominicana 872, Foliolo central con susceptibilidad a Xcp de Co la Rica 931 y folioJo deruho que representa eJ control con una respuesta de resistencia o no sintomas. Los foUoJos fueron inoculados con bacteria en el lado derecbo con excepción del control donde aparece el daño mecánico en ambos lados de la hoja.Por otro lado, se han identificado genotipos con resistencia amplia a las colecciones de Xcp estudiadas. Estos genotipos tienen mucho valor en programas de fitomejoram.iento para la incorporación de resistencia a múltiples razas de Xcp.","tokenCount":"125846"} \ No newline at end of file diff --git a/data/part_1/0248520639.json b/data/part_1/0248520639.json new file mode 100644 index 0000000000000000000000000000000000000000..a0a9214578c5c492c93fd85f776b6eca4c1501a4 --- /dev/null +++ b/data/part_1/0248520639.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"406fe0859f83cd1b43cc67fa10ca1956","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/86762db0-f713-4db3-b004-2510159c8c73/content","id":"-344382767"},"keywords":[],"sieverID":"c12396f5-3c1b-4bcb-aed6-f92d5853fbee","pagecount":"2","content":"Que es la enfermedad MLN? n Necrosis Letal del Maíz o MLN (por sus siglas en inglés, Maize Lethal Necrosis) es una enfermedad viral que afecta al maíz. n MLN es causada por una co-infección del Virus del Moteado Clorótico del Maíz (MCMV), y cualquiera de los siguientes virus: Virus del Mosaico de la Caña de Azúcar (SCMV), Virus del Mosaico del enanismo del Maíz (MDMV) y Virus del Mosaico Rayado del Trigo (WSMV).n Esta enfermedad es el mayor problema en la producción del maíz y es considerada una amenaza para la seguridad alimentaria de África porque ha causado pérdidas en el rendimiento de hasta el 100%.Cómo se transmite el MLN?Los insectos son vectores y transmiten el virus MLN; estos vectores incluyen trips, afidos, escarabajos foliares y gusanos de la raíz.MLN también es transmitida a través de semilla (i.e. la semilla producida en una planta enferma puede llevar el virus).La gente, los animales, la maquinaria e implementos agrícolas, también pueden acarrear el virus a través del movimiento en los campos infectados.Las hojas severamente dañadas pueden marchitarse, torcerse y presentar manchas amarillas y un secado prematuro. Los científicos se refieren a esto como clorosis severa y necrosis foliar.Pobre llenado de grano, o no desarrollo de grano en las mazorcas.Secado prematuro de las hojas que cubren las mazorcas.12 pasos para controlar la enfermedad MLN en los campos de los agricultores Que pueden hacer los campesinos para prevenir la enfermedad MLN?Los agricultores pueden evitar la transmisión siguiendo los siguientes doce pasos 1.7.8. 9.10.12.Conocer el historial de cultivos y enfermedades del campo donde de planea sembrar. Practicar la rotación de cultivos entre maíz y otro cultivos cuando sea posible.Verificar que el terreno agrícola siempre este fertilizado correctamente. Esto asegura que las plantas estén sanas y puedan luchar contra enfermedades.3. Usarsemilla certificada comolibre de MLN.No siembre grano de su propia cosecha.Limpiar maquinaria e implementos agrícolas usando desinfectantes, antes y después de su uso, para eliminar la contaminación por el virus.Mantener la granja limpia eliminando pastos y malezas que puedan ser hospedantes alternativos en el campo.Revisar el campo semanalmente para detectar poblaciones de insectos vectores. Una población alta de insectos incrementa la posibilidad del desarrollo de una enfermedad.Realizar el control químico de insectos vectores usando insecticidas recomendados (una vez cada 1-2 semanas).Inspeccionar semanalmente las plantas para detectar los primeros síntomas de MLN y controlar a los insectos vectores.Arrancar las plantas que presentes síntomas de MLN, destruirlas mediante incineración y enterrar los residuos fuera del campo de cultivo para evitar la diseminación de la enfermedad. No alimentar al ganado con estas plantas, ya que animales como las vacas, pueden transmitir el MLN a campos de maíz sanos.Practicar rotación de cultivos por al menos una estación, con cultivos que no sean cereales, preferiblemente leguminosas (frijol, soya, chicharos, etc.). Evitar la siembra continua de maíz, asegurando un periodo de al menos dos meses sin maíz en el campo.Sembrar temprano al inicio de la temporada de lluvias.","tokenCount":"487"} \ No newline at end of file diff --git a/data/part_1/0257479798.json b/data/part_1/0257479798.json new file mode 100644 index 0000000000000000000000000000000000000000..9c5e05efa53c4175ea9e65e174a6aba795b563e6 --- /dev/null +++ b/data/part_1/0257479798.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5ee6dd30d7d6ce91811ca2c55d3d132e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0da279fa-85e5-4975-8945-06624c4f5310/retrieve","id":"-1619843607"},"keywords":[],"sieverID":"db0eaf93-0267-4252-ae7d-86a55be9c3fd","pagecount":"36","content":"Demo 1.2. Hilling-up ............................................................................................. Demo 1.3. Identification of pests and diseases ..................................... Demo 1.4. Roguing ................................................................................................ Demo 1.5. Dehaulming ........................................................................................ Demo 1.6. Harvesting and grading ............................................................... DEMO 2. Positive selection ................................................................................................................... DEMO 3: Small plot technique .............................................................................................................This guide is a complementary tool that supports other training materials on ware potatoes and seed potato multiplication. Therefore, it is not meant to be used alone. The objective of this demo guide is to help the trainer to organize and facilitate hands-on demonstration sessions in the field. It contains three demos: crop husbandry, positive selection and the small plot technique for seed multiplication. For each demo, the guide tries to answer the following questions: What, Why, When, For how long, With what, and How. The How contains both text and images to clearly illustrate each demo session.For each demo session, the trainer should take into account the following four successive steps: (i) an introduction or brief reminder on the subject; (ii) the practical demonstration in accordance with this guide; (iii) a question-and-answer session; and finally (iv) an update for the next training session.Several demos on crop husbandry will be carried out through a field trial with the aim to show farmers the importance of using good quality seeds. To do this a field trial will be installed with two seed plots using seeds of two contrasting qualities: good seed versus bad seed. It is recommended, for fair comparison, to use, as far as possible, the same variety for both plots.Demo 1.1.Setting up the field trial.Provide hands-on training on potato planting.At the beginning of the growing season.For how long? 120 minutes for planting, but the trial spans the entire cropping season.• Many small/thin hoes (one per participant),• 1,100 seed tubers (35-55 mm diameter) of high quality seed (G1 or G2),• 1,100 seed tubers from the market,• 500 kg of animal manure,• Mineral fertilisers (32 kg of YaraMila and 8 kg of YaraLiva),• Fungicides (see training manuals),• Insecticides (see training manuals),• 1 measuring tape, and • 1 rope for marking the borders of the plots (delimination).Prepare two small plots of 20 m x 12 m each. Preferably use a terrain that has not been used for potato or any other crop in the same family for the past three years. Ensure that there is a distance of at least 2 m between the two plots.For each plot, open 15 furrows with a spacing of 80 cm. If the terrain is steep, make the furrows perpendicular to the slope to minimize the effects of erosion and maintain run-off water within plant rows. In each furrow, place successively the manure, mineral fertilisers and tubers at 30 cm. For each tuber, place about 125-250 g of manure. In practical terms, the manure collected with the two hands of an adult is applied to 2-3 seed tubers. For the mineral fertilisers, mix 32 kg of YaraMila with 8 kg of YaraLiva. Add the equivalent of the content of a Fanta cap of this mixed fertiliser on the top of the manure. A second cap of the mixed fertiliser is applied as topdressing right after plant emergence.Once the fertilisers have been applied, carefully place the tubers so as not to break the sprouts. If possible, avoid putting the tubers in direct contact with manure and fertiliser. In total, each plot will need 1,000 tubers which must be well covered with enough soil (10-15 cm above the tuber). Do not waste your time placing tubers with the sprouts in upright position. The sprouts emerge without any noticeable delay regardless of their position. Hilling-up potato crop.Avoid tuber yield reduction.When 2 -3 weeks after plant emergence.With what Small (thin) hoes (one per participant).The hilling-up of the potato crop is done with a small hoe, narrower than a normal hoe.Stand between two adjacent potato rows. Move backwards as you remove soil from the furrow onto the rows/hills to the two sides. After the demonstration, ask the participants to practice in turn. To avoid risks of contamination, hilling must begin in the plot with healthy seeds and end with the bad seed plot. Demo 1.3.Field identification of pests and diseases as described in the training manual.Pest and diseases reduce yields and spoil the quality of the potatoes.When 5 -6 weeks after plant emergence.• Pieces of white paper (one per participant),• 1 clean glass,• 1 small sharp knife, and • Clean water (250 ml).This demo on identification of pests and diseases is done in the bad seed plot. This is indeed where we expect to find more pests and diseases compared to the plot planted with healthy quality seeds. Please use the Trainer Guide to help identify the different pest and diseases. Carefully observe and discuss with the participants the identification and management of any pest and disease present in the plots.Some diseases can be easily identified in the field. This is the case for late blight, bacterial wilt, blackleg, leafroll virus and mosaic viruses. Late blight, blackleg and leafroll virus can be identified with the naked eye. For the mosaic symptom, pass a piece of white paper under a leaf with the suspected symptom. Diseased leaflets will appear translucent and yellowish whereas healthy ones remain opaque and dark green. This test is usually done in full sunlight.To accurately identify bacterial wilt, uproot the wilting plant and cut a small piece of the stem base (e.g., 5 cm long) using a sharp knife. Hold the piece of stem base with the hand or the tip of the knife partially immersing it in a glass of clear water. Hold still and wait approximately 2 minutes. If the bacteria ooze out of the end of the stem and move downward like a white smoke it means that the plant is infected by bacterial wilt as there is no other disease known to produce this phenomenon.1 Identify a wilting plant 2 Check that the plant stems are not cut 3 Uproot a stem 4 Cut off a piece of stem base 5 Immerse the stem base into water 6 Hold still and observe if the bacteria ooze out of the end of the stem Maintain a high-quality crop.To be combined with the identification of pests and diseases (Demo 1.3).• 1 normal hoe,• 1 bucket/basket or any other container that does not permit soil to leak, and • 1 peg (1.5 m long).The practice consists of inspecting the field, identifying and uprooting any abnormal plants, including tubers and roots. The plants to be rogued are either diseased (e.g. bacterial wilt) or off-types caused by varietal mixture at planning and volunteers growing from unwanted tubers. Field inspection works well when done early morning, while walking away from the sun for better identification of abnormal plants. It is not recommended to inspect the field in the afternoon as the leaves may naturally appear wilting without any diseases.If a plant is confirmed to be infected with bacterial wilt by the glass test, uproot the entire plant along with the soil in which it was planted (all foliage, roots, tubers and soil). Take it out of the field and throw it into a deep pit. In case there is no pit available for disposal of diseased plants, ensure that the plant and soil are put in a place where there is no risk of contaminating agricultural land, including your neighbours' fields. Demo 1.Removing or destroying the potato foliage before its natural death.To ensure that high quality seed tubers are harvested and that they maintain quality after storage.When 2 weeks before harvest, when the foliage begins to turn yellow in the plot that used quality seed.With what 1 sickle or machete.This demo is done in the plot with quality seed. Smallholder farmers may dehaulm using tools such as a sickle. Others pull out the potato plant while stepping around its base to prevent tubers from coming out as well. Tubers remain in the soil while the potato foliage is removed from the field. Since the field trial aims at comparing yields, do the practice on a small corner of the plot. To do this, invite each participant to pull out a plant and then cut a second plant with a sickle. For a fair comparison of yields between the two plots, ask the participants to do the same in the second plot. This means that they must dehaulm the same number of plants in both plots.Before concluding the demo, give the participants an opportunity to discuss and to learn from each other. Information related to tuber size and quality is analysed and discussed at harvest (Demo 1.6). Demo 1.6.Harvesting the trial.Comparison of yields obtained.Just after total death of the foliage.With what • 50 empty bags, size for 50 kg,• 1 weighing scale with a capacity of 100 kg,• 1 potato grading device (Hole diameters: 30 and 55 mm),• 2-3 hoes, and • 50 small pegs (30 cm long)Before organizing a demo on harvesting, make sure it is not going to rain. This demonstration corresponds to the harvest of the two trial plots, starting with the one planted with quality seeds. Harvest the plants by hand, one by one. If the soil is too hard, use a hoe to loosen it.Once the tubers are dug up be careful to ensure that tubers from different plants do not mix and leave them on the ground before collecting them. This makes it easier to inspect tubers systematically and signal, using pegs, the plants that have diseased or abnormal tubers. Count the number of healthy-looking plants to be harvested before collecting the tubers. Tubers from diseased plants must be collected last and used for consumption and not for seed.To take yield data, collect all tubers from healthy plants and separate them into two main groups according to size: marketable tubers (≥ 30 mm in diameter) and non-marketable tubers (the rest). Then separate the tubers in the first group into two subgroups: a 30-55 mm size and the larger tubers that are normally appreciated for processing. Count and weigh the tubers to determine the total number and total weight of each of the three categories. Use this information from both plots to make a comparative analysis of tuber yields and quality.Before leaving the field, collect all crop residues, including rotten foliage and tubers. This creates good conditions for planting the following crop. On-farm bulking of high-quality seed sourced from trusted seed producers.• 200 medium sized seed tubers (less than 40 mm in diameter) of high quality,• 27 kg of manure • Mineral fertilisers (2.4 kg of YaraMila and 0.6 kg of YaraLiva),• Fungicides (see training manuals),• Insecticides (see training manuals),• 1 measuring tape,• 1 rope for delimitation of plots,• 5 hoes,• Wooden boards/pieces of timber, and • 2 shovels.The small plot of seed is a triple clean-technology (clean seeds, clean soil and clean agricultural practices) carried out on a small plot of land. Therefore, select and prepare a 12 m x 4 m area where the potato or another crop from the same family has never been grown or at least not for the last 5 years. Also, choose a site that is not downstream of other potato fields that could be a source of contamination through runoff water.After a deep plough, delimit a small plot of land in the middle measuring 9 m x 1.5 m. Clear this plot to a depth of 15 cm by setting the soil aside. Then spread 27 kg of manure and 1.5 kg of mixed mineral fertilisers (YaraMila + YaraLiva). Refill the plot with the dug soil cleared from the plot. Then draw planting lines at a regular interval of 30 cm and make small holes about 10-15 cm deep on the lines at a regular spacing of 25 cm. Use small sticks or the end of the hoe handle to dig these holes. In principle, the entire plot will need 180 tubers, corresponding to the number of holes dug. Use the same stick, hoe handles, or hands to cover the tubers with soil.Since it is not possible to make ridges as it is done in normal fields, hilling-up is done by hand by adding clean soil from the area around the plot. The plot should be raised above the ground surface from the time of planting. This can be aided by wooden boards or pieces of timber. As you hill up with more soil, protect the edges to maintain the top of the plot at a higher level than the ground surface (more than 15 cm).After the plants have emerged, maintain the plot as you do in a normal field, whether it is for disease and pest control, top dressing or other good agricultural practices. It is extremely important to take precautions to prevent any entry of diseases and pests into the plot, including the use of clean agricultural tools.5 Spread the fertilisers 6 Refill the plot with soil","tokenCount":"2137"} \ No newline at end of file diff --git a/data/part_1/0293508961.json b/data/part_1/0293508961.json new file mode 100644 index 0000000000000000000000000000000000000000..12bfd86105413e5a159dbe8379079f4f92222adf --- /dev/null +++ b/data/part_1/0293508961.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"83709bdd98be14b18b0b161dac9f0fea","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4ef23961-c63b-4b9a-aee7-832e06b68aac/retrieve","id":"771247024"},"keywords":[],"sieverID":"84d46508-1c37-4988-92a8-c5cbb44d07fa","pagecount":"14","content":"Home to 177 million people, the Asian Mega-Deltas are biodiverse, fertile, and productive food baskets dominated by rice, fisheries, and aquaculture that support millions within and beyond the deltas. However, deltaic food systems are impacted significantly by climate change. There are more frequent floods and with increasing intensity, salinization is a key challenge particularly along the coastal deltas, and there are challenges with water quality and quantity. Climate extremes pose significant challenges to Bangladesh's steady progress on economic growth and food production and security, and impacts are likely to trigger new poverty traps and emerging hotspots of food and nutrition insecurity, with consequential impacts of increased urbanization and migration.CGIAR's Asian Mega Deltas initiative aims to support relevant stakeholders in Bangladesh, Cambodia, Vietnam, India and Myanmar in working towards resilient, inclusive, and productive deltas that are better adapted to climatic and other stressors while supporting livelihoods well-being and maintaining socioecological integrity.One of the focus areas of the AMD Initiative is to strengthen inclusive, gender-equitable governance of land, water, and other natural resources on which integrated food systems depend. Food systems policies in Bangladesh are transitioning towards climate-resilient agri-food systems, however there is room for greater synergy in how different sectoral policies adopt this approach, and overall attention to building capacity of local implementation actors to implement policies more effectively and enable better translation of policies to practice. Supported by the Bangladesh Agricultural Research Council (BARC), the apex organization of National Agricultural Research Systems in Bangladesh, this workshop focus was inclusive governance in Bangladesh's agri-food systems.The workshop aim was to bring together key stakeholders and initiate the co-development of an inclusive food systems governance framework focusing on the Southwestern deltaic part of Bangladesh. The workshop outcome was to identify actionable pathways to climate resilient food systems that prioritize food and livelihood security of the most marginalized in the face of escalating climate risks.• Validate findings of the Policy Brief, \"Towards Inclusive Governance for Resilient Agri-food Systems in Bangladesh.\"• Discuss pathways to action for achieving inclusive governance in food systems in the face of climate impacts in the southwestern delta regions of Bangladesh.There were 39 participants, including 10 women, two of the four panelists were women.Workshop Content The following points were made:Bangladesh's success in ensuring agricultural productivity, food security and poverty reduction are all considerably threatened by climate change and other anthropogenic factors, as the 7th most climate-vulnerable country globally. Bangladesh has transitioned to a lower-middleincome status and future economic growth will rely increasingly on sectors beyond agriculture. However, sustaining agricultural productivity directly affect the lives, livelihoods, and food security of nearly 80% of Bangladesh's rural agrarian population, and climate change impacts put at risk the three goals of sustained economic growth, food security and poverty reduction.Under the AMD Initiative, a team of CGIAR and local researchers examined how food systems policies and key planning strategies interpret and integrate inclusive governance, gender equality and social inclusion and sustainability. These findings were presented during the workshop.The presentation underscored three critical challenges: engagement with women and disadvantaged groups at local levels is constrained by multiple factors; institutional capacity for inclusive governance needs to be strengthened, and mechanisms for fiscal checks and balances on inclusive governance need to be better monitoried. To tackle these challenges, five pathways for action were proposed:• Intentional and consistent representation of marginalized communities in policy processes • systemic change on issues of social inclusion amongst relevant food systems institutions and actors. • effective mechanisms for review of financial allocations on gender equality • co-production of knowledge -so that experiential knowledge of local communities informs expert knowledge and interventions, and • incentivizing inclusive and sustainable innovations.Special Guest: Ms. Keya Khan, Director General, Women's Affairs Ms. Keya Khan, Director General (DG) of the Department of Women Affairs at the Ministry of Women and Children Affairs, highlighted Bangladesh's consistent efforts towards gender equality in South Asia. She discussed the Ministry's initiatives for women's empowerment, including food subsidies, mother and child nutrition programs, small-scale loans, and capacity-building activities. Ms. Khan emphasized the importance of addressing social norms and structures to empower women effectively and advocated for systematic monitoring and evaluation of interventions, such as gender budgeting implementation. Additionally, she stressed the significance of coordination across sectors and levels, involving men, religious leaders, and social leaders at the local level to ensure gender inclusivity.The Special Guest, Dr. Md. Mahmudur Rahman, Joint Secretary -Planning Wing at the Ministry of Agriculture, acknowledged that the findings of the AMD study reflect challenges already recognized by the Ministry of Agriculture, and steps are being taken to address them. Dr. Rahman acknowledged the necessity of intentionally including women and highlighted that 40% of the total beneficiaries in their programs are women.Panelist 1: Prof. Ainun Nishat, C3ER, BRAC University Dr. Nishat expressed his appreciation for a workshop on inclusive governance mechanism towards a resilient agri-food system in the country. He emphasized the importance of comprehensive water management, particularly in coastal areas and highlighted that global discussions on the \"water-energyfood security nexus,\" should include risks posed by climate change. Dr. Nishat also pointed out that the focus of food security discussions in the country tends to remain narrowly centered on rice production, and that policy-making processes are not participatory or integrated enough.Panelist 2: Dr. Mokhlesur Rahman, CNRS Drawing from several years of field-based experience, Dr. Mokhlesur Rahman emphasized the need for inclusive participation of marginal farmers and women in local-level water management. He expressed concern about minimizing elite capture, particularly in community-level water management in coastal areas. In these regions, facing challenges such as high salinity, cyclones, erosion, and extensive shrimp farming, traditional livelihoods like agriculture, livestock, and capture fisheries are severely limited due to water stress. Policies and Act enabling land and water leasing have resulted in a capture of about 70% of functional water canalsessentially a privatizing of common pool resources (CPR), a situation where leaseholders prioritize aquaculture, and severely restrict productive water access for smallholders and landless groups. This excludes communities from their traditional rights and increases their vulnerability. Despite being under Polders 5 and 15, areas like Shyamnagar lack formal water management groups due to the dominance of canal leasing processes. However, efforts to rehabilitate canals and ponds for rainwater storage have shown promise. The Center for Natural Resource Studies (CNRS) had successfully demonstrated the cultivation of Rabi crops and the revival of capture fisheries in restored canals, indicating potential for diverse agricultural and fisheries practices. To address the detrimental effects of canal leasing, Dr. Mokhlesur advocated canceling leases and rehabilitating canals under community management, enabling diverse water use, particularly for transforming agri-food systems and revitalizing capture fisheries and livestock management. He stressed the necessity for policy and legal interventions to support local communities in their rights to common pool resources, and also emphasized a more comprehensive approach in recognizing water as a vital resource for multiple livelihoods.Panelist 3: Dr Benoy Kumar Barman, Senior Scientist, World Fish Dr. Benoy K. Barman, Senior Scientist at WorldFish, presented recent work done by World Fish in contributing to the revision of the National Fisheries Policy of 1998. He presented the outcome of extensive participatory discussions undertaken by World Fish in diverse regions of the country, which highlights several challenges and opportunities for sustainable aquatic food production systems in Bangladesh. The National Fisheries Policy of 1998 is currently being revised and the focus is to double fish production, support food security, generate employment, and improve livelihoods, especially in light of climate change challenges. The new Fisheries Policy applies a co-creation policy approach through extensive discussions with multiple actors, as well as local communities, and also aligns with relevant national policies, strategies, and plans, including the Bangladesh 8th Five Year Plan 2025, Perspective Plan of Bangladesh 2041, and Bangladesh Delta Plan 2100. Dr Burman presented evaluation criteria and thematic areas established to gather information through a consultation process, covering aquatic food systems, social and economic inclusion, nutrition and public health, and climate resilience and environmental sustainability.Alongside WorldFish, FAO and Chemonics International also participated and contributed to these meetings.Panelist 4: Prof. Sayema Huq Bidisha, Dhaka University Prof. Bidisha spoke on the topic of gender-budgeting system in ministries and its role in facilitating gender inclusion. She highlighted several key points:In the context of prevalent patriarchy and a disadvantaged position for women, resource allocation through a gender-sensitive budget is a vital tool.Since FY10, the Government of Bangladesh (GoB) has annually presented a gender budget report, expanding from 4 to 44 ministries.In FY24, approximately 38.2% of the budget was allocated to gender budgeting. However, disparities exist within ministries, such as the Ministry of Agriculture and the Ministry of Fisheries, where the operating budget plays a key role. However, a significant proportion of this supports operational, rather than programmatic spending.Regular monitoring and evaluation of programs are essential for effective gender budget implementation. Addressing existing gender norms requires investment and incentives for private sector participation.Gender budgeting methodology mandates ministries to allocate resources based on 14 specific criteria, but challenges remain in ensuring effective gender disaggregation. Ministries like Women Affairs focus on women's empowerment but receive limited funds, necessitating more gender-responsive projects and budget allocations.Challenges in the agriculture sector include limited access to inputs, training, and technology, alongside gender-restricted norms and market constraints. Linking small-scale projects to ministries like MoA and enhancing agricultural marketing facilities are crucial steps.Beyond numerical allocations, evaluating the impact of the gender budget on women's lives is essential. Qualitative analysis is essential to assess achievements in agriculture and related sectors, emphasizing the need for context-specific approaches and gender-segregated data.Ministries such as Water Resources and Agriculture should prioritize direct development projects aligned with women's needs, fostering inclusivity and empowerment.Dr. Shamsul Alam, the chief guest at the event and Former State Minister of Planning of Bangladesh, Government of Bangladesh, elaborated on how the current government has facilitated Bangladesh's remarkable economic growth and consistent progress in meeting human development goals. He emphasized the importance of consultative, inclusive planning and policies in achieving these milestones. Dr. Alam underscored the significance of consultative processes, ensuring the involvement of local actors, institutions, and experts in all planning processes, particularly in initiatives like the Bangladesh Delta Plan 2100.Dr. Alam also highlighted several challenges on how sectoral silos pose a significant problem, both on the ground and at the ministry level, making coordination challenging. Conflicting provisions in sectors often arise due to the interdependence between different sectors. Addressing structural challenges requires a holistic approach that considers the interconnectedness across various sectors.In response to Dr. Mokhles's presentation, Dr. Alam mentioned the emergence of water problems in Satkhira due to shrimp cultivation blocking canals. He emphasized that such issues are interconnected across different levels of the system and can only be resolved through decisive political actions.Dr. Alam emphasized the critical need for Bangladesh, one of the most hazard-prone countries among the ten deltaic regions of the world, to address the increasing adversities posed by climate change and rising temperatures. He highlighted that the country should prioritize the implementation of the first-phase action plans outlined in the Bangladesh Delta Plan 2100 (BDP 2100), which were specifically designed for various climate hotspots. Dr. Alam stressed that these action plans should be integrated into the upcoming Ninth Five Year Plan (2026-2030) and fully executed by 2030 to effectively mitigate climate risks and enhance resilience.In his closing remarks, Dr. Sheikh Md. Bokhtiar, Executive Chairman of Bangladesh Agricultural Research Council and the Chair of the workshop, reflected on Bangladesh's journey since independence. Despite facing challenges such as food security and poverty, Bangladesh has made significant strides, emerging as South Asia's fastest-growing economy. This progress is particularly remarkable considering Bangladesh's vulnerability to climate and anthropogenic impacts, compounded by its high population density. Dr. Bokhtiar emphasized that these achievements underscore the country's commitment to inclusive governance, which will continue to guide Bangladesh's transition to more resilient and sustainable food systems. Furthermore, Dr. Bokhtiar highlighted the complexity of inclusive governance, acknowledging the opportunities for improvement. He referenced a 2023 report on the status of women in the agriculture system, which showcased substantial progress. However, gender disparities persist across various aspects. Dr. Bokhtiar also mentioned the recent launch of the PARTNER project supported by the World Bank, aimed at contributing to the implementation of agricultural policies. Moreover, Dr. Bokhtiar underscored the importance of leveraging existing, proven agri-food technologies that are well-suited for coastal communities facing the impacts of climate change. He pointed out that despite their effectiveness, these technologies have not yet been widely adopted. Dr. Bokhtiar called for concerted efforts to promote these technologies on a larger scale, ensuring that they become more socially inclusive. He emphasized that this expansion should be guided by the recommendations outlined in the policy brief, along with practical considerations discussed during the workshop.At the conclusion of the workshop, Ms. Indu Kumari Sharma extended her gratitude to all the participants, including the Chief Guest, Special Guests, panelists, and the Chair, as well as the AMD team based in IRRI office -Bangladesh for their assistance and enthusiasm. She emphasized that without their collective efforts, the workshop would not have been possible.The workshop concluded successfully, marked by active participation from all attendees who discussed a range of challenges and proposed solutions for governing a socially inclusive agri-food system. The interactions between government officials, civil society activists, and academia during the workshop led to a productive exchange of ideas and experiences, highlighting the collaborative spirit of the event. Contributions from the Chief Guest and Special Guest were particularly impactful, setting a forwardlooking tone for future progress.","tokenCount":"2243"} \ No newline at end of file diff --git a/data/part_1/0322228010.json b/data/part_1/0322228010.json new file mode 100644 index 0000000000000000000000000000000000000000..f665169cedcef1d3cb3ad22e7f5df16af9f86ff5 --- /dev/null +++ b/data/part_1/0322228010.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9c399e45d8027dbbdca0703023ea6397","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/135c4493-8b0b-4ac3-ac14-0e3477236a21/retrieve","id":"1493319224"},"keywords":[],"sieverID":"5b0f64db-b730-45e6-9c5e-865033887cd0","pagecount":"40","content":"With a vision to 2020, it is intended to provide guidance to research and development practitioners and investors from the public and private sector, helping them to identify areas of possible intervention and collaboration. The document was developed through a consultative process. It was drafted in January 2006 by the International Centre for Underutilised Crops (ICUC), with input from the Global Facilitation Unit for Underutilized Species (GFU). In early February 2006, a cross-section of over 200 experts in underutilized plant species research and development -representing universities, national agricultural and horticultural research systems, international research centres, government institutions, non-governmental organisations, regional networks, donor organisations and the private sector -was invited to provide feedback on the draft document. In addition, the draft document was posted on several relevant listservers, including FAO's NTFP Newsletter, the Forest Information Update, the Global NTFP Partnership listserver and the Alternatives to Slash-and-Burn listserver, as well as on the websites of ICUC (www.icuc-iwmi.org) and GFU (www.underutilized-species.org).1. The world is presently over-dependent on a few plant species. Diversification of production and consumption habits to include a broader range of plant species, in particular those currently identified as 'underutilized', can contribute significantly to improved health and nutrition, livelihoods, household food security and ecological sustainability. In particular, these plant species offer enormous potential for contributing to the achievement of the MDGs, particularly in combating hidden hunger and offering medicinal and income generation options. They are also closely tied to cultural traditions, and therefore have an important role in supporting social diversity.2. Recognition of the cultural, economic and food value of indigenous biodiversity is growing. Yet while there is increasing interest in research and development activities with underutilized plant species, these efforts require heightened direction and focus.3. This paper provides a Strategic Framework for underutilized plant species research and development activities. Developed through wide consultation, it aims to avoid duplication of effort and to help cover gaps in current knowledge, while allowing outputs and approaches to be synthesised regionally. The Framework acts as a roadmap to guide stakeholders as they develop the work plans needed to generate new knowledge, lobby policy makers, or develop markets, for example. It will also guide efforts to set both research and funding priorities.4. Focusing on the differing needs and circumstances of two world regions -Asia and the Pacific, and Sub-Saharan Africa -the Strategic Framework outlines the outstanding challenges and opportunities to be considered in promoting increased use of these plants; growing urbanisation, international trade, climate change, and health care are major areas of direct relevance. Although underutilized plant species have great potential for helping to address important concerns in these areas, the full development of their potential is hampered by lack of awareness in society, as well as by lack of relevant capacity within the research community. At the same time, these plant resources -and the land they are grown on -are increasingly threatened by global and local pressures.5. An integrated, partnership approach is proposed, focusing on the following intervention areas to generate maximum impact: knowledge generation, communication, capacity building, policy improvement and market development.6. Because of the complexities involved in developing the potential of underutilized plant species, clear concepts for action need to be formulated and made widely known, and consortia of complementary partners need to be formed. The roles of the diverse partners must be clarified and coordinated. Such partners include international and national agricultural and horticultural research organisations, advanced research institutions, non-governmental organizations (NGOs), community based organisations (CBOs), private companies, national governments, regional and international organisations, and donors and funding agencies.Regular discussion with the relevant desk officers in such funding agencies is recommended -to raise awareness of underutilized plants' value, and to devise new research paths jointly.7. The document reviews current activities, provides examples of success and emphasizes the need to improve resource mobilization in support of underutilized plant species research and development, including urgent work to collect baseline information and formulate meaningful indicators to guide future action.Maintaining the genetic diversity of grains such as fonio (Digitaria exilis) in community seed banks is an important contribution to food security.The underlying problem can be formulated as:Over-dependence on a few plant species exacerbates many acute difficulties faced by communities in the areas of food security, nutrition, health, ecosystem sustainability and cultural identity.Wild fruits provide vitamins and minerals especially to women and children.Box 2: Definition of 'underutilized species'It is difficult to define just what qualifies as an 'underutilized species'. Terms such as 'underutilized ', 'neglected', 'orphan', 'minor', 'promising', 'niche' and 'traditional' are often used interchangeably to characterise the range of plant species that are the focus of this document. For this Strategic Framework, we have used the following definition: those species with under-exploited potential for contributing to food security, health (nutritional/medicinal), income generation, and environmental services.This definition of underutilized plant species can also be illustrated by examples of success:Species for fighting hunger and malnutrition -In South Asia, the little millets provide nourishing flour that can be mixed with rice flour, offering longer shelf-life, and made into healthy snacks. Millets have a higher micro-nutrient content -including calcium and iron, vitamins like niacin, and sulphur-containing amino acids -and contain more soluble fibre than rice or wheat. These grains also have a low glycaemic index, making them attractive health foods (MSSRF, n.d.).Species for medicinal use -Artemisia annua is a plant with anti-malarial properties that has been used for over two millennia in Chinese traditional medicine. Each year, there are over 500 million cases of malaria worldwide; of the more than 1 million people whose deaths are directly linked with malaria, 90 percent are children. Because synthetic products are unaffordable for most of the rural poor, people naturally revert to herbal drugs. And although the efficacy and the potential associated risks of Artemisia products have not yet been fully studied, the potential of Artemisia and other species has generated much interest amongst research institutions in the West and international agencies such as WHO. In the first quarter of 2006, a twomonth electronic discussion forum dedicated to Artemisia was moderated by the Dutch Royal Tropical Institute (KIT) and a workshop on herbal antimalarials was convened by the World Agroforestry Centre (Simons et al., 2006). Furthermore, several locally-made Artemisia products have been released.Species for income generation -Myriad tropical fruits, such as Annona spp. (soursop, sweetsop, cherimoya etc.), Aegle marmelos (beli), Feronia limonia (wood apple) and Choerospondias axillaris (lapsi), can be processed by small-scale entrepreneurs into juices, jams, candy etc. and sold in community shops or local supermarkets. Dhammika Perera is a Sri Lankan who currently earns Rs 50,000 (USD 500) monthly from his fruit processing enterprise -more than half of the family income. He started this enterprise after attending an ICUC training course in 2004 on processing and marketing underutilized crops. Mr Perera now employs ten staff to meet the demand for his products, and because his business has increased the demand for fresh beli, wood apple and soursop, local producers have increased their household income as well. On July 12 2006, Mr Perera received the Sri Lanka Standards certification for his fruit juice products, thus further strengthening his position amongst local competitors.The Aztecs believed that amaranth (Amaranthus spp.) seeds had supernatural powers and used them in ceremonial dishes associated with human sacrifice.In the 16th century, amaranth was forbidden by the Conquistadores, who wanted to root out these practices; amaranth grain was reduced to only a few remote areas of Mexico and the Andes. Today it is highly valued culturally in Peru, where during carnival festivities women dancers often use the red amaranth flower to paint their cheeks; they then dance carrying bundles of amaranth on their backs as if they were babies. The genus is receiving increasing attention because of the nutritional properties of the grain and leaves and can now be found throughout the world (Stallknecht and Schulz-Schaeffer, 1993).Species for ecological protection -Vetiver grass (Vetiveria zizanioides) is used for soil stabilisation: when grown in contours along a slope, its dense root system acts as a 'living soil nail'. Vetiver roots, which have an average tensile strength of 75 MPa, improve the shear strength of soil by between 30 and 40 percent. The ability of vetiver to protect vital infrastructure in the face of extreme weather events has been demonstrated globally, for instance during Hurricane Mitch in Central America in 1998 (TVN, n.d.). In addition, vetiver is used for thatching, rope making, basket weaving etc., and its roots contain a valuable oil that is used in the perfume industry as a base for aftershaves.In recent years, underutilized plants have come out of the shadows and are moving fast into the limelight of rural development (see Annex 1 for some milestones and Box 3 for factors influencing today's interest in such species). Several national research systems are supporting work on these plant species, though not to the same extent as research on industrial and staple crops such as oil palm, rubber, cocoa, tea, wheat, rice etc. Policy makers and funding agencies are now recognising the value of indigenous biodiversity for diversification of farming systems, which will in turn help to buffer the risks of environmental and economic disasters (CGIAR, 2005). However, these efforts need direction and focus. This is not the first strategy paper for underutilized crops (IPGRI, 2002;Gündel et al., 2003). Nonetheless, the need for a revised joint framework for activities with neglected and underutilized plant species was aired at several gatherings of partners in 2005. The partners identified several reasons for this: the importance of avoiding duplication of activities on these highly promising species; the desire to avoid leaving gaps where a potential for utilisation is more difficult to perceive; and the need for more regional syntheses of outputs and approaches. The formulation of the strategy began with an electronic consultation process initiated by ICUC, GFU and IPGRI in February 2006. This was followed by workshops of experts in Colombo (March 16-17, 2006) and in Nairobi (May 24-25, 2006). A group of volunteers drawn from these meetings contributed to the further revision of the strategy document. In drafting this Strategic Framework, we were guided by the principles outlined in Box 4.Work on underutilized species, whether in research or development, requires a collaborative, open minded spirit that recognises and respects the complexity and interaction of social, economic and environmental factors in the development of underutilized-crop products.Our approach is people-centred, pro-poor and gender-sensitive. It is founded on respect for the intellectual property of communities and adheres to relevant international codes of conduct, national legislation and international treaties governing germplasm access, movement and exchange.Our research will contribute to improving livelihoods through a high-quality sciencebased approach. Global food security has become increasingly dependent on a handful of crops. Over 50 percent of the daily global requirement of proteins and calories is met by just three crops -maize, wheat and rice (FAO, 1996) -and only 150 crops are commercialised on a significant global scale. On the other hand, ethnobotanic surveys indicate that, worldwide, more than 7,000 plant species are cultivated or harvested from the wild (Rehm and Espig, 1991;Wilson, 1992). The very existence of these species may be threatened by their relative neglect by science and development, and by the increase in area under production to higheryielding and better researched crops. In Africa, for example, exotic fruit trees are taking over land once planted to indigenous fruit trees (Antoine Kalinganire, pers. comm.) Studies also demonstrate the replacement of local varieties by improved, high-input varieties (FAO, 1996); this may lead to a narrowing of livelihood options for the poor.There are major gaps in our knowledge about these neglected and underutilized species and their ecology. Our capacity to conserve them and improve their yield and quality is also limited. Little has been done to identify the most effective means of commercialisation or the best marketing and policy frameworks to enable us to promote their use and maximise their economic value.All of these factors represent obstacles to the successful promotion and conservation of underutilized plant species.Although theories vary as to why certain plant species are underutilized, most widespread amongst them is the belief that this resulted from a combination of serendipity and chance selection processes that took place several times in human history; this, coupled with a few crops' adaptability to varying climatic conditions, made these few crops agricultural favourites (Janick, 1991). Once these favourites gained a head start on their competitors, selection and seed exchange concentrated on them, speeding up their domestication. Nonetheless, it was only during the mechanisation of agriculture in the 19th century that the real reduction to only a handful of major crops took place. The reduction in hunger that has been achieved worldwide to date is a great accomplishment. Nonetheless, there are nutritional issues that still have not been addressed. In particular, hidden hunger, or the lack of micronutrients, vitamins and other essential dietary components, is greatly neglected (Frison, 2004). Close to 120 million children suffer from vitamin A deficiency and its many effects, the most serious amongst them being blindness. About a third of the world's population is anaemic as a result of iron deficiency. Although dietary supplements can help in combating these deficiencies, they are beyond the reach of the poorest people. On the other hand, obesity, cardiovascular diseases and type II diabetes are on the increase, even in developing countries, because of oversimplified diets.The challenge of the MDGs is not only to halve hunger by 2015, but also to attack hidden hunger. For most people, dietary diversity represents the most effective answer to this problem. Many underutilized grains, fruits and vegetables will have a crucial role to play in providing the solution (IPGRI et al., n.d. b), not only in the developing world but in high-income countries as well.Similarly The Population growth will continue Agricultural land will be increasingly converted to non-agricultural purposes, thus increasing competition for the remaining land area Globalisation will allow more international exchange of knowledge and goods More people with better educations will enter the work force (especially in Asia) Diseases, such as HIV/AIDS and malaria, will continue to kill tens of thousands of productive people (especially in Africa) Domestic markets for new products will be increasingly influenced by international market forces, such as quality standards Growing urbanization may lead to an increased demand for convenience food and thereby to increased health problems associated with simplified diets (especially in Asia) Interest in ecotourism and in ethnic foods will increase Dependence of commodity crop farmers on the world market for inputs and sale of products will increase Awareness of intellectual property rights/access and benefit sharing policies will grow Effects of climate change will become more pronounced.Box 6: AssumptionsThe regions addressed by this Strategic Framework (Asia and the Pacific, and Sub-Saharan Africa) are vast and represent a wide diversity in terms of status, speed and direction of development.Eleusine coracana is one of the so-called minor millets that are enjoying something of a renaissance in parts of India and Nepal.Farmers and consumers are coming to appreciate the better qualities of the minor millets, which are being successfully re-branded as nutritious millets.In the Kaski district of Nepal, a pilot project examined all aspects of the production chain, from the farmers' choice of varieties to consumer preferences. The project aimed to identify the best options for adding value to finger millet whilst promoting its benefits to consumers and policymakers. In two villages, Kalabang and Ralmare, farmers identified their favoured traditional varieties and then worked with researchers to evaluate several improved lines. Of these, three in particular impressed the farmers because of their high yields and plump grains.Now, the emphasis is on working in a participatory fashion with the modern lines to improve some of the traditional landraces, which people prefer for particular foods but that are difficult or unprofitable to grow.Whilst farmers were working on production, others worked on public awareness, disseminating the good news about millets through radio, print, fairs and festivals, workshops and school programmes across the Kaski district. Surveys revealed that as a result of these efforts some groups of people -amongst them intellectuals, diabetics, the younger generation and foreigners -increased their demand for millet. Micro-entrepreneurs told the same story.After the publicity efforts, department stores and others increasingly came looking for millet-based foods to sell in Pokhara, the main town of Kaski. Demand for millet grain quadrupled between 2001 and 2004. Sales of millet cookies increased even further: one micro-entrepreneur reported a leap from 50 to more than 600 packets a month in just 18 months. Whole new types of foods, such as millet namkin, a savoury snack, appeared on the market, with sales increasing twenty-fold over the course of a year.The Kaski project is an example of successful collaboration amongst groups that run the gamut from international research centres to cooperatives and individual farmers, offering a series of lessons for consideration elsewhere. Farmers picked their preferred varieties and worked to improve local landraces, preserving the environmental benefits of the crop. Improved quality and supply made it attractive for industry to use millet. Microentrepreneurs played an essential role in the valueadding process. Finally, wide-ranging public awareness activities underpinned the whole effort by sensitizing urban and rural populations to the benefits of millet.(Adapted from IPGRI et al., n.d. a)Climate change forces people in many low-lying areas to migrate to higher ground, where they must cope with saline soils, tropical storms of greater ferocity, precipitation, and extended spells of drought (IPCC, 1998). Whilst niche plants are often thought of as being hardier, more resilient and better adapted to extreme conditions, this needs to be demonstrated and verified, and their value to rural livelihoods must be assessed.Communicable diseases, such as HIV/AIDS, tuberculosis and malaria, are particularly prevalent in Africa. In both Africa and Asia, the majority of the rural population consults traditional healers for medical advice and health care. Mr Pallagyo has concentrated on quality and marketing. He employs local women to harvest his crops, which must be done even when demand is low, as leaving fruits on the plant inhibits the formation of flowers. Each day the women pick about 10 to 15 buckets of eggplant, earning around USD 2.50. Mr Pallagyo also buys from other farmers before passing the whole harvest on to workers who sort, grade and pack the eggplant. The workers carefully evaluate the fruits on the basis of colour: creamy white fruits are preferred, whilst reddish and yellowish ones are rejected, as are mottled, rusted and immature fruits. The use of two grades -one for the largest, undamaged, cream-coloured fruits and the other for the restensures that Mr Pallagyo gets the best possible price for the produce.Access to markets is a problem for all rural farmers. Initially, Mr Pallagyo used local transportation to reach the Tengeru market, where he sold his produce to retailers. His initial success enabled him to invest in a bicycle, which cost TShs 28,000. Better transport brought bigger profits and a permitted further investment of TShs 700,000 in a motorbike. As the business grew, he was able to afford a second-hand pick-up truck, which has further enhanced his capacity to collect the harvest and deliver the sorted and graded produce. A mobile phone has also become an essential business tool, enabling Mr Pallagyo to stay in touch with his customers and to keep on top of market fluctuations.In addition to his family's improved standard of living, Mr Pallagyo has added an extra half a hectare to his land. His enterprise has also benefited his neighbours, who now have employment and a market for their own produce. Finally, in the markets, customers are assured of a steady supply of high-quality African eggplant.(Adapted from IPGRI et al., n.d. a) Yet while many traditional plants have medicinal properties, their natural resource base is often threatened by unsustainable harvesting techniques that are prompted by population pressure, land conversion or other factors. Indigenous knowledge also needs to be mapped before it is lost, and research into active compounds and sustainable harvesting methods is necessary.Against this background, the development of underutilized plant species is still hampered by a general lack of awareness in all sectors of society and a lack of the necessary capacity within the research community.Challenges and opportunities continued...In Africa and Asia, the majority of the rural population uses traditional medicines for health care.It is crucial to ensure that underutilized plants are part of pilot initiatives, development projects and entrepreneurial endeavours. Rather than thinking of a list of priorities that need to be ticked off from the top downwards, we see the needed activities as part of a large puzzle. Numerous partners will need to participate in diverse activities, each contributing to the completion of the overall picture according to their particular strengths and capacities.In this respect, work on traditional crops that are relatively important economically (such as jackfruit in Asia or bambara groundnut in Africa) is just as important as work on traditional species that have their greatest potential in local and informal markets, and that are important for household food security and other needs of the poor (such as some of the minor vegetables). Work towards food security is equally as important as work to develop new sources of income from non-food products/species. Each of these activities increases the value of these plant resources and ultimately allows the poor to strengthen their livelihoods. This joint effort, together with the implementation of favourable policies, will allow underutilized plants to make significant contributions to improved food security, nutrition, health and incomes amongst the rural and urban poor. The use of these plants will also contribute to the sustainable management of fragile ecosystems.Specifically, research and development with underutilized plant species will contribute to: better health amongst vulnerable groups, such as pregnant women, breastfeeding mothers, children and the elderly better educations for children thanks to school feeding programmes using products from underutilized plants that will result in better health and therefore in improved attendance and performance in school reduction in the incidence of malnutritionrelated non-communicable diseases, such as diabetes II and cardiovascular diseases availability of improved health care options through better knowledge amongst health practitioners of the medicinal properties of a wide range of plants increased income opportunities through the development of micro-enterprises for processing and selling food and non-food products from underutilized species and the encouragement of special micro-credit systems for this purpose well-maintained and well-used in situ and ex situ germplasm collections of underutilized species, in recognition of national and regional responsibilities to conserve these unique genetic resource for future generations adoption of more sustainable and diverse land-use systems, allowing farmers to harness existing biodiversity without eroding valuable existing genetic resources.Appropriate information and germplasm exchange protocols will help to protect individual, national and regional intellectual property rights, underpinning this effort. This Strategic Framework attempts to highlight specific fields of activities, and by doing so to promote coordinated efforts to tackle as many parts of the puzzle as possible. Linkages between public and private organisations, advanced and less-advanced institutions, major and minor crop researchers, as well as research with practical applications, are the centrepiece of this Framework.Problem trees (Annex 2a and b) have been developed to demonstrate how various challenges are interlinked in causal chains. These trees were developed separately for the Africa and Asia-Pacific regions to ensure that regional differences were not lost. Entry points for maximum impact can be identified at the branch tips of the trees for each of the two regions. A diagram of global intervention points (Figure 1) has been developed to facilitate the quick visualisation of opportunities for intervention by the research and development community dealing with underutilized plant species. These trees and diagram will be further refined as more dialogue and information exchange takes place. The main intervention areas for maximum impact are:1. These intervention areas are supported by improved interaction and partnerships amongst all stakeholders.Figure 1 shows the links between these intervention areas and their expected effects. The diagram also indicates potential barriers that are beyond the immediate control of the primary stakeholder group. These are primarily areas of human behavioural change: whilst we can create an enabling environment, we cannot force increased demand or consumption of underutilized plants and their products per se.The following are the key steps:1. The global knowledge base will be enhanced by scientific research, mapping of indigenous knowledge and documentation of existing information that at present may not be accessible.2. Through targeted communication in a variety of formats, this information will raise the awareness of the general public about the value of underutilized plants; relevant information will feed into curriculum development to inform the next generation and will also contribute to capacity building amongst the primary stakeholders: the underutilized plant species community itself.3. Two special cases of 'communicating knowledge' have been highlighted. Firstly, lobbying among policy makers and other influential interest groups in order to remove existing barriers -for example trade barriers -and arrive at appropriate policies; increased public awareness will also contribute to this goal. Secondly, market development in order to improve the supply of quality products; increased capacity will also contribute to this goal. A 'barrier' has been inserted in Figure 1 to indicate that, whilst every effort will be made to achieve a positive outcome through policy lobbying, the final result depends on a variety of factors outside our immediate control. Market development, which includes the development of functioning market chains, provision of relevant training and support for business development, is more predictable, and success in this area is more likely.4. The prerequisites for continuing targeted research and development activities that will use and further increase the global knowledge base include increased capacity amongst the primary stakeholders and a better educated younger generation. This will produce an iterative process that will enable sustainable growth in the production of and demand for underutilized plants and their products.5. Finally, assuming that appropriate policies, increased demand, sustainable production and increased/better supply coincide, the goal of increased consumption/use of underutilized plant species to address the overall development problem will be reached. To achieve this, however, the aforementioned potential barriers need to be overcome; to this end, more effort, interaction and lobbying will be required.Some examples of possible short-to-medium term interventions are given below. Nonetheless, the initiators of this consultation hope that the process itself has fostered closer collaboration and a sense of 'pulling the same string' so that increased cohesion and coordination will follow. ICUC, IPGRI and GFU will, as global actors, honour their responsibility to continue to support regional and national underutilized plant species research and development through their partnership programmes.Whereas it is recognised that increased funding is essential to enable increased activities with underutilized plant species, any request for financial support to any agency needs to be built upon a solid case. Therefore, clear concepts for action need to be formulated and made readily available, and consortia of complementary partners need to be formed.Examples are provided in Boxes 10 and 11. Informed ongoing dialogue with funding agencies is necessary to ensure that underutilized species research is not carried out in reaction to calls for proposals (often small ones), but rather is shaping the funding agenda of donor agencies.If feasible, institutions will prioritise activities and develop operational plans in accordance with this Strategic Framework. National coordinating offices could be named to ensure greater visibility and voice within the national agricultural research and development systems.Research and development activities with underutilized plant species are primarily carried out by international and national agricultural and horticultural research organisations, NGOs, CBOs and university departments.There are many small, medium-sized and large private companies that are interested in developing underutilized species for their enterprises, some with a clear focus on community development and others through their corporate social responsibility departments.This Strategic Framework is meant to provide a roadmap for actors in underutilized plant species research and development.PAGE 18There are many small, medium-sized and large private companies that are interested to develop a grater variety of underutilized species products.Box 10: A champion for partnerships \"Bambara groundnut is a rare example of a long-term, multidisciplinary and international research commitment to any underutilized crop. By integrating research partners in Africa, India and Europe we now have a coherent body of knowledge and expertise that spans the genomics, physiology, agronomy, nutrition, socio-economics and marketing of the crop. We also have a basis to advocate further research on bambara groundnut and apply our collective experience to many other underutilised species.We started in 1988 at the University of Nottingham using departmental funds to support MSc projects. Then in 1991 we approached the EU and got our first major 4year project in 1992. We got some support from other donors for short periods of time, but not before the first EU project had shown results in 1996. It then took four years until we got our second EU project which finished in 2004. BAMLINK, the follow-up, started in 2006, but by then the team was strong enough to keep the momentum up between projects.\" Sayed Azam-Ali, University of Nottingham, UK Box 11: An example of an integrated approach to tackling the problem of HIV/AIDS (adapted from Garí, 2004) Public-private partnerships are beginning to emerge, such as for the domestication of Allanblackia. Here fruits are selected for propagation studies in a community nursery.PAGE 19Public-private partnerships are beginning to emerge and may have a major role to play in overcoming proprietary concerns (intellectual property rights) when using new technology -such as biotechnology -for research and commercialisation (Dawson and Jaenicke, 2006). There may also be a need for advanced research institutions to collaborate with less advanced ones in order to ensure the smooth transfer of methodologies developed during advanced research. Furthermore, there is a need for centres working on major crops to link with institutes working on minor crops so that lessons can be transferred from major to minor crops, and perhaps vice versa (Naylor and Manning, 2005).The need for increased collaboration is evidenced by the number of networks formed over the past ten years (Williams and Haq, 2002). Important regional networks include dedicated plant genetic resources networks (for example the Pacific Agricultural Plant Genetic Resources Network, coordinated by the Secretariat of the Pacific Community), networks on a variety of specialty underutilized crops (such as the Bambara Groundnut Network) or commodity groups (such as UTFANET, for underutilized tropical fruits, in Asia). Few survive, however, beyond the first few years of enthusiasm and external funding. In Africa, NEPAD, FARA and the Sub-Regional Organisations ASARECA, CORAF-WECARD and SADC-FANR can play a facilitating role in supporting underutilized plant species networks, or assist in integrating relevant activities into existing networks.Regional and international organisations such as AVRDC, GFU, ICRAF, ICUC and SPC have the mission for and are active in coordinating, where appropriate, research prioritisation and impact assessment, research and technology development, and information dissemination and exchange. Research and development with underutilized plants has concentrated so far on a small number of key activities: database inventories of useful species and experts, bibliographic resources, priority lists of species, germplasm collections of locally or regionally important species, horticultural/agronomic studies to improve productivity (domestication), and in some cases, post-harvest and processing studies. Very few have taken on the support of biotechnology methods (for propagation) and/or are studying species at the molecular level (for characterisation). There are a limited number of actors involved in marketing and business development activities specifically designed for products from underutilized plants. Often, these activities have been part of someone's 'hobby' or personal priorities. Whereas this has contributed to the establishment of very important collections (both data and germplasm), little of these resources have contributed thus far to larger rural development projects.Annex 4 provides information about ongoing activities from some of the contributors to this consultation. This list, however, cannot provide a complete picture of ongoing activities; additional information about underutilized species experts can be found at www.underutilized-species.org. Further contributions are welcomed and will be included in later editions of this document.Over the past decade, research and development with underutilized plants has been supported by a handful of dedicated organisations and foundations, for example ACIAR (Australia), BMZ (Germany), CTA, DFID (United Kingdom), the Global Environment Facility (GEF), the International Fund for Agricultural Development (IFAD), the Mac Knight Foundation, the Syngenta Foundation and USAID 1 . Although as a rule, individual countries have provided limited support, in some countries government support has been substantial, to the point that their national personnel capacity is now the main factor limiting further progress. The private sector's contribution is currently difficult to assess.In order to tap into the funding available from these and other sources, continuing dialogue with the relevant desk officers is recommended; this dialogue should aim at raising awareness about the value of underutilized plants and jointly conceptualizing and facilitating the development of relevant projects with the funding organisation. Partner organisations within countries or across regions will form consortia that will be ready to assemble and develop project concept notes and proposals when relevant calls are issued. Networks and fora, such as ACUC in Asia and FARA in Africa, are particularly valuable in developing critical mass and coordinated research agendas amongst partner institutions.There is great potential for increasing private-sector interest in supporting work on products form underutilized plants. Dialogue with relevant companies, including the multi-nationals, is required. ICUC, GFU and IPGRI will provide guidance in identifying promising funding sources and will endeavour to circulate relevant information to as wide a network of recipients as possible.We see donors and funding agencies as integral partners in the development and promotion of underutilized plant species.At present, very little baseline information is available against which the progress and possible success of strategies and activities with underutilized species can be measured. In particular, because of the complex mandate of research and development with underutilized plant species, which touches on several livelihood areas, secondary indicators such as number of children attending (and finishing) school may be used; these, however, are of questionable relevance. The number of new research and development projects undertaken by partner organisations is a similarly vague indicator, as this may demonstrate improved political will but not necessarily impact at the grass-roots level. Data on the number of new enterprises in processing and marketing of underutilized crop products may be collected from various national enterprise development agencies, but this information may not include informal businesses, and thus provides an incomplete picture. As a matter of urgency, baseline information needs to be collected and meaningful indicators need to be formulated.The number of successful new enterprises in processing and marketing of underutilized plant products will be an indicator for impact.This document provides a framework within which stakeholders will be able to develop their work plans to contribute to specific parts of the puzzle, whether in the generation of new knowledge, communication, policy lobbying or market development. It provides guidance for the leaders of regional and sub-regional organisations and the directors of national agricultural and horticultural research systems in developing their research priorities. It also provides guidance for donor agencies and investors who may want to revisit their funding priorities.The framework highlights the complexity involved in the promotion of underutilized plants. Activities are interlinked and happen simultaneously. ICUC, IPGRI and GFU are committed to supporting their partners, but it is up to every individual and institution to contribute to implementing the strategy by lobbying and raising awareness amongst the general public, donors and policy makers.Many respondents requested a forum to exchange scientific information and research results; beyond hosting an e-information bulletin, we plan to organise an international conference on underutilized plant species, but funds need to be raised for this.Although a considerable number of people involved in research and development with underutilized plants have been able to contribute during the consultation process, many have not been reached. For example, Latin America and the CWANA region have not had the opportunity to contribute through a regional workshop. Funds -and champions -are being sought to include these regions.The process that has led to the development of this Strategic Framework is a starting point in the promotion of increased partnership and dialogue amongst stakeholders. Consultation began at the beginning of 2006. Since then a variety of processes have been observed (some of which resulted from the enhanced dialogue initiated by ICUC and GFU).Examples include the emergence of a number of new mechanisms for information exchange and the launch of new initiatives, such as the AVRDC-led Global Horticulture Initiative. ICUC and GFU have also set up a working group on underutilized plants within the International Society for Horticultural Science. In addition, the INBAR-led GFAR Global Partnership on Non-Timber Forest Products is also now beginning to take shape.This framework, and the action that will follow, allow us to draw new attention to the important contributions that underutilized plants can make to improved health and nutrition, income generation and ecological sustainability, through the diversification of production and the consumption of a broader range of plant species.Let's continue to work together to make our vision a reality!The way ahead A strategy paper is not an end in itself. Once written, it needs committed actors for its implementation. So, how can we make the vision of increased awareness and utilisation of underutilized plants a reality?The consumption of a broader range of plant species will be an important contribution to health and nutrition, income generation and ecological sustainability. BAIF Development Research Foundation, India, is engaged in generating gainful employment for small and marginal farmers by facilitating the use of degraded natural resources in several parts of India. Promotion of tree-based farming on degraded lands is an important programme, through which farmers are provided with various inputs to establish fruit species and multipurpose tree species on their holdings.Under this programme, the participating families are given the necessary guidance and critical inputs to establish fruit orchards on 0.4 ha. The major fruit crops, which are promoted on the basis of soil productivity, moisture availability, demand for the produce and economic returns, are mango, cashew, sapota and Indian gooseberry. Apart from the above crops, many other underutilized fruit-tree species have been introduced on a small scale, mainly on field borders and bunds, serving as windbreaks, and thereby contributing to income and food security. The inter-space is used by farmers for the cultivation of vegetables and food crops. These intercrops support families to a great extent during the gestation period.The families maintaining such orchards on 0.4 ha are able to earn over USD 500 per annum when the trees begin to bear, generally after five to six years. Thus, the programme has demonstrated the feasibility of promoting biodiversity and ecological restoration whilst ensuring sustainable livelihoods for the local communities.Various underutilized fruits are being popularised under this programme, including custard apple (Annona squamosa), ber (Zizyphus mauritiana), tamarind (Tamarindus indica), jackfruit (Artocarpus heterophyllus) and Indian gooseberry (Emblica officinalis). The advantages of these crops are their ability to grow in harsh and adverse agroclimatic conditions. The products of these species are consumed by local people and often considered delicacies. Many of these species have good nutritional and medicinal value. Efforts are now being made to process these fruits for value addition and establish close linkages amongst consumers and producers.The MS Swaminathan Research Foundation, India, is working with farming communities in a participatory manner to promote the cultivation and consumption of underutilized crops, largely nutritious millets, so as to increase farmer income. They are using pathways such as participatory variety selection to increase yield; community conservation of traditional varieties; introduction of appropriate technology; community capacity building for value addition; product development; and marketing of value-added products to enhance income generation.The Secretariat of the Pacific Community (SPC), Fiji, coordinates the Pacific Agricultural Plant Genetic Resources Network, which links plant genetic resources programmes and scientists in the Pacific who are working on underutilized species such as taro, breadfruit, yams, pandanus and local fruits and nuts. SPC also maintains a regional in vitro conservation facility, the Regional Germplasm Centre, which conserves and distributes virus-free materials of important Pacific crops. IPGRI has also been successful in raising the profile of underutilized species by increasing publicity at highlevel fora, such as the Convention for Biological Diversity (see 9th meeting of SBSTTA 2003 and www.iisd.ca/biodiv/cop8/enbots/20mar.html).Resources Programme (SGRP), IPGRI has commissioned a study to survey the number of species and collections that are held in the CGIAR Centres' genebanks, as well as the level to which they have been characterized. The study will also revise the existing literature to identify cases where the use and conservation of underutilized species have or have not benefited the poor. Based on these results, IPGRI will make recommendations to SGRP and the CGIAR System as to how best to strategise their work on underutilized species for the benefit of the poor.The Global Facilitation Unit for Underutilized Species (GFU) is a service provider to other actors in the field and has a strong advocacy role. Its activities are, therefore, focussed on providing information, connecting actors, and creating greater awareness of the role that underutilized species play in improving livelihoods, as well as on policy recommendations aimed at creating an enabling environment for wider use of underutilized species.The International Centre for Underutilised Crops (ICUC) has supported national germplasm collections for a limited number of underutilized crops such as pummelo (Citrus maxima), jackfruit (Artocarpus PAGE 33 ANNEX 4heterophyllus) and tamarind (Tamarindus indica). It has produced a series of monographs and extension materials on 10 priority species and has organised relevant training courses. It has also been instrumental in the creation of several dedicated regional networks (UTFANET, SEANUC, UTVAPNET and ACUC).The University of Nottingham, UK has been associated with bambara groundnut for 17 years, with activities that cover the gamut from molecular research to marketing, in Africa, India and Europe. U Nottingham also conducts research on African yam bean and has a network of partners with experience in lupin, triticale and finger millet.The Centro Internacional de Agricultura Tropical (CIAT) is involved in many activities related to research for development, ranging from biotechnology to social sciences. Recently, a new area of research is being implemented which is highly relevant to this consultation. CIAT now has a Tropical Fruits project and is developing activities with mainstream species as well as with species with strong local markets that by definition are considered underutilized. CIAT has several projects for the improvement of regional species, but the criterion to work on these species is that they have an established market.The World Vegetable Center is the principal international centre dedicated to vegetable research and development. AVRDC develops varieties, such as the African eggplant, and technologies that increase vegetable production and consumption in developing countries. This leads to more economic opportunities, higher incomes and healthier diets for the poor.The U.N. Food and Agriculture Organization (FAO) has long-standing work related to biodiversity for food and nutrition, including specific initiatives with underutilized plants and related indigenous knowledge. This work covers policy initiatives, pilot actions and publications aimed at catalysing the wide use of plant resources for food, nutrition and livelihoods. The FAO Commission on Genetic Resources for Food and Agriculture is the intergovernmental forum for genetic resources, with a notable focus on plant resources and underutilised species. Furthermore, FAO negotiated and hosts the International Treaty on Plant Genetic Resources, which is a global agreement that, amongst other goals, endorses national and global efforts \"promoting the expanded use of local and locally adapted crops, varieties and underutilised species\" (art. 6.3). FAO has also an Interdepartmental Working Group on Biological Diversity, which coordinates research, awareness and development initiatives on plant resources, including underutilised species, from diverse approaches. Some of these initiatives highlight the nutritional value of less-known plants and cultivars, whilst others have raised awareness of the role of underutilised plant species in mitigating AIDS impact and in enhancing the livelihoods of rural and poor urban populations.National, regional and international collaboration can support researchers and farmers in the development of improved varieties, such as this taun (Pometia pinnata) in Papua Guinea.","tokenCount":"7292"} \ No newline at end of file diff --git a/data/part_1/0332867635.json b/data/part_1/0332867635.json new file mode 100644 index 0000000000000000000000000000000000000000..b553ce8244ea5753d60fb4701fb525cd37649379 --- /dev/null +++ b/data/part_1/0332867635.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6ce28dc8f113b27084a3c82d75d370c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8b744f4b-e45d-4e04-9a48-f607d8c0de5e/retrieve","id":"1615202500"},"keywords":[],"sieverID":"d8f96acb-25a8-43fe-a4bb-42880fbdf0e6","pagecount":"30","content":"Introduction to the sustainable intensification assessment framework Intended use of the framework Assessing trade-offs and synergies -Indicator selection Application of SI Assessment framework to field and household data Way forward Questions and comments Sustainable Intensification Indicator Project -Project initiative conceived based on a series of stakeholder meetings on SI indicators held in Africa and USA 2012-2014.-The goal of the project is to develop and recommend indicators and metrics for SI within a framework of five domains at four scales.• Use by agricultural scientists working in research for development projects --but is flexible and can be used by scientists interested in sustainable intensification.• Synthesis of literature and stakeholder expertise to obtain list of indicators, metrics and methods at the four scales and identify gaps. • Engage scientists and project managers involved in SI to curate the list of indicators and methods.-Meeting and field visit in Mali (October 2015)• Discussion and meeting with steering committee and AfricaRISING scientist. ","tokenCount":"156"} \ No newline at end of file diff --git a/data/part_1/0351027856.json b/data/part_1/0351027856.json new file mode 100644 index 0000000000000000000000000000000000000000..e738e020dfcd81941b65204f1cd1d711764643a3 --- /dev/null +++ b/data/part_1/0351027856.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1eed4f5975a5240e22b7c44f120c5d10","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/69d0a585-069b-44ee-9332-e64541c1da67/retrieve","id":"-1091629556"},"keywords":[],"sieverID":"2427252f-b862-4f15-8cfb-d720b8d13815","pagecount":"4","content":"The information in this guide can be freely reproduced for non-commercial use, if credited as coming from CTA.Reproduction for commercial use requires prior authorisation from CTA.Every sheep grazing on pasture is infested with one type of worm or the other. The effect of these in the animal depends on:The type of worm There are many types of worms that can infest sheep. However, some important ones in the Eastern Africa region are mentioned in Table 1 against their symptoms. The level of worm infestation is related to climate and the seasons. It is therefore possible to treat animals at particular times of the year or in response to weather patterns and break the life cycle of the parasites. Points to note:Stocking rate: • If you have too many animals per unit area, pasture contamination is enhanced and frequent re-infections occur.","tokenCount":"140"} \ No newline at end of file diff --git a/data/part_1/0351460976.json b/data/part_1/0351460976.json new file mode 100644 index 0000000000000000000000000000000000000000..61345b60e3b14bba80dd5f27ac8c7b9dc80a3549 --- /dev/null +++ b/data/part_1/0351460976.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5b8083be6a525e8dff1331110d2319f2","source":"gardian_index","url":"https://www.iwmi.cgiar.org/assessment/files_new/publications/Discussion%20Paper/CADiscussionPaper1.pdf","id":"982824648"},"keywords":[],"sieverID":"4bd16472-b8ae-41b0-834f-7d1d3d12ade5","pagecount":"30","content":"The purpose of this review was to evaluate the extent to which the current scientific literature allows us to determine and quantify the ecological costs and benefits of irrigated agriculture in wetland ecosystems of the developing countries, and to establish quantitative relationships between anthropogenic activities and ecological responses. The following are the main points that emerged:• Irrigation or activities associated with agricultural irrigation can and do cause adverse impacts to wetland ecological resources ranging from localized and subtle, to long-distance and severe.• Irrigation or activities associated with irrigation can also result in the creation or enhancement of important wetland ecological resources.• Depending on the irrigation activity and scale, irrigated agriculture and ecological resources can sustainably coexist.• The confounding effects of \"natural\" or other anthropogenic stressors are not often evaluated when the effects of irrigation on wetlands are being assessed, and it can be difficult to partition the effects due to irrigation.• The potential long-term ecological benefits of water storage schemes are rarely investigated.Any measurement of impact usually stops once the project is implemented.• Because of the above (bullets 4 and 5), \"quantitative\" information on the relationships between irrigated agricultural activity and ecological effects is sparse to non-existent. This severely impairs our ability to learn from previous failures or successes and, importantly, to design future activities and projects so as to minimize environmental impacts.• If we are to minimize the potential for ecological injury and enhance the likelihood of benefits in future projects, it is crucial that the existing data base be enormously expanded. Specifically, we need to treat each new project and scheme as a \"natural experiment\" where the ecological resources and effects are quantified from before the project is implemented until long after implementation. Until this is accomplished, we run the risk of repeating the same mistakes that have been made in the past.The relationship between irrigated agriculture and its effects on wetland ecosystems has often been portrayed as one of a direct tradeoff between the human need for food versus nature. The reality, as revealed by this literature review, is much more complex, as both systems human and nature may be adaptive. Where nature might adapt automatically, such as a waterfowl adapting to paddy rice as a replacement for natural wetland habitat, humans too adapt consciously. For example, as humans have learned about the valuable services wetlands provide, the response has been to find ways to preserve and restore wetlands. This is relatively achievable in the developed countries, which has access to funds and the institutional and legal capacity to impose no loss of wetlands, but it is much more difficult in the developing countries where there are pressing needs for increased food production with the limited funds available. In such situations, nature may have to absorb the full costs of change, rather than humans modifying their expectations and requirements in the face of natural needs. The goal of this literature review is to assess the knowledge available to developing countries in supporting decisions on alternative future strategies for irrigation implementation, and to assist in mitigating potential future ecological impacts of irrigation development. The focus of this review has been on developing countries because it is there, rather than in the developed countries, that the potential for large-scale adverse impacts is severe.A brief discussion of the status and importance of both wetlands and irrigated agriculture is given in the next section. This is followed by a discussion of our approach in reviewing the literature. Finally, we present the results of our review in the form of six key conclusions that capture the state of knowledge of the effects of irrigated agriculture on wetland ecosystems in the developing countries. A set of recommendations for future research is given at the end of the paper.There is a long history of development leading to the complete destruction of massive areas of wetlands, particularly in the developed countries. In a generalized overview, the Organization for Economic Co-operation and Development (OECD 1996) stated: Some estimates show that the world may have lost 50 percent of the wetlands that existed since 1900; whilst much of this occurred in the northern countries during the first 50 years of the century, increasing pressure for conversion to alternative land use has been put on tropical and sub-tropical wetlands since the 1950s.No figures are available for the extent of wetland loss worldwide, but drainage for agricultural production is the principal cause; by 1985 it was estimated that 56 65 percent of the available wetland had been drained for intensive agriculture in Europe and North America; the figures for tropical and subtropical regions were 27 percent for Asia, 6 percent for South America and 2 percent for Africa, making a total of 26 percent worldwide. Future predictions show the pressure to drain land for agriculture intensifying in these regions.We begin this review with a definition of wetlands as well as some observations about the value or the services wetlands provide to human society. Agriculture, and irrigated agriculture in particular, have been critical to supplying the food needs of an ever increasing human population. Clearly we cannot eliminate irrigated agriculture. The road ahead must include ways of farming that recognize the value of wetlands.The global wetland area is generally estimated to be 7 to 9 million km 2 (4 6 percent of the land surface of the Earth) (Mitsch and Gosselink 2000). While there are many definitions to the term wetland many would agree that these are areas with high water tables contributing to a specific ecology. The most broadly accepted definition of wetlands is: Areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt including areas of marine water, the depth of which at low tide does not exceed 6 meters (Ramsar Convention 1971; Articles 1.1 and 2.1).Wetlands are increasingly gaining global attention, bringing together many scientists from different disciplines to study these unique ecosystems. One example of such attention is the Ramsar Convention on Wetlands, adopted in 1971 and as of December 2002 has 1230 wetland sites distributed in six regions (Europe, Asia, Africa, Neotropics, Oceania and North America) recognized as wetlands of international importance (Wetlands International Ramsar sites database, 2002). However, there are likely to be many more wetlands to be identified and recorded as many countries have only recently begun identifying important wetlands.The functional value of wetlands depends on their size and placement within the landscape, as well as their relationship to adjacent water areas. Wetlands can be natural or artificial or mixtures of both. There is general agreement that the existence of wetlands is due to specific hydrology, soil type, and vegetation and animal communities, and that their functions depend on the context of their relative placement within the ecosystem. Some of the services wetlands provide include:• Habitat for aquatic birds, other animals and plants, fish and shell fish production;• Biodiversity;• Food production;• Water storage, including mitigating the effects of floods and droughts;• Groundwater recharge;• Shoreline stabilization and storm protection;• Water purification;• Nutrient cycling;• Sediment retention and export;• Recreation and tourism;• Climate change mitigation;• Timber production;• Education and research; and• Aesthetic and cultural value.Few attempts have been made to calculate the economic value of the goods and services provided by wetlands. Although the accuracy and precision of these attempts may be debatable, they have merit in that they draw attention to and emphasize their enormous economic importance. Previous estimates include: between US$8,977 and US$17,000 (1983) for the goods and services provided by each acre of Louisiana wetlands (Costanza et al. 1989), and between US$19 million and US$70 million per year for a 45 mile stretch of the Platte River, Colorado (Loomis et al. 2000). In the developing countries, the existence and functioning of wetlands can be crucial for adjacent agricultural and extractive economies (e.g., Hollis et al. 1993b).While the functional and economic values of wetlands are increasingly recognized, development projects continue to lead directly or indirectly to their loss. As presented in the following section, irrigated agriculture has been destructive in the past, and has the potential to continue to do so in the future unless better management processes are established in the developing countries.Irrigation has been practiced for at least 4,000 years, primarily because it allows for increased productivity through more optimal timing of water application. More recently, irrigated agriculture in combination with improved crop varieties and chemical inputs has led to 24 percent more food per person between 1961 and 1997, despite the population increase (Pilot Analysis of Global Ecosystems 2000). In addition to increase food security, there is a net increase in economic gains to farmers.It is estimated that around 5 percent of agricultural land globally (264 million ha) is irrigated, with South Asia (35%), Southeast Asia (15%) and East Asia (7%) showing a high dependency on irrigation. China and India represent 39 percent of the global irrigated area and Western Europe and United States have 13 percent, while sub-Saharan Africa and Oceania have less than 1 percent of their agricultural land irrigated (PAGE and Wood 2000). Irrigation accounts for approximately 70 percent of the water withdrawn from freshwater systems for human use. Only 30 60 percent is subsequently used downstream, making irrigation the largest net user of freshwater. Estimates also show that the share of cropland that is irrigated has grown by 72 percent from 1966 1996. Developing countries tend to have scarce water resources and relatively larger agricultural demands; and as such will have greater water extractions, which in turn can have greater impacts on associated wetlands (Pilot Analysis of Global Ecosystems 2000).While environmental impacts have been recognized as important in assessing agricultural projects, and assessment processes exist, active monitoring against baseline pre-project conditions have not kept pace with developments in productivity. Some aspects often regarded as important in assessment are hydrology, water and air quality, soil properties, erosion and sedimentation, biological and ecological change, socio-economic impacts, ecological imbalances and human health (FAO 1995), although all aspects are not often covered for a given project, due to external factors affecting project implementation. The classic example is that of dams, which have been constructed to control the natural variations of the hydrological cycles, so that the water is made available on demand for agriculture. Often the effects of flooding downstream and their benefits were not contemplated. The importance of natural flooding to fisheries and recession agriculture and groundwater recharge have been realized only recently (Acreman 1996). Some of the established effects of agriculture on wetlands include:• Direct loss of wetlands due to draining and conversion to agricultural land;• Indirect loss of wetlands area due to water withdrawal from rivers and streams for irrigation;• Loss of wetland area and function due to damming for water storage;• Loss of seasonal wetlands due to changed hydrologic cycle from water storage;• Loss of wetland function due to salinization, sediment deposition, erosion, eutrophication;• Pollution from use of pesticides and other chemicals; andExamples of many of these effects are described with specific examples in subsequent sections of this review.Relevant documents were identified by first conducting a literature search under the keywords: irrigation and wetlands. This computerized search identified an initial total of 1096 references. The majority of these were rejected from further consideration either because: a) they did not apply to developing countries; b) they were obviously journalistic or nonscientific in nature; or c) they were derived from primary studies, the results of which were reported in original documents that could be obtained. This left a total of approximately 180 reports that were potentially useful. Hard copies of these reports were obtained from various libraries, or by contacting the authors directly. Once obtained, the reference list for each report was examined to determine if additional and pertinent reports that had not been found in the original search were available. These were then obtained, whenever possible.An additional search procedure was to contact known participants in the field and ask them to identify documents and/or data sets that they considered important. The individuals who were contacted and their affiliations are aknowledged in the copyright page.A total of approximately 200 documents were obtained and reviewed. Of these, 37 contained information pertinent to our study. These are listed in the References List in section 7, with notes on their findings in Appendix A to this paper.We have reviewed only documents that apply to developing countries; no thorough or systematic review of the developed country literature has yet been performed. This is important, as it may introduce a bias into our results: most of the practical attempts to integrate agricultural and ecological concerns have taken place in the developed countries, and most of studies of the ecological benefits of irrigation have also been carried out there (e.g., the wildlife resources associated with the irrigated farmland in the Central Valley of California, or the rice fields of Louisiana). On the other hand, costs, rather than benefits, have been the main foci of studies in the developing countries.Thus, focusing entirely on the information of developing countries may bias the results of any review toward the ecological costs of irrigation and downplay the potential benefits.Within the general charge of reviewing the scientific and gray literature to evaluate the extent to which irrigation has been shown to affect wetland ecosystems in developing countries, we concentrated on providing answers that may be useful in developing alternative future strategies for irrigation implementation, and assisting in mitigating potential future ecological impacts. Each reviewed document was evaluated in terms of the information that it provided pursuant to eight questions:1. What were the ecological effects that were caused by irrigation and could they be distinguished from effects due to other anthropogenic or natural stressors (i.e., how confident can we be that the observed effects were due to agricultural water use?)2. Did the project described result only in ecological costs, or were there also benefits?3. Are there taxonomic relationships between costs/benefits and project types, scales, and management regimes?4. Do the data and information presented in the paper facilitate the identification of quantitative relationships between intensity of use (e.g., amount of withdrawal) and degree of ecosystem impact?5. Which components/activities of the project contributed most to the costs and/or benefits? And did the project find ways to mitigate or enhance certain effects?6. Did the resulting end-use of the irrigation water (i.e., the crop type) affect the costs and/or benefits?7. Did the surrounding habitat matrix (i.e., arid versus non-arid) matter in whether costs or benefits were incurred?8. Is it possible to identify indicators of ecological costs and benefits that could be used either at small or large spatial scales, or at both?To the extent possible we attempted to focus on all potential types of impacts of irrigation on wetlands. These include both the effects of water withdrawals upstream of the wetland, and irrigation activities within the wetland, itself.Much pertinent information is contained in gray literature sources that are difficult to identify and locate. Thus, the process of reviewing all potentially relevant documents is not yet complete. Indeed, it is unlikely to ever be so. However, we believe that the most important documents have been reviewed and the main results have already emerged (particularly in the areas of data gaps and information needs). We anticipate that these results will contribute to the knowledge base of IWMI s Comprehensive Assessment.Six main results have emerged from the literature review:1. Irrigation or activities associated with agricultural irrigation can and do cause adverse impacts to wetland ecological resources ranging from localized and subtle, to long-distance and severe.2. Irrigation or activities associated with irrigation can also result in the creation or enhancement of important wetland ecological resources.3. Depending on the irrigation activity and scale, irrigated agriculture and ecological resources can coexist in potentially sustainable fashions.4. The confounding effects of natural or other anthropogenic stressors are not often evaluated when the effects of irrigation on wetlands are being assessed.5. The potential long-term ecological benefits of water storage schemes are rarely investigated. Any measurement of impact usually stops once the project is implemented.6. Because of the above (4 and 5), quantitative information on the relationships between irrigated agricultural activity and ecological effects is sparse to non-existent. This severely impairs our ability to learn from previous failures or successes and, importantly, to design future activities and projects so as to minimize environmental impacts.Each of these conclusions is examined in greater detail below.Irrigation schemes or water diversions for irrigation have undoubtedly caused adverse effects to wetland ecosystems. At their most severe, these effects have included the submersion of wetlands, or their replacement by upland vegetation communities (or by essentially unvegetated land in the case of the Aral Sea), with consequent effects on the biota that depend on these wetlands and the services that humans hitherto derived from the systems. Documented examples of these extreme cases include the Aral Sea literature (Kotlyakov 1991;Micklin 1988;Precoda 1991) The ecological impacts of irrigation or water diversions for irrigation can occur a short distance from the dam or irrigation site, or many miles downstream. Examples of the latter include the construction of the High Dam at Aswan, which, by reducing sediment transport, is contributing to the erosion of wetlands in the Nile Delta 800 km downstream (Penvenne 1996). Also, the size of the marine harvest of prawns off the coast of Mozambique is positively correlated with the flow entering the sea from the Zambezi River (GammelsrØd 1996). Recent declines in marine prawn populations and impacts to the commercial prawn fishery have been ascribed to reduced flows from the Zambezi River due to barrages and dams in Mozambique (GammelsrØd 1996). The damming of the Indus in Pakistan, like the Nile example, has also reduced sediment transport with subsequent die-off of mangrove forest communities in the downstream delta (Meynell and Qureshi 1995).When viewed against the backdrop of wetland hydrologic needs, the ecological impacts caused by schemes such as the Aral Sea diversions, the damming of the Indus, or the Kano River Irrigation Project are not unexpected. They are largely a function of the scale of water diversion. Large projects that divert the majority of the flow of the feeder streams will necessarily result in large impacts to the associated wetlands.Although no quantitative relationships have been established, and the resilience of any particular wetland ecosystem will vary depending on other anthropogenic and natural stresses, it may be likely that relatively small percent diversions (10% or less?) may be ecologically sustainable in some wetlands (though perhaps not all), whereas larger diversions as have occurred in many schemes, are more likely than not to be unsustainable. Also, it is at least possible that the relationship between the scale of the withdrawal or diversion and the ecological impact may not be linear. The first quartile of the flow diverted may have much less effect than (say) the second or third. This, if so, is both good and bad news: up to a certain limit, withdrawals may be sustainable; however, exceeding that limit might result in disproportionate, unexpected, and potentially irreversible effects. Also, the ability of a wetland to withstand a level of diversion may be partly a function of the intrinsic variability of the wetland itself: wetlands that go through marked natural cycles of water inflow may be more resilient than more stable wetlands (since the biota of the former may be better adapted to water shortage). However, given that so little quantitative information concerning ecological impacts has been generated by past irrigation projects, the above considerations are largely speculative.Unfortunately, too few rigorous studies have been performed to determine the levels of withdrawals that may be adequately protective of the environment. Nevertheless, this is the crucial question determining the likelihood of coexistence of ecological resources and irrigated agriculture. Assuming that we can define an acceptable level of impact, how much water can be diverted and used without the risk of unacceptable ecological impacts? This question automatically focuses attention on the resilience of wetland ecosystems (i.e., the ability of wetland systems to resist and recover from a stressor). Resilience will be a function of a number of important site-specific factors, including the type of wetland and its intrinsic robustness, and the existing level of stress (natural and anthropogenic). Unfortunately, while resilience is an important and much-discussed ecological principle, how to measure it has not received enough attention. By failing to monitor the ecological consequences of the implementation of irrigation projects, we have lost an important opportunity to understand the relationships between levels of stress (e.g., water withdrawals) and ecosystem resilience and impacts.Apart from failing to realize the ecological consequences of the scale of diversions (or realizing, but ignoring them), the other main problem that has contributed to impacts is a failure to plan at the level of the watershed or larger scale. Were the effects of the Aswan Dam on the Nile Delta 800 km away or the effects of the Zambezi flows on the marine prawn fishery adequately considered when the potential impacts of the dams were being evaluated? Obviously, the extent of the environmental disaster caused by the Aral Sea scheme came as a surprise to planners who focused at the local or, at best, the regional level.Almost all of the literature reviewed concerned situations in which upstream withdrawals had affected downstream wetlands. However, in some cases, extractions may take place in the wetland itself, to irrigate either surrounding upland areas or other parts of the same wetland (the situation that may pertain in many Southern African dambos). To what extent do these activities have similar effects as upstream extractions? If the water being extracted from the wetland is for irrigation of adjacent uplands, but return flows are large, the impacts may be less severe. And if the water is being shunted around different parts of the wetland (rather than being moved to nonwetland habitats), the consequences may also be less severe. In these situations, a number of important site-specific considerations arise: what is the loss to evaporation of the return flow? To what extent are different parts of the same wetland ecosystem functionally equivalent and does removing (or returning) water to one or more parts preserve the whole wetland ecosystem? Unfortunately we do not yet have information or data that could be used to answer these important questions.In addition to the installation of new dams and irrigation schemes, changing traditional management practices at long-established projects can also result in ecological impacts. Switching from ditch-fed irrigation to concrete channels and metal pipes in the Kanto Plain rice paddies in Japan resulted in population reductions in two species of frogs that depended for their spawning habitat on the traditional, inefficient ditches that helped create pools of standing water during the frog spawning season (Fujioka and Lane 1997).Water withdrawals for irrigation in some cases can act to exacerbate the effects of other stressors on the wetland ecosystems, resulting in effects that exceed those that would be expected from dewatering, alone. Lake Kus in western Turkey is under stress from a growing use of the lake by the local human population. One of these stresses is the increasing pollution of the lake by organic materials. This, in conjunction with dewatering for irrigation, has resulted in the increasing eutrophication of the lake and changes in the aquatic biota toward an assemblage more characteristic of nutrient rich systems (Altinsacli and Griffiths 2001). Wildlife responses to the implementation of irrigation schemes can, in turn, result in stress to wetlands. In and around the Waza National Park in Cameroon, dewatering of the Logone River has resulted in the loss of prime grazing habitat for wildlife. Populations of some ungulates such as reedbuck and kob have been lost or severely reduced. Elephants have responded differently: they have been displaced from their traditional areas, resulting in damage to wetland habitats (and more frequent interactions with farmers) (Tchamba, et al. 1995).Few published examples have been found where water storage for irrigation unambiguously created valuable wetland habitat in the developing countries. This does not mean that such benefits do not occur (see the discussion in Section 2.1 of the bias inherent in focusing only on developing world studies). Water storage tanks in Sri Lanka undoubtedly provide functional and valuable habitat for wetland organisms. Observations over only a few hours at one such tank during December 2000 resulted in 22 species of herons, shorebirds and waterfowl being recorded (Hector Galbraith unpublished data). Tanks elsewhere in Sri Lanka are known to support a similar diversity of wetland birds (Galbraith unpublished data), which matches that found on natural wetlands in Sri Lanka and Asia.While there are few studies of such benefits in the developing countries, data from the developed countries give some indication of types and scope of benefits that may accrue: for example, the rice fields in the Central Valley of California and in Louisiana, USA, provide important habitat for waterbirds and shorebirds (Day and Colwell 1998;Remsen et al. 1991, respectively). The populations of birds that these areas support are likely to be of at least national importance. Similarly in Mediterranean countries, rice agriculture has created internationally important habitat for wading birds (Fasola and Ruiz, 1996). In the UK there are over 500 reservoirs. These provide habitat for birds and other water-associated organisms and are particularly valuable because of the extensive areas of wetland that have been drained. The general importance of these reservoirs for wildlife is indicated by the designation of 174 as Sites of Special Scientific Interest (Moore and Driver 1989). It is likely that such benefits to birds and mammals may be greater in otherwise arid areas, rather than in areas where natural wetlands are more plentiful.By its nature, rice farming is most likely among the various uses to which irrigation water is applied to result in new valuable wetland habitats. The instances cited above lend support to this. However, as yet, these ecological benefits have not been catalogued in any systematic way.The examples in Section 3.1 notwithstanding, not all irrigation schemes have adversely affected associated wetland ecosystems. Examples may include the cultivation of dambos (shallow, channelless, seasonally inundated depressions) in southern Africa, where up to 30 percent of dambo area may be irrigated without obvious adverse ecological impacts (Faulkner and Lambert 1991). However, since this conclusion has not yet been rigorously tested through ecological analysis, this conclusion must remain speculative. Also, Lankford and Franks (2000) argue that coexistence of wetlands and irrigation for rice is possible in at least some parts of Tanzania, providing that the spatial and temporal variability in the water needs of the wetland are understood and accommodated into the agricultural planning. The key in this case is flexibility in being able to change seasonal allocations of water based on flow data; during dry years, a greater proportion of the flow may be allocated to protect wetland core areas. During wet years, irrigation may be increased without jeopardizing the wetland ecosystem. In both cases, adverse impacts are avoided by allocating an adequate amount of water to the wetland and by planning for the entire watershed.A modeling study conducted by De Voogt et al. (2000) predicted that for the important Turkish wetland bird breeding site, Kus Cenneti, irrigated agriculture and wetland ecosystem resources could coexist. Currently the wetland is being adversely affected by low flows due to diversions during the bird breeding season (also the main irrigation period). De Voogt et al. (2000) estimate that the wetlands could be maintained by allocating river water flow to them. This would result in a predicted loss of yield in the agricultural system of a few percent during dry years and no loss in wet years. In this model, the water needs of the wetland were not estimated in great detail. It is possible that if temporal and spatial estimates of nature s demand were studied more closely, the integration of agriculture and wetland values could be made more compatible and the small predicted yield losses reduced even further. Also, the crops that are currently grown in the area are thirsty cotton and grapes. Institutional encouragement to switch to other crop types might make enough water available for both the farmers and the wetlands.Natural factors such as drought may confound the evaluation of the ecological impacts of water withdrawal and use for irrigation. An example is the ecological impact to the Hadejia-Nguru wetland complex in Nigeria (Hollis et al. 1993a;Lemly et al. 2000). The latter study reports declines in the avian populations using the area and implicates water storage schemes as the main cause. However, this area suffered severe droughts during the 1980s and 1990s when precipitation was markedly reduced (Hollis et al. 1993a), after many years of above average rainfall in the 1950s, 1960s, and 1970s. The extent to which these natural events contributed to the waterbird population reductions has not been assessed. In the Logone floodplain in Cameroon (Tchamba et al. 1995) acknowledged that climatic variability and drought played a part in the observed impacts to floodplain habitats and wildlife populations. They estimated that in normal rainfall years the damming and irrigation schemes probably contributed less than 40 percent of the observed impacts. However, in dry years the human use of the water contributed a much larger portion of the observed impacts. Also, Tchamba et al. (1995) point out an important fact that while droughts may come and go, the dewatering schemes are permanent. This, in the long-term, could have more fundamental impacts on the wetland ecosystems than the estimated 40 percent or less on a year-to-year basis.Anthropogenic stressors unrelated to irrigation may also complicate the evaluation of water management and ecological costs and benefits. For example, the barrage schemes on the Zambezi River may well be contributing to reductions in marine prawn harvests. However, no attempt has yet been made to determine the extent to which overfishing is also important. To what extent does overgrazing contribute to the decline in the Hadejia-Nguru wetlands? Any evaluation of the effects of irrigation must, necessarily, include the examination of the contributions by all major stressors. This has important practical applications: if the costs associated with all stressors at a site are additive, perhaps the costs that could, potentially, be incurred by irrigation could be mitigated by lessening the effects of other stressors.Usually, the measurement of impacts or benefits due to irrigation project implementation ends with the project installation. However, one study shows that under some circumstances ecological benefits may accrue in the long term. Masundire (1996) documents initial impacts and long-term consequences of the Kariba Dam (built primarily for hydropower, but it also supplies agricultural needs). The creation of the Kariba Dam was preceded by an intensive effort to capture and relocate wildlife whose home ranges would be inundated by the dam. In this sense, the building of the Kariba Dam was an adverse ecological impact. However, once the area was flooded, it became an important water source for wildlife in an otherwise arid environment. Indeed, so successful has it become in attracting grazing animals and their predators during the dry season that it is now a major site for ecotourism. Thus, the Kariba Dam has been both an ecological cost and a benefit. This illustrates the difficulty in easily assigning cost-benefit scores on the basis of change from pre-impact conditions, without also taking into account the post-impact conditions.One of the main findings of this review has been that despite the multitude of opportunities that have been presented by past irrigation schemes to provide data on activities and ecological effects, the actual data base is extremely limited. The literature that currently exists allows us to determine, at best, that adverse and beneficial effects to wetland ecosystems have occurred due to irrigation and associated activities; however, many of the questions raised in Section 3 of this review cannot be addressed. This is because few detailed and long-term studies of the costs and/or benefits of irrigation schemes have been performed in developing countries. Beyond determining that extracting or diverting too much water is likely to have deleterious effects, most existing studies do not provide information that is detailed enough to allow us to describe cause-effect linkages or to assist in avoiding future mistakes.Important questions that remain unanswered include:• What environmental factors affect how much water can be withdrawn for human use without unacceptable adverse ecological impacts being incurred (see Section 4.1)?• What environmental cues (indicators) may tell us whether or not we are stressing the wetland-watershed system to the extent that significant costs may be incurred?• In drought-prone areas, how could water resources planning be integrated with the protection of wetland ecosystems?• While existing schemes may have caused adverse ecological impacts during their implementation, what benefits (see the Kariba Dam illustration in Section 4.2) have accrued since then, i.e., in the long term?• How can we ensure that small is beautiful? Specifically, in localized and small-scale systems such as dambos we have an opportunity to merge ecological and agricultural functions. How do we do so?• Existing data show that rice irrigation may also provide opportunities to conserve (or create) important ecological attributes. What tools and approaches can be developed that will facilitate this?The implementation of existing irrigation projects could have provided important data to address the above questions. Yet, unfortunately, they did not do so. The reasons for this lack of follow-up are interesting as the following quote by White (1988) illustrates:To my knowledge there has not yet been a thorough, comprehensive post-audit of any major water project.Any such effort is impeded by factors that work in combination to discourage comprehensive study. Public criticism ... tends to narrow or muffle the study of impacts by proponents. Once the project is completed, critics lack incentives for study ... they have lost the battle and have little interest in learning that any attacks were unfounded. Proponents tend to look only for vindication ... The only way in which we can redress this balance and fill important data needs is to treat future irrigation schemes as natural experiments that should be studied from before implementation to completion and beyond to gather data that will help us determine cause-effect relationships. Also, existing schemes should be revisited in a case-study approach to fill in some of the information gaps that should have been addressed during project planning and implementation. The IWMI proposed Comprehensive Assessment (in particular, using case studies to develop the Knowledge Base component) provides us with an opportunity to answer some of the important questions that the existing literature cannot address and begin to move forward toward more effective planning and implementation of irrigation schemes.Ø Area of natural lakes in Syr Dar ya delta decreased from 500 km 2 to few tens of km 2 and 11 out of 25 largest natural lakes in Amu Dar ya delta dried up.Ø Area of riparian Tugay forest in Amu Dar ya delta reduced by about 50 percent as depth to watertable increased by 3 8 meters.Morimoto, Y., Morimura, A.;Ogar, N. 1997 Ø Prior to water diversions, an important fishery for sturgeon, carp, and bream existed, over 1 million musk rat pelts were taken annually, reeds provided raw materials for building and cardboard/paper manufacture, and Tugay riparian forest provided year-round grazing.Ø Before 1960s agriculture was local in scale and confined to river valleys where moisture was abundant. This may have resulted in local loss of wetland habitat but not great reduction in water going into the Aral Sea.Ø Reed-swamps that once covered 700,000 ha are now confined to about 30,000 ha close to man-made lakes.Ø Withdrawal canals may be creating new wetlands (e.g., Karakum and Bolshoy Andizhansk Canals). However, these may be highly salinized.Penvenne, L.J. 1996. Disappearing delta. American Scientist. 84:438 439.Ø Decreased sediment deposition is leading to erosion of the Nile Delta wetlands.Ø Reduced sediment loads due to High Dam and trapping of sediments in delta irrigation canals.Ø Irrigation of delta is causing eutrophication and contamination of wetlands.Ramsar, 1991. Ramsar advisory missions: Report No. 26, Egypt. Lakes Bardawil and Burullus. http://ramsar.org/ram_pt_26e.htm.Ø Both sites are designated as of international importance by Ramsar.Ø Highly important for migratory bird populations (most of which breed in Europe).Ø Sedimentation and closing off of channels connecting wetlands to sea is resulting in drying up of wetlands.Ø Heavy fertilizer and pesticide loads are now entering wetlands associated with the two lakes.Ø Effects on bird populations or wetland habitats are unclear as yet.White, G.F. 1988. The environmental effects of the High Dam at Aswan. Environment 30:5 40.Ø After closure, fish species diversity downstream of dam decreased from approximately 47 species to 14 25 species.Adams, W.M. 1993. The wetlands and conservation. In: The Hadejia-Nguru Wetlands: environment, economy and sustainable development of a Sahelian floodplain wetland, G.E. Hollis,; W.M. Adams: M. Aminu-Kano (eds). Glanz, Switzerland. IUCN.Ø Baturia wetland reserve within the Hadejia-Nguru wetland complex is being impacted by reduced seasonal flooding due to drought and water storage schemes.Ø Vegetation (trees and shrubs) is showing signs of water stress.Ø No evidence is presented that any additional ecological injury being inflicted. Ø Prior to the construction of the dam 300-2,000 km 2 was flooded in the wet season.Ø Highly important for migratory birds 320,000 numbers in 1997.Ø Fifth most important wetland site for Palearctic migrant birds.Ø Tiga Dam completed in 1974. Supplies water to Kano River Irrigation Project (14,000 irrigated ha). Hadejia Valley Project barrier under construction will irrigate 8,000 ha.Ø Flooding to wetlands already reduced by 17 percent.Ø Seasonally flooded wetlands drying up (e.g., Baturai Wetland Reserve) and depth to groundwater increasing.Ø Waterbird diversity and numbers falling, particularly cranes, storks and pelicans. No attempt made to distinguish between effects of recent droughts and water storage.Ø Plans for the new dam at Kafin Zaki may reduce flows by a further 50 percent.Masundire, H. 1996. The effects of Kariba Dam and its management on the people and ecology of the Zambezi River. In: Water Management and Wetlands in Sub-Saharan Africa, M.C Acreman; G.E. Hollis (eds). Glanz, Switzerland: IUCN-World Conservation Union.Ø Populations of large wildlife species were displaced by flooding of their ranges during the construction of the Kariba Dam.Ø The dam subsequently became an important water source for wildlife.Ø The wildlife attracted to the dam in the dry season is the basis for a local ecotourism industry.Scoones, I. 1991. Wetlands in drylands: Key resources for agriculture and pastoral production in Africa. Ambio 20:366 371.Ø Valley bottom wetlands (fadamas, dambos, bas fonds, and wadis) comprise 5 10 percent of the land in the African savanna.Ø Provide opportunities in arid areas to diversify crops, increase yields, and complement dryland farming.Ø Typical management involves building small dams at head waters, berms and raised beds further down to manage water flow.Ø Ecological costs of irrigation in these areas are uncertain needs to be studied more effectively at the catchment level.Meynell, P.J. Water diversion schemes from the Indus are among the largest such diversions in the world. Total irrigated area covers 12 million hectares. Of total annual inflow of 180 billion m 3 , 129 billion is diverted for agriculture. In dry years virtually no water reaches the delta. The delta supported highly important ecological resources including 260,000 ha of mangrove forests. Through dewatering and sediment trapping, the diversions upstream have had the following effects on the mangroves: Ø Erosion of the delta and loss of mangroves to the sea.Ø Replacement of mangroves by salt-tolerant species.Ø Reduction in area of mangroves from 260,000 to 160,000 ha.2) Chowilla Floodplain.Ø Ramsar site.Ø Seventeen thousand seven-hundred hectares in extent.Ø Dependent on water flows from the upstream.Ø Diversions for agriculture have reduced flows to wetland by >50 percent.Ø The area flooded has been reduced from 33 percent of the site to 5 percent.Ø Salinity has increased killing trees in some areas.Ø Biomass and abundance of aquatic invertebrates (e.g., 18 gastropod species) have declined.Ø Native fish populations also have declined (no data cited).3) Gwyder Wetlands Ø Proposed for Ramsar designation.Ø Twenty-four thousand hectares in extent.Ø Dependent on water flows from the upstream.Ø Mainly sedge/rush swamp.Ø Fifty-five percent of inflow diverted for irrigated agriculture (mainly cotton).Ø Cover by hydrophytic vegetation has decreased by 66 percent (converted to upland plant communities).Ø Ramsar site.Ø One-hundred and thirty thousand hectares in extent.Ø Dependent on the flow from the upstream.Ø The most important wetland site for waterbirds in Australia.Ø The dams were installed beginning in the 1960s.Ø Seventy percent of the flow was regulated for agriculture (mainly cotton).Ø Flow reaching wetlands reduced by 60 percent.Ø Marshes have shrunk by 50 60 percent.Ø Abundance and species richness of waterbirds has been reduced. Smaller colony sizes and less frequent breeding.Ø Hydrophytic woodlands area reduced by 14 percent. Water diversions to supply large-scale irrigation schemes upriver have led to the following ecological effects downstream:Ø Transformation of floodplain grasslands hitherto dominated by perennial species to communities dominated by annuals. This has meant loss of important grazing habitat for domestic livestock and for wildlife.Ø Population reductions in many ungulate species including reedbuck and kob.Ø Displacement of elephants into suboptimal habitat.Ø An increased frequency of negative human-elephant interactions.Ø Major reductions in fish populations and declines in fish catches. Ø Coexistence of rice irrigation and wetlands is feasible if the temporal and spatial dynamics of the wetland flows are acknowledged and irrigation planning accommodates them.Ø In wet years there is water for both uses. In dry years enough water must be allowed to reach wetlands to maintain core areas irrigation may have to be cut back in dry years.Remsen, J.V.; Swan, M.M.; Cardiff, S.W.; Rosenberg, K.V. 1991. The importance of the ricegrowing areas of south-central Louisiana to winter populations of shorebirds, raptors, waders and other birds. Journal of Louisiana Ornithoogy. 1:37 47.","tokenCount":"6910"} \ No newline at end of file diff --git a/data/part_1/0367398534.json b/data/part_1/0367398534.json new file mode 100644 index 0000000000000000000000000000000000000000..8854b0ac264ecae492709a716fdb68444258faa2 --- /dev/null +++ b/data/part_1/0367398534.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"34c707436c9a39811a3403dfab3077d2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/24aaab70-9722-4e55-9203-0cfb67978738/retrieve","id":"1732413274"},"keywords":[],"sieverID":"f71f7fe9-5cd4-4653-9cff-11aafce36116","pagecount":"9","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.The Epi in the Mara epidemiology workshop took place from 10 to 21 November 2014 at the Governor's Camp in Maasai Mara, Kenya. This was a follow-on from the Epi on Safari workshop that was held from 24 April to 3 May 2013 in Nyeri, Kenya.The Epi in the Mara workshop was targeted at postdoctoral scientists and researchers from the Food Safety and Zoonoses program of the International Livestock Research Institute (ILRI). The workshop was led by Prof Ian Dohoo, professor emeritus from the University of Prince Edward Island, Canada.The agenda of the workshop is provided in Annex 1 and the list of participants in Annex 2.The main objective of the workshop was to strengthen the capacity of the participants to effectively carry out epidemiology research at ILRI. The other objective was to provide a forum for the participants to present and discuss their draft manuscripts and datasets, through a guided peer review process, to improve and make the manuscripts suitable for publication.Lecturer: Prof Ian DohooThe workshop was divided into the following three major themes:1. Multilevel modelling: This was a mixture of lectures and labs with 'assigned' data plus some time for participants to work on their own data with presentations of analyses and challenges from these data on the second-last day. 2. Confounding_Bias_Missing Data: This was a mixture of lectures and labs with 'assigned' data 3. Participant Co-pilot Presentations: Each participant was assigned a 'co-pilot' to review the participant's draft manuscript and work with the participant to maximize the feedback obtained from the discussion following the presentation of the study.The reference text for the workshop was Veterinary Epidemiologic Research (2009), Second Edition (http://www.upei.ca/ver).The main software programs used during the course were: Stata (including the -gllamm-and -episens-packages)  MLwiN (http://www.cmm.bristol.ac.uk/MLwiN/), specialized software for multilevel modelling  Spreadsheets (MS Excel or Open Office Calc)There was no instruction in R but, where possible, attempts were made to provide R code for most of the exercises.The participants prepared the following materials in advance of the workshop: a draft manuscript (or a detailed outline of their projects)  a presentation about their projects, highlighting any challenges faced (and overcome) or still being faced  a one-page description of their data (data with a multilevel structure were described using the template shown in Annex 3) the dataset to be used during the training Prof Dohoo had earlier provided the following suggestions to assist the participant to prepare their datasets:(a) One record per observation at the lowest level of the hierarchy (e.g. if the dataset contained data from lactations within cows within herds, the dataset should have one record per lactation) (b) Make sure that each observation is uniquely identified (e.g. herd id, cow id and lactation number) ","tokenCount":"493"} \ No newline at end of file diff --git a/data/part_1/0368229755.json b/data/part_1/0368229755.json new file mode 100644 index 0000000000000000000000000000000000000000..5098d72833f9a9b06c66337efd31dca113c87195 --- /dev/null +++ b/data/part_1/0368229755.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"562e35d41161746ae2f719c1d002e34e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/43af46ae-4708-4c58-ba73-41b8310247f0/retrieve","id":"-455185431"},"keywords":["Sweet potato silage","Gas production","Pig faecal inoculum"],"sieverID":"56e994fb-d2f8-4139-b00d-80b235f51d18","pagecount":"3","content":"Vine, tuber and whole plant silages from five cultivars of sweet potato (Hapur local, Indonesia Boger (IB) 97-6/7, IB 12/24, IB 12/7 and CIP SWA-4) were investigated for nitrogen content, in vitro digestibility and metabolizable energy content and rate and extent of in vitro gas production using fresh pig faecal matter as inoculum (1 part faeces: 50 part buffer). Except for nitrogen content, significant cultivars dependent differences were only observed for total plant silages (TPS) but not for vines and tuber silages. In total plant silages nitrogen content, in vitro digestibility and metabolizable energy content ranged from 1.0 to 1.5%, 63.4 to 71.3% and 9.3 to 10.7%, respectively. Highest and lowest extent of in vitro gas production from TPS were 63.8 ml/200 mg DM and 56.3 ml/200 mg DM respectively. No significant differences were observed for rate of in vitro gas production from TPS, however rates of gas production from tubers and vines differed significantly between cultivars.Sweet potato is widely used as a food -feed crop that supplies food for human consumption and fodder for the livestock. Silages made from vines, tubers and whole plants of improved cultivars contributed substantially to increased productivity in pig systems in Asia (Pezo, 2004;Fuglie et al. 2005). Pigs are monogastric animals and use of sweet potato silage will occur at least partially through microbial fermentation in the hindgut. These microbes are still intact in fresh faecal matter and can potentially be used to inoculate in vitro systems for estimating for example fodder digestibility, metabolizability and rate and extent of fermentation. The objective of the present work was to test an in vitro system inoculated by fresh pig faecal matter using silages prepared from vines, tubers and whole plant of five different cultivars of sweet potato. This in vitro system could then support further improvement of sweet potato for food-feed traits in plant breeding programs.Fresh faecal matter was collected from five male crossbred pigs (c. 35 kg live weight) kept on a diet containing sweet potato. The vitro gas production systems of Menke and Steingass (1988) was used for the incubations and also for the calculation of in vitro digestibility and metabolizable energy content from in vitro gas production. The adoption of this in vitro system to using faecal inoculum instead of rumen fluid has been described by Pandian (2003). In vitro gas production was recorded from 0 to 96h and extent and rate of gas production was described based on the exponential model y = B (1-e -c(t-lag) ) where B is the asymptote of gas production, c the rate of gas production and lag a delay in the onset of fermentation.Except for nitrogen content and rate of in vitro gas production, silage fodder quality traits did not significantly differ in vines and tubers of the five cultivars (Table 1 and 2). In vitro digestibility, metabolizable energy and in vitro gas production measurements showed higher fodder quality for tubers than for vines, however nitrogen content was higher in the vines than in the tubers. Except for nitrogen content cultivars differences in fodder quality traits was essentially due to differences in vine to tuber proportions. The observed variation in fodder quality traits was appreciative for whole plant silage and nitrogen content, in vitro digestibility and metabolizable energy content ranged from 1.0 to 1.5%, 63.4 to 71.3% and 9.3 to 10.7%, respectively. Some cautions is advised as in vitro digestibility and metabolizable energy estimates were based on equations that uses in vitro gas production in rumen fluid and various chemical constituents such as nitrogen and ash. (Menke and Steingass, 1988). Exact values for digestibility or metabolizable energy content of the silages for pig nutrition will therefore differ from the ones reported in Table 1 and 2, but the ranges reported hold probably true. Ramakrishna et al. (2006) reported the biomass yield of the silages used for the present work. A comparison of the whole plant biomass dry matter yield with the silage quality data reported in this work (Table 1 and 2) showed that there was no significant relationship between silage quality traits and sweet potato biomass yield. These findings suggest that high biomass yield and high biomass quality are not necessarily exclusive traits. It should therefore be feasible to further improve quantity and quality traits in sweet potato breeding and selection programs. The in vitro technique tested here will be useful in such breeding and selection work. ","tokenCount":"732"} \ No newline at end of file diff --git a/data/part_1/0383072407.json b/data/part_1/0383072407.json new file mode 100644 index 0000000000000000000000000000000000000000..6be63cca5a557958d1059cf9e0363dd69ef0933c --- /dev/null +++ b/data/part_1/0383072407.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"43347c369349b6d8c6463cd3af382603","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/0fb2221a-e200-441c-b38e-98a5526f2ea8/content","id":"-1153957592"},"keywords":[],"sieverID":"01bd180d-a58f-4355-97be-33a4125f7c96","pagecount":"8","content":"Calidad industrial de trigos harineros mexicanos para temporal. II. Variabilidad genética y criterios de selecciónThe genetic variability and heritability of quality-related parameters and the selection criteria for bread making quality useful for breeding of mexican rainfed bread wheat (Triticum aestivum L.), were determined in a set of 15 genotypes representing diverse breadmaking quality. The evaluation was done in 11 locations which represent the environmental variability of rainfed wheat-producing area of Mexican highlands. It was found that quality traits: test weight, grain and flour protein, bread loaf volume, kernel texture, and sedimentation volume (gluten strength-related parameter), showed a very low genetic variability. Gluten extensibility (alveographs-P/L and P/G) and enzymatic activity associated with grain preharvest germination, showed intermediate genetic variability. Gluten strength (Al-veograph-W) and dough mixing time showed the highest levels of genetic variability. Alveograph-W, mixing time, sedimentation volume and kernel texture showed the highest heritability values. Alveograph-W, mixing time, sedimentation volume, alveograph-P/L and alveograph-P/G, showed a positive and significative association with bread volume. Considering genetic variability and heritability, the former variables are adequate for indirect selection for improving bread-making quality. Index words: Triticum aestivum L., genetic variance, heritability, genetic variation coefficient, Pearson´s correlations, bread making quality, gluten strength.La superficie de trigo harinero (Triticum aestivum L.) de riego en México se ha reducido drásticamente debido principalmente a la escasez de agua y a la reconversión hacia cultivos más rentables y de exportación. Esto ha contribuido a que la industria recurra a la importación de trigo para suplir la demanda nacional. La siembra de trigo de temporal o de secano en México es una posibilidad para reducir el déficit que actualmente tiene el país, ya que hay alrededor de un millón de hectáreas de temporal donde el trigo es una opción viable. Un factor que ha impedido incrementar las siembras de trigo en temporal, es que los productores frecuentemente enfrentan problemas para comercializar el grano, porque la industria molinera prefiere importar trigo del mercado internacional, con el argumento de que los trigos mexicanos no poseen la calidad de panificación requerida (Villaseñor et al., 2000).La calidad industrial del trigo se caracteriza mediante el análisis de parámetros físicos, químicos y reológicos relacionados con la calidad molinera y de panificación. El análisis físico incluye rendimiento harinero, textura de grano y peso hectolítrico; el análisis químico incluye al contenido de proteína en grano y harina, volumen de sedimentación y actividad enzimática (alfa-amilasa) asociada con germinación en la espiga, las cuales están relacionadas directamente con la calidad panadera (Finney et al., 1987;Seleny, 1988;Peña et al., 2002;Souza et al., 2002). El análisis reológico de la masa incluye características como fuerza de gluten (alveograma-W), extensibilidad de gluten (alveogramas-P/L y P/G), propiedades de amasado (tiempo de amasado y tolerancia al amasado en el mixógrafo), entre otras, porque están relacionadas con las propiedades viscoelásticas de la masa que determinan las propiedades de panificación de la misma (Chen y D´Appolonia, 1985;Finney, 1989;Wooding y Walker, 1992;Peña et al., 2002;Souza et al., 2002). En la prueba de panificación se miden aspectos como volumen de pan y estructura y apariencia de la miga, variables importantes en la caracterización de la calidad panadera de un trigo (Hoseney, 1994;Qarooni, 1996).El conocimiento de la variabilidad genética utilizada en programas de fitomejoramiento, es de primordial importancia para el establecimiento de estrategias de selección. Dicha variabilidad se expresa con varianzas fenotípica y genotípica; sin embargo, el coeficiente de variación genética es el mejor parámetro para tal propósito (Ehdaie y Waines, 1989). Peterson et al. (1992) registraron valores de varianzas genéticas de: 998 para proteína en la harina, de 2.2 para tiempo de amasado, 24.3 para volumen de sedimentación y 0.11 para dureza de grano. Por su parte, Graybosch et al. (1996) encontraron varianzas de 2107 para proteína en la harina y 275 para volumen de sedimentación, mientras que Espitia-Rangel et al. (1999a, b) reportan varianzas de 0.01 a 0.02 para peso hectolítrico, de 1.2 a 5.1 para proteína en la harina y de 0.003 a 0.008 para tiempo de amasado.La heredabilidad es un parámetro genético que determina si las diferencias entre individuos se deben a diferencias genéticas entre éstos ó a diferentes respuestas a los factores ambientales. Los valores de heredabilidad varían ampliamente para proteína en harina, proteína en grano, peso hectolítrico y volumen de sedimentación (0.30 a 0.40, 0.30 a 0.60, 0.12 a 0.44 y 0.19 a 0.56, respectivamente), pero son altos y consistentes (0.75 a 0.83) para textura de grano (Loffler et al., 1983;O'Brien et al., 1989;Fenn et al., 1994;Peterson et al., 1998).Las relaciones existentes entre parámetros de calidad son relevantes para el fitomejoramiento, sobre todo cuando la selección está dirigida al mejoramiento simultáneo de varios factores, o al manejo de caracteres de difícil cuantificación o de baja heredabilidad. Por ejemplo, se han detectado asociaciones entre volumen de pan y proteína en el grano, proteína en harina, volumen de sedimentación, tiempo de amasado y alveograma-W (Trethowan et al., 2001); entre el peso hectolítrico y alveograma-P/L, alveograma-W y volumen de sedimentación (Gupta et al., 1992;Peterson et al., 1992;Graybosch et al., 1996); y entre la textura del grano y peso hectolítrico, alveograma-P/L, alveograma-W y volumen de sedimentación. De igual forma, las características reológicas como alveograma-P/L han resultado asociadas positivamente con tiempo de amasado, alveograma-W y volumen de sedimentación (Peterson et al., 1992;Graybosch et al., 1996).Con respecto a las características físicas, químicas, reológicas y de calidad panadera de trigos harineros mexicanos para temporal, poco se conoce de los efectos genéticos y ambientales sobre la variabilidad en caracteres de calidad, así como de las asociaciones entre parámetros de calidad bajo condiciones ambientales diversas. Con el propósito de generar el conocimiento necesario para hacer más eficiente el mejoramiento de la calidad de trigo en el Altiplano Central de México, el presente trabajo tiene como objetivo determinar la variabilidad genética, la heredabilidad, la asociación entre caracteres y los criterios de selección para diferentes parámetros de calidad industrial de trigos harineros mexicanos para temporal.Loss 15 genotipos de trigo de temporal usados representan la diversidad genética del germoplasma utilizado en la región objetivo, e incluyeron cuatro variedades recientemente liberadas: Juchi F2000, Náhuatl F2000, Tlaxcala F2000 y Rebeca F2000; cuatro variedades testigo Gálvez M87, Temporalera M87, Batán F96 y Romoga F96; cuatro líneas avanzadas del programa de trigo de temporal; y las variedades Zacatecas VT74, Arandas F90 y Pavón F76 que han sido utilizadas ampliamente para siembras de temporal. Se sembraron en el ciclo primavera-verano de 1999 en once localidades de temporal: Juchitepec, Tecamac y Coatepec en el estado de México; Nanacamilapa y Apizaco en Tlaxcala; Santiago Tillo en Oaxaca; Jesús María en Jalisco; Cuyuaco en Puebla; Roque en Guanajuato; Buenavista en Morelos y Amealco en Querétaro. Este conjunto de localidades representa la diversidad ambiental de las regiones mexicanas de trigo de temporal.Los genotipos se distribuyeron en un diseño de bloques completos al azar con dos repeticiones. La parcela experimental consistió de cuatro surcos de 4 m de largo separados a 30 cm. Las siembras se realizaron de acuerdo con las recomendaciones del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias para cada región. Las parcelas experimentales fueron cosechadas para determinar el rendimiento, en kg ha -1 . Los análisis de calidad fueron realizados en el Laboratorio de Calidad de Trigo del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).El análisis físico del grano consistió en la evaluación de peso hectolítrico (kg HL -1 ) determinado en una muestra de 500 mL con una balanza volumétrica (Seedburo Equipment Co., Chicago IL.), y la textura del grano (índice de dureza, %) determinada con un analizador por reflectancia en el espectro infrarrojo cercano (NIR, por sus siglas en inglés) Infralyzer 300 (Technicon, N. Y.) calibrado (método 39-70A; AACC, 1995) con base en el índice de tamaño de partícula (método 55-30; AACC, 1995), en el cual una mayor proporción (%) de partículas finas presentes en una muestra de harina integral indica mayor suavidad del grano.La harina refinada se obtuvo de muestras de grano acondicionado a 14 % de humedad, con reposo de 24 a 36 h previo a la molienda, la cual fue efectuada en un molino Brabender Quadrumat Sr. (Brabender, Alemania) El análisis químico consistió en la determinación del contenido de proteína en el grano y en la harina, del volumen de sedimentación (parámetro relacionado con la fuerza de gluten) y la actividad enzimática (alfa-amilasa) asociada con la germinación en espiga. El contenido de proteína (g kg -1 ) en grano y en harina se midió con el analizador NIR Infralyzer 300 (método 39-10; AACC, 1995). La actividad enzimática se determinó indirectamente por el método viscosimétrico de índice de caída (FN, por sus siglas en inglés) con un aparato Falling Number AB 1400 (Falling Number, Suecia) en una muestra de 7 g de harina con 14 % de humedad (método 56-81B; AACC, 1995). El volumen de sedimentación (mL) se determinó en una muestra de 1 g de harina a la que se agregó dodecil sulfato de sodio (SDS, por sus siglas en inglés) de acuerdo con el procedimiento descrito por Peña et al. (1990), en el que a mayor volumen mayor es la fuerza de gluten.El análisis reológico consistió en la determinación de variables de fuerza de gluten (alveograma-W), extensibilidad de gluten (alveogramas-P/L y P/G) y tiempo de amasado en el mixógrafo. Las variables alveográficas W, P/L y P/G se obtuvieron con un Alveógrafo de Chopin (Trippette & Renaud, Paris, Francia) en una muestra de 50 g de harina, de acuerdo con el método 54-30 de la AACC (AACC, 1995), utilizando el criterio de consistencia constante (absorción variable, 50-57.5 %) y ajustando el tiempo de mezclado (7-9 min) hasta obtener una masa tersa. El alveograma-W es un medida de la fuerza de la masa (10 -4 J) en el que a mayor valor de W, mayor es la fuerza de gluten. Los alveogramas-P/L y P/G son la relación entre la altura y longitud del alveograma y entre la altura y el índice de expansión, respectivamente, e indican la extensibilidad del gluten. A menores valores de P/L y P/G, mayor extensibilidad del gluten. El tiempo de desarrollo de la masa (Tiempo de amasado, min) se determinó en un mixógrafo (National Manufactiring Co., Lincoln, NE.), en una muestra de 35 g de harina a 14 % de humedad, y absorción de agua variable, de acuerdo con el contenido de proteína en la harina (método 54-40; AACC, 1995), de modo de que a mayor tiempo de amasado mayor es la fuerza de gluten. La calidad panadera (representada por el volumen de pan, mL) se evaluó en 100 g de harina a 14 % de humedad, mediante el método de panificación de masa directa (método 10-09; AACC, 1995); el volumen de pan se determinó por desplazamiento de semilla de colza (Brassica sp.).Previo al análisis estadístico de los datos porcentuales de textura de grano, se realizó una transformación logarítmica. Ambientes y genotipos se consideraron como factores aleatorios. Los componentes de varianza para cada una de las fuentes de variación se estimaron mediante el procedimiento VARCOMP del SAS (SAS, 1994). En el Cuadro 1 se presenta la estructura del análisis de varianza y esperanzas de cuadrados medios.Cuadro 1. Estructura del análisis de varianza combinado y esperanzas de cuadrados medios de 15 genotipos de trigo en 11 ambientes de temporal. Primavera-Verano 1999.Rep(A) a(r-1) SCr(a)Genotipo (G) (g-1) SCg CMg σ 2 e + r σ 2 ag + ra σ 2 g G x A (g-1)(r-1) SCag CMag σ 2 e + r σ 2 ag Error a(g-1)(r-1) SCe CMe σ 2 e Total arg-1 FV, G L, SC, CM y ECM, son fuentes de variación, grados de libertad, suma de cuadrados, cuadrados medios y esperanzas de cuadrados medios, respectivamente σ 2 g, 2 ga y 2 e, son componentes de varianza de genotipos, genotipos por ambientes y error, respectivamente Los componentes de varianza se calcularon al igualar la esperanza matemática de los cuadrados medios con los estimadores de éstos en el análisis de varianza. El coeficiente de variación genética (CVG) de todas la variables, se calculó al dividir la desviación estándar genética entre la media (CVG < 20 = variabilidad genética alta; CVG=12 a 20 = variabilidad genética intermedia; CVG > 10 = variabilidad genética baja). La heredabilidad se estimó al dividir la varianza genética entre la varianza fenotípica. Las correlaciones de Pearson se obtuvieron con el procedimiento CORR del SAS (SAS, 1994).La varianza entre genotipos fue la principal fuente de variación para peso hectolítrico, textura de grano, proteína en la harina, volumen de sedimentación, alveograma-W, tiempo de amasado y volumen de pan mientras que los efectos de interacción genotipo x ambiente fueron los más importantes para actividad enzimática, alveogramas-P/G y P/L (Cuadro 2). Los efectos de localidades, genotipos y su interacción fueron significativos para todas las variables estudiadas (datos no mostrados). En actividad enzimática, alveogramas-P/G y P/L y rendimiento de grano, el efecto genético fue similar al efecto de la interacción genotipo x ambiente. En la textura de grano, volumen de sedimentación, alveograma-W y tiempo de amasado, la varianza genética correspondió a más de 54 % del valor de la varianza fenotípica, lo que muestra que los efectos genéticos son importantes en estas variables.Cuadro 2. Componentes de varianza estimados para 11 variables de calidad y rendimiento de 15 genotipos de trigo en once ambientes de temporal. Primavera-Verano 1999. Los coeficientes de variación genética más altos correspondieron a las variables reológicas alveograma-W y tiempo de amasado (Cuadro 3), las cuales presentaron una amplitud de 763 x 10 -4 J y de 4.5 min, respectivamente. La amplitud de la variación del tiempo de amasado fue mayor a la observada (2.5 min) por Peterson et al. (1992) para trigo rojo de invierno cultivado en condiciones de temporal errático. Esto sugiere que es necesario aplicar selección para reducir la amplia variabilidad en tiempo de amasado que ocurre en condiciones de temporal. Los coeficientes de variación genética para alveogramas-P/G y P/L y actividad enzimática fueron intermedios (Cuadro 3), pero todavía permiten efectuar selección. La amplitud de la variación para alveograma-P/G (1.4 a 8.2) y alveograma-P/L (0.3 a 2.2) y sus medias de 3.8 y 0.8, respectivamente, indican que los trigos mexicanos para temporal presentan buena extensibilidad para panificación, comparable a la de trigos duros de primavera cultivados en condiciones variables de temporal (Addo et al., 1990). La actividad enzimática varió de 72 a 700 s, con una media de 560 s, valores que indican que los trigos mexicanos de temporal presentan buena tolerancia a la germinación en espiga. Los coeficientes de variación genética más bajos (2 a 10.7) correspondieron a volumen de sedimentación, rendimiento de grano, textura de grano, volumen de pan, proteína en grano y en harina y peso hectolítrico; es decir, estos trigos mexicanos de temporal poseen una reducida variación genética para rendimiento de grano, acumulación de proteína y textura de grano.Las heredabilidades más altas correspondieron a alveograma-W (0.70), tiempo de amasado (0.64), textura de grano (0.54) y volumen de sedimentación (0.54) (Cuadro 3), lo cual sugiere que estos caracteres pueden ser mejorados más fácilmente porque la variación observada en estas variables se debe principalmente a efectos genéticos. En contraste, rendimiento de grano, peso hectolítrico, actividad enzimática, proteína en grano y harina, alveogramas-P/G y P/L y volumen de pan, tuvieron heredabilidades bajas (< 0.50), que indican una mayor dificultad de su mejoramiento al tener influencia considerable de la interacción genotipo x ambiente. Los valores de heredabilidad encontrados en este estudio concuerdan con los reportados anteriormente para caracteres de calidad de trigos rojos de invierno (Loffler et al., 1983) y trigos australianos de primavera (O'Brien et al., 1989).El volumen de pan presentó las correlaciones más altas con proteína en grano y en harina, y con los alveogramas-W y P/L (Cuadro 4), similar a lo observado por Trethowan et al. (2001) en trigos cultivados con riego. Esto indica que tanto en condiciones de temporal como en riego, la calidad panadera está determinada principalmente por la cantidad y la calidad de la proteína del gluten. Aunque significativa, la relación entre volumen de pan y tiempo de amasado fue baja. Por otro lado, el tiempo de amasado tuvo una correlación relativamente alta con alveograma-W, pero baja con los alveogramas-P/G y P/L (Cuadro 4); por tanto, el tiempo de amasado está influenciado principalmente por la fuerza del gluten y no por su extensibilidad. Entonces, el tiempo de amasado por sí solo no es una variable suficientemente efectiva para seleccionar por calidad panadera.Alveograma-W presentó la correlación más alta con el volumen de pan, y también presentó asociación positiva con tiempo de amasado, proteína en grano y en harina, volumen de sedimentación, y actividad anzimática. Esto confirma los resultados reportados por Bettge et al. (1989) y Addo et al. (1990). El volumen de sedimentación presentó asociación positiva con proteína en grano y harina, mientras que su asociación con los alveogramas-P/G y P/L fue negativa. Resultados similares han sido reportados anteriormente (Peterson et al., 1992;Graybosch et al., 1996). El tiempo de amasado presentó una relación positiva con alveograma-W, mientras que su asociación con los alveogramas-P/G y P/L y con volumen de pan su asociación fue relativamente baja, lo cual coincide con resultados reportados anteriormente (Bettge et al., 1989;Addo et al., 1990;Peterson et al., 1992).Las variables alveograma-P/L y P/G, que expresan la extensibilidad de una masa, estuvieron asociadas negativamente con volumen de pan, con proteína en grano y harina, y con volumen de sedimentación.La proteína en grano y harina presentaron una relación positiva con volumen de pan, volumen de sedimentación y alveograma-W. Peso hectolítrico, textura de grano y actividad enzimática no mostraron asociación significativa con el volumen de pan como era de esperarse pues estas variables están relacionadas más bien con la calidad molinera del trigo. Estos resultados confirman lo encontrado anteriormente (Bettge et al., 1989;Addo et al., 1990;Peterson et al., 1992).La respuesta a la selección dependerá de la variabilidad genética, la heredabilidad y a la asociación del carácter de interés con otras variables. Si se quiere mejorar la calidad molinera (rendimiento harinero) de los trigos mexicanos cultivados en temporal, se tendrá que seleccionar hacia valores más altos de peso hectolítrico, el cual depende de la forma, tamaño y llenado del grano (Seleny, 1988). Pero la reducida variabilidad genética detectada para peso hectolítrico en los trigos mexicanos de temporal sugiere la necesidad de introducir germoplasma que permita mejorar este parámetro de calidad. Es necesario seleccionar trigos con tolerancia a la germinación en espiga, sobre todo en regiones temporaleras (de secano) donde las lluvias coinciden con la madurez del grano. Es importante también seleccionar para obtener grano de endospermo duro a semiduro, ya que mayor dureza resulta en niveles relativamente altos de almidón dañado durante la molienda, lo cual incrementa la absorción de agua de la harina. La proteína en el grano es frecuentemente considerada en la comercialización de trigo; los trigos mexicanos de temporal incluidos en este estudio mostraron poca variabilidad y una baja heredabilidad para este carácter, por lo que se deberá introducir germoplasma que posea, además de las características ya mencionadas, mayor eficiencia en la utilización de nitrógeno disponible y mayor habilidad para acumular proteína en el grano.En los trigos mexicanos cultivados en temporal, la variabilidad genética y la heredabilidad para volumen de pan, presentaron valores bajos por lo que se deberá introducir variabilidad para este carácter. En cambio, los caracteres como proteína en grano, proteína en harina, alveogramas-P/L y W, volumen de sedimentación, alveograma-P/G y tiempo de amasado, además de estar asociadas con volumen de pan, presentaron mayor variabilidad genética y heredabilidad que el volumen del pan, por lo que es posible utilizar tales caracteres como criterios para la selección indirecta del mismo. La variabilidad genética de los trigos temporaleros mexicanos es baja para las variables de calidad como peso hectolítrico, proteína en grano, proteína en la harina, volumen de pan, textura de grano, rendimiento de grano y volumen de sedimentación. En variables como alveograma-P/L, actividad enzimática (tolerancia a la germinación en la espiga) y alveograma-P/G, la variabilidad genética es baja pero aceptable; mientras que para alveograma-W y tiempo de amasado la variabilidad genética es alta. Las variables alveograma-W, tiempo de amasado, volumen de sedimentación y textura de grano presentaron los valores más altos de heredabilidad. Las variables alveograma-W, tiempo de amasado, volumen de sedimentación, proteína en grano, proteína en la harina y alveograma-P/G presentaron asociación positiva y significativa con volumen de pan, lo que aunado con sus altos valores de variabilidad genética y heredabilidad, las hace las variables más adecuadas para la selección indirecta del volumen de pan.Los autores agradecen al CONACYT (Proyectos: I29928B y 34718-B) y Alianza para el Campo del estado de México (Proyecto: 3553) el financiamiento otorgado para la realización de la presente investigación.","tokenCount":"3424"} \ No newline at end of file diff --git a/data/part_1/0398285614.json b/data/part_1/0398285614.json new file mode 100644 index 0000000000000000000000000000000000000000..bcdede6138a2512d291488715f1c012126fd5bae --- /dev/null +++ b/data/part_1/0398285614.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4dd377b4c929189b46774575d64034e8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ef752aba-8427-4e5d-a40c-d6f05dcd0d54/retrieve","id":"1494524602"},"keywords":[],"sieverID":"3f10c9fc-2d89-4f1e-b85a-6e0def0cb0b6","pagecount":"25","content":"AOOut 300 million famers in the tropics practice shifting cultivation and related bush fallow systems. With increasing pressure of p::>pulation, the ratio of fallCM to cultivation period declines rapid! y and so does the fertility and produc-• tivity of the soil. It has l::een estimated that to meet the increasing demands for food prodl):::tion in the various tropical regions, the rate of land developrent rrey have to be as much as 6 to 10 million hectares per armum.'lb solve this problem, an approach which is often preferred by many regional am national planners is to bring new land into large scale rrechanized fanning. However, the conclusions drawn recent! y fran a critical appraisal of large-scale agricultural developnent schares in savanna. arxj forest regions of Africa and elsewhere in the tropics are not encoura9ing. Plarming and execution of such schares, with utter disregard of the soil conditions and other envi.ro.nrrental and socio-econanic factors, have led to widespread barren arxj unproductive land where lush green forest once prevailed.Recent advances in agronanic and soil research have helred to diste1 many misconceptions of the agricultural p::>tentials of land and soil resources in different tropical regions. 'Ihe completion of the Soil Map of the Ybrld by FAO/UNESCO and the subsequent developnent of various technical soil and land evaluation systEms have provided us with nnre reliable information which can now re used for soil and land assessnent. h:Jricultural land developnent in developing countries, therefore, is to be based on the following prerequisites:(i) soil and land suitability, (ii) ~ kind of farming system to be adopted, and (iii) the socio-econ:xnic inplications.In the hood and per-hunid regions of the low al ti tude tropics (Le. Precipitation ~ Potential Evapotranspiration (P ~ ET) for period betweell 6 to B rronths, or nore than B rronths of the year, respectively), the luxurious rainforest is often supported by the extrerel y infertile 90ils (i.e. strongly leached Ultisols and O>ciEOls). Land covered wi th such soils, are rrore sui table for agro-forestry or tree crop plantations, particularly in areas where population ~ssure is low.'!he traditional bush fallow system of cultivation in such envi.ror1nents, th:>~h subsistence ~ is an effective and stable metlnd of soil managenent when lam availabU i ty is unlimited. ltbre penre.nent :focxi crop cultivation on such land is only possible through frequent applications of nrulti-elE!'l'l9l1t fertili~s and l:ilning. 'Furthemore, periodic tree crop fallow may be required rot only to recycle the plant nutrients leached ~ the surface rorizon but also to inprove the deteriorated subs::lil st:r\\x:ture. Large scale ny:ciianised forest clearing of 1800 <:x::rJ1?riSing the strongly acidic and kaolinitic soilsmay be prohibitive. '!his is particularly ~ for land with a rolliIXJ topogratny and steeper slates.In the hunid/sub-hunid tt:'ansitJ.On zone of west Africa CLe. oouth-\\oJest.ern Nigeria), the less leached Alfisols are the aCundant soi'ls lUlder the predcminanUy secondary forest vegetation. Land-form in the region is characterized by a rolling top:>graphy with snall V-shafed valleys. rb-till rnaize farming with crop residue mulch has teen shown to be a pramsing system of crop production on lar1d newly cleared fran forest.Sub-humid and Semi-arid Regions 111 the sub-humid and semi-arid regions of Africa Ci.e. p ~ ET for 4-6 and 2-4 JIDnths for the year, respectively), the upland areas are generally daninated by the \"lateritic\" and naturally COITpacted soils (i.e. kaolinitic Alfisols and Inceptiools), while the rrore fertile hydrorrorphic soils and vertisols are found in restricted areas of inland depressions and river valleys.'!he upland soils in these regions are intensively cultivated in areas where rainfall is nore reliable or where supplimental irrigation is available. On the other hand, the lowland areas are generally under-utilized. In the savannah regions of West Africa, the lowland areas are mainly used for vegetable crop production such as tanato and pepper during the dry season.IbNever, much of the land is left uncultivated thrOugOClUt the rainy season because of lack of pro~r drainage and flood water control system. Such lowland areas could be develo~d for intensive rice production with better \\vater managerrent practices.The tropical highlands of Fast and Central Africa comprise pJtentiall y the rrost productive land in tropical Afr ica . 'The fine-textured, oxidic Alfisols and Oxisols (or, Eutric Nitosols, FAO ) derived fran ferranagnesian rocks are widely occurrinq soils in the region. Such soils generally have little physica l limitation and extensive food crop production systems can be develo~ wi t.h appropriate fertilizer use. I.arge sca:io rrechanized agriculture is quite suitable for such soils, provided that supportive agro-industries are readily available.A technical soil evaluation system for highly ~athered soils (or, soils with variable charge) is being developed at 11Th. The principal objective of the system is to provide agricultural planners in the tropics wi til a set of simple guidelines for agricul tural soil utilization and land developtent. Such soil quality and limitation guidelines are to be used in conjunction with necessary information on land-forms and agro-clirnatic condi tions in order to assess the ultimate roils and land sui tabili ty .The technical soil evaluation system classifies highly weathered soils in the tropics into four mineralogical groups and tv.D chemical sub-groups which are supplimented by a set of soil physical and fertility 'rondition rrodifiers'. '!he systan nay be briefly summarized as follows: Table 1. A Technical soil evaluation system based on soil mineralogy (Juo , 1981). In traditional systens and for SIT611 size holders clearing is usually done by hand using machete, axe, hoe and other indegenous tcols. In orde:c to ensure regrowth during the next fallowing period, stumping is qenerall y not done. 'Ibis rrethod of clearing causes the least soil disturbance, and the problem of nm-off and soil erosion is generally minimal. H0M8ver, this system cannot be used for large scale mechaniZed farminq, since, it is slow, and exp2I1sive to carty out.Land clearing for plantation crops and pastures can also be done manually by \"ring ba.rking\". '!his rrethcrl is generally effective for eradication of trees up to certain size. Ringred trees, generally take long tine to die, and the shading by standing trees can be detrirrental in establishing gcod pastures.ii) Chemical Poisoning:with high risks of JXllluting the environrrent, sorre chemicals can be used for killing existing vegetation cover for establishrrent of plantation crops or pastures. The cooice of the suitable chemical smuld take into consideration the health hazards to human and animals. The persistence of • the chemicals in soils and natural waters is also an :i.r£lrortant factor to be considered. Compared with mechanized clearing, manual clearing operations are slow and inefficient. C€pending on the vegetation cover and tree density, TI1aI1ual clearing operations may require up to 200 rran-days/ha for carplete clearing of a semi -d.ecidoous rain forest (Table 2). Out of which 54 percent of the tirre is needed for cutting and falling, and 34 ~cent for stunping and burning.On the other hand, it required a1:xmt 2 ~rking hoursjha to clear with the shear blade attadrre.nt ~ with 2. 70 ~rking hours/ ha required with the tree pusher/root rake conbination (Table 3).Accordingly, the fool consumption is also al:x:mt 50 };:ercent less for the shear blade than for the tree pusher attachrrent.Shear blade followed by no-tillage offers good protection against soil erosion, therefore, subsequent post-clearing land developnent (terracing, grass waterways etc.) are not necessary.'!he post-clearing land developrent costs, de~ding on the rrethod of land clearing and the roil and slope characteristics, rray be as high as us $450jha. 4). It is interesting to p:Jint out that the roil loss/grain yield ratio ranged from 0.02 for traditional land clearing and mmaganent to 11.2 for tree pusher/root rake clearing followed by conventional tillage.'lhe fX)st-clearing larrl nanagement and cropping systans sh:mld rmintain or ilrprove the soil productivity in order to ensure a sustained and econonically viable production system.During the past decade, nTh has been oonducting research as part of the effort to replace or improve tram tional bush fallow rrethXis with rrore productive systems. No-tillage is essentially farming without plowing, where seeds are planted in a narrow slit or trench opened mechanicall y in the killed sod or previous crop residue. Weed and other competing vegetation are oontrolled by chemical herbicides I and plant roots are left in the soil to deCOf'lFOse.In the forest zone of West Africa, where the highly erosive Alfisols with low nutrient and water rolding capacities are daninant, the no-till maize production with crop residue mulching on newly cleared forest land has shawn distinct advantages over oonventional till age. In comparison with conventional tillage, the no-till system has the following advantages:(i) Soil erosion caused by water or wind is drastically reduced.(ii) Sloping lands that cannot otherwise te used for raw crops can be used with a minimun risk of soil erosion and degradation. 'The cost of installation and of maintenance of traditional soil erosion oontrol measures (terraces) is reduced.(iii) Energy requirements are reduced.(iv) The time required for land preparation is reduced, that provides more flexibility in planning farm operations.(v) The investIrent in machinary is reduced.(vi) Soil-water and nutrient reserves are used rrore efficiently.Research conducted at rrm and elsewhere have shown that if the vegetation caver is rerroved for arable landuse, a crop residue mulch of 4 to 6 t/ha provides adequate protection to tie soil against the impacting raindrops and prevent soil erosion. 'lhe effectiveness of residue mulch is considerably enhanced if the soil surface has not been disturbed by ro;clrurical manipulations such as caused by plowing and intercul tivation. These requirements for soil and water conservation can benet through the use of the \"notill\" system.l'!xperirrents o:mducted at 11Th for the last ten or !TOre years have indicated that, at least on slopes upto 15 percent, rontinuous maize production can be practiced without serious erosion risks (Table 5), provided that zero tillage is used together with crop and weed residues maintained as a mulch.M:iize yield (total of 2 crops per yearJ with zero tillage have proven to be superior than the oonventional tillage (Fig. 1). But the significant yield decline after the fourth year •under both tillage systems are due to a variety of factors.Soil compaction and soil acidification are among the important ones. 'Illese data. :rcint out the limitations for the utilization of the so-called \"kaolinitic\" or \"low activity clay\" soils for continuous fcxXi crop cultivation. 'Ib overccme such soil limitations, periodic chiselling ,returning land to planted fq.llow with deep rooted perennials, or ploughinq at the end of the rainy season are currently being studied.M:>reover, for the no-tillaqe system to be successfully adopted, a package of aqronanic practices must be developed for different soils, crops and aqroeaological environments. The cultural practices reccxrrrended for the conventional plCMing system are rpt always suitable for the no-tillage system. Agroncmic and eo::manic studies on the following spects are being developed and strengthened at rITA (i) effective control of insects and disease-producing organisms, and the rodents that are likely to be rrore in rntillage than in conventional tillage system.(ii) al ternative methods of adequate weed control if appropriate herbicides are lY)t available I and (iii) suitable cropping systans to rreet the resid~ requirements for soil and water conservation and f or alternot~ uses (fuel, fodder, fences etc) •Alley cropping is a systan, in which arable crops are grown in the spaces be~en rows of planted ~y shrubs or tree f allows in which the fallow species is periodically pruned during the cropping season to prevent shading and provide green manure f or the cc:mpanion crop.The alley cropping system retains the basic features of bush fallow. It offer s an attractive alternative and may be easily adopted by the small f~rs in tropical Africa. Major rrodi f icat i ons are as follow:Selected species of fast-growing small trees and shrubs (usually legunes with nitrogen-fixing ability) are used to replace the variable species of t;e naturally-regenerated bush fallCM.(ii) 'The small trees or shrubs are planted in ravs with interrow spacing wide enough to aHCM the use of rrechanized equiprent.(Different Sp3.cings ~re tried -2, 4, 6 and 8 ffi. There are drawbacks to toth the too narrow and the too wide sp3cings). 'The nitrogen contribution by Ieucaena rrrulch on maize grain yield was equivalent to al:xmt 100 kgjha for every 10 t/ha of fresh prunnings (Table 6). The continoous addition of pnmed material to the soil along with the barrier fonned by the Leucaena raws also reduces run-off and soil erosion. '!he systan of contimxms bush fallow as observed in Halley cropping\" is expected to retain soil productivity for a long period and permit rrore effective use of the land. --------------------------------------------------------------- ","tokenCount":"2069"} \ No newline at end of file diff --git a/data/part_1/0403796478.json b/data/part_1/0403796478.json new file mode 100644 index 0000000000000000000000000000000000000000..74e93ae10b1a041157c4f5a88b56d0daccfd9790 --- /dev/null +++ b/data/part_1/0403796478.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"656ee938a10ac7937efcfa905b38250d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f1b33d6d-87f9-457f-ac23-3d80e3ca80c2/retrieve","id":"-2098302771"},"keywords":[],"sieverID":"245544fa-65f6-4396-9791-8076ef41d886","pagecount":"8","content":"Climate change research must be nationally relevant for research outputs to be used broadly. This is why CIMMYT-CCAFS conducted its research in close collaboration with the Ethiopian Institute of Agricultural Research (EIAR) and other stakeholders in Ethiopia. The climate research outputs generated were used as inputs during the development of Ethiopia's National Climate Change Adaptation Strategy. The collaboration with national stakeholders also helped in building national climate research capacity in Ethiopia where climate change information is limited.• CIMMYT-CCAFS research played a crucial role in building national climate research capacity in Ethiopia.• CIMMYT-CCAFS research outputs informed the national and regional climate change development initiatives in Ethiopia.Ethiopia is a diverse country with different agroecological and crop production systems (MoARD 2005;Georgis et al. 2012). The natural resource base is rich with different ecosystems encompassing huge biodiversity, water and soil resources. However, an increase in both human and livestock populations is exerting heavy pressure on the natural base (land, water and vegetation) leading to natural resource degradation. In addition, the potential for feeding a growing population is being challenged by environmental shocks that are becoming more severe under climate change. These conditions have led to low productivity and food insecurity in the country (Georgis 2010).Ethiopia is highly vulnerable to climate change due to its low level of economic and social development, low levels of income per capita, limited disaster risk management and weak institutional capacities. The agricultural production systems in the country mainly depend on rainfed agriculture which is sensitive to the negative impacts of climate variability and change. Agriculture is of particular concern in Ethiopia not only because the sector is most vulnerable to climate change but also because it is practiced by smallholder farmers who have poor starting conditions, weak adaptability, and limited adaptation options (NMSA 2007). A large proportion of the population (>80%) of Ethiopia is employed in the agricultural sector which is mainly based on human and animal energy. The methodologies used include gathering information through key informants such as interviews with experts at relevant government ministries, research and academic institutions, and review of reports. The major ones include:• Interviews with high level experts from the Ministry of Agriculture and the Ministry of Environment and Forestry on climate change policy and strategy issues.• Interviews with CIMMYT-CCAFS researchers and research managers at EIAR.• Discussions with regional policy makers and research staff of relevant regional research centres particularly those involved in maize and wheat research in Oromia regional state, and higher learning institutes (e.g. Haramaya University).• Review of relevant documents which include:- The Ethiopian Institute of Agricultural Research (EIAR) is mandated by the government to provide research-based evidence on agricultural issues in the country, develop improved agricultural technologies and recommendations and advise policy makers on issues affecting agriculture such as natural resource management, climate change, mechanization, socio-economics and extension. The Biometrics, GIS and Agro-meteorology Directorate (BGAD) of EIAR in particular is tasked to generate research information on climate and related issues in the country. BGAD has distinct roles in climate change initiatives in Ethiopia and has been a member of the national taskforce that developed the Climate Resilient Green Economy (CRGE) which became a focal point for climate change initiatives that require research-based information. BGAD is also currently leading and coordinating a team of experts in the Ethiopian panel of climate change. Therefore, the collaboration between EIAR/BGAD and CIMMYT-CCAFS on climate change research is an excellent approach to link research outputs to national and regional policy needs.Historically, the two organizations, EIAR and CIMMYT, have been conducting collaborative research on wheat and maize through the development of improved crop varieties with high nutritional and good market value. CGIAR centres such as CIMMYT have high-level capacity in research and development and are well placed to assist national programmes such as EIAR with research skill development and capacity building. The EIAR-CIMMYT-CCAFS collaboration on climate change research which covers maize and wheat systems was based on the analysis of past and future climate data from 50 stations located in the maize-and wheat-based farming systems in the country. The major outputs of the research are:• Regional downscaling of future climate for Ethiopia;• Past and future climate extremes;• Past and future frequency and distribution of droughts;• Seasonal and intra-seasonal climate characteristics relevant for agricultural purposes;• Validation of global datasets for local purposes;• Establishment of a national climate database management toolkit that provides climate data and analysis results (ACERO).The close collaboration between CIMMYT-CCAFS and the national research system of Ethiopia can be considered as a new approach in building the research skills of local researchers. This facilitates the process of ownership which consequently leads to the uptake of research outcomes by the government in policy development (Takele et al.Mr. Andualem Shemeles, Director of BGAD, lists the main achievements of the CIMMYT-CCAFS-EIAR collaboration as follows:1 • EIAR-CIMMYT-CCAFS provided continuous input to the development of the National Climate Adaptation Strategy. EIAR-CIMMYT-CCAFS scientists were part of the consultative meetings and workshops held on strategy development and provided feedback on the draft document.• The output of the EIAR-CIMMYT-CCAFS research indicated that extreme weather has a major impact on the Ethiopian economy and recommended to prioritize this in the Strategy.• The Climate Resilient Green Economy Unit (CRGEU) in charge of the mitigation and adaptation activities at MoA, was able to broaden their knowledge base through active participation in climate change meetings, workshops and briefings organized by EIAR.• The Extension Directorate of MoA collaborated with EIAR/BGAD to forecast the 2014/2015 rainfall season and developed a strategy for regional governments to take precautionary measures incorporating the drought frequency indices developed by CIMMYT-CCAFS.• The findings of EIAR-CIMMYT-CCAFS climate researchers were incorporated in the seasonal climate outlook strategy which was used to develop crop management practices.• Regional governments are using the findings of EIAR-CIMMYT-CCAFS to incorporate in their regional climate change policy and adaptation strategies.• NGOs are keen participants of EIAR-CIMMYT-CCAFS climate change workshop and are now putting more emphasis on climate and environmental issues in their interventions.Ethiopia is a land of diversity and opportunity. The country has many different agro-ecologies and farming systems that vary within short distances. The EIAR-CIMMYT-CCAFS partnership is a good example of how collaboration at the national/local level builds capacity and generates research outputs that influence national and regional policy and action. EIAR-CIMMYT-CCAFS researchers are drafting articles for journal publication. However, preparing policy briefs and organizing policy workshops would be advisable in order to utilize the full potential of the research outputs.OU TCOM E ST U DI E S 7In its annual report to Management response","tokenCount":"1083"} \ No newline at end of file diff --git a/data/part_1/0409999806.json b/data/part_1/0409999806.json new file mode 100644 index 0000000000000000000000000000000000000000..dc0daeeb6992b6d50dc5d80aba30dcd17537287b --- /dev/null +++ b/data/part_1/0409999806.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c5af73e08090445a4ccd4df1c3a798c7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/09c3b78f-841f-4dde-9caf-75156e3795f4/retrieve","id":"625508083"},"keywords":["intensification","land speculation","frontier","Latin fm-erica","c~ttle ranching. ¡","' 1"],"sieverID":"083f4080-e57d-4064-80ab-c1b0b1d7828f","pagecount":"44","content":"Frontier areas in Latin America have been characteriz~d-';:b-y~/a::'\"n~d~s\"\"p-e\"\"c\"\"u-''''a'''tt!':o'''n-,' abandonment and exploitation. This paper analyzes a frontier cattle ranching area in the savanna where intensification has occurred in spite of land speculation. A whole farm livestock production model is used to quantify the determinants of intensification.Results show that land speculation has simultaneously increased the profitability of cattle ranching while sfowing down intensification and impeding the adoption of sustainable practices. Intensification occurred because the production gains offered by improved pastures over native grasses were large enough to overcome the negative effect of land speculation on intensification. By contrast, in the Amazon, improved technologies have to overcome the high fertility of newly deforested land. Thus, technology, land speculation and characteristics of the resource base interact in a complex way to determine the speed and nature of intensification .The sustainable management of frontier areas is of increasing importance in a world characterized by growing populations and increasing pressure on the natural resource base. Latin America, in particular, has turned increasingly to its frontier areas to provide food, export earnings and employment. Examples abound however, of Latin American frontier occupation being characterized by massive resource degradation, with minimal compensating contributions to agricultural production, (World Bank, 1993;Aramburu, 1984;Hecht, 1988). This paper analyzes a frontier cattle ranching region in the Colombian savanna, where substantial increases in agricultural productivity have occurred. While intensification has undoubtedly been accompanied by resource degradation, the compensating increases in production and carrying capacity imply that this is a frontier that offers the possibility of sustainable increases in production. The paper analyzes the determinants of intensification in the savanna, and draws implications about the lack of intensification in the Amazon. The results reveal that speculative land price increases, technology, and the nature of the resource base in the savanna have been key determinants of the pace and nature of intensification. While land speculation in the Amazon has led to mining of the native soil fertility, the poor production potential of native vegetation in the savanna largely precludes land mining. This, combined with improved pastures which provide strikingly better returns than native savanna grasses, has induced intensification instead of land exploitation. Also, while in the Amazon penetration roads increased the supply of new land, in the savanna infrastructure improvement occurred within areas that were \" • already accessible. Speculative land price increases have been a double edged sword in the savanna, on the one hand contributing substantially to the profitability of cattle ranching, and on the other hand slowing down the intensification process, and impeding the adoption of sustainable technologies.The process of intensification in the savanna is particularly interesting because the neotropical savannas of Latin America are recognized as one of the last significant agricultural frontiers in the world. As a result, their potential for contributing to world food supply is now widely acknowledged (Borlaug andDowsdell, 1994, Macedo, 1994). It has also been argued that development of the savanna could alleviate pressure on the Amazon rain forest (CIAT, 1991 al. Recently, there has also been more awareness about the ecological implications of intensification in the savannas (Solbrig, 1993;Macedo, 1994;Smith, et al. in press), particularly biodiversity losses from degradation of native savanna grasses and gallery forests (Klink, et. al., 1993;Rippstein and Girard, 1994), and siltation and pollution of watercourses and neighboring wetlands (Alho, et. al., 1988). Thus, a sound understanding of the driving forces behind intensification is required if the savanna is to fulfill its agricultural potential, while simultaneously protecting the environment.The study area covers the municipalities of Puerto Lopez and Puerto Gaitan, an area of 2364 sq. km. in the department of Meta, in the Colombian savanna (Figure 1). The region is characterized by highly acidic soils (pH 3.8 -5), with high levels of aluminum (> 80%). Annual rainfall is 1700 -2500 mm., with a dry season of 3 -4 months. The vegetation consists primarily of native savanna grasses, with clumps of woody areas.Small water courses are found throughout the region, along the banks of which are gallery forests.The analysis of land use change presented in this paper, draws on a rich data seto In 1995 the authors carried out a survey of 98 randomly selected farmers, which had been preceded by earlier surveys in 1979, 1989, and 1992. Bio-physical case studies of small samples of farms were carried out in 1977-1979, and in 1988 -1991. In addítíon on-statíon and on-farm tríals have been on-going ín the area since the early 19705.In the 19705, the regíon was still a frontíer area, Le. the natural ecosystem was just beginníng to be brought under human íntervention. Although the native savanna grasses were grazed, the number of animals per ha. (0.09) was too low to alter the natural vegetation. The majority of holdings lacked officíal land títles and physícal boundaries, and the native savanna grasses were open to communal grazíng (Tamayo, 1975). Rivers were the main form of transport, the dirt tracks running through the area beíng vírtually ímpassable during the wet season (Sere and Estrada, 1985).Major changes in land use have taken place in the last fifteen years, the most • notable being the shift from extensive cattle ranching on native savanna grasses, to semi-extensive cattle ranching, in which a small but increasing proportion of the farm is planted to improved pasture (Table 1). Survey data from 111 farms in the municipalities of Puerto Lopez and Puerto Gaitan show that there was virtually no planted pasture in 1979 (Sere and Estrada, 1985). Adoption increased steadily to 9% of the total area in 1989, 17% in 1992 (Cadavid, 1995). andreached 20% in 1995. During this period the number of animal s per ha. tripled and fertilizer users increased from 3% to 53% of farmers. Accompanying this intensification in land use, has been a decline in the average farm size from over 5000 ha. to under 2000 ha. in 1995.A dramatic increase in land prices has al so taken place during this periodo In the 1995 survey, farmers were asked to value land in native savanna,in the vicinity of their farms, at current market prices. Comparing these values to estimates for 1979 ¡Sere and Estrada, 1985) shows that land prices increased at an annual rate of approximately 15% in real terms. In 1995, land in improved pasture was reported to be selling at 2.5 to 5 times the price of native savanna. A very active land market has accompanied these changes: only 9% of sample farmers in 1995 inherited their land.The rest purchased their farms, fifty four percent having acquired them within the last 12 years. Presumably these new owners purchased land because they had better access to capital or management ski 115, and could therefore get higher returns from the land than previous owners. Considerable progress in the legalization of land titles has also occurred: in 1995 88% of farms had legal title deeds. In spite of the intensification, cattle ranching remains the dominant enterprise, with a few farmers (15%) having small plots of annual or perennial crops, the most dominant among these being watermelon .Although improved pastures occupy only a small part of the area, they appear to have resulted in significantincreases in land productivity and carrying capacity.Production data from on-farm sources show that beef production is around 12 kg/ha on native savanna (Kleinheisterkamp and Hiibich, 1985). and increases to around 200 kg/ha on improved grass pastures under farmers' management (CIA T, 1994).Weighting this data by the reported extent of improved pasture implies that beef production/ha. has more than tripled between 1979 and 1995. Data from the intensive case studies carried out in the late 1970s (Sere and Estrada, 1985) indicate also that with 20% of the area converted to improved pasture, and the current stocking rate on improved pasture of about 1 AU/ha. (Hoyos et al., 1992), the potential herd size has increased by 80% (Table 1). Consistent with this, the cattle inventory of sample farmers increased at an annual rate of 2. 9% between 19799% between and 19899% between (Cadavid, et. al., 1991)), which is considerably higher than the increase in the national inventory of 0.93% over the same period (Lorente, 1994).The key role played by land values in inducing land use intensification is widely accepted. Intensification increases the returns per hectare of land, but requires investment in farm infrastructure and/or inputs.Farmers may prefer therefore to practice unintensified techniques, and use the foregone investment to acquire more • land. This may give a higher total income if land is cheap relative to capital and labor.Thus intensification increases with land values. While so me authors have related this phenomenon to population pressure, which increases the scarcity and therefore the value of land (Boserup, 1965;Binswanger and Mclntire, 1987), others have emphasized transport infrastructure and distance from market centers (Binswanger and Mclntire, 1987, Smith et. al, 1994, Katzman, 1974). Improved access to markets lowers input/output price ratios, and thus increases the discounted present value of expected future returns from the land.In frontier areas a number of authors (World Bank, 1993;Kaimowitz, 1994) have pointed out that intensification is unlikely as long as the frontier is open, i.e. as long as construction of penetration roads ex poses previously inaccessible public land to private occupation, thus increasing the supply of economically usable land and exerting a downward pressure on land values. Another impediment to intensification particularly in frontier areas, is the lack of government law and order services, particularly poor enforcement of property rights, leading to illegal encroachment and violence (World Bank, 1993).Thus a considerable literature linking high land values to intensification exists.Very little is known however about the impact of land price appreciation on intensification. Recently a number of authors have hypothesized that land speculation is an impediment to intensification, particularly in frontier areas (World Bank, 1993;Brandao and Rezende, 1992;Kaimowitz, 1994;Smith et. al., in press). Where creditand risk markets are incomplete, or macroeconomic instability exists, land values exceed the present value of capitalized agricultural profits. In frontier areas when infrastructure improves and land prices increase rapidly, this speculative component gains importance relative to productive use. Available capital is therefore likely to be used more for increasing land holdings, than for intensification (Lowenberg -DeBoer and Boehije, 1986).Technological advances also interact with incentives to intensify (Smith et. al., 1994). If a new technology results in a major increase in land productivity, farmers may obtain a higher total income by changing to the new technology on their current land holding, rather than augmenting their land holding with the old technology. The lower the land price the larger will be the extra land that can be acquired if the new technology is not adopted. Thus only a very major technological advance induces intensification when land prices are low. Conversely, the greater the technological advance, the lower the land price at which intensitication occurs.High interest rate regimes in Brazil have been blamed tor the current pattern of land use in the Amazon, in which new land is opened up after existing land is \"mined\" and abandoned (World Bank, 1993). The logic behind this is that high interest rates increase the preference for current income relative to future income. Thus land is exploited tor high initial incomes, with mini mal investment in inputs for sustaining future productive capacity. The extent to which this argument is valid will depend on biophysical conditions which determine the scope for land mining. As pointed out \\ • • earlier this may be much higher in the Amazon (where native fertility after deforestation is high). compared to the savanna where possibilities for short term exploitation are severely limited by the poor quality of native grasses. It should be also be recognized that high interest rates increase the cost of acquiring new land, and thus have the opposite effect of discouraging extensification. This aspect may be less important in the Amazon where penetration roads lower the cost of land acquisition, but is likely to hold more weight in the savanna, where the frontier is closed.We now carry out a descriptive analys•,s of data from the Colombian savanna, in order to develop hypothesis about the relative importance of the various factors which may have induced intensification. Intensification in this area appears to be related closely to land values. The smallest farms, with the highest proportion of area in improved pasture and with the highest stocking rates are located in parts of the savanna where land values are highest (over $500/ha.) (Table 2). This is an area which is electrified, located relatively close (100 km) to the capital of Meta (Villavicencio). and connected to it with a paved road. In addition it has a flat topography whích permits mechanizatíon, thus makíng it more economically fe asible to sow improved pasture. By contrast, plains with poor infrastructure, have a significantly lower degree of land use change, with 19% of the area in improved pasture, and land values under $300/ha. Intensification is even lower in remote areas wíth an undulating topography.Considerable improvements in infrastructure have occurred, startíng in the early 1980s. Currently about 45% of the road between Villavicencío and Carimagua is , • • paved, and the road between Puerto Gaitan and Carimagua is passable for most of the year. The road between Villavicencio and the nation's capital (Santafé de Bogotá) is al50 being significantly improved. Majar oil discoveries in the eastern part of this regian, which have more than doubled Colombia's oil reserves, are expected to lead to further improvements in infrastructure. Thus improvements in infrastructure appear to have stimulated an increase in land prices, which in turn have induced intensification. The role of infrastructure in the savanna has been very different from its role in the Amazon, where penetration roads made new land available for human intervention, ie the frontier was 'open' . By contrast, land in the savanna had long been accessible. Infrastructure improvements increased the viability of economic activity, rather than increasing the supply of land as in the Amazon. Thus infrastructure stimulated intensification in the savanna, and impeded it in the Amazon.Improvements in infrastructure undoubtedly increased the profitability of cattle ranching by permitting producers to take advantage of seasonal differences in cattle prices. However, the extremely high degree of land price appreciation (15% p.a. over the last 15 years) makes it likely that land is also being acquired as a speculative financial asset. Macroeconomic developments since the mid 1980s have favored the attractiveness of land as a financial asset. During the latter part of the 19805 asevere structural adjustment program led to a rapid increase in inflatíon (from 20% in 1980to 32% in 1990;IMF, 1995). During this period there were few investment opportunities other than land that cauld keep up with inflation. The 1990s have been characterized by high levels of capital inflows averaging $1.7 billion during 1991-1993 , 1995). This was due both to high levels of foreign direct investment in the oil sector, and to the repatriation of profits from the iIIegal drug trade, which increased the demand for land. Although the recent political crisis and crackdown on the drug trade has led to currency depreciation, and an uncertain outlook for land prices, it is likely, in the medium term, that land will continue to be regarded as a trusted financial asset. Thus, expected appreciations in land values are likely to play a part in the intensification decision. This is borne out by the reported objectives of ranchers. The majority of farmers (52%) claim that they hold land both because of its productive capacity, and because of expected increases in land values. Twenty eight percent of farmers are interested primarily in the land's productive value, while the rest (20%) claim they are holding land primarily as a financial asset.Turning next to technology, the productivity of the traditional technology of grazing animals on native savanna grasses is severely limited by the inherent nature of the forage on offer, characterized by low levels of dry matter yield (which enforce low stocking rates), and poor digestibility which limits liveweight gains per animal (Fisher, et. al., 1992). Thus in the savanna, expanding to a new area with traditional technology gives a very minor increase in benefit. In this situation improved grass pastures are able to offer spectacular increases in land productivity, with more than 1 6 fold increases in beef production per ha, as shown earlier. By contrast in the Amazon, cultivation with traditional technology on newly deforested land gives high retUrnS for a few years. Improved technologies have to significantly surpass these returns in the first few years in order to be adopted (World Bank, 1993). Thus the poor Price changes appear to have resulted in a high degree of variability in the ratio of output to input prices, without displaying any clear trend. Cadavid (1995) shows that during the 1978-1992 period cyclical changes in cattle prices were accompanied by a high degree of variability in a weighted composite of input prices. Real interest rates however increased steeply from 5% p.a. in the early 1980s to 13% p.a. during 1985-1994(lMF, 1995)). Thus intensification occurred during a period of unstable prices and high and increasing interest rates.Turning finally to population pressure, the colombian savanna is clearly a manifestation of intensification occurring in a land abundant area. In 1985, population density was as low as 3.5 persons/ sq. km in Puerto Lopez, and even lower (0.46 persons/sq. km) in Puerto Gaitan (DANE, 1989).Summing up therefore, the descriptive analysis leads to the hypotheses that the most significant factors driving the process of intensification decision have been technology, land price appreciation, and the nature of the natural resource base. These factors are incorporated in the quantitative analysis given below .Let the returns to cattle ranching on native savanna be = the discount rateL 1 = -=---'-----'-------'-.........•....................•.......... ( 4)(1 + r)'and..... ( 5)where v= annual rate ot land price appreciation in real terms l/E (equation 9) is the incremental discounted income from improved pasture.Thus the more profitable the current technology relative to current practices, and the higher the land price, the greater will be the degree of intensification. Since l and E are also functions of v, intensification is determined by the interplay between technology, land price, the rate of land price appreciation, and the resource base. The relative importance of these factors will be quantified in the empirical analysis.A whole farm livestock production model is used to simulate annual changes in beef production over the planning period, resulting from cumulative changes over time in the establishment of improved pasture. The structure of the livestock production model is based on Gittinger's (1982) (Kleinheisterkamp and Habich, 1985). As the area in improved pasture increases, certain key technical coefficíents are changed in accordance with trial results, synthesízed in Botero (1989).With 50% in improved pasture, for example, the calving rate íncreases from 46% to , 70% (Kleinheisterkamp and Habich, 1895), and the calf mortality rate falls from 12% to 7% (Botero, 1989). The breeding enterprise al so progressively includes a fattening component starting with 8% of the herd, when 20% of the area is planted to improved pasture. Typical stocking rates on improved pasture and native savanna are achieved via cattle purchases and sales as required. Data on year by year lWG per animal on native savanna and improved pasture is obtained from a long term trial carried out over 16 years and summarized by lascano and Euclides (1994).We begin by quantifying the nature of the relationship between intensification and its determinants.Taking the case of a rancher who purchases 500 ha. in native savanna in time period O, we simulate the returns to intensification and extensification over a time horízon of 15 years, at the end of which period the capital gains on land are realized by disposíng of the farm. Farm size remains constant at 500 ha.throughout the planning period under the intensífícation strategy, but is augmented under the extensification strategy by purchasing land with the foregone expenditure requíred for intensification. The discount rate is taken as 5% (equivalent to the real interest rate in the early 1980s). and improved pasture is assumed to sell for 2.5 times the price of native savanna. land price is varied from $1 O/ha. to $200/ha., and the rate of land price appreciation from 0% p.a. to 15% p.a. in real terms.The case of extensification is represented by a farm containing only native savanna. Gíven that adoption of improved pasture occurred very slowly in the early 1980s, the intensíficatíon strategy is represented by a farm that converts 10% of the Thís índicates that intensification is unlikely unless land príces are at least $1 OO/ha.Figure 2 al so shows that with land appreciation held constant at 15%, the incentive tor íntensification (ie the positive difference between INT15 and EXT15l, increases with the price of land. This is consistent with the positive relation between pasture adoption and land price shown in Table 2. In 1995 average land prices were aboye the threshold level for intensificatíon ín all parts of the study area. Therefore it ís not surprising that 93% ot tarmers had at least a part of theír farms in improved pasture, and that the proportion of improved pasture averaged 10% or greater in all parts of the study area (Table 2). Figure 2 also shows that it improved pastures had been about 30% les s productive, causing INT15 to shift downwards to INT' 15, the threshold land príce tar íntensífícatíon would have risen to T' 15 (just under $200/ha.). Thus the dramatically higher productivity of improved pastures over native savanna appears to have induced earlíer intensificatíon.Figure 3 analyzes the impact of land price appreciation on intensification.Given the negative returns to native savanna, the strategy of extensification is represented in the rest of the paper as a slow rate of adoption of improved pasture, resulting in 10% of the farm being converted to planted pastures by the end of the planning periodo Intensification is represented as a more rapid adoption, resulting in 50% of the farm being converted by the end of the planning periodo As before, the foregone expenditure required for intensification, is used to acquire addítíonal land in the extensification strategy. Figure 3 shows that when land prices appreciate at 15%, the threshold intensification price (T15) is > $1 50/ha. If the expectation of land appreciation drops to 5%, intensification occurs at T5, ie at land prices > $50. Thus a high rate of land price appreciation slows down the process of intensification. This occurs because when land prices appreciate rapidly, capital gains dominate income gains from intensification. Therefore farmers with relatively cheap land are better off purchasing more land in order to capture capital gains, rather than investing in intensification. At higher land prices les s land can be acquired by foregoing intensification, and therefore the opportunity for capturing capital gains on additional land declines.The higher the rate of land price appreciation, the slower the rate at which this phenomenon occurs. This quantifies the negative effect of land speculation on intensification, and shows that the high rate of land price appreciation in the study area explains why intensification has progressed relatively slowly. Intensification can be expected to progress slowly as long as expectations about land appreciation remain high.Figure 4 holds land appreciation constant at 15% and varies the discount rateo At a higher discount rate of 10%, the intensification threshold (T*15) is around $75/ha., which is lower than at a discount rate of 5% (T15). Both the INT and EXT curves shift downwards at higher discount rates, but the downward shift in EXT is greater than that for INT particularly at lowland prices, because EXT involves buying more land, an expenditure that is incurred at the beginning of the planning period, and therefore penalized when discount rates are high.Figure 4 indicates how sensitive NPVs are to discount rates. In fact Figure 5 shows that with interest rates at 15% in real terms, even 50% in improved pasture is • Intensification in the savanna appears to have had both positive and negative effects on the environment. On the positive side, Fisher et. al (1994) show that improved pastures sequester substantially more carbon than native savanna grasses. On the negative side, farmers and scientists report considerable resource degradation, some aspects of which appear to be systematicaily related to intensification. In the sample as a whole a little over 60% of farmers report degradation of native savanna, which results in changes in plant communities, and threatens biodiversity (Rippstein and Girard, 1994). Table 3 compares reported degradation between areas of moderate and poor infrastructure in the plains. Reported degradation of native savanna appears to be significantly lower in areas of moderately good infrastructure where 50% of the area is in improved pasture, compared to areas where improved pastures occupy only 19%. Native savanna degrades because the common practice for coaxing higher productivity out of native grasses is trequent burning, and continuous grazing of young regrowth after burning. The lower incidence of native savanna degradation in intensified areas implies that when farms increase the area in improved pasture, the pressure to produce more from native savanna declines.To the extent that land speculation slows down intensification, it prolongs the pressure on native savanna. On the other hand, intensification may ultimately lead to only small pockets of native savanna remaining. Thus it is important to study the spatial variability in plant communities in native savanna, in order to identify suitable protected areas as intensification proceeds.Other widely reported ecological changes include degradation of gallery forests reported by 60% of farmers. and declines in bird. animal and fish species each reported by around half the farmers. Gallery forests appear to be under greater threat in the more intensified are as (Table 3). 90% of farms that report degradation of gallery forests relate this to the extraction of 5pecies for fencing paddocks of improved pasture.27% of farmers had also cut down ga/lery forests in arder to plant improved pastures. Thus the adoption of improved pastures appears to threaten gallery forests.Thirty five percent of farmers report that logs are extracted for sale from gallery forests. This is likely to be more prevalent in intensified areas because infrastructure is better. and therefore the cost of getting lag s to market is lower. Table 3 shows that whíle fish species and supplies have declined uniformly in all areas, birds and animals are under greater threat in areas of better infrastructure. Farmers relate this to uncontro/led hunting and fishing. and degradation of gallery forests, both of which appear to be more prevalent where infrastructure is more developed.A little over 60% of farmers report degradation of improved pastures, mainly 1055 of ground cover, which could result in wind and water induced soillos5. Pasture degradation al so results in significant declines in animal production. Data from trials on two farms, under farmers' management show that beef production per ha. declined by a third within three years on one farm, and declined to a negative value in the other farm (CIAT, 1994). An intensive monitoring of pasture management practices indicates that overgrazing may partially account for the degree of pasture degradation. Improved pastures are grazed for about 67% of the year, with grazing pressures particularly high during the dry season. when instantaneous stocking rates are about 0.8 to 1.6 • • AU/ha. (Hoyos, et al, 1992). Unlike in the Amazon rain forest however, degraded pastures are not abandoned. Forty four to sixty percent of paddocks are renovated at least every four years. Sixty six percent of farmers renovate by harrowing, with or without the application of small quantities of P fertilizer, while 5% use fertilizer alone .Seventy eight percent of paddocks were reported to have been attacked by splttle bug which is commonly controlled through overgrazing followed by mechanical renovation (eIAT, 1991 b). Thus overgrazing, nutrient deficiencies (particularly Nl, and pest problems appear to contribute to pasture degradation. Rotation with annual crops has been proposed as a means of renovating degraded pastures, the cost of renovation fertilizer being paid out of crop sale proceeds (Vera, et. al., 1992). However only 2%of the pasture area is renovated with this technology.Technologies for preventing pasture degradation include mixed grass-Iegume pastures which maintain soil N levels (Thomas, 1992), and increase soil carbon in sand fractions (Guggenberger et. al., 1995) and earthworm populations (Decaens et. al., 1994). Adoption however remains disappolnting. Only 2% of the pasture are a contains legumes, and 88% of farmers who plant legumes report that legumes fail to persist under farmers' grazing pressures.The relative profitability of pure grass, and grass-Iegume pastures is compared in Table 4. As before we simulate the case of a rancher who purchases 500 ha. in native savanna, progressively converts a part of it to improved pasture, and disposes of the farm at the end of the planning period of 15 years. Land price appreciation is •• assumed to be 15% p.a. in real terms, and improved pasture (whether pure grass or grass-Iegume) sells tor 2.5 times the price of native savanna. The first two rows of Table 4 present results based on data from on-farm trials under farmers' management.In the first trial LWG was lower on the grass-Iegume pasture than in the pure grass pasture. In the second LWG was 30% higher on grass-Iegumes. In both trials legumes effectively disappeared after 3 years, and had to be resown, while the grass persisted.Results show that the Internal Rate of Return (lRR) for grass-Iegumes was at best only marginally higher than tor pure grass. Thus there is clearly a need to improve the performance of currently available legumes under farmers' management. In the third row of Table 4 a controlled trial with best practices is analyzed, in which the legume persisted tor 16 years. Here the LWG on grass-Iegumes was 34% higher than on grasses, and no expenditure on replanting legumes was required. Even in this tri al however IRR was only 8% higher than for grass pastures. The fourth row simulates a further 30% increase in LWG for grass-Iegume pastures compared to the data in the third row, giving a total increase of 74% over pure grass pastures. Under these condítíons a considerable increase of 20% in the IRR ís achieved. In the last row LWG remains at the level of the third row, but the rate of land price appreciation declines to 5%. The results show that in this situation the inclusion of legumes can increase IRR by 23%. Thus when land appreciates rapidly, the productivity gains of improved technology are overwhelmed by the capital gains from land sales, which dominate the IRR. Thus technologies have to offer spectacular increases in productivity before they are adopted. Recent data indicate that a newly released legume, Arachis pintoí, offers significant gains in productivity while persisting under farmers' management (Lascan o,• 1994). However adequate data are not yet available to quantify whether it is sufficiently productive to make a significant impact on profitability. under high rates of land price appreciation. Thus land speculation may impede the adoption of technologies which have the potential to prevent resource degradation .The above results indicate that technology, land speculation and biophysical conditions have all been key determinants of the process of intensification in the savanna. These results are used to take a first step towards formulating a tentative development path for frontier cattle ranching areas in the savanna (Thomas, et. al.. in press). In emerging frontier areas when land price is stagnant at very low levels, extensive production systems based on native savanna grasses are likely to prevai!. With very low stocking rates and minimal infrastructure resource degradation is unlikely. This is similar to the situation prevailing in the Colombian savanna in the 1970s, and is depicted as phase I in Figure 6. As infrastructure improves land prices may increase very rapidly if conditions in the larger economy encourage speculative land purchases. In this situation capital gains on land investment dominate profitability, and overwhelm technological advances which offer but moderate production increases. Thus only technologies which lead to spectacular increases in productivity are likely to be able to induce intensification. Thus the speculative motive slows down the pace of intensification and technology adoption. On the other hand it may support the productive use of land by maintaining the viability of cattle ranching under unfavorable economíc conditions.This scenario is similar to the current situation in the Colombian savanna (phase 11 in Figure 6). in which the dramatic production increases obtained with grass pastures has stimulated their adoption, and consequent intensification.Sustainable technologies, such as grass-/egume pastures have not however be en Frontier areas in Latin America have been rife with land speculation, abandonment and exploitation. Intensification has been an elusive commodity. Our analysis indicates that intensification can occur even in frontier areas. Intensification occurred in the savanna because improved pastures offered spectacular production increases over native grasses, the gains being large enough to overcome the negative effect of land speculation on intensification. The implication is that biophysical conditions may be one factor contributing to the lack of intensification in the Amazon.Improved technologies in the Amazon have to out perform the high native fertility of newly deforested land. Also, in the Amazon the supply of new land has been progressively augmented by the construction of penetration roads, while in the savanna infrastructure has increased the economic viability of already accessible land.Thus technology, land speculation and characteristics of the resource base interact in a complex way to determine the nature and speed of the intensification process.These crucial elements should be taken into consideration in the development of ","tokenCount":"5562"} \ No newline at end of file diff --git a/data/part_1/0414338970.json b/data/part_1/0414338970.json new file mode 100644 index 0000000000000000000000000000000000000000..429610cffee1d60d752839f0c54b05fb8c7ccd53 --- /dev/null +++ b/data/part_1/0414338970.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f73ae7c77ba122ec4b822d467ff8fd0b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0e1a2954-7af6-4f96-9ca6-774e3468b6ab/retrieve","id":"-500612107"},"keywords":[],"sieverID":"e6dd2f2a-5823-4ba7-b5e8-2d15fa06c86b","pagecount":"32","content":"Bioversity International undertakes, encourages and supports research and other activities on the use and conservation of agricultural biodiversity, especially genetic resources, to create more productive, resilient and sustainable harvests. Bioversity International's aim is to promote the greater well-being of people, particularly poor people in developing countries, by helping them to achieve food security, to improve their health and nutrition, to boost their incomes, and to conserve the natural resources on which they depend. Bioversity International works with a global range of partners to maximize impact, to develop capacity and to ensure that all stakeholders have an effective voice. Bioversity International is part of the Consultative Group on International Agricultural Research, which works to reduce hunger, poverty and environmental degradation in developing countries by generating and sharing relevant agricultural knowledge, technologies and policies. This research, focused on development, is conducted by a Consortium of 15 CGIAR centres working with hundreds of partners worldwide and supported by a multi-donor Fund.The world faces an enormous challenge of ensuring that the global community has access to a safe and nutritious diet, while simultaneously combating the rising number of health problems related to overnutrition such as obesity and diabetes. Agriculture and the global food system are capable of playing a key role in addressing this challenge, yet agriculture needs to be designed with nutrition in mind. The recent food price volatility crisis, climate change and the rise in cost of petroleum-based inputs shine a light on factors that contribute to the unsustainable nature of our agricultural system. But within these challenges lie opportunities to change the way we do business at the same time as making an important contribution to better nutrition security for the future. There is also a clear recognition that the agriculture, health and nutrition sectors will make considerable advances in nutritional security when working together. The time to act is now, building upon the momentum to improve nutrition around the world with examples such as the 1000 Days and Scaling Up Nutrition movements.Bioversity International is the leading research organization dedicated to the use and conservation of biodiversity in agriculture and is part of the Consortium of International Research Centres of the Consultative Group for International Agriculture Research (CGIAR). The CGIAR has a new institutional model designed to improve its delivery of research results in a rapidly changing external environment, as well as a new strategy that includes one important outcome that focuses on nutrition and health. During the 40 years of the CGIAR's existence, the organization has provided innovative research and impacts that have helped to change lives on a large scale. The CGIAR, we expect, will be even more efficient in providing crucial solutions to the problems faced by smallholder farmers globally. We are determined to build on past accomplishments and expertise in order to ensure this result. This nutrition strategy presented here defines the initial ten-year road map for a comprehensive research programme that will provide increased insight and evidence that can be used to improve nutrition in more sustainable agricultural systems for smallholder farmers and their beneficiaries.We are excited by the task ahead and we believe we can meet the challenge we face. We aim to show that agricultural biodiversity, underutilized crops and local and traditional foods can be powerful tools to combat poverty and malnutrition while preserving healthy ecosystems. With this innovative strategy, we seek to build on Bioversity's experience in agricultural research and in the conservation of genetic resources in order to provide an efficient and life-changing service to smallholder farming communities across the globe. This strategy will be used to channel and focus our efforts but it will retain an inherent flexibility as we seek to improve and expand it. We see this as the beginning of a new and exciting journey during which we hope that the work we do benefits our partners, the larger development community and, most of all, the communities who are our beneficiaries.August 2011One of the world's greatest challenges is to secure adequate food that is healthy, safe and of high quality for all, and to do so in an environmentally sustainable manner. Burdened by the growing demands of an ever-increasing human population, it remains unclear how our current global food system can sustain itself. This challenge is further compounded by climate change, ecosystems and biodiversity under stress, population growth, increased urbanization, social conflict and extreme poverty. For these reasons, there has never been a more urgent time for collective action to address food and nutrition security on a global scale.Redirecting the global agricultural system as the supplier of the world's food in order to ensure better nutrition is crucial so that we can operate from a better understanding of our global agricultural system. It is imperative that research and development start to think about new and sustainable approaches to improving the quality and variety of food produced and consumed around the world. The role that agriculture plays in dietary diversity and nutrition outcomes is central, and nutrition must be front and centre as a major outcome and goal of agriculture and production systems, as a potential avenue to improving dietary diversity, food quality and human health as well restoring or preserving ecosystems.One area that requires further understanding is the role of agricultural biodiversity in improving dietary diversity and quality. Agricultural biodiversity-the diverse traits exhibited among crops, animals and other organisms used for food and agriculture, as well as the web of relationships that bind these forms of life at ecosystem, species, and genetic levels-is the basis of the food and nutrient value chain and its use is important for food and nutritional security.Bioversity International's nutrition research over the past several years has focused on the role and impact of traditional foods on dietary diversity and livelihoods. The research agenda is being expanded under Bioversity's 2011-2021 Nutrition Strategy to develop strong methodological and empirical evidence on how agricultural biodiversity contributes to dietary diversity and nutrition with downstream livelihood and ecosystem benefits. The new strategy focuses on food and nutritional system approaches to improving human nutrition and health. The major goal of the strategy and subsequent programme is to promote the use of agricultural biodiversity within food production systems and provide nutritionally-rich food sources that contribute to dietary diversity and, potentially, better nutrition and health. Our major focus is in rural and peri-urban communities in the developing world.The strategy has four major objectives:1. To strengthen the evidence base for the role of biodiversity in nutrition and health and the means of incorporating agricultural biodiversity, specifically, into food and nutritional systems approaches; 2. To ensure the production of more nutritious foods through commercial pathways that reflect agriculturally biodiverse practices and cultural preferences; 3. To determine which agricultural biodiversity practices and delivery systems work on the ground in development programmes to improve nutritional security; 4. To mainstream the role of agricultural biodiversity into public health and nutrition policy and practice by sharing evidence and providing local solutions.Bioversity International will ensure that the role of agricultural biodiversity is monitored, evaluated and enhanced within food and nutritional systems of different communities that adhere to different socio-cultural traditions within diverse agro-ecosystems in a range of economic and political situations. There will also be a focus and emphasis on the preservation, conservation and sustainable use of agricultural biodiversity and protection of ecosystems in the developing world, because these provide communities with the resources for productive and resilient food and nutritional systems. We hope that through this nutrition strategy and Bioversity International's global research agenda that we can provide useful evidence, tools and products for use by governments, development programmers, value chain and food sector actors, academic and research institutions, health and agriculture workers, farmers and communities.Stevie Mann / Bioversity Stevie Mann / BioversityThe global malnutrition burden and addressing the challenge One of the world's greatest challenges is to secure adequate food that is healthy, safe and of high quality for all, and to do so in an environmentally sustainable manner (Pinstrup-Andersen 2009). With the growing demand of an ever-increasing human population, it remains unclear how our current global food system will sustain itself. Compounded with climate change, ecosystems and biodiversity under stress, population growth and urbanization, social conflict and extreme poverty, there has never been a more urgent time for collective action to address food and nutrition security globally. This burdened food system impacts the most vulnerable people, as statistics clearly show. There are currently an estimated 925 million people suffering food and nutrition insecurity (FAO 2010a). However with food price increases, these estimates may now be conservative. In addition to those who are hungry, there are also 195 million children under five years of age who are stunted in their growth (UNICEF 2009) and of those children, 90% live in just 36 countries (Black et al. 2008). Malnutrition takes its toll; it is responsible for 35% of all child deaths and 11% of the global disease burden (Black et al. 2008). Micronutrient deficiencies, known as hidden hunger, undermine the growth and development, health and productivity of over two billion people (Micronutrient Initiative 2009). At the same time, an estimated one billion people are overweight and another 300 million are obese in both the developed and developing world (WHO 2006), which contributes to the risk of non-communicable diseases such as diabetes and heart disease. With over-nutrition, many countries and urban communities in the developing world are experiencing the nutrition transition-going from undernutrition to obesity related to insufficient exercise, sedentary lifestyles and unhealthy diets (Doak et al 2005;Popkin 2008).The global community has responded to the malnutrition crisis by focusing on interventions that aim to impact 90% of the global population burdened by stunting and that largely address inadequate dietary intake, disease burden and poor childcare practices (Bhutta et al 2008). There has been a particular focus on the window of opportunity, specifically, the first 1000 days of a child's life from the nine months in utero to two years of age (Barker 2007;Golden et al 2009;Victora et al 2008). This window is critically important because nutritional setbacks during this time can result in irreversible losses to growth and cognitive potential and can reduce educational attainment and earning potential (Martorell et al 1994;Shrimpton et al 2001;Victora et al 2008). The Scaling Up Nutrition Framework for Action (SUN), recently endorsed by more than 100 global partners and policy makers, highlights the need for early childhood and maternal nutrition-specific interventions (Bhutta et al 2008), which aim to: − Promote good child-feeding and hygiene practices; − Provide micronutrient supplementation for young children and their mothers; − Support the provision of micronutrients through food fortification; − Treat acutely malnourished children with therapeutic feeding.While highlighting core interventions, the four aims listed above will be further strengthened with a multi-sectoral approach that incorporates nutrition-sensitive interventions from other sectors, such as agriculture, education and social protection that address underlying causes of malnutrition. However, practical operational strategies for localizing and applying sensitive interventions must be further clarified and defined as to how such interventions impact nutritional outcomes. Some suggested agriculture-related nutrition-sensitive interventions include (UNSCN 2010): − Agricultural extension services promoting better crop diversity and biodiversity for improved nutrition; − Integrated agro-forestry systems that reduce deforestation and promote the sustainable exploitation of nutrient-rich non-timber forest products; − Integrated farming systems exploiting the synergies of horticulture, aquaculture and small livestock rearing to reduce waste and expenses on agricultural inputs and increase food production diversity; − Improved household food production and livelihoods (i.e. diversification of household food production for selfconsumption in order to improve the nutritional quality of the family diet); − Education and communication for development and social marketing strategies that strengthen local food systems and promote cultivation and consumption of local micronutrient-rich foods; − Improved post-harvest management (food storage, transformation, handling and processing) to reduce losses in terms of quantity and nutrient content, which also contributes to nutrition security.While the underlying determinants of malnutrition have been well understood for decades, the design, testing and scaling of more holistic multi-sectoral packages that combine child and maternal care and disease control with these nutrition sensitive, and largely agriculture-focused approaches, have been limited in their development and implementation. With the tools and knowledge that are currently at our disposal, there is a renewed global focus on interventions that address the root causes of food and nutrition security-both under and over-nutritionas part of a wider multi-sector approach, which should include agriculture.Redirecting the global agricultural system to ensure better nutrition is important as the supplier of the world's food. The current global agricultural system is producing enough food, in aggregate, but access for all to enough food that is affordable and nutritious has been more challenging. Agricultural systems have largely become efficient at producing a handful of staple grain crops, mainly maize, rice and wheat. In developing countries and particularly those in nutrition transition, people obtain most of their energy from these staple grains along with processed oils and fats and sugars, resulting in diets that often lack micronutrients and other necessary dietary and health components.Agricultural systems vary across the world spanning large-scale monocrop landscapes to smallholdings of farmers who typically live on less than two hectares of land. Smallholder farmers often work marginal lands without the tools, knowledge and resources to improve production, yet in places such as sub-Saharan Africa, 90% of farmers are subsistence smallholder farmers. In the developing world, the majority of smallholder farmers are net food buyers and rural households make up a substantial majority of the world's 900 million-plus hungry (FAO 2009). Because these individuals buy more than they sell, their access to affordable, nutritious food is an issue.It is necessary to understand how our agricultural system can promote positive nutrition outcomes. Big drivers of trends in food consumption globally are the private sector, markets, processed food and diet shifts. Research and development practitioners must start thinking about new and sustainable approaches to improving the quality and variety of food produced and consumed around the world and to develop innovative new roles that agriculture can play that will improve dietary diversity and nutrition outcomes. To do this, nutrition must be a central goal of agriculture and production systems and be recognized as a potential avenue to improving dietary diversity, quality and health as well as a means of restoring and preserving ecosystems. But one size does not fit all and this approach must ensure that agriculture -the backbone of food production -is tailored to respond adequately to the diverse conditions of major agro-ecological, socioeconomic and epidemiological situations.Agriculture is the bedrock of the food system and biodiversity is important to food and agricultural systems because it provides the variety of life (Tansey and Worsley 1995). Biodiversity includes the variety of plants, terrestrial animals and marine and other aquatic resources (species diversity), along with the variety of genes contained in all individual organisms (genetic diversity), and the variety of habitats and biological communities (ecosystem diversity). Biodiversity is essential for humanity, providing food, fibre, fodder, fuel, and medicine in addition to other ecosystem services.Agricultural biodiversity refers to the biological variety exhibited among crops, animals and other organisms used for food and agriculture, as well as the web of relationships that bind these forms of life at ecosystem, species, and genetic levels. It includes not only crops and livestock directly relevant to agriculture, but also many other organisms that have indirect effects on agriculture, such as soil fauna, weeds, pests and predators.FAO (2010b) estimates that of a total of 300,000 plant species, 10,000 have been used for human food since the origin of agriculture. Out of these, only 150-200 species have been commercially cultivated of which only four-rice, wheat, maize and potatoes-supply 50% of the world's energy needs, while 30 crops provide 90% of the world's caloric intake. Intensification of agricultural systems has led to a substantial reduction in the genetic diversity of domesticated plants and animals. Some on-farm losses of genetic diversity have been partially offset by conservation in genebanks (Millennium Ecosystem Assessment 2008). Even so, the implications of this loss of agricultural biodiversity for the biodiversity and quality of the global food supply are scarcely understood, especially from the perspective of nutrition.Agricultural biodiversity is the basis of the food and nutrient value chain and its use is important for food and nutritional security (Frison et al 2006), where it can potentially act as: − A safety net against hunger; − A rich source of nutrients for improved dietary diversity and quality; − A basis for strengthening local food systems and environmental sustainability.Agricultural biodiversity furthermore includes species with under-exploited potential for contributing to food security, health, income generation, and ecosystem services. Terms such as underutilized, neglected, orphan, minor, promising, niche, local and traditional are frequently used interchangeably to describe these potentially useful plant and animal species, which are not mainstream, but which have a significant local importance as well as a considerable global potential for improving food and nutrition security. Even so the research of Bioversity International and others reveals that the major causes of neglect and underuse of these important species are often related to factors that include poor economic competitiveness with commodity cereal crops, a lack of improved varieties, enhanced cultivation practices, inefficiencies in processing and value addition, disorganized or non-existent market chains as well as a perception of these foods as being \"food of the poor\" (Jaenicke et al 2009).Interspecies and intraspecies variability represents a considerable wealth of local biodiversity and, with a better understanding of their contributions and use, could have potential for contributing to improved incomes, food security and nutrition. They also have considerable potential for enhancing adaptation to global climate change. Some of these species are highly nutritious and have multiple uses. For example, some are strongly linked to the cultural heritage of their places of origin, while some are highly adapted to marginal, complex and difficult environments and have contributed significantly to diversification and resilience of agro-ecological niches. Many such species are collected from the wild or are produced in traditional production systems with little or no external inputs (Padulosi et al 2011;Bharucha and Pretty 2010).The role of agricultural biodiversity in improving dietary diversity and dietary quality is an area that requires further understanding. The lack of diversity is shown to be a crucial issue, particularly in the developing world where diets consist mainly of starchy staples with less access to nutrient-rich sources of food such as animal proteins, fruits and vegetables. Dietary diversity is a vital element of diet quality and the consumption of a variety of foods across and within food groups and across different varieties of specific foods more or less guarantees adequate intake of essential nutrients and important non-nutrient factors. Research has demonstrated a strong association between dietary diversity and diet quality and nutritional status of children (Arimond and Ruel 2004;Kennedy et al 2007;Rah et al 2010;Sawadogo et al 2004). It is also clear that household dietary diversity is a sound predictor of the micronutrient density of the diet, particularly for young children (Moursi et al 2008). Studies have also shown that dietary diversity is associated with food security and socioeconomic status, and links between socioeconomic factors and nutrition outcomes are well documented (Arimond and Ruel 2004;Hoddinott and Yohannes 2002;Ruel 2003;Thorne-Lyman et al 2010;World Bank 2006;World Bank 2007).It is essential to understand how the global agricultural system and the benefits derived from agricultural biodiversity influence the drivers of global dietary consumption patterns, nutrition and health status in particular in the developing world. The 2011-2021 Nutrition Strategy focuses on food and nutrition system approaches to improving human nutrition and health.The major goal of the strategy and subsequent programme is to promote the use of agricultural biodiversity within food production systems in order to provide nutritionally rich food sources that contribute to dietary diversity and, potentially, better nutrition and health. Our major focus is on rural, peri-urban and urban communities in the developing world.Bioversity International's nutrition research over the past several years has focused on the role and impact of traditional foods on dietary diversity and livelihoods. The research agenda is now expanding to develop strong methodological and empirical evidence on how agricultural biodiversity contributes to dietary diversity and nutrition with downstream benefits for livelihoods and ecosystems.There will be a particular focus on the role of local and traditional foods (LTFs) and neglected and underutilized species (NUS) amongst rich ecosystem and landscape sources of agricultural biodiversity for nutrition security.Bioversity International will ensure that the role of agricultural biodiversity is monitored, evaluated and enhanced within food and nutrition systems of different communities living by various socio-cultural traditions within diverse agro-ecosystems in a range of economic and political arrangements. There will also be a focus and emphasis on the preservation, conservation and sustainable use of agricultural biodiversity and on the protection of ecosystems in the developing world, which, in turn, can provide communities with the resources for productive and sustainable food and nutrition systems.There are important, yet unanswered, questions about agricultural and ecosystem biodiversity and its role in improving dietary diversity and quality and which will help to ensure nutrition security and increased health benefits. We hope that through this nutrition strategy and Bioversity International's global research agenda, answers to key research questions will become available and will provide clarity for governments, development programmers, value chain and food sector actors, academic and research institutions, health and agriculture workers, farmers and communities. These key research questions include:− How does on-farm agricultural biodiversity contribute to household consumption and to dietary diversity and quality? − How can we link agricultural diversity to improved nutrition and health outcomes and benefits and do these links have an impact? − Can agricultural biodiversity be scaled for commercial use while maintaining biodiversity and ecosystems and improving human health? − What does agricultural biodiversity imply for peri-urban and urban markets and what do trends in urban markets imply for potential success of agricultural biodiversity? − How can we better use and promote local knowledge of agricultural biodiversity to improve the health of households? − What new tools and methodologies can be created and validated that measure agricultural biodiversity associated with dietary patterns?The Nutrition Strategy is divided into two categories with two sub-objectives each:Research and evidence-oriented:− To strengthen the evidence base for the role of biodiversity in nutrition and health and the means of incorporating agricultural biodiversity into food and nutrition systems approaches; − To ensure that the production of more nutritious foods through commercial pathways reflects agriculturally biodiverse practices and cultural preferences.− To determine which agricultural biodiversity practices and delivery systems work on the ground in development programmes to improve nutrition security; − To mainstream the role of agricultural biodiversity as a standard consideration in policies and practices regarding public health and nutrition by sharing evidence and by providing local solutions.Women produce 60-80% of the food that is consumed Bioversity's work will mainly focus on agro-ecosystems that have agricultural biodiversity potential in areas with a high burden of malnutrition in developing, transition and middle income countries. The key priority countries will be drawn from the 36 countries where 90% of the world's stunted children live and which either have a functioning agricultural system or the potential for improving their agriculture, as well as countries with readiness to accelerate action in nutrition (SCN 2009).The beneficiaries of the strategy will include:Rural smallholder farmers in the developing world.At least half of the world's food-insecure people are smallholder farmers living in poverty. Many of these farmers are women, who are disproportionately poor and vulnerable to malnutrition, which affects not only themselves but their children as well.Although women and children remain the most vulnerable to the consequences of malnutrition, beneficiaries of Bioversity International's work will include entire smallholder household families.With the world's population expected to grow significantly in the next 30 years and many more people migrating to urban centres, there will be a need to increase the nutritional quality and environmental sustainability of food production and to ensure that food distribution and access is more equitable. Sustainable agricultural intensification complemented with improvements in the nutritional quality of foods will need to be considered with the growing needs of the global urban population. Working with private sector and value chain actors will be essential to ensure that peri-urban and urban consumers have access to affordable foods coming from agriculturally biodiverse food systems.Communities at risk of traditional food system loss.These communities have derived a subsistence base from the natural resources available in specific ecosystems. Some of these ecosystems and traditional food systems are threatened or in transition. These beneficiaries, include farmers, pastoralists, forest communities and fisher folk, who are some of the most nutritionally vulnerable, particularly in poverty stricken, foodinsecure communities.Objective one:To strengthen the empirical evidence of agricultural biodiversity's role in nutrition and health.The major objective of this research will be to generate a better understanding of the links among agricultural biodiversity, diet quality, and nutrition and health, as well as the overall role of nutrition within agricultural systems. By establishing a robust set of interdisciplinary projects in relevant agro-ecological systems, research will determine the main drivers of agricultural biodiversity and the role of agrobiodiverse practices and landscapes in dietary quality and diversity, and in health and nutrition outcomes for rural communities.Together, the two major research components will reinforce evidence of the vital role and impact of agricultural biodiversity and local traditional foods in improving diets and, by extension, human health and nutrition. Bioversity International will explore the interactions of these two components at individual, household, and community levels.Component one: Agricultural Biodiversity in Diets, Health and Nutrition. To describe and define the role of agricultural biodiversity in diets, health and nutrition, including the nutritional value, usage and consumption patterns of foods derived from agriculturally biodiverse landscapes, and their impact on human nutrition and health outcomes.Large-scale evidence is necessary in order to chart the impact of agricultural biodiversity on health in diverse developing world settings. Another under-researched area is the impact of a long-term approach towards diversification of nutrient-dense crops and the effects of such diversification on deficits in micronutrients and other important health factors in global communities. For many populations, LTFs and NUS, wild foods, and biodiversity in particular plant species like lesser-known grains and legumes, leafy green vegetables, tubers, crop wild relatives and forest fruits play an important role in traditional diets and, in some cases, income generation. However, little is known about nutritional value, use and consumption patterns for most traditional plant foods, and their subsequent impact on human health, chronic under-nutrition, over-nutrition and risks of non-communicable diseases.This component of Bioversity International's research will address the gap in empirical evidence that links conservation and use of agricultural biodiversity to improved nutrition and health outcomes. With this in mind, the research will: − Develop and apply research tools to understand the composition and consumption of foods from agricultural biodiversity (local, traditional, NUS, varieties of major staples); − Assess the effectiveness of the use of agricultural biodiversity use on dietary diversity and quality; − Assess the impact of agricultural biodiversity and local and traditional foods on nutrition and health outcomes; − Determine how agricultural biodiversity and local and traditional foods can mitigate the nutrition transition; − Define the linkages between the conservation of genetic resources on farm and in genebanks and the benefits to human health through characterization of nutrients and health-promoting non-nutrients of plants; − Quantify the cost of and access to diets sourced from agrobiodiverse systems.Component two: Nutritional anthropology and sociology of agricultural biodiversity. To explore food sovereignty and the socio-cultural and traditional roles of foods sourced from agricultural biodiversity in communities and households, and to understand why we eat what we eat, the right to high-quality foods, and the role of traditional food systems in those decisions.Supporting the use of biodiversity within traditional and indigenous food systems and local cuisines and diets may provide a buffer against the decline of healthful dietary behaviours. The anthropology of food is the study of eating habits, that is, the ways in which individuals or groups of individuals respond to social and cultural pressures and how and why they choose, consume and make use of certain specific aspects of the food supply including nutrition (Garin 2001;Guthe and Mead 1945). It is essential to understand the way food supplies are affected by changes in market structure, public policies, family composition, household income, and women's roles, along with the socio-cultural, behavioural and political and economic factors related to food and nutrition. Understanding inequities in food access and how cultural contexts influence food production, allocation and use are all critical to creating better nutritional outcomes. Sadly, these factors are often overlooked.Food sovereignty concerns what Via Campesina, an organization representing smallholder farmers around the world, describes as the \"right of peoples to define their own food, agriculture, livestock and fisheries systems, in contrast to having food largely subject to international markets\" (Via Campesina 2007). It is an important concept which should be taken into account in efforts to improve nutrition in less-developed countries (de Schutter 2011). It is crucial, in order to achieve long-term food security and adequate nutrition, that the production and distribution of food in developing countries remains, at least in large part, under the control of local populations and national institutions. Although international markets are essential in providing an efficient alternative to the local production of food, especially staple commodities, they cannot be seen as the sole method of feeding people. The concept of food sovereignty ensures that food is produced locally, according to national or regional customs, preferences and tastes, by taking advantage of local crops and varieties and sustaining a biodiverse agricultural paradigm. This not only helps empower local people, allowing them to choose how to produce food as well as what food to produce, but also helps generate valuable income for smallholder farmers and national enterprises.Research in this component will focus on understanding why we eat what we eat and the role of traditional food systems in those decisions. In this component, Bioversity International will: − Analyze and document the knowledge, practices, and value of traditional food culture both within households and at the community level as well as safeguard or improve upon these cultures; − Assess how urbanization, migration and the availability of new foods are changing food decisions and choices, particularly towards traditional food and diets; − Promote education and knowledge of agricultural biodiversity in traditional health and nutrition practices; − Strengthen food sovereignty principles in the context of agricultural biodiversity and nutrition for local communities without sacrificing self-reliance and income generation.To ensure that the production of more nutritious foods through commercial pathways reflects agriculturally biodiverse practices as well as cultural and consumer preferences.The links between what is produced on the farm, the consumer who buys that food, and the income received by the producer does not stop at production (Hawkes and Ruel 2010). Food is stored, distributed, processed, retailed, prepared and consumed in a range of ways that affect the access, acceptability and nutritional quality of foods for the consumer. Value chains are thus fundamental to consumption, dietary and nutrition perspectives and not only in terms of the supply of foods. Little emphasis has been given to how consumers can play a role in influencing value chains and how changes in the demand for specific local foods can influence the processes and outputs of value chains. There has also been little attention to how actors along the value chain can be better informed on enhancing the nutritional value of local foods. Food and nutrition systems need to be rethought by creating new business paradigms that demonstrate the value of biodiversity while promoting improved diet and nutrition outcomes.The research undertaken in this objective aims to understand the role markets and value chains play in improving nutrition and dietary diversification both directly, through an increase in the production of nutritious foods sourced from biodiverse systems, and indirectly, through an increase in income for smallholder farmers. Similarly, smallholder farmers can diversify their diet and improve their nutritional status either by producing more biodiverse foods directly or by accessing more nutritious and diverse foods in markets through a rise in their disposable incomes. The research will emphasize understanding the role that nutritious LTFs and NUS play in creating demand for biodiverse products from rural and urban consumers and in boosting disposable income for smallholder farmer producers.Component one: Consumer demand, knowledge and access as drivers for smallholder farmers to produce and consume more nutritious, diversified foods. To improve our understanding of how local and international consumer behaviour can increase the demand for nutritious food produced by smallholder farmers and how smallholder farmers, as net buyers of food, can access nutrient-rich foods sourced from agriculturally biodiverse farming systems in informal and formal markets.It is essential to understand how consumer demand for nutritious foods sourced from agriculturally biodiverse systems drives up production of these products among smallholder farmers in developing countries. It is also important to understand the reverse -how increased production of nutritious foods sourced from agricultural biodiverse landscapes can increase knowledge of and demand for these foods. With this component Bioversity International, working in partnership with value chain actors, will: − Define the mechanisms and incentives available to smallholder famers to increase their incomes and competitive advantages by producing nutritious LTFs sourced from agrobiodiverse systems; − Determine how women farmers can be linked in as producers and processors of nutrient-rich foods along the value chain or as ingredient suppliers to commercial manufacturers of specialized, local, commercial products for nutritionally vulnerable populations; − Identify ways to link smallholder farmers and the nutritious products sourced from agrobiodiverse farms to peri-urban and urban consumers, with a detailed analysis of the trends in peri-urban markets that determine potential success of agricultural biodiversity; − Collect and preserve traditional knowledge of smallholder farmers relating to the production, storage and marketing of nutritious products from agrobiodiverse systems.To determine best practices and delivery systems for agricultural biodiversity in nutrition and health development programmes.This objective seeks to understand how to integrate and implement agricultural biodiversity tools and methodologies in order to positively impact nutrition development programmes and food assistance on the ground. Bioversity will undertake operations research on delivery system approaches used by development agencies on food systems approaches in different regional agro-ecosystem hubs through rigorous monitoring and evaluation. The ultimate goal is to ensure that dietary quality and diversity and, ultimately, health and nutrition outcomes improve through integrated development work.Component one: Integration of agricultural biodiversity in development programmes. To design, collaborate, monitor and evaluate development programmes that implement agricultural biodiversity with agriculture and nutrition interventions and generate evidence of the health and nutrition benefits and cost effectiveness of these programmes.A new generation of food security and development programmes, which integrate nutrition and health goals has risen to the forefront. Currently there is limited evidence documenting the operational issues, impact and cost effectiveness of these new programmes and few have integrated these biodiverse agricultural practices (Fanzo and Pronyk 2010). Similarly, community-based agriculture programmes designed to improve human nutrition and health have rarely been scaled up successfully (Bushamuka et al 2008;Iannotti et al 2009). Research in this area is needed to inform the design of new programmes through the collaboration of agriculture, health and nutrition experts who effectively integrate interventions and foster synergies through an agricultural biodiversity lens.In this component, Bioversity International, in partnership with development workers, will: − Develop best practices that allow development programmes to use agricultural biodiversity to provide nutritional and dietary benefits to their target groups; − Define the added role of local and traditional foods and ingredients in the development of specialized and therapeutic food products for complementary feeding programmes for children under two, for nutritional therapy programmes aimed at HIV/AIDS patients and for acute malnutrition treatment programmes; − Identify the ways that foods sourced from agriculturally biodiverse landscapes can be incorporated effectively into school meal programmes and school garden projects; − Demonstrate the cost effectiveness and health impact of locally-produced, nutritious foods distributed in food aid and assistance programmes as well as in other food-based social safety net programmes.Component two: Value of agricultural biodiversity in food and nutrition systems. To assess the added value of agricultural biodiversity when integrated with other components of a food system approach such as ecosystem services, water and sanitation, health care, education, infrastructure and agriculture production systems.This research component will focus on qualifying and quantifying the added value of agricultural biodiversity within food and nutrition systems. A food and nutrition system is the sum of the actors and processes involved in transforming raw materials into foods and nutrients into building blocks for better health outcomes, all of which function as a system within the constraints of biophysical and socio-cultural contexts. Robust food systems can address underlying causes of food and nutritional insecurity by integrating agriculture, healthcare, water and sanitation, ecosystem services, gender empowerment and education, all of which are crucial for long term human development. These systems involve people, who as consumers are the central focus of the work. They ensure that environmental integrity, economic self-reliance and social well-being are maintained and emphasized. A healthy food and nutrition system is accessible, safe, sustainable and resilient. It ensures that links are made between food production and food consumption (Sobal et al 1998). There is also an additional role for biodiverse non-agricultural sustainable ecosystems that are important in dietary diversity and quality for local populations. This component will undertake research to understand and address the added value of agricultural biodiversity for nutrition and diets amidst the complexities of food systems in environments with vastly different diets, cultures, traditions, livelihoods, vulnerabilities and levels of marginalization.In To mainstream the role of agricultural biodiversity into public health and nutrition policy and practice by sharing evidence and providing local solutions.While a few organizations have been actively involved in promoting food-system approaches, generally they have suffered from lack of convincing evidence without providing a local context. As a consequence, there remains insufficient evidence to support well-defined, scalable agricultural biodiversity interventions that might be linked to improvements in outcomes for maternal or child health. Not surprisingly, this translates to a rather ineffective environment for policy and mainstreaming, which might lend support to these food-based approaches. Bioversity International will undertake the sharing of its experience and knowledge in research for development to guide and support policy at international, national and local levels.Bioversity's nutrition programme, through its assessment of nutritional and livelihood benefits from local food products derived from the rich agricultural biodiversity in the developing world, will certainly contribute to international efforts to address global food concerns such as the response to soaring food prices across the globe, food sovereignty, the effect of globalization of diets on health and the need to promote the effective conservation and use of this globally significant resource.Through the establishment of cross-sectoral policy platforms to promote the mainstreaming of biodiversity, the programme will create synergies with relevant global initiatives and provide linkages with national programmes and policy frameworks. Bioversity International share the evidence gathered with partners, governments and organizations for mainstreaming and integration into larger public health and agriculture policy forums and large-scale programming.In this component, Bioversity International will: − Strengthen international development initiatives that incorporate agriculture biodiversity linked food system approaches in food and nutrition security, global health and social protection policies and programmes; − Promote conservation of agricultural biodiversity and its role in improving nutrition security in national nutrition and agriculture plans and policies.It will be essential to advocate the importance of biodiversity on healthy diets and to educate the scientific community, the general public and practitioners in health and agriculture on evidence as it becomes available.With this in mind, Bioversity will: − Increase public awareness of the importance of nutrition and health; − Organize and participate in international, regional and national meetings with action outcomes that target Bioversity's beneficiaries; − Publish research findings in high impact, peer-reviewed journals as well as in popular outlets including high profile newspapers and influential blogs; − Mainstream nutrition into sectors that are not typically accustomed to considering nutrition in their research, policy or practice.Successful cases of promotion of food biodiversity at local and national levels can be scaled up regionally through the development of educational methods that address the conservation of agricultural biodiversity, sustainable development, traditional food culture and nutrition and health. Compilation of best-practice case studies and success stories will also be pursued to promote models and options for mainstreaming biodiversity into food systems across developing regions and agro-ecosystems.DElIVERING ThE STRATEGY Dominic Sansoni / World Bank Dominic Sansoni / World Bank Bioversity International will undertake thorough research and analysis of food and nutrition systems and how they function in different settings. The aim is to better understand the challenges and identify the opportunities, pinpointing the gaps that can be addressed to improve system resiliency.To carry out this research, Bioversity International will assemble a diverse team of scientists and practitioners from different disciplines including nutrition, public health, ethnobotany, economics, ecology, agronomy and anthropology. Most of the nutrition focus will be in sub-Saharan Africa and South Asia, where food system experts are staffed in Bioversity's regional offices. As the programme diversifies and grows, Bioversity International will continue to boost its nutrition research capacity.Bioversity International works in collaboration with partners to ensure that research results are then translated into better development practices and policies that can have an impact across multiple sectors. An integrated global framework for enhancing the conservation and use of agricultural biodiversity for dietary diversity, nutrition, health and sustainable development requires working towards further collaboration and convergence of priorities among agriculture, health, business and environment. Bioversity International will work with research organizations and universities in the developed and developing world. Work will also be expanded within the CGIAR reform process to ensure better collaborations within the CGIAR system on joint research initiatives. The research Bioversity International undertakes will involve the UN system and will complement their work at country and global levels. Bioversity International will ensure that the ultimate beneficiaries of our work, including communities, farmers and women, are involved in every facet of the research. Bioversity International will also ensure that the knowledge gained as result of this programme of research will be shared with the Scaling Up Nutrition movement for incorporation into country-scale plans.United Nations agencies -Bioversity International will continue to contribute within the United Nations Standing Committee on Nutrition and will work to direct biodiversity and nutrition objectives in support of convergent policies in relation to climate change, food insecurity and poverty. We will also contribute at a global level to food and nutrition security issues and work in line with the Scaling Up Nutrition framework, the Committee on World Food Security and the United Nations High Level Task Force on the Global Food Security Crisis. Academic and research institutions -Bioversity International will ensure that empirical evidence is built in partnership with academic and research institutions with the capacity for rigorous research that amplifies and complements the CGIAR's own work. Academic and research bodies have a vast capacity for robust research projects and Bioversity will contribute to their agenda by providing increased knowledge and science to the agriculture and nutrition landscape.Value chain actors -Bioversity International will partner with private sector actors and stakeholders in order to promote agricultural biodiversity, the use of local foods and their role in boosting smallholder farmer income. These actors include farmers, processors, post harvest handlers, media outlets, food industry and retail experts who understand that markets and business enterprise are essential to the research and creation of new delivery systems for nutritious foods. Bioversity International will work with national and regional governments, farmer associations and cooperatives as well as with small and large private sector companies in order to sustain initiatives aimed at boosting the production and distribution of nutritious and biodiverse foods.International will partner with research institutes that work with plant and animal genetic resources as well as with breeders, botanists and botanical gardens to ensure that agricultural biodiversity expertise is woven into our nutrition work.organizations -Bioversity International will work with development practitioners on the ground to ensure that our operations research fills identified gaps in developing countries and makes an impact on development objectives and outcomes. We will work within development initiatives such as school feeding programmes, voucher and cash-based programmes that facilitate food access, mother and child health and nutrition programmes and homestead food production projects as the operations arm of research on agricultural biodiversity practices. Bioversity will also ensure that research results will be shared with the Scaling Up Nutrition movement for incorporation into country plans. Bioversity will also work with agricultural extension and community health workers to ensure that best practices and research results are translated into concrete benefits to households and communities alike.International will work with local farmer cooperatives and associations to make sure that research is carried out in ways most valued and understood by farmers. Bioversity will also collaborate with international movements and institutions that share the same core values and aspirations aimed at improving the nutrition and the capabilities of smallholder farmers in developing countries. Movements and cooperatives that seek to protect and sustain smallholder famers, indigenous populations and agricultural biodiversity will also be important to Bioversity International's work.In response to a global mandate to assume a role leading and coordinating activities that promote the conservation and use of agricultural biodiversity, Bioversity International aims to strengthen the capacity of developing countries to undertake biodiversity and nutrition research across disciplines. It recognizes that to achieve long-term impact and the global potential of this strategy will demand an improved capacity for promotion, social marketing and education about local food biodiversity, nutrition and ecosystem health at national, regional and global levels. Bioversity will leverage its global network of nutrition leaders to pursue capacity building with:Academics and universities -Bioversity International will work with academia and research institutes in the developed and developing world to promote food systems learning, courses and programmes of study in institutions of higher education.Individuals -Bioversity International will assist in the training of future nutritionists, agronomists and other professionals on food-based approaches in innovative academic programmes, non-academic certification programmes, government training courses and other curricula using new methodologies and tested capacity building tools.Communities -Bioversity International will work in collaboration with farmers and local communities on improved agricultural biodiversity practices that focus on nutrition and engage community health workers and agriculture extension workers, anthropologists and ethnobotanists in new methodologies, interventions and approaches to link agriculture and nutrition.A variety of methods and tools will be used to build evidence, perform operations research and monitor, evaluate and assess impact. Qualitative and quantitative operations research will be undertaken.The qualitative methodologies will include focus groups, interviews with key informants and actors along the value chain and in particular women consumers. It will include participatory and rapid appraisal tools including mapping, seasonal calendars, Venn diagrams, proportional piling and direct observation.The quantitative methodologies will include surveys for dietary and market assessments, rapid assessments of vulnerability, mapping exercises, biological measures for serum micronutrients and anthropometry in order to assess nutritional impact. Research designs will include randomized control trials as well as crosssectional, retrospective, prospective and case control studies. Ecological studies will also be performed to assess consumption patterns and will include local knowledge and trends.Operations research, also known as delivery system research, is concerned with finding out which interventions, strategies or tools can enhance the quality, effectiveness or coverage of agriculture, nutrition and health programmes in which more analytical research is being carried out. It will involve a variety of descriptive processes, such as cross-sectional analyses, case control studies and retrospective or prospective cohort analyses (Zachariah et al 2009).Development programme study designs will include adequacy, plausibility and probability methodologies. Adequacy methodology measures the expected change of nutrition status as programmes are implemented. Programme performance is evaluated and status is assessed before and after the interventions. Plausibility methodology assesses whether the programme seemed to have an effect above and beyond external factors and influences. Probability methodology is used to measure whether a programme had an impact, and checks for potentially confounding elements by making use of randomization and control groups.In conducting the research outlined in this strategy, a wide variety of tools and technology will be used, including livelihood tools for assessing physical, financial, social, natural and human capital. Vulnerability assessments and mapping will be monitored with geographic information systems and the Food Insecurity and Vulnerability Information and Mapping System (FIVIMS). Other methods based on food security, human development, food sovereignty and rural development will be considered.Market mapping will focus on access to markets, outcomes related to food access and availability, trader and focus group interview guides, market location mapping exercises and prices. Local market assessments will include food availability lists, seasonality, prices and preferences.Food security tools such as the household hunger scale, household food insecurity access scale, months of adequate household food provisioning and the coping strategy index (FAO and FANTA-2) will be used.Other dietary and consumption tools to be used in the research will include infant and young child feeding surveys from the World Health Organization (WHO), women's diet quality tools (see Ruel et al 2010 and other papers in that supplement), household dietary diversity scores from Food And Nutrition Technical Assistance (FANTA), consumption and composition indicators from FAO, such as their International Network of Food Data Systems and the new International Micronutrient Assessment and Planning Programme (WHO). Linear programming methods will be used to select diets based on local foods that satisfy a set of nutritional constraints while minimizing the total energy content of the diet, with costs assessed using tools such as Save the Children's cost of diets tool (Chastre et al 2007;de Pee et al 2010).Nutritional assessments including anthropometry to assess children's nutritional status as well as biochemical analyses of micronutrients will be essential to measure the impact of interventions or research on nutrition and health outcomes.Agriculture, ecosystem and biodiversity tools will be employed on-farm and in landscapes and will include a species richness index (defined as the number of identified and previously described edible species, either plant or animal, per farm), as well as a species diversity index, a species evenness index and individual species-area relationships. Access surveys will include assessments of access to seed diversity, technology and markets.Other areas to be developed include the nutritional functional diversity at the farm level, nutritional composition at subspecies level and cultural preferences for species and subspecies.Technology such as mobile phones, satellite positioning systems and food enrichment technology will also be used.The CGIAR is committed to reducing poverty and hunger, improving human health and nutrition and enhancing ecosystem resilience through high-quality international agricultural research, partnership, and leadership. The CGIAR's Research Programme on Agriculture for Improved Nutrition and Health, directly and strategically supports this commitment.Agricultural production will need to increase if the world is to meet the food needs of a growing population from a finite resource base. How agriculture develops to do this will have consequences for the health and nutrition of people. The CGIAR Research Programme is designed to support the overall CGIAR agenda by improving our understanding of how agriculture can better accentuate the benefits and mitigate the risks of agricultural development for human health and nutrition. The lessons learned are intended to serve the entire CGIAR agenda within agro-ecological production systems and along food value chains.The CGIAR Research Programme emphasizes two groups of people. The first is those people who are left behind by socioeconomic development, who suffer from high rates of malnutrition and agriculture-associated diseases and who rely on aid and development support. The second group is made up of poor people who live in dynamically intensifying and changing systems in which this type of research can help to direct agricultural development towards more beneficial approaches.Aspects of Bioversity's nutrition strategy fit well within the new CGIAR Research Programme and specific components and objectives of the proposed work will have substantive contributions to make to the overall CGIAR Research Programme.Objectives one and three fit well with Component one of the CRP, on nutrition-sensitive value chains, while Objectives three and four fit well within Component four of the CRP, on programmes and policies.Bioversity International will monitor and evaluate the implementation of this strategy on an annual basis with an external Scientific Advisory Council. The purpose of the Council is to provide Bioversity with expert, independent advice on nutritional science policy and strategy and to advise on matters concerning agricultural biodiversity, food and nutrition security, diet quality and diversity and the role of ecosystems in well being. Members are appointed as independent scientific experts on the basis of their specific skills and knowledge. (See chapter four for details of the Council members.)Monitoring and evaluation will be an integral element of the research agenda within each objective of the strategy and a logical framework for the proposed research is outlined on the following page.Over the years Bioversity International will demonstrate clear, realistic, measurable and rational pathways needed to achieve impact, in collaboration with our partners. Bioversity International will be accountable for the provision of inputs, for carrying out activities and for producing both lower-order and higher-order outputs. Subsequently, we will share responsibility with partners for the research outcomes generated, and engage together in the delivery of the development outcome. We give high importance to identifying partners that can share responsibility for achieving the research outcomes and that will play an important role in the delivery of the development results.Objectives one and two, with a focus on evidence building, will be the major priorities in the first five years and through the life of the strategy. Objective three will be the focus of years six through nine, while Objective four will be the focus of years seven through ten. All of the objectives will be targeted in key priority countries and specific agro-ecosystems. We plan to ensure that each objective and the different components are addressed as part of holistic research projects on similar sites because the various components together will define the nutrition and livelihoods impact. Each component may require distinct partnerships, tailored research approaches, methods and programme designs. Key priority countries will include the 36 countries where 90% of the world's stunted children live, where agricultural systems are fully functioning or that have potential for improvement, as well as countries that are ready to accelerate action in nutrition (SCN 2009). -Improved evidence of the links of agriculture to public health -Increased presence of LTFs from biodiverse systems in value chains and accessible to urban populationsTo promote the use of agricultural biodiversity within food production systems and provide nutritionally rich food sources that contribute to dietary diversity and potentially better nutrition and healthIndicators to be monitored Scientific public health and nutrition articles with ABD components and data Procurement programmes sourcing ABD for specialized nutrition products School meal programmes and garden projects with ABD practices embedded National nutrition policies with ABD interventions embedded Development agencies working on public health programmes integrating ABD increased Joint agriculture and nutrition strategies implemented in Developing Countries-ABD better integrated into national, regional and global nutrition, and public health development programmes and policies -Improvements made in multi-sectoral food system approaches to tackling malnutritionAdoption of outputs by target groups at regional and national levels-Tools and best practices used for development programmes and policies -Food development assistance and school meals effectively integrating ABD -Nutrient gap analysis and profiles deployed for use in developing countriesObjectives three and four -Best practices for ABD and nutrition linkages for development programmes developed -Usage of LTFs in specialized foods and school meals for development programmes defined and documented -ABD sourced commodities integrated into select food aid baskets -Nutrient gap and ABD added value quantified -Nutrient profiles of non-crop ecosystems identified and documented -Role of women in food systems approaches characterized -Research tools to measure added value and impact of ABD in public health programmes developed -Nutrition development programmes integrated with agricultural practices redefinedMartin W. Bloem, MD, PhDDr Martin W. Bloem is Chief for Nutrition and HIV/AIDS Policy and UNAIDS Global Coordinator at the World Food Programme in Rome, Italy. He holds a medical degree from the University of Utrecht and a doctorate from the University of Maastricht and has joint faculty appointments at both Johns Hopkins University and Tufts University. Martin has worked and lived in several countries in Asia including Bangladesh, Thailand and Indonesia. He has more than two decades of experience in nutrition research and policy. Bloem acted as Senior Vice President and Chief Medical Officer of Helen Keller International prior to his appointment at WFP and has devoted his career to improving the effectiveness of public health and nutrition programmes through applied research. His work has led him to participate in task forces convened by leading non-governmental organizations such as the UN Standing Committee on Nutrition (UNSCN), the United Nations International Children's Emergency Fund (UNICEF), the United States Agency for International Development (USAID), and the World Health Organization (WHO).Food and Agriculture Organization of the UN Dr Barbara Burlingame is Senior Officer and Leader of the Nutrition Requirements and Assessment Group at FAO. Her areas of responsibility include food composition, human nutrition requirements, dietary and nutritional risk assessments, the cross-cutting initiative on biodiversity for food and nutrition as well as the provision of nutrition advice to FAO member nations and the Codex Alimentarius Commission. Since 1995, she has been the director of INFOODS, the International Network of Food Data Systems and since 1998 she has been the editor of the international, peer-reviewed Journal of Food Composition and Analysis. She chairs the International Union of Nutritional Sciences Food Data Task Force and is a member of several scientific advisory boards. She has authored many scientific papers and UN publications, and several book chapters and reference books and been awarded the New Zealand Royal Society's Science and Technology Medal, Dr Burlingame studied at the University of California, Davis, and obtained a BSc in Nutrition Science and Environmental Toxicology. She did her postgraduate work in New Zealand at Massey University where she obtained a PhD. From 1987-1998, she worked for the New Zealand Institute for Crop & Food Research. She has been at FAO since 1998.Fabrice DeClerck is a Belgian landscape and community ecologist with a faculty appointment at CATIE in Costa Rica. His primary research activities focus on the biodiversity and ecosystems in human-dominated landscapes of Mesoamerica. DeClerck holds an adjunct research fellowship with Tropical Agricultural Programmes at Columbia University and consults on the role of biodiversity and conservation in achieving the Millennium Development Goals (MDGs). He leads research projects on biodiversity conservation and ecosystem functioning in cattle and coffee agricultural systems, looking at how biodiversity and functional diversity can be managed to increase the provisioning of ecosystem services and poverty alleviation. His current work is focused on how the position of agroforestry systems affects the capacity of these systems to provide ecosystem services. DeClerck's research also looks at how functional diversity can predict ecosystem function, including models of loss of functional diversity with agricultural intensification and the contribution of functional agrobiodiversity to human nutrition. DeClerck was a postdoctoral fellow with the Earth Institute at Columbia University where he actively investigated and wrote on the role of ecology in poverty alleviation. He also maintains an active theoretical ecology research agenda on the relationship between tree species richness and carbon storage in a tropical forest of Panama.Glenn Denning is a professor of Professional Practice in International and Public Affairs, and Associate Director of the Centre for Globalization and Sustainable Development at the Earth Institute of Columbia University. He helped establish The MDG Centre, East and Southern Africa in Nairobi, Kenya and served as its first Director from 2004-2009, during which he provided leadership to the centre's agenda in agriculture and rural development and its support to the African Green Revolution. He previously held senior management positions at the International Rice Research Institute and the World Agroforestry Centre and has lived and worked in Asia and Africa for more than 30 years. Denning served on the UN Millennium Project Hunger Task Force (2004-2006) and is a member of the Senior Steering Group of the UN High Level Task Force on the Global Food Security Crisis. Dr Denning holds agricultural science degrees from the University of Queensland, a PhD from the University of Reading, and an MPA from Harvard University's Kennedy School of Government. Boitshepo \"Bibi\" Giyose, PhDThe New Partnership for Africa's Development (NEPAD) Secretariat, South Africa Boitshepo \"Bibi\" Giyose is a Senior Food and Nutritional Security Advisor to NEPAD's Planning and Coordinating Agency for the African Union. Before joining NEPAD, Giyose worked for UNDP/UNAIDS Botswana as the regional project coordinator for strengthening the United Nations response to HIV/AIDS in small-population African countries. She has also worked as the regional coordinator for the Commonwealth Regional Health Community Secretariat for East, Central and Southern Africa, as a nutritionist for the Government of Botswana and as a private nutrition consultant. The World Bank Anna Herforth holds a PhD in international nutrition from Cornell University, an MSc in food policy from Tufts University and a BSc in plant science from Cornell University. She has worked with academics, non-profit organizations, CGIAR centres and the UN, contributing to nutrition policy and programmes in Africa, South Asia, and Latin America. In each region she has spent considerable time with agricultural and indigenous communities. Currently Herforth is a Nutrition Specialist at the World Bank, working on nutrition as a multi-sectoral issue related to agriculture and the environment.Dr CJ Jones is Country Manager for the Global Alliance for Improved Nutrition (GAIN). Since 1989, she has lived and worked in both east and southern Africa, during which time she has held a variety of high-level private-sector positions including technical consultant on privatization in Zambia, lead local consultant for the privatization of Zambia Consolidated Copper Mines, founding director of the Lusaka Stock Exchange and of the African Plantations Corporation and director of several Zambian commercial banks. At the same time, she established her own investment company and developed a reputation for business management and business opportunities at the cutting edge of African industry and for raising significant new foreign investment capital. Since 2007, Jones has worked at the interface between public and private sector investment in East Africa and is currently working with GAIN to put key public health interventions related to nutrition into effect. For example, GAIN's Kenyan food fortification programme, which will reach 27 million Kenyans, and the Maternal and Infant Young Child Nutrition (MIYCN) initiatives are two that are working directly with industry to produce nutritious infant foods and make them available to mothers in low-income groups. An Australian citizen, Dr Jones was born in rural Australia and received her professional qualifications from Sydney University and Wollongong University. Jones is also a qualified educator with postgraduate qualifications in education, administration and finance. In its common use hunger describes the subjective feeling of discomfort that follows a period of not eating. Even temporary periods of hunger can be debilitating to longer term human growth and development. Acute hunger is when food lack is short term and caused by sudden shocks to the food system, such as drought resulting in famine, whereas chronic hunger is a constant or recurrent lack of food. Reducing hunger levels places the emphasis on the quantity of food and refers to ensuring that a minimum caloric intake is met.Nutrition refers to a diet's quality. A diet rich in macronutrients (fat, carbohydrate and protein) and some micronutrients (vitamins and minerals) has been proven to improve birth weight, growth, and cognitive development and decreases child mortality.Malnutrition is a broad term commonly used to describe people who are malnourished if their diet does not provide adequate calories, protein, fat and micronutrients. It can also refer to individuals who are unable to fully utilize the food they eat due to illness. A lack of essential micronutrients (essential vitamins and minerals) often results in hidden hunger, where the signs of malnutrition and hunger are less immediately visible, and which can result in the nutrition disorder of undernutrition. Although a lot of the focus regarding malnutrition centres on undernourishment, overnutrition is also a disorder of malnutrition in which individuals consume excess calories, make poor food choices, or do not have access to high quality food. One of the major long-term determinants of malnutrition is poverty, a factor that holds true in developed and developing countries.Global acute malnutrition, or wasting, is defined as low weight for height or the presence of oedema. It can be moderate acute malnutrition (MAM) or severe acute malnutrition (SAM). It occurs as a result of recent rapid weight loss, malnutrition, or a failure to gain weight within a relatively short period of time. SAM is the most dangerous form of malnutrition and if left untreated, can result in death. Wasting occurs more commonly in infants and younger children. Recovery from wasting is relatively quick once optimal feeding, health and care are restored. Wasting occurs as a result of deficiencies in both macronutrients (fat, carbohydrate and protein) and some micronutrients (vitamins and minerals).Chronic malnutrition, commonly referred to as stunting, is a failure to grow in stature, which occurs as a result of inadequate nutrition over a longer period. It measures chronic deprivation, with inadequate food intake, poor health and poverty, which results in poor child growth. Stunting of children under five years of age is a strong indicator of hunger and of endemic poverty, one of hunger's determinants. Global and country stunting is often much more prevalent than undernutrition and wasting and more accurately reflects nutritional deficiencies and sickness that occurred in the most significant times of a child's growth.The 1996 World Food Summit stated that \"food security exists when all people at all times have both physical and economic access to sufficient food to meet their dietary needs for a productive and healthy life\". The achievement of food security depends upon three distinct but interrelated processes (USAID 1992). The first is food availability, ensuring that a sufficient quantity and diversity of food is available for consumption from farm, marketplace or elsewhere. The second is food access, which refers to households having the physical and financial resources required to obtain food. The third is food utilization, having the capacity and resources necessary to use food appropriately in order to support healthy diets. This includes access to safe drinking water and adequate sanitation, knowledge of food preparation and the basic principles of good nutrition, proper child care, illness management and so on.Increased consumption of unhealthy foods compounded with increased prevalence of overweight in middle-to-low-income countries is typically referred to as the Nutrition Transition. It occurs in conjunction with the Epidemiological Transition and has serious implications in terms of public health outcomes, risk factors, economic growth and international nutrition policy. Nutrition transition may result in malnutrition not simply from a need for food, but from the need for a high-quality diet. Foods rich in vitamins and minerals such as fruits, vegetables and whole grains have been substituted by foods heavy in added sugar, saturated fat, and sodium. This trend, which began in developed, industrialized countries, has spread to developing countries. These developing countries are now stressed with the double burden of malnutrition -hunger alongside the health problems associated with overnutrition, such as obesity, diabetes and stroke.Agricultural biodiversity includes ecosystems, animals, plants and microorganisms related to food and agriculture. Today most crop species and domesticated livestock are the result of thousands of years of human intervention, including selective breeding and other farm practices. Agricultural biodiversity provides food and raw materials. Moreover, every plant, animal and microorganism plays its part in the regulation of essential ecosystem services, such as water conservation, decomposition of waste, nutrient cycling, pollination, pest and disease control, climate regulation, erosion control, flood prevention, carbon sequestration and many other ecosystem-oriented factors (CBD, 2010).There is no universally accepted definition of local foods or traditional foods. Traditional foods are generally from a particular culture, available from local resources and culturally accepted. Other aspects that have to be factored in to a consideration of traditional foods include sociocultural meanings, techniques for acquisition and processing, use, composition and nutritional consequences (CINE 2006). In this strategy we use local and traditional foods to refer to plants and crops, fruits, non-timber forest products, livestock, fish, hunted game, wetland species, wild or gathered foods and insects.Agro-ecosystem describes a conceptual model of an agricultural system (crop, farm or whole economy), which relates its functions to its inputs and outputs. An agro-ecosystem encompasses land used for crops, pasture, and livestock, the adjacent uncultivated land that supports other vegetation and wildlife, the associated atmosphere, and the underlying soils, groundwater and drainage networks. Ecosystems services are ecological processes and functions that sustain human wellbeing (Daily 1997).Sustainable diets are diets with low environmental impact and which contribute to food and nutrition security as well as to a healthy life for present and future generations. Sustainable diets are protective and respectful of biodiversity and ecosystems, culturally acceptable, accessible, economically fair and affordable, nutritionally adequate and safe and healthy while also optimizing the use of natural and human resources.","tokenCount":"11468"} \ No newline at end of file diff --git a/data/part_1/0430053226.json b/data/part_1/0430053226.json new file mode 100644 index 0000000000000000000000000000000000000000..13073504aaeeb2e31f68d446becdc73c14844a84 --- /dev/null +++ b/data/part_1/0430053226.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"61740894a54794d62960f133e3654594","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/64544275-86cb-40f0-8dc2-ab849aed666a/retrieve","id":"2136419241"},"keywords":[],"sieverID":"f38939ce-8864-419b-9dc3-5919accd4c3f","pagecount":"50","content":"This is a working paper that has not been formally peer reviewed. The opinions expressed in this paper and any possible errors are the responsibility of the authors. They do not necessarily reflect the position of the Commission on Sustainable Agriculture Intensification or of the institutions and individuals who were involved in the preparation of the report. This report was commissioned by the Commission on Sustainable Agriculture Intensification (CoSAI). CoSAI brings together agricultural and food systems experts and decision-makers from the Global South and is collaborating with scientists, innovators and partner organizations from across the globe.The authors gratefully acknowledge the support and inputs provided by the Secretariat of the Commission on Sustainable Agriculture Intensification (CoSAI) as well as all associated Commissioners who played an extensive role in reviewing the analysis and various drafts of the report as well as their support and inputs towards the approach for the study. The authors also thank Richard Kohl for his extensive support through the process.The Oversight Committee for the study comprised CoSAI Commissioners Maurício Lopez (co-Chair), Rasheed Sulaiman V (co-Chair), Irene Annor-Frempong, Rodomiro Ortiz, Uduak Edem Igbeka, Vara Prasad and Varad Pande, and technical advisor, Julia Compton. Study management and administration was provided by David Shearer and Josefina Achaval-Torre from the CoSAI Secretariat.Within Kenya, the study was led by Bancy Mati. The authors sincerely thank all the institutions and individuals who provided data, information and insights which helped to ground and enrich this report. Special thanks go toKenya. This is a technological innovation involving the construction of water-harvesting farm ponds for crop irrigation, improving agricultural intensification, food security and climate change resilience by small-scale farmers. Although some farm ponds previously existed in isolated farms, this innovation started around 2009 with an initiation phase in Yatta Sub-County of Machakos County, where dug-out farm ponds were actively promoted (2009)(2010)(2011)(2012)(2013)(2014). The out-scaling phase started from around 2013 to the present (2021) in the three counties Kitui, Machakos and Makueni in 1 All of the studies are available on the CoSAI website (https://wle.cgiar.org/cosai/pathways-for-innovation). viii eastern Kenya. It is estimated that at least 10,000 farm ponds were excavated and actively used for irrigation in the three counties.This focuses on adoption of solar-powered irrigation in peri-urban areas of Kajiado County, which border the city of Nairobi, from 2005 to 2021. This is mostly a technological innovation driven by business pull through peri-urban agriculture to meet the demand for fresh produce in the nearby Nairobi city, along with innovative financing models to suit farmer needs. Since Kajiado has almost no rivers, this innovation is driven by the need to pump groundwater, the availability of affordable solar-powered irrigation systems kits, and free (solar) energy. Solar-powered irrigation equipment is sometimes marketed as complete kits (solar panels, pump and irrigation gear). This has enabled irrigated agriculture to thrive using clean energy and thus resulted in agricultural intensification.Tana Catchments. This innovation presents a case of watershed management activities implemented by land users in upstream catchments of the Upper Tana River Basin from 2012 to 2021. Starting with a three-year proof of concept phase (2012-2015) a business case was developed, followed by an implementation phase (2015)(2016)(2017)(2018)(2019)(2020). This was a blended finance innovation with technological, environmental and socio-economic components. It addressed the creation of a Water Fund through a platform for public-private partnerships, providing support and a delivery mechanism for SAI and watershed conservation. The downstream water users (in Nairobi) provide incentives (blended finance) for upstream communities (land users) to conserve the sources of water.From the foregoing, the following were recommended:• Farmers should be engaged throughout the innovation process. It is emerging that innovation thrives when farmers and local communities are included as investors or stakeholders rather than as beneficiaries, for example, in the construction of waterharvesting structures. Support them contribute to the ideas shaping the innovation, and encourage them to drive it practically.• Quite often, end users are resource poor small-scale farmers who may require some financial push. Thus, the financing models that have a cost-sharing element (e.g., water credits) have a greater chance of success. Interesting examples at different scales of innovation include mobile phone financing for solar pumps ('pay-as-you-grow') and conservation measures financed by public-private partnerships of the Upper Tana-Nairobi Water Fund. ix• Innovations take time to be tested, implemented and upscaled -at least eight or more years in the cases covered in this report. It is therefore imperative for all partners to have patience and to plan long term, including in the financing of the initiative.• Innovations usually benefit from strong leadership. The identification and support of champions (both individual and institutional) facilitate a coordinated pathway for growing the innovation. As for example, the strong leadership by a respected entity, as was provided by The Nature Conservancy in Upper Tana, was instrumental in putting together the partners needed to build up the Water Fund.• Conducive government policies, their implementation and support through relevant institutions facilitate smooth operations and easier upscaling of innovations. One example is favorable import tariff policies for solar-powered equipment. Government policy is informed by innovation based on lessons learned. Innovations can lead to policy reform.• The bundling of innovations when introduced from the beginning gives the initiative an integrated approach for both problem solving and success, enabling targeting of incentives, upscaling, policy push and out-scaling of lessons learned. For example, the success of solar pumps required a bundle of innovations in finance, institutions, policy and technology.• Partnerships facilitate a multiplier effect helping to reduce transaction costs, share responsibilities and provide support according to strengths and needs of stakeholders. • Integrated approaches are necessary and require partnerships in order to meet the needs of various actors at the financing and policy side as well as those of land users at the implementation end. • Partnerships (of government, NGOs, development partners, researchers, farmers and the private sector) enable pulling together resources, synergies and project implementation.The Commission on Sustainable Agriculture Intensification (CoSAI) promotes more and better investment in innovation for sustainable agriculture intensification (SAI) in the Global South, and works to support the United Nations Sustainable Development Goals (SDGs) and the climate goals of the Paris Agreement. For CoSAI, 'innovation' includes not only science and technology but, importantly, innovation in policies, finance and social institutions. 'Transformative innovation' of agriculture for SAI means \"major change to farming system structures and functions\" or \"a fundamental shift in the way food is grown and supplied\", moving agricultural systems significantly in the direction of SAI goals. The CoSAI's main target audiences are 'innovators' (research and development entities and the private sector) and 'investors in innovation' (e.g., Ministries of Agriculture and international funders) who invest directly in agricultural innovation and research. Thus, the term 'innovation' in this context includes SAI-related institutional, policy and financial innovations as well as scientific and technological innovations. SAI refers to the transformative changes required in agricultural systems to meet the United Nations SDGs and the climate goals of the Paris Agreement, including social and human objectives as well as environmental sustainability.In lieu of this, it is important to identify pathways, approaches and partnerships that can address the complexity of innovation challenges within agricultural systems. However, many past innovations have taken a less planned and structured pathway to success, engaging with imperfect enabling environments, with needed policy and institutional changes brokered along the way. Learning from pathways of previous transformative innovations is important for future work in this area. The purpose was to produce practical, evidence-based lessons on factors that influence success in pathways for innovation for SAI.This particular report refers to the country case study for Kenya. It is one of three country case studies (Brazil, India and Kenya) that used a common framework of analysis to draw out common lessons as well as context-specific findings. Kenya's agricultural sector is among the most innovative in sub-Saharan Africa, driven in part by the need to grow more food for a rapidly growing population, declining area of good land for cultivation, weather-related limitations, especially recurrent droughts, and highly competitive markets. In a study of agricultural innovations in Kenya (Makini et al. 2016), some 43 innovations were identified and categorized into eight domains -cropping, livestock, governance, marketing, finance, processing, natural resource management and value addition -of which 62% were crop-related innovations. The majority (61%) of the innovations were technical, 23% were organizational and 16% were institutional.Other projects have also identified innovations focused on land and water management in Kenya (Critchley et al. 1999). Indeed many agricultural innovations in Kenya remain undocumented, while others are still emerging, which offer lessons on factors that influence success in pathways for innovation for SAI.This is one of three country case studies covering Brazil, India and Kenya, which utilized a common analytical framework to identify SAI innovations (Annex 1). In Kenya this involved a systematic and consultative process summarized as follows:1) Conducting Literature Review: A review of literature was conducted to capture data, information and material content for the case studies. Information was gathered from reports, records, publications and other sources bearing on SAI in Kenya. Also reviewed were global, regional, national and local data sources from the internet, libraries and key contacts.2) Preliminary Identification of Candidate SAI Innovations: From the literature review, the first round of seven candidate SAI innovations in Kenya (Annex 2) were selected. The selection criteria were common across the three country studies: a) Innovations that have been achieved recently, at least from 2000 to date b) Innovations that have impacted relatively large numbers of people, preferably targeted at groups or regions (excludes individual farmer innovations) c) Preferably home-grown innovations d) Transformative innovations e) Representing a variety of 'initiators', e.g., public sector, private sector, civil society and public-private partnerships f) Representing a variety of innovations in policy, social institutions and finance as well as science and technology (or ideally combined) g) Innovations that might affect different types of farmers.Based on information gathered from literature, data analysis and consultations, the top three SAI innovations in Kenya identified were: (i) Water harvesting and storage in farm ponds for irrigation in eastern Kenya (ii) Solar-powered irrigation in peri-urban Kajiado (iii) Blended finance supporting agricultural intensification and watershed management in Upper Tana Catchments.Using the contacts from the stakeholder mapping, respondents likely to provide further information and details on the selected SAI innovations were contacted as key informants. These were interviewed through ICT (information and communication technology) modes such as e-mail communications, telephone interviews, WhatsApp, Zoom meetings and face-to-face meetings with observance of all COVID-19 safety protocols.Verifying the Presence of the SAI Innovations at the Grassroots: Field visits were made to five counties where the three SAI innovations had been identified: Kitui, Machakos, Makueni, Kajiado and Murang'a. During these visits, national and county government staff, non-governmental organizations (NGOs), community-based organizations (CBOs), private sector service providers, farmers and other stakeholders were interviewed and the innovations visited and verified (Annex 3).The scarcity of records and central databases meant that supporting data were not easy to find, with the exception of the blended finance case study. The information available from the Internet was descriptive, while due to COVID-19 pandemic, face-to-face interviews were at a minimum and data gathering relied on telephone and e-mail. Even then, field visits were made to verify realities on the ground and interviews conducted with key informants. Drought and prolonged dry spells have for years ravaged and continue to affect agriculture in the semi-arid counties of Kitui, Machakos and Makueni in eastern Kenya (Recha et al. 2016). Farming in the three counties is predominantly smallholder, rainfed crop production. The seasonal rainfall, when it falls, is highly variable, erratic and occurs in intense storms resulting in poor infiltration, excessive runoff and consequently massive soil erosion. Due to the erosion menace, between the 1970s and the 1990s, many donor-driven projects and government initiatives on soil conservation through terracing were implemented (Tiffen et al. 1994). However, soil conservation, much as it improved crop production marginally, could not bridge the yield gap caused by recurrent droughts, which have got worse over the years, to the point where farmers stopped planting maize during the long rains (Mati 2012). All these problems could be solved by making water available for farming, in all areas, even those lacking rivers or groundwater. It is this challenge which was turned into opportunity through water harvesting.Water-harvesting farm ponds (water pans or on-farm small storages) 2 are water storage structures constructed below the ground surface to collect rainfall runoff from open surfaces such as home compounds, roads, grasslands and other areas (WFP 2018). A farm pond has an inlet to regulate inflow and an outlet to discharge excess water. It is usually surrounded by a small bund, which prevents erosion on the banks. A farm pond may be earthen (where the soil profile is self-sealing) or, in many cases, lined with dam plastic, concrete or other material to prevent water losses by seepage (Figure 1).The field investigations showed that pond sizes vary depending on the farmer's water requirements, land availability, soil type, excavation costs and catchment characteristics. In Kenya, farm ponds are usually excavated by hand using simple hoe and shovel, but in a few cases, larger farm ponds are excavated by machinery. Water stored in the farm pond is extracted using buckets or pumps, the type depending on farmer's financial capacity (e.g., manual, petrol or solar-powered pumps). The water is usually used for irrigating part of the farm to grow high value/short season crops and, in some cases, for livestock watering. Due to high turbidity and other health concerns, most families do not drink water contained in farm ponds. Rather, they seek drinking water elsewhere, e.g., from boreholes, water kiosks or roof harvesting storage tanks. Thus, farm ponds are used mostly for crop intensification and to drought-proof agriculture in the dry zones. In that time, the few existing food stocks were depleted, livestock were sold in distress or just died and local people generally lost their assets and were impoverished. Seeing all this, Dr. Titus Masika, a retired teacher, encouraged local farmers to excavate water-harvesting farm ponds for use to grow food. With some assistance from an NGO, the Christian Impact Mission (CIM), farmers were trained on water harvesting and construction of farm ponds which were about around 4-5 meters deep (World Agroforestry 2020). This initiative encouraged many families to excavate their own ponds and within a short time, over 3,000 water-harvesting ponds had been constructed in the Yatta area alone (van Steenbergen 2019). This number continued to grow and by 2021 almost every household in Yatta owned at least one or more farm ponds. It should be noted that this success was partly enabled by the fact that the soils in Yatta are self-sealing. Hence the farm ponds are simply scooped (no need for lining) as they hold water adequately (Figure 1) without seepage issues. The technology is thus easy to replicate.The water stored in the ponds was lifted to farmlands mostly using buckets or petrol pumps and used to irrigate food crops. The types of crops grown also changed, becoming more diverse, including marketable produce such as vegetables. Farmers could now grow kale, cabbage, tomato, onion, peppers and indigenous vegetables. It should be noted that farmers in Yatta cultivate on average 5 acres (2 ha) for field crops, mostly maize, pigeon pea, cow pea and green gram. The water from the farm pond is inadequate to irrigate such large areas. Rather, it is used to irrigate high value crops, especially vegetables and seedlings for sale. These types of crops do not cover the entire farm, but take up about a ¼ to ½ acre (0.1-0.2 ha) and rainfed crop production continues throughout the rest of the farm. Sometimes, when the rains fail, farmers 'top up' rainfed crops with the water from ponds, averting crop failure by using harvested water, hence agricultural intensification. The knowledge, attitude and behavior change components that were undertaken by the CIM included training on water harvesting techniques, utilization, agronomy and learning to grow crops with supplemental irrigation.The water harvesting initiative evolved through two phases, with the starter phase (2009-2014) in Yatta Sub-County of Machakos County, where digging of farm ponds was actively promoted with assistance of CIM. The success of the Yatta water-harvesting farm ponds attracted many visitors to the area. A number of projects and programs were implemented to upscale water harvesting across Kenya based on the Yatta model. This triggered the second phase which was the out-scaling to other parts of Kenya, which occurred during 2014-2021. By this time, visitors were trooping to Yatta to learn from their experiences and see the farm ponds and agricultural activities. Indeed the training center located at Yatta and operated by CIM started charging fees for training or taking groups around, at a cost of KES 10,000 (USD 100) per day, when they realized that farmers were spending too much time hosting visitors. The groups visiting Yatta were mostly leaders, farmers, NGOs and individuals -a number of serious adopters resulted from this learning exercise. Beyond Yatta Sub-County, water harvesting was promoted by NGOs and county governments. By 2021, it was estimated (information from key informants) that about 10,000 farm ponds had been constructed in the three counties of Kitui, Machakos and Makueni (Figure 2). b) Kitui County: This is the most arid of the three counties where farm ponds were actively promoted. As a result, the county government funded the construction of larger ponds for community and livestock drinking water supplies. However, household water harvesting with storage in farm ponds was also promoted by the county government and various NGOs, including Caritas, Action Aid, World Vision Kenya, the Kenya Red Cross Society and international development partners, e.g., the World Food Programme (WFP) and the Food and Agricultural Organization of the United Nations (FAO) (ICRAF 2020). Others include CBOs and farmer common interest groups. For instance, Caritas excavated at least 120 farm ponds in Kitui over the last three years, while a Kwamikuyu CBO dug 100 farm ponds in the Kwavonza Ward alone (field staff interviews). The total number of farm ponds in Kitui could not be ascertained because farmers quite often excavate ponds on their own initiative. One major challenge in Kitui is severe drought which ravaged the county for two consecutive seasons (2020/2021) to the extent that some farm ponds were dry. Generally, the larger farm ponds still had water even after the prolonged drought. This implies that it is necessary to construct large ponds in the drier areas (farms are also larger in this area).In Makueni County, the combined efforts of the national government, county government, NGOs and farmers' own initiatives facilitated faster and more visible evidence of adoption of farm ponds. The county government was at the forefront of coordinating the activities. Water-harvesting farm ponds have always existed in Makueni, mostly dug by individual farmers as well as through support by NGOs and donor-funded projects (e.g., WFP, FAO, European Union, United States Agency for International Development, Caritas and Action Aid), albeit data for quantification are hard to come by. The contemporary impetus for water harvesting started when the Makueni County Government officials and farmers made a series of trips to Yatta in 2016 to learn from their experiences. Following this, the county government took seriously the concepts of water harvesting with the slogan \"Kutwikania Kiuu Movement\" which simply translates to \"Water Conservation Movement\". The Makueni County Government using NIA's machinery provided services of mechanized farm pond excavation (free), thus lessening the initial cost. The farmers' contribution included completion of the pond (removing debris, smoothing, lining the pond and providing auxiliary infrastructure including pumping equipment). By September 2021, NIA had excavated some 500 additional farm ponds of capacity 500-1,000 m 3 in the county. Parallel to NIA's excavated farm ponds, the county government implemented a cost-sharing arrangement for excavation of ponds in Kathonzweni, Makindu and Kibwezi.Type of innovation: This is a technological innovation at the farm level, bearing components of a financing model. Water-harvesting farm ponds require some engineering/technical expertise for design and construction, as the technology is not truly indigenous. Farm ponds were introduced to most farmers in the recent past, as a new and innovative way of harnessing rainfall runoff in relatively large quantities, capable of supporting irrigation. In addition, the Makueni case study illustrates an innovative financing model that enables cost-sharing of the more expensive aspects of developing a farm pond, i.e., cost of rapid excavation and purchase of dam liners. Moreover, farmers sometimes work together in groups supporting each other in digging farm ponds, e.g., in Kitui.An integrated approach: An integrated approach was adopted by the starter Yatta project and later by the adopters especially in Machakos and Makueni Counties in promoting water harvesting. In both cases, farmers (including both adopters and non-adopters) were trained on pond construction, operations and management, crop selection and agronomy, soil fertility management, water conservation, marketing of produce and linkages to microfinance and farming as a business. The integrated approach is best illustrated through a water harvesting project implemented in Mwala, Machakos County, through the Drydev initiative (Drydev 2019). They observed that: \"since installing farm ponds, the farmers have diversified their production, now including vegetables, fruits trees, poultry and bee keeping, allowing them to produce throughout the year and thus maximizing their income.\" This facilitated opportunities for increased production of major staples, vegetables and fruits, thus contributing to improved household nutrition.Adoptable by all farming scales: The adopters and users of farm ponds range from the poor or uneducated who mostly dig smaller farm ponds using family labor, to farmers with alternative sources of income, e.g., having wage employment elsewhere, who invest in larger farm ponds with substantial capital outlay (based on interviews and field observations). Regardless of wealth status, all farmers required technical advice and services such as proper siting, construction and lining of ponds (where necessary) or pump selection, thereby encouraging cross-learning within the community.Subsidies and incentives: Each of the three counties provided some form of incentive or subsidies to cushion farmers against the high costs of construction and equipping of farm ponds. In Kitui, NGOs provided subsidized dam liners while farmers provided labor for the excavation. In Machakos and Makueni (where ponds are larger), they sought the help of NIA, which excavated the ponds for free but the farmer did the finishing, including dam lining. Also in Makueni, the county government implemented a financing model of the cost-sharing excavation of farm ponds as described in Box 1 (quoting the Makueni County Director of Agriculture).This initiative is led by the county government which had purchased some machinery (back-hoe excavators) specifically for the water harvesting program, leased out to farmers at a subsidized fee. Farmers prefer mechanized excavation as it is faster and more cost effective than manual digging. The farmer hires the excavator for one day, paying KES 4,000/hour (USD 40/hour). On average, the excavator takes 5-6 hours on good soil or about 8 hours on hard and stony soils to excavate a 500 m 3 capacity farm pond, meaning just one day is needed for excavation. Depending on site conditions, some farm ponds are earthen, while others are lined with dam plastic. Thus, the average cost of a farm pond starts from about KES 30,000 (USD 300) for unlined ponds. For farmers who require lining their ponds, dam liners are expensive as the average cost is about KES 90,000 (USD 900) for a 500 m 3 pond, resulting in a total cost of about KES 120,000 (about USD 1,200) for these large lined ponds. This is a substantive capital outlay, hence the need to support the poor through various credit or grant programs. Indeed poorer farmers excavate smaller ponds using manual labor. The NGOs and other funding streams normally subsidize the cost of dam liners.Partnerships: In the earlier stages, during the promotion of water harvesting in Yatta (2009-2014), partnerships were formed under the leadership of CIM (Dr. Masika) to kick-start the process. These included farmer groups and extension workers. In the out-scaling years (2014-2021) another partnership led by ICRAF with partners who included international NGOs (ADRA, World Vision, SNV-Netherlands and Caritas) promoted water harvesting through the Drydev project in Machakos and Kitui. Thereafter, there were various partnerships led by respective county governments, e.g., in Makueni, the county government partners in promoting farm ponds for food security with organizations such as the WFP, Action Aid, International Fund for Agricultural Development (IFAD) and FAO.Policy and institutional support: At the national level, water harvesting is well espoused in long-term plans such as Kenya Vision 2030 as well as the Irrigation Policy (GoK 2017). In addition, counties play an important role in implementation of water harvesting programs. Nearly all counties have included promotion of water harvesting for irrigation in their five-year CIDPs. Based on the CIDP, development funding is channeled to counties, including grants for projects by development partners. Thus, the policy and strategy support was a major factor in driving the scale that was reached. In the Agricultural Sector Transformation and Growth Strategy 2019-2029 (GoK 2019), farm ponds feature as a critical enabler to unlocking growth of investments in agriculture. Even the Water Act (Republic of Kenya 2016) recognizes water harvesting and storage as necessary for improving agricultural productivity and climate change resilience.One of the greatest challenges is the high cost of construction of farm ponds, especially those requiring dam liners. Without support by relatives or subsidies by various projects, poor farmers find it difficult to afford excavation of farm ponds, especially as it is a labor-demanding activity. Older farmers in Yatta informed the researchers that it took them a number of years to excavate one pond by hand, as the work had to be done during the dry season when other farm work is low. For this reason there is the need to support the poor and female-headed households with subsidies to excavate ponds.Another field observation was that technical staff suggested that there is generally enough surface runoff to fill a pond at household level, even after a few storms. The size of ponds is thus limited more by cost/labor consideration than by availability of runoff.There is usually a need for trained technical staff to design, layout and supervise the construction of farm ponds. The number of available technicians was reported to be low, calling for more capacity building in this highly specialized field. Some of the more common problems associated with farms ponds include high evaporation rates and safety concerns, which can be resolved by fencing the pond area, covering with special nets as well as provision of pumps with water draw-off points positioned away from the pond. Sometimes these best practices are not adhered to.The energy to lift water from the pond to the irrigated field is another challenge. Many farmers cannot afford solar powered or motorized pumps. Delivery of water to fields is sometimes manual and thus wasteful (of both energy and water). All these issues need to be addressed to make best economic use of the farm pond for agricultural intensification.Estimates by field staff indicated that at least 10,000 farm ponds had been excavated by 2021, and were being used for irrigation of food crops in the three counties, facilitating agricultural intensification and food security for small-scale farmers. This positively impacted on at least 100,000 people in the food value chains created, emanating from the presence of the farm ponds (as reported by county staff).The impacts of water harvesting and storage ponds for improving food production and climate change resilience are substantive. Respondents interviewed stated that by using the stored water, farmers were able to bridge the dry season when rains fail, hence produce more food crops such as maize, pigeon pea, beans, fruits and vegetables. Moreover, a wider range of crops including marketable produce, especially fresh vegetables and fruits were being grown.Farm ponds advanced the commercialization of the rural economy through increased participation of farmers in strengthened value chains of selected inputs and commodities, access to credit and financial mechanisms, while enhancing information exchange, knowledge and advocacy. In one example in of a youth group that adopted farm ponds in Mwala, Machakos County, it was observed that a net positive return on investment could be achieved within 2½ years (Drydev 2019). In regard to income benefits, for the same youth group, it was observed that farm ponds cost KES 158,000-319,000 (average of KES 207,066 or USD 2,071) to install, including auxiliary irrigation infrastructure. Farmers reported increased annual farm income of KES 179,200 (USD 1,790). Average monthly household expenditure on food has reduced by KES 1,840 (USD 18) attributable to irrigated produce using farm ponds (Drydev 2019).Farm ponds provide opportunity for creation of employment and increased livelihood options and household incomes through sales of their produce, with subsequent enhanced living standards. Water harvesting supports nutrition as farmers are able to grow nutrient rich crops and kitchen gardens. The water is also used for livestock thus enhancing integrated agriculture. Furthermore, water harvesting was also a social innovation, meaning it enabled the design and implementation of new solutions that imply conceptual, process, product or organizational change, which ultimately improve the welfare and wellbeing of individuals and communities (https://www.oecd.org/regional/leed/socialinnovation.htm). In essence it changed how farmers respond to drought, enhancing incomes and community resilience to climate change.Another outcome was the opportunity for farmers in dry zones to have access to water at farm level throughout the year and to irrigate crops including on land without a river or ground water resources. This gave this innovation opportunity for wide adaptability. Other factors included (a) dynamic leadership by Dr. Masika through CIM that initiated wide adoption within Yatta and attracted adopters -both NGOs and county governments, (b) technology advances through availability of solar-resistant plastic dam-liners, (c) subsidized excavation and incentives made available to farmers to accommodate the high costs of construction and (d) capacity building provided by NGOs, county governments and various projects. This was especially evident in the eastern Kenya counties of Kitui, Machakos and Makueni, where farmers adopted construction of farm ponds, to solve the problem of food security in the face of recurrent droughts. In addition, most of Kajiado has few rivers and is too dry for rainfed agriculture. Luckily, the peri-urban areas of Kajiado lying on the Athi-Kapiti plains have good soils and appreciable groundwater resources, estimated to have a potential yield of up to 240 m 3 /day (WRA 2020), which can be exploited for irrigation. In the past, groundwater resources remained largely underutilized due to the high cost of water pumping using conventional energy sources, thereby discouraging investment in irrigation.Water pumping for irrigation relied on conventional energy sources, such as petrol or diesel pumps (Muturi et al. 2019) and in a few cases, electric pumps powered from the grid.Evolution of solar-powered irrigation systems (SPIS): Before the 1970s, use of solar power generation was negligible in Kenya. As a response to the oil crisis of the 1970s, use of renewable energy was encouraged and solar energy for heating water and lighting homes was popularized. Toward the late 1970s, solar photovoltaic (PV) systems were installed in remote areas and solar pumps started to make their way into the Kenyan market (Chandel et al. 2015). The early types of PV pumping systems used centrifugal pumps, usually driven by variable frequency alternating current (AC) motors. However, these pumps had low hydraulic efficiencies in the range of 25-35%. These early solar pumps were fraught with problems, as they were inefficient, expensive and easily failed. The power obtained from solar equipment was usually weak with short functional life, and local people did not know how to maintain batteries. These factors discouraged smallholder farmers from adopting solar-powered pumps. In the 1980s-1990s, efforts on solar PV went to lighting of schools, health centers and for pumping drinking water mostly funded by donors and NGOs.Meanwhile, affordable energy to pump water from groundwater sources for irrigation in Kajiado was the missing link to agricultural intensification. This disconnect was resolved from around 2000, when the energy sector was liberalized in Kenya (EED Advisory 2018), a critical trigger of the innovation. The number of solar-energy and irrigation companies marketing solar water pumps increased, including in Kajiado peri-urban areas. Private sector marketers of solar products, sometimes doubling up as agents of various companies, promoted SPIS solutions to farmers through farm visits, shows and advertisements in the media. This knowledge push encouraged farmers in peri-urban Kajiado to adopt SPIS. More farmers were able to open up land for irrigation or to convert from use of fossil fuels or grid electricity into SPIS.This innovation involved enhancing agricultural intensification using green energy through adoption of SPIS in peri-urban areas of Kajiado bordering the city of Nairobi. Kajiado County has high insolation rates of about 4-6 kWh/m 2 with an average of 5-7 peak sunshine hours per day. Only 10-14% of this energy can be converted into electricity due to the conversion efficiency of solar PV modules (EED Advisory 2018). Since 2006-2007, the Ministry of Energy has actively promoted solar energy for offgrid electrification. It funded the Solar for Schools program, which it aims to extend to off-grid public institutions. In terms of solar power penetration, data from the 2019 Kenya Population and Housing Census Volume IV show that just 15.5% of households in Kajiado County used solar as their main source of energy for lighting (KNBS 2019). Even then, the percentage of solar energy harnessed for water pumping or irrigation was not quantified.Type of innovation: This is mostly a technological innovation driven by business pull through periurban agriculture, bundled with innovative financing models using mobile money platforms. SPIS is defined as \"an irrigation system where water pumping is powered by solar energy\" (FAO 2018). The SPIS adopted in Kajiado (Figure 3) typically consist of the following main components: (1) a PV array (solar panels), (2) a controller unit [either direct current (DC) or AC inverter], (3) an electric motor, (4) a water pump and (5) a water storage facility/tank (optional). The most common solar water pumping systems for irrigation range from low-head submersible pumps for shallow wells to heavy-duty submersibles for borehole pumping. Boreholes that yield from 20 to over 100 m 3 /hour have adequate water for irrigation and may require large solar panels, which are available on the Kenyan market.Interviews with key informants revealed that, in the peri-urban areas of Kajiado, adoption of solarpowered irrigation by farmers has rapidly expanded in response to close proximity of the market for irrigated produce in nearby Nairobi city, and availability of equipment through various sales agents.The private-sector-led solar PV industry provided affordable, durable, easy to operate solar water pumps, sometimes marketed as a complete kit (solar panels, pump and irrigation equipment) with innovative financing models to suit individual farmer needs. This facilitated expansion of agriculture and improved production of food, both for local and export markets. In the peri-urban areas, the average farm sizes were small, ranging from 0.5 ha to about 10 ha for the more commercial farming. The majority of SPIS farmers were small-scale. Photos: Bancy Mati.a) Market penetration of SPIS: Within Kajiado, SPIS adoption started increasing from around the year 2000, mostly due to marketing and publicity by respective companies promoting the technology, and a policy push for green energy (Republic of Kenya 2012). Sales data are difficult to come by but one company, Sunculture, reported to have sold at least 200 SPIS kits in Kajiado alone (staff interviews). Indeed the true number of SPIS kits operating in Kajiado remains largely unknown as no relevant mapping has been done. Most farmers buy their solar kits directly from the private sector and there is little information flow to the county databases. Generally, the sales of both small-and large-scale solar powered pumping systems are reportedly growing steadily. The factors contributing to this are illustrated in Figure 4. b) Solar-powered irrigation kits became affordable: Technological advances in the design of solar equipment saw prices go down generally, associated with the push for clean energy. For water pumping, invention of solar-powered pumps that operate with DC further simplified the technology, making it more efficient and affordable. In effect, contemporary SPIS kits offer an array of products ranging from small portable kits to large-scale installations for scheme-level irrigation or communityscale projects. For smallholder individual farms irrigating about 0.2-0.4 ha, an SPIS kit that includes a submersible pump and solar panels costs about USD 350-1,740 (KSSI 2017). Meanwhile, those for heavy-duty borehole pumping may cost about USD 30,000. As these are initial costs and there is low if any running costs, then the investment is worthwhile. Also, the cost of solar panels has reduced by 80% in the last 10 years. Furthermore, the cost recovery of solar pumping investments can be attained within 1-3 years (ALIN 2020). This shows that solar power has come of age to plug the energy needs for irrigation.The proximity of the county to Nairobi city and indeed location within the metropolitan area provides easy market targeting for fresh produce. The irrigated farms of Kajiado provide fresh vegetables (kale, cabbage, tomato and onion) for the local market and French bean for the export market, due to easy access to the international airport (Mati 2019).There are a number of financial institutions providing grants, loans and credit for agriculture in Kenya including at village level. There are also private companies and NGOs offering innovative credit schemes targeting smallholder farmers engaged in irrigated agriculture. These include asset financing, such as providing in-kind soft loans for farmers to purchase SPIS equipment. The most common typologies of financing and credit models for SPIS include pay-as-you-grow, pay-as-you-go, microfinance credit schemes, mobile layaways, rent-toown models, the leasing model, aggregator models and table-banking models (Mati 2019). Thus, a number of these credit schemes facilitate the poor to access SPIS through affordable financing (see Box 2).This is a financing credit model for SPIS, designed for small-scale farmers, in which no collateral is required. The farmer shows evidence of access to land, irrigation water and being active in farming, but with a need for water pumping. Credit is allowed for farming on as little as ½ acre (0.2 ha) plot of land. The solar kits on offer vary with farmers' irrigation requirements. Some of the smaller ones comprise portable solar panels with a pumping kit (submersible pump and pipes). A solar pumping kit capable of a suction head of at least 15 m costs about USD 350.Farmers can take the pump on loan and pay through an M-Pesa 3 credit scheme which deducts 'water credits', in a credit scheme referred to as 'pay-as-you-grow'. This enables the farmer to pay for the cost of the solar pumping kit in small installments as he/she grows a crop. Once the credit is fully paid, the farmer fully owns the pump.The solar panel is fitted with an electronic sensor linked to a dedicated SPIS M-Pesa loan account of the farmer and also to the bank. When the pump is operating, it triggers a connection to the computers in the offices of the company that sold the SPIS system, which reflect remotely that the pump is in operation (the company keeps a rich database of who is irrigating and when). At the same time, operating the solar pump also triggers a link to the loan account (in a bank) for that particular pump/farmer. As the water is pumped, it uses M-Pesa credit which in turn reflects as a deduction of the loan account in the bank -all this happens simultaneously. In essence, the loan reduces each time the pump is operated. When there is no money in the M-Pesa account, the pump stops and can operate again if the M-Pesa account is topped up. Some farmers pay a monthly rate while others pay on an as needed basis, i.e., they top up the M-Pesa account as necessary. This continues until the loan is fully paid, at which time the solar pump operates freely without the need for topping up with M-Pesa credit, and the pump becomes wholly owned by the farmer. Many farmers pay the loan by the second crop season of vegetables or within a year, as reported by key informants.e) Complete SPIS kits: Several SPIS service providers and companies provide the layout and design of the whole system, including planning of agronomic aspects, and act as holistic service providers.Examples include Sunculture, Kickstart International, Futurepump, Epicenter Africa and Irrico. In Kenya, there is a general trend toward suppliers planning and designing the entire SPIS (including pump and irrigation equipment), installing it and offering service contracts for its operation, thus being competitive. In that case, the company acts as a service provider but links the farmer to a financier for the purchase of the system.f) Enabling policy: The Government of Kenya in 2012 zero-rated the import duty and removed Value Added Tax on renewable energy equipment and accessories (Republic of Kenya 2012). Moreover, the Finance Act -2021 (Republic of Kenya 2021) upheld tax exceptions on specialized equipment for the development and generation of solar and wind energy, including PV modules, DC charge controllers, DC inverters and deep cycle batteries that use or store solar power. This helped to retain lower costs of solar panels and attachments. However, these tax exemptions do not cover peripheral equipment, such as mountings, pumps, pipes or irrigation equipment. If tax exemptions were expanded to all irrigation equipment, costs would be reduced leading to more adoption, and thus encouraging increased food production.Value chain actors: There is a wide stakeholder base engaged in the SPIS value chain, as obtained in interviews with key informants. They include (i) users of solar products and equipment -mostly farmers, (ii) suppliers of either whole SPIS kits or components of solar-powered equipment and associated services, such as importers, wholesalers, retailers and re-sellers, manufacturers and service providers across a wide spectrum (private companies, technicians, extension workers, traders and transporters. There are also (iii) development partners supporting SPIS (UN, multilateral, international and local NGOs), (iv) banks and financial institutions, (v) marketing and farmer support organizations, including NGOs, (vi) institutions offering training on solar-powered systems and (vii) policy and regulatory institutions at national and county levels (government).Service providers: There are many service providers active in Kajiado County in the SPIS space, some with offices there or simply operating from Nairobi. The most common ones include the following:• Sunculture -have a wide range of small pumps including the RainMaker solar water pump systems, which consist of a solar pump, controller, battery bank, portable solar panel and sprinkler (http://sunculture.com/products)• Epicenter Kenya -re-sellers of various types of pumps and also provide technical support for fixing pumps. Main types of pumps are those by Grundfos, Kenya Lorenz and others (http://epicenterafrica.com)• Future Pump -have popularized their SF2 solar pump which is a reciprocating, positive displacement piston pump using a DC motor. It is simple in design -farmer fixable, and good for smallholder farms (https://futurepump.com)• Kenya Lorentz -sells medium to large solar pumps including the PS2 solar pump which is of high efficiency with a wide power range from 150 W to 4 kW. They also sell a wide range of pumps (https://www.lorentz.de)• Davis & Shirtliff -also a reseller of all types of pumps including Dayliff DDPS60 and Sun-Flos range, which are solar-powered pumps suitable for water transfer in small-scale applications and installation of equipment (https://www.davisandshirtliff.com)• Other companies include Greenserve Agri-solutions, Chloride Exide, Grundfos, Wotech Kenya Ltd, Grekkon, Irrico International, Adritex Kenya and Generation Kenya Limited. Others offer various services from capacity building to extension services. For instance, Strathmore University does capacity building for technicians who may be self-sponsored or funded by companies, while the County Government of Kajiado provides policy support and extension staff on all aspects of agriculture including irrigation. Other stakeholders include transporters, traders and retailers who complete looping of an SPIS value chain.A number of challenges face the sub-sector of solar-powered irrigation, cutting across technological, policy, economic and social issues, and they include the following:#High initial costs: Although the prices of solar energy equipment have drastically dropped, making the technology affordable to medium-scale farmers and those with alternative incomes, the cost is still relatively high for smallholder farmers. For instance, a small solar pumping kit for irrigation costs about USD 350-800, which is still too expensive for poor farmers (Mati 2019). Moreover, most solarpowered pumping equipment is imported from China, India, USA, Germany and other countries and finding spare parts locally can be a challenge.There are few qualified technical staff to handle design, installation, operation and maintenance of SPIS and this affects the quality of products, design, installation and maintenance services for SPIS (http://kerea.org/voluntaryaccreditation-of-solar-pv-businesses-in-kenya).The peri-urban areas of Kajiado have been taken over by residential areas which occupy formerly fertile lands that could be irrigated. This means shrinking space for agriculture.c) Limited publicly available information on renewable resources to support investment promotion, decision making and energy planning.d) A limited local capacity to manufacture solar power components and equipment.e) Limited information on appropriate credit and financing mechanisms, which causes delay in project implementation. c) Multiple use of solar energy generated: SPIS are versatile and can be converted to other uses at farm level. They offer multiple use of energy which is especially important in areas not connected to an electricity grid. The solar energy is used for post-harvest processing of crops, lighting homes, charging mobile phones and other light industries. This eliminates the need to purchase fuels such as petrol and paraffin. Through improved access to energy and water, SPIS helps to stabilize, increase and diversify agricultural production (e.g., vegetables and fruits). The increased availability of food improves food and nutritional security, especially for smallholder farmers and their communities.d) Scalability: Solar-powered irrigation is applicable across multiple scales as pumps come in a range of capacities and solar panels can be added if additional power as required. SPIS can be implemented at individual farmer or community levels. The County Government of Kajiado has conducted a mapping of the potential sites for solar energy installations, and is in the process of piloting a new smart-grid solar technology (ALIN 2020).e) Reduced labor and drudgery: Solar pumping upscales farmers from using manual water-lifting devices such as bucket irrigation or treadle pumps. This is a major relief for women whose health is affected by manual irrigation methods. SPIS is low maintenance, easy to install, simple and reliable, and may operate unattended. Some smaller SPIS kits are portable, making them easy to share between farmers and for safe keeping.f) Environmentally friendly: Solar water pumping is a climate-smart choice, especially when compared with petrol, diesel or other fossil fuels. Overall, SPIS can play an important role in climate change mitigation, reducing greenhouse gas (carbon dioxide) emissions in irrigated agriculture by replacing fossil fuels with a renewable energy source.g) Resilience against drought/climate change: Farmers in dry zones regularly suffer crop losses due to droughts. Affordable pumping, especially with introduction of supplemental irrigation of crops, could cushion farmers against weather shocks. Being renewable, solar energy facilitates irrigation and thus attainment of SDGs that have a bearing on food security (SDG 2), water (SDG 6), energy (SDG 7) and climate change (SDG 13). The national government developed a roadmap for SDGs which is supportive of renewable energy including solar, as one way of climate change adaptation and resilience (Ministry of Devolution and Planning 2017).There are significant benefits of solar pumping solutions for women and youth. SPIS are often used for crops traditionally grown by women, such as fruits and vegetables. This could enable women farmers to engage in production of vegetables, improve household nutrition and incomes from sale of agricultural produce. Also, SPIS is a laborsaving technology which is attractive to youth. Although not quantified, key informants interviewed indicated that a large number of youth were engaged in SPIS in Kajiado.Management in Upper TanaThe city of Nairobi has a growing population, numbering 4,397,073 in 2019 (KNBS 2019). It is a thirsty city, suffering huge water deficits. The water demand in Nairobi city averages 750,000 m 3 /day against a delivery capacity of 525,000 m 3 /day (Gichuki 2015). The Upper Tana catchments supply the bulk of the water used in Nairobi through the Sasumua and Ndakaini dams, which draw their water from the Chania and Thika rivers, respectively. Nairobi being a major industrial hub in Kenya, its consumption includes both industrial and household water. However, increasing suspended sediment in the rivers has become a major issue as it increases the maintenance and water treatment costs. Indeed the water treatment costs often increase more than 33% during the rainy season, as sediment runoff fills and disrupts treatment equipment causing supply interruptions. Without intervention, this problem is likely to escalate, as climate change causes more intense rainfall events and population growth leads to more farming on steep watershed slopes. In addition, Nairobi's water treatment and distribution facilities are under pressure and face a deficit of 30% of water when the system is operating at full capacity. It is becoming clear that sorting this out requires interventions at the source, i.e., in the catchments where the resource managers are local farmers. Such efforts require supporting community actions in the areas where the water originates.Meanwhile, in the upstream catchments of the Upper Tana, the land owners/users who live upstream cultivate the steep, fragile lands prone to erosion, soil degradation and are generally resource poor. It is essential that downstream users support upstream actors to better manage the watershed and promote conservation. Residing on top of water catchment areas, these land users constitute 'unpaid watershed managers' of the natural resources, including the water collected in dams and taken to the city of Nairobi downstream.The city of Nairobi on its part has, among its residents and clients, large water users comprising companies with generous corporate social responsibility funds. Some of these companies and water utilities such as the Nairobi City Water and Sewerage Company are willing to support conservation and other beneficial activities in upstream areas where the resource comes from. Moreover, the city entities and land users would also like to see ecosystems preserved, agriculture practiced in a sustainable manner and watershed conservation that translates into cleaner water flows from the catchments. As opposed to previous approaches of one-off projects, this innovation brought together the water users downstream (Nairobi-based private and public institutions) who set up a long-term sustainable blended financing mechanism, the Upper Tana-Nairobi Water Fund which has since graduated into a fully incorporated trust in Kenya. It is a long-term financing model for watershed management combined with governance and having legal basis as a charitable public trust. The Water Fund created a platform for participation of public, private and development actors and communities, providing support and a delivery mechanism for SAI and watershed conservation, where downstream water users (at the tap) provide incentives (blended finance) for upstream communities (at the top) to conserve the sources of water.Type of innovation: This is a blended financing innovation with technological, environmental and socio-economic components. The Water Fund was the first of its kind in Kenya, and indeed in Africa.Following a successful proof of concept, a five-year project phase from 2015 to 2020 actualized to create the Water Fund as an enduring institution and implement various activities out of which successful outcomes were achieved: reduced erosion, increased tree cover, rainwater harvesting, crop diversification, increased incomes for farmers and investment flows from partners. This phase was implemented with funding support from the Global Environment Facility (GEF) through IFAD (IFAD 2015) and implemented by TNC in collaboration with partners. It entailed the following:Timelines: This innovation has a timeline of nine years (2012-2021) in two phases: (i) the first three years (2012-2015), implemented as a proof of concept phase, when baseline studies and partnerships building were done to test the business case for setting up a Water Fund modeled on experiences in other parts of the world but anchored in local realities and (ii) the second phase of five years (2015-2020) was the setting up of the Water Fund through a GEF-funded project culminating in the transition into a fully independent trust under Kenya law in September 2021.Proving a business case for the Water Fund: The Water Fund was initiated in 2012 through a threeyear proof of concept phase which was used mostly for gathering baseline data, hydrological and economic modeling and developing a stakeholder base. This stage was meant to determine the 'business case' for establishment of a Water Fund for Nairobi (TNC 2015). This entailed a series of studies over a three-year period meant to assess the economic viability of a Water Fund for the Upper Tana River basin. The studies were commissioned by a public-private steering committee comprising TNC and its partners. This coming together of the large companies led to financial commitments and goodwill for the Water Fund's establishment in Nairobi.A water fund is a governance and financial mechanism focused on science-based implementation of upstream land and water conservation measures necessary to meet water quality and/or quantity goals (Figure 5). It features a public-private partnership of government, public and private donors and private sector institutions -some of which are major water consumers 'at the tap' that contribute to the water fund operations and implementation fund and/or endowment. The endowment fund is a long-term financing mechanism to which the partners make contributions. Whether endowment or general implementation funds, they are used to support water and soil conservation measures 'at the top' (TNC 2015). These measures benefit local farmers through increasing agricultural yields by reducing soil erosion, improving crop production sustainably, taking care of water quality and catchment conservation.Identifying the benefits and costs: The Water Fund business case study focused on the benefits that would arise given a USD 10 million investment in priority sub-watersheds disbursed over a period of 10 years as a preferred scenario. Investment planning and watershed modeling were performed using economic analysis and a coupled SWAT-InVEST modeling framework. Subsequently, FAO's EX-Ante Carbon Balance Tool (EX-ACT) tool ( Source: TNC 2015.The financial support for water funds is used to promote sustainable land and water management practices upstream that filter and regulate water flow. These management practices can include strategically-sited tree planting and land terracing, natural water holding features and on-farm soil and water management practices. Funding is also used to support economic opportunities that enhance livelihoods and the quality of life for upstream communities that further incentivize farmers and landowners to implement sustainable management practices. Indeed, many of the interventions that improve water quality and quantity also lead to increased agricultural yields.Water funds can also enhance communities' ability to adapt to climate change, by building in resilience to fluctuating water supplies and temperatures.Implementation of water funds is a proven model founded on the principle that it is less expensive to prevent water problems at the source than it is to address them further downstream. The results of the Water Fund business case demonstrated a clear economic basis for the establishment of the Water Fund. It proposed a USD 10 million investment in Water Fund interventions showing that this is likely to return USD 21.5 million in economic benefits over a 30-year timeframe. The study projected that for every USD 1 invested by the Water Fund, stakeholders in the basin and Nairobi would see over USD 2 worth of benefits accrued (Schmitz and Kihara 2021). The payback period for the investment is calculated at approximately 20 years.The Water Fund provides a secure and transparent program through which public and private donors and partners who depend on clean water supplies from the Upper Tana watershed can direct resources to conservation strategies that will yield the greatest returns for the common good and the economy.Financial outlay: From a financial perspective, the business case recommended that to achieve the results required in the Upper Tana, an annual expenditure of some USD 1 million would be required over a 10-year period, impacting on some 50,000 farms and adjacent forests whereby most farms would be engaged to change their land management and soil management practices. This meant collective action by partners downstream and in the international community, who would mobilize at least USD 1 million annually, to try to achieve the target of USD 10 million that constituted the initial budget of the Water Fund (for a 10-year period).Theory of change: The function of water funds is premised on the principle that it is cheaper to prevent water problems at the source than to address them further downstream (TNC 2015). Investments in green infrastructure using natural systems to trap sediment and regulate water often provide a more cost-effective approach than relying solely on gray (built) infrastructure such as reservoirs and water treatment systems. The idea of a Water Fund for Nairobi was based on findings from other successful water funds that TNC had implemented elsewhere in the world. Examples include the cities of Quito in Ecuador and Rio de Janeiro, Brazil. By the time of its formulation in 2012, the Water Fund relied on experiences gained in addressing similar issues in Latin America, where over 30 water funds had been developed (TNC 2015). The Water Fund was thus planned with these concepts (Figure 6) of sharing the benefits of watershed conservation by upstream land owners/users through investments by downstream beneficiaries of accruing water resources protection and ecosystem services.Developing a blended finance system or 'water fund': This entailed mobilizing sustainable financing from donors, private sector and water users in the downstream city of Nairobi and in the international community to support agricultural intensification and watershed conservation activities in Upper Tana River catchments. Blended finance is defined as the strategic use of development finance for the mobilization of additional finance toward sustainable development in developing countries (OECD 2021). The problem addressed was the disconnect in availing a sustainable financing mechanism to support watershed management and SAI in the upstream catchments of the Upper Tana River Basin.The innovation started with a 'proof of concept' phase.Setting up the institutional structures: This entailed creation of a public-private partnership or steering committee. Grassroots activities were implemented in partnerships with county governments (Murang'a, Nyandarua and Nyeri) and some specific activities and deliverables contracted out to NGOs, such as the Sustainable Agriculture Community Development Programme (SACDEP) and the Green Belt Movement. The day-to-day activities were coordinated by staff in the secretariat with oversight by the Board of Management, which represents the managerial expertise responsible for the technical matters of the Water Fund. The overall direction of the Water Fund was entrusted to a board of trustees, the apex body responsible for delivery of the Water Fund and resource mobilization. A number of factors and activities contributed to the success of this innovation, such as the following:• Establishment and institutionalization of the Water Fund management platform. This involved identification of at private sector companies in Nairobi, and linking them with public sector institutions to create a public-private partnership to establish the Water Fund as a charitable trust incorporated under Kenyan law and governed by a board of trustees. The board of trustees was charged with overall implementation of the Water Fund, which worked through a set of advisory committees and a technical secretariat, responsible for the day-today management of its activities.• Mobilization of funds from both public and private sector institutions to support tangible activities in the upstream catchments. This included support from international stakeholders including the Swedish International Development Agency, GEF, IFAD, Frigoken Limited and Coca-Cola.• Investment flows to upstream catchment land users/land owners that supported sustainable land management and integrated natural resources management implemented by farmers and other land users in the Upper Tana catchments. The farmers in the identified priority conservation areas were rewarded in-kind through training, provision of free tree seedlings and nutritious fodder grasses, subsidized dam liners for water harvesting, subsidized seeds and linkages to markets.• Capacity building of farmers, farmer groups, community, county and national institutions was done using extension services from NGOs in collaboration with county governments (Murang'a, Nyeri, Laikipia and Nyandarua). Farmers were trained on best practices in crop agronomy, soil conservation, water harvesting and farming as a business.• Establishment of robust knowledge capture, management and learning systems so as to track progress made and share lessons both at local and national levels. Strong emphasis was placed on monitoring and evaluation frameworks to support the Water Fund in decision making and allowing for an adaptive management approach to the targeted incentive schemes, and also to allow for upscaling, policy integration and replication of lessons learned.The Water Fund had strong leadership from The Nature Conservancy (TNC) which hosted the secretariat and convened all the partners. The main partners included the Nairobi City Water and Sewerage Company, Kenya Electricity Generating Company, the International Centre for Tropical Agriculture, Tana and Athi Rivers Development Authority, Water Resources Authority, East Africa Breweries Limited, Coca-Cola, Frigoken Limited and the water technology company Pentair. Other than the funding partners described above, there are other partnerships with local NGOs that cover the three priority sub-watersheds of Thika-Chania, Maragua and Sagana-Gura. These included the Thikabased SACDEP, the Greenbelt Movement and Caritas. Partnerships with expert institutions (ICRAF, National Museums of Kenya and Jomo Kenyatta University of Agriculture and Technology) were also established to support scientific baseline studies, training and impact monitoring. The Water Fund is now an incorporated charitable trust in Kenya, with dedicated leaders and a growing partnership base and own financial and governance systems.A number of challenges have faced the implementation of the Water Fund. For instance, although at the beginning, water harvesting farm ponds had not been planned for, it became evident that water shortages during the dry season would result in direct over-abstraction of the rivers, and excess flooding during the rainy season still caused sedimentation. To solve these problems, rainwater harvesting and storage in lined farm ponds were added to the activities supported by the Water Fund. These farm ponds became popular but the cost of UV-treated dam-liners is high for farmers, hence the Water Fund provided them while the farmers bore the cost of excavation. The fact that dam liners were provided at a great subsidy (which is the largest cost) enabled the high adoption of water harvesting in the target areas. Landslides (considered a geological form of erosion) continue to occur in the most upstream parts of the catchment causing erosion damage and sedimentation of rivers, even in some steep forested areas. Some of the locations were totally inaccessible and took a long time to rehabilitate.Climate change and erratic weather has seen extreme events of rainfall and drought, which hamper both crop intensification and watershed protection. Although hydrological studies have proved improved water quality over the short term, there is still a need for long-term data collection to be able to advise policy on the scientific outputs emanating from Water Fund activities. The COVID-19 pandemic starting March 2020 curtailed a number of planned field activities that could not be adapted to a virtual support and implementation system thereby derailing the pace of advancement of the Water Fund deliverables.The Water Fund has generated measurable benefits over the past six years for people living in the watershed, for the residents of Nairobi and for watershed functions: over 44,000 farming households (about 220,000 people) are on record as having adopted improved soil conservation and water-saving technologies. The Water Fund focuses on the most at-risk areas of the watershed and helps farmers take simple steps to increase water and food security. Strategies included tree planting for agroforestry and reforestation (Figure 7), terracing, water harvesting and planting vegetated buffer zones along river banks. Generally, the Water Fund generated a wide range of benefits enumerated as follows:• 44,725 farmers have implemented land and water conservation measures By fostering multi-stakeholder alliances and partnerships, while also being a broad-based publicprivate partnership, the Water Fund facilitated alliances incorporating beneficiary groups, NGOs and private sector and public service providers along an innovative implementation strategy, and partnerships can be formed in the future. This is the underlying concept of water funds in providing financial sustainability; through payments for ecosystem services which require both a market for suppliers and the demand of recipients.The tools for the economic monitoring of return on private sector investment were integrated into the Water Fund management structure. The success of the Water Fund was measured against its efficiency in disbursing funds and to provide incentives for catchment management and to improve downstream water quality and quantity. Particular attention was paid to good targeting, i.e., the extent to which the most vulnerable beneficiaries such as poor and food insecure women, youth and female-headed households (now standing at 38% of total) benefited from Water Fund incentives and whether the incentive schemes employed were appropriate to the needs of beneficiaries. As a result, a conservative assessment of the results predicted by the science-based business case demonstrates a viable return on investment in the implementation of the Water Fund while direct community benefits have grown several fold from the initial estimates (key informant interviews).Scaling out: Beyond the Water Fund, the rolling out of similar activities inside Kenya and across the African continent is a testimony to the encouraging results of this initiative. Some areas of uncertainty that remain include the degree to which biodiversity in the region is protected, the degree to which the project will reduce the risk of flooding events in the longer term and the sustained levels of sediment reduction being attributed to the project. However, the Water Fund is most certainly making encouraging strides toward climate resilience, nature-based solutions in the water sector, livelihood improvement and evidence-based policy making in the region.The Kenya case study on pathways to innovation for SAI includes three case studies, across different agro-ecologies and contexts, that can be considered successful cases of SAI. The first case of water harvesting and storage in constructed farm ponds to provide water for supplemental irrigation of food crops is set in semi-arid agro-ecologies of eastern Kenya (Kitui, Machakos and Makueni). It started with a passionate champion and resource poor, food insecure small-scale farmers in a dry environment who learn and are supported to construct farm ponds. The technological innovation is pushed by financing models and capacity building for it to work.The second case of solar-powered irrigation in peri-urban areas of Kajiado County -which has grown mostly through a private enterprise push -is solar water pumping for irrigation and entrepreneurial farmers in a market-responsive initiative. Whereas a conducive policy environment facilitates this innovation, the role of the public sector in extension or capacity building is negligible, pointing to a possible future where innovation tends to be demand driven with the private sector at its core.The third innovation on blended finance unveils the possibility of raising sustainable financing for agricultural intensification, driven from a watershed management perspective in the Upper Tana catchment, with blended finance from institutions based in the city of Nairobi, located downstream. The concept of the Water Fund, although not new internationally, was tested and by building credible evidence that it works was able to attract funding. The three cases have certain common features that describe the pathways. These include strong and focused leadership especially at the beginning, bundling of innovations, partnerships through which initiatives share synergies and responsive farmers willing to try new things. Financing of the innovation through various innovative modes, new knowledge and learning were at the core of each innovation.Some key challenges were observed, including scarcity of data, particularly on financial issues, with much information being provided verbally from interviews. In addition, where private sector engagement is strong, e.g., in solar-powered irrigation, the partnerships are difficult to pin down as there is competition and lack of central databases concerning what has happened. The field verification of each SAI case revealed much more information than use of the Internet, especially as so much remains unrecorded. In addition, the scaling process can be slow (in terms of reaching critical numbers of adopters), such as impacts on food security, climate change resilience and poverty reduction, which can be long term. The Kenya case study therefore shows that the pathways differ depending on local conditions and expected goals.1) Centering end users in the innovation: Farmers should be engaged throughout the innovation process. It is emerging that innovation thrives when farmers and local communities are included as investors or stakeholders rather than as beneficiaries: for example, in the construction of waterharvesting structures. They contribute to the ideas shaping the innovation, and are encouraged to drive it practically. In addition, end-user needs should be included through stakeholder engagement and development of tailored context-specific solutions.2) Financing: Innovative financing is often as important as technology in driving innovations. Quite often, end users are resource poor small-scale farmers who may require some financial push without creating a dependency syndrome. Thus, the financing models that have a cost-sharing element, especially in-kind (e.g., water credits), have a greater chance of success. Interesting examples at different scales of innovation include mobile phone financing for solar pumps ('payas-you-grow') and conservation measures financed by the public-private partnerships through the Water Fund.3) Innovations take time to reach 'at scale': Innovations take time to be tested, implemented and upscaled -at least eight or more years in the cases covered in this report. It is therefore imperative for all partners to have patience and to plan long term, including in the financing of the initiative.4) Leadership: Innovations usually benefit from strong leadership, which should be identified and supported from the very beginning. The identification and support of champions (both individual and institutional) facilitates a coordinated pathway for growing the innovation. For example, strong leadership by a respected entity, the TNC in Upper Tana, was instrumental in putting together the partners needed to build up the Water Fund.Conducive government policies, their implementation and support through relevant institutions facilitate smooth operations and easier upscaling of innovations. One example is favorable import tariff policies for solar-powered equipment. Government policy gets informed by innovation based on lessons learned. Innovations can lead to policy reform. 6) Bundling: The bundling of innovations when introduced from the beginning gives the initiative an integrated approach for both problem solving and success, enabling targeting of incentive, upscaling, policy push and out-scaling of lessons learned. For example, the success of solar pumps required a bundle of innovations in finance, institutions, policy and technology. Identification of the root cause of problems and what should be changed by a minimum number of actions offers a pathway to innovation. 7) Partnerships: Partnerships facilitate a multiplier effect helping to reduce transaction costs, share responsibilities and provide support according to strengths and needs of stakeholders. Integrated approaches are necessary and require partnerships in order to meet the needs of various actors at the financing and policy side as well as those of land users at the implementation end. Partnerships (of government, NGOs, development partners, researchers, farmers and private sector) enable pulling together resources, synergies and project implementation.The Commission on Sustainable Agriculture Intensification (CoSAI) brings together 21 Commissioners to influence public and private support to innovation in order to rapidly scale up sustainable agricultural intensification (SAI) in the Global South.For CoSAI, innovation means the development and uptake of new ways of doing things -in policy, social institutions and finance, as well as in science and technology.Contact us: wle-cosaisecretariat@cgiar.org wle.cgiar.org/cosai","tokenCount":"11809"} \ No newline at end of file diff --git a/data/part_1/0437650394.json b/data/part_1/0437650394.json new file mode 100644 index 0000000000000000000000000000000000000000..5457f7671f62d31c3e2da8c3fe1a71a2ad547051 --- /dev/null +++ b/data/part_1/0437650394.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1b303c0176d9647a606561c671e85650","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0d2cc249-7852-40e2-96a5-8ded81620b82/retrieve","id":"1492639360"},"keywords":[],"sieverID":"dd3de427-9a45-4d4e-bbe6-ccd725852e90","pagecount":"19","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.vThe International Livestock Research Institute (ILRI) and the Food and Agriculture Organization of the United Nations (FAO) organized a workshop of local, regional and international food safety stakeholders. The workshop was held at the ILRI Nairobi campus on 24 February 2014. The main objective of the workshop was to introduce current and new projects on food safety to stakeholders. Thirty-two participants attended the meeting, representing the main institutions involved in food safety in East Africa, including the African Union-Interafrican Bureau for Animal Resources (AU-IBAR), Centers for Disease Control and Prevention (CDC), the Department of Veterinary Services (DVS) in Kenya\"s Ministry of Agriculture, Livestock and Fisheries, FAO, ILRI, the Kenya Bureau of Standards (KEBS), the Kenya Medical Research Institute (KEMRI), the Kenya Meat Commission (KMC), the World Organization for Animal Health (OIE) and the World Health Organization (WHO).The meeting was divided in three main sections. During the first part, each stakeholder institution was introduced and its representative gave a short five-minute presentation about institution\"s goals and priorities on food safety. The second section featured technical presentations from FAO and ILRI representatives in relation to ongoing or future projects on food safety. In particular, FAO\"s key food safety initiatives are (i) risk-based inspection systems/import; (ii) good practices throughout the food chain; (iii) data generation on various food safety issues (for example, mycotoxins, chemical hazards, pathogens and antimicrobial residues); (iv) multi-factorial policy and decision-making; (v) risk analysis toolkit; (vi) early warning/rapid alert surveillance and (vii) effective response to emergencies.The meeting ended with a plenary discussion about the technical presentations by ILRI and FAO. Some relevant points were: (i) informal markets cannot be too regulated due to the risk of hiding, increasing the public health risk; (ii) decision-making needs to use a mix of methods; (iii) there is a need for a coordinated surveillance; (iv) although food safety standards exist, there is weak capacity to enforce them; and (v) there is lack of knowledge about the main foodborne pathogens and their impact, the levels at which they cause harm and the likely consequences of taking no action to reduce risk.Cristobal Verdugo represented ILRI at an \"Early warning -rapid alert\" workshop organized by FAO in Rome in October 2013. During that meeting, he held several bilateral meetings with representatives from the other attending organizations, among them Andrew Edewa, food safety officer at AU-IBAR. Considering the possible synergy between ILRI and AU-IBAR, Verdugo proposed a meeting between both institutions in Nairobi to explore possible areas of collaboration on food safety issues. A meeting proposal was presented to ILRI and FAO managers, who then decided to scale up the proposal and invite other stakeholders to better understand the needs of the several actors involved in food safety in East Africa and explore possible areas of collaboration among the participating institutions. With these objectives in mind, a workshop was organized at the ILRI Nairobi campus, bringing together key stakeholders in food safety in East Africa.The objectives of the meeting were to:1. Present new or current activities in the area of food safety that ILRI expects to implement, or has implemented, in Africa.2. Present new activities in the area of food safety that FAO expects to implement in Africa.3. Obtain feedback from stakeholders about the presented project activities.4. Understand the needs and challenges of stakeholders in the area of food safety.5. Create links between stakeholder institutions and explore possibilities of research collaboration.Opening remarks by Jimmy Smith, Delia Grace and Jean KamanziStakeholder representatives gave brief presentations (3-5 minutes) on their institutions\" food safety interests and the priorities for the future.Abigael Obura (CDC Kenya): CDC Kenya is an agency of the government of the United States of America that works with the Government of Kenya in control and prevention of diseases (malaria, tuberculosis and HIV/AIDS) using the One Health approach and has sentinel sites for disease surveillance. Aflatoxins are a major food safety issue; CDC Kenya was involved in responding to the aflatoxicosis outbreak in Kenya in 2004. An aflatoxin serosurvey carried out in 2011 revealed that 78% of analyzed samples had detectable levels of aflatoxins and aflatoxin exposure cut across socioeconomic levels, indicating that this is a general public health problem. In light of the porous borders in the region, the serosurvey will be extended to the eastern Africa region (Tanzania, Uganda, Ethiopia and Rwanda) to target public health interventions after identifying populations at risk.Christopher Mutungi (Egerton University): Food safety work is carried out by the Department of Dairy and Food Science and Technology. Work is being done on mycotoxin and pesticide residues; effect of hermetic grain storage systems on reducing aflatoxin levels in stored grain; mycotoxin residues in animal products and breast milk and food losses in the dairy chain. Priority: Adoption of a holistic approach to food safety in line with changing food production and processing practices.Joyce Thaiya (DVS): This is a specialized department in the Ministry of Agriculture, Livestock and Fisheries. The veterinary public health section focuses on the safety of animal-source foods and carries out inspection and certification of meat and milk products. Meat inspection is carried out at all abattoirs in the country and along the value chain. 2013) that covers various food products, including dairy and meat products. Most of the other food standards deal with microbiological quality. There is a regional standard that covers food hygiene (EAS 39). The Kenya national working agreement for the catering industry covers food safety certification for hotels and other catering establishments. Quality assurance in food processing factories includes a process inspection report, certification and the KEBS standardization mark of quality. With regard to food inspection in the market, aflatoxin in maize products was found to be widespread, mainly because the maize is contaminated at the farm level. Challenges: Training of food manufacturers, limited testing facilities and infrastructure at food factories and communication of food safety information.Charles Mbakaya (KEMRI): He discussed the link between the environment, nutrition and health based on a conference paper to be presented soon. National food safety specialists act as focal points on animal health issues. Aquatic food safety is an important area from the point of view of antimicrobial residues. OIE has four regional offices in Africa, each of which is linked to the regional economic communities operating there. In East Africa, they are working with the East African Community and the Intergovernmental Authority for Development to raise awareness on animal health and food safety standards. There is a network of international reference laboratories with expertise on disease; others have wider expertise on food safety. Currently there are no reference laboratories in Africa but there is a twinning arrangement in Namibia and Uganda focused on upgrading the regional laboratories to become reference labs in future. It was noted that there is a need to have reference laboratories in Africa that have capacity for food safety analysis, such as dioxin and pesticide residues. this is soon to be finalized. An African Union food safety coordination mechanism is to be set up and linked to country systems.This session included two sets of technical presentations about current or new projects in the area of food safety. The first block was delivered by Mary Kenny and Jean Kamanzi from FAO.The second block was delivered by Tom Randolph and Delia Grace from ILRI. A summary of those presentations is discussed next.Food safety in FAO (Mary Kenny)The five main strategic objectives of FAO were introduced. These are (i) eradicate hunger, food insecurity and malnutrition, (ii) improve provision of goods and services from agriculture, forestry and fisheries in a sustainable manner, (iii) reduce rural poverty, (iv) enable more inclusive and efficient food and agricultural systems at local, national and international levels, and (v) increase the resilience of livelihoods to threats and crises.Following those objectives, the main challenges in the area of food safety were presented: (i) lack of food safety programs, (ii) poor coordination of actors, (iii) lack of commitment and (iv) lack of capacity to participate in formal markets.The FAO food safety unit was introduced and its structure presented. Its core activities are (i) scientific advice, (ii) capacity building, (iii) support policy development, (iv) supporting the participation of member countries in the Codex Alimentarius Commission and (v) facilitating global access to information and the development of food safety.Current key initiatives conducted by FAO in the area of food safety were presented. These include (i) risk-based inspection systems and import, (ii) good practices throughout the food chain, (iii) data generation on various food safety issues (for example, mycotoxins, chemical hazards, pathogens and antimicrobial residues), (iv) multi-factorial policy and decisionmaking, (v) risk analysis toolkit, (vi) early warning and rapid alert surveillance and (vii)effective response to emergencies.The results of a recent survey on food safety needs in East Africa were presented, observing important needs across the spectrum of food safety activities. In particular, the needs between high-income countries and low-and medium-income countries were compared. Both groups of countries presented a need to improve their laboratory capacity and food inspection systems (a lower score was assigned to high-income countries). However, the low-and middle-income countries had an additional need to improve elements related to education and outreach on food safety hazards.The presentation finished with some forthcoming opportunities, such as: (i) a regional early warning and rapid alert surveillance workshop on food safety (East Africa), (ii) a regional multi-factorial policymaking workshop, (iii) food safety situational analysis for East Africa and (iv) a food safety strategy for East Africa.The presentation began by highlighting the current focus of FAO projects on food safety, namely, (i) practical training materials and toolkit on risk analysis, (ii) food safety policy and risk management decision-making using a multi-factor approach, (iii) supporting countries to more effectively participate in meetings of the Codex Alimentarius Commission, (iv) expert scientific advice and data input to FAO and WHO, (v) data collection on levels of mycotoxins in sorghum, (vi) legal frameworks and food control systems and (vii) support of value chain operators.Additional tools to strengthen scientific approaches include (i) a tool to assess the performance of sampling plans, (ii) a user-friendly web-based tool to guide sampling plans for mycotoxin detection, (iii) a risk management tool for control of Campylobacter and Salmonella in chicken meat and (iv) a tool to assess the performance of presence/absence sampling plans and concentration-based sampling plans for microbiological hazards.An account was given of ongoing and pipeline projects in Africa:• Project to strengthen coordinating capacity in Africa• Projects to strengthen national Codex infrastructure  Central Africa: Cameroon, Gabon and Central African Republic (ongoing 2013-14)  Eastern Africa: Ethiopia, Rwanda and Burundi (pipeline)  Southern Africa: Zimbabwe, Swaziland and Lesotho (pipeline)The presenter highlighted scientific input requests from Codex (and member countries), addressed by groups of experts, in the areas of (i) veterinary drugs and food additives, (ii) prioritization of parasites at global level and (iii) risks with low-moisture foods. He gave practical examples of each of the above points. In a particular example, a multi-factor approach conducted in Uganda recognized five food safety issues as important. These were (i) Brucella spp. in dairy products, (ii) aflatoxins in maize, (iii) acute diarrhoea in children under five years of age, (iv)Taenia solium cysticercosis in pork and (v) methanol in unregulated alcohol.Support has been given to the development of value chains, focusing of the use of good agricultural practice, good manufacturing practice, good hygiene practices and HACCP. In this regard, training on production of tomato, maize, meat and cashewnut has been carried out in Tanzania for public and private groups. Monitoring and evaluation through following up with participants on the impact of training informs future needs. Similarly, a workshop has been conducted in Rwanda for public and private groups on safe production of milk, passion fruits, rice and maize chains.The presentation gave an overview of the research program. ILRI\"s research has been mainly focused on food safety of animal origin. However, in recent years, the institute has adopted a multidimensional approach to research on food systems. The approach focuses on small-scale farming and informal market systems which mainly provide animal-source food to the poor.The short-term objective is to increase productivity for smallholder farmers and informal marketing.Food safety in informal markets (Delia Grace) An introduction about ILRI was given, highlighting a staff of more than 130 international scientists, many from developing countries, two large campuses in Kenya and Ethiopia, and several offices in other areas of Africa and Asia. ILRI supports projects on food safety in informal markets. Recent projects have shown that informal markets can perform better than formal ones in some developing countries. In East Africa, over 80% of animal-source foods foods are sold in informal markets and supermarkets are fairly limited. Interestingly, it has been observed that in some regions, supermarkets are less safe than wet markets. Studies by Jabbar et al. and Lapar et al. showed the willingness to pay more for food safety.Another important research output highlighted during the presentation was the high levels of Trichinella in pork and the risk of Cryptosporidium in Nairobi from eating raw vegetables grown using manure from cows. Additionally, it has been observed that microbiological hazards are generally the most important.Past and current food safety projects by ILRI were then described. These include (i) safety of pig feed (Uganda), (ii) multi-pathogen surveys (Tanzania), (iii) Safe Food, Fair Food project (several countries), (iv) rapid assessment of food safety and nutrition research opportunities (several countries), (v) nutrition in value chains (several countries), (vi) pork safety (several countries), (vii) \"More Pork\" and (viii) \"Cow Killer\". In general, chosen value chains are on contextual issues related to current policies and their enforcement and the practice on the ground.There are a number of food safety research activities on aflatoxin, namely, (i) risk assessment of aflatoxins in the dairy chain, (ii) afla-extra: review and mapping of aflatoxin and impact on livestock, and (iii) work at the Biosciences eastern and central Africa (BecA) hub at ILRI on screening maize varieties for aflatoxin resistance as well as decontamination. Projects on aflatoxins developed in partnership with other institutions are: (i) market incentives for aflatoxin management (with the International Food Policy Research Institute), (ii) aflasafe (with the International Institute for Tropical Agriculture) and (iii) control of aflatoxin in groundnuts (with the International Crops Research Institute for the Semi-Arid Tropics).Other projects managed by ILRI\"s Food Safety and Zoonoses program and indirectly related to food safety are under the Dynamic drivers of disease in Africa project. These include: diseases associated with irrigation, assessing and developing livestock traceability systems, and risk of Ebola emergence in Uganda. The presentation ended with a discussion on scaling up of food safety projects.Needs, gaps and opportunities Plenary discussions followed the technical presentations. The main issues discussed are highlighted below.On the question of how to strengthen domestic markets, it was noted that informal markets contribute towards a significant proportion of the national gross domestic product of developed countries. Over-regulation is likely to lead to informal traders going underground, thereby increasing public health risks. Thus, there is need for pro-poor policies as well as stakeholder information and education. Due to limited resources, the main focus has been on export markets.On the question of how to get data, it was recognized that there is a lack of capacity in public institutions in addition to a lack of data within domestic markets, especially informal ones. In this regard, it was stated that ILRI\"s objective is to generate evidence whereas FAO is attempting to look at the core data that exist, specifically, what data are available, gender issues and food security elements around decision-making. These last two points triggered a discussion about how one would weight each of these areas (gender and food security) and how to measure them. The discussion led to the statement that policymaking needs to use a mix of methods and we need to be sure that research outputs are truly useful. Moreover, research should include participatory methods to ensure that stakeholders have the opportunity to provide some input.We need to generate data on the pathogenic microorganisms of importance to food safety, the minimum and maximum levels at which they cause harm and the likely impact of potential food safety issues: what are the potential threats, what would happen if they escalate and what would happen if we do nothing. Similar questions were also stated for chemical issues.Another point was the need for a better surveillance approach. For example, the baseline levels of several food safety issues are currently unknown. It is important for surveillance to be conducted in markets through a food chain approach that considers economic issues.Moreover, there is a need for coordination between the various stakeholders and with the intelligence that we have already.Regarding the need for food safety standards and finding the middle ground between providing food safety without sacrificing food security, it was stated that standards exist but the problem is the weak capacity to comply. Some institutions provided information regarding specific needs that they have identified in relation to food safety. Codes of inspection  Profiling of diseases  Level of antimicrobial and drug residues in the meat and milk  Capacity building along the food chain to support food safety  Laboratory services  Self-assessment in food production; something specific for farmers or producers to use to ensure that the food that they produce will be safe. Surveillance: from a public health point of view, there is need to move from reactive to proactive approaches. Some surveillance data from rumour mills; not in a structured way but there is some follow up through DVS. There are not enough personnel to do this in a very intensive way. Problem with surveillance is due the huge fragmentation of the data. DVS aids at the slaughterhouse and a different group at the butchery. There is need for a more integrated approach to food safety management. Data may exist but it is uncoordinated; a coordinated approach is needed.BecA-ILRI hub  Variation in the laboratory results obtained  Lack of quality assurance between laboratories  Lack of accredited laboratories in Africa","tokenCount":"3029"} \ No newline at end of file diff --git a/data/part_1/0449235048.json b/data/part_1/0449235048.json new file mode 100644 index 0000000000000000000000000000000000000000..181fc53308d7c4ca83b3423551ac541c699482c3 --- /dev/null +++ b/data/part_1/0449235048.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"deb185dd6eba08eaad0f2b4b12ed4866","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d2d7a0fc-990c-4216-827f-dc7ab4a78816/retrieve","id":"1376827669"},"keywords":[],"sieverID":"5ee2410b-abe8-43ef-92b2-5b876cbbbd89","pagecount":"12","content":"Agriculture is under-performing because of women's unequal access to productive resources. At the same time agriculture also faces formidable challenges; from increased food demand to climate change impacts. Closing these gender gaps, therefore, is beneficial for not only women and men but also agriculture.CGIAR researchers are well aware that to help achieve more gender-equitable distribution of food and income, they must urgently find more effective ways for enabling poor women as well as men to benefit from the adoption and sustained use of innovations resulting from research. To fulfill this commitment, CGIAR has in recent years accelerated longstanding efforts to integrate gender perspectives into its research through capacity building and institutional change.A System Level Gender Strategy was devised in 2011 to ensure that the global CGIAR Research Programs (CRPs), also launched in the same year, could address gender issues decisively.Operational responsibility for gender research has resided strictly with the CRPs and CGIAR Centers, while the role of the CGIAR System Management Office has been to provide technical advice, facilitating and leveraging joint efforts to form partnerships and enhance capacity for gender mainstreaming in the CRPs. This brief describes these efforts and their contribution to gender mainstreaming across CGIAR.CGIAR was charged by the Fund Council to build on gender and diversity programming initiated in the early 1990s, as well as the opportunity created by the new, global research programs, to adopt a more systematic approach for addressing gender issues in agriculture.With the aim of accelerating the development of capacity for research on gender in CGIAR, the System undertook the Gender Research Action Plan (CGIAR Consortium, 2014) developed with support from the CGIAR Fund Council. The program addresses shortcomings identified in a 2013 Assessment of Gender Mainstreaming in CGIAR (CGIAR Consortium, 2013) that identified the critical importance of strengthening research capacity in the social sciences and echoes findings of a previous system review ( CGIAR Science Council, 2009). The Plan provided resources for Postdoctoral Fellowships; university-supported mentoring, coaching and leadership development especially for postdoctoral researchers; knowledge sharing and good practice exchange in the Network through the CGIAR electronic platform; as well as technical advice and monitoring from the System Organization (then known as the Consortium). (Pie chart to be inserted here)The Action Plan was designed to accelerate the integration of gender in research which by 2013 was still uneven, with some Programs lagging behind others. A scoping study in 2010 had identified the need for a system-wide policy on gender (mandating dedicated strategies and work plans) and emphasized the importance of gender mainstreaming in all CRPs. In response, the Consortium Board resolved to design a CGIAR strategy for this purpose (CGIAR Consortium Board, 2011). It defined two branches for gender mainstreaming: one intended to ensure an inclusive workplace that would effectively recruit and retain the best research talent; the second intended to ensure the use of gender analysis to inform the entire research cycle: i.e., targeting, priority setting, research design, implementation, adoption and use of results, monitoring, evaluation, and impact assessment. This Brief does not cover CGIAR efforts to deal with gender and diversity in the workplace, its focus is on mainstreaming gender in research.The system-level Gender Strategy expected the gender relevance of CGIAR research to improve and stated that all CRPs would deliver results beneficial to poor rural women in major target areas within four years of inception. In addition, the strategy specified guidelines for the development of CRP gender strategies and outlined the terms of reference for the expert community of practice-the CGIAR Gender and Agriculture Research Network.The Consortium Level Gender Strategy catalyzed the preparation and retro-fitting of program-level Gender Strategies, even as CRPs were well into implementing their research (Gender CGIAR, Gender Strategies). However, by 2013 it was clear that it was difficult for Programs to fill gender gaps in the ongoing research and to muster the research capacity to do this.System-level incentives were created for CRPs to integrate gender in research. The Consortium required that each CRP include a gender budget in its Gender Strategy and subsequently in its annual Program of Work and Budget (POWB) . Annual Reports included a set of gender performance monitoring indicators. In 2013, Fund Council members asked the Consortium to report on progress on gender every six months. The Consortium Board decided that CRP Directors would be accountable to the Consortium for reporting satisfactory gender research results and for progress in relation to performance indicators included in the CRP Annual Report, and that the approval of a gender strategy be a condition for CRPs to receive W1-2 funding from 2014 onwards. In 2015, CRPs began developing proposals for their second phase, known as the CRP 2 Portfolio, during which time CRPs were required to include how research on gender would be integrated and financed.In 2013, the Consortium Board adopted a policy that made financial support from CGIAR Fund windows 1 and 2 contingent on satisfactory performance in allocating resources and delivering results. This prompted CRP leadership to earmark resources for the integration of gender into research with particular care. As a result, from 2013 to 2016, CRP budgets showed a steadily increasing commitment to investment in gender research, which was largely matched by actual expenditures, despite budget cuts since 2014 (CGIAR Consortium, 2016).In addition, CGIAR science leaders and gender researchers received guidance from the Gender Network for planning and integration of gender into CRP budgets and reports. The guidelines, which some of the CRPs have adopted, were designed to help researchers budget differently for research projects completely focused on gender issues than for research projects with another focus in which gender, while integrated, plays a relatively small role (Ashby, 2015). The In addition, the Gender Network has published information about gender training on its website, including blog posts reporting on key experiences.The CGIAR Gender and Agriculture Research Network plays a vital role in mainstreaming gender in research carried out by CRPs and Centers. In the few years since its formation, the network has evolved into a community of practice, which provides gender researchers with an effective means to share knowledge and experience among themselves, while channeling their collective input into the strategic framework CGIAR has established for fulfilling its commitment to deliver concrete benefits for poor rural women and men. CGIAR gender researchers have embarked on several cross-CRP initiatives in recent years, which illustrate particularly well the added value of a networking approach for gender mainstreaming.Since 2013, CGIAR Research Programs (CRPs) have been required to provide a self-assessment of the status of gender mainstreaming in their Annual Reports, based on two performance indicators, designed to track performance in a standardized way over time on:• Gender equality targets in place -the extent to which the CRP has clearly identified the changes in beneficiary gender equality that it intends to produce by defining a baseline and setting targets• Institutional architecture for gender mainstreaming in place -the extent to which the CRP and Center(s) have defined responsibilities, allocated resources and implemented practices for generating and using research evidence on gender equality Each indicator can be self-assessed at one of three levels: whether the Program \"approaches requirements, \"meets requirements\" or \"exceeds requirements\". An analysis and commentary is available at Gender CGIAR, Gender Mainstreaming Performance Indicators.This is a catalogue of research studies which has been developed to make it easier for researchers to locate recent gender-related research in CGIAR Research Programs and contact each other about this work. The catalogue will provide input to the Fund Council Gender Monitoring Framework Indicator \"Data Collection\", which monitors the rate of change in compliance with minimum standards for sex disaggregated data collection.The Gender Network played a key role in launching the cross-program global study on norms and agency (GENNOVATE) which addresses a critical evidence gap. The Network provided support through training, expert consultancies, and workshops on methodology, as well as communications and knowledge sharing. The research involves case studies (in 125 rural communities of 26 countries so far) that use a standardized method to explore how gender norms encourage or hold back agricultural innovation. A key feature of GENNOVATE is its focus on ensuring cross-site consistency in methodologies among programs so that data can be pooled to increase the scale and relevance of gender research.The Gender and Breeding Working Group was formed in 2015 to address a different kind of gap: the lack of practical approaches for enabling breeding projects to take gender considerations into account when setting objectives and prioritizing traits. A key premise of this work is that high-throughput genotyping and genomic selection will increase breeding precision and speed up selection, better enabling CGIAR breeders to take into account strategic gender-differentiated traits. As the CRPs ramp up the collection of sex-disaggregated data, this should exponentially improve their capacity to characterize farmer preferences and prioritize traits of social and economic importance, opening up new opportunities to address the contrasting preferences of men and women producers for different traits in plants and animals and thus promote more inclusive and equitable adoption of improved genotypes.In October 2016, the working group, in collaboration with the Gender Network, hosted the Gender, Breeding and Genomics Workshop in Nairobi, Kenya. Its aim was to identify knowledge gaps and \"must-have\" ingredients of successful, genderresponsive breeding initiatives.Participants also explored the implications of the genomics revolution, particularly the new opportunities and entry points it offers for effective integration of gender in breeding research.The network's gender and breeding working group has recommended the use of economics methods and tools. Developed for a workshop held in Nairobi last year, the authors present economic methods that address these research questions, analyzing their uses, protocols, and pros and cons. The methods cover the spectrum from diagnostic research to evaluation. The authors demonstrate that the application of economic methods to large, nationallyrepresentative datasets allows the extrapolation of research results to wider regions and crosscountry comparisons. The objective is not to replace qualitative with quantitative methods, but to achieve a balance.A further challenge for the CRPs is to incorporate gender analysis into their economics research. This is critical for grounding and orienting such research for the delivery of agricultural innovations that offer concrete benefits to poor rural men and women.To this end, in 2016, the Gender Network made a specific outreach to involve economists across the CGIAR system in sex-disaggregated data collection and analysis through knowledge sharing. In April of that year, a webinar was organized to discuss how standards for the collection of sex-disaggregated data used in gender analysis have been applied to date, with a focus on the key lessons that CGIAR Centers and their partners have learned. Later on that year, in September, the Network developed the concept for a workshop submitted by the CGIAR Research Program on Policies, Institutions and Markets (PIM) for CGIAR economists with no prior knowledge of gender research or sex-disaggregated data collection. The workshop's objective was to enable participants to acquire and apply the latest advances in knowledge on incorporating gender into the design of quantitative research, as well as data collection and analysis.In 2014, a set of guidelines on sex disaggregated data collection was developed by CGIAR Research Program on Policies, Institutions, and Markets (PIM), with contributions from network members and the IFPRI Gender Task Force, and endorsement from what is now known as the CGIAR System Management Office. This document identifies simple and achievable steps for gathering such data and raises issues that researchers should consider throughout the research process, such as who should provide information, the unit of analysis, and the research context (Doss, 2014).Launched in 2016, the network has also facilitated knowledge sharing webinars to (1) discuss how the guidelines have been used so far, including any new insights garnered and challenges faced; (2) discuss the main goals and contributions of the working paper on the indicators of gendered control over agricultural resources and whether it is possible to define robust indicators of gender gaps in use and control over resources that are likely to impact and be affected by agricultural innovation; and (3) contribute to the on-going development of a multistakeholder platform to develop and harmonize indicators for assessing the impact of agricultural innovation towards the diverse sustainable development goals.Support for the Network in communications, knowledge sharing, and data and information management has aimed at promoting more dynamic scientific consultation and collaboration, as well as improved access to information and resources combined with new opportunities for knowledge sharing. This support has helped establish a sound basis for effective interaction between Network members and opened up continuous information flows between different user groups within the Network. The various tools and products developed for this purpose have been tailored to the expressed needs of Network members New communications products -including a dedicated website and monthly bulletin -have heightened the visibility of CGIAR gender research among donors, partners, and researchers, while also facilitating access to news, data, information, and working groups. In 2016 alone, the Gender and Agriculture Website provided links to about 200 gender-related blog posts. It also served as an archive for information about Network activities and provided a neutral space for showcasing genderresponsive research conducted by CRPs and Centers.A report series titled \"Change in the Making\" was launched in October 2015 to provide CGIAR Fund donors and others regular updates on advances in research towards the sub-IDOs on gender and equity. The first issue, prepared in close consultation with gender researchers across CRPs, focused on \"gender-equitable control over productive assets and resources,\" drawing on published findings from recent work.Other tools and products have provided effective ways to connect dispersed members working on gender in different programs and regions. A \"living\" list of gender researchers, for example, has helped determine who is working on gender and better involve them in key conversations. The support team has also created and facilitated knowledge sharing opportunities to promote mutual learning on specific topics.As mentioned, a webinar series on issues related to gender and agriculture was designed in collaboration with the CRPs and their partners, and six webinars with a total of 228 participants were held on diverse topics.CGIAR System level commitment to gender equity has moved forward significantly since 2010.There has been significant pay-offs from these efforts, notably:• system-wide progress in embedding gender in CGIAR research processes with some CRPs now routinely monitoring their gender mainstreaming efforts -an estimated 25-50 percent of projects are partly or fully mainstreamed;• a growing body of highly relevant gender research that is effectively contributing to wider gender mainstreaming through a variety of analytical and methodological tools and frameworks, and associated capacity building;• a significant increase in published outputs from CGIAR gender specific research: In 2012, only six CRPs published ( 22) peer reviewed journal articles, in 2015 all CRPs published (87) journal articles that were the outputs of gender research;• a qualitative advance in the integration of gender in the design of the second round of CRPs, with some emerging, promising impact pathways laying the groundwork for more systematic and effective integration of gender in Phase II CRPs.• progress in extending sex-disaggregated data collection and in integrating gender into baseline and impact assessment survey tools, which will enable more systematic assessment of gender-disaggregated or related outcomes and impacts, across a variety of sites, within the next 2-3 years (in some CRPs); A data repository stores and publishes gender-related data and collection instruments, while also providing links to external datasets.In ","tokenCount":"2550"} \ No newline at end of file diff --git a/data/part_1/0479080746.json b/data/part_1/0479080746.json new file mode 100644 index 0000000000000000000000000000000000000000..8fbf2d6474e58e35c40d2d4d2dc1a0343714cd40 --- /dev/null +++ b/data/part_1/0479080746.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"244db12aea039acbc567f981e3a5caa8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7347b54f-435c-4596-83d8-2443f41aa0a4/retrieve","id":"262924248"},"keywords":[],"sieverID":"ec35d0b7-ba3e-43d4-ac51-2dcbfb1f613d","pagecount":"6","content":"T he world is faced with an unprecedented explosion in technology. Not all of this is universally welcomed -the irritation of mobile telephones on public transport comes immediately to mind -but the new technologies affect every area of our lives. Nowhere is this more true than in agriculture.Changes in farming proceeded slowly but steadily for thousands of years, but accelerated during the last two centuries as scientists and other observers came to understand the farming process, the need for particular nutrients and rotations, and the nature of pests and diseases. Further acceleration followed after the 1950s with increased mechanization and the introduction of effective pesticides, herbicides, and fungicides. Biotechnology has accelerated the pace of change once again throughout the 1990s.Biotechnology provides a major opportunity to meet the nutritional needs of an expanding world population, with finite land resources. It offers a new approach to the control of pests and diseases, it will provide crops of improved nutritional quality; and it will bring about increased yields.Biotechnology is unlikely to be a complete solution to our agricultural problems, but it will play a key role in a sustainable agriculture that also uses integrated pest management and plant breeding techniques. That is the expectation in industrial countries, but it is only a hope for many others. There is a pressing need for the agricultural revolution to spread throughout the world, but to achieve it, we must provide an incentive to the innovators and owners of the new crop production technologies to share them.There are many forms of encouragement -from argument to finance -and one of these is the subject of this paper. The process of technology exchange will be encouraged and facilitated by a strengthening of intellectual property laws, especially those of the developing countries. Unfortunately, like modern biotechnology, intellectual property rights (IPR) are controversial and often misunderstood.This paper addresses some of these misunderstandings, and indicates how strengthening intellectual property rights will enable farmers throughout the world to receive the latest developments in crop production.Intellectual property is a broad term used to cover patents, designs, trademarks, plant breeders' rights, copyright, and trade secrets. All of these have a part to play in the development and commercialization of plant production products. However, the three most important IPRs in this context are patents, plant breeders' rights, and trade secrets. None of these creates as much argument as patents.A patent is a monopoly of limited scope, granted to the owner of an invention, for a limited period of up to 20 years. It is a right that is effective only in the country that grants the patent. While it is in force, a patent enables the owner to exclude others from using the invention commercially in that country.A patent provides the innovator with a limited period within which he/she has the oppor-Intellectual Property Protection: Who Needs It?tunity to recoup his/her investment in the research and development (R&D) of the invention. In return, the inventor discloses the invention to the public, and that disclosure enables other scientists and interested parties to use the invention in their own research. In due course, that research may lead to further innovation, and society will benefit. It is no coincidence that those countries with strong research-based industries are also those countries with strong intellectual property laws.IPR is national in character, and like other national laws they vary from country to country. Attempts to bring some harmonization into this area have succeeded in the Agreement on Trade Related Aspects of Intellectual Property Rights, generally referred to as TRIPs. TRIPs, which entered into force in 1995, applies to all members of the World Trade Organization (WTO). TRIPs, however, is not a complete remedy for inadequate laws since it lays down only minimum levels of protection, rather than providing for the optimum. Nevertheless these levels are important, none more so than the basis for a patent set out in Article 27. Article 27 provides that patents shall be available for any inventions, whether products or processes, in all fields of technology, provided that they are new, involve an inventive step, and are capable of industrial application.Patent rights are of little use if they cannot be enforced, and TRIPs also provides that member countries shall ensure that enforcement procedures are available under national law, so as to permit effective action against any act of infringement of an IPR. Enforcement is a particular concern in the field of biotechnology, where the capability of biological materials carrying genetic information to self-reproduce makes the copying of an invention and the infringement of patent rights all too easy.The implementation of TRIPs will undoubtedly strengthen IPR in many parts of the world, but implementation is unlikely in the short term. Developing countries are permitted a transitional period, until 2005, within which to bring their intellectual property laws into compliance with the minimum standards laid down in TRIPs. Unfortunately, many developing countries lack the means rather than the will to take the necessary steps.The objectives of intellectual property law are stated succinctly in TRIPs: The protection and enforcement of intellectual property rights should contribute to the promotion of technological innovation and to the transfer and dissemination of technology. It is useful to consider these two aspects separately.The cost of developing a new plant protection chemical is over US$150 million; the cost of developing a new transgenic plant commercially is comparable. The investment in R&D must be recovered, and the monopoly period -provided first by patents and second by protection of the confidential data supplied in regulatory packages -is essential to provide the innovator with sufficient time and opportunity to make that recovery. Without IP protection, research-based companies would be unable to bear the risk of the major investment in R&D required to bring those technologies to the market.The incentive effect of patents for developing countries is sometimes questioned on the grounds that these countries have little private sector research, and may produce few inventions. It is certainly true that inventors in those countries file few patents domestically or abroad, but without adequate IPRs, there is little incentive for local companies to set up their own research departments, nor for foreign companies to bring their technology and their research capabilities to the countries. It is left to the public sector to be the major fund provider of this research. That funding is vital, but it is not sufficient.Farmers must have the opportunity to obtain modern crop production products at a reasonable price. Local research organizations need access to the latest technologies in the form of transfer of materials and know-how to further their own research, research which is often necessary to provide solutions to peculiarly local problems. These requirements can be met partially in developing countries by means of technology transfer.The importance and benefits of technology transfer are widely recognized, and it is consequently a cause for concern and regret that in the field of crop production, technology transfer proceeds so slowly. While part of the problem lies in funding, another factor results from the two sides -the technology providers and the technology receivers -viewing each other and the technology transfer process with suspicion.The private sector, potentially the major provider of new technology, ought to be eager to provide technology that will lead to the development of new markets. Companies are worried, however, that providing their know-how, whether by sales or by licensing, is tantamount to giving the technology away, unless it has the protection of enforceable IPR. In the case of biotechnology, where reproduction of plant material is relatively simple, companies may be powerless to prevent their technology from being copied and their markets destroyed or undermined by those who have not incurred the expenses of developing the technology.The developing countries that want and need the technology fear the technology provider's demands for stronger IPRs which, they believe, will lead to higher prices and a drain on currency reserves. These concerns are real -and are discussed later -but there is clear evidence that strengthening IP laws leads to an increase in technology transfer to the benefit of both the provider and the recipient.In the recent past, as an example, companies in industrial countries were reluctant to bring their products into the Chinese markets. There was inadequate patent and data protection, and once companies had established their market, generic manufacturers rapidly appeared to reap the benefit. These local manufacturers also exported the products to neighboring states where there was either weak or no patent protection, or where enforcing patents required a long and uncertain litigation process. As a consequence, China was deprived of the latest plant production products.China has recently strengthened its patent law, and although it still needs improvement in its enforcement procedures, companies are now not only prepared to collaborate with Chinese companies, they are actively seeking collaboration.There are many concerns surrounding intellectual property law, and although these are often based on misunderstanding, they remain a barrier to progress. It is essential that those who believe that strengthening IPRs will be beneficial, should listen and inform. As a contribution to this process, I would like to consider four specific issues: prices, local development of technology, theft of resources, and ethics and morality. This is by no means an exhaustive list of possible topics.It is argued that IPRs lead to an increase in prices. While it is true that products containing new technology will generally be sold at higher prices, that is not the same thing as a general increase in prices. The old technologies remain; indeed the introduction of new technologies may well make the old ones cheaper.New genetically improved seeds are more costly to develop and produce, and those increased costs must be recovered. Farmers expect to pay a higher price for seed which will bring added value, but no farmer will pay more for the benefit than the increase in value which it will provide. Producers have little choice but to price their products so as to share the added value with the farmer. Such arguments will be of little interest to poor and subsistence farmers. In order to receive the benefits of the new technology, they must first acquire the seed. Intellectual property will not be of much help to them. They will require the assistance and support of government agencies and international organizations such as the World Bank (Lele, Lesser, and Horstkotte-Wesseler 1999).It is also argued that without IPRs, local companies would be able to copy the products and bring them to the local markets at much cheaper prices. That may be true but the advantages -such as they are -are short term, and serve to delay the introduction of new products. Moreover, if the originator ceases to act as product steward for the products, the result is often a flow of substandard products with inadequate instructions for their use, and which are ineffective.Some opponents of intellectual property claim that patents inhibit local research, and interfere with the work of local companies and research organizations.The freedom to carry out research is safeguarded under patent law; experimental use for research purposes is not an infringement of the rights of the patent owner. Scientists are free to take the invention, to modify it, and to incorporate it into their own research programs. Dissemination and use of knowledge in this way is a fundamental part of the original contract between the owner of the patent and the state granting the right. It results in the faster development of the technology, and the introduction of new products and processes.Public funding of research in developing countries plays an essential role in addressing local problems, but it will not be sufficient. There are always other demands on the available money.Local companies and research organizations need inward investment, in finance and in the form of materials and know-how. Yet again, however, it has to be acknowledged that these materials and know-how have a value to the private sector which will be unwilling to supply them if it feels that in doing so, it will lose control over them.Publicly funded research organizations themselves do not always make the best use of the intellectual property protection that is available. The International Agricultural Research Centres of the CGIAR, for example, have tended to favor not seeking intellectual property protection, a position thatwas noted in the 1996 OECD Survey \"Intellectual Property Technology Transfer and Genetic Resources\": \"[The] Centres have to operate in a changed research and funding environment and to collaborate with organisations for which intellectual property is a necessary counterpart to their willingness to invest in development. This has long been true of industrial organisations, and academic and public sector organisations are also now taking a more positive attitude towards protecting innovations resulting from their research. The International Agricultural Research Centres may therefore wish to review their own positions in this respect.\" The recent CGIAR center statements on genetic re-sources, intellectual property rights, and biotechnology reflect the evolution of the centers' thinking on these issues (CGIAR 1999).Patenting the results of this research would not prevent the IARCs from making them available, but it will give them the option of entering into cross-licensing agreements or collaborations with companies holding other intellectual property of interest. Patents become bargaining chips that can be traded to further the research aims of the IARCs.A recent attack on the private sector is that companies in industrial countries are stealing the resources and know-how of local populations, patenting these resources, and then denying the use of the technology to the population who had used it, often for centuries. The case of the Indian neem tree is often quoted.Indian farmers have used the seeds of the neem tree for pest control for centuries. The American company, W R Grace, discovered a process for extracting the oil from the seeds, and applied for patents. Alarmists spread the story that the Grace patents would prevent farmers from continuing to use their traditional methods of pest control. The story created understandable consternation amongst Indian farmers and a worldwide outcry against big business. The story is nonsense.Patents are granted only for inventions that are new and not obvious, and the use of the neem seeds in pest control fell into neither of these categories when Grace applied for its patent. Grace could not monopolize the use, nor could a patent give Grace ownership of the neem tree or its seeds (Grace buys seed on the open market). And finally, no patent can stop anyone from doing something which he was doing before the patent application was filed.Similar stories are now circulating concerning the so-called theft of genes by the industrial world. If this does occur, then it will be illegal under the provisions of the Convention on Biological Diversity.In any event, it is worth stressing again IPRs extend only to the new inventions created from the isolation and transference of the gene. The identification of a gene with a useful trait in a local plant, and the transference of that gene into a different crop plant, may entitle the discoverer to patent the use of that gene in the transformed plant, and perhaps to the transformed plant itself. However, the patent will give the innovator no rights over the original plants, which can continue to grow or be grown without reference to the patentee.TRIPs provides that inventions may be excluded from patentability if their exploitation should be prevented in order to protect ordre public or morality. It is important to note that it is the exploitation of the invention that is of concern here, not the invention itself. This distinction has been missed by many, and has resulted in the morality arguments being extended from the use of biotechnology to biotechnology itself, and from there to biotechnological patents. Parties who believe that biotechnology is immoral also argue that patenting biotechnological inventions -or, more emotively, patenting life -is immoral. Many patents, particularly in Europe, are presently being attacked on these grounds.The consequences of attacking patents on moral grounds may not lead to the results which opponents of biotechnology hope, a point noted by Jefferson (1999) in his expert paper prepared for the Secretariat advising the Convention on Biological Diversity. The paper is an exhaustive review of the so-called \"terminator\" genes, referred to in his paper as \"genetic use restriction technologies\" and abbreviated to GURTs.A patent only confers a negative right on its proprietor to prevent others from using the protected invention for a limited period. The right to positively use or not use the invention by the patent holder is, hence, not addressed by the patent law which is primarily an instrument for promoting research by ensuring the possibility of excluding imitation by third parties.Hence, if the GURT patent were to be found inviable or invalid on any grounds, the effect of non-protection would be that the relevant method would remain or be put in the public domain. The absence of protection would not automatically lead to stopping the eventual adoption and diffusion of the GURT technology; on the con-trary, such an absence may foster its dissemination.In less elegant words, what has been invented cannot be uninvented. Even if a patent is cancelled on the grounds that the invention is immoral, the inventor is still able to use the invention. Indeed, everyone is free to use it. Patent law is not the route to regulating the use of biotechnology (see also Leisinger, This volume).The case for strengthening IPRs in developing countries is, I believe, overwhelming, and the need to strengthen these rights is urgent. Countries should evaluate their positions without delay, and should be encouraged to implement TRIPs -or better, to improve upon TRIPs -as soon as possible. That said, the modification of intellectual property laws requires money and skilled advisers, both of which may be in short supply in some developing countries.Funding and other technical assistance is available. The World Intellectual Property Organization (WIPO) has an agreement with the World Trade Organization (WTO) to provide assistance to developing countries to meet their TRIPs commitments, to provide technical assistance in drafting, and to train staff and provide software. However, the limited resources of WIPO and WTO remain a constraint and could mean that some countries are unable to meet their commitments, even by the 2005 deadline.The World Bank and other international development agencies could certainly help by providing resources to the WTO or directly to developing countries for this purpose. Such funding would not only increase the number of countries meeting their TRIPs obligations by the deadline or even earlier, it would also promote open and constructive discussion of TRIPs in the next WTO round.There is a further and additional approach which could save both time and resources. There is little logic in many different nations, each having similar standards and economic goals, to examine and grant patents for the same invention. The most efficient and economic approach is a regional organization, such as the African Regional Intellectual Property Office (ARIPO), the African Intellectual Property Organisation (OAPI) or the European Patent Convention, which centralize the examination and granting of patents for all member countries into one office.Enforceable and strong IPRs are essential to encourage the transfer of the latest technologies to developing countries, and for stimulating research in these same new technologies. They are vital for the modernization of crop production in developing countries.Weak intellectual property laws and the inability to enforce intellectual property rights will limit the access of developing countries to the new technology, which is so important for the development of their agriculture and the saving of valuable environmental resources. Weak laws will inhibit much-needed inward investment.Each country must evaluate its own intellectual property laws and needs carefully, but I would urge all developing countries to strengthen these rights as soon as possible, and for the World Bank and other international development agencies to assist them in this endeavor. I am confident that the benefits -the access to the new technologies and inward investment -will follow.","tokenCount":"3310"} \ No newline at end of file diff --git a/data/part_1/0504618515.json b/data/part_1/0504618515.json new file mode 100644 index 0000000000000000000000000000000000000000..e2c0cff46012bbbea0b56d9e01d231cf9637bfdd --- /dev/null +++ b/data/part_1/0504618515.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e8c3be531f91f6879cd64e0d3b54b084","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/a309274f-2908-4c6d-a6ba-973e53de5fce/retrieve","id":"1568595761"},"keywords":[],"sieverID":"479b4ac1-c21b-4082-a778-32894bc00225","pagecount":"22","content":"Rangelands are the predominant land use worldwide, covering nearly half of the Earth's land surface (White et al. 2002). In East Africa, rangelands provide the main source of livelihoods for pastoralists, underpin the livestock sector that provides nearly half of the agricultural gross domestic product in the agriculture-dependent economies of Kenya and Ethiopia (Behnke 2010) and host greater wildlife numbers than the national park systems (Western et al. 2009). Rangelands provide these ecosystem benefits to humanity in spite of the fact that many rangelands globally and in East Africa have undergone extensive degradation, due to the combination of climate change, high stocking densities and disorganized grazing on account of weakened traditional or customary institutions for rangeland management (Kiage 2013).Community-based rangeland management (CBRM) is a general term for any local level strategy for managing rangelands (Reid et al. 2014). In pastoral East Africa, CBRM mainly refers to the reorganization of currently haphazard grazing patterns by means of facilitative reinvigoration of traditional or customary institutions, or building new local institutions (Flintan and Cullis 2010) where no functional local institution exists. CBRM is designed to improve the control of communities (traditional or local institutions) over their land, improving perception of land tenure security and enabling pastoral communities to gain recognition for their efforts to manage their rangelands. While the social impacts of CBRM are significant (Flintan et al. 2019), more detailed study is required to assess its impact on the environmental condition of rangelands.Remote sensing methods can be cost-efficient means of assessing environmental impacts of CBRM, although their external validity is difficult to demonstrate in rangelands. In arid landscapes most particularly, satellite signal limitations and calibration requirements can be non-trivial constraints on the usefulness of these models for tracking environmental impacts of CBRM (Zhao and Running 2008). A large set of remotely sensed indices have been applied to assess and track the condition of rangeland ecosystems over large scales (Prince 2019). The influences of management regimes are challenging to differentiate from changes in climate (Hopping et al. 2018;Miehe et al. 2010) and associated cascading effects and studies with thorough characterization of management regimes are desirable.The objectives of the present study were to (i) apply three indicators of rangeland conditions derived from remote sensing in three pastoral landscapes in Ethiopia and Kenya; (ii) interpret spatiotemporal trends in the three indicators to assess the feasibility of their application to detect landscape level influences of community-based rangeland management; (iii) compare the three indicators in terms of their ability to distinguish areal trends in rangeland conditions over long time periods and large areas; and (iv) assess the need for modifications to the analyses conducted.Three research areas were selected for the analysis on the basis that CBRM has been in place for several years (9-14 years) with plausible effects of CBRM on rangeland conditions over large areas CBRM operates (95-7100 km 2 ). In each site, analyses centered on a focal rangeland unit(s): (i) Olkiramatian and Shompole group ranches in Kajiado county, Kenya (who manage their land similarly and in close coordination); (ii) Il Ngwesi Group Ranch in Laikipia county, Kenya; and (iii) Dirre Dheeda in Borana Zone of Oromia Region in Ethiopia. The map for Dirre Dheeda was provided courtesy of the Pastoralist Areas Resilience Improvement through Market Expansion project (PRIME 2019). All sites have a bi-modal rainfall pattern with two rainy seasons and two dry seasons annually, with mean annual precipitation varying from approximately 500-800 mm yr -1 . To focus on rangelands typically used for grazing, all water bodies, areas with extensive cropland, forests and areas with >40% woody cover (Kahiu and Hanan 2018), were excluded from analyses.Three indicators were applied to assess trends in rangeland condition: (i) cumulative annual normalized difference vegetation index (cNDVI) (Jenkerson et al. 2010); (ii) annual rainfall use efficiency (RUE; cNDVI/annual precipitation) using CHIRPS precipitation (Funk et al. 2015); and (iii) bare soil (Guerschman and Hill 2018). cNDVI and RUE were selected on account of their widespread use for tracking changes in the productivity of vegetation as an indicator of environmental quality; and bare soil was selected due to its straight-forward interpretation as the amount of land not covered by any vegetation (Guerschman and Hill 2018).For the draft analyses presented here, trends were estimated by summing cNDVI annually across all seasons (both wet and dry seasons), and averaging RUE and bare soil (%) across entire years. Annual values were then combined with neighboring years in three time periods reflecting inflection points in management regime change as CBRM proceeded. The period between 2003 and 2005 denotes the pre-CBRM (baseline) period; 2011-2013, the early CBRM period; and 2017-2019, the ongoing CBRM period. These time periods were also selected to avoid including major droughts in the analysis, during which little or no improvement in rangeland condition should be observable. The 2003-2005 time period was selected to avoid the major drought in short rains from the end of 2005 to early 2006. The 2011-2013 period followed two successive droughts from 2010-2011 and 2017-2019. There were also two successive droughts in 2016 and 2017. The 2019 long rains were similarly excluded.In Kajiado and Laikipia, Kenya, a treatment-control approach was followed, with rangeland condition trends inside the focal rangeland units ('treatment') compared to trends outside the focal rangeland units in paired, ecologically similar pastoral lands nearby ('control'). The Kajiado group ranches were compared with neighboring group ranches within a 25-km perimeter and the Laikipia group ranch was compared with two neighboring group ranches. In these treatmentcontrol sites, putative effects of CBRM were quantified as any improvement or decline in rangeland conditions inside the focal rangeland unit, relative to rangeland condition outside the focal rangeland unit. In Borana, Ethiopia, no such control areas were available as identical CBRM processes were initiated in all rangeland units in Borana at the same time by the same institutional consortium (Craft 2019). Therefore, a treatment-only approach was adopted, tracking change within Dirre Dheeda over time without reference to outside areas. \"Improvement\" in rangeland condition is defined as positive changes (increase) in cNDVI and RUE; negative changes (reduction) in bare soil; and \"decline\" in rangeland condition as the converse.In each site, elevation classes were delineated to enable more direct comparisons in space and time between pastures of similar ecological potential. In the Kajiado site, higher quality pastures at lower elevation (<680 m) were separated from lower quality pastures at higher elevation (>680 m). In the Laikipia site, draft analyses presented here focus only on higher quality pastures at lower elevation <1277 m. In the Borana site, higher quality pastures at higher elevation with higher rainfall (>1400 m) were separated from more arid lower quality pastures at lower elevation (<1400 m).A simple and robust statistical approach was adopted for all sites, using analysis of variance (ANOVA) to detect significant differences between areas and time periods, with pair-wise comparisons of area-time-period combinations verified by means of Tukey post-hoc tests.In the Magadi area group ranches, trends in rangeland conditions differed greatly among elevation classes (Table 1, Figure 1). Inside the two group ranches, higher quality pastures at lower elevation (<680 m) appeared to have improved relative to the 25 km 2 buffer outside the two group ranches, according to all three indicators. In contrast, lower quality pastures at higher elevation suggested no change in terms of cNDVI or RUE (or even a relative decline in cNDVI) yet appeared to have improved in terms of reduction in the difference in bare soil between inside and outside the group ranches.In the Laikipia group ranch, trends in rangeland conditions differed greatly according to both the indicator selected and the control-treatment pair (Table 2, Figure 2). Inside the group ranch, higher quality pastures at lower elevation appeared to decline in terms of cNDVI relative to one neighboring conservancy ('control A') but appeared to improve compared to a second neighboring conservancy ('control B'). Bare soil showed the converse pattern-an improvement in terms of bare soil compared to conservancy A, and a decline relative to conservancy B. RUE trends were weak, with the only significant difference between areas inside and outside of the rangeland unit being a decline relative to conservancy A during the period 2017-2019.In the Dirre area, trends in rangeland conditions again differed greatly according to elevation classes (Table 3, Figure 3). The differences in cNDVI, RUE, and bare soil among management areas and time periods indicate the potential utility of each of the three rangeland condition indicators. However, the tendency within sites was for the three indicators to generally disagree on the direction of trends in rangeland conditions among management areas and analysis periods (Table 4). All three indicators were aligned and suggest parallel trends in two of the six cases analyzed-in higher quality pastures in Kajiado and lower-quality pastures in Borana. cNDVI and RUE tended to agree more often with one another than did bare soil, primarily due to the use of cNDVI in calculating RUE (RUE = annual cNDVI/annual precipitation). Otherwise, little convergence was found among indicators in terms of the rangeland condition trends their values suggested. All three rangeland condition indicators appeared valid for detecting differences in trends suggestive of degradation and restoration occurring in response to the combined influences of major drivers, particularly changes in climate and management regimes. Each indicator likely tells a fraction of a larger picture. cNDVI and RUE are more ecosystem processfocused indicators, with cNDVI primarily indicative of overall photosynthesis and plant growth, and RUE of the same per unit rainfall. Bare soil, on the other hand, indicates the spatial distribution of ground with neither photosynthetic nor non-photosynthetic vegetative cover, a property of ecosystems rather than a process. These differences are notable as the intrinsic relative rates of change in ecosystem processes and properties often differ by an order of magnitude or more in response to ecosystem drivers operating over vastly different time scales through multiple mechanisms leading to emergent changes (O'Neill et al. 1987).In Kajiado, Kenya, the apparent improvement in higher quality pastures at lower elevation inside the focal rangeland units-Shompole and Olkiramatian group ranches-relative to similar areas outside may be significantly attributable to land arrangements outside the group ranches. These areas outside the focal rangeland units are under lease to the Tata Chemicals company, which allows herders from neighboring areas (and perhaps much further away) to graze their animals in their leasehold area. For these herders, the lack of secure land tenure in this area may disincentivize effective rangeland management. One important next step for the Kajiado analysis will be to clarify grazing use patterns in these lower elevation pastures. The apparent relative reduction in bare soil in lower quality pastures at higher elevations could relate to higher reliance on these poorer pastures due to degradation at lower elevations outside the focal rangeland units, including invasion by Prosopis juliflora in substantial tracts within the 25 km buffer zone (less so within the focal rangeland units).In Laikipia, Kenya, the two conservancies neighboring the focal rangeland unit-Il Ngwesi group ranch-also apply community-based rangeland management in some form and for variable durations and intensities. Management differences among the three rangeland units likely to relate to the observed differences in rangeland condition trends are not yet clear making further confirmation of management regimes and timelines a priority. However, the contrasts between these trends-nearly opposite for cNDVI and bare soil most particularly-was great and it appears unlikely that management differences could fully explain this divergence.In Borana, Ethiopia, differences in aridity appear related to the differences in rangeland condition trends in the focal rangeland unit-Dirre Dheeda. The widespread degradation over recent decades on account of rapid shrub encroachment into grassy savannas and major soil erosion (Coppock 2016) could be reflected in the pattern of fairly static cNDVI and slight improvement in RUE coupled with increasing bare soil in lower quality pastures below 1400 m elevation. Although these conflicting patterns could indicate anything between degradation and restoration, the increase in bare soil is noteworthy as soil erosion is a preeminent symptom of degradation in these areas. In contrast, the central Borana plateau (<1400 m) exhibited generally slight and recent (since 2013) improvements in cNDVI, RUE and bare soil, suggesting a long-term trend of improvement in these higher rainfall savannas of higher quality. The contrast between the apparent improvement in the condition of more humid pastures at higher elevations in comparison to the apparent overall stability (or possible decline) in rangeland conditions in more arid pastures at lower elevations appears significant in light of the tendency of more arid rangelands to better resist grazing-induced degradation (Von Wehrden et al. 2012) in spite of slower recovery rates. If reliance on lower elevation pastures has increased during the analysis period, apparent improvement in higher elevation pastures could relate to the lack of improvement in lower elevation pastures.The general absence of agreement among indicators suggests that explicit quantitative field evaluation of the three indicators remains a valuable pursuit. Evaluation is costly but useful, especially in relation to systems and questions that challenge the ability of satellites to discriminate meaningful differences. The influence of management regimes on rangeland condition in the context of a changing climate is an excellent example. Rangelands are typically comprised of multiple plant species of multiple plant growth forms (annual and perennial grasses and forbs, and evergreen and drought-deciduous shrubs and trees) with differing growth rates and seasonal phenology (Whitecross et al. 2017) responses to precipitation (Ogle and Reynolds 2004), and utility to grazing and browsing species of livestock and wildlife. These vegetation components exhibit substantial natural variation and co-variation along gradients in soils, hydrology and vegetation that evolve over time in response to increasingly erratic rainfall. The contrasting trends among indicators and areas in Laikipia is particularly confounding and strongly suggest that field evaluation should be a priority for scientists, managers and policymakers.Each of the three rangeland condition indicators analyzed are likely reflective of different ecosystem processes and properties with potentially divergent responses to management and climate. Their use in combination (and with other indicators) may be complementary and could form a more complete assessment of how management and climate interact to determine rangeland condition. As with any remote sensing approach for quantifying changes in ecosystem condition, the ability of these methods to depict valid changes in rangeland conditions relates to their accuracy, specific indicative value and the rates of change in these indicators as the structural and functional attributes of rangeland ecosystems shift over time. To effectively pinpoint the causes of change in rangeland condition, field evaluation of remotely sensed indices is an essential element of assessing the robustness and effectiveness of the various existing means of quantifying degradation and restoration trends in rangelands. ","tokenCount":"2430"} \ No newline at end of file diff --git a/data/part_1/0541434291.json b/data/part_1/0541434291.json new file mode 100644 index 0000000000000000000000000000000000000000..218c4b680030ea41cca71ac6543c0a764e63d13c --- /dev/null +++ b/data/part_1/0541434291.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e7858d2bdd2d9e28807bca06333ed10d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/414c535d-bd5f-4611-84be-06195823dfd3/retrieve","id":"1012233811"},"keywords":[],"sieverID":"42b41492-7c71-4743-a297-0372f8b77c6a","pagecount":"10","content":"Strengthening local traders' capacities, including those of women, by sharing quality-seed-related information, and by linking with local seed producers to purchase goodquality seed.• Establishing a decentralized seed-certification system, centrally involving women as professional certifiers.• Serving women' s needs and interests in crop improvement, by focusing on gendered quality and trait preferences.In this brief, we address the two dimensions of women and seed systems development -what women do for seed systems development, and what seed systems interventions could do for women -in the context of South Sudan.Gender relations influence access to seeds and their use, and to related knowledge. They also influence outcomes linked to seed availability, seed quality, seed affordability, and control over seed use. These outcomes directly impact household food and nutrition security, income generation, and adaptation to changes (Puskur et al., 2021). In many countries, women play key roles in seed systems as custodians and managers of seeds and seed-related information, but these roles are not always recognized, respected, supported and rewarded. Important seed-sector interventions, such as seed aid, are often gender-blind and fail to consider gender as an important factor that influences seed access and use. This can have an impact on the larger social context, for example on the social cohesion and peace of the community. In many countries, women face major challenges when they wish to enter the seed business, more so than men. This can be due to sociocultural and gender factors, such as the household division of labor that places a huge burden on women; husbands' reluctance to allow spouses to become entrepreneurs, and limited access to knowledge, technology and finance by women (Gumucio et al., 2021;ISSD Africa, 2023). and iv) women can make strategic decisions concerning their ability to access, use and benefit from seed (Puskur et al., 2021). However, evidence of empowering seed interventions is scarce (Brearley andKramer 2020, Puskur et al., 2021).Crop diversification offers an especially interesting empowerment strategy. (Vernooy, 2022). In Africa, crop diversification has produced good results at farm and community levels (Vernooy et al., 2021).For Female farmers had one more criterion, not prioritized by their male counterparts: early maturity. There are notable differences between the two lists, although both ranked sorghum as the most important cropfemale-male preference ranking: 1 st : sorghum-sorghum; groundnut-cassava; maize-sweetpotato; cassava-pearl millet; sesame-sesame; sweetpotato-bean; cowpeaokra; eggplant-cowpea; pumpkin-groundnut; 10 th : okramaize. At the variety level, women often consider cooking and taste characteristics (e.g., eating, flour and malting quality), more than men, except for cereal brewing quality, which men value highly (beer brewing is also an income generation activity). In recent years, farmers lost some varieties in Ikwoto County, e.g., bambara nut, taro, and varieties of groundnut (Akabiri and Moru), and pearl millet (Imajang, Teh).The informal seed system is the prominent system, with women playing key roles in production and distribution. Key actors are internally displaced people (IDPs), returnees, refugees, hosts of refugees, and grain traders operating in the local markets. They handle seeds of cowpea, groundnut, maize, pearl millet, sesame, sorghum and sweetpotato. Varieties are mostly local (landraces), but also improved ones. The community seed production scheme is the second dominant seed system, contributing 16% of total seed supply, in particular bean, cowpea, green gram, groundnut, maize, onion, sesame, sorghum, sweetpotato and yam. Key actors are farmers' groups and farmers' cooperatives. The seed-relief seed system supplies 10% of seed. The seed-relief programmes supplies the major food-security cereal crops as well as vegetable crops. Key actors involved in seed relief include more than 10 international programmes.The seed network analysis clearly demonstrates that women are key actors in seed management (see Figure 1). Of the 752 farmers involved in the social seed network, 75% were female farmers. The average age of the respondents was between 37-42 years. Altogether, they access 23 crops.Ikwoto cluster: Female farmers (18%) tend to give seed to family/friends outside the Payam (the below county administrative unit) more than male farmers (11.65%). Female farmers (18 %) receive seed from family/friends outside the Payam more than male farmers (11% The common challenges faced by the seed systems are (in decreasing order of significance) poor storage ability and health status of the farm-saved seeds; poor storability; grains sold as seeds; non-authentic relief seed lots; relief seed delivery inconsistent with the cropping calendar, and insufficient and pricey private companies seed supply. These challenges are compounded by enduring conflicts (insurgency, communal fighting) and frequent natural disasters. which ensures a steady market income. Female and male farmers prioritized their most-preferred crops and varieties on the same sets of six criteria: good yield, drought tolerance, flood tolerance, good eating quality, high market demand, and less damage by birds and pests. Female farmers added one additional preference criterion which was not prioritized by their male counterparts: crop maturity. Regarding the major crops, women expressed a slightly higher preference for maize and sorghum, while men for cassava and sesame; for groundnut, the difference is minimal. Expressed preferences for varieties were more dissimilar, including both local and improved varieties by both sexes. Farmers in Torit County have lost some crops, for example, Bambara nut, finger millet, pearl millet, pigeon pea and sunflower.The social seed network is made up of local farmers, IDPs, refugees, returnees, hosts of refugees, local traders, I/NGOs, and government institutions, with most of the transactions done based on seed exchange/ barter (not cash); women make up more than 70% of the seed exchangers. The most exchanged crops are groundnut, maize and sorghum, the major food crops in the area. Torit market and Omoliha market are the two local grain markets which have the highest number of direct connections with farmers and their communities in Torit County. The Torit and Omoliha markets are an important source and recipient of seeds, where farmers actively trade the grain and use it as seed for their crop production. Third, the AVSI programme has the largest connection with farmers. As a result, the seed network is relatively highly centralized. The informal seed system supplies almost 70%, with international seed relief organizations offering 17%, the private sector 8% and government institutions 2%.The common challenges faced by seed systems are (in decreasing order of significance) poor road connections, inadequate storage facilities, lack of market information, and the absence of a seed policy, including a seed certification body and field inspectors. These are compounded by conflicts resulting in looting and burning of fields and by climate hazards such as floods and drought.In the studied counties, farmers continue to maintain considerable crop and variety diversity of a range of crop types, but everywhere there have been diversity losses. No detailed analysis was made of the cause(s), but it is likely due to a combination of factors. These include the enduring impact of conflicts and war; climate-change impact; changing prices and marketing opportunities; changing food habits; outbreaks of pests and diseases; the introduction of crops and crop varieties from elsewhere (through seed aid interventions) during a prolonged period, and perhaps erosion of local crop (management) knowledge. Farmers expressed an interest in obtaining seeds of their lost varieties for reintroduction. Crop and trait preferences differ between women and men to varying degrees, reflecting different needs, interests and responsibilities and (crop management and related) roles in the household. For women, nutritional and cooking characteristics are especially important, more so than for men, with the exception of the qualities of beer, an important income-generating product.Farmers use multiple seed channels (sources) to obtain seeds of local and improved varieties, which can vary by season, with women playing key roles as seed custodians, exchangers and managers in all counties. Exchange and barter are the most common mechanisms to obtain seeds (not cash). Some social What can be done to improve the situation? Here are some suggestions.f Female farmers play a dominant role in local seed supply in the studied counties. They should be further empowered through targeted training in quality seed production, by promoting improved seed storage practices and involvement in seed related programming at county level.f Nodal seed farmers, many of whom are women, should be further empowered through training in good quality seed production so that they can become a reliable (sustainable) source of seed dissemination of new and improved varieties at the county level.f Post-harvest technologies and practices should be improved to reduce burdens on women, and increase food availability and quality (shelf-life) and opportunities to market produce and seeds.f The establishment of sustainable community seedbanks, with leadership roles of women, could contribute to greater seed security, and increase adaptative capacity to overcome disturbances and shocks.f The capacity of community-based seed-producer groups should be strengthened in quality seed production, internal seed quality control, organizational development, and strategic linkages with output markets and seed service providers.Women interested in seed production should be encouraged and supported.f There is need to support crop diversification, notably in Ikwoto Payam, but also elsewhere, through (i) introducing improved and well-adapted varieties;(ii) promoting superior farmer-preferred and climate-resilient local varieties; (iii) timely distribution of quality seeds by supply organizations, and (iv) introducing organic pesticides and fertilizers.Introducing exotic, improved seeds of crops, such as quinoa, and embarking on early generation seed bulking of promising local varieties could also be useful measures. Humanitarian and development organizations should broaden their crop/variety portfolio.f The Chahari, Isoke, Magwi, Omoliha, Seraga and Torit markets contribute significantly to the local seed supply. Farmers and communities frequently access seed for key local food-security crops from these local grain markets. The capacity of local traders, including women, in these marketplaces could be further strengthened by sharing qualityseed-related information through training, and by linking with local seed producers to purchase goodquality seed.f The above recommendation could be extended to also include the establishment of a decentralized seed certification systems, in which women could play key roles as professional certifiers.f Women's needs and interests also deserve more attention in crop improvement, through paying attention to the quality and trait preferences of both women and men. This could be further supported by improving the dissemination of relevant knowledge about improved crops and their management.Proudly showing locally produced vegetable seeds in Wau, Western Bahr el Ghazal, South Sudan. G.J. van Uffelen","tokenCount":"1680"} \ No newline at end of file diff --git a/data/part_1/0550134541.json b/data/part_1/0550134541.json new file mode 100644 index 0000000000000000000000000000000000000000..0bb99a3b5de7df5b9815c47b3ca35a65d508098a --- /dev/null +++ b/data/part_1/0550134541.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"544715c45a0df5242fa53d68cc72e323","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/110976ba-f26d-4ce2-9950-1baa2a54aef4/retrieve","id":"-634624896"},"keywords":["15 N natural abundance method","Canavalia brasiliensis","Forage legume","Nicaraguan hillsides","Nitrogen budget","On-farm trials"],"sieverID":"d63b63ba-4a54-4312-acac-2bc528762ad8","pagecount":"18","content":"Canavalia brasiliensis (canavalia), a drought tolerant legume, was introduced into the smallholder traditional crop-livestock production system of the Nicaraguan hillsides as green manure to improve soil fertility or as forage during the dry season for improving milk production. Since nitrogen (N) is considered the most limiting nutrient for agricultural production in the target area, the objective of this study was to quantify the soil surface N budgets at plot level in farmers fields over two cropping years for the traditional maize/bean rotation and the alternative maize/canavalia rotation. Mineral fertilizer N, seed N and symbiotically fixed N were summed up as N input to the system. Symbiotic N 2 fixation was assessed using the 15 N natural abundance method. Nitrogen output was quantified as N export via harvested products. Canavalia derived in average 69% of its N from the atmosphere. The amount of N fixed per hectare varied highly according to the biomass production, which ranged from 0 to 5,700 kg ha -1 . When used as green manure, canavalia increased the N balance of the maize/canavalia rotation but had no effect on the N uptake of the following maize crop. When used as forage, it bears the risk of a soil N depletion up to 41 kg N ha -1 unless N would be recycled to the plot by animal manure. Without N mineral fertilizer application, the N budget remains negative even if canavalia was used as green manure. Therefore, the replenishment of soil N stocks by using canavalia may need a few years, during which the application of mineral N fertilizer needs to be maintained to sustain agricultural production.Population growth in the rural poor areas of developing countries has contributed to land use intensification that adversely affects soil fertility, with nutrient depletion and soil erosion being major causes of soil degradation (Tan et al. 2005). Crop and livestock productivity therefore declines, causing decreased income generation opportunities, and food insecurity. In the Nicaraguan hillsides, population is expanding at an annual growth rate of 1.3% (IFAD 2009). Cropping is limited to two short and successive rainy seasons, and therefore livestock suffers forage shortage during the long dry season of 5-6 months. Smallholders are mostly affected by the declined soil fertility due to their marginalized situation and their inability to overcome production constraints (Pfister 2003). Agricultural production usually does not exceed the needs for subsistence, making the sale of products almost impossible. Sufficient amounts of mineral fertilizers are not affordable and in small-scale farms, nitrogen (N) depletion is a major production constraint (Ayarza et al. 2007;Smyth et al. 2004).Introduction of cover crop legumes can be beneficial to such a system due to their ability to add N via symbiotic N 2 fixation (Boddey et al. 1997;Ojiem et al. 2007) and to provide surface mulch during the dry season or to provide fodder to livestock (Said and Tolera 1993). In order to identify the most suitable legume for the Nicaraguan hillsides, forage specialists and local extentionists induced farmer participatory evaluation of potential legume species. Among all the legumes tested, Canavalia brasiliensis Mart. Ex. Benth (canavalia), also known as Brazilian jack bean, attracted most attention from farmers mainly due to its vigorous growth, good soil cover and outstanding level of adaptation to drought stress based on green forage yield. Moreover, canavalia is also adapted to a wide range of other stress factors, including low fertility soils (CIAT 2004;Schloen et al. 2005;Schmidt et al. 2005).Previous studies have indeed shown positive effects of canavalia on crop productivity when integrated in the crop rotation (Bordin et al. 2003). Maize yield was higher after a rotation with canavalia than after other cover crops, because of its high biomass production and rapid litter decomposition rate (de Carvalho et al. 2008). In an on-station study over 4-years, the use of canavalia green manure in rotation with maize was equivalent to a replacement of 50 kg N ha -1 of mineral N fertilizer (Burle et al. 1999). Canavalia brasiliensis is known to nodulate well (Alvarenga et al. 1995) but its contribution through symbiotic N 2 fixation has not been quantified. The integration of a highly productive legume crop in a cropping system could also increase mining of nutrients (Bu ¨nemann et al. 2004), and a yield increase of the subsequent crop also means higher N export via harvested products. The contribution of a legume to a system may also be further diminished if crop residues are used as fodder (Peoples and Craswell 1992). Before promoting the use of canavalia to smallholders, it is important to evaluate whether canavalia results in a net N input to the cropping system, i.e., whether the N input through symbiotic N 2 fixation exceeds N output through harvest. Such imbalances can be revealed by calculating the N budgets for the rotations of interest. Nutrient budgets are commonly used as indicators of changes in soil fertility at national or regional scale (Bindraban et al. 2000;Smaling et al. 1993), and more recently have been useful to evaluate soil fertility status and nutrient efficiency of African smallholder crop-livestock systems (Rufino et al. 2009;Zingore et al. 2007). However, there is no published information on on-farm N budgets on the alternative uses of forage legumes in Central America. We chose the soil surface budget approach where all the N entering the soil via soil surface and leaving the soil via crop uptake are recorded (Adu-Gyamfi et al. 2007;Oenema et al. 2003;Watson et al. 2002).Canavalia was tested either as green manure to improve soil fertility or as forage to improve milk production. When used as green manure, it was left on the plot during the whole dry season and was incorporated at the onset of the next rainy season before sowing maize. As forage, it was cut and removed at the beginning of the dry season to simulate grazing. The use of the traditional maize/ bean (M/B) rotation as control does not mean that canavalia should replace bean. Indeed, farmers grow bean on only half of the cultivated area. Thus there is possibility to grow canavalia on the other half, and to alternate each year between the areas under maize/ canavalia (M/C) and M/B rotations.The main objective of this study was to quantify the soil surface N budgets at plot level in farmers fields over two cropping years for the traditional M/B rotation and the alternative M/C rotation. We tested the hypothesis that the introduction of canavalia into the traditional rotation will help reversing soil N depletion by (1) fixing a high proportion of N, (2) increasing the N budget of the crop rotation, and (3) thereby increasing maize yields the year following its integration into the production system. We emphasized N output via crop harvest and N input via N 2 fixation of canavalia and bean. We also assessed N recycled with crop residues.The study area is located in the hillsides of northern Nicaragua, in the Rio Pire watershed (Municipality of Condega, Department of Esteli), within a 2 km radius around the community of Santa Teresa (13°18 0 N, 86°26 0 W) (Fig. 1). Soils are classified as Udic and Pachic Argiustolls (MAGFOR 2008). The climate is classified as tropical savannah (Aw) according to the Ko ¨ppen-Geiger classification (Peel et al. 2007). Annual mean rainfall is 825 mm (INETER 2009) and has a bimodal distribution pattern (Fig. 2).Farmers are traditional crop-livestock smallholders, cultivating maize and bean on about 2 ha of land, and sharing an area for grazing on less productive pastures based on Jaragua grass (Hyperrenia rufa). Cultivation is done essentially with hand-held tools. Prior to sowing maize land is usually prepared with a plough pulled by oxen if accessibility to the field and slopes allow; otherwise it is prepared manually using a hoe. Maize is sown at the end of May, at the onset of the first rainy season. Maize is fertilized with urea and sometimes also with NPK fertilizer. At maturity, plants are cut above the ears and maize ears are left drying on the stalks for 2-3 months. Meanwhile, beans are sown around mid-September between the maize rows to take advantage of the part of the bimodal rainfall pattern. Both maize and beans are harvested in December. In January, at the beginning of the dry season, forage is getting scarce in the grazing area, and farmers let their cows enter the cultivated fields to graze crop residues.Four farmers of Santa Teresa, who were interested in integrating canavalia in a part of their production area, were identified. They chose themselves the site for the experiment within their farm. Crop management was done by the farmers, whereas data and samples were collected by the scientists. Sites are named after farmer's initials: FC (Felipe Caldero ´n), GR (Gabriel Ruiz), LP (Lorenzo Peralta) and PT (Pedro Torres). General site characteristics are given in Table 1.On each site five crop rotations were established on 70-100 m 2 -plots, and repeated in three completely randomized blocks, for a total of 60 plots. The control treatment was the traditional M/B rotation. The four others were M/C rotations with four different cutting intensities to simulate grazing, i.e. with 0% (M/C0), 50% (M/C50), 75% (M/C75) or 100% (M/C100) removal of canavalia biomass (Fig. 3). Land was prepared according to the usual practice, with hoe on FC site and ploughing with oxen on the other sites. Farmers sowed maize (Zea mays var. Catacamas) at the end of May 2007, by hand, with a seeding rate of 23 kg per hectare, with a row-to-row spacing of 75 cm and a plant-to-plant spacing of 50 cm. Compound NPK fertilizer (12-30-10) and urea were applied 8 and 22 days after sowing respectively. The doses varied from 0 to 8 kg N ha -1 for NPK complex and from 30 to 60 kg N ha -1 for urea, according to each farmer's usual practices (Table 2). Weed control was done before maize germination by spraying glyphosate and after germination manually with a large knife. Cypermethrin 1 was used for insect control. Bean (Phaseolus vulgaris var. INTA seda rojo) or canavalia (var. CIAT17009) were sown between maize rows at the end of September with a seeding rate of 78 and 51 kg per hectare, respectively. No fertilizer was applied to either legume crop. Maize and bean harvest occurred between November and December according to the usual practice. In January, the different percentages of canavalia above ground biomass were removed from the field. In May 2008, remaining standing maize stalks and canavalia plants were cut with large knife and left on the ground as mulch. Fields in 2008 were prepared as described for 2007, using either plough or hoe, and treatments were repeated on the same plots. Farmers did not reduce mineral fertilizer application after the first canavalia rotation.Precipitation during crop growth (May to January), measured at the meteorological station of the nearby municipality Condega, was similar for both years (about 920 mm), which is 19% above the normal rainfall (Fig. 2). Temperature for both years was also similar, with a mean of 24°C, a maximum of 33°C and a minimum of 16°C (INETER 2009). Sites are named after farmer's initials. For soil chemical properties: averages on all plots (0-10 cm depth), with standard deviation in parenthesis (n = 15) a Measured following Nelson and Sommers (1982) Symbiotic N 2 fixationThe rates of N derived from the atmosphere (%Ndfa) in canavalia and bean were assessed both years using the 15 N natural abundance method (Shearer and Kohl 1986), which is based on the slight natural differences between the 15 N abundance of the soil and the 15 N abundance of the atmosphere. As reference plants, non-fixing dicotyledonous weeds (Oberson et al. 2007) growing at the same time as the legumes have been selected and marked in the field to avoid them being cut during weed control by the farmers. Other herbaceous and shrubby weeds were excluded. Two weeds were chosen in the immediate proximity (i.e. within a radius of 50 cm) of each marked legume. Weeds were limited to four different species per site and per year, each of them being present at least five times for each legume and as well distributed as possible across the site. Species chosen were Baltimora recta, Delilia biflora, Euphorbia graminea, Euphorbia hirta, Lagascea mollis, Melanthera aspera, Mitrocarpus hirtus, Richardia scabra, Borreria suaveolens, Ageratum conyzoides, and Conyza Canadensis (Table 2). Sampling of canavalia occurred 3 months after planting, before drought, at the beginning of the flowering period. For bean, sampling occurred at the growth stage of late flowering to early pod filling. Five bean plants and five canavalia plants were harvested per block, together with their paired weeds, resulting in thirty legumes and sixty reference plants per site and per year. Table 2 shows slightly lower sample numbers, as in a few cases the marked plant did not develop well and was therefore not harvested. Plants were dried and analyzed for their 15 N abundance (see below).The %Ndfa for each legume plant was calculated following Shearer and Kohl (1986), using its two paired weeds as references. The final %Ndfa per legume and per site was then calculated as the average of the fifteen %Ndfa estimated from single legume plants for this site. (1)(2) (3) (2)(1)(3) The B-value, i.e. the isotopic fractionation during N 2 fixation, was obtained from a pot experiment in the greenhouse at the International Centre of Tropical Agriculture (CIAT), Colombia (3°30 0 N, 76°21 0 W), following the procedure of Unkovich et al. (1994). Plants were grown from the end of November 2007 to the end of February 2008. Temperature in the greenhouse fluctuated from 20°to 37°C in synchrony with photoperiod, and relative humidity ranged from 40 to 90%. Eighteen 3.3 l-pots were filled with washed white quartz, planted with canavalia or bean and watered daily with an N-free nutrient solution. The inoculum used was made from a mixture of soils from our study sites. Harvest occurred at the same development stage as in the field. Shoot d 15 N values were corrected for seed N effect using a mass balance (Boddey et al. 2000;Hogberg et al. 1994) accounting for the N distribution between shoots and roots.Maize production was evaluated in each of the 60 plots of the experiment. To evaluate the yield of the different maize parts, several row segments were chosen to represent the plot, excluding the border lines, and equivalent to 20-30 m-row length in total per plot. On these row segments, plants were counted and classified into two categories: plants with harvestable ears and plants without. Harvestable ears were considered good for human consumption by the farmers. The category ''plants without harvestable ear'' included plants that were without ear, with damaged ear, with already harvested ear, or with ear on the ground. Samples of ears of each category, corresponding to the number of ears for 2 m 2 , were taken in each plot.Harvestable ears were separated after sampling into good grain, bad grain, cobs, and husks. Samples were pooled per block, except for good grain, for which samples were kept separated per plot. Yield of the different ear parts was assessed as follow:where no. of harvestable ears per plot correspond to the number of plants with harvestable ears per plot, as almost no plants developed more than one ear.Samples of not harvestable ears were not separated into plant parts because their state did not allow doing so. The amount of not harvested ears per hectare was calculated as in formula [1], except that the number and weight of not harvested ears were used.Samples of stalks and leaves were taken to complete maize biomass production estimation. As traditionally farmers cut the upper part of the stalks to let the cob dry, only a few entire plants could be found and sampled on two sites. Assuming that average stalk and leaf weight was the same on all plots, yields were calculated as in formula [1] using the total number of plants per plot.In order to know which plant parts are exported and which are recycled on the plot, the fate of maize harvested ears was determined by plant part for each farmer. Maize grains (MG) were exported from the plot for human consumption, maize cobs (MC) and damaged grains (MDG) (i.e. broken, discoloured, shrivelled or undersized grains) were exported to be fed to pigs or used for combustible, maize husks (MH) were either recycled on the plot or exported to be fed to cows. Maize without harvestable ears (MRE) and residues (stalks and leaves) (MR) were not removed from the plot.Bean yields were assessed according to farmer's current practice. On 1 m 2 in each plot, bean plants were removed from the soil with their roots, separated into grain (BG) and residues (shoot and root, BP), and both plant parts were sampled and weighed separately. The fate of BG is usually to be exported for consumption, while BP remains on the plots. However, during both years of this study, heavy rainfall over short periods and to larger extent diseases such as angular leaf spot killed many bean plants leading to very low yields. Farmers harvested only when expected grain value compensated labour cost for harvest.Yield ear part ½kg ha À1 ¼ no:harvestable earsper plot  weight ear part ½kg ear À1area plot [m 2  10; 000At each canavalia cutting time, above-ground biomass (CB) production was assessed in each plot with the Comparative Yield Method (Haydock and Shaw 1975) in which the yields of random 1 m 2 -quadrants are rated with respect to a set of five reference quadrants preselected to provide a scale covering the range of biomass encountered within each plot. Ten quadrants were rated per plot. Different proportions-100, 75, 50 or 0%-of the available biomass were removed according to the experimental plan, by cutting canavalia with large knifes either on a plant number basis, or on a height basis when plants were undistinguishable. The M/C100 plots, where all the biomass was removed and weighed, were used as control of the biomass estimate obtained with the Comparative Yield Method. Samples of the above ground biomass were taken from each block. Removed biomass (CBR) was exported from the plot to be fed to animals.Canavalia, bean and reference plants sampled in the field were dried in a wooden oven at about 40°C until constant dry weight and ground with a rotary knife mill at CIAT-Nicaragua. Maize plant parts were dried at ambient temperature and ground with the same mill.Canavalia and bean samples from the greenhouse were dried at 70°C and ground with a rotary knife mill at CIAT-Colombia. All samples were then shipped to Switzerland, powdered with a ball mill (Retsch, GmbH, Germany) and analyzed for total N on a Thermo Electron FlashEA 1112 Automatic Elemental Analyzer. The d 15 N of legumes and reference plants were measured at the Geological Institute of the ETH Zurich on a Thermo Electron FlashEA 1112 coupled in continuous-flow with a Thermo-Fisher MAT 253 mass spectrometer. Finely ground field pea seed with an atom % 15 N of 0.367 was used as analytical standard.Soil surface N budgets were estimated for all plots and for both years (May to January) following the equation:where Nfix is the contribution of symbiotic N 2 fixation, Nfert is the mineral fertilization, Nseed accounts for maize, bean and canavalia seeds and Nexport is the amount of N exported from the plot. Nfix was calculated as the product of %Ndfa, N concentration and legume biomass. Nfert was calculated for each site based on the amount of fertilizer applied by the farmer and the N concentration in urea and NPK complex. Nseed was calculated as the product of N concentration and seed density.Nexport from the plot differed for each site according to the fate given by each farmer to the different plant parts of the crops and was estimated as:where N X is the amount of N in kg ha -1 in each of the mentioned plant part X, obtained from its N concentration multiplied by its biomass production in kg ha -1 (dry matter basis). N MH equals 0 if the farmer left the husks on the plot. N BG equals 0 if the farmer decided to not harvest beans, or in M/C rotations. N CBR equals 0 in M/B and M/C0 rotations.The amount of N recycled on each plot is the amount of N in crop residues and in remaining canavalia, calculated as follows:where N X is the amount of N in kg ha -1 in each of the mentioned plant material X, obtained from its N concentration multiplied by its biomass production in kg ha -1 . N MH equals 0 if the farmer exports the husks. N BG equals 0 if the farmer decided to harvest beans, or in M/C rotations. N (CB-CBR) equals 0 in M/B and M/ C100 rotations.Statistical analyses were performed using program R (R Development Core 2007). Rightskewed variables were log-transformed before the analysis. Yields were submitted to a Wilcoxon's rank-sum test to check for significant differences between the 2 years. The significance of the effects of site and treatment on crop production and on N balance was tested by an analysis of variance using aov and lme functions in R (Pinheiro and Bates 2000). The model was composed by treatment as fixed factor, site and bloc as random factors, bloc being nested within site.The B-values obtained from the greenhouse experiment were -1.26% for canavalia and -3.74% for bean. The d 15 N of the reference plants ranged from 0.2 to 13.1% in 2007 and from 0.5 and 8.4% in 2008. Table 2 presents the average d 15 N per species and per site, for both years together as there was no significant difference between the 2 years. The d 15 N of the legumes ranged from -2 to 2%, with extreme values up to 4.6% in 2007 and 2.6% in 2008. Each legume had significantly lower d 15 N than its two reference plants. Figure 4 shows the d 15 N of each N 2 -fixing plant and the mean d 15 N of its paired reference plants for all sites in 2007 and in 2008. Average %Ndfa was 55 and 58% for bean, and 64 and 74% for canavalia in 2007 and 2008, respectively. Among sites, mean %Ndfa did not vary much, with a standard deviation of 3-9%. For bean, average Ndfa did not differ significantly between 2007 and 2008 (P = 0.478). For canavalia, average Ndfa in 2008 was significantly (P = 0.000) higher than in 2007.Maize grain yields (Fig. 5) conformed to the usual production of the region (personal communication from the farmers), with an average yield of 2,410 kg ha -1 in 2007 and 2,070 kg ha -1 in 2008.Grain yields were not significantly different between the 2 years (P = 0.107). The first year of rotation made no effect on grain yields of the subsequent year (P = 0.187). Yields were affected significantly by the site in 2008 (P = 0.025) but not in 2007 (P = 0.135).Bean grain production (Fig. 5) was much lower for both years compared with the farmer reported mean production value of 1300 kg ha -1 . This was mainly due to heavy rains and diseases. The grain yield ranged 13 to 320 kg ha -1 in 2007 and from 0 to Canavalia biomass production (Fig. 5) varied between 0 and 5,700 kg ha -1 , with a mean value of 2,110 kg ha -1 in 2007. In 2008, the biomass production varied between 290 and 4,330 kg ha -1 , with a mean value of 1,530 kg ha -1 . Biomass did not significantly differ between both years (P = 0.223) and was not influenced by the site neither in 2007 (P = 0.070) nor in 2008 (P = 0.999). The removal of canavalia biomass at the beginning of the dry season in 2007 had no significant effect on the production in 2008 (P = 0.066). The variation in canavalia biomass production within GR and PT sites was higher than the variation between sites.The components of the soil surface N budget and the resulting balance for each treatment on each site are presented in Table 3. Nitrogen input from mineral fertilizers applied to maize was from 38 to 68 kg N ha -1 . Mineral fertilizers and seeds contributed per site equally to M/B and M/C rotation. In relation to the overall N inputs, Nfert represented on average for both years 88% of the total N input in the M/B rotation, and 69% in the M/C rotation. For both years, Nseed represented from 3 to 6% of the total N input. The contribution of symbiotic N 2 fixation to the M/B rotation did not exceed 8 kg N ha -1 (8 and 3% of the total N input in 2007 and 2008, respectively), whereas it was on average 22 and 17 kg N ha -1 (or 29 and 24% of the total N input) in the M/C rotation in 2007 and 2008, respectively. Nitrogen exported through maize harvest ranged from 16 to 67 kg N ha -1 . Canavalia represented an export of up to 87 kg N ha -1 in 2007 and 39 kg N ha -1 in 2008 when the whole aboveground biomass was removed.The M/C0 treatment showed in most cases the highest N balance per site, with an average surplus of 33 kg N ha -1 in 2007 and 26 kg N ha -1 in 2008 (Fig. 6). In 2007, M/C100 treatments resulted in most cases with a negative N balance with an average depletion of 15 kg N ha -1 . In 2008, the M/C100 balance was in average in equilibrium, with 2 kg N ha -1 in average. An average surplus of 14 and 17 kg N ha -1 in 2007 and 2008, respectively was observed with the M/B treatment. The N balance for both years was influenced by the site (P = 0.015 in 2007 and P = 0.003 in 2008). Treatments had a highly significant effect on the N balance in 2007 (P = 0.000) and a significant effect in 2008 (P = 0.006).For the most contrasting treatments M/B and M/C0, the amount of N recycled and its source are presented in Fig. 7. After maize harvest, about 18 kg N ha -1 were recycled on the plot with maize residues, independent of the treatment, which represents about 32% of the overall maize N uptake. Nitrogen recycled in the M/C0 rotation is higher than in the M/B rotation. Bean residues contributed with about 3 kg N ha -1 to the N recycled. When canavalia was not removed, an average value of 22 kg N ha -1 was recycled on the plot with canavalia biomass.Symbiotic N 2 fixation estimated with the 15 N natural abundance methodThe suggested minimum difference of 2% between reference plants and legumes (Unkovich et al. 1994) was reached at all sites and for both M/B and M/C treatments (Fig. 4). Standard deviation of all reference species d 15 N per site was in average 1.1%, and was not higher than 2.2%, which shows that soil d 15 N was relatively homogeneous on each site. For canavalia, the B-value obtained was in the range reported for tropical legume species used as forage or cover crops (Unkovich et al. 2008). The value for bean was slightly lower than -2.2 reported for common bean by Unkovich et al. (2008).Bean %Ndfa was higher than the average of 36% reported by Herridge et al. (2008) for common bean in farmers fields. Canavalia %Ndfa in 2007 was in the range of the 57-69% reported by Giller (2001) for Canavalia ensiformis. M/C50 38 0.4 2.5 13 (4) 14 ( 10) 56 ( 9) 10 ( 2) 34 ( 14) 10 ( 8) M/C75 38 0.4 2.5 13 (4) 19 ( 12) 56 ( 13) 15 (3) 53 ( 6) 21 ( 14) M/C100 38 0.4 2.5 13 (4) 18 ( 3) 59 ( 13) 20 ( 4) 53 ( 16) 25 ( 6 22) 87 ( 30) 49 ( 12) 39 (0)Standard deviation is given in parenthesis. M/B is the maize-bean rotation; M/C is the maize-canavalia rotation; N M is N export through maize, i.e. through grains, damaged grains, cobs and husks; N BG is N export through bean grains; N CBR is N export through canavalia biomass removedCanavalia had an average %Ndfa of 64% 2007, despite the fact that it was grown for the first time in this region and not inoculated. For the second year of cultivation of canavalia, an average increase of about 17% was observed compared to the first year values. Results from the pot study conducted at CIAT-Colombia showed that nodulation is more rapid and abundant (30% more nodule fresh weight) when canavalia is inoculated with rhizobia from a site where it has been grown for 5 years (S. Douxchamps, unpublished data). Higher %Ndfa can therefore be expected after a few years of cultivation, and may reach in the third year the value of 80% as reported for many tropical green manure legumes (Giller 2001;Thomas et al. 1997).Compared to on-station trials conducted in Brazil, canavalia biomass production was similar to the values of 230 to 6,550 kg ha -1 observed when grown during the dry season (Burle et al. 1999) but lower than the value of 10,030 kg ha -1 observed when grown entirely during the rainy season (Carsky et al. 1990). Canavalia biomass production varied highly among plots. The reasons behind this variation are due to soil and topographic factors, which are discussed elsewhere (Douxchamps, 2010). Because biomass production varied more than %Ndfa, the variation in Nfix was determined by variation in biomass, which has been also observed by Thomas et al. (1997) in the humid tropics for three forage legumes. Likewise, the difference of biomass production between the legumes was the main reason why Nfix by canavalia was on an average about 16 kg N ha -1 higher than that of bean crop.This difference in Nfix between the two legumes was underestimated, as below-ground biomass contribution was partially taken into account for bean but not for canavalia. Canavalia is known for its deep pivoting root system with lots of fine roots and lateral root extension up to 3.5 m (Alvarenga et al. 1995). Besides the problems encountered in trying to estimate or recover such a root system, the rapid turnover of belowground tissues and root exudation make difficult to determine below-ground N contributions (Cherr et al. 2006). Below-ground N associated with or derived from roots can represent up to 50% of the total plant N of legumes (Herridge et al. 2008). To account for below-ground N, Unkovich et al. (2008) suggested a multiplication by factor 2 for fodder legumes, which would give for canavalia in our trial an average Nfix of 44 kg N ha -1 in 2007 and 34 kg N ha -1 in 2008. For bean, only dry roots were recovered, whereas exudates and root turnover were not taken into account. By using the multiplication factor of 1.4 suggested by Unkovich et al. (2008), the maximum Nfix for bean in our trial would be of 11 kg N ha -1 .Effect of on-farm conditions on Nfert, Nseed, and NexportNfert and Nseed were distributed by hand, by different farmers. Distribution of fertilizer and seed was not as exact as when it is done by machines or in on-station trials. As N contained in seeds remained small compared to the other factors of the budget, its potential variation had relatively small effect on the N balance estimations. Likewise, plant density was also somewhat heterogeneous between plots. The estimation of Nexport by maize was also affected by human factors. For example, people do not enter the fields very carefully: they may drop ears on the ground, or sometimes grab an appetizing maize ear to eat on the way back home. This may be one reason why plants with empty husks were found. The amount of empty husks represented on average 6% of the good ears.Therefore, the results from the different sites should not be combined as one single effect of canavalia when introduced on-farm, but rather be seen as a range of possible responses, taking into account farmers practices and their impacts on data variability. One may argue that those conditions render difficult to design a precise nutrient management guidelines for the region. Uncertainties are however part of budget calculations at all scales, and there are various ways to deal with them in the subsequent decision making process (Oenema et al. 2003). As farmers cannot afford taking risks, safety margins have to be taken into account.Both years and on all sites, increasing cutting intensities of canavalia reduced the N balance. On one hand, canavalia increased N input into the system compared to M/B rotation, but on the other hand it increased soil N depletion if completely removed. Under M/B rotation, balance depended much on bean yields. When beans were harvested, the balance became negative, except in the sites where high amounts of mineral fertilizer were applied (FC and GR). The positive to neutral N balance on M/B is mainly due to the low yields of common bean. Assuming yields of 800 kg N ha -1 (FAO 2009), N export through bean harvest would become about 30 kg N ha -1 , which brings the balance estimate to negative in most cases, with an average value of -6 kg N ha -1 and a maximum value of -40 kg N ha -1 on LP site. A positive N balance for the M/B rotation does not mean that the system is sustainable: lower bean yields mean lower or no income. Likewise, the observation of a higher N balance for all treatments of a site is due to reduced N export by maize. For example, on FC site maize yields were much higher in 2007 than in 2008, and thus the balance resulted much lower. When export through maize grain is not compensated by mineral fertilizers, as on LP and PT sites, the N balance becomes negative. If we would include the below ground N contribution from the legumes as presented above, the deficit observed in the M/C100 rotations would be in five of eight cases compensated, with an average balance of 18 kg N ha -1 . The impact on M/B rotations would be lower, and would not compensate the deficit observed on LP site, which would remain at about -10 kg N ha -1 .Many experiments have demonstrated the positive effect of legumes on succeeding crops (Peoples and Craswell 1992). However, in this study, the integration of canavalia as green manure had no effect on the following maize crop, probably because (1) one year of rotation is not sufficient to observe an effect, (2) the mineral fertilizer background is too high compared to the N input by canavalia, and (3) other factors related to management practices may have limited a productivity increase. For example, MRE, i.e. the amount of ears not harvested, represent a potential maize yield increase if crop management is improved. On all sites and for the 2 years, MRE had a mean value of 350 kg ha -1 , which corresponds to a loss of 10% of good grain yield. According to farmers, up to 50% of maize grain yield losses can occur in the region due to this problem and these losses do not include post harvest losses. Before important changes in nutrient management as the introduction of a legume in the rotation, the traditional system could be improved by a few simple efforts. There are opportunities to increase productivity with improved management, e.g., concerning plant density, timing of fertilizer application and weed control.According to the design of the experiment, we expected that in the green manure scenario M/C0, the N of crop residues is recycled within the plot, as no cows would enter the field to graze. However, in practice, according to participatory workshops with farmers, there will probably be only one type of M/C rotation. Farmers will allow cows to graze totally canavalia at the onset of the dry season. Regrowth, which was not expected when the experiment was designed, has been observed during the dry season when plants are not cut down to the ground level i.e., after grazing, and may be used for soil improvement. The former N recycled would in this case represent the amount of N available for grazing during the dry season. Rufino et al. (2006) reported for African dairy studies that on average about 80% of the ingested N is returned with manure. Assuming the same proportion recycled for cows in our trial and all N excreted being returned to the grazed plot, 33 kg N ha -1 on average would be recycled through canavalia grazing, under the form of faeces and urine. While the urine fraction would fall on a single spot at high concentration, the faeces fraction can be uniformly distributed on the plot surface by farmers. An efficient animal manure management would therefore be essential to maximize N recycling and compensate the N deficit observed with M/C100 rotation.The proposed rotation sequence would therefore be to alternate this most probable M/C rotation with the M/B rotation: canavalia would grow on the area not cultivated by beans (i.e. about 1 ha), and crops would be exchanged the following year, i.e., on the same area the sequence would be M/B-M/C-M/B-M/ C etc. (Fig. 8). In the traditional sequence, the succession of M/B and M (maize alone) rotations depletes N stocks over years, moreover on sites with low mineral fertilizer applications. The alternative sequence will build up N stocks year after year. Moreover, canavalia can reduce erosion and decrease weed pressure. The time until seeing an effect on agricultural productivity depends on the biophysical limitations of each site and the management options chosen by the farmers. Canavalia yield is assumed to be maintained over years. Legume yields can decrease after a few years of cultivation due to pests and diseases, as has been reported in other trials (Bu ¨nemann et al. 2004). However, this has not yet been observed with canavalia in a 6-year on-station experiment where canavalia was planted on the same plots every year (A. Schmidt et al., unpublished data). Still, the proposed rotation sequence needs long term testing on-farm. The use of models, once calibrated, can also be useful in predicting the effects of rotation sequences on soil fertility (Walker et al. 2008).The underlying assumption of a nutrient budget is that of a mass balance i.e. nutrient input to the system minus nutrient outputs from the system equals the change in storage within the system (Meissinger and Randall 1991). However, soil surface budgets consider soil as a black box, and do not provide information on the fate or origin of any budget surplus i.e. whether it is lost from the system or stored in the soil (Watson et al. 2002). Due to unaccounted N losses, like leaching and gaseous losses, N balances are overestimated unless they would be compensated by atmospheric N deposition. Accurate data being unavailable for the study region, atmospheric deposition was not included in the budget and assumed to be equal for all farms. Surface lateral nutrient flows, i.e. inputs and outputs by sedimentation, erosion and runoff were also not quantified. Despite the fact that those processes are left out, soil surface budgets based on ''easy-tomeasure'' flows have proved their utility in providing useful information to farmers and policy makers on soil fertility and on the need for restoration (Adu-Gyamfi et al. 2007;Rego et al. 2003), even in sloping hillsides of the tropics (Briggs and Twomlow 2002). These flows are also the easiest to manipulate to influence the nutrient balances in the short term (Bekunda and Manzi 2003). However, the estimation of lateral nutrient flows and gaseous losses is essential if an extrapolation of N budgets at landscape level and for a longer time frame is envisaged (Smaling et al. 1993). Finally, to predict how much N can be expected from the use of canavalia over years, an in-depth study on soil N fluxes is needed, including a determination of the fertilizer value of manure from cows fed with canavalia, an evaluation of N losses and of the belowground contribution of the legumes, and an assessment of the N mineralization rate for the different soil types of the Nicaraguan hillsides.When used as green manure, canavalia represents a net N input into the crop rotation due to symbiotic N fixation. Still, mineral fertilizers are necessary to maintain the N balance positive. Using canavalia as forage depletes soil N, and should be compensated by an effective return of animal manure on the plots. The introduction of canavalia in the Nicaraguan hillsides has the potential to improve agricultural production. However, the time needed to visualize an effect on crop productivity depends on the biophysical limitations of each site and the management done by the farmers.","tokenCount":"6815"} \ No newline at end of file diff --git a/data/part_1/0559572610.json b/data/part_1/0559572610.json new file mode 100644 index 0000000000000000000000000000000000000000..ef62c67b59c34704f9d632362c4d71cd325ddbd3 --- /dev/null +++ b/data/part_1/0559572610.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"59fc3681f228e8b51713cc5370b22d24","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5a2901a6-be32-4917-9fcf-2c4d91897a8f/retrieve","id":"-582382453"},"keywords":[],"sieverID":"2793296d-20ad-45df-b845-3091e0a1d4f7","pagecount":"52","content":"Price: DKK 25.00 (VAT included) DIIS publications can be downloaded free of charge from www.diis.dk DIIS Working Papers make available DIIS researchers' and DIIS project partners' work in progress towards proper publishing. They may include important documentation which is not necessarily published elsewhere.DIIS Working Papers are published under the responsibility of the author alone.Este informe tiene como objetivo presentar el perfil de pobreza para la parte alta de la cuenca del río Jequetepeque, departamento de Cajamarca, Perú, y analizar en qué medida el acceso al agua, particularmente para el riego, y a la tierra, depende de los niveles de pobreza. Con base en el perfil de pobreza se puede puntualizar que las familias no pobres se caracterizan por poseer pastos, bosques, cultivos con riego y fuentes de ingreso no agropecuarias. En cambio, los más pobres se caracterizan por producir más para el autoconsumo que para el mercado, depender más del trabajo como jornaleros, no tener tierra o poseer poca, y pocas parcelas con riego, por no tener fuentes de ingreso no agropecuarias y por pasar dificultades para hacerle frente a las enfermedades con recursos propios.Este informe tiene como objetivo presentar el perfil de pobreza para la parte alta de la cuenca del río Jequetepeque, departamento de Cajamarca, Perú, y analizar en qué medida el acceso al agua, particularmente para el riego, y a la tierra, depende de los niveles de pobreza. El perfil de pobreza está desarrollado con base en percepciones locales de bienestar, las cuales han sido 'traducidas' a indicadores cuantificables, que, combinados, producen un índice de pobreza (Ravnborg et al., 1999) El objetivo del proyecto es \"investigar y analizar las externalidades generadas por cambios del uso de la tierra en regiones montañosas, para proveer una base de información que sirva para la toma de decisiones en el pago por servicios ambientales, relacionado con la inversión social, como mecanismo efectivo para generar un desarrollo dinámico en el sector rural.\"El trabajo se efectúa en cuatro países: Bolivia, Perú, Ecuador y Colombia. En Perú, la investigación se realiza en colaboración con el Centro Ecuménico de Promoción y Acción Social -CEDEPAS.El presente informe está organizado en seis partes. Además de introducir el estudio, la primera parte incluye una breve descripción de Jequetepeque y la presentación de los datos y métodos aplicados en el estudio. La segunda parte presenta el perfil de pobreza, según el cual las tres categorías de familias --las más pobres, las menos pobres y las no pobres--son descritas de acuerdo con los indicadores de bienestar que constituyen la medida de pobreza. En la tercera parte del informe se presentan los resultados del análisis del acceso al agua, y de su manejo, principalmente para el riego, según el nivel de pobreza, mientras que la cuarta parte analiza el acceso a la tierra bajo el enfoque de pobreza. La quinta parte analiza la participación en organizaciones locales y el contacto con organizaciones externas.Finalmente, la sexta y última parte presenta un resumen de los resultados más destacados con respecto a la relación entre acceso al agua y a la tierra, y la pobreza.La cuenca del río Jequetepeque está ubicada en la costa norte del Perú, en la vertiente occidental de la Cordillera de los Andes. Tiene un área total de 6,982 km 2 (698,200 hectáreas), distribuida entre los departamentos de La Libertad (provincias de Pacasmayo y Chepén) y Cajamarca (provincias de Cajamarca, Contumazá, San Pablo y San Miguel).Abarca un total de seis provincias y 30 distritos. Los niveles altitudinales varían entre 0 y 4,188 msnm, con una topografía accidentada y con rangos de precipitación de 0 a 1,100 mm anuales. Los ríos que dan origen al Jequetepeque son: el Pallac, con una cuenca de 250 km 2 ; San Miguel o Puclush, con una cuenca de 1,065 km 2 , y Magdalena, con 1,500 km 2 . La tabla 1.1. muestra la población de las cuatro provincias a las cuales la parte alta de la cuenca de Jequetepeque pertenece. Fuente: www.embperu.org.br/mapa_politico_del_peru.htmAunque políticamente comprende diferentes provincias y regiones, la cuenca se articula a partir de la dinámica socioeconómica operante entre sus distritos y zonas. Así, existen ejes comerciales que unen lugares como San Miguel-San Pablo-Chilete-Tembladera-Chepén-San Gregorio, estableciendo relaciones entre centros poblados y áreas productivas de las zonas altas y medias, con las ciudades y centros productivos y comerciales en la parte costeña (Tembladera, Chepén, Guadalupe y Pacasmayo). En la tabla 1.1, se muestra la división política de la parte alta de la cuenca Jequetepeque.La población de la cuenca de Jequetepeque está distribuida de la siguiente manera: el 53% de los habitantes vive en el sector urbano y el 47% en el sector rural. Esta situación se debe a la concentración poblacional en las ciudades costeñas como Chepén, Pacasmayo y Guadalupe. El 81% de la población de esta zona es urbana, mientras en las zonas altas la situación es totalmente inversa, pues el 80% es población rural. El distrito de Chepén sigue siendo el de mayor población en el valle, y concentra el 29% del total de la zona baja; el de mayor crecimiento demográfico fue, sin embargo, el distrito de Guadalupe.La mayoría de la población depende de la leña como su fuente principal de energía, variando entre el 61% de hogares en la provincia de Cajamarca hasta más de 90% en SanMiguel y San Pablo (INEI, 2005).Con respeto al agua, entre el 50 y el 70% de los hogares de las provincias de San Pablo, Contumazá y Cajamarca obtienen agua a través de la red pública dentro de la vivienda, igual ocurre con el 25% de los hogares en la provincia de San Miguel. Aquí, el tipo de abastecimiento más importante es el río, la acequia, un manantial, con el 35% de la población, seguida por la red pública fuera de la viviendo (33% En el área de estudio se ha inventariado una red meteorológica que está a cargo, en su mayoría, por el Servicio Nacional de Meteorología e Hidrología (SENAMHI) y la Empresa Sunchobamba, Huacraruco y anexos.Las temperaturas en las cuencas media y alta del río Jequetepeque varían entre 25.4 ºC en Gallito Ciego y < 4.0 ºC en Lagunas Compuerta.Las temperaturas máximas ocurren en la zona del embalse Gallito Ciego, con > 30ºC (25.4ºC) en promedio, y las temperaturas mínimas ocurren en la zona de Lagunas Compuerta y Yanacocha, con < 0 ºC (4 a 8 ºC) en promedio anual.En la cuenca baja del río Jequetepeque, hasta la altitud de 500 metros, la precipitación promedio es <100 mm por año, considerada como normal, sin fenómeno El Niño. En el sector comprendido entre 500 y 1,500 msnm, las precipitaciones varían entre 140 y 430 mm de promedio multianual. En el piso altitudinal entre 1,500 y 2,000 msnm, las precipitaciones se encuentran en un rango de 420 a 570 mm. Entre 2,000 y 3,000 msnm, los promedios de precipitación oscilan entre 600 y 1,240 mm.1.1.4. Los sistemas productivos de la parte alta de la cuenca JequetepequeCasi el 80% del área de la cuenca alta de Jequetepeque está dedicada a pastos naturales, forestales y otros tipos de uso, incluyéndose también las tierras eriazas y aquellas cuya pendiente muy pronunciada impide un uso agrícola. Sólo una quinta parte de la superficie total de la cuenca es de uso agrícola, encontrándose marcados contrastes entre sus zonas baja y alta. Mientras en la zona baja se dispone de más tierras agrícolas y de una mejor infraestructura de riego, en la zona alta predomina la agricultura de secano, con altos porcentajes de tierra en descanso, lo que limita su capacidad productiva (Anuario Estadístico Agropecuario 1986, departamento de Cajamarca).El uso de la tierra varía significativamente según zonas, así, en el valle o zona baja la superficie agrícola alcanza a un 41%, mientras en la zona alta es de sólo 17%. Casi el 30% de la extensión total de la cuenca es utilizada como pastos naturales, la mayoría en la zona alta, y el 8% corresponde a pastos cultivados, incluida la alfalfa sobre el área agrícola cultivada. Las tierras marginales y forestales representan el 47% en la zona alta, y el 58% en la zona baja. La actividad agrícola en tierras bajo riego se reduce a las áreas en las riberas del Jequetepeque, o a pequeñas zonas en las laderas.Sólo un 40% del área agrícola total dispone de riego en toda la cuenca, frente al 60% en condiciones de secano. En la zona alta, en donde escasea el agua, el área agrícola bajo riego no llega al 12% del total, frente al 88% en secano. A ello debe agregarse el hecho de que alrededor de las 3/4 partes de las tierras de secano en esta zona se hallan en descanso, lo que limita notablemente su capacidad productiva.Los cultivos predominantes en la zona alta son la papa, maíz, trigo, arroz, cebada, arvejas, frutales y caña de azúcar, mientras que en la zona baja, el cultivo principal es el arroz (que cubre un promedio de 70% del área cultivada).El presente estudio abarca la parte alta de la cuenca de Jequetepeque, ubicada en las cuatro provincias de Cajamarca -Cajamarca, San Pablo, San Miguel y Contumazá. En total, los distritos de estas cuatro provincias que están ubicados dentro de la cuenca de Jequetepeque 3 tienen una población de 116,722 habitantes y una extensión de 2,084 km 2 (tabla 1.3).El perfil de pobreza para la cuenca de Jequetepeque que a continuación se presenta está basado en percepciones locales de bienestar obtenidas a través de clasificaciones de bienestar realizadas en siete comunidades (caseríos) de la cuenca. Las siete comunidades fueron seleccionadas de entre la diversidad de condiciones que existen en la cuenca con respecto a altura, composición de la población en términos de género, distribución de la tierra y accesibilidad, 4 siguiendo la metodología elaborada por Ravnborg (ver Ravnborg et al., 1999). En cada comunidad se realizaron tres clasificaciones de bienestar, y a través de las descripciones de los diferentes niveles, se identificó los siguientes 11 indicadores de bienestar (tabla 1.2):Con base en estos indicadores, se elaboró una encuesta para obtener información sobre ellos. La encuesta fue administrada a una muestra representativa de familias de la parte alta de la cuenca, y no sólo a las familias de las siete comunidades donde se había realizado las clasificaciones de bienestar. La muestra contiene un total de 400 familias, 5 y fue seleccionada mediante dos etapas, de las cuales la primera consistió en seleccionar un número de comunidades, 6 y la segunda, dentro de estas comunidades seleccionadas, consistió en muestrear al azar un número determinado de familias (tabla 1.3). La duración promedio de las entrevistas fue de 32 minutos, y sólo el 3% de las entrevistas duró más de una hora.Fuente: www.embperu.org.br/mapa_politico_del_peru.htm Para cada aspecto inicialmente mencionado en las clasificaciones de bienestar (tabla 1.2), la tabla 1.4 muestra cómo, con base en las preguntas de la encuesta, se han definido indicadores que cuantifican estos aspectos. Para cada uno de los 11 indicadores, cada familia entrevistada recibe un puntaje de 33, 67 ó 100, dependiendo del indicador y de su respuesta a las preguntas utilizadas para definir éste. Por ejemplo, una familia que tenga cuatro hectáreas de tierra obtendrá un puntaje de pobreza de 33 en el indicador ITIERRA, mientras que una familia que no tenga tierra propia recibirá un puntaje de pobreza de 100 en el mismo indicador.El índice final de pobreza se calcula como el puntaje promedio de pobreza, o sea, el promedio entre los puntajes que ha recibido cada familia en cada uno de los once indicadores de pobreza. Esa medida se llama Índice de Pobreza.Partiendo de éste, se puede definir las categorías de pobreza. La figura 1.1 muestra las frecuencias (número de familias) del índice de pobreza e indica los valores del mismo que definen las categorías de pobreza, mientras la figura 1.2 muestra más detalladamente cómo cada uno de los 11 indicadores contribuye al índice de pobreza.El perfil de pobreza que se presenta en la siguiente sección de este informe se basa en las categorías antes señaladas, trazadas respecto de los 11 indicadores que constituyen el índice de pobreza. Enseguida, estas tres categorías de familias serán descritas con más detalle con respecto a los 11 indicadores constituyentes de bienestar.Las fuentes de ingreso principales para las familias que viven en Jequetepeque son la venta de la producción agrícola, la venta de derivados de la leche y de animales de la ganadería mayor y menor, la venta de mano de obra, y la presencia de algunos oficios y negocios no agropecuarios como las tejedoras, comerciantes, etc.De las familias de Jequetepeque, el 78% posee tierras y el 22% sólo tiene la casa o viven en casas de otros.Como muestra la tabla 2.6, sólo el 25% de las familias de la cuenca alta de Jequetepeque tienen más de dos hectáreas. Más de la mitad de las familias no pobres (51%) tienen más de dos hectáreas de tierra; éste es el caso para el 1% de las familias más pobres. La mayoría de éstas (71%) no tienen tierra o tienen menos de media hectárea de tierra. Éste es el caso para el 35% de las familias menos pobres y para el 12% de las familias no pobres.Tabla 2.6. En toda la cuenca predominan las parcelas pequeñas y medianas, son pocas las familias que poseen más de 10 hectáreas de tierra (3%).Además de la tenencia propia de la tierra, una gran parte de las familias acceden a la tierra como partidarios, sembrando en tierra de otra persona a cambio a una parte de la cosecha.Como muestra la tabla 2.7, casi la mitad (43%) de la población accede a tierra como partidarios. Son especialmente las familias más pobres las que acceden a la tierra de esta manera.El 13% de las familias alquilan tierra para producir, representando entre el 17% de las familias no pobres, el 12% de las menos pobres y el 10% de las familias más pobres.Tabla 2.7. Formas de intercambiar temporalmente el acceso a la tierra (fuera de por tenencia propia)Porcentaje de familias por nivel de pobreza, según su forma de acceder a la tierra Niveles de pobreza Forma de intercambio temporal de la tierra ns Correlación no significativa (prueba de Chi-cuadrado de Pearson).Solamente el 30% de los más pobres tienen animales, o sea ganado mayor, cerdos o borregos, mientras éste es el caso para el 81% de los no pobres y el 65% de los menos pobres (tabla 2.8), y ninguna de las familias más pobres tienen 4 vacas o más. Distinguiendo entre los diferentes tipos de animales, la tabla 2.9 muestra que el 44% de las familias en la parte alta de la cuenca de Jequetepeque posee ganado lechero o de engorde, y mientras éste es el caso para el 64 y para el 44% de los no pobres y los menos pobres, respectivamente, sólo el 16% de los más pobres lo tienen.Es menor la cantidad de familias que poseen cerdos (21%) y borregos (29%). En la tabla 2.9 se comprueba que existe una correlación significativa entre la posesión de cerdos y el nivel de pobreza: el 35% de los no pobres poseen cerdos, mientras sólo el 7% de los más pobres los tienen. Con la tenencia de borregos también existe relación significativa con la pobreza: el 41% de los no pobres tienen borregos, asimismo, un 28% de los menos pobres y un 13% de los más pobres.Tabla 2.9. Casi la mitad de las familias que tienen ganado mayor venden leche o sus derivados. Como es de esperarse, son los dueños de ganado mayor, no pobres, los que están más involucrados en la venta de leche.La tabla 2.10 muestra que en la parte alta de la cuenca de Jequetepeque existe relación significativa entre los niveles de pobreza y la venta de producción agrícola. El 72% de las familias con producción agrícola reservan la mayoría para consumo, y sólo el 25% de ellas destinan más de la mitad de su producción para la venta. Son los no pobres los que constituyen el mayor porcentaje de este grupo. Paralelamente, se observa que el 84% de los más pobres utilizan toda su producción para consumo, y sólo el 1% de ellos vende la mayoría de su producción. En el área de estudio, el 43% de las familias tienen ingresos no agropecuarios. Son principalmente las familias no pobres las que poseen fuentes de ingreso no-agrícolas (60%), seguidas por las familias menos pobres, de las cuales un poco menos de la mitad (41%) las tienen. De las familias más pobres, sólo el 25% tienen fuentes de ingresos no agrícolas. De las familias no pobres, el 43% tienen más de una fuente de ingreso no agrícola, por lo tanto, poseer ingresos no agropecuarios es una característica significativa para ser no pobre.Tabla 2.12. Cantidad de fuentes de ingreso no agropecuarios por nivel de pobreza Porcentaje de las familias por nivel de pobreza según la cantidad de fuentes de ingreso no agropecuarias que Las actividades que generan ingresos no agropecuarios encontradas en la zona son: negocios propios; compra-venta de granos básicos, papas y hortalizas; recepción de remesas; la jefa de familia teje para vender; empleo asalariado; ingresos por algún otro oficio y actividad profesional. El mayor porcentaje se encuentra en la recepción de remesas, y son los no pobres y los menos pobres los que tienen más remesas. Después de las remesas observamos que la otra actividad de mayor porcentaje es que la jefa de familia teja para la venta, y el comportamiento entre los distintos niveles de pobreza es muy similar. La compraventa de granos básicos y el ingreso por otro oficio se encuentran en el tercer lugar de las actividades que generan ingresos no agropecuarios en la cuenca. La seguridad alimentaria fue medida por la escasez de comida durante una época del último año. En la tabla 2.14 observamos que el 24% de las familias en la parte alta de la cuenca deJequetepeque afirman que han pasado más de una semana sin tener suficiente comida.Esta situación es más frecuente en las familias más pobres, el 49% de las cuales ha pasado más de una semana sin tener suficiente comida. La mayoría de las familias en Jequetepeque (80%) tienen sus casas en estado regular, es decir, puedan contar con algunos servicios como agua, luz y desagüe, o con una casa que tiene buenas paredes, buen piso o buen techo, pero no todo a la vez (tabla 2.15).El 16% de las familias tienen su casa en mal estado, es decir, no cuenta con ningún servicio y la casa cuenta con un máximo de dos servicios. Las casas de algunas familias están en regular estado. Finalmente, sólo el 5% de las familias tienen casas buenas. Como es de esperar, existe una correlación significativa entre el estado de la casa y el nivel de pobreza. La capacidad de atender a problemas de salud, o sea haber podido consultar con un médico, comprar medicinas, etc. con dinero propio, en el caso de que alguien en la familia se hubiera enfermado durante el último año, resulta significativamente relacionada con el nivel de pobreza.En total, en la tabla 2.16 observamos que en el 65% de las familias en la cuenca alta de Jequetepeque alguien tuvo problemas de salud durante el último año, y que, en promedio, el 17% de las familias no pudieron atender el problema con dinero propio, sino que Al analizar la información de la composición de la jefatura de la familia nos encontramos que el 19% de los hogares están dirigidos por un solo miembro de los dos jefes de familia.Es decir, sólo el varón o sólo la mujer están al frente de su hogar, y esto es lo más frecuente entre las familias menos pobres y más pobres (tabla 2.17).Tabla 2.17 Sin embargo, un porcentaje más grande de las familias (23%) indica tener a la mujer como jefa. La tabla 2.18 muestra que el 23% de los hogares en la cuenca alta de Jequetepeque están dirigidos por mujeres, y que esto es más frecuente entre las familias menos pobres y pobres, con 29 y 31%, respectivamente, en comparación con sólo el 5% de las familias no pobres. (prueba de Chi-cuadrado de Pearson).La capacidad para asegurar educación superior a los hijos fue medida mediante la capacidad para asegurar educación secundaria a los jóvenes entre las edades de 13 y 18 años. De las familias en la cuenca alta de Jequetepeque, el 21% logran asegurarles educación secundaria a los jóvenes. Mientras éste es el caso para el 32% de las familias no pobres y el 20% de las familias menos pobres, sólo es el caso para el 8% de las familias más pobres. La capacidad para contratar jornaleros para labores agrícolas tiene una correlación directa con el nivel de pobreza en la parte alta de la cuenca de Jequetepeque. En total, menos de la mitad de las familias contrata trabajadores para las actividades agrícolas: siembras, desyerbas, fumigaciones y cosechas (tabla 2.21). En su mayoría son las familias no pobres las que contratan trabajadores, tal es el caso para el 67% de estas familias, y en casi todos los casos (58%) contratan para tres o más actividades agrícolas. III. Pobreza y manejo del agua en la parte alta de la cuenca de JequetepequeLa tabla 3.22 refleja que el 58% de las familias tienen acceso al riego, y existe correlación significativa entre pobreza y riego. El menor porcentaje de acceso lo tienen las familias más pobres, con sólo el 34%, en contraste con las no pobres, que en un 75% poseen parcelas con riego.Al analizar el tipo de parcelas con riego observamos que en su gran mayoría (93%) son individuales, y que existe un comportamiento bastante uniforme en los distintos niveles de pobreza. La posesión de parcelas comunales y alquiladas sólo la constituyen el 7% de las familias.La gran mayoría de las familias que cuentan con riego accedieron a sus parcelas con riego por herencia (42%), por compra (42%) o por alguna combinación de las dos (8%), y sólo unas pocos lo obtuvieron por otras vías, como reforma agraria, préstamos y otros (tabla 3.22).Tabla 3.22. Acceso a parcelas con riego por nivel de pobreza Porcentaje de las familias por nivel de pobreza según su acceso a parcelas con riego Además de su mayor probabilidad de tener acceso a parcelas con riego, las familias no pobres tienden a tener más área bajo riego que las familias menos pobres y más pobres.Como muestra la tabla 3.23, el 35% de las familias no pobres tienen más de dos hectáreas bajo riego, mientras éste es el caso para sólo el 10% de las familias menos pobres y para ninguna familia más pobre.Los estratos de tenencia de la tierra con riego, mostrados en la tabla 3.23, indican que las familias más pobres (22%) poseen menos de media hectárea, y el 48% entre 0.5 y 1 hectárea. En el estrato que tiene más de dos hectáreas con riego sólo hay un 4% de familias más pobres, en este estrato se encuentra el 48% de los no pobres y el 20% de los menos pobres. *** Correlación entre el nivel de pobreza y estratos de tenencia de la tierra con riego, significativa a nivel de 0.001 (prueba de Chi-cuadrado de Pearson).1 Falta información sobre el tamaño de parcela con riego para las 41 familias restantes con riego.Lo más común en la parte alta de la cuenca de Jequetepeque es obtener acceso al agua para el riego a través de un permiso, 7 lo cual es el caso para el 39% de las familias, o a través de herencia, siendo el caso para el 24% de las familias con riego (tabla 3.24). En general, muy pocas familias tienen derecho permanente al agua para riego a través de una licencia (7%).7 El 'permiso' de agua solamente da acceso a ésta si la cantidad total de ella durante un año excede la cantidad a la cual tienen derecho los dueños de 'licencias' de agua ( Reflejando la informalidad del riego en muchas partes de la cuenca alta de Jequetepeque, sólo el 40% de las familias con riego indicaron pertenecer a un comité de riego, tanto familias que obtienen su agua de riego a través de un canal para tal fin, como familias que obtienen su agua de riego directamente a través de un río o quebrada o de un ojo de agua.La mayoría de las familias que indicaron ser miembros de un comité de riego también indicaron que éste pertenece a una comisión de regantes (tabla 3.26). De las familias no pobres, el 27% indicaron haber tenido un cargo dentro del comité de regantes, mientras éste es el caso para el 11% de las familias más pobres.Una tercera parte de las familias que tienen acceso a riego indicó pagar para el uso de agua para riego, y, aparentemente, son tanto familias que se identificaron como miembros de un comité de riego como familias que no se identificaron como tales, así que pagan por su uso del agua. La tabla 3.27 muestra en qué parte del sistema de riego tienen las parcelas, resultando una relación no significativa con el nivel de pobreza. Encontramos que el 37% de las familias tienen sus parcelas en la parte baja. Esta opción concentra el 50% de los más pobres.Seguidamente, se aprecia que el 35% de las familias tienen parcelas en la cabecera del sistema. Éste es el caso para el 41% de los no pobres y el 25% de las familias más pobres. Existe relación significativa entre pobreza y tener riego todo el año. De los más pobres, el 62% tienen riego todo el año, contra el 83% de los no pobres que acceden a él todo el año.Independientemente del nivel de pobreza, la mayoría de las familias que tienen acceso as riego consideran que les llega el agua a la que tienen derecho, y perciben que en tiempos de lluvia es igual para todas las cantidades de agua que les llega. IV. Pobreza y el manejo de la tierra en la parte alta de la cuenca de JequetepequeLa mayoría de las familias en la parte alta de la cuenca de Jequetepeque (87%) tienen cultivos anuales, y la mayoría tiene por lo menos una parte bajo riego (60%). Sin embargo, de las familias más pobres, el 41% sólo tienen cultivos anuales sin riego en comparación con el 21% de los no pobres y el 26% de los menos pobres (tabla 4.29).Para los cultivos permanentes, el riego constituye un factor aún más importante. Sólo la mitad de las familias en la cuenca alta de Jequetepeque tienen sembrados cultivos permanentes (tabla 4.29), y de las familias que los tienen sembrados, la mayoría los ha sembrado con riego por lo menos parcialmente. El menor acceso al riego implica que las familias más pobres tienen menos probabilidad de ser dueños de parcelas con cultivos permanentes, especialmente bajo riego. En la siguiente tabla 4.31 se constata que la mayoría de la producción está concentrada en cultivos anuales bajo riego, donde el más importante es el maíz. La producción de maíz de secano está en manos de los más pobres y el de riego en los más ricos, aunque también tienen una alta participación los menos pobres y los pobres. Igualmente el frijol y trigo de secano esta siendo manejado por los más pobres porque es destinado para el autoconsumo. El 48% de las familias fumigaron sus cultivos en el último año (tabla 4.32). Esta posibilidad sólo representa el 31% en las familias más pobres, en contaste con el 67% de los no pobres y el 42% de los menos pobres. Es poco frecuente la intoxicación por fumigaciones, porque el 74% menciona nunca haber vivido una situación de este tipo (tabla 4.33). Sin embargo, el 29% de los más pobres mencionan haberse intoxicado varias veces, y el 4% de los no pobres y el 6% de los menos pobres, posiblemente porque estos dos niveles de pobreza dependen menos del trabajo como jornaleros que los más pobres. Por esta misma razón, resulta significativa la relación entre niveles de pobreza y situaciones de intoxicación de fumigadores. El 62% de las familias de la parte alta de la cuenca de Jequetepeque han utilizado más de 10 años la parcela principal para la producción, y aparentemente no existe una correlación significativa entre el número de años de haber utilizado la parcela sin descansarla y el nivel de pobreza (tabla 4.34).Tabla 4.34. Años que utiliza la parcela principal sin descanso por nivel de pobreza Porcentaje de las familias por nivel de pobreza, según años que utiliza la parcela principal sin descanso ns En general predominan parcelas con pendientes planas y moderadas (65%), pero los más pobres poseen, en términos relativos, más parcelas con pendientes entre 30 y 70% o con pendientes muy fuertes (>70%), siendo el caso para el 42 y el 17% de las familias más pobres, respectivamente (tabla 4.36). El 73% de los no pobres poseen parcelas con pendientes de menos de 30% de inclinación. Igualmente, existe una correlación significativa entre las características estructurales del suelo y el nivel de pobreza (tabla 4.37). Sólo el 22% del total mencionó poseer \"suelos que mantienen bien la humedad, absorben y drenan fácilmente\". Menor cantidad de familias de las más pobres (16%), de las menos pobres (18%) y de las no pobres (33%) acceden a esta calidad de suelo.Por otro lado, \"los suelos malos que se secan demasiado rápido\" se encuentran en el 34% de las parcelas, y están en mayor medida en las parcelas de las familias más pobres (52%) y de las menos pobres (36%), mientras sólo el 20% de las familias no pobres indicaron tener este tipo de suelo en su parcela más importante. El 30% posee pastos y esto se relaciona con los niveles de pobreza, porque son los no pobres (46%) los que tienen mayor acceso a los pastos (tabla 4.39). Predomina el acceso a pastos individuales (30% del total) y muy poco a pastos comunales (10% del total). El 44% de los que tienen pastos individuales tienen riego, y son los menos pobres los que tienen más pasto con riego. En la tabla 4.40 se observa que la mayoría (88%), independientemente de los niveles de pobreza, introducen los animales en las parcelas para comer el rastrojo antes de sembrar.La mayoría (80%) introduce sólo a animales propios y pocos recibieron pagos por animales ajenos. En la parte alta de la cuenca de Jequetepeque son pocas las familias que tienen parcelas de bosque. En general, el 17% indicó tener acceso al bosque (tabla 4.41). Más frecuente es el acceso a parcelas individuales de bosque, mencionado por el 16% de las familias, mientras el 5% dijo tener acceso a parcelas comunales de bosque, obviamente, reflejando que algunas familias tienen acceso a ambos tipos de bosque. Atrás de estos porcentajes globales existe una correlación significativa entre el nivel pobreza y la posesión de bosques, ya que casi una tercera parte (32%) de las familias no pobres tienen acceso a bosque, en comparación con sólo el 3% de las familias más pobres. En general, en la parte alta de la cuenca de Jequetepeque el contacto con organizaciones externas, sea de crédito, apoyo directo o de asistencia técnica, es muy bajo. Sólo el 7% de las familias indicaron haber tenido algún contacto con organismos externos, como organizaciones de crédito, otros tipos de ONG o instituciones gubernamentales (tabla 5.43).En la tabla 5.43 se muestra que sólo el 5% de las familias han tenido acceso al crédito de algún organismo externo, y los no pobres son los que tienen más probabilidad de obtener crédito institucional. 1 Prueba de significancia no fue ejecutada por una frecuencia esperada baja en más de 20% de las celdas.En la cuenca alta del río Jequetepeque se identificaron tres niveles de bienestar: la mayoría de las familias se ubican en el estrato intermedio (53%), seguido de las familias más pobres (28%) y de las familias no pobres (19%). Al analizar aspectos de tenencia de tierra se observa correlación con los niveles de pobreza. Aunque la mayoría posee tierras, existe escasez por el tamaño de las parcelas que son muy pequeñas; el 35% de familias son sin tierra o sólo tienen el solar, y el 63% poseen de 0.5 a 2 hectáreas.Por otro lado, la mitad de las familias no pobres poseen parcelas mayores a dos hectáreas. Por este motivo, una buena cantidad de familias (43%) accede a tierra para producir como partidarios, especialmente las familias más pobres usan este tipo de arreglo. Pocos (13%) alquilan tierra para producir, y las familias más pobres (10%) casi no hacen uso del alquiler de tierra porque ello implica contar con disponibilidad de recursos financieros.Respecto de la tenencia de animales, existe correlación significativa con la pobreza. En general, el 44% de las familias poseen ganado lechero o de engorde, principalmente las no pobres. Ninguna de las familias más pobres tiene cuatro vacas o más. También existe relación entre venta de leche y derivados, con el nivel de pobreza. Los que tienen más ganado destinan más producto a la venta.Con respecto al ganado menor, sólo la tenencia de cerdos es significativa en relación con el nivel de pobreza. El 21% de las familias posee cerdos, el 35% de los no pobres versus el 7% de los más pobres. Hay más familias con borregos (29%) que con cerdos, pero no existe relación entre la tenencia de borregos y la pobreza.Sólo el 25% destina la mayoría de la producción agrícola a la venta, existiendo una relación significativa con los niveles de pobreza, es decir, a mayor nivel de bienestar mayor proporción de la cosecha destinada al comercio. El 90% de los más pobres producen para el autoconsumo.Cambiar esta racionalidad de producción, diversificando con la introducción de cultivos permanentes de frutales combinados con producción de autoconsumo podría ser una de las vías para reducir pobreza. Se pudo constatar que los más pobres han introducido cultivos permanentes sin riego, pero la masificación de esta alternativa para reducir la pobreza se enfrenta a la limitación del tamaño de las parcelas de los menos pudientes.En Jequetepeque, un 60% de las familias no se emplean como jornaleros. No obstante, se observa diferencias entre niveles de bienestar, siendo los más pobres (68%) quienes dependen más del trabajo como jornaleros.Poseer ingresos no agropecuarios es una característica significativa para ser no pobre en Jequetepeque. Sólo menos de la mitad de las familias (43%) tienen ingresos no agropecuarios, y son las familias no pobres (70%) las que tienen hasta tres fuentes de ingreso no agropecuario, que por orden de importancia son: las remesas, mujeres que tejen para la venta, la compraventa de granos básicos y el ingreso por algún oficio.Sobre la satisfacción de necesidades básicas, en el aspecto de seguridad alimentaria se encontró que el 24% de las familias pasaron más de una semana sin tener suficiente comida, situación más frecuente entre las más pobres (49%). En relación con el estado de la vivienda, 80% de las familias tienen sus casas en estado regular, cuentan con algún servicio básico o con una casa que tiene buenas paredes, buen piso o buen techo, pero no todo a la vez.La capacidad de atender problemas de salud está muy relacionada con la pobreza: el 17% de las familias no pudieron atender la enfermedad con dinero propio, sino que tuvieron que pedirlo prestado o hacer una recolecta entre vecinos o no pudieron hacer nada por falta de dinero. El 34% de las familias más pobres vivieron está carencia.En cuanto a las características de las familias, son pocos los hogares encabezados por una sola persona (19%), y ello es más frecuente entre las familias menos pobres y más pobres. Además, un alto porcentaje de hogares tienen al frente a una mujer (23%), lo que es más común en los hogares más pobres y en los menos pobres.En el tema de la educación está muy relacionado con la pobreza: las familias más pobres tienen menos acceso a educación secundaria (8%), y ninguna de ellas ha tenido acceso a educación superior. También la contratación de mano de obra para realizar labores agrícolas tiene correlación directa con el nivel de pobreza. Son principalmente las familias no pobres las que contratan jornaleros.Existe correlación significativa entre pobreza y riego: el 58% de las familias tienen acceso al riego, donde el menor porcentaje de acceso (34%) lo tienen las familias más pobres, en contraste con las no pobres (75%), además, que estas últimas tienen más superficie bajo riego. Cerca de la mitad de las familias accedieron a sus parcelas con riego por medio de herencia o compra. La forma más común de acceder al agua para riego es por permiso y por herencia, con diferencias poco significativas entre grupos.El manejo del agua es un aspecto importante en la cuenca de Jequetepeque, sobre todo en relación con la producción agrícola, donde los cultivos permanentes son manejados principalmente con riego, y los cultivos anuales básicos para el consumo, como el maíz, son manejados con riego por el 41% de las familias.Los sistemas de control y acceso al agua son bastante informales, sólo el 40% de las familias con riego indicaron pertenecer a un comité de riego. La mayoría de estas familias también pertenecen a un comité de regantes (37%), o alguien de la familia ha tenido un cargo en tal comité. En ambos casos, son las familias no pobres quienes tienen mayor presencia en las juntas directivas, y sólo una tercera parte paga por el agua de riego utilizada. Por otra parte, se encontró una relación significativa entre pobreza y tener riego todo el año, donde 83% de los no pobres tienen riego todo el año frente al 62% de los más pobres. Además, todos consideran que les llega el agua a la que tienen derecho.En cuanto al manejo de la tierra y la producción con o sin riego, 87% de las familias tienen cultivos anuales, y la mayoría tiene por lo menos una parte bajo riego (60%). Sin embargo, de las familias más pobres, el 41% sólo tienen cultivos anuales sin riego en comparación con el 21% de los no pobres y el 26% de los menos pobres. Cerca de la mitad de las familias fumigaron sus cultivos en el último año. La mayoría de los no pobres (67%) fumigaron sus cultivos, seguidos por los menos pobres, y por último los más pobres.Más de la mitad de las familias han utilizado la parcela más de 10 años continuos, para la producción. Esto tiene relación con la calidad percibida del suelo, ya que sólo el 13 de las familias afirman que el suelo de su parcela es bueno y que no necesita fertilizante para producir. Aunque las familias observen que el suelo de su parcela se erosiona, sólo un 26% ha hecho alguna actividad para mejorarlo, y un 31% algo para evitar que se lave, sobre todo, entre las familias no pobres (36% y 34%, respectivamente).La tenencia de pastos está relacionada con los niveles de pobreza: el 30% de las familias posee pastos, principalmente de forma individual, donde el 46% son los no pobres en comparación con el 27% y el 12% de los menos pobres y más pobres, respectivamente. Sólo el 17% de las familias tiene acceso a bosques, sobre todo de forma individual. Sin embargo hay una correlación significativa entre el nivel de pobreza y la posesión de bosques: el 32% de las familias no pobres tiene acceso a bosque contra el 3% de las familias más pobres.Hay poco contacto de las familias de Jequetepeque con organizaciones externas (7%), y poca participación en organizaciones locales; sólo un 8% de las familias tiene algún miembro como parte de una asociación local que no sean las relacionadas con el riego. Los más pobres son los que menos participan. Sólo el 5% de las familias tuvo acceso al crédito de algún organismo externo, y los no pobres son quienes tienen más probabilidad de obtener crédito institucional.Para finalizar, se puede puntualizar que para ser no pobre se debe poseer pastos, bosques, cultivos con riego y fuentes de ingreso no agropecuarias. En cambio, los más pobres producen más para el autoconsumo que para el mercado, dependen más del trabajo como jornaleros, no tienen tierra o poseen poca y pocas parcelas con riego, no tienen fuentes de ingreso no agropecuarias y pasan dificultades para hacerle frente a las enfermedades con recursos propios.Igualmente, no tienen acceso a educación secundaria ni a educación superior. Encontrar vías de salida a la pobreza de las familias de Jequetepeque implica razonar cómo poder incluirlas en las actividades productivas y no agropecuarias con mayor acceso al mercado, sin descuidar la seguridad alimentaria. Con respecto al manejo del agua y del suelo, se observa que los que tienen más recursos han realizado acciones para mejorar el suelo, pero también son los que usan más las fumigaciones de sus cultivos.","tokenCount":"6784"} \ No newline at end of file diff --git a/data/part_1/0565498154.json b/data/part_1/0565498154.json new file mode 100644 index 0000000000000000000000000000000000000000..3bc560bd534477cd3020c020c7bf59d4aa3aa3b0 --- /dev/null +++ b/data/part_1/0565498154.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"08641262e680539269df095cbc55e2dd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b261308a-a264-4823-93bb-01a9a8d392c1/retrieve","id":"1499653516"},"keywords":[],"sieverID":"c09247aa-2a25-40f2-ac29-bc1fcf2de793","pagecount":"37","content":"Focus module 4Capacity Assessment outcomes for development partners (assessment 2015) Recap from module 2 and 3Feedback from earlier modules… 3. Gender responsive monitoring• helps to improve project performance: has the project achieved improvements in the lives and well-being of women and men?• Proven impacts can be used to improve decision-making and policies• Know and address unintended negative consequences and gender based constraints• Gender responsive M&E identifies opportunities to empower womenWhy gender responsive monitoring?• gender issues have to be measured on purpose and from the start, otherwise they will not be given any attention during the implementation of the project / program• Much M&E focuses on numbers and outputs and not on quality of participation and benefits• Data aggregated by household (and not by sex) obscures gender differences within households Why gender responsive monitoring?Concepts: monitoring vs evaluationContinuous Periodical (mid/end term)Assessment of impact, effectiveness, sustainabilityTo improve implementationConcepts: gender responsive monitoring• Assesses the project's effects and impacts (intended or unintended) on gender relations and women's empowerment.• Tracks changes in:the conditions and positions of women and men participating in the value chain, -women's and men's shares in employment and income across value chain nodes gender relations such as in the gender division of labor and workload, differences in access and control over resources and information, decision making, and others, -women's and men's attitudes and perceptions.• Gender responsive M&E should collect gender data and analyze the reasons for gender differences and develop interventionsGender responsive indicators: definition an indicator that captures gender-related changes in society, in a value chain, etc. over time• Does the program/project have different benefits and results for men and women? How and why?• Does the program/project affect changes in gender relations? How and why?• Requires sex-disaggregated data collection• Measures changes in positions and not (just) numbers, Compare:-\"the number of women who joined the producer association\" and -\"percentage change in proportion of women's membership\" • involve both women and men in developing, collecting and analyzing indicatorsFrom LAF program's Gender Strategy -impact level• Change in women's share of income from livestock and fish enterprises• Participation of women and other vulnerable groups in the livestock and fish markets• Change in assets ownership by men and women• Change in control of livelihood assets by men and women• Change in consumption of Animal Source Foods (ASF) by men, women, and children• Change in women's control of livestock and fish resources (e.g. decision making power) disaggregate further by:--ethnicity marital status sexual identity ability etc. Not the same as comparing male and female-headed households! Sex-disaggregated data: collection Sex-disaggregated data can be collected from men and women randomly selected from different households: Household x: 1 man Household y: 1 woman Or from one man and one woman within one household Household x: 1 man and 1 woman (primary members) Not necessarily twice as many people! Sex-disaggregated data: difficulties• men may not be willing to allow their spouses to be interviewed• Women may not be available at certain times of day, and men may be less likely to be present at other times• inconsistencies in data between men and women (especially when the same questions are asked to men and women)• \"joint management\" could be a disguised male dominance• Much of women's work is under-valued or 'invisible' to men and outsiders, and thus not reported Sex-disaggregated data: possible solutions• Use both male and female enumerators;• men and women to be interviewed separately, simultaneously and privately;• multiple visits to households for gaining confidence, follow-up discussions and comparison of data;• Choose a time and place which is convenient for women and men (may be different)• Starting interviews with questions on less sensitive domains• Compare men and women's responses to similar questions, and gather feedback on differences (FGDs)• Recognize diversities (class, ethnic, religious and other) as well as individual preferences and abilities ","tokenCount":"628"} \ No newline at end of file diff --git a/data/part_1/0570852769.json b/data/part_1/0570852769.json new file mode 100644 index 0000000000000000000000000000000000000000..a50f93472ee68fe83753c4e7d5d03ae763296260 --- /dev/null +++ b/data/part_1/0570852769.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6cc5281e591d75731f2cf526e34f1810","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/4e232660-5f31-4774-bcb7-0cb735bc25a6/retrieve","id":"1913213457"},"keywords":[],"sieverID":"87a986e5-da15-4d94-89fe-a63b60dbb5dc","pagecount":"2","content":"1. Scientific analyses increasingly agree that staying below 2°C will require change in food systemsand in diets more than food waste or agricultural production methods.In terms of human health, dietary change is needed to tackle hunger and under-nutrition (on the rise again globally) as well as obesity (overweight people outnumber underweight people, including in low-and middle-income countries) and micronutrient deficiencies.Healthiness and sustainability are compatible, but there's a big gap between current diets and healthy diets 3. In theory, healthy diets for all are possible within Earth's environmental limits. Everyone eating healthily would have happy side effects for the global climate.People fall short of, or overshoot, a basic healthy diet in different ways. Some food groups, such as wholegrain cereals, vegetables, fruit and nuts, should be eaten in greater quantities by almost everybody (Figure 1). For other food groups, such as animal products, many poorer people, especially women and children, would benefit from increased consumption. But for most wealthy consumers, substantial decreases in intake are needed to deliver benefits, particularly for climate.The historic dynamism of people's diets raises hope that future change is likely. Many foods considered normal, or even traditional, in various cultures today were rare or unknown a century ago.Today almost all people around the world are eating a greater quantity and diversity of food than their grandparents did. Diets are also becoming more similar across countries.People's daily \"food environments\" play a huge role in determining the dietary choices we make, and what we learn in childhood strongly shapes our long-term preferences.Conventional approaches to enabling people to eat better diets have relied on information and awareness-raising. Recent behavioral research shows that healthy and sustainable foods are more likely to be widely eaten if they are made more appealing (in terms of cost, taste, convenience and enjoyment), more normal (familiar and mainstream) and easier (prevalent, and where possible the automatic or default choice) (Figure 2).To create food environments where healthy and sustainable foods are the appealing, normal and easy choice, we need major changes in the \"what\" and the \"how\" of growing, processing and sale of food-underpinned by clear economic incentives for agrifood industries and consumers alike.10. Current regulations and subsidies encourage overavailability of under-nourishing food; future policies could aim to price environmental impacts within food prices, with subsidies then aimed at increasing affordability of healthy diets among poor people.Wider issues of political economy, such as women's access to education and to family planning, or the overall willingness of governments to regulate industry, may prove pivotal.No serious joined-up effort has yet been made in any country to shift diets in the interests of human and planetary health.13. But front-runners among national governments, city governments and social movements are providing inspirational examples and leadership-taking action on dietary change that goes beyond mere awareness-raising towards more concrete incentives and enablers.Author affiliations 1) CGIAR System Organization; 2) Behavioural Insights Team; 3) International Center for Tropical Agriculture (CIAT); 4) University of Michigan; 5) independent journalist.This briefing is part of Transforming Food Systems Under a Changing Climate, an initiative led by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) that aims to realize a transformation in food systems by mobilizing knowledge and catalyzing action. The initiative brings together leaders in science, business, farming, policy and grassroots organizations to identify pathways for transformation. To find additional publications in this series and for more information, please visit: http://bit.ly/TransformingFood.CCAFS brings together some of the world's best researchers in agricultural science, development research, climate science and Earth system science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. CCAFS is led by the International Center for Tropical Agriculture (CIAT) and is carried out with support from the CGIAR Trust Fund and through bilateral funding agreements. For details please visit http://ccafs.cgiar.org/donors. ","tokenCount":"634"} \ No newline at end of file diff --git a/data/part_1/0593415042.json b/data/part_1/0593415042.json new file mode 100644 index 0000000000000000000000000000000000000000..9c137c32ccf9833508789a5afaf6cb6ff6ebb6a1 --- /dev/null +++ b/data/part_1/0593415042.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"57f093306adc21c99daef0fe745181a7","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/7de8847d-96dc-4382-9813-f2a0bfd2a37f/content","id":"-404573484"},"keywords":["Zea mays L.","SREG","QPM","Main components"],"sieverID":"b581f0e8-2697-47fb-9f32-bd2947a9c11e","pagecount":"10","content":"The utilization of site regression models (SREG) on multilocation testing allow the detection of significant differences in the genotype x environment interaction, even though these may not be detected by the analysis of variance (ANOVA). The results can be graphically displayed using the Biplot technique, revealing the additive effects on the genotypes and the genotype x environment interaction across years. Thus, the objectives of this work were to identify mega-environments, superior maize hybrids for each environment and mega-environment, stable maize hybrids with good performance across environments, and the most suitable environments for evaluation as well. A total of 66 field trials were grouped in five sets of experiments. An individual SREG analysis for each set of experiments and their combined analysis were conducted to assist in the graphic representation by the Biplot methodology. Results revealed that the constructed Biplots, graphically allowed the identification of superior maize hybrids, and the proper environments to conduct maize hybrid evaluation trials; however, it was not a reliable option for grouping test-sites in mega-environments.Because of their higher lysine and tryptophan content, QPM varieties and hybrids, are options to improve the nutrition of monogastric organisms such as humans, swine, poultry and fishes, among others. In developing countries where maize is a staple food, this is a very important issue. To contribute towards this effort, CIMMYT and INIFAP, working together, have conducted research to develop, identify and promote quality protein maize (QPM) in different regions of Mexico. The purpose of this article is to present some of the results concerning the performance of QPM hybrids, determined by a series of uniform trials conducted by INIFAP's maize research breeders in tropical and subtropical environments.The development and identification of new maize hybrids that respond to specific areas in a given environment, is one of the main objectives of a breeding project, which requires multiple environment trials for several years.It is well recognized that multilocation testing plays a crucial role in the selection of superior stable varieties (or agronomic techniques) which may be later promoted for commercial use (VARGAS et al., 1999).The Biplot GGE technique (graphics of two dimensions where variation due to genotype plus the genotype x environment interaction are taken into account) is a useful tool for the analysis of multilocation trials, since it detects the differences and similarities among environments in their genotype discrimination; the differences and similarities among genotypes in their response to the environment, the superior genotypes and their respective most suitable environment (YAN et al., 2000).Traditional statistical analysis are not always appropriate for analyzing multilocation uniform trials, since they only have an additive model that identify the genotype x environment interaction as a source of variation, but does not allow its analysis, leading to declarations that such interaction may be regarded as non-significant, when agronomically this can be important (ZOBEL et al., 1988). This is why multiplicative models such as SREG (regression of the environments), that incorporate both additive and multiplicative components which allow to detect significance in the genotype x environment interaction, if it is important.Yield estimates are the combined result of the effects of genotypes (G), environments (E) and the genotype x environment interaction (GE); however, only G and GE are important in varietal evaluation and mega-environments identification, thus the Biplot model GGE (G+GE) assists in detecting the performance of each genotype at each testing site (YAN et al., 1999). CAMARGO et al. (2004), used Biplot methodology in 30 environments at the Azuero region in Panamá, to determine similarities and differences among genotypes and environments, and the genotype differential response; the interaction nature and magnitude of any genotype with any locality. Biplot model allows plotting simple genotype-environment interaction graphics, localizing genotypes according to the environment yield responses and positioning the localities according to their discriminatory capacity.In Mexico, based on yearly rain rate, average temperature and altitude, five principal agro climatic regions (mega-environments) have been recognized for maize adaptation: Hot-humid and sub-humid, irrigated hot-arid, warm sub-humid, high altitude semiarid and high altitude sub-humid. Therefore maize breeding efforts are guided toward the development of maize hybrids and varieties adapted to each environment. However, competitive, stable and performance in successive generations of maize hybrids in more than one of such mega-environment, provides economic feasibility to the entire process. Such understanding contributes also to the identification of environments that render adequate discrimination of hybrid performance. Thus the objectives of this research included the identification of site similarity and the most appropriate testing sites for mega-environment conformation, and the identification of the most stable QPM hybrids with superior yields for each mega-environment.As part of the collaborative activities between INIFAP and CIMMYT, 66 uniform QPM hybrid trials arranged in five sets, were conducted from 1999 to 2001 in the hot humid and sub-humid, the irrigated hot arid, and the warm sub-humid environments. One set was conducted during the fall-winter of 1999-452 R. PRECIADO-ORTIZ, R. GUERRERO, A. ORTEGA, A. TERRÓN, F. CROSSA, H. CORDOVA, C. REYES, G. AGUILAR, C. TUT, N. GÓMEZ, E. CERVANTES Num. Name Num. Name Num. Name Num. Name 1). Only 19 hybrids were common to all sets, thus the combined analysis was performed only with this group. The entries were distributed according to a lattice design with two replicates. Agronomic management was the recommended for each environment.Measured variables included meaningful plant traits, disease incidence and t ha -1 of grain yield. Only this latter trait is considered in this paper. To explain the variation due to genotypes and genotype x environment interaction, the statistical model for the regression on environments (RE) was used.Where µ is the effect of the general mean, β is the effect of j th environment, λ n is the singular value of n th main component PC n , ε in and η jn are the i th genotype scale in the j th environment scale, respectively for PC n .The regression analysis results were graphically represented by the Biplot methodology, (YAN et al., 2000), where the first two main components derived from SREG for environments and genotypes were placed as vectors to provide a visual relation among genotypes and environments.In the Biplot methodology it is possible to identify superior genotypes in terms of the average yield across sites, represented by PC1, and yield stability represented by scales of PC2. Therefore, the ideal genotypes must show high PC1 values (high mean yield) and PC2 values near zero (more stable). YAN et al. (2001) indicated that the ideal environment for testing should have high PC1 values (better hybrid discrimination) and PC2 scales near zero (closer representative of the environment mean).The SREG routines used for the Biplot methodology were developed according to the procedure described by VARGAS and CROSSA (2000) and BURGUEÑO et al. (w/d) in the statistical SAS Package (SAS INSTITUTE, 1999).In the Biplot figure, an angle lower than 90°and higher than 270°between a genotype and a site vectors, points out that the genotype shows a positive response to that environment. A negative response is shown when the angle between the site and the genotype is between 90°and 270°, the cosine of the angle between two environments (or genotypes) brings closer the phenotypic correlation of the two environments (or genotypes), thus an angle of 90°(or <90°) reveals a correlation of 0 (zero), an angle of 180°a correlation of -1 and an angle of 0°indicates a correlation of +1 (BURGUEÑO et al., w/d).The ANOVA of the five sets of experiments (Table 2) revealed significant differences among genotypes at the α level of 0.01 and for the genotype x environment interaction. The SREG also detected significant differences among the principal two main components (Table 3). The variation due to sites ranged between 84.0 and 89.8%, proportionally being the largest and justifying the use of SREG model. This model only uses the variation due to genotypes and their interaction with the environments (G + GE). Similarly, the combined analysis also detected significant differences and the source of variation due to trials and sites, across sets of experiments was greater than that presented by the other sources of variation. - ------------------------------------------------------------------------------ Figure 1 illustrates the performance of 36 hybrids tested at 11 sites, based on the mean hybrid grain yields. The sites could be grouped geographically in 4 mega-environments. It was also possible to identify the hybrids with superior average performance for the test sites that integrate each mega-environment (Table 4). The sites grouping according to their mega-environment did not coincide with the traditional classification, since the hot arid, warm sub-humid sites, as well as the hot arid and hot humid and sub-humid sites group together in a single mega-environment.It is important to point out that the same site has contrasting differences in the fall-winter versus the spring-summer cycle. Therefore site grouping according to the traditional classification does not apply. The traditional clustering and the regression analysis does not coincide, since such analysis divides the sites (environment) in four mega-environments.Using the method of CROSSA et al. (2002) the five superior hybrids at each location were identified (Table 5). These authors indicate that the performance of a hybrid in a given location is estimated by the orthogonal projection of the hybrids vector on the line determined by the direction of the vector of that location; in other words, if the vector lines location is taken into account, the hybrid response to that site is approximately the distance of the segment of that line extended from the origin to the point, where the line can be perpendicularly intercepted by the line drawn from the hybrids vector.The identification of superior hybrids at each mega-environment is based on their average performance, taking into account all sites belonging to that mega-environment; therefore, the best hybrids at a location are not necessarily the same as those of the mega-environment where that location was included.Following the YAN et al. (2000) criteria, the hybrids that showed the best positive response to their environments (Table 10) were those that occupy the polygon's vertexes on the right hand side of the graphic (Fig. 1). These hybrids were: 7(H-367C), 24(H-551C), 45(HQ460236) and T2(H-516); similarly, the hybrids that occupy the vertexes to the left hand side of the graphic (Fig. 1) were those with the largest negative response. Such hybrids are the following: 15(HQ1006), 18(HQ5620310), 35(HQ010402) and T20(H-518). - ------------------------------------------------------------------------------Set of % of Degrees of Mean Exps.λ 2 H + HS freedom Square ** Significance level: 0.01, λ 2 is the eigen value of each main component; % of H + HS is the percentage of variation. The analysis revealed that the 64 hybrids included in this trial and tested at 13 sites (Fig. 2) could be clustered into three mega-environments. The following hybrids revealed the largest positive response to the environments: 3(H-371C), 8(H-442C), 38(HQ364602), and 20(HQ0204); while 10(H-443C), 12(HQ1805), 18(HQ5620310), 39(HQ330502) and 53(V-538C) revealed the greater negative response (Table 10) and therefore the least recommendable.In Table 6, the five superior hybrids for each one of the test sites are given. Table 4 provides the site clustering for the mega-environments and the hybrids that on the average were the best yielders at the sites that belong to that mega-environment. Using SREG did not match with the traditional approach, since sites commonly separated in hot humid and sub-humid, and hot arid (irrigated) were clustered in the same mega-environment.The performance of 49 hybrids across six test sites, is shown in Fig. 3. The three mega-environments that were identified did not coincide with the traditional classification, since the test sites used in this trial belong to the warm sub-humid environment (Table 4). The performance of the best hybrids at each one of the test sites is given in Table 7. Hy- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------Set of Superior Groups of sites Superior hybrids in each Climatic Exps.Hybrids mega-environment domain HHSH = Hot Humid Sub-Humid; HA = Hot Arid; WSH = Warm Sub-Humid.brids with the most positive response across sites were: 3(H-371C), 28(HQ360246), 29(HQ360946), 36(HQ053602), 38(HQ364602), 40(HQ374602) and T18(Commercial check 5). Those that showed a negative response were: 55(VS-334C), 56(VS-335C), T16(H-358) and T17(H-359) (Table 10).This set included 36 hybrids was tested at 18 sites. The results from the analysis are presented in Fig. 4. Two hybrids, 2(H-441C), 33(HQ330246) and two checks, T23(H-520) and T25 (Commercial check 6), gave the best positive response, while hybrids 22(H-554C), 27(H-365C) and 51(H-519C) showed the largest negative response (Table 10). - ------------------------------------------------------------------------------Site Superior 5 hybrids † 1, 2 Trials conducted at the same site but in different planting dates.TABLE 7 -Superior QPM hybrids in Set of experiments 3, which was conducted in the warm sites in the spring-summer of 1999.- ------------------------------------------------------------------------------Site Superior 5 hybrids The test sites represent five mega-environments. For each one, the superior hybrids are provided, as well as those that on the average had the highest yields across all sites that belong to each mega-environment (Table 4). The site allocation to each one of the mega-environments did not coincide with the traditional clustering, since there were mega-environments that included sites (regions) that belong to the hot humid and sub-humid, hot arid and warm sub-humid environments. Table 8 presents the best hybrids at each testing site.The performance of 64 hybrids and eight test sites (Fig. 5) could be subdivided into three megaenvironments, each one formed with similar sites, and the highest yielding hybrids across sites that belong to each mega-environment. As in previous sets of experiments, the mega-environment division did not coincide with the traditional site clustering, since the hot humid, hot sub-humid and warm subhumid sites were grouped in the same mega-environment. - ------------------------------------------------------------------------------Site Superior 5 hybridsRío Bravo, Tamps. T25, 3, T23, T2, T24 -------------------------------------------------------------------------------Superior 5 hybrids ----------------------------------------------------------------------------- This was also true for the hot arid and warm sub-humid (Table 4) sites. In Table 9, the superior hybrids for each site are given.The hybrids that showed the best positive response to the test sites were: 3(H-371C), 31(HQ370946), 34(HQ020933), T26 (REMACO 38), T28 (Commercial check 8). The hybrids with the greater negative response were (Table 10): 7(H-367C), 18(HQ5620310), 24(H551C), 77(HQ5626221) and 79(HQ3021).Because not all tested hybrids were included in the five experiments, the combined analysis was conducted only with the 19 hybrids common to all trials. This set was tested at 34 sites.The analysis grouped the sites in five mega-environments (Fig. 6). For each group, the superior hybrids and those that performed the best across test sites in the mega-environment, are given. Again, the test site clustering did not match the traditional grouping since the sites belonging to each one of the three climatic regions were grouped in the same mega-environment.The hybrids that revealed the greater positive response were: 3(H-371C), 8(H-442C), 46(HQ460209). Those with a negative response were: 7(H-367C), 9(HQ3602), 27(H-365C), 45(HQ460236) and 51(H-519C) (Table 10).The sites regression analysis from each one of the five sets of experiments revealed the clustering of the climatic regions in mega-environments did not coincided with the traditional approach. This may be attributed to the fact that the hybrids used to structure the trials were derived from germplasm already adapted to each of the hot humid, sub-humid and warm sub-humid climatic domains, but hybrids adapted to the three domains were not included. In addition, the average hybrid yields were used to define the mega-environments, however, such hybrids were different than those from each experiment, and their performance influenced how the mega-environments were clustered in each experiment.Biplot analysis (YAN et al., 2000) --------------------------------------------------------------------------------------------------------------------------------------------------------------1 7, 24,45,T2 15,18,35,T20 2 3,8,18,20 10,12,18,39,53 3 3,28,29,36,38,40,T18 55,56,T16,T17 4 2,33,T23,T25 22,27,51 5 3,31,34,T26,T28 7,18,24,77,79 Comb. 3,8,46 7,9,27,45, 51 - ------------------------------------------------------------------------------- † 1, 2 Trial conducted at the same site in different planting dates. ducted in different years revealed that site clustering changed across years, and in most cases, mega-environments as indicated by the clustering of sites.The sites where hybrid performance was not influenced by the interaction with the environments were identified (YAN et al., 2001). These authors point out that the main effect of the environment (PC1) allowed sites to separate hybrids in terms of better general adaptation. In other words, sites with large primary effects may identify hybrids with better adaptation. The secondary effect of the environment (PC2) indicates the tendency of each site to interact with the hybrids (GE). Hybrids selected with large secondary effects at sites may be regarded as specific for those domains, but fail in their general adaptation.Therefore, selection for stable and high yielding hybrids, the optimum test environment should be the one with large primary effects and secondary effects near zero. The most appropriate test sites to conduct evaluations for each one of the experiments are given in Table 11. The better sites of evaluation in each of the five sets of experiments were: Tampico e Iguala for the sets of experiments 1; Valle del Fuerte, Culiacan and Rio Bravo for the set of experiments 2; Calera, Celaya and Cortazar for the set of experiments 3; Obregon and Celaya for the set of experiments 4, Pabellon and Celaya for the set of experiments 5; and Obregon, Izucar and Culiacan for the combined analysis. None of these sites were common to all sets of experiments, which prevented comparisons among sets of experiments.It is recognized that multilocation hybrid testing brings up research costs in hybrid development.Therefore selection of suitable sites such as Celaya, Obregon (Yaqui Valley) and Culiacan, may contribute to cutting down number of test locations, and reduce costs of sacrificing accuracy in the detection of the superior hybrids. However, the Celaya site was not included in the combined analysis, because none of the 19 hybrids common to all trials were present at this site. This is a short coming of the regression model (SREG), because graphic construction is based on average hybrid grain yield; thus the interpretation of results may change drastically by the inclusion or omission of some hybrids. The information presented here need to be verified.Table 12 presents the stable hybrids in each trial set and in the combined analysis that had PC2 values approaching zero. Because each set of experiments was conducted at different sites and hybrid stability is based on the across site yield, it was not possible to determine the appropriateness of the methodology across sets of experiments.The Biplot methodology effectively allowed the recognition of the superior hybrids across sites in each evaluation year. However, this is not a reliable model to cluster sites in mega-environments, since such clustering was not consistent across years. This is because of allotment to mega-environments is done considering only the hybrid average yield, and the clustering of sites in mega-environments changes when geographic, climatic and edaphic factors are not taken into account. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------------------------------------------------------In order to determine with accuracy the efficiency of the Biplot approach in the identification of mega-environments, uniform sets of the same hybrids, including hybrids adapted to each agro climatic domain, should be conducted for at least two consecutive years.","tokenCount":"3109"} \ No newline at end of file diff --git a/data/part_1/0599162019.json b/data/part_1/0599162019.json new file mode 100644 index 0000000000000000000000000000000000000000..7095698e91e3358118b8a59823e847fe3ce570dd --- /dev/null +++ b/data/part_1/0599162019.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d5cea82726d66f68020f8ccc1483aa78","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/b69e6ebc-dc8d-4322-9228-ccdcd931df5b/retrieve","id":"575479353"},"keywords":["climatic change","climatic risk","adaptive capacity. v"],"sieverID":"006c7ffb-4af1-4fb1-a9e3-d12911c22eef","pagecount":"57","content":"e Segurança Alimentar (CCAFS). Maputo, Moçambique. Disponível on-line no site: www.ccafs.cgiar.org. Publicado pelo Programa de Pesquisa do CGIAR sobre Mudanças Climáticas, Agricultura e Segurança Alimentar (CCAFS). Os relatórios do CCAFS tem como objetivo difundir trabalhos de pesquisa e práticas sobre mudanças climáticas, agricultura e segurança alimentar e estimular o feedback da comunidade científica. O Programa de Pesquisa do CGIAR sobre Mudanças Climáticas, Agricultura e Segurança Alimentar (CCAFS) é uma parceria estratégica de CGIAR e Future Earth, liderado pelo Centro Internacional de Agricultura Tropical (CIAT). O programa é realizado com os fundos dos doadores do CGIAR, Agência Dinamarquesa para o Desenvolvimento Internacional (DANIDA), Agência Australiana para o Desenvolvimento Internacional (AusAID), Ajuda Irlandesa, Meio Ambiente do Canada, Ministério dos Negócios Estrangeiros dos Países Baixos, Agência Suíça para o Desenvolvimento e Cooperação (SDC), Instituto de Investigação Científica Tropical (IICT), Ajuda da Inglaterra, Governo da Rússia, União Europeia (UE), Ministério dos Negócios Estrangeiros e do Comércio da Nova Zelândia, com o apoio técnico do Fundo Internacional para o Desenvolvimento Agrícola (FIDA).As estratégias identificadas para aumentar os conhecimentos e habilidades dos produtores nas diversas práticas identificadas com o objectivo final de melhorar a capacidade de adaptação das famílias às mudanças climáticas, incluem a organização de treinamentos e demonstrações das melhores práticas agrárias com destaque para as práticas que demandam pouco investimento financeiro para o seu acesso e utilização, e as que não são muito exigentes em termos de tempo necessário para a sua execução. A rádio comunitária é uma ferramenta que deve ser usada para veiculação de informação poderá auxiliar na sensibilização dos produtores a adoptar práticas que ajudam a mitigar o impacto das mudanças climáticas.Palavras-chave: mudanças climáticas, risco climático; capacidade de adaptação.A equipe de pesquisadores deste trabalho agradece ao Projecto de Investigação para Adaptação a Mudanças Climáticas, Instituto de Investigação Agrária de Moçambique pelo todo apoio oferecido para a condução deste trabalho.Um agradecimento especial vai para a Doutora Fernanda Gomes, Coordenadora do Projecto pelo todo apoio técnico que nos ofereceu durante todo o processo de preparação, condução e redacção do relatório final.Agradecemos aos colegas da Direcção de Formação, Documentação e Transferência de Tecnologias pelas suas valiosas contribuições durante o processo de preparação do protocolo de pesquisa e redacção do relatório final, nomeadamente Dra Anabela da Piedade Manhiça, Engª Itália de Sousa Cossa e Dra Marta Celeste Francisco.Agradecemos também o suporte dado no trabalho de campo pelo Serviço Distrital das Actividades Económicas de Chicualacuala e a colaboração das associações de produtores, das casas agrárias e dos líderes comunitários na organização dos grupos de discussão e pela sua estimável participação nas entrevistas e grupos de discussão organizados nos quatro povoados.Aos produtores e criadores inquiridos nos quatro povoados e os inquiridos que trabalharam na recolha de dados, o nosso muito obrigado pela sua colaboração. Moçambique, devido a sua localização geográfica, é apontado como um dos países que vai sofrer mais os efeitos negativos das mudanças climáticas, nomeadamente secas, cheias e ciclones (Mosquito et al., 2009;MICOA, 2005). Os impactos das mudanças climáticas serão ainda mais agravados devido à limitada capacidade humana, institucional e financeira que o país tem para poder antecipar e responder directa ou indirectamente aos seus efeitos (MICOA, 2005).O Governo Moçambicano tem mostrado grande interesse e empenho nos aspectos relacionados com as mudanças climáticas (Mosquito et al., 2009;Martinho, 2009). Como fruto disso, assinou e ratificou as principais convenções do Rio (UNFCCC -Convenção Quadro das Nações Unidas sobre as Mudanças Climáticas, UNCBD -Convenção das Nações Unidas sobre a Biodiversidade, UNCCD -Convenção das Nações Unidas de Combate à Desertificação) (Mosquito et al., 2009).No âmbito da Convenção Quadro das Nações Unidas sobre as Mudanças Climáticas, o Governo de Moçambique aprovou o Programa de Acção Nacional para Adaptação às Mudanças Climáticas (NAPA) que define quatro principais intervenções, nomeadamente: (i) fortalecimento do sistema de aviso prévio; (ii) fortalecimento das capacidades dos produtores agrários para lidarem com as mudanças climáticas; (iii) redução do impacto das mudanças climáticas nas zonas costeiras, e; (iv) gestão dos recursos hídricos no âmbito das mudanças climáticas (Mosquito et al., 2009).As regiões sul e centro de Moçambique são apontados como as que sofrerão mais os efeitos negativos das secas, cheias e ciclones (MICOA, 2006) As intervenções deste projecto de investigação são a pesquisa e transferência de tecnologias agrárias que permitam uma melhor adaptação aos efeitos das mudanças climáticas. As acções de transferência de tecnologias previstas, circunscrevem-se a treinamentos e divulgação das tecnologias agrárias para os produtores de Chicualacuala para melhor lidarem com o risco climático nos seus sistemas de produção agrária. Para garantir a eficácia das actividades acima indicadas, incluindo as de pesquisa para a transferência de tecnologias, recomenda-se a realização de um diagnóstico dos problemas, conhecimentos e das necessidades dos produtores, antes da intervenção (Swanson, 1991;Boydell e Leary, 2003).Este relatório apresenta a descrição das práticas agrárias, incluindo as práticas de processamento de frutas e as principais necessidades de formação, informação e tecnologias agrárias, dos produtores do distrito Chicualacuala.A maioria dos agregados familiares do distrito de Chicualacuala depende das actividades agrárias e dos recursos naturais para a sua subsistência. Estas actividades poderão ser severamente assoladas pelo impacto das mudanças climáticas devido à vulnerabilidade que caracteriza a população deste distrito (MAE, 2005;INGC, 2010). Esta vulnerabilidade é agravada pela fraca capacidade de resposta das comunidades locais aos efeitos das mudanças climáticas (Matavel, 2012;Martinho, 2009).Vários documentos consultados sobre acções de mudanças climáticas nos dois distritos dão indicação de que já foram implementadas por várias organizações (UNEP/FAO/ PAP, 1998;INGC, 2010;Martinho, 2009), algumas intervenções para melhorar a capacidade de adaptação das comunidades rurais ao risco climático. Mesmo assim, ainda persiste a fraca capacidade das comunidades para lidarem com o risco imposto pelas mudanças climáticas.Segundo Martinho (2009), a vulnerabilidade das comunidades do posto administrativo de Mapai, no distrito de Chicualacuala, é afectado pela combinação de factores sociais, económicos e ambientais.Para realizar acções que visam melhorar a situação actual, propõe-se que antes de qualquer intervenção seja realizado um diagnóstico da situação actual e das actividades dos agricultores da área de intervenção (Swanson, 1991). Este estudo visava: (i) garantir que os treinamentos e a informação a oferecer aos produtores servissem as preocupações e limitações dos beneficiários (Boydell e Leary, 2003); (ii) melhorar o ambiente de interacção entre a investigação, extensão e produtores, que é fundamental para adopção das tecnologias (Swanson, 1991); (iii) evitar a sobreposição das acções e aproveitar aprender das lições dos projectos do mesmo âmbito implementados no distrito de Chicualacuala.• Analisar os problemas, os conhecimentos e as necessidades dos produtores, potenciais beneficiários da intervenção na área de adaptabilidade aos efeitos das mudanças climáticas de modo a desenhar intervenções que respondam às suas reais necessidades.1) Identificar as lacunas existentes em termos de informação, conhecimentos e tecnologias agrárias (agricultura, pecuária e recursos naturais) nas comunidades do distrito de Chicualacuala para melhor respondem aos efeitos das mudanças climáticas. 2) Descrever as potenciais barreiras que podem interferir na participação dos beneficiários nas intervenções de disseminação das tecnologias e no acesso e utilização dos conhecimentos a serem disseminados. 3) Identificar as estratégias de intervenção para responder as lacunas identificadas.O trabalho de recolha de dados para este estudo privilegiou a combinação dos métodos quantitativos e qualitativos. A combinação dos dois métodos visa fundamentalmente suprir as fraquezas e/ou aproveitar as forças de cada método (Denscombe, 2007). Para os métodos quantitativos usou-se o questionário dirigido aos agregados familiares (AFs) e nos métodos qualitativos recorreu-se às entrevistas semi-estruturadas com os informantes chave e discussão com grupos focais. As técnicas usadas neste diagnóstico são também sugeridas pelo Swanson (1991), como sendo as recomendáveis para a fase de diagnóstico dos problemas, necessidades e sistemas de produção locais dos produtores.Com o questionário recolheu-se a informação sobre as características dos potenciais beneficiários das formações, práticas agropecuárias, o nível de domínio dos conhecimentos relevantes para melhor lidarem com o risco imposto pelas mudanças climáticas, e o interesse em aprender essas práticas por parte dos potenciais beneficiários. As entrevistas semi-estruturadas e as discussões com grupos focais foram usadas para recolher informação geral sobre: as características dos sistemas de produção locais, as principais fruteiras e as práticas usadas para o processamento e conservação das frutas; os principais constrangimentos nas actividades agrárias; as estratégias a adoptar para a disseminação das tecnologias agrárias e; os factores que poderão influenciar as actividades de transferência e divulgação de tecnologias agrárias.Este diagnóstico foi conduzido em 8 povoados de dois postos administrativos do distrito de Chicualacuala. O distrito encontra-se no extremo Norte da província de Gaza.Os povoados estudados podem ser divididos em dois grupos: o primeiro, constituído por duas comunidades do Posto Administrativo Sede, nomeadamente Mahatlhane e Aldeia Eduardo Mondlane e um dos povoados de Mapai, Aldeia 16 de Junho, que dependem totalmente de agricultura de sequeiro. A segunda zona é constituída por um povoado do Posto Administrativo Sede, o povoado de Tchale e quatro outros povoados de Mapai, nomeadamente Madulo, Ndombe, e Chissapa. Nestes povoados, algumas famílias, principalmente as que pertencem às associações de produtores, têm acesso à água das lagoas e rios, semi-permanentes para irrigação de pequenas parcelas de hortícolas.Em relação ao clima, o distrito de Chicualacuala, localiza-se numa zona árida a semi-árida com baixa precipitação média anual e com prevalência de secas cíclicas e longas.O estudo foi conduzido em 8 povoados seleccionados para a implementação do projecto no distrito de Chicualacuala. Os 8 povoados possuem 37 bairros e 3.261 famílias.Para a recolha de dados quantitativos optou-se pela estratégia de amostragem probabilística estratificada por área geográfica, nomeadamente povoado e bairro, dentro do mesmo distrito. Esta estratégia visava fundamentalmente garantir que fosse recolhida informação de todos os povoados beneficiários desta intervenção. Em cada povoado, foram seleccionados de forma aleatória, dois a quatro bairros, em função do número de agregados a inquirir. Dentro dos bairros foram seleccionados aleatoriamente os quarteirões e nos quarteirões os agregados familiares a inquirir.O tamanho da amostra para o inquérito no distrito foi de 163 agregados familiares. A definição deste tamanho de amostra foi determinado com base na fórmula recomendada para casos em que a variável mais importante de estudo é nominal ou ordinal e a população de estudo é finita 1 . Foi considerado para o cálculo da amostra, o nível de confiança de 95% e a margem de erro de 5%. No total foram inquiridos 163 agregados familiares, dos quais 56% são de Posto Administrativo sede e 44% são de Mapai (Tabela 1). Chicualacuala é um distrito de matriz rural com uma taxa de urbanização de 16% (MAE, 2005). O clima do distrito de Chicualacuala é do tipo tropical seco com uma precipitação média anual inferior a 500 mm. Algumas zonas do distrito apresentam um clima do tipo semi-árido seco nas quais a precipitação varia de 500 a 800 mm (MAE, 2005).A evapotranspiração potencial de referência (ET 0 ) é geralmente superior a 1500 mm, e a maior parte do distrito apresenta uma temperatura média anual superior a 24 0 C. As elevadas evapotranspiração e temperatura que se registam no distrito agravam consideravelmente as condições de fraca pluviosidade provocando uma deficiência de água superior a 800 mm, chegando a exceder os 1.100 mm em Pafúri. No distrito regista-se uma grande irregularidade na quantidade de precipitação que cai ao longo da estação chuvosa, determinando a ocorrência de frequentes períodos secos durante o período de crescimento de culturas (MAE, 2005). A humidade relativa média anual varia de 60 a 65% (MAE, 2005).A maior parte do distrito apresenta altitudes inferiores a 200 m. Ao longo da fronteira com as Repúblicas do Zimbabwe e da Africa do Sul registam-se zonas com altitudes entre os 200 e 500 m (GDC, 2010;MAE, 2005).Os principais recursos hídricos são constituídos pela bacia hidrográfica do rio Limpopo e pelos rios Nuanetzi, Chefu, Munene e Singuédzi (MAE, 2005). O distrito conta ainda com lagoas tais como: Ndombe, Chidulo, Maphuvule, Madulo e Dumela (GDC, 2010).O distrito de Chicualacuala apresenta três tipos de solos: arenosos de tamanhos variáveis sobre os depósitos de Mananga, solos vermelhos pardos e derivados de calcários cinzentos (arenosos, argilosos e hidromóficos). As características do solo dividem o distrito em duas zonas agroecológicas designadamente zona A de solos arenosos e calcários, e zona B de solos fluviais (GDC, 2010).A vegetação é constituída por florestas galeria e mata aberta e fechada, savana ou pradaria, mata arbustiva mediana e savana arbórea, brenha ou pradaria.A principal actividade económica praticada no distrito é a agricultura que envolve a maioria dos agregados familiares. A área total cultivada é de 10 mil hectares; o tamanho médio das explorações agrícolas é de 1 hectare. A maioria dos produtores tem as suas áreas de cultivo na zona alta, onde cultivam milho, amendoim, feijão nhemba, batata-doce e abóbora, recorrendo ao sistema de produção consociado. As principais culturas de rendimento são o cajueiro e mafurreira (MAE, 2005).A outra actividade de relevo no distrito é a pecuária que é predominantemente praticada pelo sector familiar. As principais espécies animais praticadas são as aves, bovinos, ovinos e caprinos.Chicualacuala possui um grande potencial turístico e ecológico, possuindo extensas áreas integradas nos Parque Nacionais de Limpopo e de Banhine (Área de Conservação Transfronteiriça do Limpopo).A actividade comercial é limitada. As infra-estruturas sociais ainda não alcançaram a recuperação desejável desde a sua destruição aquando da guerra. O distrito não possui instituições financeiras formais (de poupança ou de crédito).A caça também ocorre no distrito, sendo as espécies mais importantes as gazelas, coelhos e as aves aquáticas.A pesca é uma actividade sem grande expressão no distrito, sendo o peixe pouco consumido localmente.A pequena indústria (carpintaria, pesca e artesanato) observa um desenvolvimento bastante limitado, sendo vista localmente como actividade alternativa à agricultura ou como prolongamento desta actividade.A faixa etária dos chefes dos AFs no distrito de Chicualacuala está entre 16 e 86 anos de idade, sendo 47,25 anos a média de idade. A maioria dos chefes dos AFs é de sexo masculino (64%) e não frequentou a escola (58%), ou frequentou até ao ensino primário (37%). A percentagem dos que possuem nível de escolaridade acima do ensino primário não ultrapassa os 6%. No que se refere ao domínio da leitura, escrita e fala da língua portuguesa mais de metade dos inquiridos respondem que não tem nenhum domínio da leitura, escrita e fala (Tabela 4). A figura 1 apresenta as principais actividades agropecuárias praticadas pelos AFs do distrito de Chicualacuala. Os resultados mostram que todas as famílias praticam a agricultura e cerca de 59% prática a pecuária. Em relação às actividades relacionadas com a exploração de recursos florestais as percentagens variam de 52% para a recolha de frutas silvestres e outros produtos não madeireiros, 20%, para a produção e venda de carvão e menos de 10% para o corte e venda de estacas e lenha. Em média os AFs tem 2.5 machambas ou parcelas para a produção agrícola. A maioria dos AFs tem as suas machambas na zona alta (63%). Os que cultivam apenas na zona baixa ou próximo de uma lagoa, representam apenas 14% dos AFs. Os que tem machambas tanto na zona alta como na zona baixa representam 23% dos AFs (tabela 5). A figura 2 apresenta as principais culturas praticadas nos últimos três anos pelos AFs dos povoados inquiridos no distrito de Chicualacuala. Os resultados mostram que as principais culturas, em termos de número de famílias que cultivaram são as seguintes: melancia, que foi cultivada por cerca de 99% de AFs, feijão nhemba (97%), milho (90%);feijão jugo (85%), abóbora (84%), amendoim (70%), mapira (52%) e mexoeira (52%). A batata-doce, principalmente a de polpa alaranjada, apesar de ser considerada uma cultura de ciclo curto, podendo-se adaptar às condições de precipitação de Chicualacuala, é apenas cultivada por menos de um quarto dos inquiridos. Em alguns povoados tais como de Mahatlhane e 16 de Junho, os produtores manifestaram interesse de cultivar estas variedades de polpa alaranjada se tiverem acesso a rama. Em Mahatlhane foi encontrado um vendedor proveniente de Chigubo a vender batata-doce de pola alaranjada, e havia muitas pessoas a comprar, o que pode significar que há demanda deste produto.A tabela 7 apresenta as principais práticas culturais, nomeadamente a preparação da terra, sementeira, sacha e colheita e o período do ano em que são realizadas. O distrito de Chicualacuala tem apenas uma época agrícola, com as sementeiras de quase todas as culturas a ocorrer no período de Novembro a Janeiro. As únicas culturas semeadas fora deste período são as hortícolas porque são cultivadas usando irrigação e a mandioca em que as estacas são espetadas dentro do fruto da melancia enterrada, para aproveitar a humidade providenciada.As sachas e as colheitas também ocorrem quase no mesmo período, sendo as sachas de Novembro a Fevereiro e as colheitas de Março a Julho (tabela 7). Segundo as entrevistas semi-estruturadas, o sistema de produção mais usado no distrito de Chicualacuala é de consociação. Apenas a batatadoce é que é cultivada no sistema de cultivo puro. As consociações indicadas são: (i) milho e amendoim; milho e abóbora; milho e feijão nhemba; mapira/mexoeira e abóbora/melancia; mapira e feijão nhemba. Das entrevistas e das discussões nos grupos focais foi possível perceber que de uma maneira geral: (i) não há consociação de árvores/arbustos de crescimento rápido mas sim, uma consociação com árvores florestais que existem nas machambas; (ii) o caso de cultivo em linhas usando os compassos e densidade recomendada, o que na verdade fazem é a sementeira em linha principalmente nas hortícolas e em alguns casos no milho quando a lavoura é feita com recurso a tracção animal e/ou com tractor, mas poucas vezes os produtores aplicam o compasso e a densidade recomendados.Com base nas discussões com os grupos focais e entrevistas semiestruturadas com os informantes chave, foi feito o levantamento dos principais constrangimentos que os agricultores encaram nas actividades agrícolas. Os constrangimentos levantados são os relacionados com o fraco acesso e domínio da informação e conhecimentos agrícolas pelos produtores. A seguir são apresentados os principais constrangimentos por povoado do distrito de Chicualacuala.• Ataque da cultura de milho pela broca de colmo;• Ataque de pragas e doenças nas hortícolas, com especial atenção para as pragas e doenças que atacam as culturas de tomate (exemplo: ácaro vermelho ) e couve, na época quente; • Surgimento de roscas e lagartas associado com o uso de mulching e cobertura vegetal que afecta diversas culturas; • Perdas da cultura de mandioca devido à praga de térmites;• Incidência de ratos que destroem diversas culturas no campo;• Perdas de milho, pós-colheita, principalmente devido ao ataque pelo gorgulho.• Secas cíclicas e irregularidade das chuvas que prejudicam as culturas;• Ataque das culturas pelos elefantes (principalmente abóbora e mexoeira);• Incidência de gafanhotos, principalmente no milho e feijão nhemba;• Ocorrência de gafanhotos que dizimam quase todas as culturas praticadas na zona alta;• Fraco domínio das técnicas e normas agronómicas tais como: sementeira em linha, densidade e compassos.• Irregularidade das chuvas e mudanças na época de início das chuvas;• Baixa produtividade agrícola devido à aplicação, por parte da maioria dos produtores, de consociações que provavelmente não são adequadas e desconhecimento dos tipo de solo adequado para cada tipo de cultura; • Redução da produção devido ao desconhecimento e não aplicação das práticas de maneio de fertilidade de solo;• Aparecimento de muitos gafanhotos que dizimam quase todas as culturas praticadas no povoado; • Perdas de feijão nhemba na pós-colheita, devido ao ataque do gorgulho.• Dificuldades de controlo de broca de colmo nas culturas de milho e mapira;• Ataque de gafanhotos que dizimam quase todas as culturas;• Perda da produção do milho devido ao ataque de pássaros;• Eclosão de pragas e doenças nas hortícolas;• Aparecimento de pragas de ratos, roscas e lagartas associadas com o uso de mulching e cobertura vegetal; • Perda significativa de milho devido à broco de colmo;• Doença da queima das folhas no feijão nhemba e amendoim.• Perdas de milho e feijão nhemba no armazém devido ao fraco domínio das praticas de controle do gorgulho e ratos.• Incidência da praga de ratos na abóbora e milho;• Fraco domínio das práticas de controlo da cochonilha, ácaros e gafanhoto espinhoso na mandioca; • Fraco domínio das práticas de controlo de escaravelho preto no milho;• Ataque de ácaros e lagartas no tomate;• Destruição massiva da cultura mapira por pássaros;• Perdas significativas de milho e feijão nhemba, pós-colheita, devido ao gorgulho.• Ataque de broca do colmo no milho;• Fraco desenvolvimento das plantas do milho e amarelecimento geral das suas folhas;• Ataque de ácaros e definhamento das plantas de feijão nhemba;• Necrose das folhas do amendoim;• Ataque de pássaros na mapira e mexoeira.• Perdas na cultura de milho devido à broca e pássaros;• Perdas significativas de muitas culturas devido ao ataque por gafanhotos;• Praga de rato que come semente recém-lançada na terra, especialmente a de milho e mapira.• Ataque do gorgulho no milho conservado.• Incidência da praga de ratos na abóbora e milho;• Incidência da cochonilha, ácaros e gafanhoto espinhoso na mandioca;• Fraca produção do milho devido ao escaravelho preto, a broca de colmo, pássaros, e amarelecimento das folhas associado ao fraco crescimento da cultura de milho; • Ataque de pássaros na nas culturas de mapira e mexoeira;• Ataque de várias culturas por gafanhoto;• Incidência de ácaros e lagartas na cultura de tomate;• Ataque de ácaros e definhamento das plantas de feijão nhemba;• Necrose das folhas no amendoim;• Baixa produção da mandioca porque os solos são pesados; • Perda da produção das culturas de milho e feijão nhemba, pós-colheita, devido ao gorgulho.A figura 3 apresenta o número de AFs que possuem cada uma das principais espécies de animais existentes no distrito de Chicualacuala. Na figura, pode-se ver que as aves (63%) seguidas de bovinos (47%) e caprinos (47%) são as espécies mais comuns nos AFs dos povoados inquiridos no distrito de Chicualacuala. Os suínos e ovinos são criados por 17% e 10% dos agregados familiares inquiridos, respectivamente. Para perceber que estratégias de maneio pecuário estão actualmente a ser usadas para melhorar a capacidade de adaptação ao risco climático, foi inquirido aos AFs se usaram nos últimos três anos alguma das nove estratégias/práticas descritas na tabela 9.Duma forma geral, há um fraco uso das estratégias sugeridas pela maioria dos AFs de Chicualacuala. Apenas em uma das nove práticas, a identificação de doenças mais frequentes nos animais, houve mais de metade dos inquiridos que indicaram ter aplicado esta prática nos últimos três anos. O tratamento das doenças mais frequentes e a construção de currais melhorados, registado por 49% e 43% dos AFs, respectivamente, constituem o segundo grupo das práticas mais aplicadas pelos criadores inquiridos no distrito de Chicualacuala. As restantes práticas foram aplicadas por menos de 12% dos AFs inquiridos (tabela 9). Neste tópico apresentam-se as principais fruteiras cultivadas pelos agregados familiares e as fruteiras nativas existentes nos agregados familiares beneficiários do projecto. Apresentam-se também as práticas usadas para o processamento e conservação das frutas (cultivadas e silvestres).A tabela 12 apresenta o número e a percentagem de famílias que têm fruteiras cultivadas. Duma forma geral, há poucas famílias com fruteiras cultivadas no distrito de Chicualacuala. A única fruteira cultivada que pode ser encontrada em mais de 50% de agregados familiares dos povoados inquiridos é o cajueiro. A segunda fruteira mais comum nos AFs é a mangueira que é cultivada por 34% dos inquiridos. As percentagens das restantes fruteiras cultivadas variam de 0% para a goiabeira e abacateiro, a 14% para a mafurreira. De uma maneira geral o processamento de fruta não é feito pelos agregados familiares dos povoados de Chicualacuala, envolvidos no diagnóstico com excepção de caju que é usado na preparação de sumos e bebidas alcoólicas.A tabela 14 apresenta o período de maturação de cada tipo de fruta silvestre disponível nos povoados do distrito de Chicualacuala. Como se pode ver na tabela, o distrito possui uma diversidade considerável de frutas silvestres. As frutas apresentadas na tabela são as que são mais abundantes em cada zona diagnosticada.As frutas mais comuns nos povoados diagnosticados são Canhu e Nhire, que existem em todos os povoados. O segundo grupo mais comum é constituído por Macuácua e Toma que apenas não é abundante nos arredores Tchale e da aldeia Eduardo Mondlane, respectivamente. Massala e Timuambo são abundantes em quatro dos sete povoados envolvidos no diagnóstico; e Matite, Cholwa e Cuwa são comuns em três dos sete povoados (tabela 14).Tabela 14. Calendário do período de maturação de cada tipo de fruta silvestre no distrito de Chicualacuala Em quase todos os povoados visitados faz-se algum processamento e conservação de algumas frutas silvestres disponíveis. As formas de processamento são quase comuns. A seguir são apresentadas as formas de consumo, processamento e conservação de cada fruta silvestre.(i) Canhu: com a polpa prepara-se sumo e bebidas alcoólicas. A amêndoa é usada em algumas comunidades, como substituto de amendoim, na preparação de caril.(ii) Mapfilwa, Cuwa e Toma: estas frutas são consumidas maioritariamente a fresco. Em Chissapa, a comunidade diz que as mapfilwas podem ser conservadas a seco por um período de até pelo menos dois meses. Em Ndombe as comunidades afirmaram que as frutas de Cuwa e Toma podem ser secas para o consumo posterior, na altura de escassez.(iii) Massala, Mahimbe e Matite: estas frutas são consumidas frescas. Mas há experiência, mas não muito usada, de se preparar aguardente a partir destas frutas.(iv) Macuácua: com os frutos não maduros prepara-se temperos usados na preparação de comidas. E, os maduros são consumidos frescos.(v) Nhire: esta fruta é consumida de várias formas. É consumida a fresco; produz-se aguardente; para o consumo posterior, na altura de escassez seca-se e na altura de consumo põe-se em água morna durante algumas horas; faz-se farinha que misturado com farinha de milho ou mapira é usado na preparação de bolos tradicionais. Este bolo pode ser conservado por pelo menos duas semanas. E com a polpa de Nhire (que é muito açucarada) faz-se sumos.(vi) Cholwa, Shampswa/Ndzole e Timuambo: apenas são consumido frescos. Os timuambos foram referidos como sendo de difícil conservação devido a sua facilidade de deterioração.(vii) Chicutse: com a raiz prepara-se um chá pelo facto de ser muito açucarada. O fruto é consumido a fresco ou junta-se com leite e as vezes com pele de animais para preparar um prato que segundo os entrevistados não é de fácil digestão; por isso não é recomendável servir as crianças.(viii) Malambe: a malambe é consumida fresca. Algumas famílias produzem uma pasta que misturam com água ou leite de vaca fresco. Este produto, localmente é comparado com iogurte. Há também experiências de produção de farinha para preparar xima.(ix) Charro: a sua semente é usada na preparação. Esta farinha é usada para prepararxima.Neste tópico apresentam-se os constrangimentos ligados aos conhecimentos e informação, encarados pelos agregados familiares na produção, maneio e processamento de frutas silvestres e cultivadas. Nas frutas silvestres, apenas no povoado de Maphuvule, apresentou-se um constrangimento relacionado com estas frutas. Isto deve-se provavelmente ao facto de as comunidades, duma forma geral, relegarem as frutas silvestres para o segundo plano, como alimentos para altura de fome.A seguir descreve-se, por povoado beneficiário do projecto no distrito de Chicualacuala, os principais constrangimentos encarados pelos agregados familiares na produção e processamento das frutas cultivadas e silvestres.• Não há cultivo de fruteiras porque, segundo os entrevistados o solo é pedregoso e não permite o crescimento das raízes das plantas; há também ataque severo de térmites que destroem as raízes das plantas, principalmente as recém plantadas.• Perda de árvores principalmente as recém plantadas devido a térmites, brocas e falta de água (fraca e irregular precipitação).• Morte de árvores de fruta que as comunidades plantam devido às pragas com destaque para o escaravelho preto, que ataque as plantinhas abaixo do nível do solo. • Fraca precipitação que tem prejudicado o plantio de árvores.• Fraco cultivo de fruteiras devido ao ataque das plantas por térmites e outros insectos que destroem o sistema radicular das plantas.• Fraco cultivo de fruteiras devido à fraca precipitação.• A maior parte dos solos da zona são pouco profundos e pedregosos, o que não permite o crescimento de fruteiras. Uma associação local plantou algumas unidades de plantas numa zona aparentemente apta mas muitas morreram aquando das cheias de Fevereiro de 2013 e outras estão a ser atacadas pelo gafanhoto espinhoso; • Ataque da praga de chimpanzés que consomem o falso fruto do cajueiro;• Fraco domínio das técnicas melhoradas de processamento e conservação de frutas silvestres pela maioria da população.• Morte de árvores de frutas cultivadas principalmente nos primeiros anos de estabelecimento por razões desconhecidas, suspeitando problemas associados à falta de água, aptidão dos solos e pragas. Os AFs foram questionados sobre o nível de domínio das nove práticas de maneio pecuário. As respostas sumarizadas na tabela 16 mostram haver um fraco domínio das práticas de maneio pecuário pelos AFs. Em todas as práticas a maioria dos inquiridos (mais 50%) respondeu que não tinha domínio.A conservação de forragem em feno; isolamento dos animais doentes do resto da manada; conservação e tratamento de resíduos agrícolas, na machamba, para alimentação do gado na época de escassez de pasto; uso de blocos multinutritivos e suplementação de ruminantes na época seca; cultivo de árvores forrageiras resistentes à seca; e retenção/colheita e conservação de água da chuva para o abeberamento do gado, constituem as práticas com mais AFs (mais de 80%) que não têm domínio. Depois deste grupo, segue-se o tratamento de doenças mais importantes, com cerca de 71% dos inquiridos. O terceiro grupo é composto por duas práticas com percentagens à volta de 50% -60% dos respondentes, nomeadamente identificação de doenças mais importantes e construção de currais melhorados (por exemplo: currais elevados para cabritos, ovelhas) (tabela 16). A maioria dos AFs não têm domínio das seis restantes praticas. As práticas com mais AFs (mais de 80%) sem domínio (nenhum a pouco domínio) são: processamento de frutas em sumos e jam; preparação de manteiga a partir de amêndoa de canhú; processamento de batata-doce (em sumos, jam, bolos, biscoitos, etc.); preparação de sumos, bolos, biscoitos de hortícolas; e processamento de caju em melaço. A produção de farinha mandioca, com 56%, figura no segundo grupo das práticas que os AFs têm fracos conhecimentos (tabela 18).A tabela 19 resume as respostas dos inquiridos em relação ao seu interesse em aprender as práticas agrícolas. Mais de 50% dos AFs responderam que tinham muito interesse em aprender 11 das 14 praticas indicadas na tabela. Os inquiridos responderam que não tinham interesse ou estavam pouco interessados ou ainda estavam indiferentes em relação à recepção de conhecimentos das três restantes praticas.As práticas de preparação e aplicação de pesticidas naturais e a captação e conservação de água das chuvas na machamba, são as práticas nas quais mais inquiridos (mais de 80%) mostraram interesse em aprender. O segundo grupo de práticas com mais pessoas interessadas em aprender, com percentagens entre 60 a 80%, são as seguintes: aplicação de adubos e estrumes de animais; preparação e aplicação de composto orgânico e de pesticidas sintéticos; uso de variedades melhoradas tolerantes à seca; e pousio melhorado usando espécies de rápido crescimento e tolerante à seca. O terceiro grupo, constituído por práticas que tiveram entre 50 -59% dos inquiridos muito interessados em aprender é composto por três áreas de conhecimento: uso de culturas de cobertura, cobertura morta e consociação de árvores/arbustos de crescimento rápido com culturas anuais (tabela 19). Práticas tais como rotação de culturas, lavoura mínima e uso de variedades tolerantes salinidade, são as que apresentaram menos de 50% de inquiridos com muito interesse em aprender. As percentagens dos inquiridos que responderam que tinham muito interesse em aprender estas três práticas estão entre 36% a 47% (tabela 19).A avaliação do nível de interesse dos AFs de Chicualacuala em aprender as práticas de maneio pecuário mostra que em cinco das nove práticas, os AFs têm muito interesse em aprender os seus conteúdos (tabela 20). Nestas cinco práticas entre 52% a 76% dos AFs disseram que estavam muito interessados em aprender os conhecimentos relacionados com essas práticas.O grupo com percentagens mais altas (60 -80%) é constituído pelos seguintes conhecimentos: identificação de doenças mais importantes; isolamento dos animais doentes do resto da manada; retenção ou colheita e conservação de água da chuva para o abeberamento do gado; e construção de currais melhorados. A prática sobre a conservação e tratamento de resíduos agrícolas, na machamba para alimentação do gado na época de escassez de pasto, está no segundo grupo das práticas com mais AFs interessados em aprender (52%). As quatro práticas, com menos de metade dos inquiridos interessados em aprender são: conservação de forragem em feno; tratamento de doenças mais importantes; uso de blocos multinutricionais e suplementação de ruminantes na época seca; e cultivo de árvores forrageiras resistentes a seca.A tabela 21, abaixo, apresenta os resultados da autoavaliação dos inquiridos do distrito de Chicualacuala em relação ao seu nível de interesse das práticas de maneio dos recursos florestais. Em três das seis práticas alistadas houve mais de metade dos inquiridos a responder que tinham muito interesse. E em duas práticas, nomeadamente implantação e maneio de florestas com espécies nativas, e cultivo de pastos e forragens na floresta, 50% dos inquiridos responderam que estavam muito interessados.As práticas com mais pessoas interessadas em aprender são as seguintes: cultivo de plantas medicinais (83%) e apicultura (80%). No segundo lugar está a prática de colecção e tratamento ou pré-tratamento da semente de árvores florestais de espécies nativas, com 66% dos AFs interessados. Em apenas uma das seis práticas alistadas na tabela houve menos de metade dos inquiridos a responder que tinham muito interesse em aprender. Essa prática é a de estabelecimento e gestão de viveiros florestais de espécies nativas em que 53% dos inquiridos disseram que estavam pouco ou nada interessados em aprender (tabela 21).As práticas de processamento das frutas e das hortícolas em conservante seco são as que tiveram menos AFs, em Chicualacuala, interessados em aprender. As percentagens destas duas práticas são as seguintes: 48% dos AFs pouco interessados em aprender o processamento da fruta em conservante seco e 47% dos AFs pouco interessados em aprender o processamento de hortícolas em conservante seco (tabela 22).As restantes sete práticas tiveram entre 58% a 91% de inquiridos interessados em aprender. As práticas que tiveram mais AFs interessados (mais de 80%) são: preparação de manteiga a partir de amêndoa de canhú; processamento de batata-doce (em sumos, jam, bolos, biscoitos, etc.); e a preparação de sumos, bolos, biscoitos de hortícolas. O segundo grupo de práticas com maior número de AFs interessados é constituído por processamento de frutas em sumos/jam; produção de farinha mandioca; e, processamento de leite de vaca/cabrito em iogurte. A prática de processamento de caju em melaço está no terceiro grupo com 58% de AFs interessados. A tabela 23 mostra as tecnologias já disseminadas no âmbito de diferentes acções visando o alívio dos efeitos das mudanças climáticas. O SDAE de Chicualacuala, a União Nacional dos Camponeses (UNAC) e a Fundo das Nações Unidas para Agricultura e Alimentação (FAO) adestraram os produtores de Tchale, Ndombe, Mahathlane, Maphuvule e Chissapa em técnicas de produção, conservação e processamento de hortícolas, bem como no processamento de frutas, leite de vaca (incluindo produção de iogurte). Outras tecnologias disseminadas pelas mesmas organizações estão relacionadas com o maneio sanitário e alimentar dos animais, especialmente a disponibilização de remédios para o controlo de carraças e a demonstração de preparação de feno em Mahathlane.O SDAE introduziu os princípios de agricultura de conservação (pratica da cobertura morta) e o cultivo de fruteiras, especialmente em Eduardo Mondlane e Mahantlane. A prática de celeiros melhorados foi introduzida em algumas comunidades de todos os postos administrativos do distrito de Chicualacuala.Para captação e conservação de água para irrigação e consumo animal foi introduzida a construção de represas com apoio da FAO e do SDAE. Em Madulo foi introduzida a técnica de rega gota a gota para irrigação de uma área e 1 hectare. No distrito de Chicualacuala a difusão de informação no seio da população é largamente efectuada nas reuniões promovidas pelos líderes comunitários e secretários dos bairros. Algumas informações relativas às decisões tomadas a nível do governo distrital para conhecimento público são transmitidas às comunidades em reuniões comunitárias.Um outro instrumento largamente usado no distrito para a transmissão de informação é a Rádio Comunitária de Chicualacuala. A rádio comunitária local não está operacional há dois meses devido à avaria no seu sistema de transmissão ocasionado por um curto-circuito que danificou os seus dois emissores. A Rádio Comunitária perspectiva que dentro de um curto espaço de tempo os emissores serão reparados e a produção e transmissão de programas serão reiniciadas.A rádio comunitária possui um raio de cobertura é de 90 km, sendo ouvida até Chicualacuala B, Tchale e Pafúri (não atingido os povoados do posto administrativo de Mapai). Os povoados de Mapai sintonizam com regularidade a Rádio Moçambique, delegação de Gaza. Apesar do limitado raio de cobertura os programas de rádio, veiculados conforme a sua grelha programática, em changana e português, possuem uma larga audiência.O período das 18:00 às 21:55 horas é o mais adequado para veicular programas destinados as produtores agrários uma vez que neste período o programa é transmitido em changana, numa altura em que os produtores já regressaram dos campos e estão disponíveis não só para ouvir mas também para interagir com os técnicos ou locutores que estão no estúdio, via telefone.As gravações podem ser em estúdio e há possibilidade de interagir com os ouvintes por telefone. Quando os spots são produzidos fora dos estúdios da rádio comunitária devem ter uma duração de 15 a 20 minutos e poderão ser passados o número de vezes necessário, conforme acordado e em horários de consenso. Se os spots tiverem sido produzidos em português, os técnicos da rádio poderão traduzi-los para changana, sempre que necessário. Para veiculação de informação deve ser pago um valor de 1.000,00 MT por mês.O sector de agricultura local possui experiência de uso da rádio comunitária para difundir informação sobre campanhas de vacinação, programas de produção, entrevistas com melhores produtores, entre outros programas.As comunidades inquiridas no distrito de Chicualacuala tem acesso à rede de telefonia móvel da operadora Movitel. De uma forma geral os telemóveis ainda não são aproveitados para a disseminação de informação agrária.Os factores abaixo descritos podem interferir na participação dos produtores nos eventos de capacitação e no acesso e utilização dos conhecimentos disseminados:• Língua usada nas acções de divulgação e transferência de tecnologias; deve-se privilegiar a língua local; • Os horários e os dias da semana definidos para as capacitações. Em geral os produtores estão nos campos de produção, individuais ou da associação, até cerca das 13 horas. Nas quartas e quintas-feiras os produtores participam nas feiras comerciais de troca e venda de produtos nas estações ferroviárias e não estão disponíveis para as capacitações; • Eventos comunitários: em alguns povoados como Tchale há dias para a pesca comunitária dai a necessidade de coordenação adequada com a estrutura comunitária local para que as capacitação não sejam afectadas; • Percepção que as novas praticas trazem consigo novos desafios: a adopção da prática de cobertura morta é influenciada negativamente pela percepção de que favorece o desenvolvimento de pragas de ratos de campo, escaravelho preto do milho, entre outras. Os criadores de gado acreditam que a pratica de fenação impõe trabalho adicional que não é compensado pelos benefícios da sua preparação e administração ao gado. Este facto desincentiva sua adopção pela maioria dos produtores; • A disponibilidade e o custo de insumos agrícolas como adubos, insecticidas, drogas para uso no maneio sanitário de gado restringe utilização pelos produtores; • Limitações financeiras dos produtores afectam adopção novas tecnologias como as relacionadas com o processamento de leite de vaca e batata-doce por exigir deles um esforço financeiro adicional; • A disponibilidade de ramas de batata-doce e estacas de mandioca limita adopção destas das culturas pela maioria dos produtores; • Filiação às organizações de produtores.A tabela 24 apresenta as organizações locais envolvidas na disseminação de informação e conhecimentos agrários, no distrito de Chicualacuala. Fazem parte da lista das organizações envolvidas na disseminação de informação e conhecimentos agrários em Chicualacuala, o Serviço Distrital das Actividades Económicas, Rádio Comunitária de Chicualacuala e Associações de produtores. Os extensionistas do SDAE estão sedeados em Chicualacuala Sede e Mapai. E as associações de produtores estão em todos povoados com excepção da Aldeia Eduardo Mondlane e 16 de Junho.As associações de produtores são organizações locais de produtores envolvidos em actividades agropecuárias. Estas organizações permitem o apoio interno entre os seus membros e facilitam a assistência técnica providenciada pela extensão agrária. As associações de produtores funcionam como meio de disseminação de informação e tecnologias agrárias aos produtores não associados, desempenhando assim uma função social muito importante. A outra cultura que poderia ser praticada por muitos agregados familiares em Chicualacuala e contribuir para a redução do risco climático mas que actualmente é cultivada por menos de um quarto dos agregados familiares, é a batata-doce. A grande limitante para a sua adopção massiva é a escassez e dificuldade de conservação da rama da batata-doce para a plantação. Nesta cultura, já existem variedades melhoradas de polpa alaranjada, de ciclo curto, adequadas às condições de precipitação do distrito.Na produção agrícola a maioria dos produtores do distrito (mais de 54%) aplica as práticas de rotação de culturas, uso de culturas de cobertura, cultivo em linhas usando o compasso e a densidade recomendada para cada cultura.A maioria dos produtores não usa as seguintes praticas agrícolas: aplicação de adubos e estrumes, preparação e aplicação de composto orgânico; aplicação de pesticidas sintéticos; preparação e aplicação de pesticidas naturais, lavoura mínima, variedades melhoradas tolerantes à seca e salinidade, pousio melhorado usando espécies de crescimento rápido e tolerantes a seca; captação de água das chuvas nos campos.As práticas de cobertura morta e maneio de pragas e doenças foram largamente disseminadas. Contudo, estas praticas não estão a ser usadas pela maioria dos produtores. A não adopção da prática de cobertura morta foi associada ao aparecimento de pragas que afectam a produção. Os produtores consideram que a cobertura morta cria condições favoráveis ao desenvolvimento de pragas, ou serve de esconderijo das mesmas. Foram apontadas as pragas de ratos de campo, o escaravelho preto do milho, entre outras. A multiplicação de pragas devido a pratica de cobertura morta aumenta o trabalho aos produtores e exige deles mais recursos para o seu controlo. A não disponibilidade de produtos químicos usados para o controlo de pragas e doenças, e os elevados custos para a sua aquisição foram apontados como algumas causas da não adopção de certas praticas de maneio de pragas e doenças pelos produtores. Outras praticas de maneio de pragas e doenças não são suficientemente conhecidas.Como indicado nas secções anteriores, a maioria dos agregados familiares do distrito não tem domínio das seguintes práticas: aplicação de adubos, aplicação de estrumes, preparação de composto, aplicação de pesticidas sintéticos, preparação e aplicação de pesticidas naturais; uso de variedades melhoradas tolerantes a seca, pousio melhorado, captação e conservação da água das chuvas no campo. Os produtores não têm domínio e estão interessados em apreender estas praticas. Paradoxalmente, os produtores estão igualmente interessados em aprender a pratica de uso de cobertura morta para conservar a humidade do solo muito embora esta pratica tenha sido apontada como associada ao desenvolvimento de certas pragas nos campos agrícolas. Isto sugere que os produtores percebem a vantagem do uso da cobertura morta apesar de considerarem que ela está associada ao desenvolvimento de pragas.O controlo de pragas e doenças das principais culturas é uma outra pratica em que foi reportado um fraco domínio e muito interesse em aprender pelos produtores. Maior preocupação foi apontada para: broca de colmo, gafanhotos, pássaros, ratos, escaravelho preto, amarelecimento geral das folhas (no milho); gafanhotos, ácaros, queima das folhas e desfolhamento das plantas (feijão nhemba); térmites, cochonilha, ácaros e gafanhotos espinhoso e elegante (mandioca); broca de colmo, pássaros, ratos (mapira e mexoeira); necrose e queima das folhas (amendoim); ratos e elefantes (abóbora).A maioria dos inquiridos não conhece e não está interessada em aprender o uso de variedades melhoradas tolerantes à salinidade provavelmente porque a salinidade não constitui uma preocupação no distrito. Os produtores também não tem domínio sobre a prática de lavoura mínima mas não estão interessados a aprender. Isto pode estar ligado ao não conhecimento das vantagens desta prática. Segundo Librero (1990), citado por Stuart (1991), estão entre as razões para não adopção de tecnologias pelos produtores a falta de conhecimento e a visão de que a tecnologia não é necessária.Os produtores locais querem aprender a lidar com a irregularidade das chuvas que no seu entender afecta as épocas de sementeira das culturas. A pratica de cultivo nas baixas ou próximo dos recursos de água pode ser adoptada para minimizar o efeito da irregularidade das chuvas. O cultivo de variedades de culturas mais tolerantes à seca pode contribuir para minimizar os efeitos da irregularidade das chuvas na produção.A maior parte dos agregados familiares do distrito de Chicualacuala cria animais. Os animais mais importantes, em termos do número de agregados familiares que criam, são: aves, bovinos, caprinos, suínos e ovinos. A criação de animais é limitada por uma multiplicidade de factores. Nos povoados de Mahatlhane, Tchale e Aldeia Eduardo Mondlane, a actividade pecuária é afectada por: carência de pasto e água na época seca; diarreias; sarna; caraças; bílis; requitsiose; piolhos; newcastle; e diversas epidemias especialmente em suínos e patos. Em Mapai, as principais limitantes da produção pecuária são: parasitas gastrointestinais e parasitas externos (incluindo carraças e pulgas); bílis; conjuntivite, ferimentos nos cascos; abcessos; requitsiose; sarna; e a doença de newcastle.Há uma fraca aplicação das práticas de maneio pecuário que podem responder aos desafios impostos pelas mudanças climáticas. A maioria dos criadores realiza as práticas de identificação de doenças mais frequentes nos animais (63%) e o tratamento das respectivas doenças (49.1%). As praticas de conservação de forragem em feno, isolamento dos animais doentes, conservação e tratamento de resíduos agrícolas, cultivo de árvores forrageiras resistentes à seca, produção e uso de blocos multinutritivos e suplementação de ruminantes na época seca, retenção e conservação de água da chuva para o abeberamento do gado são aplicadas por menos de 11% dos agregados familiares.As práticas de produção de feno, maneio sanitário dos animais, construção de represas ou sistemas de conservação de água, foram disseminadas no distrito mas não estão a ser usadas pela maioria dos criadores de animais. A razão para a fraca adopção da pratica de produção de feno prende-se com o facto de a falta de pasto na época seca ainda não ser um grande problema em algumas comunidades; noutras comunidades os criadores consideram que a produção de feno vem adicionar mais trabalho no agregado de actividades do dia a dia da família. Este facto foi observado por Stuart (1991) no Projecto de Gestão Integrada de Pragas focalizado para a Extensão e Mulheres nas Filipinas. A tecnologia de compostagem rápida introduzida pelo projecto foi rejeitada pela maioria produtores.Os produtores perceberam que a tecnologia era mais custosa em termos de tempo, energia e trabalho adicional que não poderiam suportar ou investir nele. A construção de represas e sistemas de conservação da água praticamente não foi adoptada porque esta actividade demanda recursos para o transporte de pedras e movimentação de terras que a comunidade não possui ou seria difícil mobilizá-los a partir de outras fontes de fora da comunidade.As práticas de maneio sanitário foram ensinadas aos promotores veterinários locais para posteriormente assistirem os criadores nas comunidades. Alguns criadores do Posto Administrativo de Mapai, afirmam que as drogas usadas pelos promotores veterinários não são adequadas para resolver os problemas do seu gado. Foi percebido que por insuficiência de químicos usados nalgumas praticas de maneio sanitário, os promotores veterinários não usavam as dosagens certas, o que levava a resultados não esperados. Este facto tem retraído a aderência dos criadores aos serviços de assistência veterinária facilitados pelos promotores veterinários locais.A maioria dos agregados familiares não tem domínio das práticas de conservação de feno em forragem, identificação e tratamento de doenças mais importantes, isolamento de animais doentes do resto da manada, conservação e tratamento de resíduos agrícolas na machamba para alimentação do gado na época seca, cultivo de arvores forrageiras resistentes à seca, retenção e conservação da água das chuvas e construção de curais melhorados.Os criadores locais não conhecem as praticas de produção e uso de blocos multinutritivos para a suplementação alimentar de animais na época seca e o cultivo de arvores forrageiras resistentes à seca.Os criadores locais estão interessados em aprender todas as praticas indicadas com a excepção do tratamento de doenças mais frequentes nos animais, uso de blocos multinutritivos e suplementação alimentar, cultivo de árvores forrageiras e conservação de forragem em feno. O tratamento das doenças dos animais é feito pelos promotores veterinários e esta é a razão da não preocupação em aprender esta pratica. Os criadores consideram que quem deve aprender esta pratica é o grupo de assistência veterinária os criadores. Os criadores locais não conhecem as praticas de uso de blocos multinutritivos e cultivo de árvores forrageiras resistentes a seca. O não conhecimento destas praticas pode precipitar a falta de interesse pela sua aprendizagem, o que torna necessária sua divulgação junto dos criadores. A pratica de conservação de forragem em feno já é conhecida e não há muito interesse em aperfeiçoá-la devido ao facto de trazer consigo trabalho adicional para os criadores.As principais fruteiras cultivadas no distrito são o cajueiro e a mangueira. De uma maneira geral a maioria dos agregados familiares não tem árvores de fruta.A produção de fruteiras é severamente limitada pelas condições edafo-climáticas inadequadas (especialmente solos e precipitação), pragas diversas especialmente as térmites, o escaravelho preto e as brocas. A limitada disponibilidade de recursos de água em muitas partes do distrito, a inexistência de fornecedores de mudas e a falta de experiência da sua produção pelos produtores afectam o desenvolvimento do cultivo de fruteiras.Apesar destas limitantes os produtores locais mostraram interesse considerável em melhorar o seu conhecimento sobre o cultivo de citrinos, mangueiras e cajueiros. Um aspecto de particular importância para o cultivo destas fruteiras é a disponibilidade de mudas.O distrito de Chicualacuala apresenta uma grande diversidade de frutas silvestres que são usadas para alimentação das populações, especialmente no período do ano em que há carência alimentar. As frutas são consumidas frescas ou processadas localmente, usando métodos tradicionais, especialmente para a obtenção de sumos e bebidas alcoólicas. O desafio é adopção de métodos adequados de conservação e processamento que permitem agregação de valor às frutas silvestres e assegurem a disponibilidade dos seus subprodutos por um período mais longo.Para além de frutas silvestres outros produtos que são obtidos da floresta incluem materiais para construção de casas, o combustível lenhoso (com destaque para lenha e carvão) e os materiais para a produção de objectos artesanais; da floresta é obtida a carne através da actividade de caça; a exploração de mel através da actividade apícola ainda está numa fase incipiente. A maior parte destes produtos indicados são comercializados constituindo fontes alternativas de rendimento familiar.Os agregados familiares conhecem mas não dominam as praticas de maneio de recursos florestais incluindo a colecção e tratamento ou pré-tratamento da semente de árvores florestais de espécies nativas, o estabelecimento e gestão de viveiros florestais de espécies nativas e a implantação e maneio de florestas. Os agregados familiares também têm fraco domínio da prática de apicultura; cultivo de plantas medicinais e de pastos e forragem.Os agregados familiares estão interessados em aprender as praticas de colecção e tratamento ou pré-tratamento da semente de árvores florestais de espécies nativas e a implantação e maneio de florestas dada a maior consciência sobre a contribuição das florestas na sobrevivência das populações locais e da crescente redução das florestas devido ao aumento galopante da exploração dos produtos florestais. Os agregados familiares estão igualmente muito interessados em aprender a pratica de apicultura e o cultivo de plantas medicinais. O mel é utilizado na alimentação e tal como as plantas medicinais tem muita aplicação como curativo de doenças humanas.Os produtores estão relativamente menos interessados em aprender o cultivo de pastos na floresta.Os principais produtos processados localmente incluem as hortícolas (couve), a mandioca, a batatadoce, o leite de vaca e as frutas silvestres. O processamento de hortícolas e frutas silvestres é baseado na secagem.O processamento de mandioca, batata-doce e leite de vaca foi introduzido nos últimos anos por várias organizações na forma de treinamentos a favor de alguns produtores. Os produtores aprenderam a produzir sumos, biscoitos e bolos a partir da batata-doce de polpa alaranjada. Os produtores foram treinados no uso de um método moderno de processamento de leite de vaca para a produção de iogurte uma vez que já processavam usando um método tradicional. Contudo, a aplicação do aprendizado continua aquém dos níveis esperados. Os produtores continuam a privilegiar o método tradicional de processamento de leite e o processamento da batata-doce é limitado.O principal motivo apresentado pelos produtores para esta situação tanto no caso do leite como no da batata-doce é que o processamento dos produtos indicados requer ingredientes diversos que exigem um esforço financeiro adicional. O mercado para os produtos processados é limitado, o que igualmente contribui para desincentivar a pratica de processamento numa escala relativamente maior e de forma regular. Stuart (1991) estudando os constrangimentos para a transferência de tecnologias observou que um dos desafios é a introdução de tecnologias de uso intensivo de recursos. O autor sustenta que os produtores ponderam, embora grosseiramente, os custos e benefícios da tecnologia introduzida, e rejeitam ou alteram-na para o nível em que percebem que os benefícios são superiores aos custos. Ainda segundo Stuart (1991) a percepção pelo produtor de vantagem da tecnologia tradicional relativamente à tecnologia recomendada determina a rejeição desta última. O tempo, a mão de obra e a energia exigidos pela tecnologia recomendada são a base para a tomada de decisão pelo produtor.Nalguns casos a falta de processamento dos produtos determina a sua perda por decomposição. Muita fruta silvestre é perdida dada a impossibilidade de seu total aproveitamento na forma fresca e quando não pode ser usada na produção de bebidas. Importa referir que em Chicualacuala o mercado da fruta silvestre fresca é limitado.A conservação de milho e feijão nhemba, duas culturas de extrema importância na alimentação e produção de renda familiar, constitui uma grande preocupação para os produtores. Os produtos armazenados sofrem do ataque de gorgulho e ratos, o que afecta a sua disponibilidade especialmente nos períodos críticos do ano.Os agregados familiares tem domínio das práticas de processamento de fruta e hortícolas em conservante a seco e processamento de leite de vaca ou cabrito em iogurte.A maioria dos agregados familiares não têm domínio das praticas de processamento de frutas (sumos e jam), amêndoa de canhú (e manteiga), batata-doce (sumos, jam, bolos e biscoitos), hortícolas (sumos, bolos e biscoitos), caju em melaço e mandioca (farinha de mandioca).Os agregados familiares estão interessados em aprender a produção de manteiga a partir de amêndoa de canhú, produção de sumos, jam, bolos e biscoitos a partir da batata-doce, preparação de sumos, bolos, biscoitos de hortícolas, produção de sumos e jam de frutas, produção de farinha de mandioca, produção de iogurte a partir de leite de vaca/cabrito em iogurte e processamento de caju em melaço.Os agregados familiares estão relativamente menos interessados em aprender o processamento das frutas e das hortícolas em conservante seco. Como indicado, os produtores já realizam estas praticas e apresentam um considerável nível de domínio.Baseando-se nas experiências das actividades anteriores desenvolvidas por outras organizações e no nível baixo de escolaridade da população do distrito pode-se sugerir que a comunicação e disseminação de informação deverá privilegiar o uso da língua local. Os métodos a usar deverão incluir os métodos tradicionais de divulgação de informações de âmbito geral, via líderes comunitários, e treinamentos práticos de curta duração, treinamentos usando o método de Escola na Machamba do Camponês, uso de campos de demonstrações de resultados e divulgação de mensagens usando rádio comunitária. Segundo Adhikarya (1994), a rádio é um instrumento de comunicação de massa muito eficiente e efectivo para criar consciência e aumentar o nível de conhecimento dos grupos beneficiários sobre uma determinada temática. A rádio será usada para veicular diversas informações como é o caso das épocas de sementeiras, e importância das frutas silvestres e das práticas de maneio florestal, incluíndo o reflorestamento com espécies nativas.O uso de material impresso deverá ser limitado aos líderes comunitários e líderes das associações de produtores, para partilharem com outros nos encontros comunitários e das associações, respectivamente.Em todos os povoados com excepção das aldeias Eduardo Mondlane e 16 de Junho, existem associações de produtores. Estas associações foram usadas anteriormente por outras organizações para os trabalhos de disseminação de informação agrária. As associações mostraram interesse em colaborar nas actividades de disseminação das tecnologias de alívio às mudanças climáticas. Librero (1990) citado por Stuart (1991) encontrou uma associação positiva entre a adopção de tecnologia e a pertença a uma organização de produtores nas culturas de couve, café, morando e manga.Todas as associações estão baseadas na zona baixa e/ou em zonas com acesso a água, permanente ou temporária para a rega. Mas como foi observado, a maioria dos agregados familiares não está filiada a nenhuma associação de produtores. Isto sugere que para a realização de algumas intervenções principalmente as orientadas para a zona alta, onde muitos produtores não filiados às associações e não têm áreas na zona baixa/com água, deve-se trabalhar com as lideranças comunitárias, para garantir a inclusão dos referidos.• Uma tecnologia agrícola que pode ser de alívio aos efeitos das mudanças climáticas transferida anteriormente e usada no distrito de Chicualacuala é a prática de cultivo das hortícolas, aproveitando-se a água das lagoas e riachos.• Para fazer face às mudanças climáticas os produtores têm as seguintes necessidades de formação, informação e tecnologias agrícolas: (i) conhecimentos sobre o controle de pragas e doenças nas culturas de milho, mandioca, feijão nhemba e hortícolas, mapira, mexoeira, abóbora, e amendoim;(ii) conhecimentos sobre a multiplicação e conservação da rama de batata-doce de polpa alaranja e estacas de mandioca;(iii) técnicas e práticas de melhoramento da fertilidade de solos com destaque para aplicação de adubos, estrumes, , pousio melhorado;(iv) potencialidades/vantagens dos sistemas agro-florestais (combinação de espécies florestais com culturas agrícolas, actividades pecuárias ou ambas); (v) práticas de cultivo usando variedades melhoradas tolerantes a seca;(vi) técnicas e práticas de conservação da humidade de solo, com destaque para sulcos espaçados, micro-bacias, sulcos fechados;(viii) conhecimento das vantagens de uso de culturas de cobertura;(ix) informação sobre as épocas de sementeiras ideias e actualizadas, para a sementeira de diversas culturas.• Para as práticas de maneio pecuário, as necessidades de formação, informação e tecnologias identificadas são as seguintes: (i) conhecimentos sobre o maneio sanitário de bovinos, caprinos, suínos, aves (galinhas e patos);(ii) técnicas e práticas de maneio alimentar com destaque para cultivo de arvores forrageiras resistentes á seca, e conservação e tratamento de resíduos agrícolas, na machamba, para alimentação dos animais no tempo de escassez.(iii) construção de curais melhorados.• As necessidades de formação, informação e tecnologias identificadas na produção de fruteiras têm a ver com: (i) conhecimentos e práticas de controlo de pragas e doenças nos citrinos, cajueiros e mangueiras;(ii) estratégias de conservação de humidade do solo nas plantas recém transplantadas;(iii) produção de mudas de citrinos, cajueiros e mangueiras;• No que concerne ao maneio de recursos florestais, as necessidades de formação, informação e tecnologias identificadas, no âmbito de alívio das mudanças climáticas são as seguintes: (i) valorização das frutas silvestres (as frutas silvestres são vistas como alimentos em situação de fome);(ii) importância de maneio florestal e especificamente o reflorestamento com as espécies nativas;(iii) prática de apicultura;(iv) conhecimentos de cultivo de plantas medicinais.• Para o processamento e conservação de produtos agrários, identificou-se as seguintes necessidades de formação, informação e tecnologias: (i) processamento de frutas, hortícolas e batata-doce de polpa alaranjada em sumos, jam e outros subprodutos; (ii) produção de manteiga a partir de amêndoa de canhú e outros produtos; produção de melaço de cajú; (iv) processamento e conservação de diversos produtos florestais, com maior destaque para as frutas silvestres; (vi) conservação de milho e feijão nhemba no celeiro, evitando o ataque principalmente do gorgulho e rato.• Todas as associações estão baseadas na zona baixa e/ou em zonas com acesso a água, permanente ou temporária, para a rega. Mas a maioria dos agregados familiares não está afiliada a nenhuma associação de produtores. Isto sugere que algumas intervenções principalmente as orientadas para as zonas altas no distrito de Chicualacuala, onde os não associados não tem áreas nas zonas baixas, com acesso a água, deve-se trabalhar com as lideranças comunitárias, para garantir a inclusão das pessoas que não estão filiadas às associações.• Sobre os métodos, meios e instrumentos de comunicação o Tendo em consideração as características dos produtores de Chicualacula, serão usados vários métodos e instrumentos de comunicação no processo de divulgação e transferência de tecnologias. Serão privilegiados: (i) treinamentos práticos de curta duração;(ii) treinamentos baseados na abordagem Escola na Machamba do Camponês;(iii) demonstrações praticas;(iv) campos de demonstrações de resultados; (v) divulgação de mensagens usando a rádio comunitária;(vi) materiais impressos: folhetos simples para serem usados pelos lideres comunitários, promotores veterinários e outros agentes de extensão e associações de produtores que tem algum pessoal capacitado para a sua utilização.• A disseminação de informação e conhecimentos agrários deverá ser feita na língua local, pois a maioria dos potenciais beneficiários não frequentou a escola e não sabe ler e escrever em português e os que frequentaram a escola fizeram-no apenas até ao ensino primário.• Em todos os povoados estudados, com excepção da Aldeia Eduardo Mondlane e 16 de Junho, existem associações de produtores. E estes têm sido envolvidos nas actividades de transferência de tecnologias para os seus membros. Portanto, podem constituir potenciais parceiros locais na implementação de acções de divulgação e transferência de tecnologias agrárias. Para além destas organizações dos produtores, pode-se contar também com o SDAE, a rádio comunitária de Chicualacuala, a rádio Moçambique -Delegação de Gaza, e algumas ONGs que operam nos povoados beneficiários do projecto.• As técnicas de comunicação interpessoal e os instrumentos de comunicação que não envolvem leitura têm maior probabilidade de terem sucesso na transmissão de informação. Mas também pode-se explorar os meios de comunicação tradicionais actualmente usados como a comunicação através das lideranças comunitárias, principalmente para transmitir informações gerais as comunidades.","tokenCount":"10256"} \ No newline at end of file diff --git a/data/part_1/0600774400.json b/data/part_1/0600774400.json new file mode 100644 index 0000000000000000000000000000000000000000..3b3c521b75b297c5b18b4dbe4541c9b492ecd463 --- /dev/null +++ b/data/part_1/0600774400.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b19fdaabafcd7cff2bbbe2cff8f416c8","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/29aa3cf9-3bf0-4fd7-8390-9c11a83ea10b/retrieve","id":"250968550"},"keywords":[],"sieverID":"3c91d252-59aa-4ee0-ad5c-f23442625433","pagecount":"15","content":"Many people are losing direct contact with nature, a phenomenon termed as the extinction of experience. Urban dwellers are particularly affected by this process that influences public health and habitat conservation. We explored the extinction of experience among the urban populace in Nigeria, a clear Global South representative with rapidly increasing human population. We interviewed 600 adults from several cities and performed statistical tests. Results show that most respondents have no contact nor connection with nature, revealing an important distancing from the natural world. The reasons respondents gave for not experiencing nature more often are mainly related to material terms (e.g., lack of time, money and nearby natural areas). We found that respondents with higher nature contact are also more connected to nature, which is promoted by the perception of neighborhood safety. Respondents living in Lagos, and those with lower levels of income and education show greater dissociation from nature. The relationships between real and perceived neighborhood naturalness and bird species are decoupled, but the perception of naturalness and bird species richness correlates. Our study provides novel information on the loss of human-nature interactions and its determinants in the Afrotropics. We recommend different actions necessary to ameliorate this problem.In recent decades, an increasing number of people are losing direct contact with nature, a phenomenon termed as the \"extinction of experience\" (Pyle, 1993). This process of continued isolation and alienation of humans from nature is commonly reported across the world (Miller, 2005), and constitutes a challenge for public health and for curbing environmental degradation (Soga and Gaston, 2016). On the one hand, the extinction of experience undermines the multiple benefits that interactions with nature have for people's physical and mental health (reviewed by Keniger et al., 2013). On the other hand, it also has a negative indirect effect on the environment through changes in people's behaviors and attitudes, as contact with nature can facilitate the appreciation of the natural world (Soga et al., 2016), and encourage proenvironmental behaviors and practices (Alcock et al., 2020;Prévot et al., 2018).According to Soga and Gaston (2016), the extinction of experience is primarily a result of the loss of opportunities to experience nature and the loss of positive orientation towards it. Both loss of opportunity and orientation can be exacerbated as societies grow and develop economically. Specifically, the decline in opportunities is often associated with environmental degradation, increasing urbanization of the human population, over-scheduling, and technological advancements that put television, videogames and internet as the main leisure activities (Hartig et al., 2014;Hartig and Kahn, 2016;Soga and Gaston, 2016). While recreational activities, such as hiking, camping, insect catching, fishing and birdwatching, attract people to nature (Gao et al., 2019;Kurnia et al., 2021;Szczytko et al., 2020), natural areas that support these activities are quickly disappearing due to anthropogenic activities (e.g., Newbold et al., 2015;OECD/SWAC, 2020). The fragmentation of natural areas and the rural-to-urban migration of humans (United Nations, 2019b) create large isolation distances that disconnect people from nature (Miller, 2005). In fact, long distances and transportation costs affect visitation rates to natural areas across age groups, gender, and educational levels (Okello et al., 2012;S. Zhang and Zhou, 2018). While these opportunity-related factors may be important in explaining the loss of interactions with nature, loss of orientation, understood as the feeling of connection or affinity with nature, may be an even more relevant factor (Cox et al., 2018;Lin et al., 2014). Interpretations and measures of the concept of nature connectedness are diverse in the literature, ranging from affective and cognitive aspects to facets of engagement and identity (Tam, 2013). Regardless of the indicator used, the literature suggests that nature connection is strongly associated with nature contact (Cheng and Monroe, 2012;Colléony et al., 2017;Nisbet et al., 2009;Tam, 2013), making it a key element in understanding physical detachment from the natural world. Some authors (e.g., Pyle, 2003), associate the feeling of disconnection from the natural world with the change of values in our societies and the predominance of materialism and consumerism. More recently, Riechers et al. (2020) suggested that landscape simplification induced by economic growth and dietary changes could have a negative impact on various relational values and impair human-nature connectedness.The interplay of human-nature interactions, opportunities to experience nature, and orientation towards it is neither linear nor unidirectional, marring an understanding of the causes and consequences of the loss of nature experiences (Soga and Gaston, 2016). A clear example of this is the relationship between nature contact (i.e., interactions with nature) and connectedness (i.e., feelings or affection for nature), two concepts that appear to be interdependent. Although connectedness is sometimes considered as a predictor of nature contact (e.g., Cheng and Monroe, 2012;Colléony et al., 2017), there are also several studies showing that a greater nature contact enhances connectedness (e.g., Braun and Dierkes, 2017;Lumber et al., 2017;Mayer et al., 2009). In addition, the intensity of nature contact during childhood has been reported as a strong predictor of later visits to natural areas during adulthood (Colléony et al., 2017), as well as nature connectedness and involvement in environmental actions as an adult (van Heel et al., 2023). In fact, Hosaka et al. (2018) noted, based on a study conducted in Japan, that these early nature experiences may be more important than socio-demographic factors for explaining participation in nature-based activities.The characteristics of the environment also have an impact in the extinction of experience. For instance, the extent of urban vegetation is known to be positively associated with fascinating animal groups like birds, butterflies, and beetles (see Arjona et al., 2023;Beninde et al., 2015;Ibáñez-Álamo et al., 2020), invariably influencing nature awareness and connectedness (Lim et al., 2022;White et al., 2023). Another important factor affecting visitation rate and duration of stay in natural areas is the perception of safety in many protected and unprotected wilderness areas (e.g., Lapham et al., 2016;Mata et al., 2022), consequently shaping nature connectedness (Adams and Savahl, 2015;Sedawi et al., 2020).Although there is a large body of literature investigating the various components and mechanisms driving the extinction of experience, such investigations are strongly biased towards countries in the Global North (Barragan-Jason et al., 2022;Bashan et al., 2021;Pett et al., 2016), leaving important knowledge gaps in our understanding of humannature interactions in regions of the Global South. The Global South consists of underdeveloped and developing countries, many of which are in the southern hemisphere, including Africa, Latin America, Asia, and Oceania (Dados and Connell, 2012;Shackleton et al., 2021). It presents biophysical and socioeconomic contextual characteristics that differentiate it from the Global North (Shackleton et al., 2021), which could influence nature connectedness in the area. For instance, most countries in the Global South experience higher urbanization rates, and socioeconomic crises (e.g., unemployment, poverty, health, and safety) than those from the Global North (World Cities Report, 2020), which could reduce investments (e.g., time and money) in nature visitation. Furthermore, people's responses and preferences for nature vary across cultures and countries (Colléony et al., 2019). These factors justify the importance of performing studies on the extinction of experience in the Global South. However, few studies have been conducted there in this respect, and they are focused mainly on touristic aspects like analyzing visits to natural areas such as national parks or protected areas (Kruger et al., 2017;Martinez-Harms et al., 2018;Wambani et al., 2021), and the consequences (mainly in terms of knowledge impacts) of distancing from nature (e.g., Binoy et al., 2021;Muslim et al., 2018;da Silva et al., 2022). Among specific regions of the Global South, Africa has received the least scientific attention in terms of human-nature connectedness research (Barragan-Jason et al., 2022) that is directly related to the extinction of experience concept. In fact, a recent systematic review of African urban ecology revealed that human dimension studies in the continent during the last century mainly focused on ecosystem services approaches rather than other topics such as the extinction of experience (Awoyemi and Ibáñez-Álamo, n.d.), suggesting that additional studies are needed from this discipline. This is particularly important given the declining state of the continent's huge biodiversity, and that outdoor activities have positive effects on human wellbeing (Lumber et al., 2017).In the present study, we set out to determine the applicability of the extinction of experience in the Global South, specifically in an African context, by analyzing data collected from 600 respondents from four cities in southern Nigeria (Auchi, Calabar, Ibadan, and Lagos), one of the most densely populated, yet understudied regions in Africa (e.g., Awoyemi and Ibáñez-Álamo, n.d.;Seto et al., 2012). Our study's motivation was to determine the drivers of disconnection between the urban population and nature, given that previous studies have already shown that rural people in the area are more connected to nature than urban dwellers (e.g., Pam et al., 2021aPam et al., , 2021b)). While those studies were conducted in the rural-urban gradient in central Nigeria, the rural areas of the southern part of Nigeria are relatively insecure due to ongoing social unrest and kidnapping activities in the area (see Ojukwu, 2011;Otu et al., 2018), further explaining why we focused on urban centers. Therefore, we set the following objectives for our study: (1) To explore the extinction of experience in Nigeria, identifying patterns of contact with nature across socio-demographic groups; (2) To find out the selfreported reasons why people do not interact more frequently with nature; and (3) To investigate the cognitive dimension of human-nature connection, exploring possible associations with the identified tendencies of contact with nature. As a cognitive measure of nature connectedness, we used the Inclusion of Nature in Self scale proposed by Schultz (2002), which captures \"the extent to which an individual includes nature within his/her cognitive representation of self\" (p. 67). We also considered awareness of the environment by comparing perceptions with objective indicators of vegetation and birds. To achieve the proposed objectives, we adopted a two-stage empirical strategy: a first stage of descriptive and latent class analysis (to investigate the first two stated objectives); and a second stage of regression analyses (to address the third objective).In this way, this study aims to make several contributions to the scientific literature. On the one hand, it examines human-nature relationships in a largely unexplored context. On the other hand, to our knowledge, this is the first study that attempts to identify and characterize segments of the population according to their patterns of contact with nature. An additional strength of the present research is the simultaneous investigation of experiential and cognitive dimensions of connection with nature. Through the results of this research, we intend to contribute to the proper channeling of resources aimed at improving experiences of nature in Afrotropical environments. Identifying factors underlying low levels of nature contact can inspire the design of interventions that favor intentional contact with nature and, ultimately, counteract the negative implications of the extinction of experience.The study was carried out in four Nigerian cities, including Auchi, Calabar, Ibadan and Lagos (Fig. 1). In terms of landmass, Nigeria is the 14th largest country in Africa, covering about 923,768 km 2 , and supporting several parks, natural areas, biodiversity hotspots and scenic sites (Ezealor, 2001). However, by mid-2023, Nigeria has an estimated human population of 223.8 million, translating to c.242 humans/km 2 (United Nations Population Fund, 2023), and suggesting an increasing need for awareness creation about nature conservation, particularly in highly urbanized areas.Nigeria has two vegetation zones: rainforest and savannah (Ezealor, 2001). The studied cities fall within the rainforest zone characterized by dense evergreen forests of tall trees with thick undergrowth (Ola- Adams and Iyamabo, 1977). Additional information on population density and Gross Domestic Product of the study area is provided in Table 1.Before choosing the studied cities, we first ensured that each of them qualified to be considered an urban center by having a contiguous patch of built-up land >1 km 2 , and dominated by human-constructed features like buildings (>10 buildings/ha), high human density (>1600 inhabitants/km 2 ), roads, and vehicles (Marzluff, 2001;Niemelä, 1999;C. H. Nilon et al., 2003;Schneider et al., 2010). In addition, two of our studied cities (Lagos and Ibadan) are among the most densely populated in the entire African continent (World Cities Report, 2020). Thus, our selection of cities followed the criterion used by Taylor et al. (2018), who performed a similar survey in the two most-populous cities in each of Australia and New Zealand. Second, we ensured the widespread geographic distribution of our studied cities to cover the diverse cultural or ethnic groups (e.g., Yoruba, Igbo, Ibibio, etc.) in southern Nigeria (Oladipo et al., 2007). Third, our studied cities share similar biotic and abiotic conditions (Ezealor, 2001). By meeting these criteria, our sample could be considered a fair representation of urban southern Nigeria (cf. Table S1).We used the \"create random points tool\" in ArcGIS (https://pro.arcgi s.com/en/pro-app/latest/tool-reference/data-management/create-rand om-points.htm) to stratify each city into five compartments stationed at the city center and its four cardinal points (i.e., west, east, south and Note: *The density of the cities is based on data from Africapolis (http://africa polis.org), allowing us to gauge the qualification of each city as an urban center (i.e., >1600 inhabitants/km 2 according to Marzluff, 2001). Other indicators in the table are only available at the state (regional) level.north of the city center) similar to Ciski et al. (2019). Each compartment measured 1 × 1 km, and separated from any other by at least 500 m, allowing us to capture information from respondents living in neighborhoods with different urbanization levels, vegetation cover and other socioeconomic characteristics following previous studies using a similar approach (e.g., Cox et al., 2018;Galbraith et al., 2015). Within each compartment, we also used the \"create random points tool\" in ArcGIS to randomly select five points (at least 200 m apart among them) as focal areas to perform the face-to-face interviews (see below), thus, securing a wide representation of inhabitants from each compartment. All points were marked with a Global Positioning System device (Garmin etrex 20×) to identify the exact geographic coordinates. Furthermore, the selection of these compartments and focal points was also needed to match the socioeconomic information obtained from the interviews with the remotely sensed vegetation data (i.e., Normalized Difference Vegetation Index) and bird data (i.e., bird species richness) that require a similar methodological approximation to grant its independence from point to point (e.g., Kubiszewski et al., 2019). This standardization of compartments and points across the studied cities matches the methodology followed by other studies (e.g., Cox and Gaston, 2015;Ibáñez-Álamo et al., 2020).We purposively used questionnaires to interview six respondents from each point, totaling 150 people from each city and 600 respondents across the four cities. The total sample of 600 people consisted of an equal number of men and women as gender quotas were established to ensure equal representation. The surveys were conducted face-to-face (led by A.G. Awoyemi) between August and November 2021. At each point, six potential respondents (3 women and 3 men) were approached and asked if they lived within the 200-m radius of each point before interviewing them on a voluntary basis as no payments were made (otherwise they were not interviewed). This was relevant as it reflects respondents' experience and contact with nature on a daily basis (Taylor et al., 2018). Participants that agreed to answer the survey questions were then introduced to the purpose and objectives of the research, guaranteed anonymity and confidentiality of their responses, and were informed of their right to withdraw from the survey at any time. In addition, they were given the option to leave blank any questions they preferred not to answer. Each participant was interviewed independently of any other to ensure the uniqueness of the responses received. We conducted the interviews at different hours (mornings and evenings) of the day (week days and weekends) across the studied cities similar to other previous studies (e.g., Cox and Gaston, 2015). This procedure allowed us to cover a broad segment of the society with different sociodemographic and economic characteristics (Table S1).To assess experiences of nature, we relied on direct and intentional contact with nature. We opted for a broad definition of nature, including neighborhood greenspaces, parks and managed settings, because they can play a crucial role in reversing the extinction of experience, especially in urban centers. Previous evidence indicates that the benefits of interacting with nature are not limited to wilderness environments, but also to a broader definition of nature (Gaston and Soga, 2020).We asked about the frequency of contact with nature adapting the measures used by Soga et al. (2016). Thus, respondents were asked the following questions: (1) \"How frequently do you visit natural places (e. g., neighborhood green areas, parks with lots of trees, beach, mountain, orchards, forest reserves, woodlot)?\" (visits); (2) \"How frequently do you touch plants or flowers in natural places?\" (plants); (3) \"How frequently do you observe or touch animals (e.g., birds, insects) in natural places?\" (animals), which could facilitate nature connection, particularly during childhood (Franco et al., 2017;Kahn, 1997;Lumber et al., 2017). In addition to the frequency of visits, we considered the frequency of interactions with animals and plants to capture interactions that involve a more conscious and meaningful engagement with nature. Participants responded to those questions using a 6-point Likert scale (with 1 = never, 2 = once yearly, 3 = once every season, 4 = every month, 5 = every week, and 6 = every day). Those respondents who did not report the maximum frequency for all nature interaction questions were asked why they did not experience nature more often. They could choose several of the following options to answer this question: 1 = \"I don't have time\", 2 = \"I don't have money to visit them\", 3 = \"Lack of natural areas nearby (it is too far)\", 4 = \"I have a disability / Health problem\", 5 = \"I am not interested / I don't like nature\", 6 = \"Other reason\". We also considered the duration of visits to natural places (duration). Respondents answered the question \"How long do you normally stay in natural places?\" on a 5-point Likert scale (1 = some minutes, 2 = some hours, 3 = half a day, 4 = whole a day, and 5 = several days).Respondents also answered the three previous questions on the frequency of contact with nature (visits, plants and animals) during their childhood, classified here as when they were 6-12 years old. We created an aggregated indicator of the frequency of interactions with nature during childhood as the sum of the scores of the three questions (childhood frequency of nature contact). We also asked if they had ever lived outside their current city (yes or no) as a factor that could influence opportunities to interact with nature (lived outside current city).We evaluated affinity with nature (nature connectedness) using the Inclusion of Nature in Self Scale (Schultz, 2002), which is an adaptation of the Inclusion of Other in Self Scale by Aron et al. (1992). Based on selfconcept, this scale captures the cognitive dimension of connectedness with nature through a graphic question. Seven pairs of circles are shown overlapping to different degrees, one labeled \"Self\" and the other \"Nature\", and respondents were asked to choose the pair that best reflects their interconnectedness with the natural world (Fig. 2). Each pair of circles is assigned a score from 1 (separate circles) to 7 (completely overlapped circles).We assessed the opportunity to experience nature by asking about the participants' perception of the level of nature in their neighborhood (perception of neighborhood naturalness). Here, we described neighborhood naturalness to respondents as the coverage of vegetation (%) within the 200-m radius of each sampling point (i.e., where respondents live) following previous studies (e.g., Cox et al., 2018;Ugolini et al., 2020Ugolini et al., , 2021)). We then asked them to rate (on a 5-point Likert scale) how natural the location they live in is (i.e., the 200-m radius), whereby 1 = very artificial (≤20% vegetation cover), 2 = artificial (≤40% vegetation cover), 3 = intermediate (≤60% vegetation cover), 4 = natural (≤80% Fig. 2. Schematic representation of the level of nature connectedness adopted from Schultz (2002). vegetation cover), 5 = very natural (100% vegetation cover). We also asked for the types (based on taxonomic families) of birds (e.g., sparrows, pigeons, kites, crows; perception of bird types) they usually found there (1 = very few (<3), 2 = few (3, 4), 3 = intermediate (5-7), 4 = many (8-18), 5 = very many (>18)) by showing them different images using the guide to the Birds of Western Africa (Borrow and Demey, 2014). We defined the number of bird types for each category based on the information on bird censuses (5 mins/point) carried out in the same sampled cities and points in November 2020-January 2021 as part of another study on the association of urbanization with avian diversity.The Normalized Difference Vegetation Index (NDVI) estimates the presence and photosynthetic vigor of vegetation, and is commonly used to investigate the relationships between nature and human well-being in urban areas (Pereira et al., 2012;Taylor et al., 2018). To estimate the NDVI, we downloaded Cloudless Sentinel 2 Level 1C Images to cover the survey period (November 2021), from the USGS Earth Explorer (htt ps://earthexplorer.usgs.gov/). We then used the \"spectralindices\" function to estimate the mean NDVI using the R Statistical Software (Alabi et al., 2022;Leutner et al., 2019;Suab and Avtar, 2020).Some months before the interviews (November 2020-January 2021), a single observer (A.G. Awoyemi, an expert ornithologist with >10 years of experience censusing birds in Nigeria) recorded the number of individuals of each bird species seen and/or heard within a 50-m radius (Ivande and Cresswell, 2016) of each point where respondents were interviewed (bird species richness). The bird censuses were done following general recommendations for quantifying birds (Bibby et al., 2000) and thus carried out only under good weather conditions and during the morning (up to 4 h after local sunrise; Manu et al., 2006).We asked respondents to score how safe they felt in their neighborhood (safety), translating to a 200-m radius of each sampling point, where they could have direct and daily interaction with nature (Cox et al., 2018;Taylor et al., 2018). This was also scored on the following 5point Likert scale, including not at all (1), a little (2), moderately (3), quite a bit (4) or extremely (5).We obtained socio-demographic information from respondents, including age (continuous), gender (male or female) and marital status (single, married, divorced or widow); children (continuous). We also asked for their level of education (no formal education, primary, secondary, technical/polytechnic or university), employment status (selfemployed, employed by someone or not employed); and level of monthly income, scaled based on the approved Nigerian minimum wage of 30,000 Naira (National Minimum Wage Act, 2019), and converted to USD ($) on 30 November 2021 (<$73, $73-$145, $145-$218, $218-$290, >$290).This study was conducted following a two-stage empirical strategy. Statistical analyses were conducted using the R Statistical Software (R Core Team, 2022).To identify latent and unobserved groups, and to determine how the resulting subgroups differ in their pattern of human-nature interactions in the study area, we performed a Latent Class Analysis (LCA), which offers a probability-based classification (Scheier and Komarc, 2020;Song et al., 2021;Walsh et al., 2023). To achieve that, we used the \"MixAll\" package, which consists of algorithms and methods for modelbased clustering and classification (Iovleff and Bathia, 2022). The Mix-All package was relevant to our LCA because it supports different types of data (e.g., continuous, categorical/qualitative, count), missing values, and models (e.g., Gaussian, Gamma, Poisson), and is commonly deployed in clustering analysis (e.g., Ma et al., 2021;Nagode and Klemenc, 2021).A total of 11 indicator variables (described above), including those related to socio-demography (gender, age, education, marital status, children, employ and income) and intentional contact with nature (visits, plants, animals and duration) were incorporated into the LCA to identify the groups. In MixAll, the number of classes must be ≥2 (Iovleff and Bathia, 2022). Thus, we ran models up to five classes following Song et al. (2021), and selected the best model (see Table 2) as the one with the lowest Bayesian Information Criterion (BIC) value (Burnham and Anderson, 2002;Nylund et al., 2007;Schwarz, 1978;Song et al., 2021). It is worthy of note that the incorporation of additional classes (i.e., > 5) increased BIC values, supporting our selection of five classes. The LCA generated an additional categorical variable, termed \"Class\" with two levels, including Class 1 (low nature contact) and Class 2 (high nature contact), which was included in further analyses. Thus, we first explored the distribution of the respondents across the identified latent classes, and how such variations influenced their self-reported reasons for not visiting nature more often.At the second stage, we performed regression analyses to determine differences in: (1) nature connectedness due to latent class membership (Class 1 vs Class 2) and the remaining variables not used to define the classes, including safety, childhood frequency of nature contact and living outside the current city, (2) NDVI due to subjective perception of neighborhood naturalness and latent class membership, and (3) bird species richness due to subjective perception of types of birds and latent class membership. We decided to use bird species richness since it positively correlated with the number of families of the sampled birds (r (598) = 0.98, p < 0.001).We checked the assumptions of normal distribution of our response variables (Shapiro and Wilk, 1965) and use log-transformed data when it was possible to obtain a reasonably normal distribution (i.e. NDVI). When the normal distribution was not obtained even after transforming data, we fitted our models using Poisson distribution (i.e., bird species richness). However, for the nature connectedness response variable, which is ordinal with natural and ordered categories, we performed an Ordered Probit Analysis using the \"ordinal\" package and probit link (Christensen, 2023;Ferreira and Moro, 2013). To check for potential interactions between the latent classes and our predictors on these response variables, we included an interaction of the latent class membership with all the independent variables included in the models.We then used a stepwise backward selection method to simplify the models (Crawley, 2013;Marhuenda et al., 2014). Thus, starting with interaction terms, variables with the highest p-values were first removed, and the procedure repeated until the best model (containing significant effects) was selected as the one with the lowest Akaike Information Criterion value (Burnham and Anderson, 2002). We set statistical significance at p-value <0.05. The study sample was balanced in terms of gender and the number of respondents from each city. Participants ranged in age from 14 to 72 years old (Mean ± SD = 34.89 ± 11.69 years). Approximately, 40% of the participants had a secondary school education, 30% technical school, and 20% university education. In terms of marital status, most of the participants were married (59.7%). In relation to income, 49% of the respondents who indicated their monthly income chose the lower range (<$73). This low-income level is very similar to that found by the Nigeria Poverty Map, which reveals that about 4 of 10 Nigerians (40%) are poor according to the 2018/19 national monetary poverty line (National Bureau of Statistics, 2023). In fact, when other factors, such as deprivations in cleaner cooking energy, sanitation, healthcare, food insecurity, housing, and education, were incorporated (termed multidimensional poverty), the poverty level increases to 63%. Given that the data also show that poverty level in northern Nigeria (65%) is higher than in the south (35%; our study area), and is also higher in rural (72%) than in the urban areas (42%) (National Bureau of Statistics, 2023), our data could be considered a fair representation of urban areas in southern Nigeria (cf. Table S1). The descriptive statistics of socioeconomic characteristics and other variables are given in Table 3.Through the LCA, we identify unobserved groups or classes of cases that explain associations between the indicator variables (contact with nature and socio-demographic characteristics). Overall, the LCA disaggregated the sampled respondents into two classes: Class 1 (low nature contact, n = 323) and Class 2 (high nature contact, n = 277) as shown in Figs. 3 and 4.Regarding human-nature interaction, a large proportion of the respondents in Class 1 reported to never visit natural areas (Fig. 3a) nor observe animals (Fig. 3b) or plants (Fig. 3c), and spend little time in natural areas (Fig. 3d) in comparison with Class 2. The differences between the two groups were more pronounced in terms of frequency of contact, while they were less evident in terms of the time spent in nature. For both groups, spending a few hours in nature was most common, although people in Class 2 are more likely to spend longer periods than those in Class 1.In terms of socio-demographic variables, there were similar levels of interactions with nature by females and males (Fig. 4a), though a higher level of nature contact was observed among younger respondents (Fig. 4b), and those with slightly lower number of children (Fig. 4c). While Class 1 with low nature contact was dominated by married respondents, Class 2 has a more balanced proportion of married and single respondents (Fig. 4d). We found lower levels of nature contact among respondents with lower educational levels (e.g., secondary/high school) than those with higher qualifications, such as university and technical degrees (Fig. 4e). Regarding the studied cities, respondents living in Lagos showed lower levels of nature contact (Class 1) relative to others, such as Ibadan, where respondents interacted with nature more often (Class 2; Fig. 4f). Occupational status also seems to exert some influences on nature interaction behavior as we found that the group with lower contact with nature was mainly comprised of self-employed people (Fig. 3g). Finally, results of income are noteworthy, with respondents earning less than $73 showing lesser likelihood of nature contact (Class 1).As for the declared reasons for infrequent interactions, the lack of time, money, and nearby natural areas was commonly reported across the two class memberships (Fig. 5). All stated reasons were relatively higher in Class 1 (low nature contact) than Class 2 (high nature contact).The results of our regression analyses showed interesting trends that consolidate the results obtained in the LCA. As anticipated, the Class 2, with higher nature contact based on the LCA, also demonstrated a significantly higher nature connectedness than Class 1 (Table 4; Fig. 6). Furthermore, while nature connectedness (independently of class membership) increased as the perception of neighborhood safety improves, we found no significant correlation between nature connectedness and whether respondents ever lived outside their current city or not (Table 4). The only significant interaction effect shows a negative correlation between nature visitation during childhood and Class 2 (Table 4; Fig. 7).We found a negative significant correlation between respondents' perception of neighborhood naturalness and the real (measured) naturalness estimated through NDVI irrespective of class membership (t = − 2.600, p = 0.010; Fig. 8a; Table S2). In addition, we found no significant association between the respondents' perception of types of birds (independently of class membership) and the real (measured) bird species richness (t = − 1.080, p = 0.280; Table S3). Exploring this dissociation further revealed that perception of neighborhood naturalness and types of birds significantly (positively) correlated (r (593) = 0.33, p < 0.001; Fig. 8b). Finally, the bird species detected in our censuses showed 35 different bird species of 22 families (Table S4). Of this Many cities in the Global South are growing rapidly, leading to the loss of biodiversity (Seto et al., 2012;United Nations, 2019a). This urbanization process also has the potential to disconnect people from nature as supported by our findings. Our study analyzed the humannature connection from a broad perspective, considering both the experiential and cognitive dimensions, as well as their interrelationships and shows a high level of extinction of experience in Nigeria. Thus, it fills an important knowledge gap by broadening our understanding of this crucial process from a Global South perspective (Barragan-Jason et al., 2022;Pett et al., 2016).Our study reveals a relatively large proportion of people with no nature experiences, corroborating the weakening of the relationship with nature reported by previous studies (Binoy et al., 2021;Cox et al., 2017;Imai et al., 2019;Soga et al., 2018). Despite this consistency of results, the proportion of people who never interacted with nature in this study (55%) was substantially higher than those reported from the Global North, where such proportion was ≤10%, whether considering only urban greenspaces (Ishibashi et al., 2020;Soga et al., 2015) or a wide variety of natural places (Colléony et al., 2017). The obtained low levels of contact with nature were particularly striking, especially given the temporal context of this study. We conducted our surveys in 2021 after the lock-down measures taken to curb the Covid-19 pandemic, when Lee et al. (2022) predicted a surge in nature experiences in Africa. Studies from other geographic areas have reported changes in preferences for contact with nature after the coronavirus crisis, favoring a higher frequency of visits to natural areas (Berdejo-Espinola et al., 2022;Lenaerts et al., 2021;Stankowska and Stankowska-Mazur, 2022).However, distancing from nature did not occur homogeneously among the study participants. The performance of the LCA allowed us to disaggregate the respondents into two homogenous groups differing in their behavioral tendencies. Despite its potential benefits, this methodological approach is seldom used to investigate human-nature interactions so far (Batool et al., 2022;Huynh et al., 2022;Jorgensen and Meis-Harris, 2022). Based on the segmentation of the intensity of nature contact by the LCA, the socioeconomic and demographic variables investigated in this study reveal important patterns that could be useful to improve our understanding of human-nature interactions from an African perspective. Our result showing a lower level of nature contact among older respondents suggests the potential influence of ageing that could limit the ability of older people from visiting nature more often, a pattern revealed by previous studies (e.g., Freeman et al., 2019). In contrast, the higher nature contact among younger respondents could also be associated with the recent increasing environmental consciousness across the world (e.g., Urbański, and ul Haque, A., 2020). However, if that applies to the study area, we would have expected that respondents with a higher number of children (synchronizing with recent decades) to experience nature more often, which was not the case here. This contrasting result suggests the influence of other potential factors. For instance, a higher number of children could imply higher family responsibilities for our study participants, and consequently reducing investments (e.g., time) on nature contact. Supporting this position A.G. Awoyemi et al. regarding higher responsibilities, we also show that low nature contact was more prominent among married participants in comparison with those identified as being single. Nevertheless, environmental education shows promise in mitigating the low level of nature contact in Nigeria as our result already shows that nature contact is higher among more educated respondents.Meanwhile, Lagos holds the largest proportion of respondents with low nature contact, which is hardly surprising. On the one hand, Lagos is one of the most rapidly developing cities in the world (World Cities Report, 2020), which could have negative impacts on the associated biodiversity. This is supported by our study given that we recorded the lowest bird species richness in this city relative to others. Birds are an important animal group that promotes the interconnectedness of people with nature across different cities (e.g., Cox and Gaston, 2015). This could in part explain why Ibadan respondents experience nature more often relative to those sampled in each of the remaining studied cities. In addition to the highest bird species richness, the Ibadan Bird Club was established in 2014, growing in membership and meeting at monthly intervals, to promote birdwatching around the city of Ibadan, consequently reconnecting people with nature in the area (Awoyemi and Bown, 2019). On the other hand, Lagos is the center of economic activities in Nigeria (National Bureau of Statistics, 2023), which could partially restrict nature contact too. For instance, our result showing low nature contact among respondents that were self-employed than those employed by someone or had no job, suggests that people in the study area could prefer to invest more time in their businesses to boost their income and profit. This makes sense given that the majority of respondents earn less than $73 monthly, particularly those in the class with low nature contact. Our results are unique in this respect by allowing us to quantify the influence of socioeconomic and demographic variables on an additional facet of living standard (i.e., human-nature interaction), which is now recognized globally as an antidote against mental health issues (Keniger et al., 2013;Tillmann et al., 2018).Our study supports the growing body of literature (e.g., Lumber et al., 2017;Tam, 2013) showing the positive associations between nature contact (i.e., experiential connection) and connectedness (i.e., cognitive connection). Here, the investigated nature connectedness based on the Inclusion of Nature in Self Scale (Schultz, 2001(Schultz, , 2002) ) reveals interesting findings. Overall, the perceived relationship between self and nature was very weak, with a third of the respondents perceiving themselves as completely separate from nature. This could be due to the low level of direct interaction with nature, as the different dimensions of nature connection may interact and influence each other (Ives et al., 2018). The results of the Ordered Probit Analysis support this idea, as Class 2 (high nature contact) shows a significantly higher connectedness too.As expected, the perception of safety by respondents positively correlates with nature connectedness irrespective of class membership, reinforcing previous findings (e.g., Sedawi et al., 2020). This result is crucial for potential decision-making and actions. For instance, the nonurban sites (e.g., wilderness, national parks and forest reserves) where people could also connect with nature are riskier in Nigeria (Ojukwu, 2011; Otu et al., 2018), suggesting that the perception of safety risks in the cities could further aggravate the low level of nature connectedness detected in our study. On this note, we call for the need to make urban greenspaces safer in Nigeria, and potentially in other areas of the Global South, where this peculiar situation exists.Regarding the variables relating to participants' past, nature connectedness did not significantly correlate with whether respondents had lived outside their current city, but significantly declined with increasing number of visits to natural areas during childhood (for the Class 2 with high nature contact). These results contradict the notion that earlier (childhood) experiences in nature are very important for developing a strong bond with nature during adulthood (Passmore et al., 2021;van Heel et al., 2023). Nevertheless, our results are encouraging as they suggest that strong nature connectedness could still be developed later in life regardless of the individual's background.Perhaps, surprising were our results showing a dissociation between real (measured) and perceived neighborhood naturalness and bird species richness independently of class membership. Here, NDVI significantly (negatively) correlates with the perception of neighborhood naturalness by the respondents on the one hand. This result suggests that the study participants were probably not aware of, not interested in or even underestimate the amount of greenness in their neighborhood, which is plausible given the low nature contact and connectedness detected in this study. This is particularly concerning given that our research focused on the immediate vicinity, where respondents could interact with nature on a daily basis. It is also possible that the respondents were rather more interested in certain plant parts like flowers or fruits (see Shwartz et al., 2014) than the amount of green vegetation in their neighborhood, pinpointing the need to investigate further the items that attract people to nature in the area. On the other hand, we found no significant association between the real (measured) and perceived bird species richness of the neighborhood. Poor identification skills could make it difficult for the study participants to differentiate the different kinds of birds found in their neighborhood, potentially leading to an important underestimation. Our result showing a positive significant correlation between the perception of neighborhood naturalness and bird species richness supports this position, and in general could indicate the need for additional educational activities involving birds (like those performed in the area by the Ibadan Bird Club or the A.P. Leventis Ornithological Research Institute; https://www.aplori.org/) in order to improve the value of nearby urban nature.In general, studies have shown a weak relationship between real and perceived biodiversity while recommending different ameliorative strategies (e.g., Belaire et al., 2015;Dallimer et al., 2012;Shwartz et al., 2014). In the UK for example, the deployment of bird feeders shows promise in mitigating the gap between perceived and actual bird species richness (Cox and Gaston, 2015). However, we did not record any act of feeding wild birds during our survey, an uncommon practice in Nigeria. Since respondents with higher levels of education experienced nature more often according to our results, environmental education could be more applicable in bridging the gap in biodiversity knowledge in the Nigerian context.The main reason participants gave for not interacting with nature more often was the lack of time. This finding is in line with that found by Boyd et al. (2018) that revealed \"too busy at work\" or \"too busy at home\" as the two main reasons for not visiting natural environments. As these authors pointed out, more research is needed to understand how people prioritize and allocate their time across different activities.The lack of money was the second most important reason for not visiting natural areas more often given by respondents in Class 1 (low nature contact). Given the various economic crises experienced by Nigeria, particularly during the Covid-19 Pandemic (Ozili, 2021;Stanley et al., 2020), respondents might have to prioritize the items on which they expend their limited income, which was <$73 for almost half of the respondents (49%). This total monthly income will, for example, only cover a 2-day return travel for a person to visit the Okomu National Park from Lagos, suggesting why respondents in our study may not have enough money to visit natural areas amidst other demanding living expenses like feeding, housing, healthcare, and education. It is thus hardly surprising that people with higher incomes tend to visit greenspaces more frequently (Jones et al., 2009), spend more time in them (Soga and Akasaka, 2019) and participate more in nature-based activities (Hosaka et al., 2018). On the one hand, higher incomes could enhance mobility due to the availability of private vehicles and capacity to travel farther to explore more natural areas (Martinez-Harms et al., 2018). On the other hand, wealthier neighborhoods tend to have higher quality greenspaces that are relatively easier to explore (Cox et al., 2017;Hoffimann et al., 2017), a pattern known as the luxury effect that is present in various urban ecosystems and cities around the world including Africa (Chamberlain et al., 2019;Leong et al., 2018).Another main reason why respondents did not increase their nature experience was the lack of natural areas nearby. This reason was particularly noticeable among members of Class 2 (high nature contact), suggesting the existence of people who would like to interact more with nature but lack the opportunities to do so. This result could be explained from two dimensions. First, it could be due to the respondents' lack of knowledge/awareness of the urban nature associated with their immediate environment as we had found a no significant or even negative associations between the real and subjective perception of nature and birds. Second, it could have arisen from the lower levels of biodiversity associated with urban centers in our studied cities. For instance, the cities included in our investigation are located in southern Nigeria, a region in Africa that has experienced an exponential loss of forest cover stemmed from different factors (FAO, 2011;Popoola, 2016), particularly urbanization (Awoyemi and Ibáñez-Álamo, n.d.;Seto et al., 2012). This urban expansion seems to be an important predictor of people's affection for nature in the area (Bashan et al., 2021). For instance, Lagos is the most densely populated of the sampled cities (9270 people/km 2 ), but also holds the highest number of respondents who never visited natural areas as well as the lowest bird species richness. Although accounting for a small fraction, our study also reveals the lack of interest and health issues as reasons for not visiting nature more often.Before concluding, some limitations of the study should be highlighted, one of which lies in the cross-sectional nature of our data. Although we could identify relationships between variables, we were only able to interpret them in terms of associations and could not infer cause-effect relationships. Secondly, to assess interactions with nature (e.g., Soga et al., 2016;Yamanoi et al., 2021), we considered activities beyond mere exposure but involving experiencing nature through different senses (Colléony et al., 2020a(Colléony et al., , 2020b;;Moss, 2012). However, some behaviors may constitute a negative form of engagement with nature if they involve unintentional harm to wild species and habitats (e. g., picking flowers or touching animals). Although this is beyond the scope of our paper, it would be valuable for future studies to examine the activities that people undertake in nature, distinguishing their effects on people, flora and fauna.Another aspect of the present study that should be considered for future investigation is that most participants reported to have lived outside their current city (84%). However, we did not collect further information on where they actually lived in the past, preventing us from knowing whether the participants grew up in an urban or rural area, which may have important implications. Only direct and intentional contact with nature during childhood was considered, ignoring the possible influence of incidental exposure to natural areas during early life. Other potentially relevant information such as the type (wild or managed), quality and distances of natural environments or the motivation to visit them could also be important in this context (Clayton et al., 2017;Colléony et al., 2020a;Soga et al., 2015;Y. Zhang et al., 2017). We therefore encourage future studies to gain a deeper understanding of nature experiences by overcoming the limitations of our study. Despite these limitations, we hope that our study will help to outline a clearer picture of the relationship that residents of urban areas in Nigeria (and potentially inhabitants of other African countries) have with nature.Expanding our knowledge of human disengagement from nature is necessary if we are to take measures to reverse it. Differences between countries and cultures demand regional studies, so that possible measures can be tailored to the specificities of each context (Bashan et al., 2021;Colléony et al., 2019). The bulk of research on human-nature interactions is based in Global North countries, but the extinction of experience is not a phenomenon unique to these countries. To our knowledge, this is the first study that assessed the extinction of experience by analyzing patterns of interaction with nature and its determinants in the Afrotropics.Using a reasonably large sample of Nigerian adults, we found evidence of a strong distancing of people from the natural world, indicating an important level of extinction of experience that is even more pronounced than previous studies have found in other areas. A second conclusion of this study is that low nature contact was more prominent in Lagos, and among those respondents with lower educational and income levels. Interestingly, we found a positive significant association between experiential and cognitive nature experiences, and that neighborhood safety is a promoter of nature connectedness. On the one hand, our study reveals a strong dissociation between real (measured) and perceived neighborhood naturalness and bird species richness. On the other hand, the perception of neighborhood naturalness and bird types significantly (positively) correlated. Finally, we identified the lack of time, money and nearby natural areas as the main reasons for not visiting natural areas more often in the area and provided some useful recommendations to try to revert the observed disconnection with nature by Nigerians. We hope that the findings of this study will help in the design of interventions that favor direct and intentional contact with nature for urban residents, so that the benefits associated with this contact can reach broad segments of the population.","tokenCount":"7948"} \ No newline at end of file diff --git a/data/part_1/0618891698.json b/data/part_1/0618891698.json new file mode 100644 index 0000000000000000000000000000000000000000..6f3621b44d8d566159aa0fa9a5bb4ba321b6b9d5 --- /dev/null +++ b/data/part_1/0618891698.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5f4fbddc692bc8eb1029cc9ea433b49c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/13ee5db4-0781-4092-a353-72c3931dce2d/retrieve","id":"2018320555"},"keywords":[],"sieverID":"355d14cb-f401-420b-b0d9-98ff7c31d66c","pagecount":"112","content":"2012 East africa Dairy Development project (EaDD) the East africa Dairy Development project is a regional industry development program led by Heifer international in partnership with the international livestock research institute (ilri), technoserve, the World agroforestry centre (icraf) and the african Breeders services total cattle management (aBs tcm). the project is being implemented in Kenya, rwanda and Uganda. funded by the Bill & melinda Gates foundation, the goal of this project is to help one million people-179,000 families living on small 1-5-acre farms-lift themselves out of poverty through more profitable production and marketing of milk.Dairy cattle production in East africa has increased recently due to the high demand for fresh milk for a growing population and demand for value-added milk products for an expanding urban middle class. to meet this increased demand, there is need to increase the amount of available milk. this increase can be either by increasing the milk yield per cow or by increasing the number of animals. Due to pressure on land, increasing the milk yield per cow is the preferred option.Dairy farmers have taken up this challenge but are constrained by the lack of technical information on managing their animals. at times the available information is too complicated for them to understand. though increasing milk production is a combination of good genetics, good management and good feeding, feed costs constitute the major day-to-day expense. in East africa, this cost has been further exacerbated by the progressive shift from an extensive to an intensive system of dairy in both the high and the medium-to-low potential areas due to the shrinking land sizes and a lucrative milk market.With the recent advances in breeding technologies, farmers have gained access to high-quality dairy genotypes. to realize the full milk production potential of these genotypes, there is need for proper managerial practices, especially with regard to feeding. farmers need to be knowledgeable on how to maximize productivity while minimizing costs of feeding. a lot of research has been carried out on various aspects of dairy production, particularly in the area of feeds and feeding. this information has either remained on the shelf or been communicated in a form not appropriate to the farmer. this manual synthesizes and simplifies the information on feeding dairy cows for the farmer, extension worker and student. Whereas the information has been synthesized in such as way as to be applicable to the East african region, some information may be site specific, and in some instances information that is generalized may need to be customized to suit specific areas.the manual covers information on the basic nutrients a dairy cow requires, the available feed resources that provide these nutrients and practical aspects of feeding the animals. We acknowledge the contribution of the international livestock research institute (ilri), especially that of isabelle Baltenweck, for providing logistical support in preparing and producing this manual. We specifically want to acknowledge the contribution of icraf dissemination facilitators Josephine Kirui, patrick mudavadi, Jane Kugonza and Benjamin nzingamasabo for their contributions. in addition, we thank Dr Joseph methu of the association for strengthening agricultural research in Eastern and central africa and prof paul mbugua of the University of nairobi for reviewing the draft manual.Ben Lukuyu, Charles Gachuiri, Margaret Lukuyu, Solomon Mwendia and Charles Lusweti april 2012, nairobi, KenyaDairy cattle make a major contribution to both national and household economies as well as provide milk, which contains essential nutrients. milk contributes significantly to meeting the human requirements for animal protein and is especially important in the diet of children and the sick. regionally, dairy cattle farming contributes to employment on the farm (production), during value addition (processing) and marketing. the farming also supports a large service sector that offers specialized services in nutrition and health. increase in human population has resulted in pressure on arable land leading to deterioration of soil fertility and deforestation. manure from dairy cattle plays a major role in improving soil fertility and it is a source of energy (biogas) for the household.though milk production may not be 100% related to the external appearance of a dairy cow, some physical features are related to milk yield and the longevity (length of time animal is productive) of the animal in the herd. these features (figure 1.1, table 1.1) are commonly used in judging the goodness of a dairy cow from its external appearance. these characteristics should be considered by dairy farmers while buying, selling or culling dairy animals. the aim of keeping a dairy cow is to obtain the maximum amount of milk. a cow will perform at its best only if its basic needs are met. these include:• freedom from hunger and thirst (good feed and clean water)• freedom from pain, injury and diseases (good health)• freedom from discomfort (comfortable environment, e.g. tempera ture, clean floor)• freedom from fear and distress (friendly, loving, gentle and caring handler)to exploit the cow's full genetic potential, there is need to have a good nutrition program and meet all other needs.ruminants are various cud-chewing hoofed mammals having a stomach divided into four compartments (rumen, reticulum, omasum and abomasum), each one with a specific role to play. the most important is the rumen. cattle, sheep and goats are ruminants. all ruminants 'chew the cud'. this means that the food they consumed earlier is returned to the mouth for a second thorough chewing before it is re-swallowed.the rumen is full of tiny microorganisms (bacteria and protozoa) that digest fibrous feed, such as fresh grass and hay, foodstuffs that humans and most other animals cannot digest. after digesting the fibre, the animal makes use of the end products for growth and milk production. the microorganisms can also convert non-protein nitrogen-containing ingredients (e.g. urea) into protein that the animal can use.these microorganisms also manufacture some vitamins, such as the vitamin B group.a dairy cow can be thought of as a milk manufacturing factory. into any manufacturing factory go raw materials, which are processed, and out of the factory comes a new product. the quality and quantity of the product are a combination of both the quality and the quantity of the raw materials and the efficiency of the factory.the raw materials that go into milk manufacturing are the nutrients. the quantity and quality of these nutrients depend on the feed consumed by the cow. if the cow is fed on poor-quality feed in large quantities or high-quality feed in small quantities, little milk will be manufactured. the size of the factory can be compared to the size of the cow-where a large factory will hold more raw materials, so will a large cow have a larger rumen.the machinery that converts raw materials into milk constitutes the digestive system (stomachs and intestines) and the udder (mammary gland). all cows can be assumed to have a similar digestive system but the capacity of the udder will vary depending on the number of milk-making units (alveolar cells), which is determined by the genetics of the cow.these cells are housed within the cow, which provides a conducive environment for them to function (the cow must be comfortable and free from pain). in a factory, this can be equated to the workers (their number and their comfort).the factory concept is diagrammatically illustrated in figure 1 CHAPTER 2: NUTRIENTS nutrients are substances obtained from food and used in the body to promote growth, maintenance, reproduction and production. feedstuffs contain the nutrients animals require to perform normal body functions (such as breathing, pumping blood, fighting diseases, growing, gaining weight, reproducing) and to produce milk. the feedstuff must be digestible and the products (nutrients) absorbed if the feed is to be useful to the animal. some components of a feedstuff have no nutritive value because they are indigestible and not absorbable (e.g. some woody plants) and pass out through faeces. in addition, some plants contain compounds that are toxic to the animal. the essential nutrients are energy, proteins, minerals, vitamins and water.the energy portion of the feed fuels all body functions, enabling the animal to undertake various activities including milk synthesis. this is the major nutrient (in terms of quantity) that dairy cows require.Maintenance: simply to maintain itself, an animal requires energy. the body weight does not increase or decrease, the animal does not produce; this energy is only for survival and the amount is affected by body size and the environmental temperature.Growth and weight gain: Gain is especially important for young animals, who need to attain the recommended weight for a particular age.Reproduction: a cow requires more energy during pregnancy for the foetus to grow and develop normally.Milk production: the energy requirement of a lactating cow increases with increase in milk production and butter fat content of the milk.Energy can be obtained from several types of feedstuffs that contain either carbohydrates or lipids (fats and oils).Carbohydrates are the major source of energy in the diet of dairy cows. they are found in the staple foods consumed by humans (e.g. rice, maize, wheat, potatoes). carbohydrates constitute between 50% and 80% of the dry matter in forages and grains. feeds contain three major types of carbohydrates:• Sugars: sugars are soluble in water, making them readily available to the animal. sources are molasses, sugar beets and sugar cane.• Starch: starch is the main form of carbohydrate stored in plants. it is the main component of cereal grains and some roots (potato tubers).• Fibre: forming the structural part of plants, fibre is present in large quantities in roughages. the fibre is broken down by microorganisms in the rumen (microbial enzymes) into products that the animal can use. it is also important in maintaining high levels of milk fat. sources include grasses, fodder crops and crop residues.Lipids (fats) contain about 2.25 times more energy than carbohydrates per unit weight. Generally, plants are good sources of oils while animal pro ducts contain fats. most plant seeds contain a small amount of lipids. the ex ception is oilseed plants, which may contain as much as 20% lipids (cotton, sunflower and soybean seeds) and are better sources of lipids than animal fats.the most obvious sign of energy deficiency is poor body condition due to excessive weight loss. lactating cows are unable to reach peak milk production in early lactation resulting in low lactation yields.cows consuming too much energy become too fat, resulting in low conception rates. they are prone to difficult calving, retained placenta, and higher incidence of milk fever and ketosis.in early lactation, feeding too much energy, especially in the form of grain, may lead to too much acid in the rumen (acidosis), increased risk of displaced abomasum, depressed feed intake and low milk fat percentage.Usually forages are high in fibre and low in energy, and concentrates are low in fibre and high in energy. therefore there is need to balance the two, as too much forage limits the intake of energy while too much concentrate results in milk fat depression, rumen acidosis and other health problems.protein is quantitatively the second most important nutrient in feeding the dairy cow. proteins are made up of building blocks referred to as amino acids.proteins provide the building material for all body cells and tissues (e.g. blood, skin, organs and muscles). proteins are also major components of products such as milk and meat. lack of protein therefore adversely affects milk production.Good sources of protein for dairy cows include:• Oilseeds and oilseed cakes: residues after the oil is removed from oilseeds, e.g. cottonseed meal or cake, whole cottonseed, whole soybeans (cracked) or meal and sunflower meal or cake.• Products of animal origin: such as fish meal, blood meal, meat and bone meal, feather meal and by-products from milk processing (e.g. skim milk and whey).• Herbaceous legumes: such as lucerne, desmodium and fodder trees (e.g. calliandra and sesbania).• Non-protein nitrogen: cows can obtain protein from sources that do not contain true proteins, such as urea and poultry waste (contains uric acid). these sources are referred to as non-protein nitrogen sources. microorganisms in the rumen use the nitrogen in urea to synthesize protein for their own growth.for lactating cows, there is a sudden drop in milk production if the amount of protein in the diet is suddenly reduced. severe deficiency may cause excessive weight loss in lactating cows, reduced growth rate in calves and heifers, and result in underweight calves being born.protein is an expensive nutrient and feeding excess is a waste of money as protein is not stored in the body but is broken down by microorganisms in the rumen and excreted in the form of urea.most of the protein in feed is broken down by microorganisms in the rumen (rumendegradable protein) and re-synthesized into bacterial protein. Bypass proteins are proteins resistant to microbial breakdown in the rumen (undegradable protein), and pass intact to the small intestines where they are digested and absorbed directly into the body.milk contains approximately 3.2-3.5% protein. thus a cow producing 25 kg milk per day secretes 800-900 g protein daily. cows have little ability to store protein in the body and so it must be supplied in the diet daily to maintain the milk yield. protein should be 15-18% of the total ration of a dairy cow depending on milk yield. • Age: mineral requirements for young growing animals are higher.• Physiological status: pregnant animals require more.• Level of production: High-producing cows require large quantities of calcium; deficiency is more likely to occur in early lactation rather than late.although roughages and concentrates contain minerals, the types and amounts vary widely and hence may not meet the requirements. During ration formulation, macrominerals calcium, phosphorus and magnesium are taken into account. roughages will supply adequate amounts of potassium and common salt can adequately provide sodium. some ingredients (supplements) are added to supply a specific mineral (e.g. limestone, salt, magnesium oxide).signs of mineral deficiency may not be obvious but they include• poor fertility: lack of heat signs and low conception rate • low milk production • poorly developed bones in young animals (rickets)• health disorders, for example, milk fever • poor body condition, which may be accompanied by a change in coat colourvitamins are nutrients in the feed required by the body in tiny amounts for normal functioning of the body, through their involvement in many body processes. some are synthesized by rumen microbes and/or stored in the body of the animal while others must be supplied in the diet. the vitamins that must be supplied in the diet include a, D and E; those that are produced in the body include B complex, c and K. there is no important health consequence of excess vitamins as the body is able to get rid of the excess. However, vitamin supplements are expensive and hence feeding too much is an economic loss to the farmer.Water, though not classified as a nutrient, is essential for life in all animals. Water accounts for 74% of the calf's weight at birth and 59% of that of a mature cow. Every 100 kg of milk contains up to 87 kg of water.the amount of water consumed at free will is influenced by several factors:• moisture content of feed. When the diet has a large proportion of dry feeds, e.g. hay and grains, the cow drinks more water than when the diet has a larger proportion of young or succulent feeds, e.g. young grass and legumes • amount of dry matter consumed • milk yield • environmental temperature • salt intake an increase in any of the factors above increases the water requirement for lactating cows. the amount of water consumed will also depend on the quality and quantity of water provided (table 2 Dry matter is what remains of a feed when all the water has been removed and it contains the nutrients described above (figure 2.1). this dry matter portion can be divided into organic matter comprising energy, protein and vitamins, and inorganic matter comprising minerals. animals must consume enough dry matter to obtain the required nutrients to keep them healthy and to let them grow, reproduce and produce milk.Dry matter is expressed as a percentage of fresh feed; hence a feed comprising 40% dry matter means that for every 100 kg of the feed, only 40 kg is dry matter. it is from the 40 kg that the animal will obtain its nutrient requirements. if the same feed contains 10% crude protein, the amount supplied by the feed will be 10% of 40 kg, which is 4 kg. Banana stem containing 10% dry matter means that if you feed 100 kg of fresh stems, the cow will have only 10 kg dry matter and 90 kg water. Dairy cattle can be reared in ways that vary depending on the resources available to the farmer. farmers in East africa practise three main systems: intensive, extensive and semiintensive.in the intensive system, dairy cattle are enclosed in zero-grazing units (see design of zero-grazing unit in appendix 8), where they are provided with all their requirements for feed and water. this method is mainly practised where grazing land is scarce. in Kenya it is mainly practised in high-potential areas of central Kenya and also by urban and periurban farmers; in tanzania it is practised on the slopes of mt Kilimanjaro and in Uganda around Kagada. the forage can be grown on farm or purchased.this system has its advantages and disadvantages.• the cow does not waste energy walking in search of pasture.• it avoids diseases associated with communal grazing.• it allows dairy farmers with no grazing land to produce milk and make money.• the manure can be accumulated for improving soil fertility or used to generate biogas for domestic energy use.• the method is labour intensive as feeding and cleaning the unit must be done daily.• the initial cost of putting up a zero-grazing unit is high.• it may be difficult to detect when a cow is on heat, especially a singly housed cow. this is because when cows are housed in a group they mount each other and when in the open they show signs of restlessness by moving around.in the extensive system, the cattle are reared on pasture. it is practised where grazing land is available. in East africa the grazing land mainly comprises natural unimproved grass. in Kenya it is practised in most parts of the rift valley, where farmers own large tracts of land.• it is cheaper than the intensive system.• it is not labour intensive.• it requires dedicating much more land to grazing.• cows waste a lot of energy by walking while grazing in the field.• it is difficult to accumulate manure for improving soil fertility in crop fields.natural grasses can be improved by oversowing with herbaceous legumes (e.g. Trifolium) or planting grasses (e.g. rhodes grass). oversowing is the method of choice.in the semi-intensive system, the cattle graze for some time during the day and in the afternoon or evening they are supplemented with other forages like napier grass. this method is a compromise between intensive and extensive systems, whereby land is not limiting as in the intensive system but on the other hand is not enough to allow free grazing throughout the day.Due to population pressure leading to subdivision of land, this system tends towards the intensive system.other methods include 'roadside grazing' and 'tethering'. roadside grazing involves herding cattle on the roadside where they graze on natural unimproved pastures. it is popular in areas with land shortage. tethering restricts the cow to a grazing area by tying it with a rope to a peg. this can also be done on the roadside or any other public land. However, in either of these systems the animals may not get enough to satisfy their requirements.Efficient pasture management results in high yields of good-quality pasture that can be fed to dairy cattle for high milk production. Key activities to be considered include weed control, grazing management and fertility management.Weeds can reduce the productivity of the sown pastures, particularly during the establishment year, and should be controlled during the first year by either hand weeding or using herbicide (2-4D amine at the rate of 2.5 litres per hectare [ha]). in subsequent years fields are kept clean by slashing, hand pulling or mowing the weeds.the following should be observed:• in the establishment year grasses reach the early flowering stage 3-4 months after planting. at this stage the plant is not firmly anchored in the soil and therefore it is usually advisable to make hay rather than graze the pastures to avoid the risk of the cattle pulling out the young shoots.• if the pasture must be grazed during the establishment year, grazing should be light enough (use calves) to allow the plants to establish firmly in the soil.• for maximum benefit, use the pasture not later than the start of the flowering stage. Graze or cut at intervals of 4 to 6 weeks, leaving stubble at 5 cm height.• Graze animals when the grass is at the early flowering stage by moving animals from paddock to paddock.• one animal will need 1-2 acres of improved pasture per year in areas receiving over 900 mm rainfall.• conserve excess pasture in the form of hay for dry-season feeding.to attain maximum production from pasture, the grass requires additional nutrients from inorganic fertilizer or farmyard manure.• During the establishment year, soil nitrogen is adequate for grass productivity.• in subsequent seasons, topdress grass with 5-7 bags of calcium ammonium nitrate (can) or ammonium sulphate nitrate (asn) per hectare per year in three splits during the rainy season or 5-10 tonnes of farmyard manure.• in areas with phosphate deficiencies topdress with 2 bags of single superphosphate (ssp) or 1 bag of triple superphosphate (tsp) per hectare per year after the establishment year. this is in addition to nitrogen fertilizer.• nitrogen fertilizer may be applied on 1 or 2 months before the dry season to increase yields during the dry season.stocking rate is the number of animals (animal unit) for which a grassland unit (hectare) can provide adequate dry-matter forage for a specified length of time. stocking rate influences animal performance, pasture recovery, long-term pasture production and long-term pasture species composition.stocking rates should represent a balance between grazing pressure (pasture demand) and carrying capacity (pasture supply). the ultimate goal should be to optimize both animal and pasture production over the long term, as opposed to maximizing only one or the other. in general, improved pastures can support higher stocking rates than native or unimproved pastures. pasture establishment can be by direct sowing, undersowing or over sowing.Direct sowing is establishing pasture grasses without a nurse or cover crop.Seedbed preparation: on previously cropped land, plough towards the end of the preceding rainy season. follow with dry-season ploughing and harrowing for weed control. on virgin land, three ploughings and two harrowings may be required to make a good seedbed.• sow as early as possible in the rainy season. in areas that recieve bimodal rainfall areas, sow during the short rains to eliminate annual weeds.• sow seeds close to the surface to get them in contact with moist soil so they will absorb moisture and germinate. Do not bury the seeds deep since initial vigour is not sufficient to push through a heavy cap of soil.• Either broadcast grass seeds or drill in rows 30-40 cm apart.• mix the seeds with sawdust, rough sand or phosphate fertilizer for even distribution. if the seed is mixed with fertilizer, plant immediately to prevent the fertilizer from scorching the seed.• Grass seeds are most effectively sown with a wheat drill. Hand sowing is recommended for small acreages.• immediately after sowing compact the seedbed to enhance germination of the grass seed by improving contact with the soil. Use tree branches or trample by foot on small plots. in mechanized farms, use a roller. Fertilizer application at planting apply phosphate fertilizer or farmyard manure to promote strong root development.the recommended rates of fertilizer application are as follows:• ssp 2-4 bags/ha or • tsp 1-2 bags/ha or • Dap 1-2 bags/ha or • 10 t/ha of farmyard manure-should be broadcast and harrowed in before planting • topdressing with 5 bags can/ha or 5 t farmyard manure/ha per year Note: to prevent scorching the seed, use Dap only when rainfall is adequate, and use only well-decomposed farmyard manure.Undersowing is establishing pastures under a nurse or a cover crop. the nurse crop is grown together with pasture for economical land use. the nurse is harvested after maturity and the pasture left for 2 to 3 years.for successful undersowing observe the following:• Broadcast or drill pasture seed mixed with fertilizer 3 days after planting wheat or barley.• Where maize is the nurse crop, broadcast pasture seed mixed with phosphate fertilizer in the maize field after the second weeding of maize (4 to 5 weeks after planting maize) or when maize is knee high.• after the nurse crop is harvested remove stovers or straws and cut back the weeds using a panga or slasher.• During the establishment year, grazing is not recommended to avoid grass still with weak roots being uprooted by the livestock.oversowing is the introduction of improved pasture species (grasses or legumes) to a natural pasture. oversowing increases forage quality and productivity of natural pastures. it is the easiest and most cost-efficient strategy for improving natural pasture. although both grasses and legumes may be oversown, legumes are more suitable, as grasses do not establish readily, especially on soils that are not loose. oversowing should be done in areas where soils are light and loose. Benefits become evident after about 2 years.• land preparation is minimal hence cheap • less seed and labour are requiredfodder crops are annual or perennial or permanent crops, cultivated on arable land and grazed or fed to stock either green or in a conserved form like hay or silage. fodder crops are usually grown in rotation with cultivated cash crops. they are characterized by their high productivity per hectare (dry matter yield) compared with permanent pastures. further, these crops are grown as supplementary feed during the dry months of the year.fodder crops have been identified as the most important feed on smallholder farms in East africa due to their high forage yield per unit area. the most common are• napier grass (Pennisetum purpureum)• sweet potato vines (Ipomea batatas)• oats (Avena sativa)• fodder sorghums (Sorghum sudanense)• Bana grass: leafy and with few silica hairs, which cause irritation during handling. However, it is susceptible to napier grass headsmut disease (Ustilago kameruniensis).• clone 13: resistant to white mould disease. it is a high yielder but its thin stems make it difficult to establish. it is also susceptible to napier grass headsmut disease.• french cameroon: a high yielder, established easily from canes. susceptible to napier grass headsmut disease.• Kakamega 1 and 2: both are tolerant to napier grass headsmut disease. High yielders. Kakamega 1 has a higher growth rate than Kakamega 2 or Bana.• pakistan hybrid: does well in dry areas.Planting napier grass can be established from root splits or canes. it can also be planted alone or intercropped with forage legumes. two methods of planting napier grass are the conventional method and the tumbukiza method.the conventional method involves planting one cane (with 3-4 nodes) or root split in holes 15-30 cm deep. the spacing is 0.5 m x 0.5 m in areas with over 1400 mm of rainfall. in areas with 950-1400 mm rainfall the spacing is 1 m x 0.5 m. When cane cuttings are used, bury the nodes, leaving one node above the soil surface. see figure 4.1. forage legumes like silverleaf (Desmodium uncinatum), greenleaf (Desmodium intortum) and stylo (Stylosanthes guianensis) can be intercropped with napier grass to improve the quality of the feed and reduce the cost of nitrogen fertilizer. legume seeds at the rate of 3-5 kg/ha can be drilled along the napier grass rows or between the rows when the napier grass is planted.Fertilizer and manure management practices four fertilizer and manure management practices are recommended for napier grass. the choice depends on the financial resources of the farmer.• Use 1-2 bags of tsp or Dap fertilizer per hectare at planting followed by 5-7 bags of can fertilizer in three split applications per year, applied after harvesting and weeding in subsequent years.• Use 10 t/ha of farmyard manure at planting. in the following years apply the same amount, preferably after every harvest.• Use ½-1 bag of tsp or Dap plus 5 t/ha farmyard manure at planting and apply 5 t/ha farmyard manure plus 2-3 bags of can in three split applications per year in subsequent years.• apply 60 kg of slurry in furrows at planting followed by split application of the same quantity twice a year or more frequently if possible after harvesting.• Weed after each harvest to maintain high productivity.• Harvest when 1 m high or every 6-8 weeks to obtain optimal quality and quantity.• maintain a stubble height of 5-10 cm from the ground level at each harvest to avoid weakening the root system, which leads to low production in subsequent harvests.• to increase yields during the dry season, one of the split applications of the recommended rate of nitrogen fertilizer should be done 1 or 2 months before the end of the rainy season.'tumbukiza', a Kiswahili word meaning 'placing in a hole', is a new planting method started by farmers to increase productivity per unit of land. the method, which involves planting cuttings or root splits in well-manured holes, produces more herbage yields than the conventional method. Hence less land is required for one dairy cow.Step 1: Dig round or rectangular pits 60 cm (2 ft) deep and 60-90 cm (2-3 ft) wide. alternatively, make trenches 60 cm (2 ft) deep and 60-90 cm (2-3 ft) wide and of various lengths depending on the farmer's preference.Step 2: separate topsoil from subsoil as you dig the pit or trench.Step 3: mix every 20-litre container ('debe') of topsoil with 1-2 debes of farmyard manure and put it into the pit. for the trench, place topsoil and farmyard manure mixture every metre along the pit.Step 4: leave about 15 cm (6 in.) unfilled space at the top of each pit.Step 5: plant 5-10 cane cuttings or single root splits in the round and rectangular pits. in trenches plant 5-10 cane cuttings or single root splits every metre.Step 6: plant sweet potatoes or forage legumes between the pits to increase the quality of forage and to control weeds.the initial labour cost for digging pits and trenches is higher than for the conventional method. see figure 4.2. Benefits of the tumbukiza method the first harvest is done when the vines cover the ground about 4-5 months after planting. there are three methods of harvesting.• Harvest forage at intervals of 6 to 8 weeks leaving a stubble length of 25 cm for dual-purpose varieties and 5 cm for fodder varieties.• selectively pluck vines at the length of ½-1 metre from the tip at an interval of 3-4 weeks.• for vines planted on ridges, cut those extending beyond the ridges.cut and carry to the cow and feed up to 15 kg fresh material per day, as a supplementary feed to napier grass or other basal feeds.oats are recommended as a fodder crop for the high-altitude regions of Kenya (over 2100 m) and may be grown in pure stand or as a mixture with vetch.• Drill oat seeds in rows 30-40 cm apart.• When oat is being grown as a pure stand, 70-80 kg of seed per hectare is recommended. When grown as a mixture with vetch, 30-40 kg of oats and 20 kg vetch seed per hectare is recommended.• apply 2-3 bags tsp fertilizer per hectare at planting.• Hand weed or spray with herbicide 2,4-D amine 72% at the rate of 2.5 litres per hectare (spraying is done when oat is grown as a monocrop but not when grown with vetch).• cut at milk stage (4 weeks) leaving a stubble height of 5 cm from ground level.• topdress with 3 bags of can/ha to enhance growth and subsequent fodder yield.• cut oats at milk stage and wilt it before feeding to prevent bloat.• oats can be cut and conserved as hay or silage.• if being conserved either as silage or hay, oats should be cut when the grain is at milk or dough stage.sorghums are drought resistant and grow well in dry areas. sudan grass and columbus grass varieties are recommended for the drier parts of the East african region.• sorghums require a well-prepared seedbed to ensure even germina tion.• planting should be at the start of the rains.• at planting drill 25-35 kg of sorghum seed per hectare at a spacing of 30-40 cm from row to row or broadcast.• Use 1 bag of tsp fertilizer per hectare during planting and topdress with 2-3 bags of can fertilizer per hectare after cutting or grazing to stimulate new regrowth.• sorghums should be cut every 6-8 weeks.• after 5-6 cuttings it becomes uneconomical to maintain the crop and it should be ploughed.• Do not graze sorghum earlier than 6 weeks to avoid prussic acid poisoning.the quantities required to feed a dairy cow per day are the same as for napier grass.forage legumes play an important role in the smallholder farming system as they• improve soil fertility through nitrogen fixation.• have high crude protein in the leaves and foliage, which can be used as a protein supplement for cattle. legumes have high crude protein levels in the range of 15-34%, as compared with grasses, which are in the range of 5-19%.• are rich in minerals (calcium, phosphorus) and vitamins a and D.Desmodium can be grown as a sole crop or as an intercrop with grasses (figure 4.3). Establishment two methods of establishing desmodium are common: from seeds and from cuttings.• Desmodium requires a fine, firm and weed-free seedbed.• seedbed preparation should be done well before the onset of rains.• Use 3-5 kg/ha (2 kg/acre) desmodium seeds.• During planting, mix seed with 2 bags of tsp or 4 bags of ssp fertilizer. farmers can also use 5-10 t/ha of well-decomposed farmyard manure.• Drill the seed into shallow furrows 2.5 cm deep spaced at 30 cm or 50 cm; cover with little soil.• for intercropping with napier grass, make furrows between or along the napier rows and drill desmodium seed and fertilizer mixture in the furrows.• Use mature parts of desmodium vines.• Use freshly cut vines.• Bury 2 nodes leaving 1 or 2 nodes above the ground.• space at 30 cm or 50 cm from row to row and 15-30 cm from vine to vine.• Use the same rates of fertilizer as for seed but place it in holes.• to maximize germination, ascertain that the amount of rain before planting has been adequate.• Keep the stand free of weeds, especially during the early stages before the crop covers the ground, by using hoe or herbicide 2,4-D amine 72% at the rate of 2.5 litres per hectare.• topdress with 2-4 bags of tsp or ssp fertilizer every year to maintain high yields of desmodium herbage and seed.• for herbage production, make first cut 3-4 months from planting. subsequent cuttings should be at intervals of 6-8 weeks.• spray against harmful pests, especially when producing desmodium seed.• Harvest seed when the pods have turned brown by hand stripping the ripe pods and store in a dry place after threshing to avoid rotting.• cut and feed in green form.• cut and conserve as hay, whole or chopped.yields of 9-10 t/ha dry matter per year of 18-20% crude protein have been reported under good management. an acre can produce 30-60 kg of seed.When intercropped with maize it will• provide nitrogen to the crop • inhibit the growth of striga weeds • reduce damage by the maize stemborer • control soil erosionDairy farmers in the high-rainfall areas of East africa prefer lucerne over any other forage legume, primarily because of its palatability and high nutritive value that can sustain high milk production levels when fed to dairy cattle. commonly grown lucerne varieties:• cuf 101 • make furrows 30-40 cm apart and 2.5 cm deep.• mix 10-15 kg seeds with 4-6 bags of ssp fertilizer or 2-4 bags of tsp fertilizer and drill into the furrows; cover with a little soil.• Use 10-15 kg/ha lucerne seed.• in areas where lucerne has never been grown use lucerne inoculants (available from the faculty of agriculture, University of nairobi).• if inoculant is not available, collect soil from areas where lucerne has been previously grown and mix with the seeds before planting.• in acidic soils (pH less than 4.9) liming with agricultural lime is recommended at the rate of 10 t/ha. phosphate, inoculant and liming promote root development, nodulation and nitrogen fixation, respectively.• Weed control: hand weed at least 4-6 weeks after planting and thereafter whenever weeds appear.• spray against aphids and other pests with insecticides such as dimethoate at intervals of 2-3 weeks if necessary.• continue applying farmyard manure to lucerne field to improve soil fertility, structure, texture and herbage yields.• apply 1 bag of tsp fertilizer per hectare annually.• Harvest lucerne when it starts flowering (about 30 cm high) to a stubble height of 4-5 cm from ground level. one can obtain 6-8 cuts in a year.• the crop can last up to 4 years under good management.• cut and feed lucerne in green form after wilting it to avoid bloating.• conserve the excess lucerne as hay, whole or chopped.• conserve as silage when combined with other types of fodder such as maize.yields of 5-6 t/ha dry matter per year of 20-25% crude protein have been reported under good management.a short-lived perennial or annual legume, Dolichos lablab is cultivated as human food, green manure, cover crop and animal fodder. Dolichos has several advantages:• it provides better late-season grazing because it is tolerant to seasonal drought.• it is more compatible than cowpea with forage sorghum or maize when intercropped.• it gives higher yield of materials for conservation than do forages such as cowpea when drought sets in.• it has better resistance to diseases such as phytophthora rust and stem rot, which wipe out many cowpea crops.• it has better resistance than other forages, such as cowpea, to attack by insects like the bean fly.• Dolichos has a large seed thus does not require a fine seedbed as does lucerne.• Highest yields are obtained on land that has not been previously cultivated (fallow land).• it grows well on acidic soils.• space at 45 cm between rows and 30 cm from plant to plant, placing 2 seeds per hole.• Use 60 kg/ha seed.• Use 1-2 bags tsp per hectare or 5-10 t/ha of well-decomposed farmyard manure.• Harvest for fodder at an interval of 6 weeks (1½ months) leaving a stubble height of 15 cm from ground level.• Weed as required.• to get optimal yields in quantity and quality, harvest at early flowering stage.• Dolichos can be conserved as hay or ensiled.• it can be fed green to dairy cattle as a legume supplement.Dolichos analysed as a whole plant contains 16.8% crude protein with a dry matter yield of about 6 t/ha. the seed yield ranges from 1.1 to 3.4 t/ha with 20.25% crude protein content.stylo (Stylosanthes guianensis) performs well in wetter and warmer areas and on sandy soils. its ability to grow well on soils of low fertility is particularly valuable both to provide good-quality grazing on these soils and to improve the fertility of the soil. it is useful for weed control and grows well in pasture mixtures containing rhodes grass. it grows rather slowly in early establishment stages but persists better in grass-legume mixtures than does desmodium (see figure 4.5).prepare a firm, fine seedbed.• Drill at a spacing of 30-40 cm rows or broadcast the seed, especially when oversowing.• sow 3-4 kg/ha of seed.• apply 1-2 bags tsp per hectare.• Weed as required.• When grown in a grass-legume mixture, graze to reduce the shading effect of grass during the early establishment stage.• Harvest or graze at 6 weeks at intervals of 1½ months, leaving a stubble height of 5 cm. • Graze or cut and carry.• cut and conserve as hay.the whole stylo plant has a crude protein content ranging from 12.1% to 18% and dry matter yields ranging from 4.1 to 6.7 t/ha per year.fodder trees are used by small-scale dairy farmers as a cheap source of protein for dairy cows.common types of fodder trees:Calliandra-does well in upland areas with medium to high rainfall (700-2000 mm). it regrows well after cutting and harvesting (figure 4.6).Leucaena-also does well in upland areas with medium to high rainfall. it is slightly more drought resistant but is more subject to attack by insect pests. regrows well after cutting and harvesting (figure 4.7).Sesbania-grows better in high-rainfall areas and does better than other fodder trees in higher, cooler areas. in its early stages, it grows faster than calliandra or leucaena but it does not regrow as well after harvesting.• leaves, pods and soft young twigs provide good feed for cows.• they are a good supplement to straw, stover and poor grass diets.• they provide high-quality forage in the dry season.• to achieve good germination, place the seeds in boiling water for 4 seconds then soak them in cold water for at least 12 hours before planting them.• sow the seeds either directly into hedge rows at a spacing of 30-60 cm from plant to plant or in a nursery for later planting when they have reached a height of 60 cm. • plant on the hedgerows around the homestead, on contour lines in the field, or as part of soil conservation structures.• apply 5 g (1 teaspoonful) of tsp fertilizer per hole during planting.• protect young trees from livestock.• cut trees when they are about 2 m tall, leaving a row of hedge 1 m high.• Harvest every 3-4 months.• leave a few trees to grow tall for firewood and seed.• for seed, collect pods when they start to turn brown, before they split open.• Dry pods on a sheet or gunny bag.• store collected seed in a tin or plastic container with a strong lid.• can be either fed fresh cut or dried for later feeding.• to encourage intake, mix with mineral salts or other feeds.• improves soil fertility by providing green mulch or by fixing nitrogen.• supplies fuelwood.• supplies wood for building.• provides live fencing.• furnishes food for bees.Leucaena. start harvesting at the beginning of the second wet season by cutting back to 50 cm above ground level. cut twice during the wet season when the regrowth is 50-60 cm, or once at the end of the wet season, and conserve as dry leaf meal. Grazing or harvesting intervals can be 6 to 8 weeks or 12 weeks in less favourable conditions. When well managed, leucaena can yield up to 2 t/ha dry matter per year.Calliandra. a well-established stand can be harvested 4 to 5 times a year with the harvesting interval varying with the rainfall. cut again when the regrowth is 50-60 cm. Depending on rainfall and soil fertility, dry matter yields range from 5 to 10 t/ha per year. the edible fraction of calliandra has a crude protein level of 20-25% of the dry matter.Because rain-based pasture and fodder production is seasonal, there are times of plenty and times of scarcity. it is thus imperative to conserve the excess for use in times of dryseason scarcity. the aim of conservation is to harvest the maximum amount of dry matter from a given area and at an optimum stage for utilization by animals. it also allows for regrowth of the forage.the two main ways of conserving fodder are by making hay or making silage.Hay is fodder conserved by drying to reduce the water content so that it can be stored without rotting or becoming mouldy (reducing the moisture content slows down the rate of growth of spoilage microorganisms). the moisture content should be reduced to about 15%. not all grasses and fodder are suitable for haymaking. • Harvest the fodder for haymaking when the crop has attained 50% flowering. at this stage protein and digestibility are at maximum, after which they decline with age.• the fodder should be harvested after 2 to 3 days of dry weather so that drying will be possible.• Where possible, drying should be done under shade so that the dried fodder retains its green colour, which is an indicator of quality.• turn the fodder using a farm fork to ensure even drying.• check the dryness by trying to break the stem. if it bends too much without breaking, there is still too much water.• legumes and grasses can be mixed to make better-quality hay, e.g. rhodes grass + lucerne.Baling the hay allows more material to be stored in a given space. a good estimate of the amount stored makes feed budgeting easier. Baling can be manual or mechanized, manual baling being more economical for small-scale dairy farmers.manual hay baling is done using a baling box with dimensions 85 cm long x 55 cm wide x 45 cm deep, open on both ends (figure 4.8). if the hay is well pressed, the box will produce an average bale of 20 kg. Hay can also be stored without baling by heaping it into a dome-shaped stack and covering it with a polythene sheet or a tarpaulin.Hay should always be stored in a sheltered enclosure away from direct sunlight and rainfall, e.g. in hay barns. rats and other rodents should be controlled as they can damage the hay.the quality of the hay should be evident on physical examination. Good-quality hay should• be leafy and greenish in colour • have no foreign material mixed with it • have no smell Feeding a dairy cow weighing 400 kg will consume an equivalent of about 3% of its body weight in dry matter (12 kg dry matter) per day. since hay contains 85% dry matter, if the cow consumes nothing else, it will require 14 kg of hay per day.leaf meal is conserved material from the protein-rich fodder legumes, which include lucerne, calliandra, leucaena and dolichos.• Harvest the leaves and dry them on a clean floor (under shade).• collect the dry leaves and put them in a gunny bag.• store the leaf meal in a dry place and away from the sun.• feed as a supplement. the meal should not form more than 30% of a daily ration.• Wet the leaf meal with water before feeding to reduce wastage through spillage.silage is high-moisture fodder preserved through fermentation in the absence of air. these are fodders that would deteriorate in quality if allowed to dry. silage can be made from grasses, fodder sorghum, green oats, green maize or napier grass.an ideal crop for silage making should• contain an adequate level of fermentable sugars in the form of water-soluble carbohydrates • have a dry matter content in the fresh crop of above 20% • possess a physical structure that will allow it to compact readily in the silo after harvesting crops not fulfilling these requirements may require pre-treatment such as• field wilting, to reduce moisture• fine chopping to a length of 2-2.5 cm to allow compaction • use of additives, to increase soluble carbohydrates Dry matter yield of common fodders used for silage making is 4-12 t/acre for napier grass, 6.8-8.8 t/acre for sorghum E6518 and 9.6 t/acre for maize.napier grass should be harvested when it is about 1 m high and its protein content is about 10%. maize and sorghum should be harvested at dough stage, that is, when the grain is milky. at this stage, maize and sorghum grains have enough water-soluble sugars so it is not necessary to add molasses when ensiling, However, when ensiling napier grass, it is necessary to add molasses to increase the sugar content. to improve silage quality, poultry waste and legumes like lucerne and desmodium may be mixed with the material being ensiled to increase the level of crude protein. However, since protein has a buffering effect that increases the amount of acid required to lower pH, poultry waste and legumes should be incorporated within limits. poultry litter should not exceed 5% and legumes should not exceed 25% of the total material ensiled.a silo is an airtight place or receptacle for preserving green feed for future feeding on the farm. silos can be either underground or above ground, the qualification being that the silo must allow compaction and be airtight. five types are described here: tube, pit, above-ground, trench and tower.• silage can be made in large plastic sacks or tubes. the plastic must have no holes to ensure no air enters. this is popularly referred to as tube silage.• silage can also be made in pits that are dug vertically into the ground and then filled and compacted with the silage material.• an above-ground silo is made on slightly sloping ground. the material is compacted and covered with a polythene sheet and a layer of soil is added at the top. When finished, it should be dome shaped so that it does not allow water to settle at the top but rather collect at the sides and drain away down the slope.• the trench silo is an adaptation of the pit silo, which has long been in use. it is much cheaper to construct than a pit silo. construction is done on sloping land. a trench is dug and then filled with silage material. this method is ideal for large-scale farms where tractors are used. Drainage from rain is also controlled to avoid spoiling the silage.• tower silos are cylindrical and made above-ground. they are 10 m or more in height and 3 m or more in diameter. tower silos containing silage are usually unloaded from the top of the pile. an advantage of tower silos is that the silage tends to pack well due to its own weight, except for the top few metres.• chop the wilted material to be ensiled into pieces not more than 2.5 cm long (figure 4.9).Figure 4.9. Chopping fodder for ensiling.• sprinkle the chopped material with a molasses and water mixture; for every sack use 1 litre of molasses mixed with 2-3 times as much water. this is especially for material like napier grass that has low sugar content. maize bran or cassava flour can be added to improve the carbohydrate (energy) content (figure 4.10). • place the chopped material, sprinkled with the molasses and water mixture, into the plastic tubing (1000 gauge) with a width of 1.5 m. cut a 2.5-m length, tie off one end and fill with the material, compressing it well, then tie the other end to seal. stack the filled sacks until needed. fermentation is usually complete after 21 days (figure 4.11). Well-prepared silage is bright or light yellow-green, has a smell similar to vinegar and has a firm texture. Bad silage tends to smell similar to rancid butter or ammonia.natural microorganisms ferment the sugars in the plant material and in the added molasses into weak acids, which then act as a preservative. the result is a sweet-smelling, moist feed that cattle like to eat once they get used to it.tube silage should be stored under shade, for example in a store. rats and other rodents that could tear the tube need to be controlled. When feeding, open the tube and scoop a layer and remember to re-tie without trapping air inside.When feeding from the pit, scoop in layers and cover after removing the day's ration, making sure the pit is airtight. Drainage from the top should be guided to avoid rainwater draining into the pit.When feeding from the above-ground method, open from the lower side of the slope, remove the amount you need for the day and re-cover it without trapping air inside.to avoid off-flavours in milk, feed silage to milking cows after milking, not before, or feed at least 2 hours before milking.nutrient losses may occur during silage making. in the field during cutting, losses due to respiration during wilting will be about 2% per day. if it rains, leaching may cause some loss.• overheating due to poor sealing gives a brown product, which may smell like tobacco and result in severe damage to nutrients, e.g. proteins.• Effluent losses of 2-10% that occur from moisture seepage contain soluble and highly digestible nutrients; seepage should be avoided by wilting the herbage.During silage preparation, different types of additives can be incorporated to improve the quality. these include fermentation stimulants. some crops may not contain the right type or the right number of lactic acid bacteria. Bacterial inoculants and enzymes can hasten and improve fermentation by converting carbohydrates to lactic acid. most inoculants contain Lacto bacillus plantarum.Fermentation inhibitors include acids such as propionic, formic and sul phuric. inorganic acids are more effective but are strongly corrosive thus not recommended. of the organic acids, formic is more effective than propionic, lactic or acetic.substrate or nutrient sources (grains, molasses, urea or ammonia) are used when there are insufficient soluble carbohydrates in the material to be ensiled (e.g. legumes, napier grass, crop residues). they are also used to increase the nutritive value of the silage. molasses can be added at the rate of about 9 kg/t of silage.Note: Use of additives is not a prerequisite for making good silage, but it is good for crops such napier grass, lucerne and grasses such as Cynodon dactylon (star grass),Brachiaria brizantha (signal grass), and Setaria sphacelata (bristle grass) because it improves fermentation and nutritive value of the resultant product.fodder banks refer to fodder left standing in the field to be used during times of feed scarcity. they can be used all year but are meant to cushion the farmer against forage scarcity expected during dry seasons. fodder banks do not supply 100% of nutrients required but supplement the available dry-season forage. suitable fodder bank species are shown in table 4.5. crop residues can be used for feeding dairy cattle but cannot supply adequate nutrients without supplementation. Because of their low digestibility they remain in the rumen for a long time, limiting intake. the other major limitation is they do not contain enough crude protein to support adequate microbial activity in the rumen. it is therefore advisable to feed them with a true protein source (as opposed to a non-protein source, e.g. urea) such as fodder legumes or commercial suppl ements such as cottonseed cake.crop residues should not be fed in large amounts to growing animals. if used, they should make up no more than 25% of the diet with the remainder comprising highquality feeds.several methods have been developed to improve the quality of crop residues, but chemical treatment has received the most attention.chopping straw to 5 cm or a little longer before feeding is a common practice. scientific tests have shown that chopping does not improve straw digestibility, but it does increase intake, reduce wastage and make it easy to mix the straw with other feed components.there is also the salting method, in which chopped straw is soaked in a dilute salt solution before feeding. although this method has not been scientifically tested, many farmers practise it, considering it effective.supplementation of crop residues with grasses, legumes or concentrate feeds significantly improves feed intake and animal performance. in dryland farming systems where forages are scarce, crop residues are supplemented with concentrate feeds. supplementation of the basal diet with good-quality forage or concentrates helps to overcome the problem of low palatability.treating crop residues with 4% urea solution at 45-50% moisture improves the nutritive value by increasing the digestibility, palatability and crude protein content. the process is simple and farmers can easily practise it. the chopped material is soaked in urea solution mixed at the rate of 4 kg urea (fertilizer grade) in 100 litres of water (4%). the urea-water solution is sprinkled on batches of the chopped material as it is added to the pit. after each addition, the mixing should be thorough. the mixing can be done in the pit or on a plastic sheet on the ground before packing the pit. it is commonly recommended that the pit remains closed for at least 3 weeks and preferably 1 month, but treatment times longer than necessary do not have adverse effects.the urea is converted to ammonia, which then breaks down some of the bonds in the fibrous material, making them accessible to microbial enzymes.Urea-molasses blocks provide both energy and nitrogen to the microorganisms in the rumen and thus improve the digestion of crop residues such as straw. it is recommended that not more than 1% of the total nitrogen in concentrates be supplied by urea or any other non-protein nitrogen compound. in total mixed rations, urea should be restricted to not more than 0.5% of the diet (dry matter basis). more than this may make the feed unpalatable and reduce feed intake.minerals make up a small portion of the diet but have a major functional contribution. often their content in the basal diet is inadequate for high-producing dairy cows and supplementation is required. as roughages and concentrates cannot supply all the required minerals, supplementation with a mineral source is recommended.the level of mineral supplementation depends on the mineral content of the basal diet. the mineral level in plant material in turn depends on the mineral content of the soil. as much as possible, the basal diet should meet the mineral requirements. individual requirements for minerals depend on age and level of production.Depending on the amount required, minerals are classified as macrominerals (g/day) or microminerals (mg/day or ppm). table 5.3 shows some of the most commonly used sources for the macrominerals. microminerals are commonly added to the ration as pre-mixes obtained from commercial pre-mix manufacturers or through commercial mineral supplements. the mineral mixes are specific for age and level of production.force-feeding is recommended for feeding minerals to dairy cows as it eliminates palatability problems, daily and cow-to-cow variation in intake, and over-consumption of minerals. the best method of force-feeding is in a total mixed ration. another commonly used method is to use a grain carrier. this method is suitable where the requirements can be predicted fairly accurately.the free choice method is not as accurate as force-feeding but is very practical. the mineral supplement, which is usually in powder or block form, is purchased and placed in a mineral box. construct a mineral box and place it in the housing unit or at a strategic place in the grazing area. the box should be raised from the ground and covered with a roof to protect the mineral from the rains. animals consume the mineral ad libitum (as much and as often as desired).Topdressing the topdressing method is often used for stall-fed cows where individual feeding is practised. the mineral mixture in powder form is sprinkled on the chopped material and the animal consumes it as it feeds. the problem is the minerals may separate and settle at the bottom of the trough.most of the vitamins required by a dairy cow are present in the diet in sufficient amounts.Water-soluble vitamins are synthesized by rumen bacteria. animals consuming aged grasses or improperly cured hay may require vitamin a supplementation.feed additives are non-nutritive in nature but are used to improve performance through improved feed use or by benefiting in some manner the health or metabolism of the animal. several additives have been used for dairy cows. feed additives are, however, neither a requirement nor a guarantee of high productivity or profitability.an additive should be used only if income is increased over the cost of the additive. if the cost of additive equals the increase in product, there is no financial benefit in using it. the withdrawal period or product discard period should also be considered.factors that should be considered to determine whether to use a feed additive include anticipated response, economic return and available information. response refers to the expected change in performance the user could expect or anticipate when a feed additive is included. returns reflect the profitability of using a selected additive. one guideline is that an additive should return two shillings or more for each shilling invested to cover non-responsive cows and field conditions that could minimize the anticipated response.some of the changes brought about by different additives include• higher milk yield (peak milk and/or milk persistency)• increase in milk components (protein and/or fat) • higher dry matter intake • stimulated rumen microbial synthesis of protein and/or energy production • increased digestion of nutrients within the digestive tract• stabilized rumen environment and pH • improved growth (gain and/or feed efficiency)• reduced heat stress effects • improved health, such as reduced ketosis, reduced acidosis or improved immune responseBloat control products are added to feed to prevent bloat, especially when animals are grazing on young grasses or legumes. Examples are Bloat Guard ® (poloxalene) and rumensin ® .Buffers are added to dairy cattle rations to mitigate against drastic pH changes in the rumen. High concentrate rations or sudden change from high roughage to high concentrate will result in excessive production of acid in the rumen. the resultant low pH of the rumen changes the microbial populations, favouring acid-producing bacteria. this leads to rumen upsets and reduced fibre digestion, which can be mitigated by buffers through stabilizing the rumen pH. Examples are sodium bicarbonate (baking soda), sodium sesquicarbonate and magnesium oxide.probiotics are substances that contain desirable gastrointestinal microbial cultures and/or ingredients that enhance the growth of desirable gastrointestinal microbes, for example, yea-sac ® , effective microorganisms and Diamond v-Xp ® .ionophores are feed additives that change the metabolism within the rumen by altering the rumen microflora to favour propionic acid production. they are effective in altering the composition of rumen microflora by favouring some types resulting in increased propionic acid production and decreasing production of acetic acid, methane and carbon dioxide. this improves efficiency of feed utilization by reducing gases thus lowering pollution by dairy cattle. Examples are Bovatec ® (lasolacid) and rumensin ® (monensin).total mixed ration exemplifies a complete meal. it is defined as a mixture of all diet ingredients formulated to a specific nutrient requirement, mixed thoroughly and fed ad libitum to the cow.concentrate mix is formulated to supplement a basal diet and thus it is not a balanced feed (see table 5.4). animals supplemented include those grazing or fed on a basal diet of roughage. the primary concern in rearing the newborn calf is to ensure it remains healthy. feeding management addresses nutrient requirements and in the initial stages should be primarily directed at encouraging rumen development.calf feeding is divided into four phases, depending on the development stage of the digestive system.When the calf is born, the rumen is not functional and forms only a small proportion of the stomach. as such the calf cannot digest complex fibrous feeds. the calf is thus fed on liquid feeds and low-fibre solid feeds until the rumen develops. as these feeds are mostly milk or milk by-products, which are expensive, early rumen development to allow feeding of cheap feeds is desirable. Early development is stimulated by feeding solid feeds. concentrate feeding has been shown to stimulate development faster than fibrous feeds.the calf is born with low immunity (protection from pathogens found in the environment) and is therefore susceptible to infections. colostrum is the first milk extracted from the mammary gland of the cow after calving. colostrum is a source of antibodies that protect the calf from these pathogens. it is therefore imperative for calves to get this milk immediately after birth as the rate of absorption is highest within the first 3 days.During the pre-ruminant phase, the calf rumen is still not functional and the calf can only take in liquids. the calf cannot digest complex carbohydrates or complex protein and thus only milk or milk by-products should be fed. milk replacers should contain simple proteins. rumen development starts towards end of this phase.rumen development continues. in addition to liquids, the calf should be encouraged to consume dry feeds, especially concentrates, as they are known to accelerate rumen development.to avoid calves consuming parasite eggs or larvae that are normally shed through the faeces of adult animals onto pastures.common roughages offered to calves include sweet potato vines and freshly harvested, wilted lucerne.calves should be offered fresh water in addition to milk. lack of drinking water slows down the fermentation process of the starter in the developing rumen, which in turn slows down development of the rumen lining and it takes longer before calves can be safely weaned.it is estimated that efficient conversion of feed into body mass growth requires about 4 kg of water for each kilogram of dry feed calves eat. lack of water thus lowers feed conversion. age and stage of development determine how much water calves require:• from 1 to 6 days of age, calves may drink large quantities of water when it is first presented. this novelty water consumption pattern rarely persists more than a day or two as long as water is offered ad libitum.• calves less than 3 weeks old do not need a lot of water but a steady supply of clean, fresh water is recommended.Between 3 weeks and weaning, calves' water consumption usually increases and water should be offered ad libitum.the natural way for a calf to feed is to suckle the dam after she is milked, the farmer having made sure that the dam is not milked dry. this is the most hygienic way as the calf gets milk direct from mother, clean and at body temperature.one milking cow may be assigned a number of calves to suckle, depending on the level of milk production. this is practical only on farms with several cows lactating at the same time.a rubber nipple is fixed on a milk bottle and the calf is trained on how to suckle. the alternative is to put milk into a bucket and insert a flexible plastic hose pipe with one end attached to a nipple.the most commonly used method is bucket feeding. the calf is trained to drink milk placed in a bucket (place your finger in the milk and as calf suckles your finger it imbibes milk). stainless steel buckets, where available, should be used for hygienic reasons as plastic buckets are difficult to clean. at all times, feed milk at body temperature. this is especially important during the cold season.sick calves should always be fed last to minimize cross-infection.a calf's health can be affected by disorders resulting from improper feeding. Diligent feeding management is therefore essential to ensure calf health is maintained. common problems associated with feeding are diarrhoea and pneumonia.scours may be caused by nutritional disorders, viruses or bacteria. Digestive upsets leading to scours are a major cause of mortality in young calves.the problem can however be minimized by• ensuring calves receive adequate colostrum within 6 hours of birth and therefore acquire some natural immunity • feeding the correct amount of milk • recognizing, segregating and treating scouring calves early • maintaining hygiene and cleanliness of feeding utensils and the environment • not rearing calves continually in pens, dirty yards or small paddocks that become heavily contaminated; paddock rotation will help prevent disease • separating sick animals to avoid cross-infection closely observing calves at feeding to identify scouring animals as soon as possible for remedial treatment will prevent dehydration and secondary disease leading to chronic illness and mortality. incidents of scours can be treated simply by using electrolyte replacers fed several times per day to prevent dehydration. reduce or omit milk for one or two feeds but provide fresh water, concentrates and forage. Do not use antibiotics to treat scours resulting from overfeeding or digestive upsets.Blood scours (mostly caused by coccidia) require veterinary treatment and management changes to improve hygiene.one cause of pneumonia in young calves is fluid going to the lungs via the windpipe (trachea). the first feeding of colostrum can cause problems if the feeding rate is faster than the swallowing rate. if colostrum is bottle fed it is important to use a nipple that matches the calf's ability to swallow. Greedy calves swallow large quantities of milk from the bucket, some of which may end up in the windpipe, leading to pneumonia.the calf feeding program shown in table 6.1 should result in a growth rate of approximately 400-500 g/day. the liquid feed (milk) should be fed twice daily and more frequently for sick or weak calves. calves should be given roughage throughout.Weaning is the withdrawal of milk or milk replacer while the calf becomes fully dependent on other feeds. traditionally, dairy calves are weaned based on age, 12 weeks being the most common. Early weaning is possible if more milk is fed and calves are introduced to pre-starter and starter early in life.to minimize stress, wean gradually. reduce the milk feeding from twice a day to once a day then to once every other day to allow the calf's digestive system to adjust to the new diet.criteria that have been used to determine weaning time include when the calf attains twice its birth weight, when the calf can consume 1.5% of its body weight of dry feed and the age of the calf.of the calves born, about 50% will be bull calves, which consume milk and compete with heifers. farms dispose of the bull calves in different ways, depending on the economics and type of production. these include• selling after birth • slaughtering after birth • rearing as beef steers • rearing as possible future siresBase the decision to keep or dispose of bull calves mainly on the cost of rearing themprice of milk vs disposal price-and the genetic value for future sires.after weaning, a female calf becomes a heifer, which will eventually replace the culled animals, increase the herd size or be sold to generate income. after weaning, heifers should be grouped according to size in small, uniform groups that have adequate access to forage and concentrate. Balance the ration and consider feeding a total mixed ration. Heifers should be closely observed and fed correctly to avoid the growth slump that can occur after milk is withdrawn.Heifers should achieve a growth rate of 500-700 g/day. this ensures that they will come on heat at the right time, as puberty is related to size rather than age. reduce the interval between weaning and first calving to increase the number of calvings per lifetime (more lactations) and lead to faster genetic improvement. achieving first calving at 27 or fewer months of age is possible only if the growth rate is high.on most farms, heifers are normally the most neglected group in terms of feeding, resulting in delayed first calving. When heifers of different ages are fed as a group, aggressiveness varies such that when concentrate is fed to the group, some get little. Heifers should thus be reared in groups of similar age or size-weaners, yearlings, bulling heifers (those that are ready for breeding) and in-calf heifers.Heifers can be reared on good-quality pasture as their nutrient requirements are low (growth and maintenance). supplementation with concentrate should be at 1% of body weight with 12-14% crude protein for heifers on legume forage and 15-16% crude protein on grass forage.protein is extremely important in the diet of growing heifers to ensure adequate frame size, wither height and growth. avoid short heifers by balancing the ration and including enough crude protein.While designing heifer feeding programs, it is important to consider the following:• puberty, which is related to calving age, is also related to size (a feeding indicator) rather than the age of the heifer. the consequences of poor feeding are therefore manifested in delayed first calving and commencement of milk production.• feeding heifers too much energy leads to fat infiltrating the mammary glands, inhibiting development of secretory tissue, thus reducing milk yield.• Underfeeding results in small-bodied heifers, which experience difficulty during calving (dystocia).• the size of the animal is related to milk yield. With twins of the same genetic makeup, every kilogram advantage in weight one has over the other results in extra milk.• overfeeding heifers on feed high in energy but low in protein results in short, fat heifers; high protein and low energy feed results in tall, thin heifers.Underfed, hence slow-growing heifers may reach puberty and ovulate but signs of heat may be masked (silent heat), while those in good condition will show signs of heat and have higher conception rates. over-conditioned or fat heifers have been reported to require more services per conception than heifers of normal size and weight.to monitor the performance of heifers, measure the body weight and the height at withers and plot on a chart. Growth of the heifer should be such that any increase in weight should be accompanied by a proportionate change in height.standard charts have been developed for different breeds with the expected weight and height at different ages for different breeds. Where weighing facilities are unavailable, the weight may be estimated based on the heart girth in centimetres. measure the heart girth using a tape measure and use a weight conversion table (see appendix 3) to get an estimate of the weight based on the heart girth. the height can be measured by a graduated piece of timber as shown in figure 7.1. fat, over-conditioned heifers, at the same weight as leaner heifers, are normally younger with less skeletal growth. the pelvic opening is therefore narrow. Due to overfeeding, the calf is normally bigger, leading to dystocia. Underfed heifers will also require assistance and have a higher death rate at calving than normal-sized heifers. steaming up refers to providing extra concentrate to a pregnant heifer in the last 4 weeks of pregnancy. this extra concentrate should be fed in the milking parlour if possible, to accustom the heifer to the parlour. this feeding is also intended to allow the rumen bacteria to get accustomed to high levels of concentrate. it provides extra nutrients for the animal and the growing foetus. steaming up also allows the heifer to put on extra weight (reserve energy) to promote maximum milk production from the very beginning of the lactation. CHAPTER 8: FEEDING THE DAIRY COW8.1.1 Aim of feeding the dairy cow maximizing milk yield by meeting the cow's nutrient requirements is the aim of a feeding program. the nutrient requirements will largely depend on the amount of milk produced, which in turn depends on the stage of lactation-the period from calving. other factors affecting nutrient requirements are pregnancy and maintenance. the amount required for maintenance is largely affected by the cow's weight, environmental temperature and activity.milk production follows a curve (lactation curve), hence the amount of nutrients required will depend on the point on the curve. During the dry period, the aim should be to feed a diet that provides for the fast-growing foetus, deposition of an energy reserve and regeneration of the mammary gland.Quantitatively, energy is the most important nutrient considered during the formulation of dairy cow rations. Energy requirements of a lactating cow depend on• maintenance-keeping the cow alive-which depends on body size (bigger cows require more), activity (walking long distances to graze increases the requirement) and environmental temperature (too cold or too hot increases the requirement)• amount of milk the cow produces• the energy content of milk, indicated by butter fat content-the higher the fat content, the more energy required• reproductive condition-pregnant cows require more energy to cater for the growth of the calf Protein like energy, the protein requirement is dependent on milk yield, maintenance (replaces the amounts lost in urine, faeces and skin), growth and pregnancy. protein is not stored in the body and any excess is removed.protein is an expensive component and overfeeding should be avoided to minimize the cost. in addition, extra energy, which would otherwise be used for milk production, is used to remove the extra protein (nitrogen) from the body in form of urea in the urine.at the same time, protein deficiency leads to reduced growth and milk yield. see table 8.1 for recommended levels of dietary crude protein at different levels of milk yield. Dairy cattle require all minerals in their diet for optimal milk production, reproductive performance and health. although classical mineral deficiency symptoms are rare, in many cases under-and overfeeding of certain minerals does occur.Even small imbalances or deficiencies can develop into reproductive, health and milk production problems. as herd milk production increases, it will become more critical to balance and fine-tune the dairy cow's mineral and vitamin feeding program. Generally, the two sources of minerals include natural (organic) feeds (forages and grains) and inorganic mineral supplements to balance the minerals present in the forages and grains.the dairy cow, like all ruminants, depends on rumen microorganisms to synthesize the water-soluble vitamins and vitamin K. requirements for vitamins a, D and E must be satisfied from the diet.although water is not a nutrient as such, it is essential for life. Water can be obtained from feed, from drinking or from within the body processes. lactating cows need larger proportions of water relative to body weight than do most livestock species since 87% of milk is water. the amount required depends mainly on milk yield, moisture content of feed, amount of feed consumed and the environmental temperature.cows will drink more water if it is available at all times and when warm water is offered on cold days. Dairy cows suffer from a limited intake of water more quickly and severely than from a deficiency of any dietary nutrient. lack of water has a big effect on feed intake, especially if the feed is low in moisture. the lactation period is divided into four phases based on the cow's physiological cycle and nutrient requirements. feeding should be based on these phases.Phase 1: 1-70 days the first phase lasts from calving to peak milk production, which occurs at about 70 days. During this phase of lactation, milk production increases rapidly such that the voluntary feed intake cannot meet the energy demand. this results in an energy deficit leading to use of body reserves and to weight loss (negative energy).the health status and feeding of the cow during this phase are critical to its entire lactation performance. the cow should be fed so as to achieve peak production. if it does not peak, feeding later in the lactation period will not result in any appreciable increase in lactation yield.in an attempt to maximize milk production while maintaining good health, the tendency is to feed high levels of concentrates in this phase. However, if excessive concentrates are added too rapidly to the rations of non-accustomed cows, they may lead to digestive disturbances (e.g. rumen acidosis, loss of appetite, reduced milk production and low milk fat content). it is therefore recommended that concentrates be limited to 50-60% of diet dry matter, the rest being forage to ensure rumination (proper function of the rumen).During this phase, buffers can be helpful for cows fed high levels of concentrates.for very high-yielding cows, the necessary energy increase cannot be achieved through cereal-based rations-excess leads to digestive problems. other ingredients with higher energy density (e.g. fat) can be used. However, not more than 7% should be included as high fat reduces fibre digestibility by affecting cellulolytic bacteria. By-pass fat (rumen-protected fat) is available commercially.During this phase, a high-protein diet is important since the body cannot mobilize all the needed protein from itself, and microbial protein, which is synthesized in the rumen by microbes, can only partially meet requirements. a protein content of 18% crude protein is recommended in rations for high-yielding cows.animals that are well fed during this phase come on heat and achieve a 365-day calving interval-a calf every year.it is therefore important to ensure that the cow receives adequate nutrients when they are required and not later.Phase 2: 71-150 days the second phase lasts from peak lactation to mid-lactation. the volun tary dry matter intake is adequate to support milk production and either maintain or slightly increase body weight. the aim should be to maintain peak milk production for as long as possible with milk yield declining at the rate of 8-10% per month.the forage quality should be high. a 15-18% whole ration crude protein content is recommended. concentrates high in digestible fibre (e.g. wheat or maize bran rather than starch) can be used as an energy source.Phase 3: 151-305 days the third phase lasts from mid-to end-lactation, during which the decline in milk production continues. the voluntary feed intake meets energy requirements for milk production and body weight increase. the increase is because body reserves are being replenished, and towards the end of lactation, it is because of increased growth of the foetus. it is more efficient to replenish body weight during late lactation than during the dry period. animals can be fed on lower-quality roughage and more limited amounts of concentrate than during the earlier two phases.Phase 4: Dry period (306-365 days) this phase lasts from the time cow is dried to the start of the next lactation. the cow continues to gain weight primarily due to the weight of the foetus. proper feeding of the cow during this stage will help realize the cow's potential during the next lactation and minimize health problems at calving time (e.g. ketosis, milk fever and dehydration, dystocia).to minimize stress on the drying cow, consider the following options.• reduce feed intake to maintenance level (withdraw concentrates).• if the cow is a low yielder, just stop milking. pressure builds up in the udder and cuts off milk production.• if the cow is a high yielder, practise intermittent milking, skipping some milking times (milk only in mornings) so as to reduce milk synthesis caused by pressure building up in the udder.• temporarily withdraw water or reduce the amount for very high yielders to reduce milk synthesis.• after milking is stopped, treat (infuse) all the quarters with long-acting antibiotics to prevent mastitis from developing.the aims of drying a cow are to• build up body reserves in time for the next lactation period-if a cow is not dried in time, milk production will be reduced during the next lactation period.• allow the cow to regenerate alveolar tissue (milk-synthesizing tissue) that might have degenerated during the lactation period.• save nutrients for the fast-growing foetus. During the last phase of pregnancy, the calf grows rapidly and the cow's drying saves nutrients for the calf's growth.at the time of drying, the cow should be fed a ration that caters for maintenance and pregnancy, but 2 weeks before calving the cow should be fed on high-level concentrates in preparation for the next lactation. this extra concentrate (steaming) enables the cow to store reserves to be used in early lactation.to avoid over-conditioning, cows should not be fed large amounts of concentrate. the aim is to achieve a body condition score of 3.5-4.0 (see table 8.2). if the diet is rich in energy, limit the intake of concentrates. feeding bulky roughages can help increase rumen size to accommodate more feed at parturition (birth).Before calving, feed concentrate progressively to adapt the rumen microbial population. this will minimize digestive disturbances in early lactation when the diet changes to high concentrate.the amount of calcium fed during the dry period should be restricted to minimize incidents of milk fever in early lactation. a ration providing 15 g of calcium per day for the last 10 days of the dry period or an intake of 30-40 g/day over the whole dry period should reduce the number of incidents.this extra concentrate (steaming) enables the cow to store reserves to be used in early lactation. During this phase the cow may be fed good-quality forage or poor-quality supplemented with concentrate to provide 12% crude protein.During the 3 weeks immediately before and after calving, the cow should be given high-energy, highly palatable and digestible feed (e.g. commercial dairy meal and maize germ) or starchy feeds and molasses (this is also referred to as close-up feeding). this is to prepare the cow to consume large amounts of feed (for high milk production), accustom the rumen bacteria to high concentrate levels and prevent nutritional disorders (e.g. milk fever and ketosis) that are common in early lactation without over-fattening the cow.this period is important because there is rapid growth of the unborn calf, regeneration of the mammary tissue and colostrum production.Dairy cattle can be fed on forage or on pasture with no supplementation and milk production will depend on the quality and quantity of the pasture. However, it is difficult to realize the full genetic potential of a cow fed in this manner.on napier grass only, the expected milk production is 7 kg/day; it is 9-12 kg/day when the cow is fed on a napier-legume (desmodium) mixture. on grass alone (e.g. rhodes grass or nandi setaria), an average milk yield of 5-7 kg/day has been obtained and 7-10 kg/day on a grass-legume mixture. oats harvested at milk stage and fed to a dairy animal can enable it to produce up to 12 kg/day.lactating cows may be challenged with increasing amounts of concentrate until there is no corresponding increase in milk production. this method of feeding is recommended only if the extra milk produced offsets the added cost of the concentrate.challenge feeding should take place in the early lactation, when there is a risk of underfeeding. feed each cow the maximum amount of concentrates that it can consume, without reducing its roughage intake. continue this until the cow reaches peak milk production, 4 to 10 weeks after calving. By using this strategy, each cow is given the possibility to show its production potential.Body conditioning can assess the appropriateness of a feeding regime for lactating dairy cows. Dairy cattle deposit their energy reserves around the pelvic area and by scoring the amount of deposit using a standard score, their condition can be assessed. condition scores are normally on a scale of 1-5 with 1 being too thin and 5 too fat. animals prior to calving should be in good condition (3.75-4). table 8.2 shows body-conditioning scores and indications.overweight cows (over-conditioned) have been shown to be more susceptible to metabolic problems (ketosis) and to both infectious (mastitis) and non-infectious (retained placenta and lameness) health problems. they are also more likely to have difficulties at calving. Under-conditioning can lower milk production as there are insufficient energy and protein reserves for mobilization in early lactation.important areas assessed when scoring are short ribs, thurl, tail head, hook and pin bones (figure 8.2). an ideal cow has a body condition score of about 3.5, but the system is designed to have cows at certain stages of lactation at certain body conditions.after calving, cows should lose less than one point before they begin to gain weight; those losing more than one point are more vulnerable to reproductive problems. from peak milk production to dry-off, cows should gain back the body condition that was lost before they reached the peak. ideally, the body condition score of a cow should be taken whenever it is handled. at the very minimum, scores should be taken at freshening, breeding and dry-off. if evaluation indicates over-or under-conditioning, the feeding strategy for an individu al cow or group has to be evaluated. feed rations may have to be recalculated and corrected to satisfy the cow's demand.Diets providing less than 15 g of calcium per day per cow and fed for at least 10 days before calving will reduce the incidence of milk fever.Ketosis is a disorder that occurs when energy intake fails to meet the high glucose requirement necessary for maintenance and for producing milk lactose. Ketosis affects high-producing cows during the first 6-8 weeks of lactation when cows are in negative energy balance. the excessive ketone bodies in the bloodstream come from the breakdown of fat when the animal is forced to draw on its bodily reserves for energy.cows of any age may be affected but the disease appears more common in later lactations, peaking at about the fourth lactation. over-conditioning at calving has been associated with increased incidence of ketosis.many cases of ketosis are subclinical. the cow's performance and health are compromised but there are no obvious clinical signs. some of the signs include lack of appetite (refusal to eat even concentrates) and a sudden drop in milk output.the urine, breath and milk carry a sweet smell of acetone. cows have raised blood ketone levels and may excrete ketones in urine and milk. Body condition is gradually lost over several days or even weeks.Ketosis causes financial loss through lost production and treatment. it may be prevented by management strategies that maintain a good appetite and supply adequate feed to meet this appetite during the late dry period and immediately after calving.these strategies include• feeding transition rations to close-up cows• ensuring cows are in body condition of 4.0 or less before calving• ensuring that any health problems that might cause reduced feed intake are treated as early as possibleacidosis is a syndrome related to a fermentative disorder of the rumen resulting in overproduction of acid, which lowers rumen pH below pH 5.5. the problem is related to feeding management, where the ration has high levels of digestible carbohydrates and low effective fibre.acidosis may be caused by• diets high in readily fermentable carbohydrates and low in roughage • fast switch from high forage to high concentrate • excessive particle size reduction by feeding finely chopped forageWatery milk: acetate, one of the end products of fibre digestion, is a precursor of milk fat synthesis. a diet that is low in fibre will lead to low levels of acetate in milk and thus low levels of milk fat. as a result, the milk appears watery.• Diarrhoea-accumulation of acid causes an influx of water from the tissues into the gut resulting in diarrhoea. faeces are foamy with gas bubbles and have mucin or fibrin casts.• sore hooves (laminitis)-Endotoxins resulting from high acid production in the rumen also affect blood capillaries in the hoof, causing hooves to constrict, resulting in laminitis.• Ulcers, liver abscesses-High levels of acid in the rumen also cause ulcers, allowing bacteria to infiltrate the blood and causing liver abscesses, which are seen at post-mortem.• prevention-Good management practices are needed to prevent predisposing situations from occurring. the root problem must be found and corrected.• Buffers can also be used to prevent a drop in rumen pH when high-concentrate diets are fed. Ensuring the presence of effective fibre in the diet promotes production of saliva, which is a buffer.Bloat is the abnormal accumulation of gas in the rumen. there are three categories:• frothy bloat that occurs when diets lead to formation of a stable froth or foam in the rumen • free gas bloat caused by diets that lead to excessive gas production • free gas bloat caused by failure to belch rumen gases, leading to accumulation of gas (e.g. oesophageal obstruction)Bloat occurs when gases cannot escape but continue to build up causing severe distension of the abdomen, compression of the heart and lungs, and eventually death.Bloat is a risk when animals are grazing young lush pasture, particularly if the pasture has a high legume content (e.g. clover or lucerne). ruminant animals produce large volumes of gas during the normal process of digestion, which either is belched or passes through the gastrointestinal tract. if anything interferes with the gas escape from the rumen, bloat occurs.natural foaming agents in legumes and some rapidly growing grasses cause a stable foam to form in the rumen. Gas is trapped in small bubbles in this foam and the animal cannot belch it up. pressure builds up in the rumen causing obvious swelling on the left side of the body.• the animal stops grazing and is reluctant to walk.• the left side of the abdomen is distended.• the animal strains to urinate and defecate.• rapid breathing-the mouth may be open with the tongue protruding.• the animal staggers.Pasture management: legumes should be introduced into the diet gradually over several days. avoid cows gorging on new pastures by feeding them on other feeds before letting them out to graze. silage, hay or mature pasture can be used to reduce the cow's appetite.initially, cows should be allowed access to the pasture only for short periods (an hour or so) and monitored closely during grazing and immediately after removal. cutting and wilting the pasture for 2-3 hours before feeding reduces the risk of bloat.Preventive medication: Drench with detergents and anti-foaming agents before letting animals graze.insert a stomach tube through the oesophagus to release the gas. in an emergency on the farm, puncture the rumen on the left side of the animal with a sharp knife. puncturing the rumen with the standard trocar and cannula is the quickest way to release the gas that cannot be expelled with a stomach tube.to formulate rations, knowledge of nutrients, feedstuffs (ingredients) and the animal to be fed is required. the ration formulated must be nutritionally adequate and be consumed in sufficient amounts to provide for the level of production desired at a reasonable cost.a ration is balanced when all the nutrients an animal requires are present in the feed the animal consumes during a 24-hour period. When an animal consumes nutrients in excess or in insufficient amounts, the ration is imbalanced. some imbalances have drastic consequences and if not corrected may lead to the death of the animal (e.g. milk fever due to calcium imbalance in dairy cows). However, most imbalances are difficult to identify as they result in some degree of loss of production, which causes animals not to realize their genetic potential.ration formulation is the recipe, that is, the list and amounts of feed ingredients to be included in a ration. Before formulating a ration, the following information is needed.Nutrients required obtain information on nutrients from feed requirement tables developed by various bodies.prepare an inventory of all available feedstuffs. for home-made rations, use materials available at home as much as possible; commercial feeds may use a wider range.the nutrient composition of each feedstuff should be known. analysis of the ingredients is most desirable but if not possible, obtain estimates from textbooks. Book values, however, can at times be misleading, especially for by-products. also consider the palatability of the ingredient and any limitations such as toxicity.always consider the cost of the ingredients. least-cost formulations should be made to obtain the cheapest ration.Type of ration ration type may be complete (total mixed ration), concentrate mix or a nutrient supplement of protein, vitamin or mineral.rations should be formulated to ensure that the animal consumes the desired amount of nutrients in a day. for example, if a heifer requires 500 g of crude protein per day and consumes 5 kg of feed, the crude protein content should be 10%. if it consumes 4 kg per day the crude protein content should be 12.5%.the simplest formulation is when two ingredients are being mixed to balance one nutrient. Using a pearson's square method allows blending of two feedstuffs or two mixtures. figure 8.3 illustrates how to make a ration with 18% crude protein using cottonseed cake (40% crude protein) and maize (10% crude protein). • subtract the lesser value from the larger diagonally. (Hence from the figure: 40 minus 18 = 22 and 18 minus 10 = 8.)• one ingredient must have a higher nutrient content than the desired and the other must have a lower value.• no ration can be formulated with a higher nutrient content than the highest of the ingredients or vice versa. (you cannot make a ration of 15% crude protein if both ingredients are higher than 15% or lower than 15%.)• therefore: if 8 parts of cottonseed cake are mixed with 22 parts of maize, the mixture will have 18% crude protein.if expressed as percentage (100 kg feed) then 8/30 x 100 = 26.7% cottonseed cake 22/30 x 100 = 73.3% maizethe cottonseed cake content in the ration is 26.7%, crude protein 40%; therefore it contributes 26.7 x 40/100 = 10.7. the maize contributes 73.3% of the mixture, crude protein 10%; therefore it contributes 73.3 x 10/100 = 7.3.feeding high-yielding dairy cows is a challenge to both farmers and nutritionists. profit margins in the dairy enterprise vary and are dependent on milk prices and feed cost. feed represents the largest input cost to produce milk (estimated to be 35-50% depending on the production system).the cheapest way to produce milk is by using farm-grown forages. However, forages are bulky and low in nutrient content and cannot support optimal milk production.csc -cottonseed cake cp -crude protein feed costs for a dairy herd can be budgeted to determine ingredients to be purchased or grown on farm. following is an example of how to budget for feed requirements: consider the size of the cow, for example 450 kg. the dry matter requirement is estimated at 3% of the body weight (3/100 x 450 = 13.5 kg).Dry matter requirement per year is 13.5 x 365 = 4928 kg.to obtain 4928 kg dry matter from fresh young napier grass (contains 15 kg dry matter per 100 kg fresh napier grass) will require 32,850 kg of fresh material. this amount of napier grass can be harvested from about 0.65 ha of land (napier yield is estimated at 8000 kg dry matter/ha per year under smallholder farmer conditions).assume a farmer has 0.4 ha under napier grass, dry matter production per year = 3200 kg giving a deficit of 1728 kg dry matter.if the deficit is to be covered using a commercial concentrate, the farmer will have to buy 1919 kg of concentrate (concentrate 90 kg dry matter per 100 kg fresh weight).if the cost of concentrate is KEs 21 (UsD 0.25) per kg, the farmer will spend approximately KEs 40,800 (UsD 480) per year on it.When purchasing feeds off farm, the cost comparison between feedstuffs should be based on nutrients purchased rather than weight of the feedstuff. thus the nutrient and dry matter contents of the material to be purchased should be known (table 8.3). as already mentioned, feed costs and farm gate price of milk determine the profitability of a dairy enterprise. an enterprise may opt to produce the maximum amount of milk irrespective of the profit margin. this is termed maximum production. if the milk price is high, this method may coincide with maximum profit.on the other hand, an enterprise using home-grown forage may or may not produce the maximum amount of milk but makes a profit. this happens when the cost of concentrate is too high. farm gate price of milk also depends on location, with peri-urban farmers getting better prices.a true maximum profit ration program includes a least-cost function, incorporates milk price information, and uses maximum profit (income over feed cost) as one of the constraints or specifications on which to formulate. to maximize profit the computer selects feeds and a milk production level to obtain a maximum profit; but for least-cost or balanced rations the computer selects only feeds to meet the nutrient requirements specified for a given level of milk production.total mixed ration is a blend of all of the constituents of a ration fed to a confined animal, mixed to prevent separation to a specific nutrient concentration and fed at free will to the cow. in the total mixed ration feeding system, the concentrates and roughage are mixed either by hand, in small-scale operations, or in a mixer wagon. Where a mixer wagon is used, the mix is often dispensed to the cow directly from the wagon.Before a total mixed ration is formulated, the following information is needed:• available feedstuffs • moisture and nutrient content of feedstuffs • cost • attributes of feed (e.g. maximum allowed in feed mix, presence of undesirable substances) • degree of processing required before mixing cow to be fed:• body weight (to allow estimation of maintenance requirements and voluntary dry matter intake) • expected milk yield Total mixed ration feeding a total mixed ration can be fed to cows using either the same ration to the whole herd (no grouping) or different rations to different groups. in a non-grouping system one mix is usually formulated to suit the high-yielding cows, the risk being overweight cows.Grouping the cows improves the precision of the feeding. the cows can be grouped according to many criteria: yield, stage of lactation, first-calf heifers etc. the main drawback of grouping is the time spent moving the cows from one group to another as production changes. these group changes can result in reduced milk yield due to social adjustment. in addition, several mixes have to be prepared and dispensed to suit each group. the total mixed ration feeding regime has several advantages over feeding ingredients separately:• it is possible to use a wide range of feedstuffs.• total mixed ration allows greater accuracy in ration formulation.• cows are able to consume large amounts of feed, especially in early lactation when high intake is helpful.• total mixed ration allows energy and protein to be used more efficiently by microorganisms in the rumen. this also results in good rumen health with few metabolic disturbances.• By mixing roughage and concentrates and feeding the mix at free will, the total nutrient intake for a group of cows can be regulated by the degree of concentration of nutrient in the feed.• total mixed ration allows use of ingredients that singly are not very palatable.the main disadvantage of total mixed ration is the high initial investment in equipment.the partly mixed ration regime combines total mixed ration and individual feeding of concentrates. roughage is mixed with some of the concentrates manually or with a mixer. the concentrate level in the mix is adjusted to fit the lower-yielding cows.the high-yielding cows are fed extra concentrates in the parlour. the pmr system makes possible combining the advantages of a group total mixed ration with individual feeding.locally available concentrates for feeding dairy cows are of several types. the most common is the commercial dairy concentrate (referred to locally as Dairy meal ® ). concentrates can also be home made using locally available ingredients with the help of a nutritionist.for home-made concentrates, the general rule is energy sources should form 70%, protein sources 29% and minerals/vitamins 1%.the maximum amount of milk that can be produced without concentrate supplementation will depend on the quality of the pasture or forage, which has been reported to vary from 7 to 20 kg milk per day.Guidelines on the amount of concentrate that should be fed to a cow have been suggested. the only accurate one is as calculated by a nutritionist and based on the cow's nutrient requirements. Examples in Box 8.1 show some of these guidelines. the disease is caused by a fungus, Ustilago kameruniensis. affected napier grass flowers early and the head is characterized by a loose black soot-like powder, which is the disease-causing spores.affected napier grass changes in appearance, the leaves become short and narrow, the internodes short, and the plant appears seriously dwarfed. in a stool, it starts with a few stems that when pulled, uproot easily and appear like a parasitic plant. the roots also appear shortened and dwarfed.the disease is spread by• planting diseased napier grass • transporting disease-causing spores to clean napier grass by wind or water or through farm tools • manure from cattle fed on diseased napier grass (with the spores) in Kenya, the occurrence of disease has been reported in • central Kenya in the districts of Kiambu, Kirinyaga, maragua, murang'a, nyeri, and thika • eastern Kenya; meru central and meru south • the rift valley: londiani and molo• Uproot the diseased stems or stools and burn; do not feed to cows.• apply enough farmyard manure on the napier grass to increase the yield, although it does not eradicate the disease.• avoid applying manure from cows fed on diseased napier grass.• plant disease-resistant napier grass cultivars such as Kakamega 1 or Kakamega 2, which are available from the Kenya agricultural research institute.napier grass stunting disease is caused by tiny bacterium-like organisms called Phytoplasma. the affected napier grass appears pale yellow-green, leaf size is seriously dwarfed and internodes are shortened. there is normally a proliferation of tillers from the affected stool. the affected and stunted clumps will later die.the disease is spread by planting diseased stems and splits and by leafhoppers and planthoppers. the diseased grass is safe for livestock to eat and the disease cannot be spread through manure.Occurrence of disease • inspect napier grass fields regularly, remove diseased stools and burn them.• Use clean planting material from clean areas.• avoid harvesting the same area frequently before the grass is at the recommended height, as early cutting exposes the stools to sap-sucking planthoppers that transmit the disease.• in areas that are seriously affected, use alternative fodders such as giant panicum, Guatemala grass and fodder sorghum.no napier grass cultivars presently known resist the disease.commercial concentrates are key to increased milk production as most pastures and forages are of low quality and cannot meet the nutrient demand of high-yielding cows.the main limitations in using these concentrates are affordability and quality. the farm gate price of milk, which is dictated by the processors, also determines affordability.price is dictated by the availability of raw materials, which in some cases are also used for other purposes, especially human food. When there is competition for the use of raw materials as human food, the price increases. currently, grain-surplus countries are using grains to produce biofuels, leading to an increase in world prices of cereals and cereal by-products.the quality of these commercial concentrates is also of major concern to the dairy farmer. though standards exist in different countries to check on quality they are not always enforced. currently, several laboratories can analyse these concentrates and advise the farmer accordingly.farmers should also note that concentrates are supplements and their effectiveness depends on the quality of the basal ration. if the basal ration is very poor, high levels of concentrates will be required to achieve the desired level of production.several factors can affect both milk quality and flavour. off-flavours in milk have been attributed to feed-related causes (80% of cases), oxidation (5%), rancidity (5%), chemical residues (3%), poor hygiene (3%) and other causes (4%). some feed-related flavours are not objectionable, while others are usually offensive. to reduce feed off-flavours in milk, eliminate mouldy feeds and ensure that feeds likely to impart off-flavours are fed either soon after milking or at least 4 to 5 hours before the next milking time. objectionable flavours from some feeds pass from the rumen and digestive tract, via blood, into the udder and milk. controlling intake of feeds that impart offflavours is not always easy, and the amount of time between feeding and milking varies.Oxidized flavour is characterized by a metallic or cardboard-carton taste and can be prevented by using stainless steel or glass equipment. plastic and rubber are acceptable but are hard to keep clean. prolonged exposure of milk to light may also result in oxidation.Rancidity is characterized by a bitter, soap-like taste. maintaining the milk at cool temperature helps reduce the problem. High levels of bacteria in milk, as from cows with mastitis, can aggravate the problem.Chemical flavours: milk may acquire a medicinal, sometimes minty, taste from disinfectants and cleaning agents used in disinfecting the milking equipment and milking area. care should be taken to use the correct amount of disinfectant for the appropriate length of time. also, care must be taken to properly clean and rinse equipment and to avoid the chemical agent coming in contact with milking equipment during milking.General hygiene in the milking area can affect the flavour and quality of the milk. contamination of milk, hence objectionable flavour, can occur through contact with the udder and from milking equipment. also, tests have shown that flavours can be transmitted from the environment to the udder within 15 minutes, by way of the cow's respiratory tract.another common cause of undesirable milk flavour is mastitis. this is mainly from the effect mastitis has on increasing the salt and decreasing the sugar content of milk. sometimes a flat or watery taste occurs, or both salty and watery tastes occur at the same time.Appendix ","tokenCount":"17952"} \ No newline at end of file diff --git a/data/part_1/0621614979.json b/data/part_1/0621614979.json new file mode 100644 index 0000000000000000000000000000000000000000..65612ce22e61ac5571b6a39fb5d5baab2f810694 --- /dev/null +++ b/data/part_1/0621614979.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5dde1478dfb92788b47b81e1c2c57bb6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f537e872-ac39-474f-98ed-aa4f4ddca12e/retrieve","id":"1939875851"},"keywords":[],"sieverID":"5d2f628f-6dad-469b-b865-c786e9b45def","pagecount":"12","content":" Improvements in animal feeding and sustainable intensification are the most promising strategies for mitigating these impacts. The inclusion of forage legumes in cattle production systems has the potential to increase yield, efficiency and nutritional value of the forage, with less environmental impact. But adoption and use by the producers remain limited due to: T2) Cayman-L. diversifolia association in a proportion of 70:30% (2,000 Leucaena diversifolia plants/ha). • A discounted cash flow model for the estimation of financial profitability indicators was developed.• A quantitative risk analysis by running a Monte Carlo simulation was carried out.• Three pasture persistence scenarios and the following variables were randomly combined: Live weight gain per animal and year  Investment costs  Maintenance costs  Sales price per kg of live weight  Purchase price per kg of live weight.• Sensitivity and scenario analyses were carried out to identify those variables with the strongest effects on the profitability indicators. Scenarios were determined by considering three annual degradation rates that decrease the total forage supply and therefore the carrying capacity: for T1 at 1% (S1), 3% (S2) and 8% (S3), and for T2 at 1% (S4), 3% (S5), and 5% (S6), respectively. 1 Mean value of the VPN obtained in the simulation (5,000 iterations and confidence level of 95%); 2 SD: Standard deviation of the NPV with respect to the mean value; 3 CI: Minimum and maximum values in a 95% confidence interval; 4 Quotient between benefits and discounted costs; 5 Minimum area required for two basic Colombian salaries in hectares (1 CBS=US$279). • L. diversifolia has significant potential to increase animal productivity and profitability, under different scenarios of animal productivity and market conditions, which is conducive to the sustainable intensification of meat production in grazing systems.• The inclusion of L. diversifolia comes along with a reduction of the risk of economic loss and less variance to changes in critical variables.• This is key to encourage adoption, since farmers, being naturally rather risk adverse, will most likely favor technologies with a relatively lower variance.• The establishment of grass-legume associations should be accompanied by specific training and extension programs that overcome the lack of knowledge and experience in the use of tropical forage legumes.• This will reduce uncertainties associated with technology adoption and increase adoption rates.• The access to and structure of necessary financial resources (e.g. credits) needs to be improved in order to provide the required framework for technology adoption.","tokenCount":"404"} \ No newline at end of file diff --git a/data/part_1/0624576559.json b/data/part_1/0624576559.json new file mode 100644 index 0000000000000000000000000000000000000000..8ddec56b84504f4320cfecfdacbabc2fe5e2682f --- /dev/null +++ b/data/part_1/0624576559.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c36f4bbee03b1c9809ba174470bee462","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/e152197e-a369-4409-999a-2ced52daafe6/content","id":"-1339713012"},"keywords":[],"sieverID":"40843bb4-721f-4249-8f99-4f996fbfb4bd","pagecount":"2","content":"Begin scouting your field soon after maize has emerged. Fall Armyworm prefers to feed at night. For this reason, scouting very early in the morning is best.Fall Armyworm is now found in South and South East Asia and requires careful management to avoid crop damage.By counting the number of maize plants with signs of damage, you can decide how to protect your crop. Fall Armyworm is a serious pest that can feed on over but prefers to eat maize.Newly hatched and young larvae are about between 1 mm long. They grow to up to 45 mm as adults. You will have more success in controlling Fall Armyworm when they are young.Egg masses are small and white colored.Older larvae bore diectly into maize cobs, but it is very hard to control them at this stage.Leaf damage from young Fall Armyworm looks like small windows or pinholes chewed into leaves.Keep looking at least every 10 days for signs of Fall Armyworm damage.Larvae also leave behind waste when they feed. ","tokenCount":"167"} \ No newline at end of file diff --git a/data/part_1/0634186048.json b/data/part_1/0634186048.json new file mode 100644 index 0000000000000000000000000000000000000000..0f0e27bc4ef7ecd19cec13d2d2863140d2f5bae8 --- /dev/null +++ b/data/part_1/0634186048.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"44cfd6e278a75737973ced6a0f7201da","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/786ea8e2-86d0-49bf-9986-a0877a3c03d6/retrieve","id":"-1255580563"},"keywords":[],"sieverID":"c899901c-fb45-4810-8511-50ee66f74f08","pagecount":"38","content":"CCAFS has 12 Objectives in four Themes. Each Objective has a 10-year Outcome Target and a 3-year intermediate performance target. CCAFS has surpassed the 3-year targets for two of the Objectives, achieved the targets for seven Objectives and is behind target for three Objectives (Table 1). Most progress has been made in East Africa (EA), West Africa (WA) and South Asia (SA) -the regions established at the start of CCAFS; but there have been significant outcomes in the recently established region of Latin America (LAM), with less progress in South East Asia (SEA). 1 Progress has been made from field level with farmers, to work in policy arenas (Table 1). For example: in India over 50,000 farmers have been insured with new index-based products; in Senegal, weather forecasts using new approaches are reaching 3 million farmers, with attention to reaching both male and female farmers; many national meteorological services (NMS) are shifting practices as a result of CCAFS R&D; nearly 15,000 women village leaders were trained in climate-smart agriculture (CSA) in Bihar and Nepal in 2013. Engagement in policy processes has influenced the national adaptation strategies in numerous countries. For example: Nicaragua's new national adaptation strategy has resulted in major investments for coffee and cocoa as a direct result of CCAFS research; agricultural ministers endorsed a major strategy for plant genetic resources in Mesoamerica. CCAFS-generated downscaled climate data was downloaded more than 100,000 times in 2013, including by key development partners. CCAFS research is helping set breeding strategies for beans, maize, rice, cassava and potatoes. The achievements are generally a result of partnerships -co-design, coproduction and co-dissemination with major development agencies, private companies (e.g. insurance), farmer organisations, communication services (e.g. rural radio) and other CRPs.In 2013 CCAFS also began phase 2 planning. Five Intermediate Development Outcomes (IDOs) are proposed. The IDOs will only be incorporated into programming in 2015, but in 2014 a performancebased management trial is being conducted on what is proposed as Flagship 4 in CCAFS phase 2. Performance-based management is not new to CCAFS, with performance measures used each year to give performance-based allocations to participating Centres.Within CCAFS, cross-Center work is now vibrant, and we would argue that this has resulted in CCAFS becoming the \"go-to\" place for climate change and developing country agriculture, an outcome that no single Center could achieve. But challenges remain, and perhaps one of the greatest relates to coordination amongst CRPs (e.g. different Centers and CRPs working with the same farmers, or the same regional organisations, in an uncoordinated manner) and boundaries amongst CRPs. Five CRPs started a trial in Burkina to coordinate impact pathways and activities.incorporated the approach into training materials and activities. (c) In Senegal, as an example, CCAFS has been working with the Senegal Meteorological Agency (ANACIM), Senegal NARES (ISRA), Department of Agriculture, local farmer associations and NGOs (World Vision, Red Cross), and rural radio networks. The detailed work, with attention to gender inequities, has been conducted in Kaffrine District where climate-informed advisories now reach 2000 farmers. CCAFS has stimulated the agricultural agencies and NMS to integrate activities for the benefit of farmers. Fifteen communitybased radio stations in 4 administrative regions of Senegal now deliver seasonal forecasts to an estimated 3 million farmers, using CCAFS and ANACIM forecast and communication approaches.2. Increasing incomes and reducing GHG emissions in the dairy sector. CCAFS has played a role in putting CSA on the global agenda, together with key partners, e.g. World Bank, FAO. This work is complemented by national policy engagement and action research on CSA technologies in about 20 countries. One example of action research is the contribution by CCAFS to the East African Dairy Development (EADD) program of Heifer International. ICRAF and ILRI are partners in this program, supporting EADD in the animal fodder, husbandry and extension components, and thus helping Heifer reach 179,000 families and increasing their earnings by a collective $131 million 2 . Heifer focused on improving milk production and quality, and access to markets through the formation of Dairy Farmer Business Associations. The science underpinning the use of improved feed to reduce GHG emissions has been documented by ILRI 3 , while ICRAF have worked at one of the EADD sites in Kenya, together with FAO, estimating GHG emissions and productivity. 4 For CGIAR, this is part of a cross-Center effort -\"Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES)\" -to develop methods for GHG accounting in smallholder systems. EADD has now adopted CSA as a program objective, partly based on engagement with CCAFS, and the mounting evidence that better feeding/manure management can contribute to GHG reduction and improved income for farmers.CCAFS' 2013 total budget was $71.6 million including funds from the CGIAR Fund and bilateral sources. Total execution in 2013 was $68.3 million (95%). Gender and social differentiation research activities were in the order of $5.5 million, approximately 8% of the total execution. Final and total 2013 allocated W1&2 budget as per the final Financing Plan received early in December was $44.8 million. First tranche of W2 2013 funds (2%) was received in mid-June and the first W1 tranche (30%) late in July. Thereafter, several other disbursements were made, amounting to 67% of the total 2013 W1&2 budget as of end of 2013. In January 2014 two more tranches were received (28%) which means that as of March 31st 2014 95% of the 2013 budget was funded.When CCAFS was initiated, 10-year outcome targets were specified for each of the 12 Objectives. In addition, for each Objective a 3-year intermediate performance target was established (Table 1). The CCAFS Theory of Change is given in the original program plan. 5 Baselines have been established at all sites. 6 CCAFS has now established Intermediate Development Outcomes (IDOs) for Phase 2, focussing on the proposed common IDOs amongst CRPs related to: Food security; Gender and social differentiation; Adaptive capacity; Policies and institutions; and Mitigation. These will be incorporated into CCAFS programming in 2015, though the performance-based trial does focus on these outcomes not the original outcomes. Impact pathways for all these outcomes are currently being finalised. 7 initial conditions, in order to achieve a better understanding of model results and variance among models. One paper in the Proceedings of the National Academy of Sciences 8 and seven papers in a special issue of Agricultural Economics 9 presented the detailed findings.extension agents and local government staff to work together to understand the role of trees and agroforests in reducing the impact of extreme weather events and long-term climate change. 22 G-range model, developed by ILRI, Colorado State University and USDA, builds on established models CENTURY and SAVANNA to give rapid forecasting of biomass production, soil condition and carbon stocks in dryland pastures. The model's comparability with field measurements ranges from reasonable to excellent for different sites. 23 Maprooms, from IRI, is an online tool to enable analysis of rainfall variability and seasonal predictability at CCAFS sites in Nepal, Bangladesh and Northern India. Users can assess the probabilities of above-normal, near-normal, and below-normal rainfall and temperature during each stage of the El Niño/Southern Oscillation cycle. 24Data assimilation-crop modelling framework, developed by IRI and NASA, is available to assimilate remotely sensed data with a crop model to improve crop yield forecasting at a given lead-time within the growing season. 25CCAFS maintained the open-access databases reported in 2012, and recorded more than 60,000 unique users in 2013. AgTrials, a repository of climate-specific agricultural trial data, 26 now contains 34,535 trials, up from 4,600 trials in 2012. Work was done to link databases where appropriate; for example, 29,633 data files in AgTrials are now identified against the trait terms of the Crop Ontology database, which harmonizes crop-specific terminology on climate-relevant genetic information to inform breeding for current and future climates. 27 Some 135,000 files were downloaded from CCAFS-Climate, which contains downscaled GCM data. 28 In 2013 there were nearly 1,900 downloads of CCAFS baselines material from Dataverse, 29 including by GIZ, World Bank, and International Relief for Development. One new database was added: RE-FARM Database. It contains 276 case studies on diversification for climate change adaptation to assist in identifying successful adaptation strategies based on diversification, and identify best bet technologies to increase the overall resilience of agroecological systems. 30 The number of CCAFS publications in ISI journals increased by over 25% on 2012, to 98, reflecting the increasing maturity of climate change research in the CGIAR. Several articles were in high-impact journals, including Science, Nature, PNAS and Global Environmental Change.Targets 1.1 and 1.2 in Theme 1 (Progressive Adaptation to Climate Change) were achieved. In 1.2 the Climate-Smart Village (CSV) approach -local learning platforms for a portfolio of adaptation (and mitigation) options (reported in 2012) to be trialled with men and women farmers -has been established at 15 sites in three regions. 31 The CSV approach is now being used by implementation agencies. Practical Action in Nepal, e.g., will implement CSVs in three districts. Target 1.2 has largely been accomplished through collaboration with some of the commodity CRPs. Climate modelling has helped to inform global and national breeding strategies. For example, the Global Cassava Partnership, an alliance of many agencies and including at least a dozen breeding organisations, has adopted the concept of the Rambo root, promoting cassava as a substitution crop and identifying biotic constraints as the priority for future breeding efforts. Target 1.3 was surpassed, with CCAFS science informing adaptation policy processes in three regions. The work with the Nicaragua adaptation plan, e.g., has resulted in a US$24 million investment to climate-proof the coffee and cocoa sectors.Progress has been good in Objective 2.1 of Theme 2 (Managing Climate Risk). One of the most promising outcomes involves the partnership with the Agricultural Insurance Company of India which already insures 12 million farmers. CCAFS has been improving the indices used to determine whether pay-outs occur, leading to protection of more than 50,000 rainfed farmers in one crop season alone. The number will go up in the next crop seasons. Progress in 2.2 has been slow, mostly because this is largely a new area for the CGIAR -dealing with the whole food system and crisis response.Nonetheless the pipeline of activities is promising. Target 2.3 has been surpassed, with some major successes (see 1 st success story in key messages).For two Objectives in Theme 3 (Pro-poor mitigation) the targets were achieved, but targets for Objective 3.2 were not met. This Theme focuses on mitigation, an area of major differences in opinion in the global climate negotiations, making progress on the ground difficult. The two new regions established by CCAFS (LAM and SEA) were partly selected because of their higher mitigation potential. Under the program plan, CCAFS is scheduled to conduct its first impact studies after three yearsCCAFS has been successful at mainstreaming gender throughout the program, and has met the requirements specified in Annex 2, and beyond, with the development of gender impact pathways in each region that include measures of evaluating progress towards the CCAFS gender IDO. However, gender targets for tools and products (Annex 1) have not been met (see section H). Gender-related progress in 2013 includes the following:Gender Impact Pathways capacity. In 2013, CCAFS facilitated the formation of region-specific gender impact pathways in a participatory approach with 40 female and 5 male CCAFS partners from 5 regions. The regional gender teams have formed a network to facilitate working together. 33Building the evidence base addressing CCAFS key gender research questions. Baseline surveys in all CCAFS sites include a gender component, and cover all CCAFS Themes. The questionnaires and training materials have been downloaded over 4,000 times and are being shared freely and widely. 34 Significant findings for both the climate smart agriculture (Theme 1) and climate information (Theme 2) work are that women receive significantly less information about CSA practice options and climate information than do men, but when they are receiving it, they are just as likely to adopt the practices. These results are being used in our sites in all 5 regions to co-design gender-targeted action research with local partners. We also found institutional and policy constraints are limiting the benefits reaching women and other disadvantaged groups from climate-related finance initiatives, and this informed the call for proposals in the low-emissions development work (Theme 3) for Phase 2. These results have also been shared with development partners such as IFAD and CARE, who are also designing programs to better target climate and CSA practice information to women and the poor.An intra-household data collection effort by three Centers (IFPRI, ILRI, CIAT) was completed and analysis is underway. It addresses the key gender questions found in the CCAFS gender strategy (e.g. gender differentiated adoption potential of climate smart agricultural practices in different agricultural systems). This questionnaire and training manual has been downloaded 50 times in 2 months. CCAFS also contributed to the design of a CG-wide global comparative research initiative on innovation through transformation of gender norms. We will be contributing several case studies. The program was implemented more or less according to plan. It is probably a good time to return to the table of indicators (Annex 1) and provide some further clarifications and simplifications, as we recorded a number of instances of different understanding behind the same indicators.We have identified CRP boundary issues and coordination at country and field levels as important issues to resolve in the coming years. In Burkina Faso we have joined with several other CRPs to plan a joint approach to impact pathways, M&E and coordinated activities. We have also initiated discussions with various CRPs to plan collaborative work. Nonetheless, strong leadership from the Consortium Office is needed to sort out some boundary issues as there is reluctance to deal with them at CRPlevel.CCAFS has been practicing performance-based management since its inception, but within the constraints of the initial CCAFS proposal (where the rule was that Centres decided how much of their previous core they would invest in different CRPs). We see phase 2 as an opportunity for quite a radical shift, where activities are 100% aligned with regional priorities in global themes. To this end we have initiated a process to reorganise the CCAFS portfolio, with expected shifts in Centre contributions to CCAFS.While CCAFS has made great strides in implementing its gender strategy, progress in terms of genderdifferentiated tools and products have been slower than targeted (Annex 1). This is partly a result of continuing lack of human resources in many Centers to tackle gender issues in a rigorous manner, but the recent hiring of staff will hopefully improve progress. CCAFS will also implement some new incentives to achieve greater progress. (2) Financial reports from IFPRI and ICRAF are treated as preliminary versions. Neither Comfirmation Letters nor Center Financial Statements were received before CIAT's books closure.(3) W1+2 Other expenditures reported by Centers amounted to USD 629 while W1+2 CGIAR Partnerships totaled USD 1,197. This means that almost USD 568 have not been properly reported as these two figures should match.(4) Excluding W1+2 Other figures, USD 42,044k is the W1+2 total expenditure(5) BIOVERSITY and ILRI's W1+2 and BILATERAL expenditures differ from the ones presented in their Audited Financial Statements (USD 29 and USD 175 respectively). Such funds were reported as Bilateral whilst these were W1+2 expenses as reported to CIAT.(6) ICRAF's W1+2, W3 and BILATERAL expenditures differ from the ones presented in their Audited Financial Statements (USD 480, USD 459 and USD 17 respectively). Center acknowledged not reporting expenses under the correct funding source in their Financial Statements (i.e. USD 480 of W3 were reported under W1+2 whilst these were W1+2 expenses) ","tokenCount":"2587"} \ No newline at end of file diff --git a/data/part_1/0641605342.json b/data/part_1/0641605342.json new file mode 100644 index 0000000000000000000000000000000000000000..3a2766e6bbbf1df17b9841fc05782574918d4883 --- /dev/null +++ b/data/part_1/0641605342.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fec679c1ba5e34138dd65c31d4ca4c8c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/97e44f6d-2adc-46f4-9986-8960c2aa2550/retrieve","id":"-296871642"},"keywords":[],"sieverID":"683d2350-fb06-4ed2-b0c2-6c2db55d27b0","pagecount":"6","content":"Scots pine (Pinus sylvestris L.) is a pioneer species that readily regenerates after major natural or human disturbances, if weed competition and grazing pressure are low. Natural stands are often pure and fairly even-aged. The species grows predominantly on poorer, sandy soils, rocky outcrops, peat bogs or close to the forest limit. On fertile sites, Scots pine is outcompeted by other-usually spruce or broad-leaved-tree species.The species is wind-pollinated and has both male and female flowers on the same tree. Flowering is frequent; female flowering starts at the age of 15 years on solitary trees (on grafts, as early as 6-8 years) or 25-30 years in closed stands. Abundant male flowering appears some years later. Mast years are relatively frequent but at the boreal forest limit seed maturation is impeded by the short growing season; mast years may occur as seldom as once or twice in 100 years.These Technical Guidelines are intended to assist those who cherish the valuable Scots pine, genepool and its inheritance, through conserving valuable seed sources or use in practical forestry. The focus is on conserving the genetic diversity of the species at the European scale. The recommendations provided in this module should be regarded as a commonly agreed basis to be complemented and further developed in local, national or regional conditions. The Guidelines are based on the available knowledge of the species and on widely accepted methods for the conservation of forest genetic resources.Scots pine has a wide distribution across the whole Eurasian continent, ranging in latitude from 37°N to 70°20'N. At the boreal forest limit it survives with less than 100 frost-free days/yr and 300 mm annual rainfall. Towards the steppe plains of Central Asia its occurrence is limited by the length of the drought period. In southern Europe and Asia Minor, isolated occurrences are confined to the montane zone (up to 2200 m in altitude in the Balkans and Spain, and 2700 m in the Caucasus).Scots pine is a commercially important tree species in Europe. Its wood is easily workable, with good mechanical properties, and has many uses, primarily as construction timber and pulpwood.Its moderate site demands render Scots pine an ideal species for artificial regeneration. Accordingly, its seed has been traded and used across Europe for centuries. Indiscriminate planting from seed of uncontrolled origin sometimes resulted in blatant quality loss, triggering provenance research well before present-day genetic knowledge was available.There have been numerous attempts to subdivide the immense distribution area into various subspecies, which are rather unconvincing owing to the lack of any clear discontinuities in the contiguous range. Isolated southern occurrences, regarded as glacial relics, were occasionally described as separate species, such as P. hamata (Stev.) Sosn., P. armena Koch and P. sosnowskyi Nakai for the Caucasus region.Under natural conditions Scots pine is not readily interfertile with other pine species. Spontaneous hybrids with P. nigra, P. densiflora and P. mugo have been reported. Towards other taxa, the species shows a robust hybrid incompatibility.The high migration potential of both pollen and seed results in effective geneflow within the contiguous range, causing a distinct, clinal pattern of variation within the species, at least for adaptive traits. This is typically the case with growth and phenology characters, which are determined primarily by temperature conditions in the vegetation period. Northern and continental populations need less heat sum to complete phenophases and reach hardiness. Southern and coastal provenances have longer vegetation cycles and are less hardy. Intensive geneflow also maintains high within-population diversity in both adaptive and neutral traits. Stem form, crown form and branchiness show great variability within the area of distribution. Only the provenances of northern Europe/Siberia and those from higher elevations are straightstemmed with an ideal conic crown form and fine branches. Certain regional populations (e.g. southeastern Baltic coast populations) show superior growth traits and high phenotypic stability, while in other areas growth and stem form are typically poor, possibly indicating improper silvicultural practices in the past (e.g. in Germany or in the Carpathian Basin).In accordance with growth and stem form, mechanical properties of Scots pine timber show differences according to origin. This also includes the chemical composition, e.g. the extractive and oleoresin content of wood.Intraspecific variation in resistance traits has also been recorded. Resistance to fungal pathogens such as Lophodermium spp. is higher in the western, coastal parts of the range, whileinus sylvestris Pin us sylvestrisScots pinePinus sylvestrisScots pinePinus sylvestrisScots pinePinus sylvestrisSc southeastern forest steppe populations are especially susceptible. Geographic variation in susceptibility to insect pests has been proven for a number of insects; for instance Central European populations are susceptible to root collar weevil and pine moths, but more resistant to pine shoot borer and pine weevil.Biochemical and molecular studies have clearly indicated that there is high diversity in Scots pine throughout Europe, with most variation occurring within rather than between populations. Monoterpenes and isozymes have been used to group the remnant areas in Scotland. Both approaches identified one region lying at the extreme northwest of the species' distribution with distinctive characteristics. These approaches have been superseded by DNA-based markers for the chloroplast, mitochondrial and nuclear genomes.Variation in mitochondrial DNA (maternally inherited in pines) has indicated that the three major mitotypes present in Spanish populations encompass all the variability found in the rest of Europe. However, their individual occurrence throughout Europe separated Italian, westcentral European and Fennoscandian populations into three clear groupings. At the extremes of the natural range, only one mitotype occurred in the isolated populations in southern Spain whereas in Scot-land, although most sources matched the west-central European grouping, the Italian mitotype was present. Overall, molecular studies support the existence of three evolutionary routes within Europe for Scots pine and the higher variability in Spanish populations suggests that this area may have been an original centre of diversity.The main threats to survival lie at the extremes of its distribution, in particular, the northwestern and southwestern fringes (Scotland and southern Spain). Here the distribution of the species has become discontinuous and fragmentation into isolated populations is common. In extreme circumstances, this has left several remnant populations with fewer than 100 trees. Regeneration at the boreal forest limit is also problematic. In patches of the distribution browsing damage has led to a change of species. Measures such as fencing or reduction of game populations have been used to safeguard Scots pine populations, achieve successful natural regeneration, increase stocking levels and expand the areas concerned. In a number of instances, the need for grafted seed orchards to supply seed representing individual, highly vulnerable sources has been recognized.In the core area of European distribution, where large-scale artificial regeneration has taken place for a long time, loss of locally adapted, autochthonous populations may have occurred in many areas. In regions where the species has been cultivated outside its natural range (e.g. Germany, France, Hungary) Expected climatic changes will prolong droughts in continental SE Europe and in the Mediterranean region; this must be recognized as a potential threat not only to populations at the southern limits of the distribution area but also to highelevation populations. This is likely to cause a northward shift of the area where the species can be successfully cultivated.Because Scots pine is a species with an extremely wide distribution and occupying a broad range of habitats, genetic conservation seems to be a task of low priority. However, the need to address genetic resources of Scots pine is supported by the widely proven genetic diversity between populations, the effects of century-long cultivation and the expected environmental changes at the margins of the distribution.As Scots pine is one of Europe's most important tree species under forest management, the anthropogenic influence is obvious. Both survey and recording of native local (autochthonous) stands are important for gene conservation. These records could include various identification data; molecular markers become increasingly useful for this task.Long-term provenance tests have proved the value and importance of locally adapted populations. This is valid primarily for extreme site conditions (higher altitudes, coastal environments, extreme boreal conditions, rocky or semiarid sites). Preserved populations on these sites exhibit less plasticity when transferred to other conditions, but are usually superior locally. Special care should be taken, therefore, to select representative populations for conservation on such sites. Native stands selected for gene conservation will also serve as 'population standards' when compared with man-made forests.As with populations on extreme sites, isolated outliers might have been exposed to specific selection pressures or drift and may carry rare alleles. Such populations should be carefully protected and steps taken to collect forest reproduction material at the sites. Local material should be used for regeneration and material from endangered sites should also be established in ex situ conservation stands.Expected climate change will first affect the populations at the southern fringes of the distributional range. These populations are often remarkably vigorous and tolerant and may be of value for future breeding. Here also ex situ measures should be applied to safeguard long-term survival.The long tradition of artificial regeneration may have developed landraces that could also be targets for gene conservation efforts. These populations usually represent diverse, rather plastic genetic resources, valuable for future breeding and reproduction.When selecting gene conservation units along a continuous cline, ecological information should be preferred to neutral s sylvestris Pinus s sylvestrisScots pinePinus sylvestrisScots pinePinus sylvestrisScots pinePinus sylvestrisSc Guidelines for genetic conservation and use markers. In the absence of drift, in a contiguous distribution range adaptively different populations may be expected at distances where annual mean temperature differs by a minimum of 1.0-1.5°C (equal to ca. 200 km in a flat landscape).The size of gene conservation units of Scots pine should be sufficiently large to compensate for and buffer against outside geneflow: 100 ha should be considered the minimum. Nearby occurrences of genetically degraded or otherwise unsuitable stands should be either avoided or removed. A conservation unit should consist of numerous adjoining stands of various age, provided their origin is the same. In areas of scattered occurrence, initial size may be 10 ha as a minimum, which can be increased during successive regenerations.In many instances the pioneer character of Scots pine demands human interaction to prevent ecological succession. As far as possible, natural regeneration should be applied; this is less problematic on drier or poorer sites. Regeneration of admixed species should be tolerated for ecological reasons. The light demand of the species does not allow the development of a very complex stand structure, but this is not necessary as evenaged stands may hold equal diversity. Regeneration felling should be carried out stepwise, allowing for recruitment from numerous seed years. Scots pine is genetically rather insensitive to the type of regeneration cutting used. However, if the influx of outside pollen were minimized (a goal which can be met with only partial success), shelterwood cutting would be preferred to other regeneration regimes. Fencing of the unit has to be considered where high game density threatens natural regeneration processes.Pinus sylvestrisScots pinePinus sylvestrisScots pinePinus sylvestrisScots pinePinus sylIn certain cases artificial regeneration may be necessary (e.g. for ex situ conservation). To sample genetic resources properly, cones from 50 or more well-distributed trees should be collected (preferably in a good seed year). The quantity of seed from each tree must be equal in order to get a balanced participation in the final seed lot. Mixing of repeated seed harvests is beneficial, and no seed sorting or grading must be applied.Direct sowing should be preferred to planting. If possible, planting should be carried out with higher density than usual to allow for more natural selection.Intermediate low-intensity fellings and management should maintain a relatively dense stand structure. Selective removal of trees should be confined to malformed individuals; otherwise a broad variation of phenotypes should be allowed.In summary, priorities for specific gene conservation measures will differ regionally. Preservation of genetic resources of Scots pine should be visualized in the context of locally applied forest management practices (especially control of seed sources for artificial regeneration), the extent of protected or unmanaged areas and the occurrence, density or fragmentation of the species at the landscape level, together with actual threats and risks. The urgency to set up gene conservation units will be much higher in an area with fragmented remnants of local populations surrounded by planted forests of uncontrolled origin than in a region where sustainable forestry relying on natural regeneration and local seed sources is practised. ","tokenCount":"2048"} \ No newline at end of file diff --git a/data/part_1/0651200291.json b/data/part_1/0651200291.json new file mode 100644 index 0000000000000000000000000000000000000000..eb723a56ebd1e6664ad18a64edb0a7b461119939 --- /dev/null +++ b/data/part_1/0651200291.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4290dbb257450e366edc8293b83569e7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ff83665e-219a-4c4d-95a9-bf34cff161fd/retrieve","id":"679490564"},"keywords":[],"sieverID":"117a3563-506e-46c1-9fc6-b54b3a0694d6","pagecount":"47","content":"cumplido seis años de ejecuci6n. Desde su inicio en 1982, el Proyecto ha pasado por tres distintas fases: una fase experimental, una fase demostrativa y una fase de replicación.El período cubierto por el presente informe corresponde al cuarto año de la fase de replicaci6n durante el cual operaron 34 de las 36 plantas y se ampli6 el área de secado en 1200 metros cuadrados para un total de 29,490 metros cuadrados.En la campaña 1986/87 las plantas procesaron 9,916 toneladas de yuca fresca para producir 3,851 toneladas de yuca seca, o sea un aumento del 29.2% frente al año pasado. El uso de la capacidad instalada aumentó de 45% el año pasado, a 58%.Córdoba obtuvo la más alta rentabilidad con 36.2% seguido por Sucre con 19.9% y Magdalena con 5.6%. Bolívar, Atlántico y Cesar presentaron pérdidas debido principalmente a su incapacidad de conseguir materia prima para trabajar.Sinembargo, el 70% de las empresas arrojaron ganancias, mientras que el año anterior solo el 50% 10 hicieron.Córdoba presenta los costos fijos y variable más bajos del proyecto, mientras que Cesar muestra los valores más altos.Medellín se perfila como el mercado más estable e importante para la yuca seca, especialmente el cliente SOLLA. Otras compañías interesadas en Medellín son COLANTA, FADEGAN, CONTEGRAL, y FINCA.Esta plaza adquiri6 el 68% de la producci6n total de este año.Los precios de venta variaron desde $33,000 en Enero hasta $47,000 en Noviembre, un aumento del 42.4%.En Enero y Febrero hubo baja oferta de transporte y los transportadores subieron el precio por esta raz6n.El sector privado ha mostrado interés en el secado de yuca, reflejado en el hecho de que en esta campaña produjeron aproximadamente 400 t, o sea el equivalente al 10.4% de la producci6n de las plantas.Las plantas tuvieron problemas en la consecuci6n de materia prima debido a los altos precios en el mercado de yuca fresca. Los socios aportaron en promedio el 36% de la yuca picada; el año pasado el aporte fue del 30%.En la presente campaña la coordinación del Proyecto DRI-CIAT no program6 capacitaci1ín tendiente a aumentar el número de técnicos especializados en producci6n, procesamiento, comercialización, sistematización y organizaci6n.Se realizaron dos eventos para funcionarios, uno sobre conservación de yuca fresca y el otro sobre informática y monitoreo del proyecto oc yuca PROLOGO El presente documento constituye el Sexto Informe del Proyecto Cooperativo DRI-CIAT; ~ste describe las actividades desarrolladas en el período Diciembre de 1986 hasta Noviembre de 1987 y trata 108 aspectos en los cuales el proyecto ha operado normalmente y aquellos donde se deben hacer ajustes para lograr un mejor rendimiento técnico y económico de las plantas de secado de yuca. Además, incluye los planes para la ampliación del proyecto de yuca en el período 87/88 y un análisis general del desarrollo de la industria de yuca seca en la Costa Atlántica durante los últimos cuatro años.En Enero y Febrero de esta campaña se presentaron problemas con el transporte porque fué escaso y, aprovechando esta circunstancia, los transportadores elevaron el precio. La baja oferta de transporte se presenta debido a que en esta época sale la cosecha de sorgo, maíz y algodón en la Costa y en todo el país; ésto, sumado a que la yuca seca ocupa mucho volumen, hace que los transportadores eleven el transporte o prefieran otros productos.Los precios de compra de la yuca seca variaron con el tiempo. SOLLA pagó a $33,OOO/t en Diciembre y Enero, a $35,000 en Febrero y Marzo; en Abril y Mayo CONTEGRAL entró a comprar a $37,500/t; en Mayo y Junio FADEGAN compró a $40,000; en Julio y Agosto SOLLA compra a $45,OOO/t; en Septiembre y hasta Noviembre SOLLA y CONTEGRAL compran a $46,000 y $47,OOO/t recogida en planta. PURINA, NUTRINAL y NUTRIDIAZ no elevaron los precios como lo hicieron los de Medellín. Podemos concluir que el mercado más importante para la yuca seca es Medellín, en donde existen muchas empresas interesadas en comprar este producto (COLANTA, FADEGAN, SOLLA, CONTEGRAL y FINCA). debido a que (a) se encuentran bastante alejadas de las zonas productoras de sorgo y de los puertos de entrada El Proyecto Cooperativo DRI-CIAT, cuyo objetivo es la promoci6n del desarrollo agroindustrial del cultivo de la yuca en la Costa Atlántica, ha cumplido seis años de ejecución. Desde su inicio en 1982, el Proyecto ha pasado por tres distintas fases: una fase experimental, una fase demostrativa y una fase de replicación.El perfodo cubierto por el presente informe corresponde al cuarto año de la fase de replicaci6n durante el cual operaron 34 de las 36 plantas y se ampli6 el área de secado en 1200 metros cuadrados para un total de 29,490 metros cuadrados.En la campaña 1986/87 las plantas procesaron 9,916 toneladas de yuca fresca para producir 3,851 toneladas de yuca seca, o sea un aumento del 29.2% frente al año pasado. El uso de la capacidad instalada aument6 de 45% el año pasado, a 58%.C6rdoba obtuvo la más alta rentabilidad can 36.2% seguido por Sucre con 19.9% y Magdalena con 5.6%. BoUvar, Atllintico y Cesar presentaron pérdidas debido principalmente a su incapacidad de conseguir materia prima para trabajar.Sinembargo, el 70% de las empresas arrojaron ganancias, mientras que el año anterior solo el 50% lo hicieron.Córdoba presenta los costos fijos y variable más bajos del proyecto, mientras que Cesar muestra los valores más altos.MedelHn se perfila comO el mercsdo más estable e importante para la yuca seca, especialmente el cliente SOLLA. Otras compañfas interesadas en MedelHn son COLANTA, FADEGAN, CONTEGRAL, y FINCA.Esta plaza adquirió el 68% de la producción total de este año.Los precios de venta variaron desde $33,000 en Enero hasta $47,000 en Noviembre, un aumento del 42.4%.En Enero y Febrero hubo baja oferta de transporte y los transportadores subieron el precio por esta razón. seca. El SENA llevó a cabo seis cursos en Sucre, uno en C6rdoba.El presidente de la ANPPY asisti6 incluyendo uno en M~xico.en Atlántico y dos a seis eventos, En algunos departamentos el monto del crédito de producción es demasiado bajo y no se entrega oportunamente.Los equipos t~cnicos de Magdalena y Cesar no han operado y para la próxima campaña se buscará una solución a este problema.Desde Marzo/S7 en Barranquilla se inició un estudio econ5mico y de factibilidad para implementar la comercialización de la yuca fresca conservada en bolsas de polietileno. Se inició la fase comercial con una organización COOPROMERCAR en Repelón (Atlántico), productora de yuca de muy buena calidad y con potencial para producir todo el año.Se está construyendo un centro de acopio en Betulia con el fín de agilizar la comercialización de productos agrícolas de la región y fomentar la integraci60n cooperativa. En ese centro también se proyecta construir una planta piloto de molienda y mezclado para evaluar la tecnología de molienda de yuca.Para la próxima campaña se planea (a) aumentar el área de secado en 4,700 metros cuadrados, (b) ampliar bodegas en Magdalena, y (e) construir ramadas aledañas a las bodegas para aumentar la capacidad de almacenamiento. También se proyecta (a) expandir el uso de motores el~ctricos en tres plantas más. y (b) nueve plantas picarán con el disco tipo \"Colombia\". Ademiís, se hace necesario probar el uso de armazones portátiles con techo plástico en vez de la carpa de polietileno, cuyo uso está resultando antieconómico.CONTENIDO Página PROLOGO 1.3.s,Funcionamiento de las plantas de secado 3.2 Rentabilidad econ6mica ..... ' \" ... ' \" ' \" ' \" . ' \" .. ' \" ... ' \" ... Estas dos cooperativas comercializaron leche y maíz, respectivamente.La producción de yuca seca se inició en Diciembre de 1986 y terminó en Abril para la mayoría de las plantas exceptuando cuatro plantas en Córdoba, una en Magdalena y otra en el Cesar, las cuales operaron hasta Noviembre con algunas interrupciones causadas por el mal tiempo o por la escasez de materia prima.Durante la presente campaña se ampli6 el 'rea de secado en 1200 metros cuadrados, distribuídos así: 500 metros cuadrados en Sucre y C6rdoba cada uno y 200 metros cuadrados en Atlántico. Se procesaron 9,915.9 t de yuca fresca con las cuales se produjeron 3,851 t de yuca seca, lo que significa un incremento del 36.7% y 28% respecto al año anterior. El factor de conversi6n yuca fresca/yuca seca aumentó, especialmente en Sucre y Bolívar, debido al ataque del gusano cachón, Erinnyis ello, con un promedio regional de 2.57 comparado con uno de 2.43 en el año anterior (Cuadro 1).El rendimiento promedio fué de 133.1 kg de yuca seca por metro cuadrado de piso en toda la campaña, o sea un incremento del 28.6% frente al año pasado. Sinembargo, este rendimiento está muy por debajo del rendimiento de 230 kg de yuca seca por m 2 , el cual es posible bajo las siguientes condiciones óptimas: (a) un buen suministro de materia prima, (b) un factor de conversión de 2.5, y (e) un manejo adecuado de los Ef:!.cieocia de uso:Ef:!.cieocia glOOal:M1de los lotes de yuca p~ por una planta ~os con los que podría procesar.M1de la pJ:lJdllrc:tón de yuca seca en un perfodo ~o con la pn:.ducción que se podría obte11er te6r:l.c.amente. Se asume una producción óptima de 230 kg de yuca seca/m • año.bl Cifras en par~ntesis indican el número de plantas.En la presente campaña no ampliaron las bodegas, con la excepción de COOPROCA en Córdoba que construyó una ramada a continuación de la bodega para almacenar yuca seca. La mayoría de las plantas de secado arruman bultos de yuca seca en la parte alta de las pistas y luego los cubren con una carpa plástica.En la próxima campaña se ha decidido ampliar las bodegas en Magdalena. En los departamentos restantes se sugiere construir ramadas a continuación de las bodegas para almacenar ahí y no en la pista. Las futuras bodegas deben poseer (a) un buen aislamiento t~rmico en su cubierta y (b) ventilaei6n transversal, con el fín de evitar la deshidratación de la yuca seca almacenada.En esta campaña, dos plantas en Suere (APROSOCORRO y COOAPROBE), una en Bolívar (ASOPADULA) y otra en Córdoba (COOPROCA desde bace tres años) operaron con motor eléctrico. El motor eléctrico presenta múltiples ventajas frente al de gasolina o diesel, a saber: (a) mayor eficiencia en el picado, (h) costo inicisl menor, (e) costos de operación menores, (d) más silencioso, (e) encendido más fácil, (f) puede acoplarse fácilmente a la máquina picadora, (g) facilidad de traslado de la máquina-motor en la pista pues no necesita anclaje, (h) fácil operación y mantenimiento.En la próxima campaña dos plantas en Magdalena y una en Córdoba planean operar con motores eléctricos. Además. nueve plantas (6 en Córdoba, 2 en Sucre y 1 en Cesar). picarán con el disco tipo \"Colombia\" 10 que permitirá su evaluación. Hasta ahora se ha utilizado experimentalmente en CIAT con resultados halagadores, ya que exhibe mayor eficiencia en el picado, uniformidad en el trozado y facilidad en el esparcido.En algunas plantas se construyeron recogedores y rastrillos de madera pesada y verde, lo que dificulta su operación y manejo. Se aconseja utilizar madera seca y liviana para este propósito.La mayoría de las plantas operaron con una carpa de polietileno de 25 x la metros en vez de la de 50 x 10, lo que facilitó elmenejo. A pesar de que fué más difícil la recogida y posterior esparcida, la calidad de la yuca seca fué mejor. Esto se observ6 en las plantas que operaron de Mayo a Noviembre. Sinembargo. el alto costo de la carpa ($50,000 en Febrero 1987 y $77,000 en Diciembre del mismo año) y su poca durabilidad, hace. necesario explorar la factibilidad de usar armazones portátiles de madera o hierro con techo plástico usados ampliamente en el Asia.La eficiencia global es un parámetro que combina (a) la disponibilidad de materia prima en la región de influencia de la planta y (b) el dominio de la tecnología y la capacidad empresarial que los campesinos han adquirido pars manejar las plantas de secado. Este año, al igual que en el anterior, la eficiencia promedio del proyecto fué muy baja (del 48 y 37% respectivamente) debido a que el promedio de ocupación de las plantas fué del 60% por la escasez de materia prima y en algunos casos por la falta de estrategias orientadas a obtener la materia prima.Una empresa de Córdoba (COOPROSAL) logró sembrar un lote de 23 hectáreas con crédito de Caja Agraria y asistencia técnica del lCA, solucionando en parte el problema de escasez de materia prima.Es muy importante que todas las organizaciones contraten un contador para el manejo contable total (presentación de balances, estados financieros, llevar los libros, etc.) y que el SENA siga impartiendo capacitación en la forma de llevar los registros y formatos que sustentan la contabilidad, el desarrollo socio-económico de las empresas y su proyección hacia la comunidad. En aquellas regiones donde el SENA no puede llegar, los asistentes técnicos deben llenar este vacio.Fué dificil obtener la materia prima ya que el precio para el mercado de yuca fresca, entre $12 y $2S/kg, impidió que las plantas de secado pudieran competir. En esta campaña, al igual que en las anteriores, la mayor parte de la yuca procesada provino de agricultores externos a las plantas de secado; este año los socios solo aportaron en promedio el 36% de la yuca picada contra el 30% del año anterior (ver el Cuadro 5). fOR\"AS FIJOS VARIABLES TOTAL PUESTO PLANTA PUESTO SI.CON ASOCIATIVAS lit y.s lit y.s $/t y.s lit y.5 lIt y.1 lit y.s lit y.s lit y.s --------------------------------~-----------------------------------------------entre Mayo y Junio fu'; de $38,000 y $40,OOO/t yuca seca; de Julio a Noviembre de $45,000 y $47,OOO/t yuca seca (recogida en planta).El flujo de caja fue más alto en Córdoba ($11,914/t yuca seca) debido al manejo eficiente de sus costos y a que 4 plantas pudieron operar hasta Noviembre, obteniendo mejores precios en el mercado de la yuca seca; en Atlántico ($3,179/t yuca seca) se refleja la escasez de materia prima causada por la competencia del mercado en fresco y de INYUCAL, fábrica de almidón de yuca, en Barranquilla.Una planta en Córdoba (COOPROCA) y tres en Sucre (COOAPROBE, COAGROPROMEZA y COAGROALBANIA) no pagaron intereses por capital de inversión por ser construídas con donaciones y recursos propios. Sucre es el departamento que en promedio presenta los menores valores en intereses por inveraión y capital de trabajo lo mismo que por depreciaciones ($936, $398 y $994/t yuca seca, respectivamente).Córdoba logró la mayor rentabilidad promedio en la presente campaña, 36.2%; se presentaron rentabilidades entre 18.6% y 59%. Le siguieron Sucre con 19.9% y Masdalena con 5.6%. Es preocupante la situación en Bolívar (-23.9%), Atlántico (-11.6%) y Cesar (-4%). Las causas de estas rentabilidades negativas fueron: (a) incapacidad de producción por falta de tierra de los socios, (b) baja producción causada por el intenso verano, y (e) el mercado fresco de Barranqul1la y Cartagena captó la mayoría de la yuca producida en la región ante la poca oferta proveniente de otros departamentos. En Bolívar el problema fué más grave debido a que el crédito de capital de trabajo fUE! otorgado en Marzo cuando la mayoría de la yuca había sido cosechada.El Cuadro 12 muestra que el 70.6% de las empresas arrojaron ganancias, mientras que el año anterior solo el 50% habían arrojado resultados positivos. La producción promedio por planta de toneladas de yuca seca, se incrementó en 19.5% con respecto a la campaña pasada para las plantas que arrojaron ganancias; caso contrario sucedi6 con aquellas plantas que obtuvieron resultados negativos donde la producción promedio por empresa se redujo en 41.5%. El rendimiento promedio se incrementó en 22.6% para las empresas que obtuvieron ganancias pero se redujo en 33 Producción promedio por empresas 43 53 (t de yuca seca)Rendimiento promedio 2 (kg yuca seca/m piso secado) 75 74 Uso de la capacidad instalada (%) 32 32 que presentaron p~rdidas 10 cual trajo como consecuencia disminución en el uso de la capacidad instalada (34.4%) pero se incrementó en aquellas plantas que tuvieron resultados positivos (23.6%).Es importante resaltar de que a pesar de haber obtenido mejores resultados este año que en el anterior, no se logró superar el nivel de uso de capacidad instalada de la campaña 84/85 y fue el más malo para las empresas que arrojaron pérdidas.En la presente campaña no se realizaron actividades de capacitación para funcionarios promovidas por la coordinación del Proyecto DRI-CIAT, lo que es preocupante ya que no se ha aumentado el número de t~cnicos especializados en El Proyecto de Yuca Seca ha operado con dos asesores DRr-CIAT, uno con sede en Sincelejo y otro en Santa Marta. Las principales actividades desarrolladas por estas personas han sido: a) Apoyar y colaborar con ANPPY en la comercialización de yuca seca.Prestar asistencia técnica en el procesamiento, empaque y almacenamiento de la yuca.c) Promover con el coordinador regional reuniones de evaluación de la campaña de yuca seca.Promover y coordinar con los directores regionales DRI. reuniones de los equipos técnicos.En los equipos técnicos ha estado participando el Antropólogo Paul Bode de la Sección de Economía de Yuca del CIAT, mostrando los avances en el monitoreo de las plantas de secado y en este año con la colaboración del SENA se ha logrado implementar un programa de monttoreo que se comenzará a aplicar en el período 87/88 con la colaboración del SENA y los Fondos Regionales DRI de los departamentos.A partir de Mayo/87 el asesor DRI-CIAT. Francisco Figueroa, comenzó a trabajar en el proyecto de conservación de yuca fresca en los estudios preliminares y en la factibilidad de implementarlo en Barranquilla, retomando la experiencia del CIAT en Bucaramanga. En Agosto 1987 se inició la fase semi-comercial, obteniendo buenos resultados y con la perspectiva de replicarlo en toda la Costa.Ampliación del Proyecto de Yuca 2 de piso m Construir 400 2 de piso m Construir 500 2 de piso y bodega m pequeña.1,400 m 2 de piso y construcción de otra bodega.2 1,400 m de piso y construcción de otra bodega. Determinar la viabilidad técnica y económica de producir trocitos de yuca seca y harina de yuca.Estudiar la factibilidad técnica y económica de producir raciones balanceadas para animales, especialmente aves y cerdos, en forma de harina pars uso local, utilizando la yuca como fuente principal de carbohidratos.Estudiar el posible aprovechamiento de productos no tradicionales fuentes de proteína como ltudzú, guandul, ramio y otros de la región.Para el período 87/88 se tiene planeado por parte del CIAT estudiar la factibilidad técnica y económica de introducir una tecnología de secado artificial para la Costa Atlántica dirigido a zonas donde se produce yuca todo el año.Desde Marzo/87 en Barranquilla se comenzó a hacer un estudio económico y de factibilidad para implementar la comercialización de la yuca fresca conservada en bolsas de polietileno. Como resultado de estos estudios, se inició la fase comercial en Agosto con una organización (COOPROMERCAR) con sede en Repelón, Atlántico a 90 km de Barranquilla.Esta cooperativa tenía experiencia en comercialización, produce yuca de buena calidad y puede producir en todas las épocas del año debido a que está localizada en un distrito de riego. Como este proyecto ha obtenido buenos resultados, en Noviembre se realizó el Taller DRI-CIAT sobre conservación de yuca fresca con la participaci6n de los asistentes regionales DR! y asesores en comercialización de la Costa Atlltntica; este evento cre6 muchas expectativas en los participantes y la esperanza de poder implementarlo en sus respectivos departamentos. Debido a ésto ae establecen tareas y pasos a seguir para poder realizar la comercialización de la yuca en fresco, especialmente en Atlántico, Bolívar, Sucre y Córdoba.Para el período 87/88 se tiene establecido que cada departamento interesado en realizar este proyecto debe hacer estudio económico y de factibilidad, además de analizar la calidad y los sitios de producción de yuca. Se empezaría con Atlántico y Bolívar y luego con los demás departamentos.La campaña 1986-87 mostró una franca recuperación de la mayoría de las empresas productoras de yuca seca con relación a los resultados de años anteriores. Cualquiera de los parámetros de eficiencia que se analicen muestra que las organizaciones de productores han adquirido un excelente dominio de la tecnología de aecado natural de yuca y que, en la mayoría de las áreas de influencia donde operan, las plantas de secado se han convertido en alternativas importantes de comercializaci6n para los productores de yuca y en fuentes generadoras de empleo e ingresos para un número significativo de agricultores. Los resultados de la campaña 1986-87 presentados en este informe permiten hacer los siguientes comentarios:l. Existe una clara diferencia entre las organizaciones vinculadas al proyecto. Unas plantas producen ganancias (24 plantas positivas) y otras, afortunadamente la minoría. producen pérdidas (lO plantas negativas). Las plantas positivas mejoraron su desempeño en este año alcanzando una producci<5n promedio de 147 t de yuca seca por planta (123 t el año pasado) y un rendimiento promedio de 157 kg de yuca por m 2 de piso (128 el año pasado), Las plantas negativas se vuelven cada día más negativas. En los resultados de este año obtuvieron una producci6n promedio de 31 t de yuca seca por planta (53 el año pasado) y un rendimiento promedio de 49 kg yuca por m 2 de piso (74 el año anterior). Es decir, que los ricos se vuelven más ricos y los pobres se vuelven más pobres. Lo que hace más penoso el análisis es el hecho de que la mayoría de las plantas negativas están ubicadas en áreas donde no se vislumbra a corto plazo una solución a la problemlitica que está dando origen a los desempeños tan pobres (Bolívar. Atlántico y Cesar) • Las plantas de secado en estas regiones pertenecen a organizaciones de productores con muy poca capacidad de producción de yuca dada su precaria situaci5n de tenencia de tierra; este factor, aunado a la competencia con otros mercados por la materia prima, ha terminado por convertir las organizaciones en dependientes de terceros y cuando acontece una situación como la de los dos últimos años de buenos precios para los mercados de yuca fresca, entonces la posibilidad de las plantas de operar rentablemente es mínima.Ha sido sugerido en informes anteriores y aún sigue siendo una recomendación vigente, la de establecer mecanismos que permitan a los agricultores la adquisici5n de tierras, vía reforma agraria o mediante la provisi6n de créditos especiales.Solo a través de acciones de esta naturaleza será posible lograr un funcionamiento adecuado de las empresas campesinas.La comercializaci6n de la yuca aeca sigue siendo el área de trabajo donde las organizaciones de productores necesitan más apoyo en asistencia técnica y capacitaci6n. Los canales de mercadeo para el producto continúan siendo fluctuantes. destacándose la consolidaci6n del mercado de Medell!n que en este año captó el 67.7% de la producci6n total comparado con el 46.5% del año anterior. Los mercados de Barranquilla, Bucaramanga y Valle del Cauca presentaron un descenso en los volúmenes captados pasando en este año al 22.3% frente al 45.7% de la campaña pasada. El mercado de Cartagena experimentó una pequeña mejoría en este año pasado del 6.9% al 9.5%. Esta situac16n crea dificultades cada vez mayores para los productores de yuca seca ya que deben negociar con mercados muy distantes (500-1,000 km).La campaña 1986-87 permiti6 a la ANPPY una participaci6n muy activa en las negociaciones con los compradores de yuca seca. La consolidación de este ente organizativo campesino debería ser tarea prioritaria en las actividades futuras del proyecto con el fin de lograr un nivel de desarrollo en la ANPPY que le permita asumir totalmente el área de comercializaci6n del producto. Habrá necesidad de probar la validez de esta forma organizativa frente a hechos como la atomizaci6n de la oferta del producto que hace que para las plantas de secado de Bolívar. Atlántico y Magdalena no resulte rentable vender el producto en los mercados donde ANPPY está logrando conquistar espacio. Logrará ANPPY la misma penetración en el mercado de Bucaramanga, por ejemplo ? Caso contrario, se deberá pensar en una descentralización de la comercialización y en el fortalecimiento de células locales de ANPPY que tengan más facilidades de operar en mercados más localizados.El fortalecimiento y motivación de los equipos técnicos es una tarea importante en 108 proximos años del proyecto. En algunas áreas se ha logrado desarrollar esquemas de trabajo organizados y coordinados y las relaciones de las entidades con los agricultores son muy buenas. En otras áreas, el mismo esquema de trabajo, los mismos propósitos, no han logrado funcionar y tenemos entonces el caso de un modelo organizacional que no es replicable de un departamento a otro, a pesar de la cercanía.Por qué el desarrollo de los equipos técnicos regionales es tan desigual ? Esta será la pregunta clave a resolver para poder encontrar los limitentes que están impidiendo un desarrollo armónico del recurso humano que presta asesoría tl!cnica en el proyecto.","tokenCount":"4096"} \ No newline at end of file diff --git a/data/part_1/0685379533.json b/data/part_1/0685379533.json new file mode 100644 index 0000000000000000000000000000000000000000..86138b382aa61a030ea5cdea64ae7aa6a7b4e0a8 --- /dev/null +++ b/data/part_1/0685379533.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"379a49c76b42954cf8d72c04cba48828","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8095851b-3321-4c38-9228-0da06384796d/retrieve","id":"1172957691"},"keywords":["In this area","pollution","urbanization","industrialization","and other challenges greatly affect water resources. Besides","low productivity","disease","malnutrition","slow economic growth","social instability","and conflicts"],"sieverID":"dd4f7150-8899-4de3-835f-f118954970ab","pagecount":"4","content":"DWSP is a faith-based organization (FBO) that has been providing sustainable water and sanitation services to the rural poor, and water has stressed the communities of Kigezi Diocese since its inception in 1986.Rubaya and Butanda subcounties in Kabale District, southwestern Uganda, are heavily cultivated hills that range from 1,219 m (3,999 ft) to 2,347 m (7,700 ft) above sea level. Mean annual rainfall is 1,092 mm. The rainy seasons are from March to May and from September to November, with intervening light rains. The June to August spell is the main dry season, while from December to February, the rains are usually light. About two million people live in the district, making it one of the most highly populated in the country.The catchment area in the district comprises steep slopes, deeply narrow valleys of the Kigezi highlands, Lake Bunyonyi, River Ruhezagyende, and expansive swampy areas, 58% of which have been reclaimed for agriculture (NEMA, 2008).spraying crops and vegetables because the rains would wash the chemicals into the soils, which would then percolate into water systems.More so, the rate of vegetation destruction was increasingly high with the rising population pressure and high poverty levels amidst limited alternative means of livelihoods. There was also pollution from local gin production plants with effluent discharges into water sources.The community lacked appropriate technologies, best practices, and knowledge on the relationship between water and land resources, and how mismanaging one of them compromises the other. This inevitably affects the humanity that survives on such vital ecosystems. They could not systemically appreciate their problems.To mitigate these problems, a participatory project analysis was conducted. This entailed resource mapping of vulnerabilities and assessing threats and severity of depletion from a cause-and-effect perspective. It also required capturing community attitudes and dynamics, re-engaging of traditional interventions and measures, and involving the concerned stakeholders. This approach helped in defining problems, setting priorities, action planning, capacity-building training and implementing the project.KDWSP facilitated the formation and training of the catchment management organization and the resource user groups (charcoal burners, environmentalists, farmers, water user committees, and local gin producers). This strategically helped empower and put the community at the forefront of project implementation and sustainability.Implementation involved the construction of conservation channels, energy-saving stoves, contour furrows and check dams, punctuated with soil-filled gunny bags constructed across formed gullies at intervals to trap the silt. All water resource banks were buffered with environment-friendly projects.The communities were empowered to establish and manage nursery beds to improve green cover. Although replacing cut trees is good, it is not an effective method of recovering environmental benefits and, alternatively, an energy-saving stove over resources have made the communities more vulnerable to degradation of environmental resources.The main challenge to the water sector was in developing platforms for disseminating information on technologies, best practices, knowledge and experiences on water resources. It took great efforts to ensure that all stakeholders benefit and feel they are part of the process. The government's response to the challenge was seen in the Water Action Plan (WAP) released in 1993-94 to provide a flexible and dynamic framework for developing and managing Uganda's water resources.KDWSP employed an integrated water resource management approach in a successful pilot project, thereby reaching 408 households (2,448 beneficiaries) in the two subcounties. This project promoted and coordinated development and management of water, land, and related resources. It aimed at equitably maximizing the resultant economic and social welfare without compromising sustainability of vital ecosystems. The project started in June 2011 and ended in December 2013.Agriculture is the backbone of Uganda's economy, constituting about 42% of the GDP, more than 90% of export earnings, and employing about 86% of the labor force. However, the contribution of agriculture to total GDP has decreased from 45.7% in 1995-96 to 41.5% in 1999-2000.High population exerts lots of pressure on very scarce and fragmented land and its resources. This is so in the face of poor methods of farming, soil exhaustion due to destruction of soil structures, and deforestation for many economic and social reasons. The famous Kigezi terraces constructed during the colonial times have been heavily degraded and poorly maintained. As a result, landslides, floods, gullies, and erosion have brushed off fertile soils into lower streams.Further, destruction, sedimentation, siltation, and pollution of water sources from floods and local gin effluents had compromised environmental and community health. More destruction of water projects such as gravity flow schemes of Kahungye and Muguli, gardens, homes, and latrines compounded the problem. Water sources were polluted by farmers A functional and effective catchment network of stakeholders was established for learning and relearning. This involved the district level water resources management body, mandated institutions, opinion leaders, political leaders, and representatives of resource users to capture the interests of all stakeholders.Contact farmers in the catchment area planted 1,200 sugar canes, 900 seedlings of different tree species, 1,500 passion fruit, 200 tomato trees, and 600 grafted avocados. Four community-managed nursery beds were established to improve on the green cover while boosting their livelihood.Twenty-three households were supported with energy-saving stoves. Five local distillery industries also received improved energy-saving stoves, each accommodating 24 heating containers. Energy consumption was cut to a quarter from what it had been previously, and firewood that previously lasted for only a single day now lasts 4 days.Members of six water user committees were trained and refreshed; 179 artisans trained in rainwaterharvesting technologies have constructed 200 rainwater-harvesting ferrocement tanks (4,000 liters) and six institutional tanks (20,000-50,000 liters) to increase access to clean water for consumption, agriculture and environmental benefit, and to check water runoff.The slow adaptation capacity and delayed shift in the mindset of farmers to help them move from traditional framing to conservation agriculture presented barriers to adoption.Land fragmentation and scarcity were a challenge and a limitation to adaptation of best practices and resource bank protection.Community-led initiatives that address problems in the community have defined themselves; these have provided a reliable premise for sustainability. Interventions that may contravene some values or policies should be well-defined to minimize conflicts.was devised to check this gap. This stove, crafted with a heating unit, a cooling chamber, and a slug channel leading to a soak pit, became an effective facility adopted, promoted, and widely used in the community to check negative pollution of the environment.As well, there was need to create awareness in the community. The project established information and knowledge-sharing platforms for dissemination, learning, and training. Thematic messages were packaged in a video documentary, reports and music, and dance and drama pieces from farmer field schools. This strongly appealed to a wider audience, including mandated institutions and civil society at community, subcounty, district, regional, and national levels.KDWSP monitored and supported the implementation processes of resources, whereas user groups and the community worked together to deliver these projects with external support. This helped the project extend technical support and review practices and activities during implementation.The implementation was participatory as community members were involved in identifying and analyzing the problems, devising solutions, and training them how to implement and sustain the use of the technology.The community mobilized locally available materials (resources) such as stones, sand, unskilled labor, and food contributions.Equitably and inclusively, most interest groups, especially women, youth, and all institutions in the community participated, thereby bringing diverse stakeholders on board to capture wider interests and enhance project acceptability.Five soil and water conservation (SWC) channels and 135 check dams were buffered and excavated of average capacity 2-6 m 3 punctuated with soil-filled gunny bags and elephant grass. These have helped retain water for recharge and re-use and healed many gullies.","tokenCount":"1251"} \ No newline at end of file diff --git a/data/part_1/0686449398.json b/data/part_1/0686449398.json new file mode 100644 index 0000000000000000000000000000000000000000..42474f77968d60dadbd56e307ec5d75851fb8684 --- /dev/null +++ b/data/part_1/0686449398.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"4d68b70db82ed9783a044bab3fe71af7","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/ce25e04f-da04-4de4-89ef-e6b6f7f1bf67/content","id":"-1228201275"},"keywords":[],"sieverID":"aac0e29a-274d-4ca7-905d-19a2f8dc1474","pagecount":"33","content":"Agriculture is one of the fundamental pillars of the 2022-2027 Bottom-up Economic Transformation Plan of the Government of Kenya for tackling complex domestic and global challenges. Kenya's food system is crucial for climate change mitigation and adaptation. Kenya has prioritized aspects of agriculture, food, and land use as critical sectors for reducing emissions towards achieving Vision 2030's transformation to a low-carbon, climate-resilient development pathway.Kenya's updated NDC, as well as supporting mitigation and adaptation technical analysis reports and other policy documents, has identified an ambitious set of agroecological transformative measures to promote climate-smart agriculture, regenerative approaches, and nature-positive solutions. Kenya is committed to implementing and updating its National Climate Change Action Plans (NCCAPs) to present and achieve the greenhouse gas (GHG) emission reduction targets and resilience outcomes that it has identified.On December 24, 2020, the Kenyan government formally submitted its updated NDC that describes Kenya's contribution to mitigation and adaptation from 2020 to 2030 and proposes priority mitigation and adaptation actions. Kenya has made a strong commitment to reducing economy-wide emissions (including from Land Use, Land-use Change, and Forestry (LULUCF) by 2030 by 32% relative to the BAU scenario of 143 MtCO2 eq, with 21% of the mitigation cost not contingent on international financial support. Kenya has committed to reducing total GHG emissions (conditionally and unconditionally) by 45.76 MtCO2e by 2030, from an estimated 85.79 MtCO2e technical GHG emission reduction potential baseline. The updated NDC does not mention sectoral contributions that have increased by 2% from 30% in the 2015 INDC to 32% in the updated NDC. Kenya's total greenhouse gas emissions (CO2, CH4, N2O, and HFCs) will increase to 143 MtCO2e by 2030 from 56 MtCO2e in 2000 as the country pursues the Vision 2030 development agenda. The baseline GHG emission projections for 2030 for the seven sectors are as follows: electricity generation (29%), agriculture (27%), forestry (15%), transportation (15%), energy demand (7%), industrial processes (4%), and waste (3%).In the agriculture, food, and land-use sectors, Kenya estimated a rise of 41% in total emissions from the baseline year 2000 to 2030 (i.e., from 23 MtCO2e to 39 MtCO2e) mainly driven by i) livestock enteric fermentation (18.8 MtCO2e); ii) agriculture soils (16.2 MtCO2e); iii) savanna burning (2 MtCO2e); iv) livestock manure management (1.1 MtCO2e); v) rice cultivation (0.4 MtCO2e) and vi) burning of crop residues (0.2 MtCO2e).The agriculture sector only contributes about 7% of the GHG emission reduction ambitions set in Kenya's NDC and about 50 % (2.27 MtCO2e out of 5.53 MtCO2e) of the estimated technical emission reduction potential by 2030. The NDC establishes quantitative targets in key activities for the agriculture sector which include i) Agroforestry, with an emission reduction potential of 1.66 MtCO2e; ii) Sustainable land management, with an emission reduction potential of 0.55 MtCO2e; iii) Dairy Nationally Appropriate Mitigation Action (NAMA), with an emission reduction potential of 0.40 MtCO2e; and iv) Manure management (biogas technology for cooking and agro-processing), with an emission reduction potential of 2 MtCO2e; The qualitative emission reduction targets considered for mitigation in the agriculture sector are i) increasing the deep/offshore fishing fleet; ii) increasing the number of farmers using low-carbon (recirculating) aquaculture systems; and iii) increasing the rice-production area using efficient production technology. In the land use and forestry sector, the NDC establishes some specific and measurable nature-based solutions for emission removal solutions for LULUCF. These are i) restoration of forests on degraded land leading to the abatement of 32.5 MtCO2e by 2030; ii) reforestation of degraded forests leading to the abatement of 6.1 MtCO2e by 2030; iii) reducing deforestation and forest degradation with an abatement of 1.6 MtCO2e by 2030. Kenya has emphasized adaptation as the highest priority in its updated NDC to prevent further losses and damage. The key agriculture sector adaptation activities identified in the updated NDC include i) mainstreaming climate-smart agriculture (CSA) toward increased productivity through a value-chain approach, to support the transformation of agriculture (crops, livestock, and fisheries) into an innovative, commercially oriented, competitive, and modern sector; ii) building the resilience of agriculture systems (crops, livestock, and fisheries) through the sustainable management of land, soil, water, and other natural resources, as well as insurance and other safety nets; iii) strengthening communication systems on CSA extension and agro-weather issues.Kenya's NDC is supported by scientific analyses and accounting methodologies, and the NCCAP 2018-2022 technical analysis reports have been cited. The NDC analysis has been updated using the Mitigation Technical Analysis Report (MTAR), the Adaptation Technical Analysis Report (ATAR), and the Third National Inventory Report (NIR 3). The updated NDC was based on an assessment of the extent and impact of the NDC's implementation to date and an extended inventory of historical GHG emissions up to June 2020 using the best available data from various official sources and reports. Tier 1 quantification of uncertainties associated with estimates was used in the Second National Communication GHG inventory.Adequacy of the target from the perspective of the food system Kenya's updated NDC, submitted in December 2020, slightly increased its target for 2030. Whereas the previous NDC set a target of reducing BAU emissions by 30% by 2030 and was entirely dependent on international support, Kenya now commits to reducing BAU emissions by 32% by 2030, with a portion of this new target not contingent on financial support. While the introduction of an unconditional target is encouraging, Kenya still has a lot of room to improve its target.The NDC target in the agriculture sector commits to reducing only 2.77 MtCO2e, leaving a wide gap of 93% (36.23 MtCO2e) in the mitigation ambitions for total projected emissions by 2030 and about 50% in the technical mitigation potential estimated by 2030. Similarly, forestry and land-use change information is kept within the forestry sector, and Kenya commits to reducing about 20.8 MtCO2e (out of 22.1 MtCO2e), leaving a narrow gap of 6% in the mitigation ambitions for total projected emissions by 2030 (Table 1).On adaptation, the NDC targets provide specific indications of policy actions to address risk and vulnerability in the agriculture sector and food system, as well as information on policies, spatial information, and technology development, and the need to make progress against these actions and implement the NDC.The actual mitigation potential of each of the food sectors depends on a number of factors, ranging from policy, resources, and priorities to the practicality of implementing the potential mitigation actions. A sum of about US$ 502.55 million is estimated as necessary to support implementation of climate action in the current three priority food systems -agroforestry, smart agriculture, and Dairy NAMA -including the enabling actions presented in the updated NDC.All the food sector-related mitigation actions together have an abatement potential of 5.56 MtCO2e by 2030, compared with the sector's target of reducing 3 MtCO2e by 2030. The indicative proportionate emission reduction target contribution for the agriculture sector by 2030 is 2.77 MtCO2e with a high and low range of 2.8 and 1.6 MtCO2e, respectively. However, this does not necessarily have to be delivered by the sector since the actual sector GHG emission reduction will be based on the realistic opportunities available for emission reductions in the sector together with the sector plans and budget provisions.The available information in the overall food-system sector is viewed largely from the perspective of sensitivity to the risks, impacts, and vulnerabilities caused by climate change.Emissions from the different subsectors of the national food system, particularly from food production, consumption, storage and transportation, and food loss and waste are poorly quantified and understood in the updated NDC, suggesting that the use of data collection relating to activities should be improved in the future to analyze the sources of emissions when updating the next NDC. Adopting the Tier 2 advanced accounting method with a datamanagement system to prepare agriculture, food systems, and land use in the future update of the national GHG inventory is a key step to increasing coherence in GHG reporting and mitigation efforts.Data on sectoral contributions are not specified in the updated NDC or other associated documents, posing difficulties in analyzing the sectoral contributions of about 2.85 MtCO2e by 2030. Detailed data and analysis of GHG emission trends and mitigation potential in the food production, consumption, storage and transportation, and food loss subsectors were excluded in the NDC and associated documents.To achieve the NDC target, Kenya must implement policies, programs, and technologies that encourage reductions in emissions and drive the country to a low-carbon development pathway. Kenya has enormous potential to raise its agricultural ambitions, particularly in rice cultivation and livestock management. Similarly, other subsectors of food systems, such as consumption, transportation, and food loss and waste, have the potential to reduce GHG emissions and transition to a more resilient system. The key recommendations are as follows:• Raise ambitions in the agriculture sector: In the agriculture sector, out of 39 MtCO2e projected emissions, the current NDC targets are only set for a 2.77 MtCO2e emission reduction by 2030. This indicates a massive potential for increasing ambitions in the agriculture sector. The agroforestry, sustainable land management, and livestock climate actions proposed are projected to reduce emissions by about 5.17 MtCO2e by 2030. This aligns closely with the technical mitigation potential identified. However, efforts should be made to understand the technology and measures needed to enhance mitigation solutions in the agriculture sector, including the integration of complete food systems to raise ambitions with feasible quantifiable emission reduction targets. In addition, the NDC targets should include interventions to reduce emissions from cropland and rangeland fires, which have an identified mitigation potential, as well as emissions from rice cultivation.• Raise ambitions in the livestock sector: Reducing livestock enteric methane has remained a key priority of Kenya. However, the emission reduction projection from Dairy NAMA is estimated at only 0. Therefore, the priority actions of the AFOLU sector should be set in an integrated manner for the projection and accounting of GHG emission reduction.• Raise ambitions in aquaculture: Sustainable fishing and aquaculture have the potential to deliver an increased supply of ocean proteins, reducing the demand for land and supporting healthier and more diverse diets (FOLU, 2022). The NDC and associated documents have set policy priorities for sustainable aquaculture farming in Kenya mainly by increasing the number of farmers using low-carbon (recirculating) aquaculture systems and increasing deep/offshore fishing fleets. However, there is a need to make a reasonable estimate of mitigation potential at the national scale. This includes the enhancement and strengthening of the governance of community structures in participatory resource management in coastal ecosystems; conducting a blue carbonreadiness assessment for the full integration of blue carbon/ocean climate actions into NDCs; developing marine spatial planning; and outlining sustainable management approaches (Global Alliance for the Future of Food, 2022).• Integrate a holistic food system perspective to account for the adaptation and mitigation elements of a sustainable agriculture system: There is emerging literature about understanding the risk and vulnerability of the food system with varied levels of information on distribution, food processing, transportation, marketing and consumption, and food loss and waste. Kenya's NDC emission reduction is targeted towards the agriculture production system; there is a critical need to account for emission reduction potential throughout the food system by integrating data and information to set quantified mitigation targets throughout the system from production to consumption. To build the resilience of the food system, further emphasis needs to be placed on improving food storage infrastructure, food transportation and distribution, and the efficiency and sustainability of food processing, to reduce post-harvest food loss and waste and to increase access for poor and marginalized communities to climate-smart agriculture production and to more control over resources, finance, infrastructure, and technology.Promote climate-smart agriculture practices: Kenya has taken forward CSA as a transformative tool to build a nexus between climate change and agriculture. There are opportunities to promote crop varieties, livestock, fish breeds, and tree species that are adapted to varied weather conditions and can tolerate associated emerging pests and diseases. Some crops, such as banana, cassava, sorghum, sweet potato, pearl millet, groundnut, and finger millet, are expected to experience more favorable growing conditions as a result of climate change.• Enhance Monitoring, Reporting and Verification (MRV) system with harmonized GHG accounting methods to integrate the food system: Given the disparity between the Tier 1 method used in Kenya's inventory and the Tier 2 method used in the MRV of Dairy NAMA, adopting the Tier 2 method in the national GHG inventory is a key step to increasing coherence in GHG reporting and mitigation efforts. This will allow project-level initiatives to link with national MRV systems and track mitigation trends both in terms of absolute emissions and emission-intensity reductions. To realize this, support is needed to increase institutional capacity to manage the GHG inventory compilation process, as well as to create a data management system that facilitates the preparation of a livestock GHG inventory based on advanced accounting methods i .Chapter One: Aspects of food included in Kenya's NDC targetsAgriculture is one of the fundamental pillars of the 2022-2027 Bottom-up Economic Transformation Plan of the Government of Kenya to tackle complex domestic and global challenges. Agriculture is a vital part of Kenya's economy, making up 22.4% of its GDP (KNBS, 2022) in 2021 and employing 33% of the population in 2021 ii . Over 84% of Kenya's land area is arid and semi-arid, with poor infrastructure and other developmental challenges, leaving less than 16% of the land area to support over 80% of the population iii .In the last three decades, Kenya has made significant progress in modernizing and transforming its agriculture sector into an innovative, commercially oriented, and competitive sector (MoALF, 2020). However, the agriculture sector is yet to realize its full production potential to achieve positive food security, nourishment, and health outcomes in Kenya, due to climate-related shocks such as drought, floods, and pests and diseases. A recent food security and nutrition status report estimated that about 3.1 million people (20% of the population in Kenya's pastoral and Arid and Semi-Arid Lands (ASALs)) were classified as above acute food insecurity and acute malnutrition resulting from multiple shocks, including dry spells (poor seasonal rainfall), below-average crop and livestock production, and insecurity resulting from local resource-based conflicts and post COVID-19 pandemic effects that drove a price hike in staple foods iv . Kenya's low technological capability, inefficient production systems, inconsistent economic growth, increasing population, and climate variability is affecting food production systems and therefore the livelihoods and food security of millions of Kenyans who depend on agriculture (Lokuruka, 2020). Kenya is dealing with the double burden v of malnutrition, with some of the population considered overweight while others, predominantly children, suffer from undernourishment, micronutrient deficiencies, or stunted growth.At the same time, the agriculture sector is the major emitter of greenhouse gases (GHG) and is responsible for up to 22,539 Gg CO2 eq, which is 40.9 percent of the total country's GHG emissions vi . While the agriculture sector has supported food production yet contributed to increasing net GHG emissions, the Intergovernmental Panel on Climate Change (IPCC) Special Report on Climate Change and Land emphasized the contribution of the food system to climate-change mitigation and recognized practices such as reducing crop and livestock emissions, sequestering carbon in soils and biomass, consuming healthy and sustainable diets and reducing food loss and waste as major opportunities for reducing GHG emissions while also improving health outcomes (IPCC, 2019).The guidance and framework have been developed to enhance the Nationally Determined Contributions (NDCs) by integrating the food system approach to building climate resilience and diversifying context-specific mitigation solutions for food production, distribution, consumption, and waste (Global Alliance for the Future of Food vii , 2022; WWF viii , 2020). In this regard, the review of Kenya's NDC and associated documents was carried out to identify what aspects of food systems such as LULUC, production activities, food processing, transportation, marketing and consumption, and food loss and waste management have been included in the NDC targets. The scientific basis, data, and analytics behind the NDC targets are also reviewed to determine how realistic the targets are, identify data gaps, and provide additional mitigation options and their abatement potential for a possible update of the NDCs to consider food system integration.Kenya has a tropical climate with some modifications based on the topographies and altitudes. Kenya's climate is influenced by global, regional, and localized climate conditions. Some of the variability in the country's climate is due to the El Niño Southern Oscillation that has caused periods of drought and flooding in the country over decades. These events have caused economic losses and slowed down the value-added growth of agriculture (GoK, 2016 p4). Kenya's updated NDC sets out the premise of socio-economic losses estimated at 3-5% of the GDP annually over the last decade due to the successive impacts of climate change that have impeded development efforts.Future climate trends for temperature and precipitation show that Kenya's economy will continue to be affected. Global Climate Modelling (GCM) data indicate that the mean annual temperature is projected to increase by between 0.8 and 1.5°C by the 2030s, and between 1.6°C and 2.7°C by the 2060s (GoK, 2016 p5).With regard to precipitation, GCM data indicate that there will be a possible increase in average rainfall by the 2060s, especially from October to December. In addition, the data suggest with greater confidence that the proportion of annual rainfall that occurs in heavy events will increase. The range of increase varies from 2 to 11 percent by the 2060s and from 2 to 12 percent by the end of the century (GoK, 2016 p5).Agricultural production in Kenya is largely rainfed and dominated by smallholder farmers whose land holding is between 0.2 and 3.0 hectares, accounting for about 75% of total agricultural output and 70% of marketed agricultural produce (c.f. MoALF, 2020). Kenya's economy is highly dependent on horticulture and floriculture exports to the European Union. More than 95% of the fresh fruits and vegetables consumed in Kenya are grown domestically, mainly by smallholder farmers, and are supplied to rural and urban markets by small and medium-sized enterprises through informal supply chains.The sustainability of current arable, pastoral, and fishing production is expected to be negatively affected by changes in rainfall patterns, increases in temperature, and the occurrence of extreme weather events. Future projections of annual rainfall are uncertain and range from a 6% decrease to a 26% increase from the 1970-1999 average by 2060. The amount and timing of rainfall throughout the year are also projected to change, with increased inter-annual variability. Kenya has experienced extreme events of droughts, floods, and storms that have increased in frequency and extent in recent decades, impacting areas that were unaffected historically in both the arid and semi-arid lands and the key agricultural zones.Rising temperatures will probably alter the mix and distribution of agriculture and livestock pests, while the increased incidence of droughts, coupled with reduced rainfall projections for the arid and semi-arid regions, is expected to reduce yields in the key crops -maize, wheat, rice -and production in livestock and fisheries. Key cash crops such as coffee and tea are also likely to be severely affected due to temperature increases and the increased presence of pests and diseases (NEMA 2015). Fisheries are expected to be affected by physical and biological changes associated with climate change such as increase in water salinity, low primary production, and ocean acidification (Mohammed and Uraguchi, 2013). Additionally, indirect impacts, such as increased rates of runoff and soil erosion, and increased crop losses from wildlife migrations, rising and novel infestations from insects, diseases, and weeds, could significantly magnify production losses (NEMA, 2015, c.f WorldBank, 2021) 1.3. Mitigation Priorities and actions for the agriculture, food, and LULUCF sectorsKenya has committed to ambitious policies and measures to pursue a low-carbon, climateresilient development pathway to realizing Vision 2030, despite the country's negligible contribution to global greenhouse gas (GHG) emissions (less than 0.1% in 2018). Kenya's total baseline greenhouse gas emissions were estimated to increase from 44 MtC02e in 1995 to 55 MtCO2e in 2020 and are projected to increase to 143 MtCO2e by 2030. Kenya's updated NDC (2020) describes Kenya's mitigation and adaptation contributions for the period 2020 to 2030 and proposes priority mitigation and adaptation actions. Kenya has made a strong commitment to economy-wide emission reduction, with an absolute target of 32% by 2030 relative to the BAU scenario of 143 MtCO2e, and a 2% increase in ambitions from the INDC submitted in 2015 (Table 1).Kenya has now committed to reducing 45.76 MtCO2e of GHG emissions in total by 2030 out of the 85.79 MtCO2e technical baseline GHG emission reduction potential estimated (21% of the mitigation cost not conditional on international financial support). However, with the increase in the ambitions raised, the updated NDC does not explicitly state the sectoral contributions to the total increased ambitions. In 2020, the leading source of emissions was agriculture at 42% of total national emissions, mostly due to livestock enteric fermentation, manure left on pasture and agricultural soils, and fertilizer application. This was closely followed by LULUCF at 38% because of deforestation and energy demand (7%), including transport at 7%. The balance from industrial processes and product use (IPPU) was at 2% and waste management at 2%. Between 2000 and 2030, electricity generation and agriculture sources are projected to contribute to overall national emissions through increased consumption of fossil fuels in generating electricity, meeting domestic, commercial, and industrial heating demands, and for transportation.In 2000, Kenya's total GHG emissions were 54,955 Gg CO2 equivalent (approximately 55 million tons of CO2 eq.) coming from all the sectors (Table 2). About 41% of total national emissions in 2000 were from the agriculture sector alone through enteric methane emissions from the livestock sector and emissions associated with the management of soils on agricultural lands, such as cultivation and tillage. The agriculture sector also contributes emissions by conventional tilling, the burning of savannah and crop residues, and rice cultivation. The LULUCF sector was a net emitter, contributing approximately 20,000 Gg CO2 equivalent (or approximately 20 million tons of CO2 equivalent) or 37.55 percent of total emissions.The agriculture sector (crops, livestock, fisheries, and agroforestry) together with land-use change contributes 78% of greenhouse gas (GHG) emissions (NEMA, 2015). Within the agriculture sector, the major sources of GHG emissions are livestock enteric fermentation, manure left on the pasture, manure applied in soils, manure management, burning crop residues, rice cultivation, and burning savanna (NEMA, 2015). The following are the key salient mitigation actions proposed under the agriculture, food, and LULUCF sectors.• Focus on Sustainable Agriculture: The NDCs place significant emphasis on promoting sustainable agriculture practices such as conservation agriculture, agroforestry, and limiting the use of fire in rangelands and cropland management, thus helping to improve food security, reduce GHG emissions, improve soil health, and reduce the impact of climate change on food systems. • Sustainable Land Management: The NDCs recognize the importance of increasing farm area under sustainable land management through conservation tillage for food security, and outline measures to improve the resilience of Kenya's food systems.• Sustainable Rice Production: The use of efficient production technology to increase rice production and expand areas of rain-fed rice production to lower GHG emissions. (2018( -2022( ), the NCCAP 11 (2018( -2022)), and the National Adaptation Plan (NAP) (2015)(2016)(2017)(2018)(2019)(2020)(2021)(2022)(2023)(2024)(2025)(2026)(2027)(2028)(2029)(2030). The following are the key salient adaptation actions, (which will also catalyze mitigation co-benefits) proposed under the agriculture, food, and LULUCF sectors.• Enhance the resilience of the agriculture value chain: Adopt sustainable climatesmart agriculture to build the resilience of small-scale subsistence farmers through the production of food crops, industrial crops, and horticultural products. Kenya intends to implement various priority adaptation actions to attain the Triple Adaptation Dividend, namely, avoidance of losses, gain of economic benefits, and gain of social and environmental benefits (including mitigation co-benefits). The key adaptation policy measures and strategic measures highlighted in Kenya's Climate Smart Agriculture Strategy (2017-2027) include the promotion and implementation of the following priorities.• Enhance adaptive capacity and climate resilience across all sectors of the economy.• Explore innovative livelihood strategies for enhancing the climate resilience of local communities through the financing of locally-led, climate-change actions. • Enhance a risk-based approach to climate-change adaptation through the development and application of comprehensive climate risk management tools that would help in addressing and adaptively managing climate risks in crops, livestock, and fisheries value chains. • Develop and implement strategies for early warning and response and ensure preparedness for extreme weather events. • Develop and use index-based agricultural insurance to reduce vulnerabilities due to extreme weather events. • Promote crop varieties, livestock, fish breeds, and tree species that are adapted to varied weather conditions and tolerant to associated emerging pests and diseases. • Develop, disseminate, and adopt technology along the crops, livestock, fisheries, and forestry value chains to withstand changes in temperature regimes and precipitation patterns.• Address residual climate-change impacts, loss, and damage, especially in the productive sectors of the economy. • Enhance the generation, packaging, and widespread uptake and use of climate information in decision-making and planning across sectors and counties with robust early warning systems (EWS). • Enhance the uptake of adaptation technology, especially by women, youth, and other vulnerable groups, incorporating scientific and indigenous knowledge. • Promote the diversification of enterprises and alternative livelihoods to enhance the productivity and profitability of agriculture enterprises. • Manage vulnerability due to unsustainable natural resource management by protecting existing natural resources.• Promote water harvesting and storage, irrigation infrastructure development, and efficient water use. • Promote and support the conservation and propagation of the germplasm of species with adaptive capacity.Chapter Two: Scientific basis, data, and analytics behind the NDC targets 2.1. The Process adopted.Kenya's updated Nationally Determined Contribution (NDC) is in accordance with paragraphs 22-35 of Decision 1/CP.21 and Decision 4/CMA.1 and its annex. Compared to the first NDC, the updated NDC established a strong coordination mechanism led by the Ministry of Environment, Climate Change and Forestry, while the coordination was carried out by the Climate Change Directorate under the Ministry. Kenya has adopted the just transition principle as part of an aspiration to update the NDC that includes an extensive consultation process for social protection and an institutionalized review by stakeholders, to ensure that the interests of all stakeholders are considered in all the climate actions.According to the updated NDC, the process has been informed by a more detailed and robust assessment of mitigation and adaptation measures, in-depth analysis, improved information and data, and an extensive stakeholder consultation process that has included national and county government sectors, civil society, academia, and the private sector. The process was structured to support the enhancement of mitigation, adaptation, and transparent communication, together with alignment of the NDC with the Sustainable Development Goals (SDGs). The enhancements have not only targeted the mitigation ambitions of the NDC, but also the strengthening of the NDC's implementation.The process entailed the review of relevant national plans, policies, and legislation (Figure 1). The contributions described in the updated NDC submission build upon Kenya's initial NDC, the National Adaptation Plan (NAP) 2015-2030, new policies and national plans, and reflect subsequent work as captured in Kenya's Second National Climate Change Action Plan (NCCAP 2018-2022) and the Third National Inventory Report (NIR 3). 2.2. Scientific basis and data used.Kenya followed UNFCCC guidelines on information to facilitate clarity, transparency, and understanding (iCTU) to prepare its updated NDC. Kenya's preparation for the NDC has been informed by the best available science and its assessment is central to the IPCC's special report on 1. Kenya's NDC is supported by scientific analyses and accounting methodologies, and reference has been made to the technical analysis reports of the NCCAP 2018-2022. The Mitigation Technical Analysis Report (MTAR), the Adaptation Technical Analysis Report (ATAR), and the NIR 3 have been used to update the NDC analysis. The updated NDC was based on an assessment of the extent and impact of the implementation of the NDC to date and an extended inventory of historical GHG emissions up to June 2020, applying the best available data from various official sources and reports. The Second National Communication GHG inventory has used Tier 1 quantification of uncertainties associated with the estimates.According to the updated NDC, the priority mitigation and adaptation actions will be implemented through the NCCAPs as set out in the Climate Change Act, 2016, thus creating the opportunity to enhance the ambitions every five years with the revision of the NCCAPs. Kenya has developed an Integrated MRV system, including an Integrated MRV tool, for monitoring and reporting both mitigation and adaptation actions, together with their results. This Integrated MRV system is linked with already existing monitoring and reporting systems including the National Integrated Monitoring System (NIMES) and County Integrated Monitoring System (CIMES). The integrated MRV system will track the implementation status of the NCCAP, the NAP, and the NDC in the annual reports and will be input for both national and international reporting obligations.Kenya has made a clear commitment to implement and periodically update the National Climate Change Action Plans (NCCAPs) to achieve the NDC targets. While the previous NDC target was entirely conditional on international support, Kenya now commits to bear 21% of the mitigation costs, i.e. US$ 3.7bn, to reduce 32% of the BAU emissions projected by 2030. The updated NDC is not clear on specific sectoral contributions to GHG reduction as compared to the overall commitment to reducing the BAU emissions of 143 MtCO2e by 32%, (48.76 MtCO2e) by 2030. It is expected that in the NCCAP (2023-2027), there will be elaboration on how the 2% increase in ambitions is progressing; an emission reduction of about 2.85 MtCO2e is proposed in addition to sectoral disaggregated mitigation contributions. Therefore, at present, only national-level economy-wide emission reduction targets are known without a sectoral breakdown of raised ambitions for emission reduction relative to BAU (Table 4). The NDC promotes transformational agriculture for crops, livestock, and fisheries to contribute toward meeting the ambitious climate-change mitigation targets. The NDC target for the agriculture sector commits to reducing only 2.77 MtCO2e, leaving a wide gap of 93% (36.23 MtCO2e) in mitigation ambitions for total projected emissions by 2030. For the agriculture sector, the indicative proportionate emission reduction target contribution by 2030 is 2.77 MtCO2e with a high and low range of 2.8 and 1.6 Mt CO2e, respectively.Agriculture is the largest source of GHG emissions in Kenya and these are likely to increase from 30 MtCO2e in 2010 to 39 MtCO2e in 2030, largely driven by livestock methane emissions (18.8 MtCO2e by 2030) and agricultural soils (16.2 MtCO2e by 2030). The sector also contributes carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions through activities such as conventional tillage, burning of the savannah and crop residues, and rice cultivation (GoK, 2015). The overall impact of the actions of the three agriculture sources depicts the low range of potential targets for emission reductions and opportunities to enhance NDC targets with practical strategy. The NDC target for agriculture is only set at 2.77 MtCO2e, which is a 50% gap in the estimated technical mitigation potential (5.53 MtCO2e) by 2030. Table 7 provides an overview of mitigation actions within the agriculture sector and the projection of agriculture's emission reduction potential by 2030. However, there remain areas where the NDC can be enhanced in terms of quantitative targets for agriculture and food sources for which the potential emission reduction projection has been carried out. (Table 8). Overall, the NDC scores from low to high in many categories of the food system-focused emission reduction targets for the quantitative and qualitative targets presented in the NDC as well as in Kenya's national climate-change action plans. In terms of content, agroecology, regenerative approaches, and nature-positive solutions are found to be promoted. The MTAR provides key enabling technologies associated with the priority mitigation options related to food systems for monitoring, reporting, and verification (MRV) and capacity building, including data collection and inventory development. The NDC lists essential actions, including specific commitments, strategies, or funding, related to the critical transition.No specific information on marketing and consumption.The The NDC lists some specific policy measures and actions for the critical transition. Overall Rating: MediumOverall, the NDC rates high to very high across many categories as it provides specific indications of actions to address risk and vulnerability in the agriculture sector and food systems, as well as information on policies, spatial information, and technology development; it needs to make progress against these actions and implement the NDC. Kenya has a sufficient commitment to adaptation through enhancing the resilience of the value chains by promoting climate-smart agriculture, livestock development, and aquaculture. The NDC includes measures to improve climate services to build climate resilience through sustainable land-use management, the provision of safety nets and extension services, as well as access to finance specifically targeted at marginalized communities. Overall Rating: Very high (5) Kenya's GDP relies on climate-sensitive sectors. Kenya's agriculture is 98% rainfed and therefore highly vulnerable to extreme events, climatic shocks, climatic changes, and variability. Drought, floods, rising sea levels, and pests and diseases are the key climate-related threats to agriculture food production. The NDCs have set a very strong policy target to enhance a risk-based approach to climate change adaptation through the development and application of comprehensive climate-risk management tools that could help in addressing and adaptively managing climate risks. Kenya has a welldeveloped strategy and action plan to address current and future climate risks and vulnerabilities with near-to long-term adaptation actions to address changes in temperature regimes, precipitation patterns, and extreme weather events.Overall Efforts rating: High (4) The adaptation target aims adopt climate-smart agriculture, including through national policy and strategic measures in the agriculture sectors, to enhance the adaptive capacity and resilience of farmers, pastoralists, and fisherfolk to the adverse impacts of climate change by reducing vulnerabilities. Differences in the degree of risk and level of adaptation efforts = GapThere are minimal gaps in terms of information and scientific basis to take forward adaptation action in Kenya.Rating: Very high (5), high (4), moderate (3), low (2), very low (1)The actual mitigation potential of each of the food sectors depends on a number of factors ranging from policy, resources, and priorities to the implementation practicality of the potential mitigation actions. An estimated sum of about US$ 502.55 million is needed to support the climate action implementation of the current three priority food systems, including enabling the actions presented in the updated NDC. Kenya has estimated about i) US$ 279.70 million for agroforestry and sustainable land management as part of the smart agriculture program; ii) US$ 222.6 million (US$ 149.73 million as private sector co-financing) for Kenya's Dairy NAMA project, of which US$ 56.06 million is requested from the Green Climate Fund (GCF), and iii) US$ 0.25 million for enabling actions, about a quarter of which is included in the Capacity-Building Initiative for Transparency (CBIT) project.All the food sector-related mitigation actions together have an abatement potential of 5.56 MtCO2e by 2030, compared with the sector's target of reducing emissions by 3 MtCO2e by 2030. The indicative proportionate emission reduction target contribution for the agriculture sector by 2030 is 2.77 MtCO2e, with a high and low range of 2.8 and 1.6 MtCO2e, respectively. This does not necessarily have to be delivered by the sector though, since the actual GHG emissions reduction by the sector will be based on the realistic opportunities available for emission reductions in the sector, together with the sector plans and budget provisions. The agriculture sector should strive to meet the low range of emission reductions (1.6 MtCO2e by 2030), requiring that other sectors implement actions to achieve the high range of emission reductions.The implementation of climate-smart agriculture practices has had mixed results x as indicted in the implementation status report of Fiscal Year 2019/20 of the NCCAP 2018-2022. As of June 2020, 52,075 ha of degraded land has been reclaimed through sustainable land management practices, meeting 87% of the NCCAP's 2022 target. Only 10,286 ha of agricultural land, or 4% of the 2022 target, has been put under soil nutrient management, while conservation agriculture practices are implemented in 20,050 ha of land, or 8% of the 2022 target. According to the NDC baseline, absolute emissions from the agriculture sector are projected to grow from 34 MtCO2e in 2015 to 41.6 MtCO2e in 2030, while the contribution of agricultural emissions (excl. LULUCF) to total national emissions is expected to decrease from 59% in 2015 to 32% in 2030. With the implementation of the CSA strategy, absolute emissions would reach 31.6 MtCO2e in 2030. If the sector successfully implements the measures from the NCCAP 2018-2022 and the sector's CSA strategy, it is likely that the sectoral target can be met. In order to achieve the minimum 1.6 MtCO2e recommended NDC target for emission reduction by 2030 for the agriculture sector, focusing on food security mainly during the NCCAP 2018-2022 period, the sector priority actions can comfortably deliver the low range of emission reductions (1.6 MtCO2e) by 2022 and the high range of emission reductions (2.8 MtCO2e) by 2030.Kenya has identified the key technologies required as part of the enabling actions for monitoring, reporting, and verification (MRV) associated with the three priority mitigation options. These are i) Agroforestry: nurseries, improved market access for small farms, extension service support, capacity building and pilot projects: ii) Sustainable land management: agriculture extension services, low-cost tillage systems and equipment; extension services to educate pastoralists and farmers on the risks associated with using burning to manage rangelands and croplands and the benefits of using alternative practices; iii) Kenya Dairy NAMA: formulation of improved feeds and feed additives to reduce enteric fermentation; development of breeding schemes and improved herd health and iv) enabling actions: MRV capacity building, including data collection and inventory development.Chapter Three: Missing data gaps Kenya's NDC is found to be focused more on emission reduction from nature-positive food production activities to meet the country's demand for food as the sector is dominated by smallholder rain-fed production. With climate change, there is an increasing problem of food insecurity and malnutrition, and tackling the decline in production is the major priority. Therefore, the immediate priority is on reducing emissions from distribution, processing, transportation, and marketing, and consumption and reducing food waste are not included. This may be partly due to a lack of data and information for activities related to the overall food system and potential contributions to emission reductions.The available information concerning the overall food system is viewed primarily from the perspective of sensitiveness to climate-change risks, impacts, and vulnerabilities. For example, Kenya has two distinct national distribution systems for agri-food products xi : one based on small-scale production and informal networks, and the other based on contract farming and supermarkets. Each distribution chain has different requirements regarding infrastructure (e.g., roads, markets, airports, or ports) and degree of organization. Kenya receives major foreign investments in agriculture, such as for large export-oriented horticulture and floriculture; the food system is transitioning from a traditional food system to a modern one, shown by export-oriented production, distribution concentration, and overnutrition for an increasing number of citizens, especially in the middle-and upper-classes. With the projected trends of increased precipitation and temperatures, there is a likelihood of an increase in flooding, washouts, scour, erosion, siltation/debris, and soil erosion, xii which ultimately disrupt road transportation networks or corridors essential for distributing food from production sites to markets, resulting in increased food prices and decreased access to food. Most farmers are small-scale, with mostly rainfed produce, and have limited transport, storage, and processing facilities, hence cash-strapped farmers sell their surplus around the peak of seasonal production at the lowest prices; this infrastructural inefficiency will limit access to food by marginalized groups.Consumption volumes are generally kept low in Kenya partly due to the relatively higher prices of indigenous vegetables (fresh produce in low supply) compared with staples like maize (and kale) that are easier to store and transport and enjoy more established and effective distribution networks. The reliance on rain, lack of storage facilities, and low level of food processing, coupled with other market failures and lack of water in the dry season (particularly challenging in the arid and semi-arid lands), cause peaks in food insecurity in a large part of Kenya for about eight months of the year. During the rainy season, there are often cases of overproduction leading to falling prices and/or food waste.Food consumption patterns are altered by the availability and affordability of certain foods impacted by production and distribution. Climate change can increase food loss due to supplychain disruptions and spoilage during transportation and storage, as well as post-harvest crop losses. Kenya estimates that about 20% of cereals are lost even before they reach the market xiii . The problem of post-harvest loss in horticultural crops is found to be acute in Kenya xiv . This loss not only contributes to environmental degradation but also exacerbates acute food and nutrition insecurity and malnutrition xv by reducing the availability of food. Soethoudt, and Castelein, 2021 analyzed intervention scenarios for smallholder potato value chains in Kenya that improved yields, reduced losses, minimized greenhouse gas (GHG) emissions, and increased economic performance and food security.The GHG inventory of the agriculture sector consists of disaggregated baseline emissions from livestock enteric fermentation, agriculture soils, savanna burning, livestock manure management, rice cultivation, and burning crop residues. The situation analysis of the agriculture sector report shows mitigation potential in the crop, livestock, and fisheries/aquaculture subsectors; landscapes and forestry; and productive resources (land, soil, and water), broadly categorizing mitigation strategies in three ways: carbon sequestration in soils; on-farm emission reduction; and emission displacement from the transportation sector through biofuels (MoALF, 2020). However, in the national food system, emissions, particularly from food production, consumption, storage and transportation, and food loss and waste, are poorly quantified and understood, suggesting that the collection of activity data should be improved in the future to analyze the sources of emissions (Table 11).The review of the Biennial Update Report (BUR) submission from non-annex 1 parties to the UNFCCC secretariat xvi shows that Kenya has not yet submitted its BUR. Kenya has stated during a submission xvii made to the UNFCCC secretariat that the country has no experience with BURs and hence no experience with reporting on support needed or received.Table 11 Analysis of the food system data and information reflected in the NDC.The NDC gives sufficient information to estimate the targeted GHG emission levels. The NDC includes the targeted absolute GHG emissions level. Regarding the food system, the NDC aligns with existing food system practices, considering agroecology and regenerative approaches and the conservation and regeneration of forest ecosystems. However, it does not account for overall food system emissions, a shift to healthy and sustainable diets, and the reduction of food loss and waste. Followed the guidance in information to facilitate clarity, transparency, and understanding of NDCs in Decision 4/CMA.1 Kenya followed the Decision 4/CMA.1 guidance on transparency to a large extent and followed iCTU guidance to prepare the updated NDCThe NDC describes most of the accounting modalities following IPCC guidance. The GHG inventory has used Tier 1 quantification of uncertainties associated with the estimates; however, this can be improved in subsequent GHG inventories using Tier 2. Scientific analyses and accounting methodologies in food system elements only consider production-related emissions information.The NDC lists essential actions, including specific commitments, strategies, or funding, related to the critical transition. It states that by 2030 the country will have an improved integrated MRV system. Kenya aims to promote sustainable digital agriculture solutions to improve productivity with support from development partners. Digital literacy among the population is a major barrier to the large-scale adoption of digital solutions. However, there is potential to adopt the digital revolution in the food system and agriculture xviii for inputs, production, distribution, and consumption using machine learning, weather stations, databases, mobile applications, and blockchains (FAO, and World Bank, 2021).Chapter Four: Additional mitigation options and their abatement potential for the possible update of Kenya's NDC• Raising ambitions in the overall agriculture and the food system: Kenya's projected level of emissions in the sector by 2030 and the current level of climateaction ambitions have significant gaps of 93%. Although Kenya is not a significant GHG contributor globally, domestically, in line with Vision 2030 and as a part of low carbon climate-resilient development committed to under the Paris Agreement, it can further elevate its contribution to the reduction of emissions from agriculture and the food sector. There are 14 key opportunities 1 to expand the current level of targets and accelerate food system translation based on the Global Alliance of Future of Food (2022) in three NDC components: i) the NDC planning and construction process; 2) NDC targets and measures; and 3) NDC implementation and monitoring aspects during the next NDC update process in 2025. Kenya should implement its land userelated emission abatement program more effectively and efficiently to achieve the desired results and impacts.• Preparing its long-term strategy for climate action: Kenya is waiting for the endorsement of its 2050 Long-Term Greenhouse Gas Strategy and Carbon Resilience Development Pathway under the Paris Agreement. Its long-term vision for 2030 has been presented, and it is not clear if Kenya would be able to achieve net zero status by 2050. There are opportunities to set targets for agriculture, food, and land use.• Improve coordination mechanisms set up within and across levels of government to develop the NDC and the policy development/implementation process: The National Climate Change Council is responsible for overseeing and coordinating the implementation of the NDC. However, there is a need to continue strengthening the coordination capacity of the Climate Change Units (CCUs) at the national and county levels to ensure better complementarity and cooperation between national, regional, and global transparency-related activities in Kenya. This also includes improving institutional capacity to manage the compilation process for the GHG inventory and establish a sustainable system for producing regular national GHG inventories.• Stronger alignment needed on global commitments: At the 26th meeting of the Conference of Parties in Glasgow, four sectoral initiatives were launched to accelerate climate action: methane; the coal exit; 100% electric vehicles (EVs); and forests/land use. Methane makes up around half of Kenya's total emissions. Kenya has not signed the methane pledge -becoming a signatory could have significant emission reduction implications for the country. Kenya has not signed the coal pledge -while Kenya has not yet deployed coal power generation, the long-term energy supply plan outlines coal as 12% of the country's power supply by 2040. Kenya adopted the electric vehicle pledge at COP26. While it did not commit to the 2040 target, Kenya signed the forestry pledge at COP26. This is significant, given Kenya's high share of emissions from LULUCF, which on average made up one-third of Kenya's total emissions over the last 20 years. Kenya can accelerate the shift toward sustainable food systems, in particular through measures that further promote regenerative agricultural practices, restore degraded land, and protect natural ecosystems.• Raising ambitions in the agriculture sectors: In the agriculture sector, out of 39 MtCO2e projected emissions, the current NDC targets are only set for 2.77 MtCO2e emission reduction by 2030. This indicates the massive potential for increasing ambitions in the agriculture sector. The agroforestry, sustainable land management, and livestock climate actions proposed are projected to reduce emissions by about 5.17 MtCO2e by 2030. This closely aligns with the technical mitigation potential identified. However, there are efforts required to understand the technology and measures needed to enhance the mitigation solutions in the agriculture sectors, including the integration of full food systems approach to raise ambitions with feasible quantifiable emission reduction targets. In addition, the NDC targets should include interventions to reduce emissions from cropland and rangeland fires, the mitigation potential of which has been identified, as well as reducing emissions from rice cultivation.• Raising ambitions in the livestock sectors: Reducing livestock enteric methane has remained one of Kenya's key priorities. However, the emission reduction projection from the Dairy NAMA is estimated at only 0.69 MtCO2e by 2030, suggesting a large gap in the implementation emission reduction program as well as in the agriculture baseline GHG emissions that are largely driven by livestock methane emissions (18.8 MtCO2e by 2030). These gaps need to be addressed by further reaching out to households in the emission reduction program. Kenya should enhance its capacity for identifying methane mitigation actions that align with the SDGs and integrate methane quantification and mitigation into existing and planned livestock subsector strategies, investments, and policies.• Raising ambitions in agroforestry and land use: The AFOLU sector contributes a 61.72% relative share of national GHG emissions (FOLU, 2022). Although there are no concrete and separate priority actions indicated for AFOLU, the NDC indicates the prioritization of nature-based solutions related to REDD+, agroforestry, conservation, restoration, and reforestation of degraded land. The current ambitions in terms of these activities have limited gaps: 20.8 MtCO2e of NDC targets out of 22.1 MtCO2e of projected emission reduction potential. The NDC has incomplete or generic information on land use planning. The second national communication has indicated about a 2.9 MtCO2e emission reduction baseline projection for cropland by 2030. Therefore, the AFOLU sector priority actions should be set in an integrated manner for the projection and accounting of GHG emission reductions.• Raising ambitions in aquaculture: Sustainable fishing and aquaculture have the potential to deliver an increased supply of ocean proteins, reducing the demand for land and supporting healthier and more diverse diets (FOLU, 2022). The NDC and associated documents have set policy priorities for sustainable aquaculture farming in Kenya, mainly by increasing the number of farmers using low-carbon (recirculating) aquaculture systems and increasing deep/offshore fishing fleets. However, there is a need to make a reasonable estimate for the mitigation potential at the national scale. These include the enhancement and strengthening of governance of community structures in participatory resource management in coastal ecosystems, conducting a blue carbon-readiness assessment for the full integration of blue carbon/ocean climate actions into NDCs, developing marine spatial planning, and outlining sustainable management approaches (Global Alliance for the Future of Food, 2022).• Integrating a holistic food system perspective to account for the adaptation and mitigation elements of a sustainable agriculture system: There is emerging literature about understanding the risk and vulnerability of the food system, with varied levels of information around distribution, food processing, transportation, marketing and consumption, and food loss and waste. Kenya's NDC emission reduction program is targeted at the agriculture production system, there is a critical need to account for emission reduction potential throughout the food system by integrating data and information to set the quantified mitigation targets from production to consumption. To build the resilience of the food system, further emphasis needs to be placed on improving food-storage infrastructure, food transportation and distribution, and the efficiency and sustainability of food processing, to reduce post-harvest food loss and waste; and on supporting access to climate-smart agriculture production and control over resources, finance, infrastructure, and technology for poor and marginalized communities.• Promoting climate-smart agriculture practices: Kenya has taken forward CSA as a transformative tool to build a nexus between climate change and agriculture. There are opportunities to promote crop varieties, livestock, fish breeds, and tree species that are adapted to varied weather conditions and can tolerate associated emerging pests and diseases. Some crops, such as banana, cassava, sorghum, sweet potato, pearl millet, groundnut, and finger millet are expected to experience more favorable growing conditions as a result of climate change.• Enhancing the MRV system with harmonized GHG accounting methods to integrate the food system: Given the disparity between the Tier 1 method used in Kenya's inventory and the Tier 2 method used in the MRV of the Dairy NAMA, adopting the Tier 2 method in the national GHG inventory is a key step to increasing coherence in GHG reporting and mitigation. This will allow project-level initiatives to link with national MRV systems and track mitigation trends both in terms of absolute emissions and reductions in emission intensity. To realize this, support is needed to increase institutional capacity to manage the compilation process of the GHG inventory, as well as to create a data management system that facilitates the preparation of the livestock GHG inventory based on advanced accounting methods 2 .• Providing clear financial allocations for sustainable food systems: Although the amount available to fund the implementation of the food system initiatives is not explicitly stated in the NDC, given the need to integrate all food system components in the NDC, greater resources would be needed to ensure that the activities being undertaken adhere to climate-smart as well as agroecological principles. There is scope to raise the conditional targets set within the NDCs by raising domestic financing as well as by ensuring that international finance is pledged and received to meet both the quantified and the policy measures communicated. Furthermore, it is important to enhance Kenya's capacity to secure climate finance for transformative action. Kenya is already part of the Joint Crediting Mechanism (JCM 3 ) to facilitate the diffusion of leading decarbonizing technologies, products, systems, services, and infrastructure.• Including measures to build cross-ministerial collaboration as well as frameworks for stakeholder dialogue, exchange of best practices, and building of institutional capacity: The NDC refers to cross-sectoral problems that are a result of the impacts of climate change leading to food insecurity. Hence, greater coordination and cooperation between the relevant sector ministries must be demonstrated tangibly in the NDC to ensure improved and sustained access to nutritious food and contribute to a sustainable food system. ","tokenCount":"8878"} \ No newline at end of file diff --git a/data/part_1/0691716043.json b/data/part_1/0691716043.json new file mode 100644 index 0000000000000000000000000000000000000000..f4858e5865f6f9a78406cdd470c916b67e4ff4e8 --- /dev/null +++ b/data/part_1/0691716043.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8f485cee2f2a59127490e5da6aaa7942","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3095a84a-033d-47c0-991e-a0ebba40855a/retrieve","id":"1252985642"},"keywords":[],"sieverID":"7dd81b03-c9b8-457f-ab87-03c101c96c36","pagecount":"12","content":"T he climate-smart agriculture (CSA) concept reflects an ambition to improve the integration of agriculture development and climate responsiveness. It aims to achieve food security and broader development goals under a changing climate and increasing food demand. CSA initiatives sustainably increase productivity, enhance resilience, and reduce/remove greenhouse gases (GHGs), and require planning to address tradeoffs and synergies between these three pillars: productivity, adaptation, and mitigation [1]. The priorities of different countries and stakeholders are reflected to achieve more efficient, effective, and equitable food systems that address challenges in environmental, social, and economic dimensions across productive landscapes. While the concept is new, and still evolving, many of the practices that make up CSA already exist worldwide and are used by farmers to cope with various production risks [2]. Mainstreaming CSA requires critical stocktaking of ongoing and promising practices for the future, and of institutional and financial enablers for CSA adoption. This country profile provides a snapshot of a developing baseline created to initiate discussion, both within countries and globally, about entry points for investing in CSA at scale.The high biodiversity and environmental services in Chiapas can be maintained through diversified activities, such as agroforestry and silvopasture, as means for securing livelihoods and bolstering climate mitigation potential, diminishing tradeoffs between development and conservation.Climate risk management strategies, such as early weather notifications, warning systems, and agricultural insurance, can help farmers cope with the floods, pest infestations, and other climate extremes that are common in Chiapas.Minimum tillage in Chiapan maize systems can help increase carbon capture in soil while boosting productivity.Knowledge exchange strategies are essential for increasing the productivity and resilience of Mexico's agricultural sector. A formalized innovation system with public, private, and academic actors is important for knowledge generation, collection, and dissemination.The identification of suitable adaptation and mitigation options can be enhanced by development and access to Integrated Decision Support Systems that compile and analyze weather, agronomic and market information, and deliver results to a range of stakeholders and decision makers.* An ejido is an area of communal land used for agriculture, on which community members individually possess and farm a specific parcel.Regularly, land use decisions are made by community consensus.Strengthening governance and democratic landscape management of farmers associations, ejidos, * and communities can help increase productivity by creating economies of scale that bring connectivity to the fragmented landscape of numerous small land holdings in Chiapas.Chiapas receives considerable support from external entities, both federal and otherwise, on initiatives that integrate the three pillars of CSA. This institutional landscape will likely prove vital to Chiapas' ability to scale up CSA for the purposes of rural development and resilience to climate change.Although federal financing for CSA is extensive, supporting farmer-led investment and entrepreneurship can go a long way towards ensuring shared prosperity and long-term feasibility of CSA at scale. Agriculture contributes to 8% of the GDP in Chiapas [3] and employs 40% of the economically active population in the state [4]. Chiapas is the state with the second most marginalized population in Mexico, and small rural localities depend solely on agricultural activities [5].Chiapas faces socio-economic challenges and high inequity. Almost half of the population is food insecure (46%) and only 3% of people working in agriculture are women.1 Estimation for January to September 2011 by SAGARPA. 2 Computed by dividing total surface by the number of production units reported by scale in the National Agriculture, Livestock and Forestry inventory of 2007.The average size of agricultural landholdings in Chiapas is among the smallest in Mexico. According to national agricultural census data, 41% of farmers in Chiapas are smallholders (0-5 hectares), 49% are medium-sized farmers (5 to 20 hectares) and 10% are large scale (more than 20 hectares) [10]. 1 Low agricultural productivity in Chiapas can be associated with the size of agricultural landholdings and related socio-economic conditions in rural areas. The small size of plots impedes economies of scale unless effective farmers organizations are in place. Low productivity coupled with high production costs results in limited income potential for many farmers. Where farming in small plots is isolated, productivity and competitiveness are compromised [11].Land Use [9] Main Crops [10] National context: Key facts on agriculture and climate changeChiapas is located in the maize-bean region of southern Mexico. The maize-bean farming system is historically and culturally based on the production of these two products on a subsistence basis [12].The region is populated largely by indigenous communities. The historical small size of land holdings and lack of productive capacity has led to extensive poverty and severe land degradation in many areas.Important agricultural products in Chiapas are maize, coffee, sugarcane, beans, and cattle. The four crops are considered important due to their 2012 production values (US$426 million, $268 million, $152 million, and $72 million, respectively) and their harvested areas (50%, 18%, 2%, and 8% of total agricultural area respectively) [12]. The dairy bovine production system is considered important due to its contribution to average daily consumption of kilocalories per capita.According to the 2011 GHG emissions inventory for Chiapas [16], 19% of the total state emissions came from the agricultural sector. This percentage includes both livestock and other agricultural activities, but no disaggregated information per activity is reported. The sector with the highest contribution to GHG emissions was land-use change (58% of total emissions).Challenges with the agriculture sector in Chiapas are complex and linked with social, ecological, productive, and institutional aspects. In a workshop by the Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and the Food and Agriculture Organization of the United Nations (FAO) in 2010, farmers identified almost 40 problems related to the sector (see list of Annexes), the three central ones being: 1) low productivity, 2) low organizational capacity in farmers organizations, and 3) barriers to access financial products [17].Productivity Indicators 3 GHG Emissions [16] Agriculture GHG Emissions [16] Key problems related to institutional capacity are: insufficient entrepreneurial support, low access to technical assistance, low support in the acquisition of production technologies, misalignment of government programs with the production cycles, programs that incentivize subsistence from the government, low institutional coordination, and scarce research aligned to rural needs [17].Soil in Chiapas is mostly suitable for forest activities and the forestry sector faces problems. Forest management has limited effectiveness due to the lack of integral development schemes, and the persistence of illegal wood and non-wood extraction activities. Furthermore, there are several kinds of natural protected areas in the state, including seven biosphere reserves, which form a biological corridor.The natural protected areas have proven ineffective to ensure conservation of key species, such as the xate palm and orchids. These problems were expressed in the workshop mentioned above. Farmers mentioned deforestation and an inadequate management of natural resources as key problems [17].Soils for agriculture in Chiapas are of low productive nature. Rendzinas (17% of territory) are claylike with low productivity and acrisols (16.2% of territory) have an acid pH, which also limits productivity [17].Size of farming plots in Chiapas is reduced as land is passed from generation to generation. As a common practice, farmers subdivide the land they possess to grant tenure to each of their successors, who in turn subdivide it when they pass it on to their next generations. This phenomenon results in low productive connectivity and minimizes the chances of economies of scale [17].In relation to climate, high relative temperature and humidity promotes pest infestations and diseases, especially in coffee systems [5]. Similarly, increasing climate variability makes investing heavily in agricultural production a financial risk for farmers.Part-time jobs and other off-farm sources of income are replacing agricultural entrepreneurship.Climate projections indicate that future temperatures in Chiapas are likely to increase 1.6 ˚C by 2030 [18,19]. Precipitation reductions in 2030 will be in the range of -6 mm to -53 mm.Extreme climate events affecting Chiapas include extended periods of drought and persistent flooding during critical periods of crop growth [5]. While tropical cyclones are likely to become more intense under a warmer climate as a result of higher sea surface temperatures, there is uncertainty as to changes in frequency [18].Chiapas' small coffee producers have already experienced production losses due to climate change.Warming of soil organic matter results in degradation, suppressed root growth, and decomposition of organic matter [20]. Coffee production is additionally at risk from rising temperatures, as these will favor proliferation of pests and diseases, such as coffee berry borer, leaf miner, nematodes, and coffee rust [21]. This graph displays three of the smartest CSA practices for each of the key production systems in Chiapas. Both ongoing and potentially applicable practices are displayed, and practices of high interest for further investigation or scaling out are visualized. Climate smartness is ranked from 1 (very low positive impact) to 5 (very high positive impact).Critical programmatic practices, such as agricultural insurance, loans, guarantees, and small but growing farmers organizations are being implemented to a certain degree but are in need of further organization and investment at the institutional level.Practices with high climate-smartness rankings and the potential to be applied across a large land area, but that currently exhibit low adoption rates, offer opportunities for increasing the overall climate smartness of the state. These practices of high interest for further investigation and promotion in Chiapas are:• Silvopastoral systems Product differentiation can enhance income.Table 1. Detailed smartness assessment for top ongoing CSA practices by production system as implemented in ChiapasThe assessment of a practice's climate smartness uses the average of the rankings for each of the six smartness categories: weather, water, carbon, nitrogen, energy, and knowledge. Smartness categories emphasize the integrated components related to achieving increased adaptation, mitigation, and productivity. Due to Chiapas' relative underdevelopment, the state is an intervention priority for the Mexican government.A variety of non-government organizations (NGOs) and international organizations also have ongoing CSA-related projects in the state. Due to extensive support from multiple levels of government, Chiapas is committed to climate change management. Key CSA-related policies and programs include:• State-Level Greenhouse Gas Emissions Inventory (IEGEI).• Feasibility studies for REDD+ 5 in Chiapas.• Climate Change Action Program for the State of Chiapas -PACCCH, 2011.• REDD+ Chiapa's strategy. • Technical Consulting Council for REDD+ (CTC-REDD Chiapas).• Water Law for the State of Chiapas.• Law for the Sustainable Forest Development of Chiapas.• Environmental Law of the State of Chiapas.• Law for Civil protection for management of disaster risks.The graphic on the left represents the main thematic foci of public and private institutions in Mexico related to the three pillars of CSA: adaptation, mitigation, and productivity. Unlike the national institutional landscape, CSA-related institutions in Chiapas show a high degree of cooperation and integration of climate change initiatives. Many of them address more than one, and even all three CSA pillars, as part of their agenda.In the productivity pillar, Root Capital, an international non-profit organization, provides microloans and climate information technologies to farmers. ","tokenCount":"1790"} \ No newline at end of file diff --git a/data/part_1/0696026054.json b/data/part_1/0696026054.json new file mode 100644 index 0000000000000000000000000000000000000000..9f780838aa6bf589f87763cb80ba6c33a19565d5 --- /dev/null +++ b/data/part_1/0696026054.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"57af0ed13b66aa7b1b20d919f6b33952","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/78471ee3-3f4f-4a0b-b4d8-7411020858fe/retrieve","id":"1828842012"},"keywords":[],"sieverID":"e1a87b08-0e11-4df5-a109-b7bd29660377","pagecount":"80","content":"This abridged version of the MTP does not include reference to: Alignment to CGIAR Priorities, Elaboration of Partners Roles, Center Financial Indicators and Financial Plan. See the full version in CIAT's website (www.ciat.cgiar.org).3. NRM and policy research on issues that receive high priority in LAC. 4. Strengthening research capacity in the region through institutional innovation, knowledge management and skills enhancement.This Medium Term Plan 2010-12 is the first step in implementing these strategic directions.Eco-efficient agriculture for the poor CIAT aims to reduce hunger and poverty in the tropics through research that increases the eco-efficiency of agriculture. Eco-efficient agriculture increases productivity while reducing negative environmental impacts. Eco-efficient agriculture meets economic, social and environmental needs of the rural poor by being profitable, competitive, sustainable and resilient. Too often, productivity gains -increased production per resources used-have come at the expense of the environment or have not provided benefits to the poor. CIAT has, therefore, adopted the concept of 'Eco-efficient agriculture for the poor' as harmonizes the economic, environmental and social elements of development. It strives towards solutions that are competitive and profitable, sustainable and resilient, and generate benefits for the poor.Eco-efficient agriculture for the poor enables family farms to take advantage of technologies that use resources more effectively, deliver sustainable increases in productivity and yield more abundant food supplies. Science for impact is CIAT's contribution to achieving an eco-efficient agriculture for the poor. The core of CIAT's work is strategic research focused on producing outputs of new knowledge that yields improved technologies, resource management practices and institutions and policies. CIAT places high priority on insuring that there are clear pathways from its research outputs, to their use by partners and their ultimate impact on reducing hunger, poverty and natural resource degradation.CIAT sees co-development of research products with its national partners as key, and emphasizes of user participation in technology development and evaluation at the earliest possible stage. All CIAT research outputs are developed with partners. This both contributes critically to producing these outputs by complementing CIAT's comparative advantage and also contributes to the strengthening of capacity in national agricultural research systems. Helping to nurture a new generation of tropical agricultural scientists is an important goal for CIAT.CIAT is concerned not only that its research outputs are taken up by public research systems scientists, but that through partnerships involving farmers, the private sector and civil society, that research outputs result in adoption of improved technologies, practices, and decisions. CIAT judges its own performance primarily by the impact on the poor of its research outputs. Participation of end users in the evaluation and development of new technologies is a mainstream practice.Of particular concern is that eco-efficient agriculture yields benefits for rural women. Due to unequal access to resources, women typically comprise the majority of the rural poor. Thus eco-efficient agriculture can not effectively address the needs of the poor without taking into account the particular needs of women.CIAT's research outputs are integrated into production systems and taken up by users at a regional basis, with priority first on its home region of Latin America and the Caribbean, then on eastern and southern Africa and on south-east Asia. CIAT scientists conduct research in Latin America, Africa and Asia to meet diverse needs and to develop globally significant international public goods by promoting south-south linkages among the regions.CIAT is increasing the accessibility and availability of its outputs, making 'open' as the default setting to share as many of its research outputs as possible. CIAT seeks to extend this approach with our partners across Latin America to help create a Latin American \"Agricultural Commons\" that transforms the way knowledge is generated and applied in the region.During 2008, CIAT developed revised strategic directions to enable it to better achieve this vision of ecoefficient agriculture. These strategic directions were drawn up while the CGIAR was going through profound change, a process still underway. CIAT's strategic directions are intended to provide a compelling framework for program development on the basis of CIAT's strengths and experience, while allowing sufficient flexibility to shape the Center's future in accordance with the evolution of the CGIAR.The development of these directions involved consultations with many partners and stakeholders, particularly in Latin America and the Caribbean (LAC); participation in the CGIAR change process and careful consideration of the recommendations of the 2007 External Program. CIAT envisages playing a unique role in the CGIAR system, both in terms of the commodities on which it works and in terms of the special partnerships it nurtures in LAC. Most of CIAT's research is global in scope. CIAT aims to help create conditions both in LAC and elsewhere in the tropics that are essential for eco-efficient agriculture through a tri-part strategy:1. Agrobiodiversity -Providing affordable and nutritious food as well as pathways out of poverty by increasing the productivity of crops. 2. Tropical soils fertility management -Overcoming one of small farmers' greatest obstacles to sustained increases in agricultural production. 3. Latin America and the Caribbean -Working with partners to solve problems of high priority for the region, while also generating global public goods.Improved crop and forage production is vital for improving food security, enhancing human nutrition and raising agricultural incomes. CIAT conducts research in LAC and through partnerships around the world on four globally important crops:1. Common bean -The world's most important food grain legume, which in Africa is grown mainly by women. 2. Cassava -The third most important food crop in the tropics, after rice and maize, and second only to maize in its suitability for multiple uses. IITA plays a lead role in cassava research in Africa. 3. Tropical forages -A key input for production of meat and milk (LAC's most important high-value agricultural products), with much potential for enhancing natural resource management (NRM). CIAT works in close collaboration with ILRI in Africa and Asia. 4. Rice -The most important staple food in South America and the world. CIAT research focuses on the unique characteristics of rice in LAC, while IRRI and the African Rice Center (WARDA) concentrate on Asia and Africa.Crop improvement and soil fertility management are closely related. Improved varieties can be adapted to low soil fertility through more efficient use of soil nutrients, while legumes, such as beans and many tropical forages, can improve soil fertility through biological nitrogen fixation. Crop yields vary greatly according to management, so there is much scope for improving productivity through better agronomic practices. Better management of crop residues and integration of forages into cropping systems can increase soil organic matter, boosting productivity while helping mitigate climate change through carbon sequestration and reduced greenhouse gas emissions. CIAT research on tropical soil biology and fertility focuses on integrated soil fertility management and sustainable land management.To address the expressed needs and demands of the LAC region CIAT pursues an ecoregional strategy. An ecoregional approach integrates the aims of increased agricultural productivity and improved NRM, taking into account both the biophysical and socio-economic perspectives, through inter-institutional partnerships.The agenda of CIAT's ecoregional research will focus on four main topics:1. Improvement of crops that are important in LAC but also globally. 2. Improvement of other crops that receive high priority in LAC.genotyping platforms; tissue culture; transgenics; bioinformatics; and gene expression. Ultimately the consortium would catalyze strong breeding capacity with knowledge of genomics tools that are linked to efficient phenotypic characterization (quality, pest and disease, abiotic stress, etc.). Access to genomics tools would be either national, regional or outsource facilities tied to local bioinformatics capacities and the national ability to access and manage transgenic products.After years of inadequate support for crop improvement, it is now time for bold, innovative measures to regain momentum in this research, thus enabling it to respond decisively to agriculture's huge challenges and opportunities. A biotechnology research consortium which responds to regional demands, could take advantage of this opportunity. Its aim will be to exploit the potential of molecular biology and genetic transformation, not just in research on crops for which the center is responsible, but for the improvement of other species that rank high in the priorities of our regional partners.During recent years, CIAT has piloted the concept of a biotech partnership with researchers in Colombia, and the outcomes have been quite positive. Now, it is time for full-scale implementation of that approach. The outcome will not be more science for its own sake but problem-solving research at the genomic level that yields clear payoffs in the field and marketplace. With that practical orientation, CIAT-supported uses of biotechnology will focus on valuable plant traits, such as efficiency in water use and uptake and use of nitrogen, acid soil tolerance, disease and pest resistance and micronutrient content.During 2009 CIAT will be consulting widely with partners and stakeholders about the development of this consortium. It is anticipated that this will lead in 2010 to the development of a full program that would become part of the 2011-2013 MTP.Improved soil fertility is crucial to raising crop productivity and ending hunger in Africa. Given both the severity and widespread variability of this challenge, overcoming it will require a research partnership of significant scope and strength. In sub-Saharan Africa, efforts to build such a partnership can begin with FARA's extensive and highly productive African Network for Soil Biology and Fertility (AfNet), which is coordinated by CIAT's TSBF Institute and consists of dozens of members working at more than a hundred sites in 22 countries. AfNet will seek to catalyze the creation of a soils research platform that unites national organizations with all of the CGIAR centers that conduct research on soils in rainfed farming systems: CIMMYT, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), IITA and the World Agroforestry Centre (ICRAF). The aim of the platform will be to bring research on soil management more forcefully to bear on the challenges of reducing hunger and poverty, while enhancing NRM, especially in sub-Saharan Africa.Such a partnership represents an important opportunity for the CGIAR centers and their partners to forge important but disparate soils research efforts into a combined initiative that confronts the whole range of problems related to Africa's declining soil fertility and land degradation. A consolidated soils research platform in Africa, linked to similar research in LAC and Asia, can make integrated soil fertility management a reality many poor farmers in Africa and beyond.During 2009 CIAT will be consulting widely with partners and stakeholders about the development of this platform. It is anticipated that this will lead in 2010 to the development of a full program that would become part of the 2011-2013 MTP.CIAT's research agenda in the Amazon derives not so much from its agriculture production or the large absolute number of poor there, as it does from its globally significant natural resources. The Amazon is a major watershed, carbon sink and source of biodiversity, so continued misuse of its land resources -through unsustainable agricultural practices, degrading pastures, illicit crop production and exploitative timber extraction -has catastrophic consequences for the entire world. Finding attractive but less environmentally damaging livelihoods for Amazonian inhabitants is a matter of high global priority.The center will contribute to that effort through research aimed at halting land degradation, improving farmers' access to markets and enhancing ecosystem services, with particular emphasis on adaptation to climate change. Outputs from the center's research on cassava, tropical forages and rice are also highly relevant. CIAT's current work in this sub-region takes place through the CGIAR Amazon Ecoregional Systemwide Program which operates under the umbrella of the Amazon Initiative, which is currently hosted by EMBRAPA. The Ecoregional Program is an important research resource for the wider development objectives of the Amazon Initiative. The Ecoregional research program is coordinated by CIAT, and along with numerous national partners, includes from the CGIAR the Center for International Forestry Research (CIFOR), World Agroforestry Centre (ICRAF), and Bioversity International.Growing domestic markets and economic globalization have created many opportunities for the rural poor to take up the production and/or processing of higher value agricultural products, with the aim of boosting and diversifying their incomes. The potential of this avenue out of poverty is reflected in rising consumption of fruits. CIAT initiated research with a Tropical Fruits Program in 2001. For the last two years this work has continued, but it was embedded in a broader Linking Farmers to Markets Program. However, to give greater focus and higher effectiveness to this research, with this MTP it is restored to full program status.CIAT's Tropical Fruits Program will develop new production technology for selected neo-tropical fruits species; develop tools to improve the capacity of small farmers to compete in fruit markets; and generate new technologies of disease and pest control both to enhance product quality and market acceptability and also to reduce the environmental and human health consequences of excessive pesticide use.CIAT proposes to intensify its research in decision support and policy analysis, with the aim of determining the kinds of institutional arrangements and policies needed in order for small farmers and entrepreneurs as well as rural laborers to participate successfully in growth markets. This research will complement IFPRI's policy research. This research will have four foci: climate change, ecosystem services, linking farmers to markets, and impact assessment. While CIAT expects to give a higher overall priority to this body of research, major elements of this research were presented in the previous MTP as outputs in the Resilience and Linking Farmers to Markets Programs. CIAT is convinced that taking advantage of new market opportunities is crucial to improving the income of the rural poor. Enhancing knowledge on fostering these market linkages is an important research output not only for the Decision & Policy program but also for Tropical Fruits and the Amazon Ecoregional Program.CIAT's research on natural resource management will be sharply focused on integrated soil fertility management and ecosystem services, while work on land use dynamics and decision support tools for landscape management will be discontinued. Research on remote sensing to monitor land-use changes has already been phased out, along with research on community-level watershed management.In addition to Soil Fertility Management research and its ecoregional program in LAC, CIAT will sharpen the focus of its research on the genetic improvement of crops. As partners assume greater responsibility for plant breeding, the center will concentrate more on developing source materials with desirable traits, from which partners can assemble final products. This shift is well advanced with rice in LAC, where the public-private partnership FLAR carries out an increasing share of breeding formerly done by CIAT. Similarly, in cassava improvement, IITA in Africa, EMBRAPA in Brazil and national institutions in China and Thailand will play a major role in developing varieties for release to farmers. Breeding of Brachiaria grass will depend on partnerships with the private sector in several countries and with public institutions such as EMBRAPA in Brazil.Another shift made necessary by CIAT's pursuit of new research directions consists of a reduction in work on farmer participatory research. In recent years, rural innovation has been a pillar of the center's research strategy, resulting in the development of new participatory research methods and a territorial approach to agro-enterprise development. Those products are now commonly used in CIAT's own research and are being widely applied by partners. While the center will continue to use participatory approaches where appropriate in all its research programs, it will no longer seek to develop new participatory methods.Over the last decade, crop and agro-ecosystem health has figured importantly in CIAT's research, but in the future efforts in this area will be reduced. The development of biopesticides and research on endophytic fungi and bacteria, for example, will be discontinued, while work on whitefly will be scaled down. Any further research in those areas will take place only in collaboration with the CGIAR System-wide Program on Integrated Pest Management or the entity that succeeds it as a result of the CGIAR change process. In genetic improvement, center researchers may devote less attention to disease and pest resistance, as they increase emphasis on efficient use of resources, tolerance to abiotic constraints and enhanced nutritional quality. For the most important pests and diseases, however, work on genetic resistance will be maintained.CIAT's research agenda continues to be highly aligned with CGIAR System Priorities (SPs). Some 89% of CIAT's work is fully directed to SPs. Much of the 11% in new research, training and development related activities are also in fact oriented towards the achievement of SPs. Among SPs, CIAT's largest investment, 29% remains in priority 2, genetic improvement of staple crops. This is an increase over recent years. Linked with this research is a major investment in priority 1A, conservation of staple crops, amounting to 18% of total investment. Taken together, CIAT investment in genetic improvement and conservation constitutes one half of its agenda research.Due to the expansion of the work of the tropical soils fertility research area, investment in priority 4A, integrated land and soils research, continues to surge, rising some $2 million in 2009. It now comprises 20% of CIAT investment compared to 15% two years ago.Accelerating the flow of new varieties through seed multiplication and distribution is a common non-system priority activity. Significant quantities of forage seed have been distributed by partners and CIAT in LAC and SE Asia, and thus led to concrete outcomes at farm level. Seed will be supplied to FENALCE, the National Federation of Cereal Producers that is responsible for diffusion of legume production technology in Colombia, to re-establish a national system of bean yield trials. In addition, farmers groups are being given the opportunity in Colombia to work with biofortified beans, with higher levels of iron and zinc. Likewise CIAT is working with a wide diversity of farmers and civil society organizations in Africa for the multiplication and distribution of bean seed. While outside the strict definition of SPs, in reality this work is closely tied to CIAT's agenda research.Capacity building is an important component of the agenda to strengthen/benefit from the research capacity of partners and to enhance our capacity to deliver research products. Capacity building includes knowledge sharing workshops, group and individual training, and informal training. This effort is closely linked to dissemination of knowledge through internet based tool, website and extension materials and learning alliance. The audience include farmers, technicians, researchers, the private sector and educational institutions, the latter reached through individual and group training as well as internet based tool (i.e. the forage knowledge tool www.tropicalforages.info). Likewise degree training is a frequent activity. For example, three African scientists are completing their PhDs while doing thesis research with CIAT on topics related to drought resistance in beans. Again, while this is outside the strict definition of SPs, in fact it makes a significant contribution to achieving CGIAR objectives.The CIAT Science Park, Agronatura is a critical part of CIAT's non-research agenda activities. Agronatura provides a platform for partners whose principal interest is either in development related activities or for research on crops that are not CIAT mandates. This framework enables partners to co-invest through CIAT to realize complementary activities that CIAT itself would not undertake alone but that contribute to the overall objective of eco-efficient agriculture for the poor.Increased in productivity of crop plants under shifting and stressed environment will continue to be the key for food security, and will requires a greater emphasis on developing adequate research tools and deploying highly Eco-efficient varieties. The added increased in productivity will have to come from a better implementation of agronomical practices to close an existing yield gap, the development of better-adapted productive and nutritious varieties using the power of breeding and molecular biology tools and implementing adequate reaching end users strategies.To achieve these goals, CIAT maintains the world's most complete collections of the genetic resources of cassava, common beans, and tropical forages and four Agrobiodiversity programs are engaged in a global effort for the development and delivery of Eco Efficient germplasm of cassava, common bean, tropical forages, and rice (rice research is presented in detail as part of CIAT's LAC Research Area).The programs focus on:• Conservation of cassava, common beans, and tropical forages Genetic Resources.• Improved Beans for the Developing World.• Improved Cassava for the Developing World.• Improved Forages for the Developing World.• Improved Rice for LAC.The research strategy focuses on the exploitation of the vast genetic resources for sources of genes for disease and insect resistance, abiotic stress tolerance, nutritional quality and yield potential. The programs research activities are strongly integrated with technological and scientific competences in biotechnologies, human nutrition and reaching end users that allow CIAT to carry out cutting edge major projects and to implement delivery system. The programs develop basic tools and technologies that delineate the molecular genetic basis of cassava, beans, rice and tropical forages, to accelerate crop improvement and the development of innovative agricultural practices. The programs integrate plant breeding with a large array of biotechnological techniques including molecular markers, genomics, tissue culture and genetic transformation.Research is carried out in collaboration within the CGIAR Challenge Programs. Collaboration with a wide range of partners in developed and developing countries is a key characteristic of CIAT Agrobiodiversity Research Area.CIAT has assembled the world's largest collections of beans, cassava and tropical forages. CIAT's role as custodian for over 65,000 accessions of more than 850 plant species meets the expectation of the international community under the International Treaty on Plant Genetic Resources for Food and Agriculture, signed in October 2006. CIAT has insured conservation of its materials by sending a safety back-up to the Global Seed Vault of Svalbard, Norway, in February 2008. In addition to conservation, CIAT has actively distributed samples of genetic resources, over 500,000 samples in 31 years of work. The challenge to promoting the eco-efficiency of agriculture by increasing productivity with a minimal environment footprint has three implications for its Genetic Resources Conservation Program (GRCP): (i) efficient conservation of a larger set of designated germplasm, (ii) improved distribution service of germplasm and data, and (iii) a research agenda targeted at improving the later two.CIAT plays a critical role for Phaseolus beans and Manihot cassava in the Global Crop Conservation Strategies financed by the Trust Global Germplasm. Since the global community expects more diversity from the CIAT genebank, management of this greater number of accessions requires increased efficiencies in conservation and multiplication. The CIAT-GRCP will systematically acquire germplasm of beans and cassava currently absent from the in-trust collections, mostly by explorations, in line with future crop improvement efforts (e.g. tolerance to heat, drought, and salinity). The GRCP will resume germplasm evaluation for abiotic and biotic stresses, as well as some technological traits (e.g. starch characteristics in cassava). Such evaluation was stopped after 1985, and thus significant sets of the in-trust collections have never been evaluated. Moreover, the stresses associated with climate change (drought, temperature extremes, water logging) require the identification of new sources of tolerance.The GRCP research agenda aims at improving technologies for better conservation at lower cost. Examples include: new methods for slow growth of cassava clones in vitro, ultra-drying of seeds of beans and forages for delaying regeneration, conserving botanic seeds of cassava, identification of internal genetic copies to avoid expensive redundancy. The development of a DNA bank is a cost effective response to users who want samples for genomic studies, without re-accessing the plant germplasm every time. Another drive is in the understanding of the structure of genetic diversity for beans and cassava to help identify which sets of germplasm should be collected in priority. Once collected, increased and maintained, molecular marker testing guarantees the genetic integrity of the accessions, so that users can find any genetic information they need. Functional genomics studies will find variants with complementary alleles for the best expression of genes responsible of an important trait (e.g. photosynthesis).International Public Goods. The designation of more than 65,000 accessions of beans, cassava and tropical forages into the Multilateral System of the International Treaty, and the annual reporting to the Governing Body about distribution of samples worldwide, formalize the role of CIAT genebank as generator of international public goods. South East Asia depends on CIAT for variability in the offer of cassava germplasm.Similarly, eastern and south Africa depends on CIAT for variability of beans. Conversely, most South American countries rely on CIAT for the offer in tropical forage germplasm. Although rich in bean genetic resources, both Central America and the Andes expect from CIAT bean germplasm from the other region, namely for disease resistance genes. Availability of germplasm with all characteristics documented helps advance research in biology or genetics labs all around the world.Different research works, although carried out by the genebank to address a conservation need on any of the CIAT mandate crops, are however generic and susceptible of broader applicability. Research on slow growth in vitro that aims to extend the time lag between each subculturing opens the possibility to reduce costs for many in vitro conservation facilities keeping clonal crops. The technology of molecular markers developed at CIAT to understand better patterns of genetic diversity or to spot internal genetic copies within collections, helps to solve problems of sampling during germplasm collecting efforts or to reduce redundancy in ex situ collections. Again that technology is not crop specific, but has broader applicability. These technologies as IPGs have been and will continue to be the purpose of several training activities.The period (2010)(2011)(2012) of this MTP will be a transition for CIAT genebank, while it will continue to participate in many training activities, as a new generation of professionals initiate work in LAC countries. Continuity in training is further justified by the different backstopping activities for NARS, given the support by the Trust to NARS for the regeneration of national collections. On the one hand, there will be the consolidation of the Upgrading process launched with the GPG1 and GPG2 projects supported by the World Bank and part of a collective effort with the other CGIAR genebanks. The genebank will continue with the shipping of safety back-ups to Svalbard, CIMMYT and CIP. The upgrading of the facilities for increased energy efficiency and physical security will be completed. The effort of recovering of 'institutional memory', namely documenting 2-3 decades of germplasm evaluation and linking with germplasm requests on the internet, shall be continued, as integral part of the delivery of international public goods.On the other hand, in view of new stresses (e.g. heat, drought, water logging) induced by climate change, and demands by traditional/new markets (e.g. popping beans for low energy cooking requirement, cassava with root protein content), CIAT genebank will resume germplasm explorations for beans and cassava, specially in the primary centers of genetic diversity. This seems possible given the good number of ratifications of the International Treaty by LAC countries. CIAT genebank will participate in the evaluation of germplasm for traits little or not considered so far (e.g. the abiotic stresses above). This evaluation is likely to involve new technologies, the design of which will require in-depth knowledge of plant genetic resources.Output 1: Keeping collections up to international standards. Users of the in-trust collections expect high quality germplasm in terms of viability, health, and genetic quality (i.e. without genetic contamination, drift or erosion). Research will improve the protocols for the detection of diseases of quarantine importance, for example, PCR based detection of Frog Skin Disease in cassava. Another research area is the spotting of internal genetic copies in the in-vitro cassava collection, where maintenance costs are high. To make safety back-ups that can be run at low costs, research will be conducted on ultra drying, slow-growth in vitro and cryoconservation. This research will not only increase internal efficiencies in collection management, but also these advances can be shared by many genebanks in LAC countries. Consultations with partners in the regional PGRFA networks, with Bioversity International and the Trust are also critical for the shaping of the research agenda.Impact Pathway: Collections that are kept non viable, disease infected, or genetically different as compared to the original materials, are likely to make no impact at all, while at equal costs of management as compared to collections up to international standards. First, distribution is likely to be stopped by any plant quarantine authority, starting in Colombia. Second, poor seed drying will force to a frequent regeneration of collections, increasing thus the conservation costs. Published research results and training carried out towards the reaching higher international standards have an outcome far beyond the in-trust collections kept by CIAT, but also on the germplasm collections maintained by the NARS, leading to efficiency gains in the conservation of a much broader range of collections.Output 2: Making in-trust germplasm available to user communities. The output is the timely delivery of the germplasm and its information (passport and evaluation data). CIAT will increase the amount and quality of information available on its website (e.g. exploration reports, 'Cahiers de Phaséologie' on the distribution of wild bean species). The germplasm ordering system is being improved and linked automatically with a report system of Standard Material Transfer Agreements, allowing CIAT to report quickly to the Governing Body about distribution of materials registered in the Multilateral System of the Treaty. Cases of non-delivery due to non-availability, poor viability or poor health will be reduced. 'Customer' satisfaction feedback will be continued. The CIAT genebank website will increase linkages with SINGER (the information system of the CGIAR genebanks); USDA Pullman for beans; and EMBRAPA/CENARGEN of Brazil for cassava. Common registries for beans and cassava and for forages with ILRI, will be further developed. The DNA bank will be expanded to encompass progressively the three genetic collections.Impact Pathway: Germplasm distribution rates have been of 5-7,000 samples yearly over the past ten years, indicating a relatively high level of distribution, an interest by CIAT programs, partners and users worldwide into genebank materials, and a capacity by CIAT genebank to deliver. From the germplasm distribution statistics over 30 years, CIAT genebank has had most of its recipients in the Western Hemisphere; yet, as cassava becomes more a crop for industry, distribution of germplasm and final impact will increase into Africa, India, South East Asia and China. The Asiatic countries will also request more germplasm of (Neotropical) forages for a variety of domestic animals, and of beans as vegetables. The providing of germplasm with well documented characteristics including mutants and genetic stocks is also key for the advance of genetic mapping work currently under way for beans and cassava, itself linked to marker assisted selection. The end users and beneficiaries are almost anywhere in the world, as recipients of in-trust germplasm are located in more than 110 countries.Beans are the most important food grain legume in the tropics, and are widespread in Africa and Latina America and the Caribbean. Because of their importance both to small holder producers and in the diets of the poor, more eco-efficient production of beans is necessary. This involves greater resource productivity, less environmental damage, and better nutritional quality.The Bean Program's primary mission is to contribute to household and global food security by assuring an adequate supply of beans as a culturally acceptable and traditional staple, in ways that are eco-efficient; and to improve the income of small bean producers of Latin America and Africa, by making bean production more profitable. We also seek to improve human nutrition, both by augmenting the supply of beans, and by improvement of their nutritional value.Our products are designed to respond in particular to the needs of small, resource-poor bean farmers in Latin America and Africa. Our research strategy focuses on the exploitation of the vast genetic resources of bean that are stored in CIAT's gene bank with 41,000 accessions of common bean and related species, and that are our most unique resource. Most traits are still selected by conventional means in field sites or in greenhouse evaluations where most important diseases, soil constraints and drought can be manipulated for purposes of selection. However, Marker Assisted Selection (MAS) is employed selectively but strategically, in most cases for disease resistance genes. CIAT pioneered participatory selection with farmers and this practice is being extended and systematized. While most products are seed based, others involve agronomic practices or are knowledge based. Our research is strategic combined with both basic and applied elements, as called for by the particular challenge.Strengthened institutions that enhance bean product quality and delivery is a central concern of the program. The Bean Program seeks to benefit partners at multiple levels through facilitated interaction, including farmers who are at the end of the organizational chain. NGOs, government extension agencies, farmer organizations, local seed companies, and non-conventional seed actors such as women groups, and people living with HIV/AIDS all participate and benefit. We aim to generate impact on target beneficiaries through their participation in development of innovations, knowledge and technologies in strategic alliances with multidisciplinary research teams and NGOs. Scaling out of innovations and best practices to areas with similar environments will be done through strategic alliances of research and development actors. The latter will use their network and other communication mechanisms to adapt knowledge and results relevant to them. Scaling up regionally and internationally will be done through international NGOs, advocacy, and communication.Several research issues are of particular importance for eco-efficiency in beans: pests and diseases; drought; plant nutrition; and the growth of urban markets in the developing world.Host plant resistance and IPM: Pest and disease control through plant resistance and cultural control has long been a mainstay of the CGIAR centers and of the CIAT Bean Program. It is thus not an innovation of ecoefficient agriculture, but it is a necessary component. Pesticide abuse in Latin America and Africa is not widespread in dry bean production (except for control of the white fly vector of Gemini viruses in Latin America) but it is rampant in snap bean production and must be reduced with resistant cultivars and IPM. Climate change will have big impacts on the distribution and intensity of biotic constraints. Heat and reduced rainfall may increase insect pests in some regions; excess rainfall in the Andes and in East Africa may intensify root rots and other diseases.Drought tolerance and yield potential: Drought is one of the biggest risks of agriculture, and climate change may increase rainfall irregularity. Among important bean production areas, Central America and Mexico have always experienced occasional droughts and are expected to become even drier, as is southern Africa.Research on drought resistance of bush bean has led to unexpected gains in yield potential under favorable conditions, leading us to reflect on physiological yield limitations of the crop, especially with regard to remobilization efficiency of biomass to grain. Improved remobilization, we think, can make the crop more efficient in many respects and contribute directly to yield.Fertilizer use and Symbiotic Nitrogen Fixation: Soil related constraints are probably the most important yield limiting factors and although some use of fertilizer inputs seems inescapable, there is great opportunity for improving fertilizer use efficiency. Root architecture of beans can be readily modified to make nutrient recovery more effective and efficient, employing known traits (such as increased basal root number and longer root hairs) and others that are under study, including aluminum resistance. Output 1: Beans with improved micronutrient concentration that have a positive impact on human health. Nutrient-dense foods are more efficient in delivery of nutrition to a population, kilo per kilo and dollar for dollar. Biofortified beans can improve human health, and economic analysis has shown repeatedly that this approach is resource efficient compared to other public health options. Bean nutritional improvement has focused on doubling the concentration of iron in the grain, and raising zinc by 40%. In a broader public health context, diet-related chronic diseases disable thousands and drain public resources. Diabetes alone costs Latin America an estimated $65 billion every year! Long known to be beneficial due to slow digestibility of complex carbohydrates, beans also have therapeutic effects for diabetes patients with circulatory disorders. Bean consumption also reduces the risk of myocardial infarction and at least two types of cancer. Thus, rescuing a traditional diet, including beans, should be a public health goal. Maintaining bean consumption in urban environments may demand more attention to specific traits such as flavor and texture, or canning quality where processed beans are preferred.This research is targeted to small farmers and poor rural and urban consumers in Africa and Latin America.Targeting is developed in collaboration with nutritionists and with experts in GIS, to address human populations with nutritional deficiencies in iron and zinc. Small seeded germplasm is often targeted to warmer climates or more difficult environments in Central America, Mexico, Venezuela, East Africa and Brazil. Large seeded germplasm is usually cultivated in more temperate climates in the Andean zone, the East African highlands and southern Africa, although in the African highlands small and large seeded types overlap. Improved germplasm is shared or developed jointly with NARS partners, who supply basic seed to a range of organizations active in seed production (local seed companies, NGO's, CBO's, women's groups) who in turn distribute to farmers. NGOs and health workers play a special role in delivery. Benefits accrue to farmers/consumers through stable food supply of more nutritious beans for home consumption, and potentially to poor urban consumers. Assumptions for the successful delivery of these products include institutional and financial stability of partners, political stability, and institutional support. The role of CIAT is that of a primary research provider (of improved germplasm), at times a secondary research provider (backing up national bean improvement programs with technical expertise and training), and catalyzer (to promote downstream alliances in the uptake chain). This product is complementary to those of CIMMYT and CIP.Impact Pathway: Output 1 is targeted to small farmers and poor rural and urban consumers in Africa and Latin America. Targeting is developed in collaboration with nutritionists and with experts in GIS, to address human populations with nutritional deficiencies in iron and zinc. This Output involves both small seeded germplasm that is often targeted to warmer climates or more difficult environments in Central America, Mexico, Venezuela, East Africa and Brazil. Large seeded germplasm is usually cultivated in more temperate climates in the Andean zone, the East African highlands and southern Africa, although in the African highlands small and large seeded types overlap, sometimes differentiated by soil fertility gradients within the farm, prevailing biotic constraints and household preferences. Improved germplasm is shared or developed jointly with NARS partners, who supply basic seed to a range of organizations interested in production of seed (local seed companies, NGO's, CBO's, women's groups) who in turn distribute to farmers. NGOs and health workers play a special role in delivery. Benefits accrue to farmers/consumers through stable food supply of more nutritious beans for home consumption, and potentially to poor urban consumers. Assumptions for the successful delivery of these Outputs include institutional and financial stability of partners, political stability, and institutional support. The role of CIAT is that of a primary research provider (of improved germplasm), at times a secondary research provider (backing up national bean improvement programs with technical expertise and training), and catalyzer (to promote downstream alliances in the uptake chain). This Output is complementary to those of CIMMYT and CIP.Output 2: Beans that are more productive under low input agriculture of poor farmers. This output includes both technologies aimed at improving food security among the rural poor and also to develop beans and strategies that respond to market opportunities. Genetically improved varieties that address the biotic and abiotic constraints of bean production are a primary product of this output. Improved germplasm is diffused through many of the same channels as beans with improved nutritional value, with the exception that partners may have less specific interests, and may be more production oriented. The role of CIAT is that of primary source of research for development. Better research methodologies such as molecular markers for resistance genes benefit researchers directly, and farmers indirectly as subsequent beneficiaries. Uptake pathway for such methodologies is direct communication through workshops and courses, and indirectly through publications, leading to benefits of more efficient and effective bean research. On the other hand, crop management practices are of direct benefit to farmers as users, potentially across all bean ecosystems. Uptake chains for agronomic practices are similar to those for seed based technologies; results are communicated to NARS and other partners (NGO's, CBO's, etc.) who have successfully diffused practices to farmers, to the benefit of farmers who enjoy more stable productivity. A sub-product of this line of work are beans that respond to market opportunities, and that benefit small farmers in both Latin America and Africa. Farmers in Ethiopia have already benefited from tapping into export markets for canning beans, and other countries are positioning themselves to follow suite. In Central America exporters are seeking to fill a niche created by the Latin population in the USA. This is a demand-driven activity, and in large part has generated its own impact pathway. Exporters and international grain buyers have established market chains that give them access to export quality beans. CIAT's role has been that of supplying germplasm in some cases, and in others to facilitate communication, and to give support in seed systems to avail quality seed to farmers of very specific varieties.Impact Pathway: Beneficiaries of Output 2 are in some cases researchers (both inside and outside of CIAT), and in some cases are bean producers. For example, molecular markers for resistance genes benefit researchers directly, and farmers indirectly as subsequent beneficiaries. Uptake pathway for such methodologies is direct communication through workshops and courses, and indirectly through publications, leading to benefits of more efficient and effective bean research. This assumes that partners are in a position to implement such technologies. On the other hand, crop management practices are of direct benefit to farmers as users, potentially across all bean ecosystems. Uptake chain for agronomic practices are similar to those for seed based technologies; results are communicated to NARS and other partners (NGO's, CBO's, etc.) who have successfully diffused practices to farmers, to the benefit of farmers who enjoy more stable productivity. Improved germplasm is diffused through many of the same channels as beans with improved nutritional value, with the exception that partners may have less specific interests, and may be more production oriented. The role of CIAT is that of primary source of research for development.Globally Cassava is the world's third most important food staple in the tropics, particularly important in the African and Latin American lowlands. It has huge potential for processing into multiple food, feed and other products, and this market led development is important in Asia and Brazil.Cassava is a very rustic crop that grows well under marginal conditions where few other crops could survive. Most cassava varieties are drought tolerant, can produce in degraded soils, and are resistant or tolerant to several of the most important diseases and pests. The crop is naturally tolerant to acidic soils, and offers the convenient flexibility that it can be harvested when the farmers need it. These characteristics make this crop a fundamental food security component in marginal agriculture lands. In addition to its important role in subsistence farming and food security, cassava is acquiring an increased role in rural development as source of raw material for many processing pathways. The most important uses of cassava are as a source of energy in animal diets in the feed industry, for the starch industry and, more recently, for the production of ethanol.Cassava research at CIAT seeks to improve the eco-efficiency of agriculture traditionally by focusing on high and stable productivity through breeding and adequate cultural practices. However, there is an increasing interest in cassava as a cash crop and processing it, from small, household operations up to large industrial ones, which not only require high and stable productivity, but also would benefit from roots with specific properties. The globalization of economies and new technological breakthroughs offer a unique opportunity not previously available to the crop. In addition, advances in molecular biology, genetic engineering, planttissue culture protocols and processing technologies provide important tools that will allow bridging the main technological gaps between cassava and the cereals. Finally there is an increasing interest from governments, private sector and research institutions to reduce the environmental footprint left by cassava production and processing.Our primary mission is to contribute to household and global food security in societies where cassava products are an important and traditional staple; to improve farmers' income as well as those from rural communities and processing facilities; and to develop and promote sustainable production and processing systems. Our outputs are designed to adapt to the rapidly changing economic environment for cassava, its farmers and the communities that produce and/or process it. Cassava research at CIAT is aware of the cultural and ecological differences, challenges and opportunities that cassava offer in Latin America and the Caribbean (LAC), Asian and African regions. There are three main approaches that have been implemented to face the new opportunities and challenges for cassava in the third millennium, which are described below. CIAT is aware that competition between cassava as raw material for different processing end-uses and its important food security role should be avoided. Processing cassava for large industrial facilities is occurring mostly in southern Brazil, Thailand, Vietnam or China where cassava is not an important food security crop.Nonetheless CIAT looks for a careful balance by the research team so the use new opportunities for cassava do not result in undesirable side effects compromising food security in rural or urban communities. We openly accept that the ultimate objective of the project is to turn cassava from a low-technology, subsistence crop into a cash crop that promotes technology adoption and offers better perspectives of improving farmers' livelihood and reduction of poverty, but with an increasing emphasis in achieving this through technologies that minimize the impact on the environment. This strategy is in full agreement with the conclusions of the Global Cassava Strategy initiative (FAO) and aligned with the strategies and priorities set by IITA as well.The new opportunities opened to cassava along with budgetary constraints have led the cassava product line at CIAT to reduce emphasis in worldwide breeding and emphasize more strategic pre-breeding activities to develop high-value genetic stocks that can be efficiently developed in spite of limited resources, or else would generate new resources to develop germplasm with enhanced nutritional quality. Other activities conducted at CIAT relate to more \"upstream\" research such as marker assisted selection, genetic transformation, identification of agents of biological control and ways to exploit them commercially, or development of new breeding methods such as the introduction of inbreeding through a protocol for the production of doubledhaploids (anther culture) also under development at CIAT. Validation and testing of new agronomic practices and the routine sharing of germplasm can be done by partners in Asia (basing our activities in Thailand and in close collaboration with the Department of Agriculture and Kasetsart University), Africa (where IITA plays an important role) and LAC (where CLAYUCA has proven to be key partner, in spite of its relatively recent creation). Therefore, the work related more to \"development\", is conducted by these partners. The research conducted at CIAT is gradually changing as the strategies to identify high-value traits have open the opportunity of investments from the private sector to exploit them. This unprecedented situation results in new funding opportunities but also in needs to address issues related to intellectual property rights. The emerging pest problems of cassava in Asia (particularly in relation to mealy bug and whiteflies) require the urgent action of CIAT to identify biological control agents that will be useful to the particular conditions in Thailand and surrounding areas where these problems are emerging. It is not unthinkable that this development is a consequence of climate change and can be the first steps of our project to start dealing with the consequences of this global trend.Output 1: Creation and maintenance of genetic stocks to overcome production constraints. This Output builds on the work conducted by the Conserving Genetic Resources Program through conventional breeding and pre-breeding. CIAT takes advantage of hosting the cassava genetic resources collection with about 6500 accessions including about 200 accessions from wild relatives. to screen it for useful traits. This \"prebreeding\" activity resulted important discoveries of valuable traits. Landraces of Manihot esculenta and other Manihot species proved to be important sources of high-value traits (such as high-protein in the roots), tolerance to abiotic (such as post-harvest physiological deterioration and drought) and biotic stresses (whiteflies, African Cassava Mosaic Disease, etc.) Methodologies for the successful screening of landraces in germplasm collections have also been developed and shared with the scientific community.There are four categories of cassava genetic resources that CIAT develops and shares: (a) relatively \"unimproved\" accessions from the germplasm collection which frequently are just old landraces; (b) genetic stocks used as sources for specific traits that are the result of specific crosses or careful screenings; (c) elite germplasm developed and evaluated for their adaptation to specific environmental conditions; and (d) genes, gene sequences and molecular markers. Landraces, genetic stocks and elite germplasm are routinely shared with NARs in Africa, Asia and LAC. IITA is an important bridge to introduce genetic variability for cassava research in Africa. While EMBRAPA is a key partner in Brazil, the main outcome for this Output is the consolidation and strengthening of cassava based agriculture by developing a germplasm that will allow for a high and stable, eco-efficient productivity. CIAT is also developing technologies for properly identifying drought-tolerant cassava germplasm and from there to develop molecular markers that will facilitate its introgression and selection by NARs.CIAT has shifted the objectives of cassava breeding to produce sources of high-value traits and emphasize the creation of genetic stocks (homozygous for the relevant trait). The HarvestPlus program will produce clones with enhanced nutritional value particularly in relation to carotenoids for vitamin A. For the animal feed industry and human nutrition, increased protein content is the main objective. For the starch industry novel starch types are of huge economic relevance. Different strategies have been implemented to develop these novel types and recently yielded its first fruits with the discovery of the long sought after mutation for a waxy starch in cassava. Recently different sources of tolerance to post-harvest physiological deterioration (PPD) have been identified (induced mutations, high-carotenoids content, wild relatives, and pre-breeding work).These approaches are gradually allowing the first steps towards the creation of genetic stocks that breeding projects worldwide can benefit from.The major change that affects the execution of output 1 is the implementation of the new SMTA agreement for the exchange of germplasm that affects all CGIAR System centers. In addition the deployment of highvalue traits require thorough analysis of issues related to intellectual property rights in agreement with the CGIAR policies.Impact Pathway: Germplasm is shared through direct shipment of in vitro plants from elite germplasm identified in CIAT's breeding activities in the sub-humid, acid soils, or mid-altitude valleys environments. CLAYUCA has greatly facilitated the distribution of elite cassava germplasm through its stakeholders in Latin American and the Caribbean region. PPD-tolerant germplasm will be introduced in Africa and has already been shared with John Beeching's Lab (University of Bath, U.K.). For the starch and bio-ethanol industries the successful negotiation with a consortium of Thai institutions for the development and deployment of a waxystarch cassava variety adapted to Thailand (TTDI) illustrate not only a very direct pathway for impact, but also a novel one. The agreement implies a detailed scheme for deploying the germplasm on one hand, revenues for the cassava product line at CIAT on the other and the first example of large financial investment of the private sector in cassava germplasm development and enhancement. For the high-carotene germplasm they are currently used as source for the development of commercial varieties to be deployed (tentatively in year 2011) in Nigeria and D.R. Congo, the two target countries for HarvestPlus. High carotenoids cassava cultivars are also appealing to be deployed within Agrosalud in LAC and offer commercial advantages for the feed industry. In addition CIAT routinely produces and ships thousands of botanical seeds to NARs and IITA, who initiate evaluation and selection schemes with this seed. Assumptions for the successful delivery of these outputs include institutional and financial stability of partners, political stability, and institutional support. It is always a matter of concern the phytosanitary restrictions for the shipment of plants in vitro. The Cassava Mosaic Disease is not present in the Americas. The role of CIAT is that of a primary research provider of the improved germplasm or genetic stocks. At times, our role is of secondary research provider exploiting traits or elite germplasm developed (and generously shared) by NARs. Manihot esculenta originated and was domesticated in the region where CIAT is located. Consequently most pest and diseases have co-evolved with cassava in the region. This implies that CIAT has to be extremely cautious in the process of shipping germplasm outside the region by a thorough indexation process to prevent the shipment of pathogens and/or pests as well.Output 2: More efficient genetic enhancement approaches. For cassava to remain competitive, a more efficient breeding scheme, particularly for low heritability traits such as yield, is needed. New breeding tools are required to develop the improved genetic stocks of output 1. Molecular markers are already fully integrated into the breeding scheme, CIAT has assumed a leading role in the areas of genetic transformation, development of protocols for the production of doubled-haploids homozygous lines and efficient methodologies for in vitro propagation of clean planting materials.The intended users of this output are mostly NARs involved in cassava research. Eventually processing companies may start using some of the technologies developed at CIAT. This is the case, for example, of starch companies in Colombia, Nigeria and South Africa, implementing rapid multiplication methods (including tissue culture protocols) for the production of clean planting material of elite germplasm. The product of this output is knowledge, which is shared with the intended beneficiaries through scientific publications, the internet, training courses, conferences and presentations at scientific meetings. The outcomes of this output will be more efficient breeding system that will allow cassava to remain competitive in the global markets, but also a subtle consequence will be the stimulus for cassava breeders that a new era of advanced technologies has arrived for cassava.Throughout the many different activities the cassava research at CIAT and CLAYUCA are also paying special attention to the development of human capacity of its personnel and that of our collaborators. Training is achieved through individual visits, field days, demonstration plots, workshops, formal courses and scientific publications. These two institutions are committed to help cassava researchers, producers and processors world-wide gain access to all products and technologies developed.There is no major change from the previous MTP in output 2 except for the growing concern on climate change that further highlights the relevance of our work regarding drought tolerance. At the end of August 2008, the molecular geneticists left CIAT (and several pending tasks) which have created considerable problems for the team to continue delivering as expected from different research projects.Impact Pathway: Most of the products related to this output will have indirect impact through facilitated breeding approaches either in work directly conducted at CIAT or by NARs and IITA. Of a huge relevance is the breakthrough success in overcoming a bottleneck in the process of developing doubled-haploids from microspore culture. The exine in the developing cassava microspore is very thick and did not let scientists to see through. This proved very difficult because it was not possible to identify treatments that promoted cell division and probably prevented any further development of multi-cellular structures by pure physical strength of the exine. By the end of 2007 CIAT cassava and biotechnology teams succeeded in digesting the exine. Now up to 30% success in the production of multi-cellular structures can be attained. Next step will be the regeneration of plants from these structures. When this happens, a true revolution in cassava breeding will take place. Drastic changes in the genetic enhancement of the crop will be possible and the \"design\" of outstanding hybrids and predictable exploitation of heterosis finally a reality. There are good possibilities that the Bill and Melinda Gates Foundation will continue supporting this work that has already benefited from two consecutive 3-years projects with the Rockefeller Foundation.Output 3: Eco-efficiency of production & processing of cassava. Management of pests and diseases, likely to cause acute problems in large areas planted with cassava, has been an integral part of the cassava research at CIAT since its inception. There are three main type of products delivered through this output: sources of resistance to pests and diseases, agents for the biological control of pests and diseases; and diagnostic kits.The ultimate end-users of the results of this output are the farmers that grow cassava. However, the immediate beneficiary may be different. For the exploitation of genetic resistance to pests and diseases the breeding projects from CIAT, IITA, EMBRAPA and other NARs are clearly the first one benefiting from these products. For approaches related to the biological control of diseases and pests NARs can promote their use but farmers can almost immediately benefit from implementing them. In addition to farmers rural communities benefit from the positive impact that these approaches have on the environment and human health, by preventing or reducing the uses of agro-chemicals. These technologies also have a direct impact on the production costs and/or the sustainability of cassava productivity. CIAT's role is as a primary (in some instances as secondary) research provider. This output reflects one of the main strengths that cassava research at CIAT has had since its creation: its integral approach. As more cassava is demanded by different processing facilities, larger areas and continuous growth for a constant supply of raw materials will be required. This in turn will certainly result in better conditions for pests and diseases to become more prevalent. An integral approach for cassava production will then become more relevant than ever. The emergence of insect pests in areas of Asia that were relatively from them (particularly Thailand) offer a unique challenge for CIAT to support eco-efficiency through the powerful tools of biological control which was so successful in the similar problem of the mealybug in Africa.This output also develops cultural practices and processing approaches for a competitive and sustainable cassava production and/or processing. The expected impacts include reduction of the negative impact on the environment of growing and/or processing cassava for example by promoting hedgerows for the prevention of soil erosion or developing systems for processing industrial byproducts of agro-enterprises. CIAT's role is as a primary (in some instances as secondary) research provider. Because of the very nature of this output, CIAT's role can also be envisioned as an advocate or catalyst for the development and deployment of ecoefficient agricultural practices. Assumptions for the successful delivery of these outputs include institutional and financial stability of partners, political stability, infrastructure, and institutional support. This output also relates to the activities conducted by CLAYUCA, which result in a productive and close collaboration between the two research groups. CLAYUCA also serves as a bridge between CIAT and NARs associated with CLAYUCA making available technologies and products to NARs. In this regard, therefore, CLAYUCA has been a key partner in the pathway to impact.An increasing concern related to output 3 is the retirement of the two senior entomologists at CIAT and the departure of two pathologists (from the rice and forages program) that occurred during the last 12 month. Only one pathologist is left at CIAT (Elizabeth Alvarez from the cassava team) to attend to the four traditional commodities and tropical fruits in which she works actively. An additional change in the already mentioned emergence of insect problems in areas in Asia that had been relatively free from them. The senior agronomist that had been working in Asia for about 20 years will retire in May 2009. The scientist that will continue coordinating the work supported by the Nippon Foundation has already moved to CIAT's office in Bangkok.Impact Pathway: One interesting example of pathway to impact related to this output is the commercialization by a private company of different agents for the biological control identified at CIAT for major pests. However, the most typical pathway is through the sharing of germplasm with high degree of resistance to insects and pests. Recently, marker-assisted-selection for resistance to CMD for the deployment of germplasm in Africa with adequate levels and high frequency of resistance to the disease has been successfully implemented. In the case of LAC, CLAYUCA has been very successful positioning itself as an innovator particularly in the area of cassava post-harvest processing and interacting with other industrial processes in handling by-products.The goal of the work on tropical forages, targeted at the crop-livestock interface, is to improve livelihoods of poor rural crop-livestock producers while contributing to eco-efficiency of production systems. Thus the purpose of our work is to explore the benefits of multipurpose forages on improving agricultural productivity, enhancing soil fertility, restoring degraded lands, improving water quality, reducing deforestation and mitigating the effects of climate change, though the conservation and exploitation of the genetic diversity of either the natural variation or breeding of tropical grasses and legumes. This results in positive effects on poverty alleviation through enhanced smallholder competitiveness and improved food security, while reducing the ecological footprint.Livestock development is recognized as a key element for increasing the income of poor smallholders given the increased demand for animal products in developing countries. Recent analysis indicates evolving market opportunities for forages as prices for conventional feed resources, mostly grain-based feeds, are increasing while consumers want higher quality products. However, a high proportion of smallholder crop-livestock systems in the tropics are located in areas with prolonged dry seasons, exposed to waterlogging and/or with land in different stages of degradation. This leads to an inadequate supply of quality feed particularly in the dry season. In addition, in many cases smallholders with livestock and limited land (i.e., in Southeast Asia) have to walk long distances to harvest forages. On the other hand, tropical forages are amongst the few opportunities available to many smallholder farmers to produce high or added value products, due to the fact that forages can be grown not only in favorable but also marginal environments.To accomplish the goal and purpose of the Tropical Forages Program, the research is being organized around three outputs: (1) Forage germplasm developed through collection, selection and breeding, (2) Forages as high value products developed to capture differentiated traditional and emerging markets for smallholders, and (3) Forages integrated into smallholder crop-livestock systems to realize the benefits of improved forages through adaptation, innovation and adoption, aiming at higher livelihood security through higher resource use efficiency and reduction of the ecological footprint.Partnerships are formed with private seed industry, ARIs, NARS, and development partners to carry out strategic research to: select and breed forages; enhance adaptation of forage species to biotic and abiotic stresses; develop methods and tools for targeting, processing and evaluation of forages; employ operational research principles to develop forages for specific production and market niches; develop more sustainable crop-livestock systems using an innovation systems approach; explore the potential of improved forages for adaptation to and mitigation of climate change and reduction of the negative impacts of agriculture on the environment; and quantify the impact of forages on improving livelihoods and protecting the environment. Capacity building including group/individual training and knowledge management remains integral to our agenda to: (a) strengthen/benefit from the research capacity of partners, and (b) enhance our capacity to deliver research products in different environments.International Public Goods. The research products of CIAT's Tropical Forages Program are in line with CIAT`s approach to eco-efficient agriculture for the poor and the mandate of CGIAR of producing international public goods (IPGs). They can be grouped into the following categories:1. Defining mechanisms/processes (to assist in the development of screening methods) to understand how • improved forages affect animal productivity and product quality,• grasses resist pests and diseases,• forages adapt to acid soils,• forages adapt to drought and waterlogging,• and to what extent forages, mainly legumes, contribute to soil fertility,• grasses inhibit biological nitrification in soil.• forage quality for ruminants and monogastrics,• resistance to major biotic stress factors (i.e., spittlebug and Rhizoctonia),• adaptation to abiotic stress factors (i.e., adaptation to low soil nutrient status and high Al, to drought and poor drainage).3. Developing superior forage genotypes/cultivars to increase livestock productivity and protect the environment • Integrate grasses and legumes selected from germplasm collections and through breeding that have broad adaptation and multiple functions into crop-livestock production systems using an innovation systems approach.• Quantify trade-offs between use of forages for soil enhancement and as animal feed.• Quantify the benefits of improved forages in reducing global warming potential through carbon sequestration and reduced emissions of methane and nitrous oxide.4. Targeting and delivery of research results through dissemination of forage germplasm and decision support tools • Document conservation and distribution of germplasm.• Develop Decision Support Tools with information on adaptation, uses and management of different forage species.In line with CIAT`s focus on eco-efficient agriculture for the poor (i.e., balancing between economic, ecological and social impacts), outputs have been further sharpened. The research agenda builds on our achievements in increasing productivity of market-oriented smallholder crop-livestock production systems, while enhancing efforts to realize the environmental benefits of tropical forages. However, to respond to increased climate variability and extreme conditions, as a contribution to adaption to climate change more emphasis is placed on developing forages with high tolerance to both drought and waterlogging (Output 1). The efforts on developing forages will be complemented with research to realize income generation opportunities (Output 2) and enhance systems performance (Output 3). Forage-based systems not only contribute to livestock and crop production but can also reduce soil erosion, improve soil and water quality, and reduce global warming potential. Thus we will also increase our research on quantifying the benefits of improved forages with deep and abundant root systems in reducing global warming potential through improved carbon sequestration and reduced emissions of methane and nitrous oxide. The results are anticipated to have a positive impact on mitigation of climate change. However, information on the trade-offs between these multiple functions of tropical forages for crop-livestock production and environmental protection is still scarce. The assessment and quantification of the environmental effects of forage-based livestock production in relation to economic output will therefore integrate the three research outputs in the specific contexts of the three worlds of agriculture as proposed by the World Bank.Output 1: Forage germplasm developed through collection, selection and breeding. Forage grasses (e.g., Brachiaria) and multipurpose herbaceous and shrub legumes of high quality that are adapted to major biotic (e.g., spittlebug, Rhizoctonia) and abiotic constraints (e.g., low soil fertility, aluminum toxicity, drought, waterlogging) will be developed. Adaptation to the effects of climate change as a dynamic response is an integral part of the work on improving stress tolerance. Addressing forage conservation technologies suitable to smallholder systems and attention to emerging diseases and pests and climate change will further enhance the sustainability of smallholder systems. Results from this output will be inputs to Outputs 2 and 3 below.Impact Pathway: To contribute to the improvement of livelihoods of poor, rural, crop-livestock producers through high quality forages adapted to major biotic and abiotic constraints, forage researchers rely on natural genetic diversity from core germplasm collections housed in the Genetic Resources Unit of CIAT and other international and national centers. Artificial hybridization to create novel genetic variation is used when major limitations in successful commercial cultivars have been identified and when evaluation of large germplasm collections has failed to identify the required character combinations (e.g., spittlebug and Rhizoctonia resistance with adaptation to acid soils and drought in Brachiaria). Screening methods and selected genotypes with superior forage quality, resistant to major pests and diseases and adapted to acid, low fertility soils, to poorly drained soils and to drought, are the Output targets to be used by different partners engaged in research and development activities.Output 2: Forages as high value products developed to capture differentiated traditional and emerging markets for smallholders. Research will emphasize the high value opportunities of forages, leading to improved market competitiveness of forages (such as hay, silage and forage meal) and derived ruminant (e.g., cattle, goat, sheep) and monogastric (e.g., pigs, poultry, fish) livestock products. This includes the development of forage conservation methods targeted at smallholder systems. We work in a market-oriented value chain approach, involving the private sector, NGOs and governmental institutions.Impact Pathway: To improve the efficiency of partners to better target forages to diverse environments, production systems and market niches, the forage team collaborates with the RDC on People and Agroecosystems to develop methods of participatory evaluation of forages, decision support tools and more effective and equitable market interactions. Selected forage genotypes are evaluated and disseminated with and by partners in different environments and production systems. The superior grass and legume genotypes are released and promoted by NARS and private seed companies, and adapted and adopted by farmers to intensify and diversify their production systems.Output 3: Forages integrated into smallholder crop-livestock systems: realizing livelihood and environmental benefits. Research will be focused on improving the efficiency of labor and critical inputs such as fertilizer and water, thereby increasing system performance. Legumes as green manures in cropping systems provide part of the nitrogen needed to sustain productivity of crops. At the same time research aims to balance between economic and environmental -and implicitly social -sustainability of tropical agriculture.We will analyze the contribution of forages to the economic and ecological balance in resource (nutrients, water, land and labor) utilization, carbon sequestration and greenhouse gas emissions. The major challenge is combining higher agricultural output (through higher forage productivity and quality) with greater input use efficiency in integrated production systems while at the same time contributing to mitigate the effects of climate change (e.g., exploring the potential of forages for carbon sequestration, reduction of methane emissions, inhibition of biological nitrification).Impact Pathway: The benefits of improved grasses and legumes are realized through adaptation, innovation and adoption, aiming at higher livelihood security through higher resource use efficiency. For its work in Sub-Saharan Africa, Southeast Asia and Latin America and the Caribbean, CIATs Tropical Forages Program is collaborating with ILRI and CIAT-TSBF, with complementary research priorities and expertise to integrate forages in diverse crop-livestock systems. Adoption of new forage varieties results in more income to livestock farmers through more efficient use of land and labor, and more animal products for urban consumers, with impacts demonstrated in Latin America and the Caribbean and Southeast Asia. To reduce the ecological footprint and mitigate the effects of climate change, we integrate the decision support, biophysical and socioeconomic expertise of CIAT, ARIs, NARS and development partners. The utilization of forages to enhance system performance and reduce the ecological footprint is expected to have direct impact at the household level while at the same time providing avenues in ecosystem services and providing tools for decision makers. This partnership and the interaction with the private sector have allowed us to amplify networks for delivery of research outcomes. Information sharing through knowledge tools such as SoFT (www.tropicalforages.info) reaches a wide audience ranging from researchers and development practitioners to educational institutions, and complements our continued efforts of individual and group training.Vast areas of agricultural land in the tropics are succumbing to the threat of soil fertility loss. The problem is especially severe in Central America and is a major concern in sub-Saharan Africa, where fertilizer use is extremely low and about 500 million hectares are already moderately or severely degraded. Declining soil fertility means particularly severe limitations for women farmers, given the prevalence of gender inequality in access to more fertile land and to capital for purchasing inputs.Unless effective and equitable means of overcoming this problem are applied on a massive scale, small farmers will be hard pressed to realize the benefits of improved crops. Recent rises in fertilizer prices have made the need for better soil fertility management techniques more urgent than ever, and their importance will likely increase, as the impacts of global climate change unfolds in tropical agriculture. Together with better water management, prudent handling of soil fertility is central for making agriculture more ecoefficient.Scientists have reached a broad consensus on the basic principles underlying a holistic approach referred to as \"integrated soil fertility management\" (ISFM). The approach recognizes that, while mineral fertilizers are necessary for sustainable management of tropical soils, they are not sufficient for this purpose. Long-term experiments have shown that, when such fertilizers are applied without organic inputs, the ability of crops to use nutrients efficiently declines over time. Thus ISFM combines appropriate use of fertilizers with various organic inputs, including livestock manures and locally available multipurpose legumes.Another distinctive feature of ISFM is the recognition that interactions between the components of agricultural production -from water, soil, crops and pests on farm to input supplies, markets, rural institutions and health conditions in the surrounding landscape -are just as important as the individual components themselves. Thus, CIAT research on tropical soil biology and fertility focuses both on integrated soil fertility management and also on sustainable land management.Soil fertility depletion has been described as one of the major constraints to food security and income generation in the tropics, particularly in sub-Saharan Africa (SSA) and Central America (CA). Despite proposals for a diversity of solutions and the investment of time and resources by a wide range of institutions soil fertility depletion continues to be a major problem. The rural poor are often trapped in a vicious cycle between land degradation, fuelled by a lack of relevant knowledge and/or appropriate technologies to generate adequate income and opportunities to overcome land degradation. Intensification and diversification of agricultural production is required to meet the food, feed, and income needs of the poor and this cannot be achieved without sustainable investment in soil fertility management.To achieve sustainable investments in soil fertility management the Program has adopted the Integrated Soil Fertility Management (ISFM) paradigm. We define ISFM as 'A set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs, and improved germplasm combined with the knowledge on how to adapt these practices to local conditions, aiming to maximize agronomic use efficiency of the applied nutrients and thus crop productivity. All inputs need to be managed following sound agronomic principles.' ISFM arose because of the recognition that addressing the interactions between components (e.g., water, pests and soils) is as important as dealing with the components themselves. This definition is in line with the goals of the African Fertilizer Summit, recently held in Nigeria, which aims at increasing fertilizer use from an average of 8 to 50 kg nutrients ha -1 by 2015.Improving the natural resource base without addressing issues of health and nutrition and income generation is often the reason for lack of adoption of ISFM practices. Maximum benefits from ISFM practices can only be obtained within an enabling context, where profitable farm input and produce markets, improved health and nutrition, functional institutions, and good policy are in place. eco-efficiency is embedded in the ISFM Program through the definition of ISFM that focuses on maximizing agronomic input use efficiency (environmental dimension) and through the recognition that profitable access to markets (economic dimension) and food security and good nutrition for all (social dimension) are major drivers for adoption of ISFM.The Program will be implemented in major impact zones with target cropping systems where soil fertility decline is a major issue and where a large number of people depend on these systems for food and nutrition security and income. In SSA, these include: (i) millet and sorghum-based systems in the West-Africa dry-lands, (ii) cereal-legume intercropping and rotations in moist-savannas of West, East and Southern Africa, (iii) cassava-based systems in humid lowland areas of West and Central Africa and (iv) banana-based systems in East and Central African highlands. Each of those zones has specific soil-related constraints to crop production, including low nutrient reserves (e.g. low available N and P), poor chemical quality (e.g., low buffering capacity), and physical constraints (e.g., low soil depth), resulting in sub-optimal nutrient and water use efficiencies. In Central America, one agricultural impact zone with crop-livestock systems is targeted with actions in two important countries (Nicaragua, Honduras) in the region.Some ISFM-based technologies have shown a high potential for large-scale adoption in some of the above Impact Zones and a relatively high increase in input use efficiency while further research for development investments are needed to fully assess the adoption potential of other technologies and their impact on resource use efficiencies.The GOAL of the ISFM Program is to improve the livelihoods of rural families in the target Impact Zones by developing ISFM-based profitable, socially just, nutrient-dense, and resilient crop production systems and creating an environment enabling their adoption.International Public Goods. International and regional public goods (IPG) generated by the ISFM Program include:• Improved knowledge on soil processes, including the role of improved germplasm in regulating input use efficiency. • Tools to take into account farm heterogeneity and farmer typologies in devising ISFM practices.• Best-fit ISFM practices for the target cropping systems and Impact Zones.• Decision support tools and models to analyze trade-offs among various livelihood realms.• Innovative approaches for sustainable crop utilization and enterprise promotion, including linking farmers to market, and rural poverty reduction. • Effective approaches to engage various stakeholders in ISFM technology evaluation and dissemination.• Technological, institutional, market, utilization, and policy options for increasing delivery of benefits and broader impact.TSBF-CIAT's comparative advantage is in conducting IPG research on ISFM in farming systems where declining soil fertility and soil degradation undermine rural livelihoods and market opportunities. However, while the institute will focus primarily on strategic, applied, and adaptive research, it will also support technology dissemination and development activities, working with partners via community-based organizations and NGOs, national and regional networks and global projects. Much of the research as well as NARES capacity building will be done via the Institute's main implementing network, the African Network for Soil Biology and Fertility (AfNet). Dissemination of findings will occur through effective partnerships with relevant development partners.The Output 1: ISFM for legume-cereal-based systems in sub-Saharan Africa promoted. During the last two decades, sustainable maize-grain legume rotations and intercropping systems have been developed for the savanna Impact Zones. Accompanying ISFM practices relies upon retention of legume residues, judicious and targeted application of mineral fertilizer, resilient legume and maize germplasm and adaptation to local variation in soil fertility. Farmers in the Sahelian Impact Zone are adopting the 'micro-dosing' technology, which refers to the utilization of relatively low quantities of fertilizer (<20 kg ha -1 ), either through point placement in millet or sorghum-based systems or through appropriate fertilizer management in maize-based systems. Micro-dosing is practiced in conjunction with water harvesting, or application of manure, crop residues, or household waste. In this Output activities will focus on creating an enabling environment, such as the \"warrantage\" or inventory credit system, to promote best ISFM practices in the Sahelian and savanna Impact Zones, based on a clear understanding of which enabling factors are required for widespread ISFM uptake by farmers. Decision support tools will assist in deciding trade-offs associated with these practices.Efforts will be made to institutionalize knowledge and approaches for evaluating and disseminating ISFM practices within relevant extension systems.Output 2: ISFM for cassava-, and banana-based systems in humid sub-Saharan Africa assembled. Cassava has often been coined 'poor people's food' and assumed to be a crop that could produce some yield where others failed. Consequently, efforts to integrate fertilizer and organic inputs into cassava-based farming systems have been limited. Currently, cassava is enjoying a new popularity and attracting renewed attention as a major resilient staple crop in the humid and sub-humid areas of SSA and as a cash crop for growing export markets in chips for livestock feed, starch, and other processed products. Bananas are among the most important food and cash crops in East and Central Africa and comprise principal components of food security and income generation within the region. Bananas require fertile soil, adequate moisture and pest management to achieve high yields and traditional banana production systems included the recycling of organic nutrients. Exportation of bananas to urban markets without the replenishment of the nutrients exported has resulted in unsustainable mining of nutrients in banana farming systems, leading to a decline in banana productivity. Both above systems are amenable to ISFM and Output 2 is aimed at developing such practices through proper understanding of the mechanistic principles underlying ISFM and ex-ante studies of the adoption potential of the emerging ISFM practices. Decision support tools and capacity building will trigger the initial uptake of ISFM within these systems within the timeframe of this MTP.Output 3: ISFM for conservation agriculture systems in Central America assembled. In the Central-American hillsides, land degradation is a major problem affecting approximately 75% of the area. Smallholders have no other choice than continuous crop production on lands prone to erosion. Soil nutrients are depleted, resulting in an overall soil fertility decline, contributing to low productivity and poverty. Results from earlier research activities indicated that the Quesungual Slash and Mulch Agroforestry System (QSMAS), a form of conservation agriculture, has beneficial effects on improving food security and reducing ecological footprints. QSMAS is based on (i) no slash and burn and management of natural vegetation, (ii) permanent soil cover, through continual deposition of biomass from trees, shrubs, weeds, and crops, and (iii) minimal disturbance of soil, through no tillage, direct seedling, and reduced soil disturbance. The integration of ISFM principles within the QSMAS systems has shown great potential. A specific challenge is to diversify the QSMAS through integration with livestock production in the region. Pastures are often highly degraded and dairy production drops dramatically during the dry season when milk prices increase 2-fold compared with the rainy season. The use of ISFM including improved crop and forage germplasm, adapted to low soil fertility and drought will contribute to sustainable livelihoods in the region. This Output is aimed at developing ISFM practices through a proper understanding of the mechanistic principles underlying ISFM. Decision support tools and capacity building will trigger the initial uptake of ISFM within the QSMAS within the timeframe of this MTP.Impact Pathway: The impact of ISFM within the Impact Zones will be visible through improved production, income, human health and nutrition, and soil fertility, and reduced nutrient mining and conversion of natural fallow to agriculture. Each of the Outputs Targets aims at reaching specific users who are then geared towards common outcomes and impact through effective partnerships. strategic research outputs will be used mainly by CGIAR, Advanced Research Institutes (ARIs), National Agricultural Research System (NARS), and Regional Consortia researchers who are envisaged to derive processes and principles based on applied research activities. NARS will then apply these principles, concepts and methods and adapt and improve ISFM practices to the prevailing production environments of their mandate areas. An enabling environment for adoption of ISFM, focusing on improved market access, knowledge on health and nutrition of farming communities, effective partnerships along targeted value chains, and stakeholder capacity building will not only create motivation for adoption of ISFM technologies but contribute directly to improved income and health and nutrition after adoption of such technologies. The intended users of these are development partners and farming communities with specific attention given to enlightening the ISFM research community on these issues. The building of human and social capital of all TSBF-CIAT stakeholders for effective research and sustainable management of tropical soils is necessary since managing soil fertility for improved livelihoods requires the integration of technical, social, economic and policy issues at multiple scales.Since most operations in this Program are supported by specific projects, the operationalization of specific impact pathways will be dependent on the goals and objectives of these projects and will not necessarily cover the entire value chain within a specific project. The overall importance of this Program is then to oversee that the necessary links are created between various initiatives operating in similar Impact Zones to ensure a continuity of partner networks and necessary coordination to deliver the required Outputs to achieve impact.The Land degradation is one of the major constraints to food security and income generation in developing countries. It has direct effects on short term crop productivity as well as on the longer term sustainability of natural resources.Moreover, there is the added challenge to maintain or improve the resilience of the productive capacity of the soil in view of climate and environmental change.In order to address land degradation we need to look at the larger agricultural production landscape (that comprises the bio-physical, socio-economic and the cultural and political landscape). The production landscape needs to be understood in terms of the provision of environmental (or ecosystem) goods and services. Soils play a key role in the provision of the services; soils store and cycle water from rainfall and irrigation and filter toxic substances through clay sorption and precipitation processes that determine surface and ground water quality, soil organisms decompose organic materials, cycle nutrients, regulate gas fluxes to and from the atmosphere, regulate soil borne pest and diseases and maintain soil structure through bioturbation. The affect of agriculture on these processes is the focus of this program along with the reciprocal affect of these processes on future agricultural productivity.The main objectives of the SLM program are • To enhance knowledge and understanding of soil ecological functions that sustain a productive agriculture and maintains or improves biodiversity and ecosystem services.• To utilize targeting of land use and soil management interventions to better reverse erosion of the soil resource base. • To enhance the production of ecosystem services through sustainable agricultural production and payments for ecosystem services.The SLM program has defined 2 outputs to satisfy the objectives and goals defined.Output 1: Eco-efficient land and soil management practices evaluated for landscape levels.Output 2: Options for enhanced and sustained agricultural production and ecosystem services, regeneration of ecosystem function and adaptation to climate change developed.International Public Goods. The IPG of the SLM program include the following:• Improved understanding on soil (biological) processes;• (Standard) methods for the assessment of soil quality and soil health, including soil biological, chemical and physical components; • Indicators of soil quality and soil health; • Assessment of soil quality and soil health for agro-ecosystems of major importance and understanding of processes that lead to poor soil quality and health; • Improved knowledge on how different stakeholders use and manage landscapes; • Improved systems and practices for managing soil, water and land resources at a landscape level; • Improved knowledge on global warming potential of different production systems; • Innovative diversification options of land use within agricultural production landscapes; • Decision support tools and models to analyze trade-offs among food productivity, ecosystem services and land conservation; • Institutional innovations and policy options to reduce land degradation and to restore degraded lands.• Three-tier-approach for sustainable crop and livestock enterprise promotion, linking farmers to market, and rural poverty reduction.The TSBF Institute has a comparative advantage in conducting and coordinating IPG research on soil quality and soil health in a farming system and land use system context, where land degradation undermines rural livelihoods. However, while CIAT-TSBF will focus primarily on strategic research, it will support technology dissemination and development activities with partners via innovation platforms, regional networks and international projects. CIAT-TSBF SLM program will continue research on below-ground biodiversity as a means of beneficially managing soil biology. Much of the applied research and dissemination of findings, as well as NARSs capacity building, will be done via the Institute's regional partner network -the African Network for Soil Biology and Fertility (AfNet) and through national partners. Efforts will be undertaken to expand the MIS consortium in Central America to build a similar network for soil biology and fertility research in Latin America. CIAT-TSBF also collaborates with the South Asian Regional Network (SARNet) on soil fertility research in that region.Several changes have been made compared to the 2009-2011 MTP. They related to:Outputs redefined and reduction in number of outputs and output targets. The number of outputs has been reduced to two, rather than the original five. Capacity building has been dropped as a separate output because these efforts are considered to be an integral part of the process to generate the outputs and impacts. The formation and capacity building remain an important objective of the program. Further, understanding the biophysical processes and principles that underlie soil health, soil and land degradation and principal and proximate causes that drive soil and land degradation as well as decision support tools for the targeting of interventions for sustainable land management is all integrated in one output. Biodiversity, being the basis for production of all ecosystem services, is naturally included as one of the components of the diagnostic phase. The 'economically viable and environmentally sound soil management practices' has been retained as separate output.Improved distinction between ISFM and SLM programs. The development of production technologies including soil management practices is very much the domain of the ISFM program. Ecosystem functioning is an important focus for the SLM program and the evaluation of (alternative) production systems in term of impact on ecosystem functioning at the landscape scale remains an important focus, and as such do also include technologies that target improved ecosystem services, like conservation measures and water harvesting technique. For this purpose we do want to evaluate production systems (like conservation agriculture, organic agriculture, crop-livestock systems, etc.) based on their global warming potential and ecological footprint index.Program more clearly structured according to impact zones. Output targets are defined according to impact zones rather then based on thematic distinction and allows for a more integrated and specific program of activities and allows for better integration with other programs to realize benefits to the region. The SLM program aims to maintain its presence in the Amazon and Central American Mid-Altitude hillsides zone, even though the CSM-BGBD project will come to an end in 2009. It will try to do so by including existing projects and formulating new proposals for these areas. Activities in India and Indonesia will have ceased, but we will look for opportunities to continue our work in South and South-East Asia and to maintain our global outlook.Output 1: Eco-efficient land and soil management practices evaluated. This output aims to insure the ecoefficiency of soil management practices including ISFM technologies, soil conservation measures, and water harvesting technique, etc. Eco-efficiency must deliver both high productivity and minimum negative ecological footprint. The research of this program is closely integrated with that of the ISFM program. While the ISFM program concentrates on identifying practices that enhance farm productivity, the Sustainable Land Management (SLM) program focuses on the environmental and natural resource implications of new ISFM practices. The ISFM program works principally at the level of the field, the SLM program complements this with a landscape approach. From this perspective the SLM program looks at the landscape impacts of new ISFM technologies on outcomes such as ecosystem services like carbon sequestration, water retention, soil biodiversity, or organic matter cycling. Production systems will also be evaluated on their potential contribution to global warming and energy use efficiency. The SLM program looks at trade-offs between farm productivity and food production with ecosystem services.For this output we will partly rely on IFSM trials that are conducted under the auspices of the SLM Program as well as the IFSM program and in close cooperation with AFNET, making use of their network long term trials. This includes studies on the effect of soil and land management on soil biodiversity. Ex-ante and ex-post adoption studies that look into the requirements of various systems for resources like land, labor, capital and manure will inform the definition of application domains. Information will be captured in fact sheets from which decision aids will be developed, constituting the knowledge base which will be the major element of this output. The decision aids will help select among various alternatives, for example, selection tropical forages for different types and qualities of organic matter. The knowledge base including the decision aids will be made available to third parties through the internet.Impact Pathway: Output 1 will be documentation of a set of proven technologies and systems for SLM together with information on their application domains. This knowledge base will be made accessible through the internet and we hope the website will serve as a vade-mecum for a wide range of target audiences. However, the innovation and development platforms (to be established for each intervention domain) will be the main target audience and mechanism for the dissemination of the research outputs. The use of this information will allow stakeholders (farmers, development NGO, extension services, research community, etc.) to make better selection of the technologies they want to invest in and moreover to agree on a joint agenda and programme for intervention. It will reduce risks and enhance returns on investment and herewith enhance changes for adoption of appropriate technology. It will allow for better trade-off analyses and herewith enhance negotiation power of the farmer communities.This output target aims to improve the availability, accessibility and the applicability of research findings, from the various disciplines within and outside CIAT, that are relevant to SLM and sustainable agricultural production. It will aid planning of research within the organization and with partners. Constraints in the availability of information and lack of rigorous analyses and synthesis of results from these various experiments and studies have resulted in duplication of research efforts as far as ISFM and soil conservation technologies are concerned. So we hope this output will make a contribution to improve efficiency of the limited research funds that are available for agricultural research in the tropics and improved targeting of the technologies.Output 2: Options for enhanced and sustained agricultural production and ecosystem services, regeneration of ecosystem function and adaptation to climate change developed. The SLM program aims to identify domains for intervention in sustainable land management. These domains are concrete geographical spaces with specific bio-physical and socio-economic characteristics, but that also allows identification of the relevant stakeholder group that need to be involved in planning of concrete interventions Particular attention will be paid to appraising the Quesungual slash and mulch agroforestry system based on principles of conservation agriculture that could be an alternative to replace the non-sustainable, environmentally unfriendly slash-and-burn system that is traditionally used by resource-poor farmers in hillside agroecosystems of the sub-humid tropics in Central America.The decision support tools for improved targeting of recommendation for sustainable land management will consist of a set of decision rules to define soil health problem domains, to define application domains of the various alternative technologies and production systems and to define the intervention domains. The possible interventions are evaluated basically by matching the requirements for the intervention with the conditions in each of the three types of domains specified. The tools developed for targeting interventions will assist in better targeting of investments by the rural development and communities.The AfSIS project will provide detailed information on soil functional properties for the whole of Sub-Saharan Africa. It will rely on diagnostic field trials to infer information on soil health status (i.e. the ability of the soil to provide soil ecosystem related services). The response to fertilizer is an important characteristic. From the analyses of field trials decision rules will be derived for the management of the health of soils of different properties. These data will provide a comprehensive overview of land degradation and soil quality status for different impact zones.This output will also embrace socio-economic data and address strategic alliances and organization of the stakeholders (e.g. farmer organization). For example, part of this work will be implemented through the formation of innovation platforms, but at the same time we will evaluate innovation platform as a proper mechanism in our intervention strategy. This will be done through an action research approach and will require use of participatory monitoring and evaluation techniques. Communities and stakeholders are involved with all the SLM project activities in the various impact zones to link research to development, but different strategies are applied. The SLM program will draw lessons learned from these different approaches to improve our intervention strategies and to enhance impact of our research within the various impact zones.The SLM Program will work closely with the Decision and Policy Analysis Program on methodological issues related to studies of ecosystem services, and some of this work should overlap with the Amazon Ecoregional Program.Impact Pathway: The impact pathway for Output 2 is similar though more focused on raising awareness and action preparedness. For the implementation of programs on the ground detailed information is needed and possible interventions (introductions of technologies) need to be considered within the wider context of the production systems and in production of alternative systems within the context of the production landscape. An area-wide approach is often required and interventions have often failed because technologies have been viewed in isolation or particular farming systems have been targeted without looking at opportunities for efficiency gains using an area-wide approach. This output aims to address this constraint by providing a systematic way for characterizing and diagnosing the production environment and for identifying and evaluating interventions options considering various technologies and alternative systems at a landscape level.Detailed data and information on status of land degradation on a continental scale (that AfSIS will provide) will be of enormous value to better predict the impact of climate change, to assess environmental impacts of land use change, to study potential for agricultural development, etc. This information will enhance the awareness of the magnitude and urgency of the problem of land degradation and will increase the willingness to take action. The accurate diagnosis and understanding of causes of land degradation and declining yields, the constraints and opportunities for SLM will contribute to better targeting of investments and finally the evaluation of alternative intervention strategies and options, the improved assessment of risks and changes of success will help to organize stakeholders and define a common cause. In the end, the decision making process is improved and the planning and targeting of interventions is improved. Again platforms will be the main vehicle through which the interventions are planned and through which we aim to enhance the cohesion and integration of the intervention form the various actors and stakeholders. This will greatly help the cause of the rural poor, to enhance their livelihoods and improve their environment. The creation of the right platforms to address these issues at local, national and international level will be critical though for its success.Following the recommendations of the recent EPMR, responding to the interests of partners, for example, as expressed in FORAGRO, and refocusing on its roots and particular comparative advantages within the CGIAR, CIAT will pursue eco-efficient agriculture on an ecoregional basis, working in high-priority sub-regions of LAC, many of which have strong similarities with regions in Africa and Asia. LAC's extraordinary biological, climatic and socioeconomic diversity especially favor a focused effort to enhance agriculture's eco-efficiency.An ecoregional approach in international agricultural research is consistent with expressed needs and demands within LAC. During recent months, CIAT has consulted with a large and diverse group of actors from both public and private sector organizations across the region. This involved formal discussions with many partner institutions in our host country, Colombia; with other major national partners, such as the Brazilian Agricultural Research Corporation (EMBRAPA); and with key regional entities, including the Center for Tropical Agronomic Research and Higher Learning (CATIE), the Forum for Agricultural Research and Development in the Americas (FORAGRO), the Inter-American Development Bank (IDB) and Inter-American Institute for Collaboration in Agriculture (IICA).The information CIAT gleaned was highly diverse, but it conveyed a number of clear messages about the role and strategic directions of international research. To begin with, partners called on CIAT to operate more closely with existing research capacities in the region. In 2006 there were 19,000 full time agricultural researchers in LAC. Partners see a potential for CIAT to become a regional technological platform, working with the strong national programs for common regional objectives that are widely shared.They called on the CGIAR to extend its crop research to include support for efforts on a wider array of crops (such as tropical fruits and biofuel feedstocks) that are important throughout the region. At the same time, they asked CIAT to continue with the conservation and improvement of beans, cassava, rice and tropical forages. In crop improvement, partners especially want to see CIAT concentrate on making biotechnology tools more accessible and more relevant to the needs of LAC. In addition, they urge the center to continue its efforts to strengthen small farmers' links to markets. Partners consider public-private partnerships to be necessary for the success of that work, and they look to international research for the technical backstopping needed to make such partnerships effective. Recognizing CIAT's past experience in NRM research, partners in LAC also requested a heightened emphasis on environmental services, including carbon sequestration, biological nitrogen fixation and provision of clean water.In general, partners expect the center's research agenda to respond flexibly to regional needs and to closely match regional priorities. They also recognize, however, that many of their own priorities fit well within the wider agenda of the CGIAR, including its major efforts in Africa. CIAT will need to respond to the region's diverse demands through an innovative approach that pursues research on a variety of crops, while also helping achieve a more competitive, market-oriented small-scale agriculture and more sustainable management of the region's biodiversity and other natural resources, drawing on global links and experience.In pursuing a renewed ecoregional role, CIAT will have to come to terms with two important institutional developments in LAC's agricultural research systems. First, to reverse the erosion of research capacity that has taken place in some disciplines and countries over the last decade or more, the center needs to assistand LAC partners welcome its assistance -in creating a whole new generation of agricultural scientists. Second, CIAT must address the striking duality in public sector research that has emerged during recent years, with a few countries (notably Brazil and Mexico) possessing strong research systems, while in a larger number research capacity has deteriorated as resources for this work have dried up. To implement a full agenda of research for LAC, it will be important to explore new roles for large national systems and to strengthen networks that meld large and small into a coherent ecoregional framework. There is recognition that regional funding sources, for example, FONTAGRO and IDB, will have to be tapped in order to fully resource these important initiatives.An important step in developing an eco-regional research strategy would be to hold a regional meeting to identify priorities and partnerships between national innovation systems and not just CIAT, but the broader CGIAR. This meeting would aim to reach agreements to formulate projects and jointly identify investment resources. FORAGRO has expressed interest in convening such a meeting.Rice is the leading food staple in South America and the Caribbean. While most of the world's rice is produced in Asia, which is home to IRRI, in LAC there are unique pests and diseases, as well as distinct grain types and cropping systems that require regional development of germplasm. The demand for rice in LAC is growing, and the region's abundant land and water resources give it the potential to be a growing supplier of rice to the world. During 1990-2004 rice production in LAC expanded annually at 3%, much higher than in any other region. Rice is grown under diverse agro climatic/soil conditions and production systems and the crop is subjected to diverse biotic and abiotic stresses, different from Asia and Africa. Mainly medium to small resource-poor farmers predominate in Central America and the Caribbean, and in the northern part of South America; some medium to large mechanized farms are found, especially in the Southern Cone. Therefore, there is a need to develop germplasm and technology appropriate for diverse type of rice production systems and different breeding strategies and rice materials are needed.Eco-efficient rice production systems, with high productivity and low impact on the environment are critical for the future. There are opportunities for growth in the rice sector in LAC. Recent data collected by FLAR in several countries indicate that by using better agronomic practices and improved varieties farmers are getting 1-2 ton/ha more of rice lowering production cost/ton of rice. International Public Goods. The \"International Treaty on Plant Genetic Resources for Food and Agriculture\" is an international agreement governing many of the world's most important crop diversity collections. The treaty will ensure that this diversity, which is critical for the rice crop improvement will remain in the public domain. In the area of germplasm, CIAT has decided to place most of its elite lines into this system. To do this, we will use the database format of IRRI and these should become part of the Future Harvest genetic resources. Most of the technologies including database management programs, breeding methodologies, and rice lines that are developed at CIAT enter into the public domain as international public goods. One of the most relevant and important products of the CIAT Rice Program is the development and deployment of interspecific rice lines derived from crosses between wild rice species and cultivated rice. Most of our partners and NARs in LAC are not in a position to carry out this type of breeding work since they lack the expertise, resources and funding to do it. Besides, they are more concerned with the development of improved lines to address production problems that impinge on today's rice production but not on broadening the genetic base of rice or on problems for which no sources of genetic resistance are known.Additionally, the adaptation and use of biotechnology tools in rice breeding programs by our partners will add another strategic dimension to products coming out of the CIAT Rice Program.The main significant changes affecting the Rice Project are related to the new CIAT organization where some research activities were eliminated or consolidated. The previous IP-4 Rice project is the new Rice Program \"Improved Rice Germplasm for Latin America and the Caribbean\". This Rice Program has three main Products: 1-Rice Germplasm for Improving Human Health and Nutrition in LAC; 2-Enhanced Gene Pools for Irrigated and Upland Rice in LAC; 3-Genotypic and Phenotypic Platforms for Rice Enhancement. The previous output 1, \"enhanced gene pools\", include pre-breeding activities for both irrigated and upland rice as well as collaborative activities with FLAR; many activities of the previous output 2, \"integrated crop, pest and disease management\", were eliminated while others consolidated into Product 2. The previous output 3, \"intensification and diversification of rice cropping systems for small farmers\", was eliminated. Two new Products, \"Rice germplasm for improving human health and nutrition in Latin America\", and \"Genotypic and Phenotypic Platforms for Rice Enhancement\" were added.From 2008 onward, core resources for the rice research activities have been significantly reduced. The strategy is to complement and strengthen the CIAT-FLAR platform with other institution(s) to attract more attention and funding via special projects. These changes are reflected in the consolidation or elimination of several of the Output Targets.Output 1: Rice germplasm for improving human health and nutrition in Latin America and the Caribbean.People living in areas where rice consumption is high (Haiti, Nicaragua, Bolivia, Panama, Dominican Republic, Colombia, and rural Brazil) are suffering from a number of major nutritional problems. Women and children are especially susceptible to deficiencies in micronutrients, particularly vitamin A, iron and zinc. As a result, they are at risk of disease, premature death, lower cognitive capacity, and poor quality of life. The costs of these deficiencies are high and economic and health indicators in LAC are deteriorating. Biofortified rice lines will be Rice Program's contribution to combat malnutrition in LAC through the development of and deployment of high iron and zinc rice lines. Research carried out at IRRI suggests that there is genetic variability in the rice genome to increase iron and zinc in the rice grain. It has been reported that consumption of biofortified rice, without any other changes in diet, is efficacious in improving iron stores in women with iron-poor diets in the developing world. We plan to develop rice lines having 6-8ppm of iron and 22-25ppm of zinc in milled rice using different breeding strategies. Progress made is good and some varieties with improved nutrient content, high yield potential, tolerance to main diseases and pests, and good grain quality will be released soon.Impact Pathway: This product is concerned with the development of high iron (6-8 ppm) and zinc (22-25 ppm) rice lines to combat malnutrition in LAC. Final intended users are urban and rural consumers, especially poor sectors. Improved rice germplasm as an instrument for improving human health and nutrition as well as for increasing productivity will benefit the poor people in Latin America (40% of LAC's population). Nutritionally improved staple food will provide an inexpensive, cost-effective, sustainable, long-term means of delivering micronutrients to the rural small resource poor farmers and the urban resources poor consumers. This project is carried out in close partnership with research institutions in Colombia (FEDEARROZ), Bolivia (CIAT-Bolivia, and ASPAR), Cuba (IIA), Brazil (EMBRAPA), Dominican Republic (IDIAF), Nicaragua (INTA and farmer's associations), and more recently Panama (IDIAP). Breeding material is evaluated for iron and zinc and selected ones are sent to AgroSalud's partners for local testing. Our partners, whom operate based on a network of germplasm exchange and participatory breeding activities in the region are in charge of testing, evaluating, multiplying and distributing seed of biofortified rice lines, and in collaboration with local nutritionists and socio-economists will estimate the benefits of the technology on the improvement of human health and nutrition as well as on increasing the productivity of rice and farmers well-being. Finally, lines with increased iron and zinc content will be named and release locally by our partners in AgroSalud.Output 2: Enhanced Gene Pools for Irrigated and Upland Rice in Latin America and the Caribbean. The genetic base of both irrigated and upland rice in LAC is very narrow. To increase the genetic diversity of rice, we use different breeding strategies, including interspecific crosses, composite populations, introgression and recombinant inbred lines, and we are developing biotechnology tools that allow the incorporation of traits more efficiently. Wild species are valued as a unique source of genetic variation; however, they have rarely being used for the genetic improvement of quantitative traits. Since 1994 the CIAT Rice Program has been characterizing and utilizing wild rice species. The strategy in place makes use of molecular maps in combination with backcrossing to elite breeding lines or commercial varieties to develop populations that are used to identify and transfer quantitative trait loci (QTLs) associated with traits of agronomic importance to cultivated rice. Broadening the genetic base of rice is also conducted through the development of synthetic rice populations using recurrent selection. Recurrent selection methods contribute to meeting the goals for continuous genetic improvement by assessing genotype x environment interactions to identify specific potential parents and pooling then to create site-specific synthetic rice populations with a broader genetic base. Through short cycles of selection and recombination, linkage barriers are broken down and favorable genes are accumulated. This is a smooth process of continuous improvement. These activities for rice improvement are carried out in close collaboration with partners in LAC via the REDMEGA network. The CIRAD-CIAT team started developing basic populations targeting the various rice ecosystems present in LAC, in partnership with scientists in Colombia, Venezuela and Cuba for the tropical ecosystem; Argentina for the subtropics; and Chile and France for the temperate zone. These populations are shipped to regional partners and evaluated locally.A marker-assisted selection program for recurrent selection will further improve the efficiency of the method.Impact Pathway: The objective is this product is to develop enhanced gene pools for both irrigated and upland rice, which are made available to our partners by different means. In the late 80s CIAT made the decision not to name and release rice varieties but left this decision to NARS. So the impact pathway depends entirely on the local evaluation, testing and selection of the breeding nurseries (CIAT-ION) that are prepared and sent to our collaborators every year, based on local demand. Our breeding lines are used as progenitors in further crossing by national rice breeding programs. In some cases these lines are released as commercial varieties after further selection, purification and seed multiplication. Typically this process takes 10-12 years after receiving the CIAT-ION nursery. The CIRAD-CIAT team set out to develop collaboration with rice breeders throughout LAC and took the lead in creating and sharing synthetic populations and providing training through the Working Group on Advanced Rice breeding (GRUMEGA). Improved populations are shared with regional partners and evaluated locally. Most of the cooperators use this material to develop sitespecific populations by introgressing additional variability to meet their specific breeding objectives. They then use these populations in their rice-improvement programs by recurrent selection. Recurrent selection is an activity that has been promoted through the GRUMEGA network. During the last 10 years, it has held many Rice Breeder Workshops and many local partners get populations and advanced rice lines from these activities. We are member of FLAR and most of the FLAR germplasm is developed using some of the CIAT germplasm. FLAR includes some of the strongest rice research institutions in Latin America and this is also a valuable source for germplasm exchange and enhancement as well as other forms of collaboration. Again, our regional rice partners are responsible for the release of varieties, which is the main impact of this Product 2.A very high percentage of the new rice varieties contain CIAT germplasm. The request for germplasm is highly variable (early segregating or advanced/fixed lines, parental lines) and depends on the production constraints affecting rice, and rice production systems used in a given country. In general, the smaller rice producing countries need advanced materials. The larger rice programs use germplasm and segregating populations to make their own selections. At the end, our impact will be measured by an expected increase and more ecoefficient rice production in LAC, with improved rice competitiveness through lower production costs and higher yields.Our pathway to impact is a framework for collaborative research built on five pillars: (i) capacity building, (ii) germplasm development and sharing; (iii) workshops for germplasm evaluation and selection, (iv) conferences to present results and advances, and (v) publications with and by collaborators.Output 3: Genotypic and Phenotypic Platforms for Rice Enhancement. Rice production faces the difficult challenge of obtaining reliable yields under variable conditions, notably due to the prevalence of biotic and abiotic stresses exacerbated by climate stresses. Numerous genes of economic importance are transferred from one varietal background to another through conventional breeding approaches, a time -consuming effort. Sometimes, screening procedures are cumbersome and expensive, and require large experimental area. Molecular biology is one of the key tools for generating more scientific advances that may not only reduce hunger and malnutrition in developing countries but also to contribute to an eco-efficient rice production. The entire genetic makeup of rice has been decoded, and more than 15,000 SRMs markers are available in rice, which allows us to tag genes of interest by tight linkage with molecular markers saving time and money, thereby increasing the efficiency of the breeding process. This approach, called marker-assisted breeding, has already been implemented in developed countries, but a large cadre of trained scientists and plant breeders working in developing countries will be required to reap the benefits of crop genomics. CIAT's scientists are using genetic engineering including transformation to transfer genes associated with desirable crop traits into elite lines or successful commercial varieties. A lot of molecular data have been generated at CIAT in rice on different agronomic traits, including an anchor marker map, several mapping populations, a field phenotyping platform and transformed rice lines carrying DREB-gene associated with drought tolerance. CIAT has permission from the Colombian National Biosafety Committee and excellent biosafety and field facilities for the generation and testing of transformed rice. Lines with better water and nitrogen-use efficiency will allow savings in water and fertilizer costs.Increasing the yield potential is one of the most challenging goals of current rice research. For many years conventionally-bred rice varieties could not make significant improvements in grain yield. Hybrid rice has done it in China and it is slowly expanding in other parts of the world. Some limited efforts in hybrid rice have been going on in LAC, but they lack the necessary dimension to success. CIAT could play a decisive role in creating a strong partnership with IRRI and regional partners, by developing an independent hybrid rice consortium for LAC.Impact Pathway: This product relates to activities in biotechnology that were housed in the CIAT Biotechnology Unit but that were conducted in close collaboration between rice scientists in the IP-4 rice project and the SB-2 project. The main objective is to integrate biotechnology tools available at CIAT and advanced institutions collaborating with us into the rice breeding program, especially via marker assisted selection and genetic engineering. Our pathway to impact will be similar to those already describe in Product 2, mainly through: (i) capacity building, including sharing of methodologies, databases, and software, (ii) development and sharing of genetic and breeding tools; (iii) workshops for germplasm evaluation and selection, (iv) conferences to present results and advances, (v) publications with and by collaborators, and (vi) collaborative research projects with strategic partners on activities of common interest.Cultivation of high value commodities with growing demand offers great economic opportunities for smallholder farmers. Rural employment and better profitability of farming systems have been associated with the production of High Value Agricultural Products (HVAP). HVAP, defined as 'crop, fish, livestock or nontimber forest products that return a higher gross margin per unit of available resources (land, labor, capital, human capacity) than other products within a given location and context' describe very well the characteristics of Tropical Fruits. More than 1100 species produce edible fruits in the LAC region, many of them with established and growing markets. Therefore fruits, as well as other high value crops, offer an alternative for crop diversification and a real opportunity for income generation. The opportunities for income generation are challenged by diverse constraints that vary from one region to another depending on the species of fruits, the agro-ecological and market conditions, political will and infrastructure.With rapid urbanization in the tropical countries providing powerfully growing internal demand, as well as the globalization of economies and growth of global food markets, the prospects for tropical fruits are excellent. This trend represents an opportunity for small scale smallholders who often have competitive advantages of an ability to more intensively manage small land holdings as well as access more productive lower cost labor.However, this opportunity for family farmers is limited by multiple challenges that need to be addressed, both on the production and on the marketing side. Indiscriminate and excessive use of pesticides, with the subsequent build up of undesired residues, become a barrier for accessing markets, and jeopardize the nutritional benefits of Tropical Fruits as a vehicle to supply vitamins and minerals to the poor. Sustainable production practices with minimum ecological footprint are required and need to be developed jointly with grower communities and local regulatory institutions.Another critical challenge is limited organizational skills, inappropriate market access and lack of capacity to respond to changing market demands. Small-scale farmers should be linked to the market chain so their products could be marketed in the domestic, regional or global markets. A good understanding of market requirements, market dynamics and development of technologies and practices to comply with market demands are essential for facilitating access of the poor to the HVAP markets. This can be achieved by creating solid public-private partnerships, new technologies, policy and interventions that consider the complexity of HVAP markets and make small-scale farmers more competitive, productive, and sustainable. Public and private policies become strategic elements to develop inclusive business models that consider smallholder growers in the rural development scheme.Within this context the mission of the tropical fruits program at CIAT is \"Improve the competitiveness of smallholder producers of tropical fruits and service providers through information and technologies that result in more sustainable production practices and systems, better access to markets and increased household income\"The research agenda of the Program has taken into consideration the eight primary issues identified through a Global Assessment of the Horticultural Sector: (1) access to markets, (2) post-harvest deterioration and food safety, (3) genetic resources conservation and development, (4) sustainable production systems and natural resource management, (5) capacity building, (6) enabling environment, ( 7) gender equity and ( 8) nutrition and human health. Our research outputs will address some of the issues.The Tropical Fruit Program can only be effective in reaching its goals of improving the welfare and increasing the incomes of rural communities by working with local partners: our success is dependent not only on our efforts but also on being able to find effective partners willing to work with us. CIAT will continue to build bridges among countries in the region to exchange information and knowledge related to biophysical and social aspects that result in the successful development of the fruit industries, and have had impact in the rural population. CIAT's role is critically important for a regional strategy in Tropical Fruits. Due to its effect on income generation and, in some cases restricted export market size, the willingness to exchange information among countries is not always present and needs to be constructed. The Tropical Fruits Program will continue to develop a strategic core research business built upon regional needs and aligned with the findings of the Global Assessment, as well as applied research as demanded by local partners and development organizations. Linkages to the CGIAR Ecoregional Program for the Amazon will be a central part of program efforts.International Public Goods. Tropical fruits outputs are biophysical and knowledge-intensive innovations (methods, tools, good agricultural practices) which are derived from both lessons learned across regions, locations and crops, as well as from direct laboratory experimentation. Publications of research outputs will be our main IPGs. However, adaptation and application of research findings will be done on a case by case basis by partner organizations, including NARs, producer organizations and development bodies. CIAT aims to participate in such adaptations and use that opportunity as a co-learning strategy to refine our understanding of the products to maximize impact of our products. Intended users of our products will be donors, policy makers, rural development institutions, NARS, University researchers and the private sector. Alliances with the private sector will be critical for broadening product adoptability.The Operationally, the Tropical Fruits Program will remain as a platform where the biophysical and the social sciences will naturally meet to create solutions that address identified problems of the fruit sector. Products to be generated by the Program emerge through a sequence of steps initiating with needs assessment for product targeting and design, product development, production system analysis, pathways for reaching end users and impact assessment.Output 1: Technologies for improving the competitiveness of smallholder tropical fruit producers. The focus of this output will be on the development of technologies for propagation of planting material and characterization and optimization of production systems.Little, if any, breeding has occurred in many of the tropical fruit species in the developing countries. Small farmers producers are planting material which is accessible to them, but which is either not suitable to their locations nor does not comply with market demands. Therefore, we will use participatory selection processes for identification of elite clones with consumer demanded characteristics. The methodology for participatory selection will built on existing CIAT's skills in this area, but in direct cooperation with local partners; through this interaction we are also strengthening their capacity to implement such approaches in Tropical Fruits.Examples using Naranjilla (Solanum quitoense) and Andean blackberry (Rubus glaucus) will be considered to draw lessons and learn from these processes. Introduction of elite clones that comply with market demands and, when possible, bearing disease resistance will have a very significant impact in human health of growers and consumers alike, and will result in implementation of good agricultural practices that will facilitate access to international markets.Methodologies for clonal propagation of elite materials need to be developed, optimized, and transferred to either farmers groups or commercial nurseries. The clonal propagation will be done either through conventional horticultural methods (i.e. Avocado, plantain), or through tissue culture technologies when phytosanitary risks demand such approaches (i.e. coconut, naranjilla).Smallholders Tropical Fruit production systems are seldom monocropping but typically cultivate multi-strata cropping systems, including agroforestry. Tools for rapid analysis of feasibility, and design of fruit production systems, combined with identification of ecosystem services (carbon sequestration, control of soil erosion, water quality, biodiversity) will be developed. Products emerging from such systems will bear non-tangible characteristics that will facilitate access to emerging niche markets. Modeling tools will be built using naranjilla, Andean blackberry and peach palm as examples of agroforestry like production systems. Development of these tools will facilitate bridging collaboration with other Programs, including the Ecoregional Program of the Amazon Initiative.Impact Pathway: The nature of the products derived from this output will be useful to many stakeholders, including NARs, local nurseries, local and international development NGOs and farmer organizations, and research institutions.In the case of elite clones selected through participatory methods, farmer organizations and NARs will be responsible for keeping the germplasm, with assistance from CIAT regarding effective propagation methods to secure the genotype. Methodology, either through tissue culture or vegetative propagation will de developed at CIAT and shared with relevant stakeholders. CIAT will prepare publicly available booklets that will be posted on CIAT's website for interested parties to downloaded. Also, CIAT will be prepared to receive visitors for hands on training when the methodology has been developed on site; however, it is envisioned that partner organizations will be co-sharing the development of the technologies. Farmers and farmer organizations will receive the benefits through facilitated access to elite germplasm, which could be accessed from local nurseries or directly from agro-business developed by the farmer organizations per se.Output 2: Policy guidelines and innovations to ensure pro-poor and equitable supply chains in the face of a highly dynamic world. Although smallholder farmers may have competitive advantages in production, and although there is a growing demand for tropical fruits both , from domestic urban populations and also from new or more accessible export and niche markets, smallholders often face competitive disadvantages in the marketing chain that need to be overcome for them to benefit from new market opportunities.Market access, presents different challenges fro smallholders for domestic and export markets; for supermarket chains, and niche versus traditional export commodities. Many factors determine the bargaining power of smallholders, including the quantity, quality and competitiveness of their supply, and the confidence in their reliability held by those further along the value chain. Wholesalers, processors, transporters, retailers and consumers manage by their own quality criteria. A key research question is how to build and sustain customer support for products that promote development. To effectively answer this question, it is important to take a cue from simple businesses that work very well. Research can help answer the question of how best to leverage market linkages to achieve growth for diverse members of rural communities and make small farmers attractive partners to large buyers.Discrete products will include protocols for diagnosis and selecting germplasm based on market signals, and tools for assessing benefits, costs and risks of targeted fruit species, improved knowledge management and an understanding of the mechanisms that govern effective supply chains. Mechanisms to link farm enterprises into the agri-food chain in a more equitable manner will be identified and validated with development partners, private sector buyers and public sector organizations in Latin America.Sustainable supply chains linking smallholders and key corporate buyers will be catalyzed, evaluated for equity, gender and environmental effects, and appropriate lessons out scaled through links with business partners, development and donor agencies in Africa, Asia and Latin America. A guide to improved knowledge management and innovation in agri-chains for linking smallholder farmers into higher value markets will be developed and validated. This research will draw heavily on the work of the CIAT Program on Decision and Policy Analysis.Impact Pathway: Working closely with development NGOs, local governments and large private enterprises strategies for streaming value chains, the strengthening of farmer organization to assure sustainable smallholder participation in value chains will be out scaled. When available, public documents will be posted in CIAT's and partner's websites for other to access, share and use it.Output 3: Technologies for management of diseases and pests. Disease and pest control amounts to almost 50 to 60% of the production cost in many tropical fruits. Due to biological pressures (pests and diseases) on their crops, farmers rely heavily on use of inorganic chemical control methods that induce resistance in pests and pathogens making damage from pests even greater and more difficult to control. Moreover, chemical residues reach an inacceptable level in fruits both for human health and the environment.Disease management components and strategies will be developed for tropical fruits, particularly the model crops of naranjilla, Andean blackberry, plantain and avocado targeted by Output 1 above -and in close collaboration with work on that output. Testing disease resistance inducers, and development of biopesticides will be part of the strategy to reduce the indiscriminate use of inorganic chemicals Access to new domestic and international markets will be seriously jeopardized unless production practices are improved, including reduced use of crop protection chemicals. Those limitations are the rule rather than the exception in developing countries, and therefore local governments, and the private sector are pressing national research organizations to develop phytosanitary strategies to overcome quarantine limitations imposed by importing countries. However, expertise and state of the art technologies for proper pests and disease agents identification are often lacking, or could be strengthened where they exist. CIAT aims to build a regional platform for diagnostics of major pests and diseases affecting tropical fruits. Services demand from the academia, NARS, local sanitary regulatory bodies and the private sector are becoming more prevalent and offer an opportunity for a more strategic development of a regional platform built through regional partners.Impact Pathway: Products and information generated in this output have direct relevance to farmers and researchers alike. Delivery of the outputs will occur through different venues, according to the stakeholder. Participation in scientific venues and publication in peer review journals will target researchers. Booklets containing more applied approach of the scientific information will be prepared and made available to NGOs, farmer organizations and phytosanitary authorities through web based technologies. When feasible, codevelopment with farmers participation will be encouraged and implemented, increasing the likelihood of technology adoption.The Amazon Ecoregional Research Program (a CGIAR Systemwide Program posted by CIAT) faces the challenge of contributing to research and development interventions that concurrently meet the short-and long-term needs of environmental conservation and the well-being of local populations. This program will support the identification, development and dissemination of sustainable land use systems that avoid further deforestation and support governments and civil society in their goals related to human welfare, environmental services, and improved governance. While CIAT is the host institution of the CGIAR Ecoregional Program that operates under the overall umbrella of the Amazon Initiative, Bioversity, CIFOR and ICRAF are full participants in the Amazon Ecoregional Research Program along with national program partners.The Amazon Ecoregional Research Program addresses several key problems including poverty, greenhouse gas emissions due to land use change that contribute to global warming, and biodiversity loss. Nearly 70 million ha of Amazon forest have been cleared over the last 30 years, mostly in Brazil. More than 30 million hectares of Amazonian pasture have been abandoned or are severely degraded. Soil erosion from slash-andburn agriculture has led to leaching of naturally occurring mercury into rivers, eventually concentrating up the food chain in fish consumed by humans -bringing about significant human health problems.To contribute in addressing these key problems the Amazon Ecoregional Research Program addresses four development challenges that were collectively defined by the Amazon Initiative Capacity building for national and local organizations is an important component for effectively implementing the above research agenda with lasting positive impacts in mind. As part of the Amazon Initiative, the Eco-Regional Research Program will in particular carry out training and outreach activities in Amazon countries to develop new capacities for research into environmental services and livelihoods to apply this capacity in regional collaborative projects. Capacity-building will be based on research activities and, during the next two years, prioritize acute training needs, as for example, in the area of incentive-based ecosystem services management and agroforestry tools.The Amazon Ecoregional Research Program promotes the participation of member institutions of the AI Consortium in collaborative research activities implemented through the Program. The AI Consortium is a platform for collaborative research and development by institutions working in the Amazon region. Scientists and development practitioners in seven countries of the Amazon participate in the AI. Formed and led by national and international research centers, the AI fosters broader collaboration between the member organizations and civil society organizations. By early 2009, 28 institutions are members of the AI Consortium, in addition to the four CGIAR centers. Apart from working closely with AI members, the Amazon Ecoregional Research Program will strengthen alliances that are strategically linked to the four main outputs. For example, GTZ and international NGO such as TNC, will become ever more important partners with regard to output 1.Output 1: Mitigation and adaptation to climate change. The Amazon is of global importance in regulating climate change, representing a significant storehouse of carbon reserves and source of greenhouse gas (GHG) emissions. At the same time, projections show that both peoples and the biodiversity of the Amazon will be at risk as climate changes. Output 1 will work on available options, decision support tools and policy instruments for Amazon farmers and communities to mitigate and adapt to climate change and to enhance their provision of environmental services. In this regard, it is linked to CIAT Decision and Policy Analysis program.Adapting to and mitigating climate change requires research for development. Mitigation research has to contribute to the design of effective and equitable strategies to reduce emissions from deforestation and degradation (REDD), enhance sinks of atmospheric carbon. Adaptation research needs to develop strategies for dealing with increasing climate risk across all sectors of the rural economy. Designing resilient land use systems and rural safety-nets can ultimately address both adaptation and mitigation objectives.Work related to output 1 has been initiated in 2008 by facilitating the formation of a \"policy value chain\" that spans from policy recommendations based on region-wide stakeholder consultations, to policy and program development, and to effective and equitable policy implementation. A specific target of this output for the next two years is the co-development and dissemination of recommendations for cost-effective and equitable reduced emissions from deforestation and degradation (REDD) strategies in at least four Amazon countries.A related target is a tool for implementing organizations (such as local and national governments) wishing to apply for national and international carbon funding, this output will develop a framework including principles, criteria, indicators and verifiers for baseline assessments and monitoring of carbon stocks to be validated through pilot locations in Amazonian countries.Adaptation research will target the development of policy recommendations to reduce the vulnerability of local rural economy segments and selected land use systems (e.g. agroforestry, silvopastoral systems) to climate risk in Brazil and through the prediction and evaluation of climate change impacts on agroforestry species in the Peruvian and Ecuadorian Amazon.Impact Pathway: The overall expected outcomes of work on mitigation are the adoption of appropriate sustainable land use systems (SLUS) that provide positive impacts by increasing carbon (C) stocks through increases in biomass and, eventually, in soil C; and by decreasing GHG emissions through avoided deforestation.(1.1) Analysis of the carbon footprint of land use systems: Outputs will be methods for and the measurement of C stocks associated with different land use systems, including sustainable systems tested and developed by the AI-EP; and of GHG emissions associated with the conversion of land use systems -e.g., the conversion of forest to slash-and-burn agriculture. The expected outcomes will include the adoption of appropriate SLUS by smallholder and colonist communities in the forest margins, and achieving this is expected to have positive impacts in terms of C and decreased GHG emissions. Measurement techniques will be needed to institute PES schemes and to measure impact of the SLUS themselves.(1.2) Development of resilient land use systems to maintain and increase carbon stocks: This work will be conducted in collaboration with Outcome Line 2, sustainable production on deforested and degraded lands.Outcomes will be systems and adoption of systems that represent C stock increases and reduction of GHG emissions due to avoided deforestation. Policy instruments will be developed and promoted in collaboration with the Amazon Cooperation Treaty Organization so as to foster this adoption. Impacts are thus the maintenance and increase in C stocks, reduced GHG emissions, and positive welfare impacts from the more sustainable systems (including PES and product market chain development).(1.3) Development and testing of payment schemes for the management of ecosystem services (PES), including the exploration of C market opportunities: This will be a central area of innovation for the AI-EP, involving as partners CIFOR, ICRAF, NARS and other national agencies, with outcomes including adoption of schemes to reward local communities for adoption of practices that diminish GHG emissions and systems that increase C stocks; and enhanced effectiveness of organizations working on rights and compensation for environmental services. Impacts are essentially the same as those for 1.2: maintenance and increases in C stocks; reduced GHG emissions; and welfare gains to local communities via PES.(1.4) Identification and application of international instruments that can reduce deforestation and forest degradation: This innovation area is expected to produce analyses of policy options and the promotion of a \"policy value chain\" that favor adoption of SLUS and of AI advocacy in support of appropriate policy instruments. The overall expected outcome of work on adaptation is adoption of appropriate SLUS that provide positive impacts in terms of people's and communities' abilities to maintain and increase their welfare in the face of climate change. Welfare gains are expected through PES generated by adoption of SLUS and through financial gains made from product and market chain development generated from the SLUS. Impacts stemming from adoption of appropriate SLUS will again be maintenance and increase in C stocks; and reduced GHG emissions.(1.5) Examination of current mechanisms used to cope with risk: This innovation area will provide the outcome of understanding how communities have used their traditional knowledge to face risk related to production activities. Impact will be indirect: a building block to help in the development of local and national mitigation policies and programs.(1.6) Testing of innovative community based fire management: Accidental and uncontrolled fire will be one of the more difficult problems people will face as the Amazon dries and heats up due to CC. The AI-EP will work with communities to develop fire prevention and management methods. While less fire will mean a decrease in GHG emissions, more important will be maintenance of the productive systems on which communities' livelihoods depend.(1.7) Testing of adapted germplasm and land use systems (in collaboration with Outcome Line 2): The outcome of this innovation area will be critical to success: development, testing, and adoption of appropriate SLUS that are adapted to the future hotter and drier conditions of the Amazon. More drought and heat adapted crops, varieties, and products will be needed. Successful germplasm development and systems adoption will have the positive impact of sustaining the livelihoods of the peoples of the Amazon.(1.8) Work with local and national governments on appropriate adaptation programs: The AI-EP will have to work closely with local and national governments as they develop programs and policies to help those negatively affected by CC. Outcomes will be that local and national governments formulate and then enforce programs and policies that lessen the negative effects of CC on Amazon communities. The impact would again be the maintenance of livelihood systems on which the peoples of the Amazon rely.Output 2: Adoption of sustainable land use systems in deforested and degraded areas. Systems and technologies for sustainable production (or sustainable land use systems, SLUS) in deforested areas of the tropics have been developed in recent decades, e.g. improved, legume-based pastures, multistory agroforestry systems, small-scale timber plantations, silvopastoral systems, secondary forest management, and improved fallows. These technologies offer the possibility of harnessing the Amazon's underutilized interspecific and intraspecific genetic diversity -a possibility favored by increasing awareness and concern for environmental issues among politicians, policy-makers, consumers and producers; new markets for previously untraded goods (environmental services); consumer interest in niche and novel products; and more accessible markets at national levels (due to infrastructure improvements) and international levels (due to removal of trade barriers). Currently, the adoption of SLUS is limited by a series of constraints: poor targeting; lack of germplasm insufficient quantity and/or quality or at accessible prices; market limitations, including but not limited to the lack of development of markets for environmental services; the combination of free access to forest frontiers and insecure land tenure; and lack of supporting systems (technical support, credit).Output 2 will work on improved management and technical options, decision support tools and innovative institutional arrangements to allow Amazon farmers and communities to adopt Sustainable Land Use Systems (SLUS) for enhanced ecosystem services provision in deforested and degraded areas.Research and development have produced the building blocks of sustainable land use systems. Technological innovations may well be a part of appropriate future sustainable systems. Such innovations, however, need to be adapted to particular conditions and geographical areas. For innovations to be successfully disseminated, local key constraints to adoption need to be identified through participatory natural resource management research. Such research must contribute to targeting related policies and institutional arrangements.Incentive-based policy approaches can contribute to the adoption of sustainable land use, but must be designed properly to integrate with existing policies and avoid adverse side effects.Adoption of many SLUS depends on available seed or germplasm for multi-purpose trees, forages, legumes, and crops. As one of its priorities, the Program will develop improved germplasm for a selection of Amazon agroforestry (fruit and timber tree) species through participatory domestication, and disseminate them to farmers through enhanced germplasm supply systems and improved agronomic techniques. This work will be led by ICRAF.Targeted project and policy design requires knowledge about the temporal and spatial distribution of ecosystem services, the feasibility of project and policy implementation, as well as the benefits that local populations and the society can derive from them. The Amazon Ecoregional Research Program will contribute to harnessing the value of publicly available spatial information on management options for SLUS and for enhanced provision of ecosystem services by developing an online interface for the analysis of spatial data according to regional research priorities. This target will be jointly developed with the CIAT Decision and Policy Analysis program.Impact Pathway: Outcome Line 2 will primarily operate at national and sub-national level, with impacts at all levels. At the local level, i.e. in priority intervention zones, we envisage the following outcomes:(2.1) Selection and adoption of SLUS and implementation of appropriate adaptive research.(2.2) Improved germplasm supply; initiation of programs based on improved national technical capacity.(2.3) Local policies (e.g. at state and regional government levels) formulated or reformulated.(2.4) Innovative reward for environmental services schemes instituted.(2.5) New practices and approaches to dissemination and scaling-up adopted.The outcomes listed will produce the following impacts at local and national levels:-Land use systems that prevent and reverse environmental degradation and that sustain environmental services; and -More resilient livelihoods, including more stable incomes and greater food security.At regional and global levels, in addition to the aggregate of the local and regional impacts, the following emergent impacts will be produced: -Enhanced biostability of Amazonian ecosystem; -Reduction in global levels of greenhouse gas emissions.The achievement of these outcomes and impacts would also rely on the broader AI Consortium (i.e. as distinct from AI-EP) adding an explicit policy advocacy and dialogue component to its remit.Output 3: Enhanced benefits from forests for livelihoods and the environment. Forests and forest resources provide livelihoods for current forest dwellers and a temptation for loggers, ranchers, and perhaps future biofuel crop producers. Much of the Amazon forest is populated by indigenous and traditional populations and agricultural settlers with different degrees of dependence on forest resources. Increasing the direct benefits derived from forests by the local population is an important step towards reducing its loss. The challenge faced by the Amazon Ecoregional Research Program will be to add value to standing forests by supporting forest dependent local livelihood strategies and related policy programs through targeted comparative research and regional knowledge exchange. Output 3 will work on assessment methods and decision support tools to enhance benefits from forests for the livelihoods of Amazon smallholders and traditional communities and to the environment. This work will be led by CIFOR.Multiple-Use Forest Management (MFM) has been envisioned as a promising and more balanced alternative to timber-dominated strategies of forest use. However, in practice, it is not a dominant strategy and is often a marginal activity in forest sectors. Under the right conditions MFM could diversify forest use, broaden forest productivity and provide incentives to maintain forests. The Amazon Ecoregional Program, in partnership with other national and international organizations, will conduct a basin wide assessment to identify how MFM has been promoted or hindered and describe the factors leading to the observed outcome. Among other outcomes, this effort will provide recommendations and strategic future steps for policies and approaches to promote MFM.Impact Pathway: The \"forest\" Outcome Line will provide outcomes at the sub-national, national, and regional levels; and impacts at all levels from local to global. Several outcomes and impacts of the three subcomponents are expected.The sub-component working on the potential of underutilized forest species and populations will have the outcomes, first, of the dissemination of appropriate forest seed and germplasm; and of associated needed knowledge for the management of such germplasm; and, second, of the marketing of a wider range of forest products. The expected impacts of use of underutilized forest species would be greater income stability resulting from greater marketed product diversity; and increased income of forest resource users. The sub-component of multiple and diversified forest use and management seeks the outcome that stakeholders recognize and support such management. In this case, stakeholders are policy makers, NGOs, foresters/forest managers, and end users. Impacts would be the maintenance of environmental services in terms of biodiversity and carbon stocks; and improved, more stable livelihoods of end-users.A third sub-component would examine the issue of resource access and use. Outputs would be innovative systems that build on the traditional use rights of forest communities in the establishment of more formal land tenure and resource access rights. The expected outcomes would be increased and improved stewardship of forest resources and lands by local communities; and such stewardship would be expected to maintain and enhance the provision of environmental services.Output 4: Fair, financially attractive market value chains for Amazon products. Research for development will focus on removing constraints and identify opportunities for the development of new and existing value chains of Amazon products. This will involve research on product development and diversification as well as on benefit distribution in Amazon value chains. Products from forests and from deforested or degraded lands have the potential to improve the welfare of Amazon communities if appropriate products can be identified and developed, if seed and germplasm systems can be established, and if market value chains can be developed. Integration of such products in sustainable land use systems (SLUS) can have positive impacts in terms of environmental services. Output 3 will work with this market innovation focus to develop products (e.g., tropical fruits and fruit products, non-timber forest products, agricultural outputs, sources of bio-fuels and seed and germplasm needed in SLUS and systems (e.g., forest, agroforestry, agro-silvo-pastoral) to produce those products. The central area of concern for this output will be establishing innovative, successful ways to facilitate market value chain development, with close links with Bioversity and CIAT's Tropical Fruits program.Output targets over the next two years include the generation of a focused approach for value chain development for the realization of the economic potential of Amazonian fruit tree and non-timber forest products, specifically for peach palm (Bactris gasipaes), aguaje (Mauritia flexuosa), camu-camu (Myrciaria dubia), cupuazu (Theobroma grandiflorium) and ungurahui (Oenocarpus bataua). In 2011 it is expected to develop best practices for improved knowledge management and innovation systems for enhanced participation of Amazonian poor and vulnerable smallholder communities in agro-enterprises exploring new products developed from these selected Amazon fruit tree species.Impact Pathway: (4.1) Identification, ex ante impact analysis and targeting of potential products, especially but not limited to high value crops: Outputs are to include identification and characterization of potential products, spatial and socio-economic targeting of geographical areas, communities, and expected markets, and ex ante impact analysis. Impacts will be positive in terms of welfare if successfully developed, targeted, and marketed; and if positive investments in failures are avoided. (4.2) Product development and seed and germplasm management: Outcomes will include product development, including domestication and selection, and development of appropriate seed and germplasm systems. Positive welfare impacts will be obtained as new, marketable products are developed and if people have access to affordable needed seed and germplasm (and if market value chains are successfully developed, below). (4.3) Production in SLUS: As an important outcome, crops, trees or other planted products, and forest products will be integrated into SLUS. Positive welfare impacts will be derived from production in sustainable systems. Positive environmental impacts are expected from these more intensive, often tree-and perennial crop based diverse systems. (4.4) Market value chain development: The crucial outputs are methods to facilitate equitable, sustainable market value chains; and the development of the chains themselves in target communities. Outcomes will depend on intended users overcoming the constraints and taking advantage of the opportunities listed in the rationale. The innovation area will have to deal with information management, negotiation along value chains, problems of infrastructure, developing continuous production and economies of scale, product standards and quality control, resources access and land tenure, and financial mechanisms. Positive welfare impacts will be derived in terms of income, income stability, employment creation, and value added. Social and human capital gains will accompany successful market chain development and participation.The Decision and Policy Analysis program focuses on providing policy relevant research outputs around 4 thematic areas where significant demand exists in Latin America. These are ecosystem services and benefits to the poor, climate change and building of resilience into agricultural systems, design of pro-poor and equitable supply chains in a dynamic world, and impact targeting, facilitation and assessment. While being thematically diverse, the underlying research processes within the research program are quite similar, namely spatial and economic analyses. The program strongly believes in the power of information for making better decisions about agricultural and natural resource investments, from the farm-to the global-level. Through partnerships with key stakeholders, the provision of information and policy recommendations on these key thematic areas can contribute to outcomes in both research and development which enhance livelihoods and improve the management of natural resources in agroecosystems. This program is born out of the Agroecosystems Resilience Project from the 2009-2011 MTP. The MTP presented here is a modified version of the program which has been realigned based on the new Strategic Directions of CIAT, which acknowledges the importance of Latin America and promotes the concept of ecoefficient agriculture. The themes contained within this research program represent both research areas where there is significant demand from Latin American institutions (public and private), and where CIAT has some comparative advantage.Although the focus is on Latin America, the program also aims to transfer experiences to other continents, as well as engage in global-scale research which suits the demands of Latin America as well as other tropical regions. An example of the types of knowledge and tools which we envisage being transferable include the design and implementation of payment schemes for environmental services, which are currently undergoing a revolution in Latin America, and from which model cases could serve as examples for establishing such schemes in Asia and Africa.International Public Goods. IPGs generated from this program are generally knowledge-intensive innovations (methods, tools, good practice guides), and are derived from lessons learned systematically across environmental, socio-economic and geographical situations. Outputs are robust enough to be targeted subsequently at global and/or very broadly regional levels. Our IPGs constitute: internationally published good practice guides (and similar outputs) and peer-reviewed journal articles of research methodologies and policy relevant research results, software tools (e.g. Canasta, Homologue) made available permitting other users to adapt and apply them to their local conditions.As a baseline to many of the quantitative analyses made under the different outputs is the generation of data, itself of value to a range of partners. The program has in the past generated a number of important IPGs in the form of economic, environmental and agricultural databases (spatial and tabular) which are made available online to stakeholders and partners. These include the SRTM topography database (http://srtm.csi.cgiar.org), the WorldClim climate database (www.worldclim.org) and the Latin American Population database (http://gisweb.ciat.cgiar.org/population/index.htm). The program continues to develop such databases, including improved agricultural land-use data for the globe, and socio-economic databases at sub-national scales for Latin America. All these IPGs are to be distributed through the web to our partners and other research organizations.Beyond the basic data, the program develops a range of methodologies and tools. For example, under output 2 one envisaged IPG are good practice guidelines for the use of the SWAT model for the design of payment schemes for water-based ecosystem services, and economic models such as ECOSAUT which assess the expected socio-economic benefits of such a scheme. The models themselves are made available to research and development organizations engaged in the development of PES schemes, and the good practice guidelines are published in both peer-reviewed publications and through open-access booklets.Output 1 and 3 remain as a continuation of output 1 and 2 from the 2009-2011 MTP. Outputs 2 and 4 are new outputs for the 2010-2012 MTP, and have been selected as key issues for Latin America where CIAT can play an important role in the generation of new knowledge and guidance on policy issues. Output 4 was formally contained in the Linking Farmers to Markets program of the 2009-2011 MTP, and has been modified in focus to fit more closely with this program, taking a more policy-focused alignment towards addressing the issues surrounding international markets and the poor in Latin America.Output 1: Impact assessment for targeting, documenting and increasing the effectiveness of research and development. This output refers to both internal reflections on CIAT's impacts, through ex-ante and ex-post impact assessments, but also to the support of other research and development programs with impact targeting through spatial, economic and institutional analyses (impact mapping). This output takes advantage of CIAT's considerable collection of environmental, agricultural and socio-economic data to develop both new methods and apply existing methods to target R&D interventions, and to evaluate potential benefits and strategies for the deployment of new agricultural technologies. Some of the new methods developed under this output include the continued development of methods for the identification of environmental niches for crops, and extrapolation domain analyses for supporting technology transfer.The Program is also developing methodologies for maximizing impact during and after the life of R&D projects. This includes the development and application of Participatory Impact Pathway Analyses (PIPA), and the use and promotion of novel ICT/KM tools for enabling broader inclusion of partners, and dissemination of research results beyond the standard research networks. This research support service generates IPGs in itself in terms of methodologies, but also maximizes the impact and generation of IPGs in other R&D projects within and outside of the CGIAR system. Specific developments in this output for the next two years include the development of meta-databases of phenotyping trials, which together with extrapolation domain analyses will facilitate the targeted deployment of new drought-tolerant varieties developed by the GCP and other CGIAR Centre breeding programs. Work is also underway to improve knowledge of key pests and diseases of CIAT mandate crops, including cassava diseases. The work includes the development of predictive maps for pest distribution, permitting greater understanding of the environmental drivers of pest presence and pressure, and linking this with socioeconomic analyses of affected communities can inform research programs on the best-bet research strategies for mitigating negative impacts.Changes: Output 1 in essence remains the same as Output 1 from the Markets, Institutions and Livelihoods project from the 2008-2010 MTP. However, it has evolved since this time last year with greater clarity in the long-term strategy. Hence, the specific outputs for 2009 remain the same as in the 2008-2010 MTP for Markets, Institutions and Livelihoods, but there are a number of new specific outputs for 2010 onwards. Specifically, the output target on \"An assessment of the potential of payment for environmental services generated from agriculture to both improves the environment and rural livelihoods\" (previously a 2010 output) has moved to Output 2 of this project, where the work on ecosystem services is explicitly within the strategy. Three new specific outputs have been added, which develop methods for mapping extrapolation domains, and institutional analyses of water and poverty issues in the Andes included.Impact Pathway: The impact pathway for this research is specific to each individual output target, and is hence difficult to present succinctly in this main text. However, the objective of this specific output is to maximize the impact of R&D interventions through the better targeting, prioritizing and documenting of impact. Through the application of ex ante impact assessment in existing and significant R&D projects, the results from this output will lead to better decisions about where and how to invest limited R&D investments. The users of CIAT's impact work are principally researchers themselves, but also development agencies, whose final objectives are to enhance rural livelihoods.Output 2: Managing ecosystem services to the benefit of the rural poor. Large and reliable harvests depend upon ecosystem services. Fertile soils, ample water, and healthy biodiversity are beneficial inputs to agricultural production. These inputs also reflect the potential of ecosystem services. Degradation of natural resources is common in Latin America and throughout the world. Pressures to earn money in the short-term prevent longer-term sustainable land management practices. Trees are cut; soils erode; water sources dry out.Nevertheless, some people may be willing to help pay the costs of sustainable management practices. Carbon in vegetation and roots has value; avoiding soil erosion saves costs downstream; communities and cities want reliable water. Farmers may be willing to change their practices if the money is right. But who would be willing to pay? What investments are required? How effective are the changes in management?The sustainable management of ecosystem services is a critical component of eco-efficiency in agriculture, and has direct implications for bringing direct and indirect benefits to the rural poor as both net users and providers of several ecosystem services. In Latin America there is considerable demand for research on the best means of managing ecosystem services, especially through the use of novel payment schemes (PES). This output therefore has two major areas of focus. Firstly, the output looks to analyze cases across the Andes and Amazon and extract lessons for what policies work for promoting the conservation and sustainable use of ecosystem services to the benefit of the poor, and secondly the output develops specific tools and methodologies for quantifying ecosystem service flows and valuing them to a variety of stakeholders across institutions and landscapes. Both these focus areas aim at increasing the success rate of payment schemes through learning what contributes to successful, long-term schemes, and ensuring that schemes are established with realistic goals, and that all stakeholders in the scheme have access to information about the costs and benefits of implementing it.The output focuses primarily on water-related services and carbon-based services as these are both critical resources under the current environmental outlook, and services for which both demand and formal markets exist for the establishment of payment schemes. However, other ecosystem services (e.g. biodiversity) are also considered when relevant through the bundling of multiple services.Impact Pathway: The research in this output aims to improve the design and effectiveness of payment schemes for environmental services. The primary users of the research results are the authorities setting up payment schemes for environmental services, which are typically local and international NGOs, local and national government environmental bodies, and rural-and urban-private enterprises including water authorities, industrial agriculture businesses and international carbon trading companies. Through the learning of lessons from meta-analyses, and through the development of methods and tools for valuing ecosystem services CIAT partners directly with many of these organizations. Policy guidelines are also produced, which provide practical recommendations for implement payment schemes for these primary users. Uptake of CIAT methods, tools and best practice guidelines result in greater efficacy of payment schemes, resulting in higher success rates and eventually leading to sustainable management of ecosystem services and direct and indirect benefits to the rural poor trough both payment and increased natural capital.Output 3: Understanding impacts of climate change in order to identify adaptation pathways for the rural poor. As in most areas of the tropics, climate change is expected to have profound impacts on the agricultural sector in Latin America. Research efforts need to be targeted, and adaptation mechanisms in the field and along supply chains need to be identified, developed and implemented. CIAT is uniquely positioned to combine strong modeling capacity with explicit knowledge of agricultural systems and livelihood strategies to identify the threats that climate change poses to tropical agriculture, and identify how research and development should respond.This output aims at developing methods and tools for evaluating the impacts of climate change on crop productivity and livelihood strategies, and evaluating a range of adaptation options for confronting future changes in climate. The output focuses on the next 15 years, rather than providing long-term estimates of changes, and envisages the key users of the research products as researchers themselves, international and national level policy makers and development agencies looking to promote adaptation pathways for rural communities. Some examples of specific outputs from this area of work include the development of breeding strategies for CIAT mandate crops and other key crops for the next 15-20 years. Breeding programs take time, and hence the products of research decisions made today are likely to be released under different climate conditions. Coupling of climate change scenarios with sound crop suitability and productivity modeling can identify the main challenges facing each crop, and when combined with socio-economic datasets on poverty, population and nutritional characteristics, concrete breeding strategies can be developed which will help adapt agricultural systems to a future climate. Other examples include the development of suitability models for a variety of crops, and national and continental level analyses of the changing geography of crop adaptation to inform policy and development interventions. Some specific adaptation options such as the development of sound scientific means of establishing weather insurance schemes are also envisaged under this output.Much of the modeling in this output is applicable globally, although specific evaluation of adaptation options are primarily focused on Latin America, especially Central America and the Caribbean where significant increases in temperature and reduction in rainfall is predicted.Impact Pathway: This output provides policy-relevant results on the implications of climate change on agriculture, and through relevant dissemination of these recommendations better international (COP15) and national policy decisions (e.g. national adaptation strategies) can be made. Researchers in the Decision and Policy Analysis program are actively engaged in national and international fora in order to influence such policy decisions. Other direct users of the research products from this output are researchers themselves, who can use the results to design climate-proofed breeding programs, leading to new varieties adapted to future climate conditions. The identification of specific adaptation options, such as work underway with GTZ and CRS in coffee systems in Central America, lead to the promotion of practices which will increase the resilience of production systems to future changes in climate, leading to sustainable livelihood strategies for rural communities.Output 4: Pro-poor supply chains in highly dynamic markets. We know that under the right conditions, better information and skills that lead to better net returns can drive scalability and technology adoption. We know each case is different and that markets are dynamic and that understanding these markets is difficult. We need to understand how to get the biggest, widest, most equitable impact from our interventions. We believe market access holds many of the keys to driving success and hence scalability.Improved information and knowledge management in supply chains can contribute to increased and sustained participation of small farmers, rural laborers and small scale rural entrepreneurs in profitable markets. Increased income also becomes a driver for other innovations including farmers' adaptation and adoption of new technologies and their investment in their natural resource base. Research helps answer the question of how best to leverage market linkages to achieve growth for diverse members of rural communities and make small farmers attractive partners to large buyers. Market linkages vary across LAC and the tropics in terms of products (staple commodities and high value crops such as tropical fruits), markets (local, regional, national and international), trading relationships (supply chains and value chains), and public and private policies. IFPRI analysis predicts that staple food crops meeting growing urban markets are likely to benefit the largest number of the poor, while higher value crops represent a different strategy likely to reach smaller numbers of more specialized small holders.Market linkages set the agenda for most commodity and social science research, and understanding them will be important to many institutions in LAC and elsewhere. In both staple commodities and high value crops, markets guide the existence of and need for technology development, spatial analysis, rural institutions and organizations, and innovative public and private policies. Knowledge of what crop or variety to grow where, for what market, with what production technology and when, is critical to all members of the supply chain. Business models that effectively and profitably link small holder families and their organizations to other private sector actors in a sustained fashion are crucial. This output aims to develop business models and public-and private-policy guidelines for ensuring that the poor benefit from national and international markets. This work will be especially linked to that of the CIAT Tropical Fruits Program and to the CGIAR Ecoregional Program for the Amazon.Impact Pathway: This output engages with key actors directly to enable shared learning and improved practice. In the case of private sector policies, the principle scenario for this work is the Sustainable Food Lab which includes direct links to major private sector firms and the opportunity to influence their practice through improved knowledge and ways of engaging the poor. In many cases, these actors themselves are anxious to link with smallholder producers but lack the knowledge and skills needed to do so. CIAT researchers help facilitate this process while documenting results and developing scalable principles that are shared widely. Public sector actors are engaged via a regional learning network including Central America (Honduras and Nicaragua) and the Andes. This engagement will focus on reviewing the impact of public policy on supply chains of importance to the poor, designing and testing improved policies and documenting and disseminating the outcomes.CIAT participates in a wide array of CGIAR systemwide, ecoregional and Challenge Programs. Together with IFPRI, CIAT hosts the HarvestPlus Challenge Program on improving the micro-nutrient density of staple food crops. As a Challenge Program, HarvestPlus presents its own separate MTP.CIAT participates in all the other ongoing Challenge Programs: the Generation Challenge Program on genetic resources for crop improvement where CIAT has implemented commissioned and competitive research on beans, cassava and rice; the Food and Water Challenge Program, where CIAT has led the upper watersheds management research theme; and the Sub-Saharan Africa Challenge Program will CIAT coordinates the pilot learning site for east Africa together with ISAR of Rwanda. CIAT's research in these Challenge Programs forms an integral part of its Program MTPs.CIAT has also participated in a wide range of CG Systemwide Programs including, for example, the Systemwide Program on Genetic Resources which has played an important role in upgrading the CIAT gene bank; the IPM program through which CIAT has led a major research project on white fly pests; the African Highlands Initiative with which it has had several shared research positions. CIAT also participates in the Systemwide Livestock Program, the CAPRI collective action and property rights program, and the Alternatives to Slash and Burn, just to name a few. Like the Challenge Programs, work in these SPs is all presented as part of the Program MTPs.Because of unequal access to resources, the majority of the world's rural poor are women and the majority of the hungry and malnourished are likewise women. Thus, to truly overcome the challenge of poverty, international agricultural research has to take a conscious gender perspective. This has been a main focus of the CIAT hosted Systemwide Program on Participatory Research and Gender Analysis (PRGA) with numerous documented achievements since its establishment in 1997. The need to better incorporate a gender perspective into the international agricultural research system is both a prominent recommendation of the recent external review of the CGIAR System and a major objective of the ongoing CGIAR Change process.CIAT and the PRGA both wholeheartedly support these new developments in the CGIAR, and look forward to a serious strengthening of a gender perspective in CGIAR research. Major challenges remain: • A majority of agricultural research systems still lack a critical mass of participatory research (PR) and gender analysis (GA) practitioners, including in the CGIAR System. • There is still little recognition and practice of gender analysis. • There is still an unmet demand for capacity development in GA and PR methods.• Learning and change need to be institutionalized, so that PR and GA can be mainstreamed in agricultural R&D thinking and practice.In a changing institutional environment which involves the winding up of many of the current CGIAR Systemwide Programs, the several assets of the PRGA can be redeployed to support the evolution of new institutional forms to address pressing gender related issues. The assets of the PRGA include skilled human resources and a web of partnerships based on the credibility of long term relationships. CIAT intends to utilize these assets to help construct new approaches to critical issues of gender analysis in agricultural research. CIAT sees the need for two crucial outputs: 1. Mainstreaming gender analysis in agricultural research. 2. Enabling poor rural women to adapt to climate change.Besides the two outputs proposed by PRGA, CIAT will increase investment in gender at various levels across the whole spectrum of activities during the period 2010-2012. The steady trend of gender work at the Center was reinforced during 2007-2008 when CIAT conducted its first Gender Audit -the most comprehensive assessment done on gender issues in most Centers covering all CIAT regions. Today, the robust sensitization strategy, recommended by the Audit, is in place and capacity building efforts are currently part of CIAT's activities in a bilingual mode both in English and Spanish. The strategic inclusion of gender research in CIAT's regional and Headquarters based programs ensures a strong focus on analysis. The analysis represented by sound indicators is widely needed in order to ensure concrete outcomes reaching benchmarks in science for impact. Since the strength of CIAT's work is demonstrated by the integrated work of the regional offices, a revised strategy to cover all regions is in on going to support sensitive research and the autonomy of implementation through concrete activities in all CIAT's major programs. Gender will be explicitly supported and surveyed in the Center's proposal preparation line, since a gender specialist will work with the peer review team supporting the Resource Mobilization unit. This will ensure that all CIAT's future initiatives will include a gender lens in its proposed work.While the emphasis is to build a hub at CIAT to support the work in all regions, an initial explicit emphasis will be pursued in the Latin American Program. In that light, the Amazon Initiative will support the inclusion of a gender component in the work they are currently conducting in Belem and other surrounding communities in Brazil. Through an appreciative inquire, the Amazon Initiative will disaggregate information by gender to come to an understanding of the best avenues to work in areas of Climate Change, linking farmers to markets and the use of non-timber products. Another unique aspect of the work in Latin America, particularly in the Amazon, is portrayed by the vast diversity of ethnic groups and Indigenous peoples who inhabit this eco-region. They maintain relevant and intricate patterns of land ownership and exploitation which is intimately related with their ancestral beliefs and felt needs, oftentimes influenced by external factors such as proximity and access to markets. A gender sensitive approach will enhance work with local communities, allowing for the rescue of local knowledge, which combined with new alternatives for agricultural production and forest management will provide them with optional pathways out of poverty. The South Asia Region will also invest in gender work through a monitoring approach to the livelihoods strategies of resource-poor upland smallholder farmers, that includes relevant groups of ethnic minorities and women. This time the gender work will be focused on the livelihood improvement at the household level. Households are not homogeneous units; men are women play prevalent roles in directing income to various competing activities including the level of food purchased for the family consumption. Understanding patterns of investment by gender in the integration of crop/livestock system in Cambodia, the Lao PDR, and Viet Nam will facilitate strategic decision making for accessing markets by the smallholders in that region. The work in the Africa Region will strengthen gender analysis in Seed Systems and Participatory Plant Breeding (PPB), which so far has been the flagship of the Participatory Research and Gender Analysis (PRGA) Program.International Public Goods. The Program is unique within the CGIAR with its focus on PR and GA; it complements the Gender and Diversity Program, which focuses on staffing issues and capacity development among female scientists of many agricultural disciplines. The PRGA Program works alongside partners to develop methodologies that will be applicable over a much wider area, including across sub-regions and continents.Both the products of the research (e.g. crop varieties) and the methodologies developed to achieve those products are international public goods, freely available to all (in a non-commercial context).The three Outputs of the 2009-2011 MTP have been consolidated into two. The former Output 2 (New approaches to measure the effectiveness of research processes that contribute to poverty reduction) has to some extent been amalgamated into the revised output on participatory plant breeding (Output 1). Under the current funding scenario, however, it has been necessary to drop work related to seed systems, impact assessment (except for publication of past work in this area) and political economy. In addition, the Output Targets have been refined. In fact, the whole of the Program's portfolio is dependent on securing adequate funding.Output 1: Mainstreaming gender analysis in agricultural research. Unless gender analysis is mainstreamed in agricultural research and development institutions, gendered patterns of inequity will continue to prevail, and the benefits deriving from agricultural research risk continuing to bypass women thereby exacerbating problems of poverty and inequality. The capacity for gender analysis remains limited in a wide range of agricultural research and development institutions. Addressing this challenge is a long term task for the CGIAR, beyond the life span of the PRGA. Alternative models have been proposed to meet this need, either a stand alone Gender Program of some sort, or more broadly supported that gender analysis be embedded in all future CGIAR mega-programs.In either case, the PRGA will work closely with other CGIAR partners, including but not limited to IFPRI and the CGIAR Gender and Diversity Program in a common effort to find appropriate institutional forms for future mainstreaming of gender analysis in the CGIAR. In this transition phase, the PRGA will continue its work in 2010 in assessing the status of gender research and building capacity in pilot CG Centers. Likewise information dissemination on gender mainstreaming will continue in 2010, including the results of an ongoing (2009) inventory of gender research resources in the CGIAR.Gender mainstreaming is a globally accepted strategy for overcoming the problems of those disadvantaged by gender. Gender mainstreaming in agricultural research and specifically in the CGIAR and partner institutions is not an end in itself, but a strategy to achieve, through gender equality in research processes, better outcomes and ultimately impacts for both women and men. Mainstreaming involves ensuring that gender perspectives and attention to the goal of gender equality are central to all activities -policy development, research, advocacy/dialog, legislation, resource allocation, and planning, implementation and monitoring of programs and projects. As identified by the CGIAR reform process, gender research is not mainstreamed in most CGIAR Centers -and doing so will require not only systematic policies and activities within each Center, but also support to them in doing so. It is the latter gap that this research will fill. The Program holds the only Systemwide mandate for gender in research. Its physical location at CIAT and CIAT's desire to mainstream gender make CIAT an advantageous choice for pilot work in this area.Impact Pathway: With a variety of PPB methods (including new ones) at their disposal, and the practice of PPB institutionalized, plant breeders will be able to better target their efforts in variety development for staple crops in diverse, risk-prone environments (typical of resource-poor farmers). Moreover, attention to farmers' rights over the varieties developed should enhance the availability of material in a wider context (cf. variety protection imposed by commercial companies). Giving farmers the opportunity to share their experiences through media accessible to their peers elsewhere should 'spread the word' so that the whole farming population can benefit from PPB outputs. Consequently, farmers should be in a position not only to optimize their yield in the short term, but also to maintain enough variation to meet future changes (many imposed by climate change). This in turn should result in improved livelihoods and food security.Output 2: Enabling poor rural women to adapt to climate change. It is well documented that the poor in the poorest countries are most vulnerable to climate stresses in terms of food security. This is particularly true for women. While greenhouse gas emissions are generally lower among the poor who thereby typically can not play a leading role in climate change mitigation, the poor can not escape the consequences of climate change. Thus it is critical for the CGIAR to bring to bear analyses that can facilitate adaptation to climate change in a gender context. This research would include new participatory plant breeding (PPB) approaches with a gendered basis to help sustain and even support the broadening of the genetic base of poor people's crops for maximizing their use of agro-biodiversity.Such 'Evolutionary' PPB could produce variability to ensure food security in the face of climate change and weather variability and could also potentially serve as an implementation tool for farmers' rights. All this would require additional support to local seed systems, especially those feeding off PPB programs.PPB has proved ideally suited for the staple crops of the developing world's poor, as these crops often receive little or no commercial attention. PPB identifies adapted varieties for heterogeneous environments. Globally, the price of staple food crops soared in 2008, driven (at least in part) by the cultivation of more cash and oilseed crops (at the expense of staples) and the rising cost of oil. Moreover, agro-ecologies are now changing under the influence of climate change. PPB methods should enable 'evolutionary' plant breeding to keep pace with these changes and promote food security among the very poor. The PPB program seeks to refine our understanding of the situations in which joint efforts of farmers, scientists and others provide the most costeffective delivery. PPB work in many Centers is highly fragmented and not 'institutionalized. Hence, the PRGA Program continues to have a clear role in helping to improve the institutionalization of PPB through appropriate PPB approaches, methods and associated skills to achieve food security in the face of climate change and at acceptable R&D cost.Ensuring recognition of the collective innovation and breeding efforts of farmers, and keeping their materials freely available for use and further breeding form major challenges, as do issues related to seed multiplication and seed policy. PRGA Program has the advantage of being the only Systemwide body with a mandate for PR, and its primary partner in this work (ICARDA) has one of the longest histories of PPB in the System. An alliance will be forged with other interested Centers and their partners to learn wider and robust lessons that catalyze institutionalization.Impact Pathway: In working with Centers to determine their current gender status, and mapping a path for gender mainstreaming, the methodologies for assessing gender status will be refined. ","tokenCount":"30111"} \ No newline at end of file diff --git a/data/part_1/0748615192.json b/data/part_1/0748615192.json new file mode 100644 index 0000000000000000000000000000000000000000..89ef1039630258eabd1943d5fedebecdf85cc693 --- /dev/null +++ b/data/part_1/0748615192.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"08e68807ae97c3249ef9822edbcd6401","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ffe439e8-962d-4344-9282-bab8b17f79a0/retrieve","id":"1766003094"},"keywords":[],"sieverID":"ba98a02e-7e7a-4f2e-940a-83042e5acb63","pagecount":"6","content":"Design thinking initiatives are open-ended and unpredictable: a challenge for AR4D institutions. A project team of the Alliance of Bioversity and CIAT (ABC) experimented with a hybrid approach, featuring both scientific methodologies and design thinking tools.endedness, and an iterative approximation between identifying the root(s) of the problem(s), and the best-bet solution(s). The first phases of the design thinking process therefore focus much on the problem space, before venturing into the solution space, often with unpredictable results.In fact, (Hoelzle and Rhinow 2019) identified three possible dilemmas in design thinking: For the unknown results, it is impossible to plan milestones or to know when to 'exit'. Further, strategic guidelines of organizations prescribe a certain direction, which makes a flexible learning process very difficult. For AR4D researchers and institutions, such open-ended approach might be even more challenging, since they have to move within the boundaries of scientific disciplines, their respective institutional mandates, and incentive systems that rewards publications over outcomes (Hall and Dijkman 2019).In the frame of the BMZ-funded small grant project 'Innovative Credit and Insurance Products for Scaling Climate-Resilient Agriculture in the Philippines', a team of researchers of the International Center for Tropical Agriculture (CIAT) therefore experimented with a more hybrid approach, coupling design thinking tools with recognized scientific methodologies.Aim of the project was to design and test innovative credit and insurance bundles, that would promote farmers' uptake of climate-resilient technologies and practices, which would in turn de-risk the agricultural production, and consequently also de-risk agricultural credits.In the following, this Info Note shortly introduces the aims, principles, and main phases of the design thinking methodology. It then describes the project as case study, and exemplifies the different steps undertaken in each phase of the design process. Finally, the Info Note discusses the main lessons learnt, that can be useful for future design thinking initiatives in the context of AR4D.\"If I had asked my customers what they wanted, they would have told me a faster horse.\" Henry Ford [presumably] Design thinking is a human-centered approach to innovation addressing wicked problems. Originally coined by the design agency IDEO in the early 1990s, it is nowadays 'taught' at the d.schools in Stanford (since 2005) and Potsdam (since 2007). As methodology, it draws from the designer's toolkit to integrate the needs of people, the possibilities of technology, and the requirements for business success. Key to the process are a hands-on solutions orientation, and interdisciplinary collaboration.The main principle of design thinking is to empathize with the intended user(s) of innovations, to understand what influences their decisions and actions taken. It parts from the hypothesis that users' needs are not necessarily the ones that are articulated, or can be captured in surveys. In design thinking, designers try to understand underlying motivations of users, and root causes of problems.Different to scientific methodologies, deep insights are gained from interactions with fewer, but 'extreme' users, rather than from large, systematic surveys that that ask for the 'what' and have no space to iterate on the 'why'.  Understand: Developing a shared understanding and 'language' among the interdisciplinary design team. Also drawing on existing knowledge from different sources. Empathize: Interact with the intended users to understand motivations and root causes of problems. This can be e.g., through in-depths interviews, observations, or user journeys. Define: Reframing the problem statement (the designers' task), based on interpreting ('making sense of') known facts with insights gained from empathic interactions. Ideate: Bringing out as many (wild!) ideas (or leads or such) for possible solutions, building on previous ideas (saying 'and' instead of 'but'), then prioritizing. Prototype: Give some physical representation to the chosen idea, that users can interact with.Since the first prototypes will probably be changed (or discarded), they need to be cheap, rapidly made, and simple. Test: Users interact with the prototypes (without explanations of designers!) and give feedback.The way they interact with the prototypes can bring new insights, towards the next iteration.As a highly iterative process, the continuous testing (and discarding) of hypothesis, ideas and prototypes requires from designers the willingness and capability to 'kill their darlings', making space for new problem framings, understandings, and approaches towards solutions.The Philippines is one of the most vulnerable countries to climate impacts. Since 2015, the Department of Agriculture (DA) actively promotes climate-resilient agriculture to increase production, farmers' adaptation capacities and mitigation potential. With technical support from CIAT, DA established the system-wide national Adaptation and Mitigation in Agriculture (AMIA) program. During the program implementation, farmers' access to credit emerged as a key ingredient for farmers' uptake of CRA innovations, which in turn was often constrained by the perceived risks of the agricultural sector, even worsening in the context of climate change.Responding to this challenge, in 2017, the Agricultural Credit Policy Council (ACPC) created credit programs that were directly tailored to smallholder farmers' and fisher folks' needs and were to be channeled through local finance institutes like rural banks, micro finance institutes, or credit cooperatives. However, in the first year of their roll out, the number of availed credits had remained far below their potential scale. As possible solution, DA and ACPC reached out to the CIAT for developing credit and insurance bundles that would promote the uptake of CRA technologies and practices. The hypothesis was that CRA would reduce production risks for farmers, and consequently, as well for the lending institutions.As part of the project preparation, in March 2018, a member of the CIAT project team undertook a scoping study in Ivisan Municipality, Capiz Province, Philippines, facilitated by the CCAFS partner NGO International Institute for Rural Reconstruction (IIRR).Differently to design thinking processes that only design for the 'end-user', the project needed to consider also the needs and motivations of the lending institutes as 'nextusers', and local governments as possible facilitators or intermediaries. The scoping mission therefore interacted not only with different farmer groups andcooperatives, but also with representatives of local governments, lending -and insurance institutes, with a total of > 100 interactions.Qualitative interviews consisted of open questions about the context, and stakeholders' roles and experiences with climate change and finance products. Main insights were from the scoping session were: The APCP credit programs targeted at smallholder farmer and fisherfolks were already quite responsive to smallholder needs, in terms of low interest rates (6% p.a.), no collaterals, and flexible repayment duration. Due to accessibility constraints, vulnerable groups (women, elderly, tenants) felt excluded from the possibility to avail for credits. Most farmers preferred to use their own informal credit schemes, since they found the process of accessing financial products too complex. Lending self-help groups were very popular but lacked capital. Liability as a group was an issue. Lending institutes preferred to pay a fine for not lending to agriculture, albeit all ACPC's loans were automatically insured by the Philippine Crop Insurance Corporation (PCIC). Farmers had limited awareness and understanding of process and benefits of individual crop insurance.Textbox 2: A Hybrid Approach to Design ThinkingThe BMZ small-grant project 'Innovative Credit and Insurance Products for Scaling Climate Resilient Agriculture in the Philippines'Goal: Facilitating uptake of CRA options for >25,000 smallholder clients of ACPC by designing innovative credit and insurance products.Problem statement: Existing agri-finance products directed to smallholder farmers do not factor in climate change risks and farmers' adaptation options (CRA).Innovative credit and climate risk insurance products/ bundles that respond to smallholders needs when investing in CRA options, will reduce the risk for both farmers and service providers, thus facilitating wider uptake of CRA practices among beneficiary farmers.Methodology: A combination of participatory design thinking and economics valuation approaches, employed to prioritize the most relevant CRA options, responding better to farmers' investment needs, as well as fine tuning the financial products/packages. Methodological workshops on Human Centered Design, e.g., for assessing farmers' needs and developing farmers' typologies; State of the art behavioral experiments to test farmers' willingness to pay using contingent valuation, e.g. choice-experiment games to assess farmers' risk aversion and intertemporal preferences methodologies.From these insights, the project team formulated a set of 'point of view statements' for the key stakeholders. These then served as new problem framing: Farmers need credits that cater also for the most vulnerable (women, elderly, and very poor), that are quickly accessible with less paperwork and have repayment modalities that correspond to the rhythm of their incomes, in a world where self-help groups are much closer and more familiar. Farmers also need special support during the initial phase(s) of taking up CRA innovations, because they need to develop the practical skills, and perhaps only the second or even third try is successful. Farmers Credit Cooperatives and self-help groups need more capital for their members, in a context where no one wants to be liable for group loans because government money is perceived as \"grants\". Microfinance Institutions (MFIs) need clients that are likely to pay back in the sense that these are in good health condition, know the market, their climate risks and CRA options, are financially literate and have some sort of financial business or livelihood backup.These insights pointed a possible change of the projects' focus, towards a broader approach, including the processes of creating awareness, building capacities and facilitating the access to credit and insurance products. To accommodate such a flexible approach, the project team decided to embrace the design thinking methodology, making it the central approach for project implementation.At the same time, the project provided the option for one staff member to feed her PHD research with results from the behavioral experiments (See Textbox 2).With support of the partner NGO IIRR, the CIAT project team applied design thinking tools with stakeholders and farmer focus groups, to build farmer profiles for rice and coconut farmers and fisherfolks. Tools included a problem tree capturing root causes, story mapping towards visualizing main commodities' supply chains, cashflow timelines, challenge prioritization, mapping farmers coping actions, and open discussions. Main insights were that few coconut farmers aspired for agricultural loans due to strong government support, fisherfolks used a mix of formal and The budget allocated for staff trainings did not allow for a continuous coaching/ reflecting on interim insights/ results, crucial to planning of next steps.informal sources, and rice farmers preferred non-monetary loans (seed and fertilizer inputs).A household survey then captured socio-demographic and farm-level data and perceptions of climate change of 327 farming households, including two choice experiments: Risk aversion: Two scenarios were tested, for winning (lottery) and for losing money. Results indicated that farmers were more risk tolerant towards losses. Stated preference analysis: A conjoint analysis on individual's preferences was aggregated to reflect the 'average farmers'. Most important traits of loan bundles were the loan delivery time (<4 days), payment scheme (well matured loans) and lenders involvement (continuous monitoring). Less important were customization of loans, and credit cooperatives.When 'making sense' of these results, the project team found these difficult to interpret: The survey reflected the current status, but gave little hints about underlying reasons, or future aspirations. Also, the aggregation did not allow connecting to previous insights as farmer profiles.'There is nothing we dislike about our prototype, because we made it!'Results were presented in a virtual workshop with representatives of ACPC, PCIC, micro finance institutes and credit cooperatives. However, they did not play a further role: Discussion revealed that it was not feasible to change credit conditions, since that would involve higher level institutes like the Central Bank of the Philippines.Rather, through applying the 'user journey' tool, stakeholders followed the process from farmers' decisions to take a loan, throughout application, implementation and payback. Together, stakeholders build a service prototype, based on the following main insights: Farmers typically get most triggered to apply for loans after a climate event that had destroyed their crops. Farmers are heavily reliant on word-of-mouth for their information, while the use of text messaging and social media is limited due to limited digital infrastructure. CRA interventions shall help farmers anticipate climate events, focusing on the sustainability of their farm income over profitability. Documentary requirements shall be communicated early before the call for a loan in order to give farmers time to consolidate them or ask any questions. If the cooperatives are responsible for information dissemination, more farmers will receive it. Amount of info, though, has to be minimized in quick bite-sizes.The developed service prototype consequently consisted of five main phases (Figure 2):1) The ABC together with the Philippine Atmospheric, Geographical and Astronomical Services Administration to build a repository of CRA-options.2) ACPC and PCIC will deliver capacity building and climate services for farmer cooperatives.3) Climate events trigger the loan chain, and cooperatives organize the initial farmer orientation.4) Between availing of loans and their payout, cooperatives give financial management and CRA training, as well as seed variety recommendations.5) During planting, cooperatives do monthly monitoring and give nutrient management recommendations. Testing: Farmers' feedback on the prototype A final semi-virtual with Ivisan farmer groups validated this prototype, and added details on the design of the bundle:Product: Agri-loan, interest rate 6% (or less)/season, bundled with insurance, of up to PhP 50,000, transacted through cooperatives and monitored on a monthly basis.CRA inclusion: Bundled with 7-day weather forecast, with seed variety recommendations (upon receiving payment) and nutrient management recommendation (2-3 months into planting season).Requirements: Farmers are listed with ACPC and undergo financial management and CRA seminars prior to the release of the loan.Due to the COVID-19 pandemic, the project extended to January 2022. The socialization of the service prototype, however, will continue in frame of further CIAT and AMIA projects in the Philippines, the region, and the OneCGIAR.This project provided crucial learnings for applying a hybrid approach of design thinking in the context of AR4D: Sequence of scientific/design thinking tools: Methodologies that provide 'scientific and representative' results can add to the needed information base, but require more time, staff and budget than quick, qualitative design thinking tools. Therefore, they should be considered only when the problem is already well reframed (and validated with all stakeholders), and a possible solution is prioritized. Budget, time, team, and adaptive management:Resources need to be allocated to staff training, and design thinking needs to be understood as a 'rapid and dirty' sequence of activities with many iterations, and involving all stakeholders. The core design team needs to remain continuously the same, while foci can change. Projects therefore rather need theories of change than logframes, and an adaptive management. Reflection and communication: The process could have benefitted from more regular backstopping and coaching in the design thinking process. Continious syntheses of previous insights could help to tailor next steps. Without such reflections, single steps have a tendency to not connect, not builidng on each other. Communication formats that include visualizations might be more useful than conventional reporting formats (also for communicating among project staff). Embeddedness: For the iterative character, it seems unlikely that the full design thinking process can be initiated, implemented and the output scaled, within the duration of a small grant. Good practice is therefore to include such initiatives in the frame of larger projects that can then carry on.","tokenCount":"2479"} \ No newline at end of file diff --git a/data/part_1/0751912770.json b/data/part_1/0751912770.json new file mode 100644 index 0000000000000000000000000000000000000000..a425d033404006a3c0413d4c2c63c741152fc154 --- /dev/null +++ b/data/part_1/0751912770.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fccaebc9fb43e59cad72556a1754a005","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5a82cabb-0c27-459b-a7d4-6500f6a37f12/retrieve","id":"1830535198"},"keywords":[],"sieverID":"afd79d0f-509d-4910-a023-17d885c31085","pagecount":"14","content":"National and international research institutions, development agencies, donors, regional state unions, and CGIAR understand the benefits that SI of MFS generate for the five impact areas of CGIAR, and that this understanding will trigger genuine interest in supporting an integrated systems approach in the codevelopment and implementation of SI of MFS at scale.• Contribute to measuring the initiative's impacts • Increase the initiative's capacity to track the progress of its outputs and outcomes as stated in the results framework. • Increase the effectiveness accountability and reporting of the initiative to One CGIAR and donors ( in collaboration with One CGIAR System (Portfolio Performance Management Unit). • Contribute to managing midterm reviews and final evaluation in collaboration with with the One CGIAR Evaluation Advisory Service. • Contribute to supporting the initiative to reflect and adapt the full and WPs TOCs based on the results obtained on annual basis.Five international research institutions, six national research institutions, seven policymakers, and two donors (key strategic actors) are transitioning research priorities, policies, and strategic financial investments towards SI of MFS.50% of key innovation, demand, and scaling partners are jointly using a systems approach and a set of existing and novel tools adapted to different scales, agro-ecologies, and socio-economic settings to identify potential context-specific, integrated solutions for SI of MFS.Twelve research institutions (local and international), local partners, and 1.5 million farmers are developing, implementing, and validating SI options in selected MFS through participatory and inclusive processes.1.5 million MFS actors (farmers and other value chain participants) are adopting, adapting, and scaling socio-technical, gender-transformative innovation packages for SI of MFS.50% of partners (key strategic actors) and CGIAR scientists are adopting MFS thinking and gender-transformative approaches, mainstreamed through a global virtual institute for SI of MFS set up by the Initiative, and by regional scaling hubs promoting capacity building. Linkages with other Initiatives/ One CGIAR efforts• Asia Mega Delta (AMD)• Transforming Agri-food Systems in South Asia (TAFSA)• Transforming Agri-food Systems in West and Central Africa (TAF-WCA)• Excellence in Agronomy (EIA)• Transforming Agri-food Systems in East and Central Africa (TAF-ESA)• Delivering genetic gain in farmers field (SeEdQUAL)• Portfolio Performance Management Unit (PPMU)• Standing Panel on Impact Assessment (SPIA)• Engagement with the work packages to decide on implementation sites, indicators and yearly targets.• Baseline study design and implementation to commence between June and August. First country will be Malawi.• Performance Management Plan and Data Matrix are currently being developed and will be discussed with the WPs during the inception meeting on day 2.• Develop a MELIA web-based application• Develop means for shared learning• Collaboration with SPIA and CGIAR MELCOP","tokenCount":"428"} \ No newline at end of file diff --git a/data/part_1/0770489193.json b/data/part_1/0770489193.json new file mode 100644 index 0000000000000000000000000000000000000000..9020d40d0de995fec11722c96d1c9c3061c27e6d --- /dev/null +++ b/data/part_1/0770489193.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"10686c092e9a85fe0aa4921ffcf5d212","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/34d89c63-ceea-4360-aaee-c5b8341df9ee/retrieve","id":"1221870713"},"keywords":[],"sieverID":"5e7aebf2-74b9-4a2c-825a-e75546cd8602","pagecount":"14","content":"• Same format as standard economywide datasets (e.g., national accounts)• Allows us to measure AFS structure and performance using actual dataTotal value added generated by all agricultural value chains (in constant dollars)Agrifood System Employment (AgEMP+) GDP and employment in Tanzania's agrifood system (2019)• Part 1 focuses on the current size and structure of the national agrifood system • AgGDP+ defines the AFS on the supply side• Household demand and trade (imports) capture AFS structure on the demand side• Agrifood processing is more important on the demand side than the supply side in the AFS AgGDP+ Household demandPrimary and processed product shares (%)Exports ($1.98 bil.) Imports ($0.65 bil.) • Growth was relatively evenly distributed among most value chains within the AFS, eight of the rest 10 value chains had a growth rate close to the AFS average• Off-farm growth is faster for most value chains • Average across outcomes• The value of outcome indicators (elasticity or multiplier) is expected to differ across value chain growth; not all value chains are equally effective at achieving all outcomes • Normalizing the individual outcome scores• The values of each outcome indicator are scaled so that the most effective value chain is given a score of one and the least effective is given a score of zero. A value chain with adverse impact is also given a score of zero.• An average score with equal weights is used to measure the total impacts across all value chainsFuture Drivers 2019+ | Prioritizing Agricultural Growth(change in %-point)(change in %-point)(change in 1,000)(change in %)(averaged normalized scores, reordered)(change in mil. $)(per unit change in agriculture GDP, ordered by poverty) Agricultural growth has a strong growth multiplier effect generating income beyond agriculture• Rice has the strongest growth multiplier effect both for AFS income and total GDP; strong linkages with rice milling and service sectors ensure benefits of on-farm productivity gains spill over to rest of the economyIn conclusion, promoting multiple value chains can achieve broad impact ","tokenCount":"326"} \ No newline at end of file diff --git a/data/part_1/0795108833.json b/data/part_1/0795108833.json new file mode 100644 index 0000000000000000000000000000000000000000..8fff7432b81f410abaa75e3efe66120ddc306971 --- /dev/null +++ b/data/part_1/0795108833.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"58ad6ed64fd1d0fecad42ebddaf4b01e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/f6841670-8025-4acd-b678-ec54442fc7ec/content","id":"-1377638292"},"keywords":[],"sieverID":"4e676a65-9aca-46d7-bf30-4ec2c849e778","pagecount":"18","content":"• Quality is what the customer requires -Fitness for use as defined by the customer -Uniformity around an expected performance →Farmers are becoming increasingly critical of seed quality, with the subsequent increase in claims not only for seed value, but also for damages incurred in a crop that did not meet with expectations. Proteins are separated by the differences in their electrical charges within a gradient of pH.Conventional Purity boardIncreases efficiency-ErgonomicWelldeveloped seeds Larvae inside the seedsSeed assessmentGlobal Positioning System (GPS)• Change from assuming homogenous fields to dividing them to smaller zones & managing them separately.• It depends on linking Satellite GPS with computers, on-the-go sensors.• Mapping yields (combine yield monitor).• Field mapping for records and insurance purposes • Variable rate planting (planter drive).• Variable rate of fertilizer, herbicide, and pesticide application (spreader drive).• ","tokenCount":"133"} \ No newline at end of file diff --git a/data/part_1/0795924248.json b/data/part_1/0795924248.json new file mode 100644 index 0000000000000000000000000000000000000000..49af6e5ed1af17936280ed0473126db6cd1ef916 --- /dev/null +++ b/data/part_1/0795924248.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b23602a59e71f5be7559e5b784e52e34","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ddc92c03-9765-4222-a212-2d03db6f54c1/retrieve","id":"-1679806922"},"keywords":[],"sieverID":"a22eb1c4-bb01-4160-9cd4-c77ebac80e9e","pagecount":"2","content":"• Retail prices of maize increased by 6 percent in June.• Maize prices were highest in the Southern region.• ADMARC sales were reported in 1 out of 26 markets monitored by IFPRI.• No ADMARC purchases were reported in any of the markets monitored by IFPRI.• At market exchange rates (used for informal imports and exports), retail prices of maize in Malawi were lower than in Tanzania, Zambia, and Zimbabwe, but higher than in Mozambique and South Africa, leading to informal imports from Mozambique.Figure 1 shows a trend in prices in the past 12 months ending in June 2023, and, for comparison, over the 12 months ending in June 2022. At the beginning of the harvest season, we start reporting prices of newly harvested maize, which has a higher moisture content than maize from the previous harvest. High moisture content makes it unsuitable for storage or milling. During drying, it loses about 20 percent of its weight. Solid lines in Figure 1 represent observed maize prices. Dotted lines represent prices adjusted for moisture content and thus the true price trend.In June, retail prices for maize maintained a steady upward trend, following the pattern from the previous month (Figure 1). The price of maize at retail level rose by 6 percent, with an increase from a weekly average price of K482/kg in the last week of May to K510/kg in the last week of June, as shown in Table 1. This is twice as much as in June 2022 when maize was sold at an average price of K255/kg. The lowest weekly average price of maize was reported in the first week of June in Chitipa where a kilogram was sold at K404/kg. In contrast, Chikwawa market reported the highest weekly average price (K600/kg) throughout the month of June.Mangochi, which experienced the largest increase in maize prices during the previous month, now observed the largest decline -7 percent between the last week of May and the last week of June. Traders attribute this price reduction to ease of accessing maize from Mozambique. Conversely, Ngabu experienced a notable increase in maize prices of 27 percent, but from a low base. Generally, prices throughout the southern region converged during June, attributable to imports from Mozambique helping to stabilize maize supply.The Monthly Maize Market Report was developed by researchers at IFPRI Malawi to provide clear and accurate information on the variation of maize prices in selected markets throughout Malawi. All prices are reported in Malawi Kwacha (K). To learn more about our work, visit www.massp.ifpri.info or follow us on Twitter (@IFPRIMalawi). At the regional level, monthly average retail maize prices also increased from K496/kg, K465/kg, and K430/kg in May to K511/kg, K466/kg, and K454/kg in June in the South, Centre, and North, respectively (Figure 2). Although the highest retail price of maize persisted in the South, while the lowest prevailed in the North, the North experienced the highest increase in maize prices in June. Monthly average prices of maize in the North increased by 6 percent during June, compared to 3 percent in the South while remaining almost unchanged in the Centre.Retail prices of maize in selected markets in Malawi were the highest in the region at the official exchange rate of K1,060/USD (Figure 4). However, when considering the (black) market rate of K1,750/USD, which is used for informal imports and exports, retail prices of maize in Tanzania and Zambia surpassed those in Malawi. In contrast, neighbouring Mozambique offers more affordable prices at both exchange rates, leading to an increase in imports across the southern region.Out of the 26 markets monitored by IFPRI, only Karonga market reported ADMARC sales for 6 days in the second half of the month of June.IFPRI Malawi has been monitoring retail maize prices and ADMARC activities in selected markets since October 2016. Currently, data is collected from 26 markets across the country, with monitoring occurring six days per week, excluding Sundays. At least three monitors report data from each market. Data is collected by means of phone calls to the monitors. Regional prices reported in Figure 4 are sourced from weekly reports from Commodity Insights Africa. ","tokenCount":"686"} \ No newline at end of file diff --git a/data/part_1/0798917527.json b/data/part_1/0798917527.json new file mode 100644 index 0000000000000000000000000000000000000000..01a183233d321fdbfb9a9e8320c7519d0468ccb2 --- /dev/null +++ b/data/part_1/0798917527.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"111bf6c32339a03870a228c1f4add333","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e5d07161-b883-4190-bb7f-99641d7d4a06/retrieve","id":"460652265"},"keywords":["common sampling frame","generation of statistically consistent agent populations","integrated modeling","interdisciplinary data collection","Monte Carlo approach","Uganda"],"sieverID":"7d6f3b83-a163-4da4-87ac-919accfcecaf","pagecount":"18","content":"An important goal of modeling human-environment interactions is to provide scientific information to policymakers and stakeholders in order to better support their planning and decision-making processes. Modern technologies in the fields of GIS and data processing, together with an increasing amount of accessible information, have the potential to meet the varying information needs of policymakers and stakeholders. Multiagent modeling holds the promise of providing an enhanced collaborative framework in which planners, modelers, and stakeholders may learn and interact. The fulfillment of this promise, however, depends on the empirical parameterization of multiagent models. Although multiagent models have been widely applied in experimental and hypothetical settings, only few studies have strong linkages to empirical data and the literature on methods of empirical parameterization is still limited. This paper presents a straightforward approach to parameterize multiagent models in applied development research. The parameterization uses a common sampling frame to randomly select observation units for both biophysical measurements and socioeconomic surveys. The biophysical measurements, i.e., soil properties in this study, are then extrapolated over the landscape using multiple regressions and a digital elevation model. The socioeconomic surveys are used to estimate probability functions for key characteristics of human actors, which are then assigned to the model agents with Monte Carlo techniques. This approach generates a landscape and agent populations that are robust and statistically consistent with empirical observations.In applied development research we often find \"critical triangle situations\" of poverty, resource depletion, and decreasing productivity (Vosti and Reardon 1997). Poor farm households are compelled to apply unsustainable farming practices that erode their natural resource base, reduce crop yields, and in turn, promote poverty. In many developing countries, for example in Uganda, the case study reported on here, farm households are trapped in such a downward spiral of interacting biophysical and socioeconomic forces (Pender et al. 2004). A major research issue in agricultural and development economics is to explore policy options to overcome this critical triangle and, in particular, to analyze the likely impacts of innovations on the livelihood of farm households and their natural resource conditions. Whereas in the past, research mainly focused on technical innovations, more emphasis is currently paid to institutional innovations such as land rental and labor sharing arrangements, resource user associations, and catchment management boards.Multiagent system models (MAS) have a large potential to improve the understanding of critical triangle situations, to learn about the uncertainties related with natural resource management and to explore new policy options (Parker et al. 2003). They may also provide a collaborative learning framework in which scientists, policy makers, and stakeholders may interact (Roeling 1999, Hazell et al. 2001, van Paassen 2004). To fulfill their potential, MAS need to be carefully parameterized and validated with empirical data. Only then they may provide relevant information about boundary conditions of rural development and the Ecology and Society 11(2): 19 http://www.ecologyandsociety.org/vol11/iss2/art19/ uncertainties involved, although MAS have been widely applied in hypothetical and experimental settings. However, few studies have tried to build empirically based MAS, and the literature on methods of empirical parameterization is therefore limited (Berger and Parker 2002).In this paper, we present a straightforward approach for empirical parameterization of MAS in applied development research. The paper starts with an introduction to integrated modeling in agricultural sciences and highlights the challenges of building empirical multiagent models. A subsequent section discusses the peculiarities of developing country research and proposes the use of \"common sampling frames\" as a suitable method for organizing data collection in interdisciplinary research projects. We then present a statistical approach based on spatial interpolation and Monte Carlo techniques to parameterize MAS with empirical data. Taking the example of ongoing research in Uganda, we show how landscapes and agent populations can be generated from field measurements and farm household survey data. The last two sections discuss the validity of our approach and conclude.The use of computer models has a long tradition in agricultural sciences, and high standards for model parameterization and validation have been established. Computer models in agricultural sciences have always been tailored to provide \"practical\" results for applied development problems. Crop growth models, for example, are used to simulate the fertilizer response of major food crops, thereby substituting for costly field experiments, and linear programming models are used to derive improved farm management plans. There is also vast experience with the coupling of these computer models, for example in bioeconomic models (Barbier 1998, Woelcke 2003, Holden and Shiferaw 2004) and in integrated river basin models (Rosegrant et al. 2000, Fisher et al. 2002).In general, integrated models in agricultural sciences have been very instrumental in capturing the technical or engineering aspects of humannature interactions and in highlighting the economic consequences of resource use changes (Kuyvenhoven et al. 1998). They may elucidate the tradeoffs that farm households face in crop choice and farming practices, assess the profitability of various land-use options, and capture the internal costs of adjusting to changes in environmental and marketing conditions (see also the more recent work of Holden et al. 2004). However, they face also limitations when it comes to analyzing critical triangle situations, in which heterogeneity of actors and landscapes is large and increasing (Berger et al. 2006). In general, this is the case when farm households differ considerably in terms of factor endowments and decision-making processes and when resources are exchanged locally or in networks. Another challenge for integrated modeling is to allow for a sufficient degree of spatial and temporal complexity, since changes in the natural environment, the market environment, and the introduction of improved technologies typically involve long-term interacting processes.Heterogeneity and interactions clearly fall into the core competence of multiagent models, which may therefore extend the scope of computer modeling in applied development research. In the field of natural resource use, MAS were applied to a variety of research questions (for an overview see Janssen 2002, Parker et al. 2003). MAS have been used to theorize about social and spatial dynamics (Gotts et al. 2003, Parker andMeretsky 2004), to simulate land-use changes (Huigen 2004) and diffusion of innovations (Weisbuch 2000, Berger 2001, Deffuant et al. 2002), to assess the impact of agricultural policies (Balmann 1997, Happe 2004), to accompany role-playing games (Barreteau et al. 2003) and in game theory applications (Bousquet et al. 2001). According to the classification proposed by Berger and Parker (2002), most of these applications are abstract or experimental; only few studies have tried to build empirical multiagent systems. Moreover, there are only few studies that have attempted to exploit the potential of MAS in integrating biophysical and socioeconomic model components (Parker and Berger 2002) Challenges to building empirical multiagent system model When parameterizing MAS with empirical data, the researcher moves into the problem domain of empirical modeling for which an extensive literature has been produced over the years. As an example, http://www.ecologyandsociety.org/vol11/iss2/art19/ we mention the influential work of Bockstael (1996) who addressed fundamental issues such as sample selection and spatial autocorrelation. One major challenge is to represent, in a statistically consistent way, a real-world situation of typically heterogeneous biophysical and socioeconomic conditions such as various soil types, crop and vegetation growth, land holdings, social networks, and human actors. Here, we will only focus on the parameterization of the cellular and the agent-based component of MAS and present one possible approach to generate landscapes of grid cells and agent populations. A detailed discussion of agent decision making, error propagation, and sensitivity analysis is, however, beyond the scope of this paper.As mentioned in the previous section, multiagent system models (MAS) have a large potential for integrated modeling of land-use changes based on empirical data. Although the capabilities of presentday technology, such as GIS and related data processing tools, have made more biophysical information accessible, there are still some challenges for data collection especially in interdisciplinary research projects.One drawback of doing applied research in developing countries is data scarcity although the situation has much improved in the last two decades. Under data scarcity, scientists in interdisciplinary research projects do best to concentrate their primary data collection on selected sites. However, one tendency is that scientists from various disciplines use different criteria for selecting their units of observation. As a result, data collection activities are often scattered over the study region, soil scientists are taking samples in one set of villages, whereas the social scientists are surveying another set of villages, plant growth models are calibrated for selected varieties, yet not the ones grown by trial farmers etc. Under these conditions, which are unfortunately rather the rule than the exception, it becomes very difficult to integrate empirical data within MAS.One way out is to apply a statistical procedure to select representative units and subunits of observation using a common sampling frame. This approach was employed for data collection in the Ghanaian Volta basin in West Africa as described in Berger et al. (2006) and van de Giesen et al. (2006). First, data on living standards and geospatial data were compiled from secondary sources and merged into one data set. Project scientists then developed a hierarchy of observation units (Fig. 1) and defined a priori selection criteria that would potentially capture all key research questions of the various scientists involved. Based on preliminary analysis, seven categories of selection criteria at the community level were identified: agro-ecological conditions, agricultural and fishing intensity, market orientation, household welfare, health and water use, social capital, and migration. Correlation analysis of the merged data set revealed interdependencies among some of the selection criteria, and principal component analysis was, therefore, used to derive a relatively small number of linear combinations of the original variables that retain as much statistical information as possible. Eight new variables, explaining about 70% of the total variance in the data, were used for a subsequent cluster analysis. The communities closest to the cluster centroid were then selected as representative communities. Scientists of the various disciplinary subprojects then randomly selected their subobservation units within these sample communities, for example households, water sources, or sample plots.The advantage of this interdisciplinary approach, apart from the logistical benefits that accrue from the concentration of field activities at certain communities, is that it provides representative and integrated data sets for the empirical parameterization of MAS.The remainder of this paper describes one possible approach to parameterize multiagent system models in applied development research. The parameterization combines predictive soil maps to generate a landscape from soil samples, and Monte Carlo techniques to generate agent populations from a sample of farm households. The method is described on the basis of a case study for two village communities in Southeastern Uganda, which were selected to analyze the downward spiral of declining soil fertility and increasing poverty and to assess ex ante the impacts of alternative policy interventions. http://www.ecologyandsociety.org/vol11/iss2/art19/ Fig. 1. Hierarchy of observation units in interdisciplinary research.The MAS software used for this case study builds on earlier work of Balmann (1997) and Berger (2001). It is coded in C++ and runs on Windows and Unix/Linux platforms (Appendix 1). Since this paper discusses only how to initialize the MAS, but does not present results from using this software, we will not provide a detailed description here. Some indications on functionality and where to download more information are given in the appendix. One integral component of this software is a crop growth and nutrient cycling module that was calibrated for agro-ecological conditions in Uganda using the \"Tropical Soil Productivity Calculator\" (see Aune and Lal 1995). Soil measurements and predictive soil maps were needed to parameterize this module.The two village communities are Magada and Buyemba in the Mayuge District; Magada counts 374 households and Buyemba counts 247 households. Both communities are densely populated with an average of 436 and 383 people/ km 2 in Magada and Buyemba, respectively, and are relatively well connected to market towns.Climatic conditions allow the cultivation of two sequential crops in a year. Main food crops are cassava, sweet potato, and beans; the main cash crop is coffee, whereas maize and plantain are both sold and home consumed. Farm households predominantly rely on the hand hoe in their crop management; the use of external inputs such as fertilizers, pesticides, http://www.ecologyandsociety.org/vol11/iss2/art19/ and improved seeds is rare. Intercropping is common and farm households usually allocate only small parts of a plot to a single crop combination. Soil fertility is generally low but varies across locations. The landscape is fairly sloping with large flat areas, and erosion levels are moderate (Brunner et al. 2004). A spatially explicit model was chosen to capture this heterogeneous landscape with local interactions.In the MAS, a landscape of grid cells represents the biophysical environment that farm households manage. In the Uganda study, the landscape model contains 12 layers, including soil chemical and physical properties, village boundaries and the location of farmsteads and agricultural plots. Layers are composed of grid cells of 71 x 71 m (0.5 ha), which is the smallest amount of land cultivated by a single farm household.Empirical information about soil properties is obtained from soil samples. The challenge was to create continuous soil maps by interpolating soil sample values. There are various approaches to this such as a kriging interpolation using semivariogram models or distance weighting algorithms (e.g., Ruecker 2005). The Uganda study used predictive soil mapping based on stepwise multiple regressions of soil properties on terrain parameters and/or other soil properties (Rhew et al. 2004). Terrain parameters were derived from a digital elevation model (DEM) with a 30-m grid size, and included elevation, slope, upslope area, plan curvature, profile curvature, curvature, wetness index, streampower index, and aspect.In a first stage, the prediction was based on 285 soil samples and 910 GPS measurements from a single hillslope in the village of Magada collected in 2000 (Ruecker 2005). Predictive models were initially estimated from these data and scaling effects were explored to find robust estimators at different scales. In a second stage, a new round of 120 soil samples and GPS measurements were collected in two villages in 2003. These data were used to validate the predictive models of the first stage, and to subsequently modify these (Rhew et al. 2004).The next challenge was to populate the landscape model with agents. The location of farmsteads and agricultural plots can be obtained through GPS measurements, maps of the land registry office, or aerial photography, yet such information is sometimes unavailable. In the Uganda study, handdrawn maps were available on which most of the sample households had been marked during the survey (1999)(2000) but not the exact location of their plots. The maps, however, showed that farmsteads were mainly located along community roads with scattered farmsteads in the other parts of the villages. The remaining nonsample households and all plots were to be assigned using these qualitative patterns. In ongoing research in Chile, complete georeferencing of household surveys and land registry maps is used.When complete data sets are lacking, random assignment is an option and subsequent sensitivity testing to repeated random assignments can reveal the impact of this unknown factor on simulation outcomes. Figure 2 shows the different stages in generating the spatially located agents and farm plots for the village of Magada; the same procedure was applied to Buyemba. The left upper panel (Fig. 2-A) depicts the sample points within the village boundary of Magada. The figure shows spatial dependency as sample farm households are not evenly distributed in the landscape but are clustered around the road network.Two different areas according to population density were therefore first demarcated: areas alongside the road network were designated as of high population density, and all other areas were of low population density (Fig. 2-B). Because the sample was random, the geographical distribution of the sample households represents the distribution of the total population. In Magada, for instance, 84% of the sample households lived in the high-density area, which accounted for 40% of the total village area. Of the remaining nonsample households, 84% was, thus, allocated in the high-density area and 16% in the low-density area. A standard routine for spatial random allocation, DNR Sampling Tool extension in ArcView GIS, was used for this purpose.All allocated farmsteads were then converted into grid cells, as shown in Fig. 2-C. Finally, using the estimated sample distribution from the survey, agricultural plots were allocated to the agents. A random spatial allocation was not used at this stage, as this would have produced an unrealistically scattered pattern of farm plots. The allocation was therefore done manually based on available qualitative information (Fig. 2-D).When generating an empirically based multiagent system model, (MAS), every computational agent must represent a single real-world farm household. In applied development research, random samples are typically preferred to population censuses or censuses of agriculture. Censuses do capture all farm households in the study area but, for financial and time constraints, cannot provide in-depth data of high quality (Carletto 1999). In the Uganda study, data were collected together with soil samples in 1999-2000 for 106 households, which is about 17% of the population. The challenge, hence, was to extrapolate the sample population to parameterize the remaining 83% of farm households.Monte Carlo studies are generally used to test the properties of estimates based on small samples. It is thus well suited to this study, in which data about a relatively small sample of farm households are available, but the interest goes into the properties of an entire population. The first stage in a Monte Carlo study is modeling the data generating process, and the second stage is the creation of artificial sets of data.The methodology applied here is based on empirical cumulative distribution functions. Figure 3 illustrates such a function for the distribution of goats over farm households. The figure shows that 35% of the farm households in the sample have no goats; the following 8% have one goat, etc. This http://www.ecologyandsociety.org/vol11/iss2/art19/ function can be used to randomly distribute goats over model agents. For this, a random integer between 0 and 100 is drawn for each agent and the number of goats is then read from the y-axis. Applying this procedure for all agents recreates the depicted empirical distribution function for goats. By varying the random seed number, the procedure yields different endowments at the individual agent level.When repeating the Monte Carlo procedure for all other resources, each resource would be allocated independently at the agent level, excluding the event of possible correlations between resources. However, actual resource endowments typically correlate, for example, larger households have more livestock and more land. To include these correlations in the agent populations, first the resource that most strongly correlates with all other resources is identified and used to divide the survey population into a number of clusters. Empirical cumulative distribution functions are then calculated for each cluster of sample observations.In the Uganda study, the sample was divided into clusters defined by household size because extensive data analysis showed that this was the variable most strongly correlated with all other variables. Nine clusters were chosen because this captured most of the different sizes in households and gave a minimum of five households per cluster. Cluster analysis can also be used for this purpose if several variables show strong correlations, but clusters produced this way are more difficult to interpret, especially when many variables are used. Figure 4 illustrates the approach for the distribution of goats.Each agent was allocated quantities of up to 80 different resources in the Monte Carlo procedure. These resources include 68 different categories of household members, i.e., 34 age groups of two sexes, four livestock types, i.e., goats, young rams, cows, and young bulls, area under coffee plantation, female head of household, liquidity, ratio of equity and debt capital, plus innovativeness. Agents were generated sequentially, that is, agent No.1 first drew 80 random numbers in 80 different cumulative distribution functions before agent No. 2 did the same.In order to get both statistically consistent and realistic agents, the generated agent populations were submitted to three tests at various levels of aggregation:1. Checks for inconsistencies at the population level: The average resource endowments of the agent population have to lie within the confidence intervals of each estimated sample mean. If not, the agent population generated from this seed value has to be rejected, and the agent random assignment is repeated with a new seed.The correlation matrix of agent resource endowments has to reflect the correlation matrix of the sample population. Otherwise, the agent population has to be rejected.An agent with 20 household members is very unlikely to have only one plot of land. However, because of the randomness of the resource allocation, unrealistic settings can occur in the agent population. By defining a lower and/or upper bound for some critical combinations, this problem can be overcome. If a resource combination lies outside such bound the generated agent has to be rejected, and the random assignment of this particular resource combination is repeated. Two sets of bounds are included. The first set defines minimum land requirements for livestock and the second set defines demographic rules to ensure realistic family compositions.The Monte Carlo approach outlined here works well if correlations among agent characteristics are not too tight. If individual agents, clusters of agents or entire agent populations are continuously being rejected on one of the above three criteria, then the cluster-specific distribution functions have to be fine tuned. By skewing the distribution functions towards otherwise underrepresented combinations of agent characteristics, as was necessary in ongoing To test the methodology, a large number of agent populations was generated by applying different random seed values. Their properties were analyzed at three levels: (1) the population level, (2) the cluster level, and (3) the level of the individual agents. Each of these analyses is discussed. Within the scope of this paper, the entire variation between and within agent populations cannot be shown. Instead, the results are illustrated with a few examples and snap shots from the agent populations.At the population level, we checked whether the averages in the agent population resembled those of the survey population. For this purpose, average resource allocations for 100 generated agent populations were calculated (Table 1). For all resources, the average resource endowments in the agent population fell within the 95% confidence interval of the survey average, and the difference between the two averages was generally small. The random agent generator hence reproduces population averages.To get more detail about the demographic structure of the population, a population pyramid for the survey population was drawn and compared with those of two agent populations in Fig. 5. This form of presentation may not be very suitable for comparing age groups exactly but does illustrate the high degree of similarity between the two populations.The above has shown that the sample population was well replicated at the aggregate population level, but this might not necessarily be so at lower levels of aggregation. The following graphs and figures, thus, look at the cluster and agent level.Figure 6 depicts four box plots comparing the distribution of household size, area under coffee, and goats and cows in the sample with an agent population with seed value 577. Each box ranges from the 25th to the 75th percentile, i.e., the interquartile range, with the 50th percentile, or median, also marked within. Clusters were based on household size, which is why there is a strong correlation between these two variables in the left upper pane. The figure shows that median values do not differ much between the survey population and the agent population. In addition, most interquartile ranges are of comparable width, except for household size, but that is because this variable was used to define the clusters.In the Ugandan case study, assigning the spatial location of farmsteads and farm plots is not part of the Monte Carlo procedure. Because of the lack of georeferenced data, we could not meaningfully redraw and statistically crosscheck the agent location maps. The land endowment was therefore constant for each agent in all agent populations. Only the nonland resources were randomly allocated to the agents based on cluster-specific distribution functions. Figure 7 plots household size against the number of plots per agent.One objective of generating agents randomly was to endow each agent differently in alternative agent populations. The success of the approach is illustrated with Fig. 8. This box plot shows the variation in resource endowments for agent No. 100 over 100 alternative populations. Agent No. 100 has a fixed location for farmstead and plots in the landscape, as can be seen from the zero variance in the agent's land area of 1.5 ha. The variation in resource endowments is high with, for instance, the household size varying between one and eight members and the number of goats varying between zero and three.The reproduction of correlations was the third objective in the random agent generation. The left diagram in Fig. 9 plots the number of adults against the number of children in the survey population, whereas the two right panes do the same for two generated agent populations. The figures show that correlation between adults and children within the household, as observed in the survey, is well replicated in the agent populations, ensuring that the agents created are demographically consistent in this respect.A less demanding approach to parameterize model agents based on the Uganda survey data would be to multiply every farm household in the sample by a factor of six, or if the sample is not random, by the inverse of every observation's probability weight. Average values in such agent population would exactly equal those of the sample survey. This cloning procedure, however, is unsatisfactory for two reasons.First, it reduces the variability in the model agent population. A sampling fraction of about 17% gives six identical agents, or clones, in the agent population. This might affect the simulated system dynamics, as these agents are likely to behave analogously. It becomes difficult then to interpret, for instance, a structural break in simulation outcomes: is the structural break endogenous, caused by agents breaking with their path dependency, or is the break simply a computational artifact resulting from the fact that many agents are the same? This setback becomes the more serious the smaller the sampling fraction is, because a higher share of the agents is identical.Second, the random sample contains a sampling error of unknown magnitude, which is also multiplied in the procedure. When using the cloning procedure, only a single agent population can be created, whereas for sensitivity analysis a multitude of alternative agent populations is needed.For these reasons, we developed a straightforward Monte Carlo approach that generates populations that are both statistically consistent and contain high levels of agent heterogeneity. The literature suggests alternative methods for Monte Carlo sampling and correlation control such as Latin hypercube sampling and restricted pairing (Saltelli et al. 2000). An improvement to our method could be to assign values to each of the model variables that conform to both their own empirical distributions and their correlations with other variables. More detailed testing will be needed to compare the performance of different approaches.Most multiagent systems have been based on hypothetical settings using artificial rather than real data. This paper showed that MAS could also reproduce real-world conditions by empirical http://www.ecologyandsociety.org/vol11/iss2/art19/ Fig. 8. Boxplot illustrating the variation in agent endowments in alternative agent populations.","tokenCount":"4518"} \ No newline at end of file diff --git a/data/part_1/0810488267.json b/data/part_1/0810488267.json new file mode 100644 index 0000000000000000000000000000000000000000..053c85f84dec5f7ddbe5a24e55ac2a56e787465b --- /dev/null +++ b/data/part_1/0810488267.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"db78baec767314aaeb09a35a80d0f2a0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/59065514-bc59-46b4-85fe-ee5d6646d151/retrieve","id":"1853799749"},"keywords":[],"sieverID":"a9dc03e2-e7ed-40ea-adb9-b0ef1765a544","pagecount":"1","content":"A global crisis with limited solutions uField report from Burkina Faso FOCUs ,11 Bamboo An extraordinary plant with many uses viEwpOiNT ,16 intellectual heritage By Ameenah Gurib-Fakim iN BRiEF ,3 pUBLiCATiONs ,12 BETwEEN Us ,15For a long time, issues linked to production were held to be the prime cause of food crises. Causes likely to be examined included poor climatic conditions (such as drought or floods) and the proliferation of pests leading to disappointing harvests and a subsequently inadequate supply of food to satisfy consumer needs. This approach gave rise to the creation of various networks offering early warning and surveillance systems for weather conditions as well as monitoring services for harvests. Most of these are largely effective. Among them are FAO's Global Information and Early Warning System (GIEWS), USAID's Famine Early Warning System (FEWS) and the locust surveillance system.Tackling price instability","tokenCount":"142"} \ No newline at end of file diff --git a/data/part_1/0814013705.json b/data/part_1/0814013705.json new file mode 100644 index 0000000000000000000000000000000000000000..2c65060b5ad29a4e5211dddd2503add51d022128 --- /dev/null +++ b/data/part_1/0814013705.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ff92b56a492152595674a6654515b4b2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e60f5bf8-db0c-4b89-b48a-58903a2b74fd/retrieve","id":"-346360701"},"keywords":[],"sieverID":"80d546c1-5e31-48b4-935b-754a69b2fe7d","pagecount":"50","content":"SePR Working Papers contain results of research done by ILRI scientists, consultants and collaborators. The Working Papers are not subjected to full refereeing and are disseminated to motivate discussion and comment. It is expected that most of the Working Papers will be published in some other form. The author(s) alone is (are) responsible for the contents.Structure of demand for milk products in Ethiopia, 2000 . . . . . . . . . . . . . . . . Table 2. Changing structure of milk production and distribution in Ethiopia . . . . . . . . Table 3. Trends in total and per capita milk production . . . . . . . . . . . . . Table 4. Profile of adopters and non-adopters of improved market-oriented dairy in Holetta, Ethiopia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5. Gross margin for crossbred and local breed cows . . . . . . . . . . . . . . . . . . . . . . 2. Total and per capita milk production in Ethiopia (1961Ethiopia ( -2001) ) . . . . . . . . . . Figure 3. Butter and cheese production in Ethiopia (1961Ethiopia ( -2001) ) . . . . . . . . . . . . . . . . Figure 4. Imports of dairy products (milk equivalent) in Ethiopia (1960Ethiopia ( -2001) ) . . . . . Over the last decade following the political changes in 1991, the dairy sector in Ethiopia has shown considerable progress. Total milk production grew at an estimated rate of 3% compared to 1.8% during the period from 1975-90, thus ending the extended declining trend in per capita milk production in the country. The progress achieved is mainly due to technological intervention, policy reforms and increases in demand for dairy products due to population growth and urbanisation. The dairy sector in Ethiopia is expected to continue growing over the next one to two decades given the large potential for dairy de-velopment in the country, the expected growth in income, increased urbanisation, and improved policy environment. The shift towards a market economy is creating a huge opportunity for private investment in urban and peri-urban dairying. However, the main source of growth is expected to be the growth in demand for dairy products.Ethiopia holds a large potential for dairy development. The country currently manages the second largest livestock population in Africa, estimated at 29 million cattle, 24 million sheep and goats, 18 million camels, 1 million equines and 53 million poultry. In ad-dition, the country enjoys diverse topographic and climatic conditions. These consist of a high central plateau ranging from 1800 to 3000 metres above sea level (masl), a rift valley that divides the country from north to south with altitudes ranging from 1000 to 1800 masl, and lowland plain areas of less than 1000 masl in altitude. Depending on the altitude, temperature ranges from less than 10°C in alpine areas to 35°C and higher in the lowlands. Moreover, rainfall in most of the country is adequate for crop and pasture production (Alemayehu 1987). The favourable climate throughout the country supports the use of improved, high-yielding animal breeds and offers a relatively disease-free en-vironment for livestock development. The success realised in neighbouring Kenya is also expected in Ethiopia, given the high potential for dairy development, the on-going policy reforms and technological interventions and the very similar production environment.Given the considerable potential for smallholder income and employment generation from high-value dairy products (Staal 2002), the development of the dairy sector in Ethiopia can contribute significantly to poverty alleviation and nutrition in the country. Ethiopia, with its over 65 million inhabitants and an average annual per capita income of less than US$ 100, is among the poorest countries in sub-Saharan Africa (SSA). Levels of malnutrition are consequently high. The Food and Agriculture Organization of the United Nations (FAO) estimates that about 51% of the population is undernourished and over two million people are considered chronically food-insecure (FAO 2001). Com-pared to other countries in Africa, Ethiopians consume lesser amount of dairy products. Per capita consumption of milk in Ethiopia is as low as 17 kg while the average figure for Africa is 26 kg (Alemu et al. 1998). Besides providing income-earning opportunities for the poor, dairy development, especially at the smallholder sector level, can improve the nutritional status of Ethiopian children by making available milk for consumption and increasing household income.The excess demand for dairy products in the country is expected to induce rapid growth in the dairy sector. Factors contributing to this excess demand include, rapid population growth (estimated at 3% annually), increased urbanisation and expected growth in incomes. With the shift towards a market economy and liberalisation policies, private entrepreneurs are expected to respond to the increased demand through in-creased investment in dairying and milk processing. While the response of the private sector to the increased demand for dairy products is expected to be significant, the small-scale household farms in the highlands hold most of the potential for dairy develop-ment.This paper assesses the development of the dairy sector in Ethiopia over the past 50 years. In particular, it presents an overview of the dairy sector in Ethiopia. It also identifies key phases in the development of the dairy sector in Ethiopia and examines the trends in production and consumption, policy changes and development emphasis during each phase. Apart from these, the paper provides evidence on the potential impact of improved dairy cattle, examines the factors that increase smallholder participation in market-oriented dairying and identifies key policy and technology issues to be considered in the design of appropriate policy and development strategies. The paper also draws together evidence from neighbouring countries in order to assist in drawing conclusions for dairy development strategies in Ethiopia.Livestock are raised in all of the farming systems of Ethiopia by pastoralists, agro-pastoralists, and crop-livestock farmers. According to Tsehay (2002), milk production systems can be broadly categorised into urban, peri-urban and rural milk production systems, based on their location (Table 1). Both the urban and peri-urban systems are located near Addis Ababa and the regional towns and take advantage of the urban markets. The urban milk system consists of 5167 small, medium and large dairy farms producing about 35 million litres of milk annually. Of the total urban milk production, 73% is sold, 10% is left for household consumption, 9.4% goes to calves and 7.6% is processed into butter and ayib (cottage cheese). In terms of marketing, 71% of the producers sell milk directly to consumers (Tsehay 2002). The peri-urban milk system includes small-holder and commercial dairy farmers near Addis Ababa and other regional towns. This sector controls most of the country's improved dairy stock. The rural dairy system is part of the subsistence farming system and includes pastoralist, agropastoralist and mixed crop-livestock producers, mainly in the highland areas. The system is not market-oriented and most of the milk produced in it is retained for home consumption (Figure 1). The level of milk surplus is determined by the demand for milk of the household and its neighbours, the potential to produce milk in terms of herd size, production season and access to a nearby market. The surplus is mainly processed using traditional technologies and milk products such as butter, ghee, ayib and sour milk are usually marketed through the informal market after the households satisfy their needs (Tsehay 2002). The dairy sector in Ethiopia can also be categorised based on market orientation, scale and production intensity and classified into three major production systems: traditional smallholders, privatised state farms and urban and peri-urban systems (Alemu et al. 2000). The traditional smallholder system, roughly corresponding to the rural milk production system described above, produces 97% of the total national milk production and 75% of the commercial milk production. This sector is largely dependent on indigen-ous breeds of low-productivity native zebu cattle, which produce about 400-680 kg of milk/cow per lactation. The state dairy farms, now being privatised or in the process of privatisation, use grade animals (those with more than 87.5% exotic blood) and are con-centrated at a distance of 100 km around Addis Ababa. The urban and peri-urban milk production system, the third production system, includes small and large private farms in urban and peri-urban areas concentrated in the central highland plateaus (Getachew and Gashaw 2001). This sector is commercial and mainly based on the use of grade and crossbred animals that have the potential to produce 1120-2500 litres over a 279-day lactation. This production system is now expanding in the highlands among mixed crop-livestock farmers, such as those found in Selale and Holetta areas and serves as the major milk supplier to the urban market (Alemu et al. 2000;Holloway et al. 2000).Milk and milk products form part of the diet of many Ethiopians. They consume dairy products either as fresh milk or in fermented or soured form. Getachew and Gashaw (2001) estimated that 68% of the total milk produced is used for human consumption in the form of fresh milk, butter, cheese and yoghurt, while the rest is given to calves and wasted in the process. Butter produced from whole milk is estimated to have 65% fat and is the most widely consumed milk product in Ethiopia (Table 1). Of the total milk produced, around 40% is allocated for butter while only 9% is reserved for cheese. Tra-ditional butter, which ferments slowly at room temperature, can be kept for a year or longer, offering rural consumers a readily storable and durable dairy product.The consumption of milk and milk products varies geographically between the highlands and the lowlands and the level of urbanisation. In the lowlands, all segments of the population consume dairy products while in the highlands major consumers primarily include children and some vulnerable groups of women. The limited statistical data available on potential milk demand suggest that demand for milk will increase, at least in the urban centres and among the people with high purchasing power.The demand for milk depends on many factors including consumer preference, consumer's income, population size, price of the product, price of substitutes and other factors. Getachew and Gashaw (2001) indicated that the demand for milk is inelastic with respect to income and price. In general, increasing population growth, rising real income and decreasing consumer prices are expected to expand the demand for milk and milk products. The population of Ethiopia is estimated to grow at 2.9% per year while the urban population increases at a rate of 4.4%. Therefore, growth in population and income are expected to increase fluid milk consumption.Based on the 1994 national population census of the Central Statistics Authority of Ethiopia, urban dwellers account for 15% of the total population of 63.5 million in 2000. It is estimated that 40% of the urban population (those with average income above Ethiopian Birr (ETB) 1 350, or less than US$ 50) can afford to buy 20 litres of milk per month. A study by the Ministry of Agriculture in Addis Ababa indicated that effective demand for milk was about 36,240 t in 1995 and projected to reach 55,440 t in the year 2005. Similarly, the demand for butter was estimated to be 10,624 and 16,227 t in the year 1995 and 2005, respectively. The rural population is estimated to be 85% of the total population and its milk consumption largely depends on livestock holding. In the mixed crop-livestock keeping highland region, it is estimated that 50% of households own cattle of which 56% are dairy cattle. Consequently, most households have access to milk. Similarly, more than 80% of the households in the lowlands own cattle, significant numbers of small ruminants and camels. In this area, it is likely that all households consume milk (Getachew and Gashaw 2001).Recent political developments in Ethiopia coincide with three phases of dairy development policy. These include the imperial regime, characterised by almost a free market economic system and the emergence of modern commercial dairying , the socialist (Derg) regime that emphasised a centralised economic system and state farms , and the current phase under the structural adjustment programme and mar-ket liberalisation (1991 to present). The principal rationale for following the political regimes in identifying phases of dairy development in Ethiopia is that during each of these three phases, the country followed a distinct political path and development poli-cies that directly and indirectly influenced the dairy sector. These include land tenure and land policy, macro-economic policy and orientation of development efforts.The data used to trace production trends during these three phases are obtained from the FAO statistical database on agriculture. Additional data were collected from various sources because no complete data set exists on the dairy sector in Ethiopia. However, reported values vary across differing sources. These disparities, coupled with generally poor data quality, mean that conclusions based on the aggregate data should only be taken as indicative. Although it would be interesting to examine growth within each of the production systems over the different phases of dairy development, available data do not permit such analysis.In the first half of the 20th century, dairying in Ethiopia was mostly traditional. Modern dairying started in the early 1950s when Ethiopia received the first batch of dairy cattle from the United Nations Relief and Rehabilitation Administration (UNRRA). With the introduction of these cattle in the country, commercial fluid milk production started on large farms in Addis Ababa and Asmara (Hizkias 2000). Government intervened through the introduction of high-yielding dairy cattle on the highlands in and around major urban areas. The government also established modern milk processing and marketing facilities to complement these input oriented production efforts. Most interventions during this phase focused on urban-based production and marketing including the intro-duction of exotic dairy cattle, feeding with high ratio of dairy concentrated feed, modern dairy infrastructure and high management level (Annex 1).To facilitate the growth of the sector, UNICEF established a public sector pilot processing plant at Shola on the outskirt of Addis Ababa in 1960. The plant started by pro-cessing milk produced by the large farms. The plant significantly expanded in a short period and started collecting milk from smallholder producers in addition to that from the large farms. This led to further expansion of large dairy farms. During the second half of the 1960s, dairy production in the Addis Ababa area began to develop rapidly because of the expansion in large private dairy farms and the participation of small-holder producers with indigenous cattle facilitated by the establishment of the milk collection centres.With the advent of modern dairying, the Government of Ethiopia established the Addis Ababa Dairy Industry (AADI) in 1966 to control and organise the collection, processing and distribution of locally produced milk. Further, with the help of UNICEF, the Shola plant was expanded in 1969 and several government-owned dairy farms were established to supply the formal market and to serve as demonstration centres for the large commercial farms. In addition, the government introduced regular programmes and projects for dairy development. The first effort, initiated by the governments of Ethiopia and Sweden, was the establishment of the Chilalo Agricultural Development Unit (CADU), later named Arsi Rural Development Unit (ARDU), between 1970 and 1980. The unit produced and distributed crossbred heifers and provided artificial insemination (AI) and animal health services, in addition to forage production and marketing (Staal 1995).To create an autonomous body responsible for dairy development, the Government of Ethiopia established the Dairy Development Agency (DDA) in 1971. The DDA took over the responsibilities of AADI and assumed more tasks as well, including the pro-vision of services for increasing milk production and creating formal milk markets in urban areas outside Addis Ababa. Further, the Addis Ababa Dairy Development Project (AADDP) was launched by the World Bank in 1971 with the objective of developing commercial dairy production and providing support for smallholder producers in the form of credit, imported cattle and technical services. By 1972, the DDA was receiving about 21 thousand litres of milk/day for processing, 57% of which came from 65 large farms (Staal 1995). In addition to collecting milk, the DDA sold milk and dairy products through its kiosks and shops as well as to institutions. It also facilitated the creation of dairy co-operatives to ease the provision of credit as well as technical and extension services to dairy producers.Milk production in Ethiopia increased significantly during the 1960s. Between 1961 and 1974, milk production from all species increased by 16.6% from 637,375 to 743,100 t-an average annual growth rate of 1.63% (Table 2, Figure 2). This growth was largely due to the economies of scale in production as well as marketing, subsidies in transport to the formal market, secured land tenure and an active free market for feed and other inputs (Staal and Shapiro 1996). On a per capita basis, however, milk production declined during the 1961-74 period at an average rate of 0.87% per annum (Table 3). Dur-ing this period, butter and cheese processed using the traditional methods grew only slowly by about 0.1%. Processed milk production stagnated in the early 1960s but ex-panded significantly in the second half of the 1960s and early 1970s (Figure 2). Following the 1974 revolution, the Ethiopian economic policy shifted towards socialism. The DDA continued to operate until 1979 when it was merged with numerous other nationalised dairy farms to establish the Dairy Development Enterprise (DDE). DDE was established to operate the nationalised state farms, establish a milk collection net-work, process and market dairy products, provide advisory and limited technical service to farmers, and sell veterinary medicaments and feeds to farmers. The enterprise had the capacity to process 60 thousand litres of milk at its inception. During this phase, the government shifted attention from urban to rural producers. However, substantial resources remained devoted to establishing large-scale state farms to provide fluid milk for urban consumers. This phase was characterised by intensive efforts by the government and donors towards developing the dairy sector through producers' co-operatives. The dairy development effort was geared towards rural producers who, in fact, were members of producers' co-operatives. Projects and programmes were im-plemented to improve dairy development focussed on producers, service co-operatives and peasant associations as major implementing partners. All the programmes were intended to bring about improvement in milk production and an increase in income through the introduction of improved feeding, breeding and health development pro-grammes while less attention was given to marketing and processing. 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 .Peasant Dairy Development Pilot Project (SPDDP) (see Annex 1). Although the programmes or projects implemented differed in their intensity, most of them were input-oriented.Because of these promotional efforts, total milk production increased significantly during this phase with the exception of the mid-1980s when the country experienced a debilitating three-year drought (Figure 2). Despite the significant increase in aggregate milk production, per capita milk production was declining. This phase was characterised by low producer prices, which discouraged production, emphasis on co-operatives in rural areas to the neglect of the most important producers in urban areas. To bridge the gap between supply and demand, dairy imports increased significantly during the second phase beginning from 1978. This was partly due to increased food aid, World Food Programme (WFP) milk powder imports, and a level of dairy production development that lagged far behind the demand (Tsehay 2000). During the drought of 1985/86, im-ports reached a peak of 279,651 and 314,726 t in 1985279,651 and 314,726 t in and 1986279,651 and 314,726 t in , respectively. Tsehay (2002) ) also indicated that import dependency rose steadily during this phase. For in-stance, dairy imports as a percentage of total consumption increased from 4.1 to 12.8% between 1977 and 1989. Commercial imports grew rapidly at 24.18% per year (Getachew and Gashaw 2001). Further, it is estimated that imported milk powder accounted for 23% of the Addis Ababa market.With the downfall of the Derg regime in 1991, Ethiopia embarked on policy reforms that aimed to bring about a market-oriented economic system. Several macro-economic policy changes were implemented. The exchange rate policy was altered from a fixed-rate system to a more market-determined system. A major devaluation of the local currency took place in 1992 followed by a series of smaller devaluations. A system of foreign cur-rency auctioning was introduced in 1995 and later changed to an inter-bank system. This probably has discouraged milk and dairy imports. Similarly, a new land policy was dec-lared. Although land remained in the hands of the government, the new constitution drawn up in 1994 allows temporary leases and farmers have the right to use the land in-definitely, lease it out temporarily to other farmers, and transfer it to their children but they cannot sell it permanently or mortgage it. Most importantly, the system of land re-distribution that created land insecurity and uncertainty has been abolished in Amhara and Tigray regions.In addition to these major policy reforms, the new federal government launched a new national development strategy named Agricultural Development-Led Industrialization (ADLI). The strategy seeks to bring about an improvement in the livestock sector by enhancing the quality and quantity of feed, providing improved animal feed and ex-tension services, increasing livestock health services and improving the productivity of local cows by artificial insemination while preserving the indigenous breeds (Benin et al. 2002). Although no clearly defined dairy development policy existed, it was envisaged that dairy policy would move increasingly towards private sector-led development. The policy recognises the potential of smallholder dairy production and accords due atten-tion to small producers although it also leaves room for the development of medium-and large-scale dairy farms in peri-urban areas. Activities undertaken include:• use of the potential adaptive genetic merit of animals • raising the quantity of feed available to livestock • improving health, breeding and husbandry services • encouraging the participation of private investors by improving income tax • improving the delivery of artificial insemination • developing and expanding efficient marketing systems in remote areas and • organising farmers into milk producing, processing and marketing co-operatives (Getachew and Gashaw 2001). In the third phase of the post-Derg market-oriented development, the private sector began to enter the dairy market as an important actor. Several private investors have now established milk-processing plants in Addis Ababa to supply fresh milk. Currently, the privately-held Sebeta Agro-industry is competing with DDE in supplying milk to urban consumers. DDE remains, however, an important actor in the formal dairy market. In 1993, the producer price paid by DDE increased from ETB 0.65 per litre to ETB 1.00 per litre and later to ETB 1.25. Meanwhile, the government privatised inefficient state farms, reducing the number of state farms from 14 to only 2. Moreover, the government accorded attention to the urban dairy producers and began serving them after the Min-istry of Agriculture (MOA) officially registered them.Post 1991 producer groups such as the Addis Ababa Dairy Producers Association (AADPA) emerged encompassing 90% of all urban dairy producers and a large proportion of peri-urban producers within a radius of 100 km of Addis Ababa (Staal 1995). Dairy development efforts in the post-reform period have focussed on smallholder dairy producers. The two major donor-funded SDDPP and Smallholder Dairy Development Project (SDDP) projects focused exclusively on improving dairy production at the small-holder level. Unlike the projects implemented during the Derg regime, these two pro-jects addressed the marketing problems of smallholder producers in addition to the provision of inputs. Milk production grew faster in the post reform period at an annual growth rate of 3% (Table 3). Although per capita milk production stagnated during this period and grew at a positive but insignificant rate after the policy reform, this represents a reversal or termination of the negative trend in the growth of per capita production during the previous two phases (Figure 2). However, the production of butter and cheese stagnated in the post reform period (Figure 3). In order to gain insight into possible sources of growth in the third phase, an attempt was made to disaggregate the total consumption of milk into different production systems. Rough estimates from the FAO (2002) data and available information from DDE and Getachew and Gashaw (2001) indicated that the contribution of imports of milk to total consumption of milk declined from 24% in 1985 to less than 1% in 2000. At the same time, the share of government-owned enterprises in total milk production decreased markedly. In contrast, the share of smallholder production in total consumption increased by 30%, from 71 to 96.6%. Of the total milk production from smallholders, only 1.2% comes from improved cattle. This is not surprising because the sector contains only 32,204 heads or 25% of the total improved cattle. Similarly, the contribution of large private farms increased from 21,750 t in 1985 to 33,182 t in 2000 (Table 2). The increase in private sector production is mainly due to government policies such as privatisation of state enterprises, removal of input market controls and increased use of improved livestock that were in the hands of producer co-operatives and state farms.To sum up, total milk production in Ethiopia increased during the 1961-2000 period at an average annual rate of 1.55%, though per capita production declined (Table 3) because of the high population growth rate. However, during the last decade pro-duction has been growing at an even higher rate (3%). The increased coverage of exten-sion services (such as better management skills) and increased use of improved inputs (improved breeds and feed) and policy changes promoting dairy production have con-tributed to faster growth of output. Dairy product imports during this phase were rela-tively smaller than in the earlier two phases (Figure 4). Most of the growth during 13 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 Total production (× 10 3 t) 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 Total production (× 10 3 t)Cheese Cheese Butter ButterSource: FAO (2002).Figure 3. Butter and cheese production in Ethiopia (1961Ethiopia ( -2001)).the third phase is concentrated in the peri-urban and rural production systems. 2 The emerg-ence of private processing industries and marketing units is likely to stimulate producers in the peri-urban areas and rural production systems as it offered producers a new mar-ket for their milk products. As is common in other African countries (e.g. Kenya and Uganda), dairy products in Ethiopia are channelled to consumers through both formal and informal dairy marketing systems. Until 1991, the formal market of cold chain, pasteurised milk was exclusively dominated by DDE, which supplied 12% of the total fresh milk in the Addis Ababa area (Holloway et al. 2000). Recently, however, private businesses have begun collecting, processing, packing and distributing milk and other dairy products. The proportion of total production being marketed through the formal markets remains small (Muriuki and Thorpe 2002). Formal milk markets are particularly limited to peri-urban areas and Addis Ababa. However, unlike the early phases, the formal market appears to be ex-panding during the last decade with the private sector entering the dairy processing in-dustry in Addis Ababa and Dire Dawa in the eastern part of the country. 3 DDE remains the only government enterprise involved in processing and marketing dairy products. DDE collects milk for processing from different sources, including large commercial farms, collection centres that receive milk from smallholder producers and, to a lesser extent, powder milk from the World Food Programme (WFP). The enterprise at present operates 25 collection centres located around Addis Ababa-13 of them near Selale, 5 near Holetta and 7 around Debre Birhan.As the data in Annex 2 indicate, the total supply to DDE declined from 16.03 million litres in 1983/84 to 4.03 million litres in 1991/92. The state dairy farms were the de-pendable sources of milk for the enterprise supplying it with more than 45% of the total milk it processed between 1983 and 1991. But the share of state farms in milk supply to DDE fluctuated substantially after 1991 (Annex 2). This was mainly due to the reduced capacity following the sale of 12 state dairy farms and declining production from the remaining 2 farms due to feed shortage and management problems. To fill this gap, the share of private farms and smallholders increased significantly after 1991 and now ac-counts for over half of DDE's supply. DDE currently purchases milk from farmers at ETB 1.25/litre at the collection centres. It offers a price 15 to 25 cents less than that paid by private traders operating in the informal market (Zegeye 2000). Until the mid-1980s, DDE charged a price of ETB 0.70 per litre of pasteurised milk. The price in-creased from ETB 1.00 in 1985/86 to ETB 1.70 in 1987/88 and ETB 2.15 in 1990. Currently, DDE charges ETB 2.85 per litre of milk.DDE processes milk into pasteurised milk, butter, soft cheese, yoghurt, cream milk, formago (cheese) and ice cream (see Annex 3). The wide gap between production and sale of milk by DDE from 1980-90 reflects the failure of DDE to efficiently market its products. During the last decade, the period of transition to a market-oriented system, the marketing situation was improved and almost all the output was marketed. However, since its inception, the enterprise used its full capacity only during the four-year period from 1987 to 1990 (Staal 1995). The reasons for low capacity utilisation include manage-ment problems, financial difficulties, and unstable and low consumption levels of pro-cessed milk in the society due to fasting that prohibits the Orthodox Christians (about 35-40% of the population) from consuming dairy products for almost 200 days every year (Zegeye 2000).In addition to DDE, several private milk-processing plants have been established in Addis Ababa, two of which-Sebeta Agro Industry and Dinsho dairy industries-have already started marketing their products. Although their share of the market is still small compared to DDE's, the entry of private firms in the formal milk market is a significant development indicating the profitability and potential of private investment in the dairy sector in Ethiopia and that the policy environment is facilitating such entry.In recent years, promotional efforts have focused on dairy marketing. Milk-marketing co-operatives have been established by the SDDP with the support of the Finnish Inter-national Development Agency. These groups buy milk from both members and non-members, process it and sell products to traders and local consumers. The units also pro-cess milk into cream, skim milk, sour milk, butter and cottage cheese. The number of these milk co-operatives reached 32 in total-2 established by the FAO/TCP (Technical Cooperation Programme) and the World Food Programme (WFP) and 30 established by SDDP (Tsehay 2002).The informal market involves direct delivery of fresh milk by producers to consumers in the immediate neighbourhood and sale to itinerant traders or individuals in nearby towns. In the informal market, milk may pass from producers to consumers directly or through two or more market agents. The informal system is characterised by the absence of licensing requirement to operate, low cost of operations, high producer prices com-pared to the formal market and no regulation of operations. The relative share and growth of the formal and informal markets in the three phases was different. In all three phases, the informal (traditional) market has remained dominant in Ethiopia.Traditional processing and trade of dairy products, especially the traditionally soured butter, dominates the Ethiopian dairy sector (Table 1). Of the total milk produced only 5% is marketed as fluid milk due to the underdevelopment of infrastructure in rural areas.Advances in biological technology in livestock have been induced primarily to improve the yield of animal products per unit of feed or breeding stock (Hayami and Ruttan 1985). Analogous to the case of crop production, these advances typically involve one or more of the following elements:• (improved feeding to provide satisfactory environment for animal growth and feed supplements to stimulate higher productivity • disease control • better environments for animal growth, particularly shelter and • selection of efficient breeds specifically adapted to respond to those elements in the environment that are subject to man's control. These advances raise two issues relevant to the dairy sector in Ethiopia-feed constraints and genetic improvement.Inadequate supply of quality feed and the low productivity of the indigenous cattle breeds are the major factors limiting dairy productivity in Ethiopia. Feed, usually based on fodder and grass, are either not available in sufficient quantities due to fluctuating weather conditions or, when available, are of poor nutritional quality. These constraints result in low milk and meat yields, high mortality of young stock, longer parturition in-tervals and low animal weights (McIntire et al. 1992, 103). Improved nutrition through the adoption of sown forage and better crop residue management can substantially raise livestock productivity. National and international research agencies, including the Inter-national Livestock Research Institute (ILRI), have developed several feed production and utilisation technologies and strategies to address the problems of inadequate and poor quality of feeds. So far, the adoption of these technologies in the Ethiopian highlands has been limited.Unlike residue management, hay and silage making or adoption of forage legumes often involves the introduction of a new crop into the farming system. Therefore, how the new crop fits into the existing system is critical to successful introduction. In the case of forages, this is determined by the degree of crop-livestock interactions, forage and livestock product markets, the extent of market participation of forage growers and resource availability.Depending on the degree of crop-livestock interaction, several polar cases can be identified. In livestock-specialised systems such as the pastoral systems in southern Ethiopia and Afar regions, the crop enterprise is not part of the household production unit. Households in these systems are typically subsistence-oriented and based on seasonal milk production. The livestock herders are dependent on natural pastures and grazing areas and to some extent on grazing crop residues in crop systems after harvest. As such, the adoption of improved forages is irrelevant since livestock owners usually do not own cropland. However, a transition to agro-pastoralists occurs in different parts of pastoralist areas. In these emerging systems, improved forage is becoming increasingly feasible.The other polar case is the crop-specialised farming system in which households are predominantly crop producers with limited livestock holdings, mainly small ruminants. In these systems, crop-livestock interaction is minimal. Typical examples include the savannah zones of western Africa. In this system, a necessary condition for the adoption of forage is the availability of external markets for forage and animal products (McIntire and Debrah 1987). This system is very limited in Ethiopia as most of the crop pro-duction systems also involve livestock as an integral component.In the typical mixed crop-livestock farming system, the household has two integrated enterprises, crop and livestock production. Since in mixed systems households can grow and feed forages for their own animals without recourse to forage markets, this system holds the highest potential for the adoption of improved forages. Also, forages prove use-ful in this system to support livestock during periods of low availability of crop residues and natural pastures, such as during the cropping season. In addition to contributing to livestock production, forage legumes contribute significantly to soil nitrogen and provide a break in cereal-dominated rotations (McIntire and Debrah 1987).Empirical analysis of the adoption of forage in dairy farms in mixed farming systems has taken place in the Holetta area where forage technology has been introduced in association with improved dairy production. The empirical results suggest that the potential for the adoption of improved forage is high where both livestock productivity and response to improved feed technology are high, as with crossbreed cows, and where pro-duction is more market-oriented, as with dairy. Here, the potential for adoption is high because of the possible complementarities between regular cash income generation from dairy sales and the opportunity for intensification of crop production. Factors affecting adoption also appear to be interrelated such that the effect of one factor may influence adoption through its impact on another factor. For instance, crop intensification through increased use of purchased inputs eases land constraints and may lead to intensification of livestock production via improved feeding strategies.Unlike Kenya, the large cattle population of Ethiopia has relatively limited numbers of exotic dairy cattle and their crosses. Less than 1% of the 34.5 million cattle population of Ethiopia are exotic or crossbred dairy cows (Muriuki and Thorpe 2002). Although it was difficult to trace the ownership of improved dairy animals, it is estimated that state and private farms own a total of 128,745 grade and pure female dairy animals of which the smallholders sector owns 32,204 crosses and improved female dairy cattle.However, due to the dissolution of producer's co-operatives and the privatisation of state farms, most of the crossbreed cows are currently privately-owned in peri-urban and urban areas of the country (Getachew and Gashaw 2001). Consequently, milk productivity in Ethiopia is low. The indigenous zebu breed produces about 400-680 kg of milk/cow per lactation compared to grade animals that have the potential to produce 1120-2500 litres over a 279-day lactation.Genetic improvement has been recognised in the design and implementation of the development projects in the country during the last four decades (Annex I). With the exception of SDDP, the production and distribution of crossbreed heifers, the provision and distribution of dairy stocks, the provision and strengthening of AI services, and/or bull service were major components of the development projects implemented between 1967 and 1998. Through the effort of these projects, Ethiopia has built up a herd of 120 thousand exotic cattle. So far, only one government institution, the National Artificial Insemination Center (NAIC) provides AI services in the country. The service is available in urban, peri-urban and rural areas.All regions except Tigray, Somali and Gambela appear to have benefited from the dis-tribution of crossbred heifers (Figure 5). However, most of these projects-except twofailed to address the genetic improvement and the feed shortage problem simultaneously. The energy deficit resulting from poor quality or low quantity feed, especially during the dry season, could result in losses in body weight and body condition, thus affecting the production and reproduction efficiency of the cows (Zerbini et al. 1998). Besides, cross-breeds may need specialised management and veterinary health care. These were also not addressed in these projects. The only development project that addressed these issues simultaneously, beside marketing and processing, agroforestry and water development, was the Smallholder Dairy Development Project supported by the Finnish International Development Agency and implemented between 1995 and 1998 in 16 woredas in three regions.Enhancing the ability of poor smallholder farmers to reach markets and actively engage in them poses a pressing development challenge. Difficult market access restricts opportunities for income generation. Remoteness results in reduced farm-gate prices, increased input costs and lower returns to labour and capital. This, in turn, reduces incentives to participate in economic transactions and results in subsistent rather than market-oriented production systems. Sparsely populated rural areas, remoteness from towns and high transport costs all pose physical barriers impeding market access. Transaction costs such as lack of information about markets, lack of negotiating skills, and lack of collec-tive organisation are other impediments to market access. The question of how to ex-pand the market participation of smallholder livestock producers is a major challenge facing many governments and non-governmental organisations (NGOs) in developing countries.A study carried out by ILRI using SDDP project data in Selale indicates some import-ant points to be considered in introducing new dairy technologies. The policy-relevant variables having the greatest impact in fluid milk markets are cow numbers, time to the milk group and visits by an extension agent. The number of cows kept affects marketable surplus through total production and marginal costs of production (Holloway et al. 2000). The action of pooling, especially pooling of milk collection and transportation activities, has the potential to mitigate costs. Reducing the milk delivery time from farm to collection point can increase sales to the milk group. This clearly relates to the trans-action costs of reallocating family labour to milk delivery. Currently, many potential fluid milk-marketing households are hours distant from any milk collection points. Any policy support to raise smallholder participation in milk marketing would necessarily need to weigh public costs against the expected gains by smallholder households.Market access poses a key bottleneck to the expansion of smallholder milk production and processing. Milk groups and co-operatives increase the participation of 20 smallholders in fluid milk markets in the Ethiopian highlands. Milk groups are a simple example of an agro-industrial innovation, but they are only a necessary first step in the process of developing more sophisticated co-operative organisations. The survival of the milk groups will depend on their continued ability to capture value-added dairy pro-cessing and retain the value-added for their members. The cost of milk production in Ethiopia is low but transaction costs are high, preventing current dairy exports. Milk groups, when developed further, could serve as basis for the development of produceroriented processing that better integrates smallholder producers with the Ethiopian dairy markets and the global agro-industry. Boxes 1 and 2 present two illustrative cases of milk groups.The Adaa Liben Woreda Dairy and Dairy Products Marketing Association was founded in September 1999 in Debre Zeit town, 50 km south-east of Addis Ababa. It has 34 founding members with a single share of ETB 100. The initial capital of the association was thus only ETB 3400. The amount of milk collected from the founding members was 308 litres per day or about 24 thousand litres per month. The association, though informally established in 1997, got its certificate of registration from Oromiya State in September 2000. Over the last few years, the association has grown significantly, and by June 2002, full membership had increased to a total of 426 members, with 245 male and 183 female dairy farmers. The total number of dairy cattle owned by the members is 1716. In addition, 181 non-member dairy farmers also supply milk to the association. Consequently, the current capital of the association has increased to ETB 500 thousand and milk collections have reached 174,360 litres per month in 2002, up by a factor of seven from the 24 thousand litres supplied monthly in 1999. There are seven milk collection sites in and around Debre Zeit town. Recently, the association purchased two coolers with a 25 thousand-litres capacity.The Addis Ababa Dairy Co-operative is the pioneer co-operative in Addis Ababa and its surrounding areas. The co-operative was first established in December 1992 with the aim of facilitating the supply of feed for urban dairy producers. By 2002, the number of members in the co-operative had reached 171, and almost half of them (85) were women. The current capital of the co-operative amounts to over ETB 61 thousand and each member on average owns 10 dairy cattle. Currently, the average milk collection per member is 20-30 litres per day or about 102,600 to 153,900 litres per month.The superior performance of Kenya's dairy sector offers several lessons to Ethiopia, whose dairy sector remains in its infancy. First, grade cattle provided the major source of increased productivity in Kenya. Hence, smallholders in Ethiopia should also be assisted to acquire grade cattle to increase productivity. Second, the development of effective infrastructure for the collection of milk in Kenya has also played a very important role in the development of the dairy sector in the country. This was made possible because the Kenya Cooperative Creameries (KCC) provided a guaranteed market for smallholder's milk. However, Ethiopia's DDE, the major public enterprise engaged in the collection and processing of milk from smallholders and private farms, is operating below full capacity and has not played a comparably significant role as market outlet or buyer of last resort. Hence, the enterprise needs to increase its efficiency and raise its collection network. The milk co-operatives should also be given enough technical and financial support to continue to serve as an important market outlet for smallholder producers. Currently, only a few milk processing industries operate, and these are limited to the capital and a few regional towns. The emergence of these private agro-industries has given the smallholders and peri-urban producers an alternative market to the DDE. Hence, the private sector should be promoted to engage in dairy processing and mar-keting to provide opportunity for smallholders to market their milk. The input market should also be liberalised and the private sector promoted to actively participate in the market. More importantly, the success of the dairy sector in Kenya was driven by in-creases in demand. Yet, this has not happened in the case of Ethiopia. Therefore, stimu-lating the consumption of milk and milk products in the major cities and townships through increasing awareness is important for the sustainable development of the sector.Milk production and marketing systems are similar in Kenya and Ethiopia (Muriuki and Thorpe 2002) and smallholders dominate dairy production in both countries. Both countries have parallel formal and informal marketing systems where the proportion of milk production marketed in the formal market constitutes a very small portion of the total milk produced (Muriuki and Thorpe 2002). In Kenya, the proportion of marketed milk sold in the formal market is 15% compared to only 5% in Uganda and a negligible share in Ethiopia (Muriuki and Thorpe 2002). With agro-industrial development of the dairy sector in Ethiopia coming through private investment, the proportion of marketed milk sold in the formal market is expected to increase.Despite the agro-ecological similarities between Kenya and Ethiopia, the Kenyan highlands have higher and more evenly distributed rainfall and hence higher potential for feed and forage production. In Ethiopia, on-farm feed and forage production as well as industrial concentrate need to be emphasised.Since the major part of the demand for dairy products in Ethiopia is mainly for processed milk (butter and cheese), smallholder, labour-intensive processing technologies should be encouraged. Such technologies-hand-driven churners-are available and are used by women in rural areas for butter production. In the future and as income grows, demand for processed dairy products such as ice-cream and yoghurt is expected to grow.In the typical mixed crop-livestock system of the highlands of Ethiopia, farming households produce milk using local zebu cows that are kept on communal pasture and crop residues. Milk productivity is low and most of the product is retained for home consumption. The small surplus may be processed into butter and cheese and either consumed or sold. In contrast, improved dairy technology based on high-yielding crossbred cows and production of improved forages has the potential for increasing milk production by smallholder households for both home consumption and the market. The household impacts of smallholder, market-oriented dairying has been analysed to test whether gains in real income from technical change or commercialisation may translate into food consumption of the poor and nutrient intake in a pilot research project implemented in the Holetta 4 area between 1993 and 1998 (Ahmed et al. 2000;Ahmed et al. 2002). The research project was aimed at evaluating the feasibility of using crossbred cows for both dairy and draft under farmers' conditions.The pilot project site is located in the Ethiopian highlands, about 40 km west of Addis Ababa, in the vicinity of Holetta town. The altitude of the research area is about 2600 masl. The farming system in the study area is classified as a mixed crop-livestock system with livestock playing an important role in the provision of food (milk and meat), draft power and dung, which is used mainly as a source of fuel as well as for soil fertility enhancement.The dairy technology consists of crossbred cows, improved feed technology such as on-farm production of forages and improved management. Pairs of crossbred dairy cows were initially introduced to 14 farmers in Holetta in 1993, half for milk production only and the other half for dairy and draft. In 1995 and early 1996, 120 more crossbred cows were sold on credit to an additional 60 households. Some households other than those participating in the project also owned crossbred cows. Willingness and ability to pay the initial down payment and costs for maintaining the crossbred cows were the major cri-teria used for selecting the participating households. Although the initial 14 farmers were relatively rich, the latter sixty farmers were selected from a list of farmers in three wealth groups, namely poor, medium wealth and rich farmers. Sixty control households using traditional practices of local zebu cows for milk production and oxen for traction were included in the household surveys beginning in mid-1995. The number of control farmers in each wealth group is roughly equal to the number of crossbred cow owners in the same wealth group. Within each wealth group, participating and control households were comparable, selected on the basis of the same criteria.Based on the profile of adopters and non-adopters (Table 4), household heads of both groups tend to be of similar average age and education. Households in both groups have comparable size in terms of adult equivalence, dependents and labour resources. However, adopters have more farm area, allocate more area to food crops and smaller local breed livestock herd size in addition to 1.69 crossbred cows on average. 5 Because of the higher income from improved dairying, adopting households earn significantly higher per capita income and spend more on household consumer items as well as on farm inputs. In addition, per capita intake of calorie, protein and iron is higher in adopting households. Within the study area, crossbred cows yield a gross margin of ETB 937/cow per year, or more than seven times the gross margin of a local cow (ETB 120), in 1997 (Table 5). This result mirrors a similar study by SDDP on the central highlands of Ethiopia in 1998, which shows a gross margin of ETB 865/crossbred cow per year with an annual milk production of 700 litres (Ojala 1998). Crossbred cows yield 37.2 litres of milk/cow per labour day, which is twice the yield/cow per labour day of the local breed. Although crossbred cows require a higher variable cost than local cows, the gross margin per unit variable cost was still higher than local cows indicating the profitability of crossbred cows (Table 5). This result compares favourably with the results of recursive econometric ana-lysis, which indicates significant productivity gains from crossbred cows as compared to local breeds. A recursive econometric model was estimated based on the conceptual framework of the impact of the market-oriented dairy production (MODP) at a household level pre-sented in Annex 4. In this framework, high productivity of crossbred cows and comp-lementary technology may result in a higher milk and dairy production. Adopting house-holds may use the additional cash income for buying food, meeting other household needs, or purchasing farm inputs. The impact of dairy technology on nutrition and health may result from direct increases of household consumption of milk and dairy products. The impact can also be indirect through higher household expenditure on food, health and sanitation or both. It has been well established by nutritionists that the consumption of more dairy products results in a better human nutrition and health (Neumann et al. 1993). Thus, we expect children of the adopting households who con-sume more dairy products to be healthier.In the recursive system, per capita income is defined as the market value of crop and livestock production and income from all other sources and estimated as a function of productive resources of the household and socio-economic characteristics of the household (Ahmed et al. 2002). Households earn income from production of crops and livestock including dairy, and renting resources such as land and labour. Crop production is a major source of income. Accounting for 61% of the income on average, this share is slightly higher (at 67%) for the control group and slightly lower (55%) for the adopters. Animal production constitutes 34% of the income of the MODP participants, and only 15% for the non-participants. Per adult equivalent income in the study area is generally low with a significant difference between the two groups of households. This difference is mainly attributed to the difference in dairy production.As expected, the adoption of dairy and associated technology is a significant determi-nant of household income. The estimated coefficient of 0.51 on per capita crossbred cows owned translates into an income elasticity of 0.465 at the mean value of per capita holdings of crossbred cows (0.91 cows). The mean per capita income of an adopting household is 41% higher (ETB 1663) than that of a non-adopting household (ETB 1178) (Table 4). This is a substantial contribution attributable to ownership of crossbred cows and the adoption of associated feed and management technology. This increase comes mainly from the additional milk sales.Local breed livestock herd also contributes significantly to per capita income in this mixed crop-livestock system, as indicated by the positive and significant coefficient of 0.12. Local livestock may contribute to household income indirectly through the provision of draft power to crop production and directly through animal sale and milk production for sale. Households with local breeds generate on average 15% of their income from livestock, mainly from live animal sales. However, the contribution of local breed livestock is much smaller than that of crossbreed cows.Crop markets appear to be an important institution for rural households for facilitating profitable transactions and income-generating opportunities. The longer the travel time to the crop market, the lower the per capita income of the household. Longer travel time may discourage cash transactions, constrain the flow of market information es-pecially on prices and availability of inputs, add to transaction costs of purchases and sales and shift labour from production activities. In this analysis, the estimated elasticity of income with respect to distance to crop market is -0.137. Tangka et al. (2002) showed the positive and significant effects of dairy technologies on food security and food production in the same area. These effects are reflected mainly through their impact on incomes and wealth. Besides, women in households with cross-bred cows earned nearly seven times more dairy income than women in households with only local cows. The average monthly non-dairy farm and off-farm incomes between the two groups of households were not statistically different, suggesting that the higher house-hold income in crossbred cow households came mainly from dairy products (Tangka et al. 2002).Household expenditure can broadly be disaggregated into expenditure on food, nonfood and farm inputs. Theoretically, expenditure on food includes value of food produced and consumed by the household. However, for lack of data, expenditure on food is defined here as cash expenditure on food and includes goods that are not produced by the household in addition to purchases of food to close any food deficit. Non-food ex-penditure includes household expenses such as clothing, health care, education and social contributions. Expenditure on inputs covers farm inputs such as fertiliser, chemicals and seed and livestock expenditure such as feed and veterinary expenses. Expenditures on food and non-food items are computed on a per capita basis while expenditure on inputs is computed for the household. The three relationships are estimated as functions of per capita income, proportion of cash income in total income, per capita area allocated to food crops, round-trip time to the nearest crop and livestock markets, and household socio-economic characteristics. Average annual per capita cash expenditure on food is estimated at ETB 40 and ETB 34 for the MODP participants and the nonparticipant households, respectively, with a statistically significant difference between the two groups (Table 4). These estimates are low mainly because these farm households con-sume most of their own food. Adopters have higher cash expenditures for farm inputs, transportation, tax and debt repayment, milling and clothing, which add up to higher but not significantly different total cash expenditures.The coefficients of the income variable in the three equations are positive and statistically significant. Expenditure elasticity of income is highest in the case of farm inputs (0.99) and lowest for non-food expenditure (0.21). This result indicates that income in-crements from technology adoption and commercialisation do not necessarily translate fully into additional food purchases but are distributed among the alternative needs of the households. It is worth noting that doubling income almost doubled expenditure on inputs indicating the high priority for increasing future income earnings from the use of purchased farm inputs. This also reflects the willingness of households to adopt improved crop technology such as improved seed and fertiliser. The high proportional increase in farm input expenditure from increments of income from adoption of the dairy tech-nology suggests that livestock intensification through the introduction of improved pro-duction technology may lead to intensification in crop production.The proportion of cash income in total household income measures the degree of market participation of the households. This proportion is significantly higher among the improved dairy households (Table 5). Sales of dairy, livestock and surplus crop are the major sources of cash for households. As the proportion of cash income increases, expenditure on both food and non-food items increases significantly. However, the proportion of cash income does not affect the expenditure on inputs, as credit is an alternative source for input purchases. Credit may be substituted for cash income allowing a household to spend more on other expenditures. At the mean, the elasticities of food and non-food expenditure with respect to the proportion of cash income are 0.30 and 0.61, respectively. These results suggest that technologies that increase productivity of a cash commodity such as dairy and other livestock technology also promote market par-ticipation through increased expenditures on food and non-food goods consumed by the household. This may generate significant growth linkages in the rural economy.It is hypothesised that the income impact of adoption of dairy technology transmits recursively through expenditure effects to influence nutrient intakes. Average per capita daily nutrient intake functions-for calories, protein and iron-are estimated as functions of per capita expenditure on food, per unit price of the nutrient, area allocated to food (cereals and pulses) as a proxy for food produced at home, and socio-economic factors of the household.On average both the MODP participant and non-participant households meet this minimum. MODP participants consume about 15% more calories, 13% more protein and 27% more iron compared to the non-participants (Table 4). Statistically, however, these differences are not significant. As discussed earlier, the contribution of the MODP to household nutrition may come not only through direct consumption of milk but also through substitution effects due to the impact of improved dairy production on market integration. Also, the diets may not change significantly as most households will stick to their usual diets. However, the main gains may be for the households that face de-ficiencies.Expenditure on food is a significant determinant of the intake of all three nutrients with estimated elasticities of 0.317, 0.326 and 0.193 for calorie, protein and iron. This supports the study hypothesis that increasing household incomes through the adoption of improved technology leads to improving household nutrient intakes and, therefore, contributes to better nutrition and health.There is a significant and negative relationship between the unit prices and nutrient intakes. The demand for these nutrients is relatively inelastic with own price elasticities of -0.39, -0.77 and -0.70, respectively. This reflects the degree of response of the house-hold to the cost of high-nutritive meals such as meat, dairy and vegetables. This may explain the fact that households with dairy crossbred cows consume 22% more milk than households without crossbred cows due to the perceived lower cost of own production. This also suggests an inverse relationship between the cost of food and the quan-tity prepared by the household. Unfortunately, these elasticities cannot be compared to estimates from other studies as in these studies commodity prices were used directly as regressors. The estimates obtained here are with respect to a weighted price index that depends on the cost of individual ingredients used in meal preparation.Nutrient intakes significantly increase as household food production (as measured by area allocated to staple crops) increases. This is clearly because food produced on farm constitutes the major source of household food consumption and hence, nutrient in-takes. There is an inverse and statistically significant relationship between the age of mothers and the per capita protein and calorie intake. This may be due to the likelihood that young mothers may have received more formal education due to the recent increase in the availability of schooling and more exposure to nutritional information. Male-headed households tend to consume significantly less energy and protein while house-holds with more children consume significantly more calories.To sum up, the assessment of the household impacts of adopting market-oriented dairy production which consists principally of crossbred cows and improved feed and management practices by smallholder households in rural Ethiopia demonstrates that market-oriented dairy technology significantly raises per capita income and income effects extend positively to expenditure and consumption. The higher the income level, the higher the expenditure on food, non-food items and farm inputs. On the other hand, expenditure is directly related to nutrient intakes. The resource base, including cultivated area and capital inputs, are also important determinants of per capita income.From a policy perspective, these results imply that the introduction of marketoriented activities is an effective way of reducing poverty and malnutrition of smallholder households in rural areas. Moreover, such introduction has the potential to stimulate the rural economy through demand stimulus for non-food. The enabling environment for the success of such activities includes marketing infrastructure and the availability of farm inputs and essential veterinary services for dairy farmers. Policies that encourage farmers' participation in markets and cash income generation appear to be critical.According to smallholder farmers who participated in the dairy project in Holetta, keep-ing crossbred cows has brought significant changes to their lives. Recent interviews in Holetta area indicate that crossbred cows have improved households' access to food, es-pecially dairy products. This has helped them to raise healthy children through increased consumption of dairy products. Moreover, the benefits of crossbred cows go far beyond household consumption. Farmers were also obtaining cash income from the sale of sur-plus milk, milk products and heifers. This increased their ability to buy fertilisers and improve their living standards by building decent houses and sending their children to school. Unlike crop production, which is seasonal, market-oriented dairying was more sustainable throughout the year in terms of generating cash income and hence, allows savings (Boxes 3, 4 and 5). According to the farmers, the benefits include access to dairy products for consumption and urine and manure for sustainable income. These in turn help them for the repayment of debts and household expenditure for such items as schooling, buying clothes and asset building.Fekeru Getachew is a young farmer. In 1995, he was among poor farmers who owned only one ox. Then he received two crossbred cows on credit. After eight years, he says, 'I have an entirely different way of life and I witnessed visible changes to the house-hold.' In addition to the two crossbred cows he currently has five draft oxen that he bought by selling the crossbred heifers.Fekeru believes that crossbred cows have brought many benefits to his family. 'To mention some', he said, 'I am now a father of three well-fed and healthy children because we have always milk at our home.' Remembering his old days where there was no cooking oil, he said, 'Now, thanks to these cows, we have enough cooking butter than ever before'. The benefits of these cows were not only for household use as they are also a source of cash income for the family. The cash income from the sale of dairy products is used to send his children to school and to buy clothing. He said that the cash from the sale of dairy products and crossbred heifers is helping him also to repay fertiliser credits. 'In situations like dry seasons where the price of crops goes down, I am no more obliged to sell my produce at low prices. I rather use dairy products as alterna-tive sources of cash.' Moreover, the fresh manure obtained from the cows has saved his wife from collecting fuel wood. However, he is facing problems such as inadequate feed supply and inadequate AI services. He said he has no doubt that the crossbred cows bring significant benefits. To sustain the benefits, he needs a regular supply of AI services and con-centrates.Gizaw Wendimu is a young secondary school graduate farmer. He said, 'I believe that I am a model to my neighbours because I have a better life since I received the two cross-bred cows in 1995.' He elaborates, 'I remember the day I learnt about crossbred cows with lots of joy. Since I brought the two crossbred cows in the house, we never had a problem of food and I have now two crossbred cows and two heifers.' Expressing his strong attachment to crossbred cows, he said, 'I couldn't imagine life with no milk and milk products in the future'. The crossbred cows, apart from helping him to have healthy children, are earning him income. He supplies the excess milk to a nearby hotel and to individuals.Gizaw has also built a decent house with the cash he obtained from the sale of milk and other dairy products. As the dry period for crossbred cows is shorter than for the local breeds, the income he earns proves more sustainable over time. Hence, he was able to save and repay his fertiliser credit. 'I can see a better future with my crossbred cows', he said adding, 'I am, therefore, planning to build new barn for the cows'. He attributes the benefits he obtained to the new technology as well as the continued effort he is making on the management of crossbred cows. He thinks that dairying can be a way forward for many farmers like him if it is supported with extension services.Teklu is an experienced farmer who appreciates the benefits of adopting crossbred cows if they are managed properly. At the beginning he said, 'I had only four cows, and then I received two crossbred cows on credit in 1995. Currently, I have five heifers and three crossbred cows'. He added, 'I have benefited for the last eight years from the crossbred cows and for me the cow is just like a dedicated mother who never gets tired of taking care of her children'. Teklu has planted oats and vetch for his crossbred cows on the plot he used to plant teff because he discovered that the dairy income in only two months is twice as high as the income from planting teff on that plot.Besides the consumption needs of his family, Teklu earned cash income from the sale of crossbred heifers and dairy products, which enabled him to build a new house in town. 'I also pay my debt regularly for fertiliser credit as the cows lactate for almost nine months per year. I keep my crossbred cattle at home and do not mix them with the local breeds during grazing', he said. This is intended to reduce the risk of diseases that can easily attack crossbred cows. Managing the crossbred cows for him is like nurturing a child, which should be done continuously and with no reluctance.Like other sectors of the economy, the dairy sector in Ethiopia has passed through three phases or turning points, following the economic policy and political history of the country. In the most recent phase, which is characterised by the transition towards a market-oriented economy, the dairy sector appears to be moving towards a takeoff stage. Liberalised markets, private sector investment and the promotion of smallholder dairy are the main features of this phase. Milk production during the 1990s expanded at an annual rate of 3% compared to 1.63-1.66% during the preceding three decades.However, most of the growth in milk production (60%) was due to the increase in herd size. Only one-quarter was due to productivity per animal resulting from technological change. This is not surprising since dairy production in the country is principally dependent on indigenous zebu breeds. Therefore, the integration of crossbred cattle to the sector is imperative for dairy development in the country. This can be achieved in two ways: first, by promoting large private investment that will eventually introduce new technology in the sector such as improved genotypes, feed and processing; and second, as smallholders will likely continue dominating the sector, by integrating crossbred cattle into the smallholder sector thereby improving their access to improved cattle breeds, AI and veterinary services and credit. Meanwhile, the government should also take the lead in building infrastructure and providing technical service to smallholders.Severe shortages, low quality and seasonal unavailability of feed likewise remain as major constraints to livestock production in Ethiopia. These constraints need to be addressed and technological change should be promoted in order to increase milk production.Due to poor infrastructure, the concentration of milk producers in rural areas, seasonal fluctuation of demand for fresh milk, and its perishability, the development and promotion of small-scale processing technologies is critical to increasing the partici-pation of smallholder producers in the dairy market. This is particularly important for Ethiopia where the demand for dairy products is dominated by butter rather than fluid milk. In addition, enhancing the ability of poor smallholder farmers to reach markets, and actively engage in them, is one of the most pressing development challenges. Milk groups and co-operatives increase the participation of smallholders in fluid milk markets in the Ethiopian highlands. Milk groups are a simple example of an agro-industrial inno-vation, but they are only a necessary first step in the process of developing more sophisti-cated co-operative organisations and well-functioning dairy markets. The survival of the milk groups that supply inputs, as well as process and market dairy products will depend on their continued ability to capture value-added dairy processing and return that value-added to their members. Evidence from Kenya emphasises the importance of collection organisations in improving access to markets and expanding productive bases (Staal 1995). There is also the need to stimulate the consumption of dairy products in the country as low demand for dairy products can potentially discourage production in the long run.Review of the development of the dairy sector in Ethiopia indicates that there is a need to focus interventions more coherently. Development interventions should be aimed at addressing both technological gaps and marketing problems. If the appropriate producer price incentives are in place and input markets are allowed to operate freely, dairy production may respond positively. This has been demonstrated in the case of dairy development in Kenya that has nearly similar agro-ecological and production systems. ","tokenCount":"11746"} \ No newline at end of file diff --git a/data/part_1/0860393637.json b/data/part_1/0860393637.json new file mode 100644 index 0000000000000000000000000000000000000000..8fde7d4864a05c6e9a0a0c9ea32a2e0a7fd2b704 --- /dev/null +++ b/data/part_1/0860393637.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"45a3606484541ba402651eaf5245a057","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/83a5263c-4a50-4b11-b4fb-e109549e8f1a/retrieve","id":"-75219994"},"keywords":[],"sieverID":"1945367a-c6c4-4078-93e3-beb274c89107","pagecount":"81","content":"The Smallholder Dairy Project The Smallholder Dairy Project (SDP) carries out research and development activities to support sustainable improvements to the livelihoods of poor Kenyans through their participation in the dairy sub-sector. SDP is jointly implemented by the Ministry of Livestock and Fisheries Development (MoLFD, the Kenya Agricultural Research Institute (KARI) and the International Livestock Research Institute (ILRI). The project is led by the Ministry with primary funding from the UK Department for International Development (DFID). The three organisations work with many collaborators, including government and regulatory bodies, the private sector and civil society organisations.While it is difficult to pinpoint a particular consistent agricultural policy in Kenya since both objectives and strategies have been changing over time, a survey of National Development Plans and Sessional Papers (GOK 1965(GOK , 1974(GOK , 1986(GOK , 1994a(GOK , 1994b(GOK , 1996(GOK , 1997a(GOK , 1997b(GOK , 1997c) ) shows that the broad objectives have been growth, equity and participation. Other This report presents a review of the policy environment for the dairy industry in Kenya.The overall objective of the study was to identify and document components of the policy environment concerning dairy input and output markets, relevant stakeholders and their roles, the regulatory environment and factors constraining the implementation of those polices. Besides the review of relevant written Executive Summary policies, information was gathered in discussions during visits to key stakeholders, government officials, regulatory authorities, donors, non-governmental organisations, other knowledgeable key informants in dairy matters, and at a stakeholder workshop held to present and discuss preliminary findings. This review is divided into an executive summary and four sections. Section one traces the evolution of the dairy policy environment in Kenya from independence and gives a general overview of the present situation. Section two focuses on the regulatory frameworks that affect dairy production: cattle feeds, animal health, breeding and agricultural credit services are some of the areas reviewed. Section three looks at milk collection, processing and marketing. The regulatory frameworks for milk markets are reviewed and an assessment of the impacts of external milk trade and the informal milk market made. The section also discusses the potential effects of international trade rules and standards and a brief on the various stakeholders involved in milk collection, processing and marketing.Section four summarises the outcomes of the review, and discusses the policy implications. This review is divided into an executive summary and three sections. Section one traces the evolution of the dairy policy environment in Kenya from independence and gives a general overview of the present situation. Section two focuses on the regulatory frameworks that affect dairy production: cattle feeds, animal health, breeding and agricultural credit services are some of the areas reviewed. Section three looks at milk collection, processing and marketing. The regulatory frameworks for milk markets are reviewed and an assessment of the impacts of external milk trade and the informal milk market made. The section also discusses the potential effects of international trade rules and standards and a brief on the various stakeholders involved in milk collection, processing and marketing. At the end of the report, instead of a separate section for conclusions, they are summarised in this executive summary and as 'main issues' at the end of sections two and three.Some of the main constraints to increased milk production have been identified as inadequate quantity and quality of feed, including limited use of manufactured cattle feeds, and poor access to breeding, health and credit services. In some areas, poor access to output markets reduces the incentives to increase milk production.Farmers typically regard manufactured feed as being too highly priced, which contributes to its limited use. However, the major policy issue in feeds is the highly variable and often low quality of cattle feeds found on the market. The Kenya Bureau of Standards (KEBS), which is responsible for developing and enforcing quality standards, lacks the capacity to do so. The However, requirements of collateral and high interest rates remain prohibitive to many who wish to access credit. Recent trends towards macro-economic and fiscal policies that promote lower interest rates, if sustained, will help smallholders access more affordable credit.Poor infrastructure and unfavourable regulations are the main constraints in milk collection, processing and marketing. Given the high perishability of fresh milk, an efficient collection, processing and marketing system is crucial to the overall viability and profitability of commercial dairying. Overcoming these constraints is therefore critical. The high impact of poor roads alone on milk price is reflected in studies that estimate a price reduction of 47 cents per litre per kilometre of bad road.Though many marketing channels have evolved following liberalisation, the Kenya Dairy Board (KDB) has not developed consistent criteria for the licensing of some market intermediaries such as raw milk traders. Despite the entry of many processors into the market since market liberalisation, fewer remain in operation, and hardly any operates at full capacity. KDB records show that in 1997 there were some 45 registered private milk processors handling over 400 thousand litres of milk daily. However, the number of operational processors has been fluctuating and by February 2003 there were less than 30 operational dairy processing outfits. The processing market has assumed a potentially oligopolistic structure with four processors controlling more than 60% of the market.It is noted that despite efforts to promote this channel of milk marketing, the quantity of processed milk has remained about the same for nearly a decade at approximately 500 thousand litres per day leaving over 80% of the volume of milk sales going directly to consumers or through raw milk market intermediaries (Omore et al. 2002) 1 . The main participants in the raw milk markets are dairy co-operatives, milk bars, middlemen/traders, and farmers.The main policy issue in milk marketing relates to the licensing and regulation of the many players in the raw milk trade. The dairy industry is still, by and large, dominated by the preliberalisation mindset. For instance, trade in raw milk is still deemed illegal even when nothing in the law (Dairy Industry Act (DIA) Cap 336) explicitly outlaws it. Indeed the draft dairy policy (2000) has recognised the critical role played by raw milk vendors as stakeholders in the industry. Another major policy issue relates to the inconsistency between policy statements and the supporting legal framework. The dairy industry is still regulated by the Dairy Industry Act (Cap 336) (MoALD 2000a), first enacted in 1958 and which has not been amended to take into account the changed socio-economic environment. The reluctance to proactively bring all cadres of raw milk traders into the licensed and regulated milk trade in Kenya (unless they form groups and have fixed premises that can be inspected) sharply contrasts with efforts to do so in neighbouring countries, e.g. Uganda and Tanzania.Regulations in the dairy industry are mainly driven by perceptions of public health threats.However, the fact that regulations to reduce public health risks could have negative social consequences in terms of reducing employment opportunities for small-scale traders, or increasing the price of milk to poor consumers, is rarely recognised. Households in Kenya almost universally practice boiling of marketed milk before consumption. Since boiled raw milk is safe for human consumption, (because all bacterial pathogens that may be present in milk are killed by boiling (Omore et al. 2002)), dairy policy should recognise this fact. Recognising that some balance of the public health and social or economic tradeoffs may be necessary, and so some accommodation of regulated raw milk markets is not necessarily a threat the formal dairy industry, which is important for milk supply in major urban centres and for export trade expansion.It is perceived that there are current and potential threats to the local market from the World Trade Organization (WTO) agreements of which Kenya is a signatory. However, given the strong domestic market and limited external dairy trade, it is not clear whether this perception is based on solid evidence, and some effort is needed to analyse the implications of each WTO regulation and the best implementation mechanisms so as to minimise negative effects.Officially, recorded quantities of imported milk products (mainly milk powder) are relatively insignificant and should not affect the local market.A running theme in this report is that of weak organisations and inadequate resources that limit effective implementation of stated policy and regulations. It has been noted that the major institutions involved in the industry such as:Central Artificial Insemination Station (CAIS), Kenya Veterinary Board (KVB), KDB, Ministry of Health (MOH), KEBS and MoLFD) often lack adequate resources to fulfil their roles effectively.Additionally there is often inadequate human and technical know-how. The KDB is attempting to address this issue through a restructuring process that also aims to transform the body from what has been a policing organisation to an effective regulator and development catalyst.Related to this is the issue of effective stakeholder representation. Given the realities of dairy production and marketing outlined above, a very significant number of stakeholders have little or no effective voice in decision-making on the industry. Key amongst these are the consumers, most of whom are consumers of milk from the informal/raw milk market, and the market agents that supply most of that milk. This lack of representation is not surprising, given the lack of organisation both of consumers and of informal market players. However, if the interests of all stakeholders are to be addressed, effective representation, whether on the Kenya Dairy Board, or in other stakeholder associations, is crucial.Lastly, poor co-ordination and information sharing between the various institutions and stakeholder groups in the dairy industry has been a matter of concern over the years. Though some steps have been taken to harmonise the operations of some institutions, for example the initiative to bring together the Kenya Stud-Book (KSB) and the Dairy Recording Services of Kenya (DRSK) under the Kenya Livestock Breeders Organisation (KLBO) to deliver efficient breeding services, the process has been slow.The key points emerging from this review are the following:• A supportive policy environment is needed to aid the development of Kenya's dairy industry, which contributes significantly to employment, public health, and the overall economy of the nation.• However, certain policy issues need to be urgently addressed, including the pace of review of policy and legislation, the appropriate enforcement of regulation, the development of institutional capacity, and widened stakeholder representation.• Specific policy priorities relate to provision of veterinary services (particularly health and breeding services for cattle), access to credit, and road infrastructure improvement.• Current policy and legislation initiatives need to take full account of broader national goals (such as the creation of employment and poverty reduction) and the reality of systems presently operating in the dairy sector These points lead to the following recommendations:• There is an urgent need for a quick review of the policies and regulations that are not in tandem with broader national goals (e.g., creation of employment) and the economic reality of the day.• Harmonization of the different acts that affect the dairy sector is required to reduce existing conflicts.• Private service provision should be encouraged with appropriate policies to fill gaps created by the liberalization process.Where that is not possible, sustainable alternatives should be sought, such as the introduction of cost sharing, or the training and equipping of community-based service providers. Accomplishing this may require revisiting licensing regulations for private service providers. • Full representation of all stakeholders on key bodies which influence policy would help ensure that the process of policy reform fully reflects the economic realities currently operating in the dairy sector. By early 1980s, the interventionist policies that centred on subsidised production services were rapidly becoming unsustainable, as budgetary constraints became more severe. For example, there was significant budgetary under-provision in the allocation for various expenditure items of the then Ministry of Livestock Development in key areas such as transport operating expenses that were critical for delivery of field services.Budgetary allocations for transport declined from 32% to 8% of the projected norm between fiscal year 1983/84 and 1990/91 (Peterson 1991).In In -address the future role of KCC -address issues of quality control.At this stage, it should be noted that certain less obvious policy shifts were occurring in the general agricultural and therefore dairy policy.The stress on equity as a policy objective seemed to have been dropped. This was perhaps due to earlier perceptions that equity meant Africanisation in the immediate post-colonial Kenya. Equity policy, say between small-scale and large-scale producers or between poor vs.rich consumers seems to have suffered as a result.The Four in milk production over others in the region. To achieve the overall objective of the dairy policy, the government will institute actions to enhance:• access to appropriate dairy production technologies and inputs• competition and efficiency in the dairy processing and marketing• entrance of new milk processors in the rural areas to tap the potential in these areas• delivery of region-specific and demanddriven extension messages that are tailored to suit the farmers Notices. Acts of parliament that directly effect the dairy industry include:• The Dairy Industry Act (Cap 336) (GOK 1958(GOK , revised 1984;;MoALD 2000a) • The Public Health Act (Cap 242)• The Food, Drugs and Chemical Substances Act (Cap 254) (GOK 1978b)• The Veterinary Surgeons Act (Cap 366)• The Pharmacy and Poisons Act (Cap 244) (GOK 1989b)• The Agriculture Act (Cap 318)• The Co-operative Societies Act (Cap 490)• The Standards Act (Cap 496)• The Animal Diseases Act (Cap 364) (GOK 1989a)• The Land Act (Cap 280) (GOK 1982)• The Factories Act (Cap 514)• The Companies Act (Cap 486) (GOK 1978a).To oversee implementation or enforcement of these laws, each Act has provided for the creation The following sections will address these policies and regulations, attempt to clarify where and how contradictory policies occur, and describe their implementation.Milk production is an important economic activity in Kenya and the country has been able to generally achieve self-sufficiency in its dairy requirements. Records show that annual domestic milk production more than doubled from 1 billion litres in 1980 to 2.4 billion litres in 1997 (FAO 2002).Since then, it is officially estimated that production has stagnated altogether despite the fact that the country is considered to have a potential to produce up to 4 billion litres/year (GOK 1997a), implying a gap of 1.6 billion litres between actual and potential output.However, strong evidence is emerging that in the absence of a livestock census since 1969, these estimates may significantly understate actual milk production (Waithaka et al. 2002 (Western); Staal et al, 1998 (Central)) so that the gap may not be nearly as large as earlier thought to be.Nevertheless, the continued failure to realise more of the productive potential has been attributed to underfeeding of dairy cattle, poor breeding services, ineffective disease control services and lack of access to credit. In some areas, poor access to output markets contribute to low incentive to increase production, and so low demand for the above inputs. Low input use in those cases is not necessarily due to the unavailability of input services.Underfeeding prevents cattle in smallholdings from realising a greater share of their genetic potential. Omore et al. (1999) attribute the low milk yields of between 5 and 8 kg/cow per day to under-nutrition. The main technical constraints to adequate cattle feeding include:poor quality and low quantity of available feeds and inadequate mineral supplementation. For breeding, the technical constraints relate to long calving intervals that sometimes stretch up to 600 days (Omore et al. 1999), although this is sometimes a deliberate farmer strategy to reduce risks and prolong cash flow (Tanner et al. 1998).Indeed, it is important to note that low cash input production strategies, including minimal concentrate feeding, may be very appropriate for small farmers with limited credit resources and great aversion to risk, or those with adequate land resources such as in parts of Rift Valley 2 (Kaguongo et al. 1997) These constraints to the industry's ability to perform and produce milk exist against a background of increasing demand arising mainly from growing population and increased urbanisation.Further, these constraints are considered to be partly associated with the inability of policies and responsible institutions to serve the interest of farmers. The main policy issues discussed under production are those related to industrial cattle feeds, animal health, artificial insemination, credit and dairy equipment.Where intensive production systems are appropriate, as in many parts of the Kenya highlands, an important determinant of the growth of the livestock sector is the availability of high quality livestock feeds. Feed cost accounts for over 40% of dairy production costs in highly intensive dairy systems (Staal et al. 2003b).The The manufactured livestock feed industry has From the public interest point of view, the role of cattle feed manufacturers is mainly to make the feeds available to the farmers at affordable prices, at the right time and importantly, to ensure consistent quality in conformity with set standards. They are expected to be:• efficient in their manufacturing, keeping pace with new technologies and world feed standards and• able to translate their efficiency into competitive prices, and promote proper use of cattle feeds within the dairy industry.The cattle feeds market is regulated by the MoLFD and the Kenya Bureau of Standards (KEBS) that is also responsible for setting the quality standards for all products sold in or imported into Kenya. Veterinarians are gazetted feed inspectors, but are rarely active in this capacity. Lack of policy and a specific regulator, as well as lack of capacity to regulate, is believed to have created an environment that makes it possible for some manufacturers to occasionally supply substandard feeds.Efficient and reliable animal health services The In line with these objectives KVAPS provides the following services:• financial support• training support• monitoring and counselling support This rather slow progress can be attributed to the following factors:• The state of the economy and its adverse effects on the farmers' ability to afford proper animal health care • The lengthy process to access the loans -the process takes an average of three months• Applicants are required to provide acceptable collateral to the bank to cover at least 50% of the loan, a demand that many potential applicants find prohibitive.In contrast, the number of agro-vets and dukas supplying animal health products has expanded rapidly over the years. While these private ventures are not constrained by some of the factors affecting professional suppliers of animal health services, this expansion suggests that a demand for animal health services does exist, and that the problem lies within the institution of private veterinary practice.Concern with the deterioration in efficiency of delivery of veterinary prompted the DVS to review the animal health policies and strategies needed to enhance the contribution of the livestock sub-sector to the national economy. The resulting draft policy paper defines numerous policy and strategy directions that are considered important for dairy development.When the draft policy becomes operational and is implemented, it will be expected to contribute to resolving a number of outstanding issues constraining livestock production and efficient delivery of veterinary services to the clients, including:• the high cost of services and inputs• low level of awareness of benefits of animal health care• poor returns from livestock enterprises• inadequate supplies of veterinary inputs• inadequate storage facilities for drugs and vaccines in district veterinary offices• cattle rustling in the ASALs• resolving disease outbreaks from domestic and wildlife interactions• breach of quarantine regulations• large-scale outbreak of otherwise controllable diseases• inadequate feeds and supplementation• disappearing indigenous information base and ethno-veterinary practices and• limited public awareness of the existing policies.The proposed strategies cover services in the following areas:• animal breeding• animal disease and pest control• veterinary laboratory and quality control• animal welfare• planning and management of veterinary projects• veterinary training• veterinary public health• animal identification and• regulation of veterinary servicesThe preconditions considered necessary for success in achieving the stated policies and strategies are:• commitment and willingness by government to adopt and implement the proposed policies and strategies• commitment by all stakeholders to provide the necessary support, by playing the roles specified in the proposal As the regulatory body, the main functions of the KVB are:• arbitrates in disputes involving veterinarians• takes disciplinary measures where necessary• examines veterinarians holding qualifications obtained outside Kenya• registers veterinarians and license them and• supervises veterinarians in practice.Upon qualification with a bachelor's degree 2).However, enforcement of the regulations is apparently very limited: when shop owners inNjoro were asked what they regarded as threats to the longevity of their business, none stated law enforcement officers as a threat, and did not seem to view enforcement of laws as a risk to their enterprise. This simply underlines the low levels of enforcement. * AHA = Animal Health Assistant. Source: Lewis (2000).Veterinary surgeons Act, Cap 366 Source: Kajume (1999, cited in ITDG (2000). The main policy issues in artificial insemination The result is that dairy cattle in many instances seem to be getting increasingly smaller (Kilungo and Mghenyi 2001) and with lower yields, although undernutrition may be an important factor contributing to this (see Section 2.1). On the other hand, some suggest that poor recording practices in AI among small farmers is also contributing to in-breeding in some cases.Though an AI service was introduced in Kenya According to the DVS, there are about 300 private individuals, co-operative societies and veterinary clinics currently providing AI services in the country. Geographically, these are distributed as shown in Table 4. The Table indicates that the majority of private AI service providers also happen to be those areas with high dairy cattle density suggesting that market concentration is critical to the efficient provision of private AI services (Omore et al. 1999).• contracting AI services where private inseminators are contracted by the government in some areas and The main pedigree breeds in Kenya are Friesian, Brown Swiss, Ayrshire, Guernsey and Jersey.Only Kilifi Plantations and Mukumu Farm breed the Brown Swiss and Guernsey , respectively.The rest are bred in a number of large farms.Going by the number of breeders, Holstein-Friesian is by far the most popular breed (22 registered breeders) followed by Jersey (9) and Ayrshire (8).The dairy cattle breeders are responsible for ensuring that the industry gets quality dairy stock that will produce milk efficiently. They promote a variety of exotic and local species.Their role also includes promotion of the use of high quality breeding stock, lobbying for the interests of the industry and contributing to dairy sub-sector policy development. In practice, however, smallholders generally view the few breeders as an elite group not easily accessible to them.Through agricultural credit, farmers are able to acquire more goods and services than would otherwise be the case given their limited resources. The policy to improve flow of credit to farmers has included:• increasing the minimum lending by commercial banks to agriculture from 17 to 20% of their deposit liabilities It is also important to note that over the period since 1997, the government has increasingly adopted policies or issued statements that discourage direct involvement in commercial institutions, and a move to establish or expand parastatal agricultural banks will be seen as a step backwards. Re-establishing AFC or reviving the idea of the ADB as originally conceived would therefore appear to be contrary to other policies of the government. Currently, smallscale farmers who access credit mainly do so through small-and medium-scale enterprises lending institutions, co-operatives or self help groups. The increasing role of micro-credit lending institutions and demand for their services deserves further discussion.Institutions willing to lend to small-scale The main issues and constraints relating to the supply of cattle feed are:• costs that are perceived to be too high by farmers• shortage of key of feeds and key ingredients• variable and/or low quality of cattle feeds and ingredients used in feed formulation• uneven distribution of feed millers• lack of a clear policy guideline and effective regulation to ensure the supply of standardised quality feeds• decline in production of drought resistant crops and unavailability of fodder and pasture seed material including legumes• inadequate services such as extension, research, and market information• inadequate appropriate technological knowhow in forage management and storage.These constraints have clearly adversely affected the markets for cattle feeds, going by the low demand and under-utilised processing capacity.The main issues and constraints emerging in provision of breeding services are:• he as-yet unimplemented policy to harmonise breeding activities• non-recognition by the government of inseminators trained by the private sector, despite their increasing role in AI service provision• perceived high failure rates in AI services provided by KNAIS• high costs of private AI services• decline in AI service use and increasing reliance on unproven bull service by many smallholder farmers and• ineffective supervision of AI service providers by the DVS.The main issues relating to animal health services include:• weak supervision under the Pharmacy and Poisons Act is the restrictions under the Act that prohibit veterinarians from stocking veterinary drugs• exclusion of veterinarians as drugs inspectors under this Act has also limited the capacity to control the use of veterinary drugs thereby potentially contributing to their misuse The main issues in access to credit are:• non-implementation of intended government interventions to make credit easily available• slow growth of private micro-finance institutions• prohibitive collateral requirements• lengthy loan application procedures and In processors have been setting up additional coolers in strategic locations. Before market liberalisation, elaborate procedures for setting up milk coolers had to be followed, including reference to the District Development Committee. But now these have largely been lifted. The result is that most roads whose surface was once classified as bitumen or gravel have now worn out and are in worse condition than many earth roads. The cess collected from milk sales is not used for maintenance of feeder roads, unlike the case for cess charged for cash crops such as tea and coffee.In a number of cases, failure by government to meet project objectives and methods of implementation has led to disruption in donor funding for roads development and maintenance. For example, feeder roads in Eastern Province were intended to be maintained with funding from the EU using lowcost labour-intensive methods that offered the potential for employment generation and poverty reduction. However, at implementation stage, the government chose to engage a contractor instead of using local labour. This led to a suspension of funding for the project.The history of milk processing in Kenya dates 5). This drop was due to reduced deliveries by farmers who, frustrated by late and irregular payments, found more attractive outlets through informal traders (Owango et al. 1998). Currently, only one of KCC's 11 processing factories and two of its milk coolers are in operation.accorded dairy co-operatives more autonomy to pursue economic interest of the members (GOK 1997a). Instead of selling milk to KCC and other private processors, most co-operative societies opted to sell their milk directly to the traders/ middlemen, milk bars or consumers, who paid more for the milk. This has been shown to be because of high consumer preference for raw milk, which is seen to be more wholesome, have a better taste and is better priced. Even dairy farmers, frustrated by years of delayed and poor payment by the processors took advantage of the liberalised marketing environment and opted to sell in the alternative raw milk markets.These farmers actually consider the alternative markets to be more reliable and pay higher prices, although they too are often subject to risk of non-payment. In addition, low per capita income 8 levels have contributed to depression of effective demand for high-cost packaged dairy products.Following liberalisation of the dairy markets, the bond between farmers and their co-operative societies, and that between the societies and the processors were weakened considerably.Increasing numbers of farmers started diverting their milk away from the co-operative society and selling directly to consumers in the immediate neighbourhood, particularly schools, hotels, restaurants and shops. This has had the effect of reduced milk intake by the co-operative societies. The co-operative societies themselves also took advantage of the liberalised market, and started selling the bulk of their milk directly to consumers in the local townships, sometimes8 . Approximately 14 million Kenyans are currently unemployed and some 57% of its population are living below the poverty line, on income of less than US$ 1 a day. The Significantly, consolidation in milk processing is continuing, 9 while 18 factories that previously processed milk are either closed or have reduced their operations to milk cooling only (Table 6).Most of the 'failed' processors blame incomplete investment information for their failure. Source: Staal and Mullins (1996). delivered at the factory, and is rejected. In the event that the farmer had been paid for the milk, this represents a direct loss to the processor. If they had not paid for the milk, as is often the case, the milk is returned to the producer.The most significant post-liberalisation development in milk marketing is the rapid growth of the raw milk sales in urban areas. Prior to the deregulation of milk markets, sales of raw milk were restricted to the rural areas that were largely unregulated. In that period, the regulatory authorities ensured that urban areas were inaccessible to the sellers of raw milk (Staal and Mullins 1996, Table 6).Over time, the share of processed milk in the urban markets has declined while that of raw milk has increased (Figure 1). Omore et al. (2004) estimated that raw milk accounts for 86% of the fresh milk market and that processed milk accounts for about 14%.The rapid growth of raw milk markets has been to test for adulteration (Omore et al. 2002).Virtually, all milk bars in the urban areas operate in or near the middle-to low-income residential areas. In Nairobi, for example, most milk bars are to be found in Kibera, Kayole, Githurai, Kawangware and Kariobangi.There have been recent moves by the KDB to encourage milk bars to sell only bulked pasteurised milk from processors, or milk that has been batch pasteurised at the premises. This effort has not been successful, mainly because the increased cost of pasteurised milk does not match consumer-demand.During the survey for this review, only a few milk bars were found to have registered their businesses with the Registrar of Companies.Others were operating without registration certificates, this caused some problems with KDB and municipal officials, who are reported to demand 'protection fees' or bribes from them. Source: FAO (2002).agents are free to develop efficient distributive mechanisms and processing capabilities to ensure that the domestic demand is met by domestic production and the surplus exported.It should be recognised, however, that the milk quality standards required by international markets are very high, and exports from Kenya may be constrained by poor quality control, even at the farm level.As described in the first section, many of Kenya's regulatory legislation and implementing institutions were put in place in the preindependence era and have undergone few significant reviews since then, even though major economic policies have been revised to reflect a more liberalised economic environment.As a result, a considerable gap exists between the written policy and the existing regulatory framework for governing many agricultural commodities, including dairy.12,000-10,000-8,000-6,000-4,000-2,000-0-Source: FAO (2002). Source: FAO (2002). • organising and developing efficient production, 10 marketing, distribution and supply of dairy produce• improving the quality of dairy produce• promoting market research and private sector competition and• generally to ensure, either by itself or in association with any government department or local authority, the adoption of regulatory measures and practices designed to promote greater efficiency in the dairy industry and to protect public health.The DIA has been revised three times since 1958 (in 1962, 1972, and 1984) and is currently undergoing another revision. Already a draft DIA Bill has been prepared (see Section 3.2). In exercising its powers and in performing its A volume-based tax or cess is charged on retailed milk. Currently, the Board charges Kshs 0.20 per litre of milk handled and failure to comply may result in a higher penalty. This means any trader who sells milk to another trader is not liable to pay cess. Given the predominance of informal sales of milk to consumers, most milk remains un-cessed, even though anecdotal evidence from SDP suggests that informal traders are more than willing to pay cess in return for licenses to market milk freely without harassment. At the same time, double payment of cess occurs due to poor logistics and information as well as trader ignorance. For example, a middleman would pay cess for the milk delivered to a processor, who would also be charged the same rate of cess fees.Licenses are supposed to be issued to traders with acceptable premises before they may sell milk. Acceptable premises are defined to include fixed or mobile premises such as 'bicycles or other motorised vehicle utilised for storage, These prohibit sale of milk that contains less than 3.25% butterfat and 8.5% solids non-fat, and impose a fine of Kshs 10 thousand or up to one year's imprisonment, or both as penalty for breach of these regulations.These prohibit anyone to carry milk except with a permit issued by the KDB. Again, a breach of these regulations is penalised by a Kshs 10 thousand fine or up to one years' imprisonment or both.Not only do these regulations authorise the Board to appoint any person to be an inspector, but they also state that: 'all police officers shall be inspectors for the purposes of these regulations' with the powers (a) to enter the land, premises or place, or (b) to stop the vehicle, bicycle, pack animal or person and inter alia, seize, remove or detain any dairy produce if an offence is suspected. Currently, the inspectorate function at KDB is implemented through its own officers with the assistance of the police.Processors are registered under Sections 15, 16, and 17 of the Companies Act Cap 486 and the procedure for setting up a milk processing plant is very similar to those applying for milk coolers.Besides the milk quality controls described above, the KEBS also specifies the methods of analysis to be followed during processing. These methods are specific for each dairy product and the Bureau has the authority to enforce these standards by prosecution if necessary. The KEBS standards are similar, and in some ways more rigorous, than the public health standards, so that in satisfying the KEBS' requirements, the dairy industry also satisfies the public health requirements.Industry Bill (2000) Following the liberalisation of the dairy industry computerised 'data centre', with the aim of enabling better access to information for stakeholders.In addition to the head office in Nairobi, the KDB The procedure for setting quality standards for dairy products involves the Technical Standards are reviewed at least once every five years or as need arises. In some cases, Kenya has adopted and sometimes adapted standards from other countries. In all these actions, the various standards committees are guided by the international standards set by the Codex Alimentarius (CA) committee (Box 1). The Codex Alimentarius system presents a unique opportunity for all countries to join the international community in formulating and harmonising food standards and ensuring their global implementation. However, in common with other developing countries, the relevant bodies in Kenya may have limited ability to influence decisions on international standards,The Hazard Analysis and Critical Control Point, or HACCP is a relatively new state-of-the-art approach to food safety that is gaining currency and international acceptance.HACCP, for example, has been endorsed by the Codex Alimentarius Commission (the international food standardsetting organisation), and is being used increasingly in the dairy industry to identify and eliminate hazards to food safety before they become critical.The Through this Act the government ensures that the machines and equipment used for weighing and measuring milk are correct and accurate.The Act requires regular checking and adjusting of these machines. Every year officers of the Ministry of Commerce and Industry go round the country checking the accuracy of these machines. There is a further requirement that consumers be issued with receipts indicating the size, quantity and price so that complaints are easily verifiable.Before any business can be allowed to operate in Kenya it must have a license. The aim is to regulate the number of businesses in a particular line and curtail illegal activity while promoting professionalism at the same time by licensing only competent persons into particular lines of business.Before any dairy industry is set up, for instance a processing factory, it is now legally required that an Environmental Impact Assessment (EIA) be done to determine the possible impacts. These include air, water and sound pollution.Growth in production and demand of milk in Kenya has not been complemented by proportional growth in cooling and refrigeration facilities for the preservation of milk. As a result increasing quantities of milk is exposed to risk of spoilage.The Lactoperoxidase Preservation System (LPS) is an appropriate way to preserve milk where cooling is impractical (Codex 1991). Contrary to widespread misconception, the LP system is not a chemical preservation method but rather a natural biological system inherent in milk.Lactoperoxidase occurs naturally in raw milk as an antibacterial and is usually active for only 2 hours after milking. The LP system had been The WTO is the only global international organisation dealing with the rules of trade between nations. The emergence of the WTO has resulted in a multilateral trading system, complete with negotiated agreements that are ratified by the parliaments of most of the worlds trading nations. Kenya is a founding member and signatory to the WTO whose agreements are legally binding. Though Kenya's involvement in international trade in dairy products is minimal at the moment as documented in Section 3.5, these international agreements will become increasingly important depending on whether Kenya becomes a significant net importer or exporter of dairy products in the future.The agreement on agriculture is significant because it brought agriculture into the mainstream of international trade rules. The importance and policy implication of this agreement include:1) The AoA provides a framework for longterm reform of agricultural trade policies over the years. In brief, the Kenyan dairy industry will be exposed to more international competition from imports while at the same time finding it easier to export even into non-traditional external markets.2) Strengthened rules governing agriculture Tariffs resulting from this process of tariffication were subsequently to be reduced by an average of 36% in the case of developed countries over a 6-year period and 24% over a 10-year period for developing countries. The URA also introduced new rules on Sanitary and Phytosanitary measures (SPS). During the Uruguay Round negotiations there was concern that governments would start using unreasonable sanitary and plant and animal health requirements as trade barriers after the elimination of quotas on agricultural goods. So all such measures were brought under a new rule, the SPS.The most important aspect of the SPS is that it is an umbrella agreement, which recognises the government's rights to restrict trade in order to protect the health of its citizens. However according to the SPS a government cannot restrict trade or maintain a restriction against available scientific evidence. The SPS also allows for bilateral agreements.In order to harmonise sanitary and The main technical issues in milk collection include:• The poor state of rural access roads, and The laws have also created regulatory agencies that are largely dysfunctional due to inadequate resources, and the impact of the regulations is therefore limited due to constraints faced in their implementation. For example, it is clear that the KDB has historically not always upheld the provisions of the DIA and all the Acts that deal with the sale of fresh milk. The suggested law review will therefore need to consider evidence as to why the current policy and law is not enforced effectively, even when it is appropriate.The apparently inconsistent treatment meted out by the licensing authorities to various parties dealing in similar products is a pointer to the arbitrariness with which the licensing procedures are implemented. This arbitrariness is already beginning to manifest itself in the conflict currently brewing in the milk market where the licensed and tax paying milk bars are agitating for the removal of those that are unlicensed and untaxed. This conflict situation is developing against a background where the antagonists milk bars, co-operative societies, traders as well as the farmers are all dealing in a similar product, raw milk. Lasting harmony would be encouraged by consistent implementation of licensing procedures.Experiences in many sectors and in many countries suggest that effective regulation is not likely to be achieved solely by providing resources to public bodies. This is because of systems that provide too few positive incentives, too many perverse incentives, and institutional culture in both the regulators and the regulated, which is hostile to policy implementation. There is the potential for much regulation to be determined, financed and enforced by the stakeholders in the industry itself, especially traders and processors. This may include quality assurance schemes, quality marks and awards.Where such self-regulation may be effective, owing to incentives for the participants, this should be considered, and, where appropriate, • A supportive policy environment is needed to aid the development of Kenya's dairy industry, which contributes significantly to employment, public health, and the overall economy of the nation.• However, certain policy issues need to be urgently addressed, including the pace of review of policy and legislation, the appropriate enforcement of regulation, the development of institutional capacity, and widened stakeholder representation. In the official policy and legislative environment, Although these are yet to be achieved, AFC is on the rebound with new funding and","tokenCount":"6875"} \ No newline at end of file diff --git a/data/part_1/0863560246.json b/data/part_1/0863560246.json new file mode 100644 index 0000000000000000000000000000000000000000..1ed29587701e02815b152b54ff84e9b3e7e117e8 --- /dev/null +++ b/data/part_1/0863560246.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"56620c44c8a4ece4af170806c9d7b593","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cd7cadca-c886-4bda-9dea-8a891c3e659a/retrieve","id":"-2048345397"},"keywords":[],"sieverID":"7b028b15-52fc-4bc0-ab56-4edc019d78b2","pagecount":"4","content":"From 2012 to 2106, the CGIAR Research Program on Livestock and Fish aimed to increase the productivity of small-scale livestock and fish systems in sustainable waysmaking meat, milk and fish more available and affordable to poor consumers across the developing world. The approach taken combined technology development in areas like animal genetics and feeding with the transformation of selected livestock and fish value chains, such as smallholder pigs in Uganda. Partnerships-with governments, national research institutes, and civil society and the private sector groups-are key to achieving these aims. This approach is continuing in the second phase CGIAR Research Program on Livestock.In each of the countries where the Program operated, these partnerships provided critical inputs at different stages of design and implementation. In the Uganda smallholder value chain work, for instance, the Program could not have achieved most of its objectives without the support offered by partnerships. This has been in the form of technical and financial support, human resources, infrastructure and knowledge sharing.While some partners were involved throughout the implementation period, specialized partnerships were also formed at different phases of implementation. This brief illustrates the benefits of this approach in the Program's smallholder pig value chain transformation work in Uganda.Beginning in 2012, the Program's pig value chain development work in Uganda, initially funded by International Fund for Agricultural Development (IFAD) and subsequently by Irish Aid and working closely with key partners and experts, followed a distinct iterative process, often implemented in parallel, as set out below.Program scoping and engagement-From the beginning, and through regular stakeholder meetings, the Program linked up strategic research and development partners.Visioning-The Program developed a common vision, theory of change and impact pathways for the joint value chain transformation efforts.Site selection-The Program identified specific locations and communities where research for development assessments and interventions would be centred. Marketing (PPM) Uganda Ltd, FarmGain Africa). These and many others were engaged from the start of the project and participated in many of its activities (outcome mapping, impact pathway, value chain assessment and feedback, review and planning workshops). A key outcome of this engagement was the birth of the pig multi-stakeholder platform that arose from the need for greater visibility of the pig value chain as expressed by the partners at the impact pathways workshop. The platform connects the various actors and stakeholders and facilitates information sharing, joint projects and advocacy to central government and other policy processes.Visioning To achieve a sense of collective ownership among the partners and a shared vision for the future direction of the pig value chain, the Program involved partners in a visioning exercise during the outcome mapping workshop in 2012. The participants identified the following value chain vision statement: 'empowered and efficient smallholder pig producers with increased productivity, having equitable access to markets, information, knowledge, improved technologies, and inputs for sustainable and resilient livelihoods in Uganda by 2023'.Site selection In 2012, during the selection of potential sites for the pig value chain work in Uganda, Geographic information system characterization was used, basing on pig population densities and poverty levels, together with stakeholder consultations. Partners validated the selection and identified other criteria for site selection. These partners included representatives of the local governments of Kayunga, Mukono, Bukedea, Kumi, Soroti, Tororo, Kasese, Hoima, Kibaale and Kabarole districts. At the end of this consultative process, Kamuli, Mukono and Masaka districts were selected as project sites for the inaugural smallholder pig value chain development project, which was funded by IFAD and the European Commission (EC). In 2013, following a similar process, Hoima and Lira districts were added to the project sites for the follow-on Irish Aid-funded MorePORK project.Situation diagnosis Prior to launching any major interventions, in 2012/13, ILRI conducted rapid value chain assessments (VCA) and situation analyses in collaboration with the local partners.Following the diagnostic assessments, key constraints and opportunities facing smallholder pig producers and other value chain actors were identified. Constraints included animal health issues (diseases and parasites), production and marketing challenges (expensive and low quality feeds, low price offered for pigs/pork, expensive inputs), poor slaughter and waste management and low visibility of the sector. These guided the selection of best-bet interventions.'Best-bet' interventions Best-bet intervention selection was mainly undertaken through participatory processes with stakeholders. In 2013, VCA feedback meetings were held with partners at district level, and potential best-bet interventions identified. The identified interventions were also presented to farmers and value chain actors at village level during feedback sessions for validation. In Lira and Hoima, the best-bet selection protocols were applied with stakeholders during feedback meetings. Success and failure reports also informed the selection and design of some interventions.Interventions were pilot tested, such as the pig business hub model in Masaka district involving two pig farmer cooperatives. Farmer capacity building support in business and enterprise development was provided hand in hand with the business hub model. Other best-bet interventions tested included African Swine fever (ASF) biosecurity protocols, using alternative local feeds for pigs, pig slaughter and food safety. Each of these typically involved different partners.Scaling Some of the Program's research interventions have been adopted and scaled up by local partners. PPM Uganda Ltd, a private firm that provides advisory and marketing services to small-and medium-scale pig producers has systematically used the Program's training materials in its courses. The pig multi-stakeholder platforms in the greater Masaka and eastern regions of Uganda were used for learning and to scale out feeds intervention (sweetpotato silage-based diets) by an IFAD/EC-supported development project of the CGIAR Research Program on Roots, Tubers and Bananas. These scaling efforts have been greatly supported and accelerated by efforts to strengthen the capacities of local partners. Engaging partners in a sustained manner over the life of the projects, and taking account of their interests helped make the joint ventures scalable and sustainable. The communication, engagement and platforms also played an important role in updating partners on field activities and how best their interventions could be deployed.The steps above outline the general process and roles of partners at different stages. The following two partnerships illustrate the successes and challenges in a bit more depth. The first considers the 'retail' node of the value chain-often overlooked in more production-focused work-for which new types of partners had to be found. The second examines the Program's partnerships with local government, critical in the smallholder value chain, but again often overlooked by research for development efforts that are more comfortable with central government partners.One key challenge identified by stakeholders during the pig value chain assessments was the absence of centralised pig slaughter facilities in rural and urban areas. This potentially exposes consumers to contaminated and unsafe pork. Furthermore, unregulated slaughtering coupled with poor pork handling practices increase the risks from zoonotic diseases and pose waste management challenges.To mitigate this, ILRI worked with VWB and district governments to strengthen the skills of butchers and pig traders through training in proper pork handling and pig slaughter practices. In 2016, as part of this collaboration, a team of students from the United States of America (USA) trained 47 butchers in Mukono district. The team also refurbished a local butchery, transforming it into a model from which local butchers could learn to improve their own pork sale outlets. Upon their return to the USA, the students raised USD 2400 to purchase chopping boards for the trained butchers to help them improve their pork handling practices and safety standards. All these expenses were met by VWB-US, while ILRI provided staff time for monitoring and technical backstopping. VWB-US also steered the compilation of extension information materials on ASF detection and prevention and these were translated into three local languages (Luganda, Runyoro and Luo) and are currently being used by farmers (in Masaka and Lira), butchers (in Mukono) and traders (in Masaka, Mukono and Lira and at the Wambizzi abattoir). The manuals are also being used by PPM Uganda Ltd in its work in providing training to pig producers and traders and actively supporting pig producers and value chain actors through the use of a 'WhatsApp' chat group.In Masaka district, ILRI is working with the local government to set up a centralised slaughterhouse or abattoir. The district administration allocated land to construct the municipal abattoir and committed financial and human resources in form of a budgetary allocation and the deployment of the district engineer's staff time to the project. For its part, ILRI recruited two consultants to develop a business plan and an optimal structural design for the abattoir. With land, plans and strong buy-in from local producers, ILRI and the district government are engaging central government and foreign partners to secure the necessary funding to build the abattoir.In Mukono district, ILRI partnered with the local government to develop the capacities of pig producers to enhance the profitability of their businesses. Following an outbreak of ASF that threatened to wipe out an extremely significant portion of the district's pig population, the Mukono district local government procured piglets to distribute to 110 smallholder farmers in 6 sub-counties. ","tokenCount":"1487"} \ No newline at end of file diff --git a/data/part_1/0873097151.json b/data/part_1/0873097151.json new file mode 100644 index 0000000000000000000000000000000000000000..ba6ea25ef40e255ec79f94de8fbeac84eab399d1 --- /dev/null +++ b/data/part_1/0873097151.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f1688562bdb55d7c5424e3b882409f0b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/75ecbdfc-93b8-40da-bee2-974c5dc20274/retrieve","id":"1292162273"},"keywords":[],"sieverID":"799df828-4157-4962-9110-0fa8f64beeb2","pagecount":"41","content":"Aquaculture is used to produce fish and shellfish for markets under controlled or semi-controlled conditions. Fish must be maintained at densities that greatly exceed those typically found in nature. Regardless of the culture system used (e.g. ponds, raceways, reuse systems, cages), it is imperative that the culturist maintains an environment conductive to good fish health. However, fish farming conditions are often conducive to the spread of disease. Fish Diseases may be subdivided into: Infectious diseases, caused by pathogenic organisms present in the environment.They are mostly contagious and treatment may be necessary to control the disease outbreak. Non-infectious diseases, caused by environmental problems, nutritional deficiencies, or genetic anomalies. These are not contagious, usually cannot be cured by medications but rarely happen and are best prevented and controlled by provision of good water quality and good management.Infectious diseases are more prevalent and broadly categorized as bacterial, parasitic, fungal, or viral diseases and usually associated with high mortality and morbidity rates with broad negative impacts on farmers, consumers and the environment.The present study reviews infectious diseases among fish in Egyptian aquaculture and their impact on fish and human life, as well as the various interventions that have been used to attempt to prevent and control these diseases. Although, a considerable amount of research has been carried out into fish diseases in the Egyptian aquaculture sector, we focus on investigations that have been carried out since 2000.The sources and modes of infection among fish are variable, as fish disease is rarely a simple association between pathogen, a host fish and an environmental problem.Other stressors, such as poor water quality often contribute to the outbreak of disease and the complexity of the challenge. Many pathogens are either normal inhabitants in or on fish or saprophytes present in soil or water or invertebrate hosts, such as snails or crustaceans. The majority of infections are stress related. The transmission of infection to fish occurs through direct and indirect exposure of cultured fish to pathogens, which is facilitated by poor fish health management. The mechanisms by which fish diseases are transmitted generally including a mixture of the following: contaminated water supply, infected eggs or fish stocks and/or contaminated culture facilities, together with environmental conditions associated with the fish culture practice (air, ponds, soil, equipments, feed, pollutants, etc.).Bacteria are responsible for many diseases and heavy mortalities in farmed fish.Most of the causative micro-organisms are naturally occurring saprophytes, which utilize the organic and mineral matter in the aquatic environment to grow and multiply. It has been shown that the normal bacterial flora of fish reflects the bacterial population of the water in which they swim. The majority of fish pathogenic bacteria are short, Gram-negative rods belonging to the families Enterobacteriaceae, Pseudomonadaceae and Vibrionaceae. Typically they cause septicemic and ulcerative disease conditions. The long, Gram-negative, myxobacteria of the family Cytophagaceae, which are not recognized as pathogens of warm-blooded animals, may also cause heavy mortality in fish stocks. Gram-positive micro-organisms, including a few that are acid-fast, are less frequently encountered, but can cause severe losses in certain species of fish under particular conditions.During 2000, severe mortalities and morbidities were seen among cultured Nile tilapia (Oreochromis niloticus) in several large freshwater fish farms in Egypt (see Table 1). Laboratory studies revealed the presence of Aeromonas hydrophila in 70% of fish examined. The recovery rate of Aeromonas hydrophila from skin, muscle, kidney, spleen and liver tissues were 53%, 35%, 65%, 63% and 60% respectively (1) . Mortalities in both tilapia sp. and mullet sp. due to bacterial infections also occurred in several farms at Dakahila and Sharkia Governorates, where laboratory investigations isolated Aeromonas hydrophila and Flexibacter columnaris (2) . Moreover, Vibro anguillarum, as an economically damaging infectious disease, was recovered from 62% of clinically affected Nile tilapia. The percentages of isolation from skin lesions, muscles, kidney, spleen and liver tissues were 35%, 22%, 60%, 48% and 43%; respectively (3) .During 2001, columnaris disease was reported among Oreochromis niloticus and Clarias lazera cultured in the Abbassa Fish Farm, Sharkia. Identification of the isolates revealed Flavobacterium columnare and Cytophaga spp (4) (Table 1).Pseudomonas fluorescens was also isolated from carp in the Abbassa Fish Farm, with a prevalence rate of 23% (5) . Yersinia ruckeri (9.3%) was isolated from both apparently healthy and diseased cultured O. niloticus (8.3% and 12.4% respectively), and C. lazera (7.0% and 10.8%). In C. auratus and C. carpio, the incidence in apparently healthy fish was 3.8% and 2.5%, respectively (6) . During 2002 Pseudomonas fluorescens was isolated from Nile tilapia cultured in duck-fish farms at Ismailia and Sharkia Provinces with prevalence of 8% (7) (Table 1). Seventy eight isolates of Streptococcus iniae were also recovered with an incidence of 86.7% from diseased Nile tilapia cultured in brackish water in Fayoum Governorate. The environmentally stressed fish showed a mortality rate of 73.3%, compared with a mortality rate of 46.6% in non-environmentally stressed fish (8) .During 2003, outbreaks of KIebsieIla pneumoniae in 5 -7 month old Nile tilapia were recorded in three farms in Kafr EI-Sheikh Governorate, with mortality up to 27.7% (9) (Table 1). Enterococcus faecalis was recovered from Nile tilapia and rearing pond water samples reached 43.3%, 30% .0% and 85%, 60%, 5% in extensively, semi intensively and intensively operating fish farms, respectively (10) . (11) .During 2005, Yersinia ruckeri was isolated from Nile tilapia, common carp (Cyprinus carpio) and monosex tilapia from different areas in both Behera and Kafr El-Sheikh Governorates (Table 1). The mortality number and percentage in monosex tilapia were lower than in common carp (12) .During 2006, Enterobactereacea (11 strains of Edwardsiella tarda and 9 strains of E. Ictaluri) were isolated from Nile tilapia, common carp and African catfish (50 ± 2 g) that were cultured in Behera, Kafr El-Sheikh and Alexandria Governorates (13) (Table 1). Streptococcus faecelis bacteria was recovered from monosex tilapia and grey mullet from different areas in Behera Governorate (14) . In fish farms in Behera, Kafr El Sheikh and Alexandria Provinces, Enterobactereacea (E. tarda and Yersinia spp.) were isolated from of Nile tilapia, common carp, African catfish and grey mullet (50 ± 2 g) at an incidence of 34%, 24%, 50% and 20%, respectively (15) . A. hydrophila and P. fluorescens were isolated from tilapia and African catfish at an incidence of 50% and 16.9%, respectively, while each of A. caviae and A. sobria were isolated with an incidence of 20% and 12.3%, respectively (16) .During late summer of 2008, an outbreak caused mortality of about 15% among cultured Nile tilapia in a private fish farm in Behera governorate due to infection F. columnare (17) .During 2009, the Bacteriological examination of 021 fish samples collected from Kafr El-Sheikh Governorate (60 diseased and 60 apparently healthy fish) revealed the isolation of 26 Streptococcus isolates with an incidence of 43.3% from diseased Nile tilapia and isolation of 17 isolates, with an incidence of 28.3%, from the 60 apparently healthy fish. The serological examination of 37 selected isolates result in differentiation into 17 Enterococcus faecalis, 12 Streptococcus iniae, 5 Streptococcus pneumoniae and 3 untype-able strains (18) .Parasites are the most common cause of infectious diseases. There are both opportunistic and obligate parasites. Obviously, for the obligate parasite, it is to the parasite's advantage not to kill the host if it is to live and reproduce. So, we find numerous parasites in wild fish which cause very little problem. Problems occur when infected fish are brought into the laboratory or into an intensive culture situation. Not only are the fish unusually stressed but they are also usually crowded and the reproducing parasites are not dispersed as they are in the wild. The closer the proximity of fish to one another the greater the probability of infection and mortality. Only the major parasite problems in cultured fish are covered here. Parasitic diseases of fish are classified into protozoan, crustacean and helminthic diseases. Generally, most of the crustaceans are external parasites causing severe diseases while protozoans cause either external or internal diseases according to their habitats. The majority of monogeneans and annelids are external parasitic diseases, while the majority of digeneans cause internal parasitic diseases. Nematode, acanthocephalan and cestode infestations are in general internal parasitic diseases. Nevertheless, a number of parasites with larval stages in fresh water fish have a piscivorous mammalian carnivore as their normal final host and are able to infect humans because of low host specificity of the adult stage.During 2000, encysted metacercariae were encountered in the muscles of cultured tilapia fish in Abbassa fish farm (see Table 2). After experimental infection, three Prohemistomatidae adult worms (Prohemistomum vivax, Mesostephanus appendiculatus and Mesostephanus melvi) were recorded (19) . Similarly, encysted metacercariae (EMC) were collected from Nile tilapia at Dakahlia, and after experimental infection, adult flukes were recovered and identified as Prohemistomum vivax, Pygidiopsis genata, Procerovum varium and Haplorchis pumilio (20) .During 2001, the prevalence of Trypanosoma infection was recorded in wild Chrysichthys auratus (42.3%) and African catfish (8%). The lowest infection was found in Morymyrus kanumme (3.5%) and Bagrus bajad (2.5%) while Nile tilapia and Labeo niloticus were free from infection (21) (Table 2). Other research studies were carried out on tilapia from three localities in Egypt, where 61.3% fish were infected with six different types of encysted metacercariae. Heterophyid metacercariae were reported from Tilapia zillii and Nile tilapia, haplorchid metacercariae were found in T. galilae, blue tilapa (O. aureus), T. zillii and Nile tilapia. Clinostomatid and euclinostomatid metacercariae occurred at the lowest percentage among T. zillii. (22) . Moreover, a study carried out on Clarias lazera and Synodontis schall for the external and internal ). All isolated protozoa were at greatest prevalence during winter, followed by spring (24) . A parallel study also revealed that the prevalence and abundance of the metacercariae of Centrocestus sp. (Trematoda: Heterophidae) were recorded on gills of Nile tilapia and revealed 19.5 -98.46% infection rate (25) .During 2003, the prevalence of infection with Ichthyobodo necator in grass carp (Ctenopharyngodon idella) was 100% while that with Capillaria larvae was 50%, while, the prevalence of infection in Nile tilapia with a mixed infestation of Trichodina spp. and Gyrodactylus spp. was 100% (26) (Table 2). In the same year, seven freshwater fish species were investigated for helminth parasites. The infection rate was 48%: acanthocephala (14%), cestodes (16.22%), digenea (10.66%), monogenea (1.77%), and nematodes (6.22%) were recorded (27) .During 2004, an investigation of entero-protozoan parasites in five fish species (Nile tilapia, blue tilapia, Tilapia zillii, African catfish and common carp) of farmed fishes at the Abbassa fish farm was carried out ( (28) . A parallel study was carried out during the same year for the external parasites that infest freshwater fish, mainly tilapia species (T. zillii, blue tilapia and Nile tilapia), African catfish, common carp and mullets collected from different aquaculture facilities in Sharkia Governorate. Twelve external parasite species were identified, eight of which were monogenetic trematodes (Macrogyrodactylus congolensis, Cichlidogyrus tiberinaus, C. magnus, C. arthracanthus, C. euzeti , C. longicornis longicornis, C. thurstonae and Heterothecium dicrophallum), two of which were protozoans (Trichodina domergue and Henneguya branchialis) and two crustaceans (Learnea sp. and Ergasilus sp.) (29) .Another investigation of parasitic infestation of Nile tilapia was carried out on private fish farms in Dakahlia Governorate. The total prevalence of parasitic infestation was 63.3%, while skin and fin infestations were 61.8 and 38.2%, respectively. The infestation rate with Trichodina, Chilodonella, Scyphidia, Apiosom sp., Icthyoborzecator, Gyrodactylus sp. and mixed monogenea with protozoa were 20.7%, 8.9%, 13.8%, 3.3%, 2.9%, 7.8% and 6%, respectively. The prevalence of parasitic infestation in Nile tilapia was high in autumn (26.7%) and least during summer (13.3%) (30) .During 2006 a number of African catfish cultured in Ismailia Governorate were investigated for internal parasitic diseases (Table 2). The prevalence of infection was 73.80%. The infection rates varied with season; spring (66.66%), summer (83.05%) and autumn (81.36%) while the lowest level was during winter (63.15%). The infestation rate was determined; nematode (19.28%), metacercariae (27.85%), fluke trematodes (18.57%) and cestodes (8.18%). The parasitological examination of infested fish revealed adult trematodes from the intestine (Afromacroderoides lazera, Orientocreadium lazeri and Astiotremma reniferum), metacercariae from the musculature and liver (Prohemistomatid metacercariae, Diplostomum tilapi and Cyanodiplostomotid). Cestodes (Polynchobothrium clarias) and nematodes from the intestines (Procamallanus laeviconchus and Paracamallanus cyathopharynx) (31) .During 2007 the ectoparasites infesting some freshwater fishes (Oreochromis spp), C. lazera and silver carp) in Behera Province were recorded (Table 2). The overall infestation rate was rate 87.3%. It was found that Oreochromis spp. was the most susceptible species to parasitic infestation (99%) followed by silver carp (97%) and C. lazera (66%). The peak of infestation was recorded during winter (98%) followed by autumn (87.3%), spring (82.7%) and summer (81.3%). The recorded ectoparasites were Trichodina spp., Chilodonella hexastica, Apiosoma spp., Ambiphrya spp., Henneguya branchialis, Myxobolus spp., and monogenetic trematodes (32) . Black carp Mylopharyngodon piscens (152) and common carp (400) were also collected from Abbassa fish farm, Sharkia, to study the prevailing ecto-and endoparasitic diseases. Protozoa (Trichodina sp.) affected common carp with total prevalence 65.25%. Seasonal prevalence patterns were as follows: spring 80%, summer 50%, autumn 72% and winter 59%. Monogenetic trematodes infected common carp with an overall prevalence of 56.5%. Seasonal prevalence was spring 30%, summer 73%, autumn 69%, and winter 54%. Encysted metacercaria of Centrocestus formosinus were isolated from black carp, with total prevalence 100% throughout the year. Encysted Diplostomum sp. metacircaria were isolated from common carp with total prevalence 0.5%. In terms of nematodes, Capillaria sp. was isolated from the intestines of black carp and common carp with overall prevalence values of 56% and 30.75%, respectively. Seasonally, the prevalence of Capillaria among infected black carp was spring 61.4%, summer 77.4%, autumn 30%, and winter 9.1%, while for common carp prevalence during spring was 44%, summer 48%, autumn 7% and winter 24%. The nematode Paracamallanus cyathopharynx was also isolated from the intestine of black carp by total prevalence of 7.93% and maximum seasonal prevalence during spring of 21%. The parasite was not recorded during summer, autumn or winter. The crustacean Lernaea cyprinecea was recorded in common carp at an overall prevalence of 22.5%, with seasonal prevalence of spring 2%, summer 74%, autumn 14% and winter not recorded. Leeches were recorded in 1.5% of common carp and a prevalence during spring of 6%, and a complete absence during the other seasons (33) .During 2008, a Cleidodiscus aculeatus infection was seen and associated with mass mortalities of Cyprinus carpio reared in tanks at the Abbassa Fish Farm (Table 2). All dead fish had high parasite abundance (mean abundance [± S.D.] = 148.3±22.5), entangled in the gills. Fish (73.2%) harbored the parasite with intensities ranging between 5 and 12 parasites per fish (34) .During 2009, The prevalence of isolated Protozoa from Oreochromis niloticus fingerlings collected from a cultured fish farm in Giza showed high infestation rates with Trichodina mutabilis (71.3%), Chilodonella hexasticha (60%). Monogenetic flukes (Gyrodactylus rysavyi) had infestation rate of 40%, while digenetic larvae (Hetrophyid metacercariae) showed an infestation rate of 66.6%. Also the prevalence and intensity of infection by Lernaea cyprinacea among three carp species were detected. A total of 450 fish were examined. The overall prevalence of infestations by Lernaea cyprinacea was 50.4%. Silver carp has the highest prevalence of Lernaea cyprinacea (62.7%), followed by grass carp (49.3%), then mirror carp (39.3%) (35) .During 2010 the metazoan parasitic infestation of African catfish, Clarias garipienus collected from January to December 2010 from Al-Manzala fish farm; Dakahlyia Governorate. Nine hundred and eighty four parasites were collected from 344 fish samples out of 500 African catfish (Clarias garipienus); different parasitic genera, trematodes (monogenetic Quadriacanthus clariadis and digenetic Orientocreadium sp.), cestodes (Polyonchobothrium sp.) and unidentified encysted metacercariae (EMC) were recovered. Parasites were collected from different body parts of the fish. Prevalence, intensity and abundance of the infection with parasites varied with season. Several histopathological changes were observed in fish organs; gills, accessory respiratory organ, skin, musculature, heart, anterior and posterior kidneys, liver, spleen, and intestine (36) .During 2012 the prevalence of Anguillicolacrassus crassus infection in the European eel Anguilla anguilla collected from Alexandria, Sharkia and Dakahlia fish farm, was 63%, with 4.49 mean parasite intensity per infected fish. The highest infection rates were recorded in spring and winter (79.3 and 70%), respectively. The lowest infection rates were recorded in autumn and summer (53.3 and 49.3%), respectively (37) .Fungi are responsible for a number of economically important diseases in teleosts. They cannot use photosynthetic pathways for energy production as they have no chloroplasts and therefore must live a saprophytic or parasitic existence. The Oomycetes (Saprolegnia, Achyla, Branchomyces) group is the most important of the fungal pathogens and are commonly seen during winter and are associated with stress factors. They are widely distributed in aquatic habitat and very few are parasitic. Oomycetes have a common characteristic feature of producing motile biflagellate spores that can cause infection to occur at any time. Saprolegniasis is a common and highly prevalent fungal disease that affects all species and ages of freshwater and estuarine fish. Several factors are involved in the development of fungal infections in fish. These factors may affect the fish or the fungus and it is a combination of factors rather than any single condition which ultimately leads to infection. It has long been considered that the fungi responsible for saprolegniasis are secondary pathogens, and lesions are commonly seen after handling and after traumatic damage to the skin, in overcrowded conditions and in conjunction with pollution or bacterial or parasitic or viral infections. Temperature has a significant effect on the development of infections. Most epizootics occur when temperatures are below the optimal temperature range for the species of fish. As the majority of fungal infections are secondary invaders, the review of fungal infection is included in the section on mixed infections.Viruses cause clinical or subclinical problems with negative impacts on the economy of fish production. Although members of twelve virus families have been identified in wild and cultured fish worldwide, there is currently little information about viruses infecting fish populations in Egypt. Only three records indicate the presence of infectious pancreatic necrosis virus (IPN) and spring viremia virus (SVV) among freshwater fishes (38)(39)(40) . The knowledge gap can be filled using a discovery-oriented fish research system. Based on multidisciplinary collaborative activity and utilizing molecular markers and molecular biology technology, such a system could give a comprehensive picture of the current status of fish viruses in Egypt within a few years.During 2000 a Saprolegnia diclina infection was observed during winter among Nile tilapia hatcheries in Sharkia Province. Mixed bacterial (54%) and parasitic (6%) infections were recorded (Table 3). The recovered bacterial isolates were identified as Flexibacter columnaris (8%), Aeromonas hydrophila (8%), Pseudomonas fluorescens (12%), and mixed infection of A. hydrophila and P. fluorescens (14%). The detected ecto-parasites were Trichodina sp. (2%) and Lamproglena sp. (4%). Single infection by Saprolegnia diclina was prevalent (40%) (41) .During 2001 aeromonads and pseudomonads together with Ichthyophthirius multifiliis and Dactylogyrus spp. were obtained from Oreochromis niloticus reared in hatcheries in Aswan Governorate (Table 3). Aeromonas hydrophila was the highest virulent strain, causing 100% mortalities within 5 days of infection while Pseudomonas fluorescens infection caused 60% mortalities within 8 days (42) .During 2002 mortalities due to Aeromonas hydrophila and Flexibacter columnaris as well as P. fluorescens were recorded at EI Mahzala, Nawa, EI-Tal EI-Kebeer and Abbassa fish hatcheries (Table 3). That same year, lernaeosis was recorded among common carp, grass carp, silver carp, black carp and Nile tilapia from the fish hatchery of the government's Central Laboratory of Aquaculture Research (CLAR), Abbassa, with an overall prevalence of 20.76 (43) .During 2004 Beni-Souef hatchery was visually inspected for parasitic lernaeids from brood and grow-out stocks (Table 3). The prevalence of the lernaeosis among broodstock of silver carp, grass carp and common carp were 38.8%, 39.6% and 39.4%; respectively. By contrast, prevalence among small sized carps of the same species was 39.6%, 61.7% and 54% (44) . During 2009, Pseudomonas aeruginosa and P. fluorescens (Biovar I, II, III, IV, and V) were isolated from silver carp broodstock, which exhibited 65% mortality following their transfer from Behera Province to Domiata Province (Table 3). The microorganisms were highly virulent to all tested cyprinids, moderately virulent to Nile tilapia and African catfish and virulent to mugilids (45) . During the same year, the crustacean parasites, especially Lernaea spp., were reported to cause serious economic problems and high mortality rates among fish hosts in carp hatcheries in the CLAR hatchery, Abbassa. The overall prevalence of infestations by L. cyprinacea was 50.4%. Silver carp had the highest prevalence (62.7%), followed by grass carp (49.3%), then mirror carp (39.3%). Among immature fish, the prevalence was higher in silver carp (72%) than in grass carp (54%) or mirror carp (45%). Also, among mature fish, the incidence was higher in silver carp (44%) than in grass carp (40%), or mirror carp (28%). Among immature fish, the intensity of infestation (i.e. counts per fish) was highest in silver carp (3-53), followed by mirror carp (4-28), then grass carp (4-22). Among mature fish, intensity was highest in silver carp (6-60); followed by grass carp (4-30) and mirror carp (10-20) (46) .Infectious disease occurs when a virulent pathogen, obligate or facultative, is able to overwhelm the defense mechanisms of a susceptible host under environmental conditions that are conducive to the disease process. Prevention is the cornerstone of any health protection program and can be as challenging and complex as the actual control of existing diseases. The control of fish diseases includes both preventive and treatment measures.The key elements of disease prevention include: Knowledge of pathogen transmission.  Reliable detection of disease carriers.  Development of effective methods to limit the entry of pathogens or carriers into fish cultural facilities. The capacity to provide environmental conditions conducive to good fish health.Avoidance of disease is a fundamental part of programs developed to protect the health of man and domestic animals. Regulatory and cooperative measures can be effective in preventing exposure to physical, chemical and biological disease agents.Regulations should be developed and applied to provide organizational structure and to assure the execution of procedures to contain diseases and their pathogens and to guide the action to be taken when outbreaks occur.Regulations for fish health protection are most useful in the control of those diseases clearly identified as being caused by obligate fish pathogens. It is essential to have the capability to accurately and timely diagnose these diseases and to have both governmental and industry support behind any effort to develop and implement regulations. Properly designed and applied regulatory programs can help solve certain problems that cannot be effectively dealt with by other less restrictive methods. There are many other important elements of fish health management that should be considered before regulation, as discussed below.Disease prevention in fish culture is, to a large degree, a function of the nature of a facility and how it is managed. Successful fish culture is largely the result of effective environmental manipulation (design of the facility and the nature of its water supply). The occurrence of infectious disease is often related closely to environmental stress. Environmental conditions imposed on fish are determined by site selection, water supply characteristics, facility design, fish handling and transport systems, and the efficiency of waste removal.Proper feeding of a nutritious diet is important, not only for growth and prevention of nutritional deficiencies, but also for the overall health and vigor needed to cope with a variety of disease agents. Fish under intensive culture rely entirely upon the nutritive quality of artificial feeds. Diet selection, feeding frequency, and quantities fed are controlled by the fish culturist. Nutritional problems, arising from dietary imbalances, continue to cause problems in cultured fish even though great advances have been made in the knowledge of the nutrient needs of fish. There is strong evidence in the literature on the role of nutrition in disease resistance (47) .The concept of genetically enhancing the resistance of fish to disease has intrigued workers for many years (48) . The loss of genetic diversity, as often happens in hatchery management, makes it difficult to develop strains of fish that are resistant to several diseases at once. Generally, by maintaining a high level of genetic diversity in a stock and by developing hybrid vigor, there should be potential for breeding fish strains with an enhanced ability to withstand stress and infectious disease agents. The process of selecting strains of fish that are resistant to a specific disease can create another problem. Disease-carrying populations of fish have been maintained at some installations to allow for \"natural selection\" in survivors and as a practical method of challenging selected stocks to measure any increases in resistance. Fish strains to be tested were held in water that already had passed through an infected population.Rapid progress has been made in research on the immune responses of fish and in the development of immunization procedures (49) . Vaccines do not provide absolute protection from infection but do help fish combat infections sufficiently to make immunization cost-effective in many situations where specific diseases cause repeat problems. As a result, licensed vaccines are now available against vibriosis, enteric redmouth, and furunculosis diseases. The development of vaccines against Egyptian pathogens in a national vaccination center in strongly recommended.The goal of a sanitation program is to prevent the transfer of fish pathogens from one place to another. Little information has been published regarding the methodology for ensuring sanitation of fish culture facilities, disinfection procedures, or the evaluation of cost-effectiveness of different sanitation measures (50) . Egg disinfection strives to prevent the vertical transmission of pathogens from the parent stock to the progeny and to prevent horizontal transmission from the egg facility to the rearing facility. During the rearing of fish, sanitation measures can be helpful in maintaining different stocks of fish in isolation from one another.Disinfection can be carried out using a phased approach or in a single, facility-wide operation. Phased disinfections can be performed whenever a facility cannot be depopulated and disinfected in a single operation. Total facility disinfection disrupts fish production, but is easier to carry out. There is also a better chance of success in total facility disinfection than in a phased operation because the risk of recontamination is reduced (50) .The objectives of control measures for infectious diseases are to: Reduce or eliminate the source of infection.  Break the connection between the source of infection and susceptibility of fish.  Reduce the susceptibility of fish to infection.Practical guidelines on how to control infectious diseases are provided in Annex 1. Accurate disease diagnostic techniques and sensitive pathogen detection methods are essential. Method of disease spread from fish to fish and from place to place must be determined. Steps can be taken to prevent the spread of disease by controlling the transfer of infected fish or eggs into areas believed free of disease. Elimination of infected carriers from the water supply to a facility and the introduction of specific therapy programs to reduce disease. Quarantine is the best method to reduce disease introductions. Introduction of exotic fish provides a degree of both benefit and risk.The risks include the possible introduction and establishment of a disease. If a disease is suspected but not clearly established, it is best to consider both precautionary and control methods. Details of aquatic animal quarantine are given in Annex 2.This step can be initiated as soon as research findings indicate which methods might be effective, even though significant sources of infection still exist. Examples of measures include: Broodstock populations which carry disease agents should be treated or eliminated. Stream water supplies may harbor infected carriers but the connection between the sources of infection and the cultured fish can be broken through the use of water sterilization equipment. Pasteurization of feed and feed ingredients can be used to break the link between source of infection and susceptible fish. Disinfection of rearing facilities between stocking of fish year-classes can also help break the connection between an infected stock and the next group of fish to be reared. This can be achieved not only by addressing endogenous factors, such as species and strain of fish, immunocompetence and age, but also by improving fish's ability to adjust physiologically to changes in the external environment. Adjusting environmental conditions to reduce adverse effects. Methods should be sought to regulate water temperatures, alter oxygen and other dissolved gas levels, reduce ammonia and nitrite levels, reduce population densities, and to improve handling methods to protect the integrity of the skin, scales and mucous membranes of fish. Consider the use of immunostimulants to improve disease resistance (see Annex 3).Successful disease control involves a careful program of fish health management that removes infected stocks, prevents re-infection, reduces stress, and maintains optimal production conditions. Unless an effective fish health management program is promptly initiated, disease will reoccur whenever stresses that increase susceptibility reappear. If fish are provided with a good environment and adequate nutrition, the risk of infection by pathogens is greatly reduced.Chemotherapy is defined as the use of drugs and chemicals for the treatment of infectious disease. To be useful, the chemicals must be effective against the pathogen without significant adverse effects on the fish host. The first successful chemical was probably salt, used as a dip treatment to reduce pathogens on external surfaces. Guidelines for chemotherapy are provided in Annex 4.Antibiotics are very useful additions to a fish health manager's toolbox, but they are only tools and not \"magic bullets\". The ability of antibiotics to help eliminate a fish disease depends on a number of factors: Does the problem have a bacterial component?  Are the bacteria involved sensitive to the antibiotic chosen?  Are the proper dosage and treatment intervals being used?  Have other contributing stresses been removed or reduced?Guidance on use of antibiotics is provided in Annex 5.Pond farm production accounts for around 85% of the volume of total aquaculture production in Egypt (Table 4). Interviews were carried out by WorldFish staff (unpublished data; 2011-2012) to explore the strategies for fish health management used by fish farmers. Disease outbreaks were reported as a problem in all three governorates (Kafr El Sheikh, Behara and Sharkia). The interviews revealed that of 13 farms in Behera, with an average of 22,000 cultured tilapia per farm, and with a total of 286,000 cultured tilapia (379 feddan 1 ), Saprolegnia was reported at two farms (average 44,000 tilapia) and Aeromonas infection was reported at three farms (average fish holdings 66,000 tilapia) and during the two infection types two treatments were applied (salt treatment for Saprolegnia and oxytetracyclin for Aeromonas).Of 14 farms in Sharkia that were investigated, with an average of 15,000 tilapia per farm and with with a sample total of 210,000 cultured tilapia (461 fedan), Saprolegnia was detected in two farms (average 30000 tilapia) and during the infection two types of treatments were applied (potassium permanganate and antibiotics).In Kafr-Elsheikh, of the 34 farms surveyed, with an average of 17,000 tilapia per farm and with a sample total of 578,000 cultured tilapia (1254 fedan), Saprolegnia was detected on seven farms (average numbers of fish held = 119,000 tilapia). Two farms were also infected with Aeromonas, and during the infection period two treatments were applied (the antifungals Anticide and ciprofloxacin).Table 4: Data on farmed fish production on sample farms in three governorates (51) According to the literature, infection of tilapia during the growing season with either Aeromonas hydrophila, Pseudomonas fluorescens and/or Saprolegnia diclina is associated with 40-90% morbidity (average 70%) and 10 -50% mortality (average 30%).Cost scenarios associated with diseases and their treatment are presented in Annex 6.Fish has become an important resource in Egypt to meet the food and nutrition security needs of a rapidly expanding human population. Aquaculture and fish farming conditions should be improved in a way that controls the spread of disease, which negatively impacts on the development of the sector. Fish disease is rarely a simple association between pathogen, a host fish and environmental problems, such as poor water quality, and other stressors often contribute to the outbreak of infectious and non-infectious diseases. As can be seen from the above review, bacteria are responsible for many diseases and heavy mortality in cultured fish. Most of the causative micro-organisms are naturally occurring saprophytes, which utilize the organic and mineral matter in the aquatic environment for their growth and multiplication. Secondly, parasites infect fish far more than any other group of pathogenic organisms. There are both opportunistic parasite pathogens and also a number of obligate parasites that kill the host or interfere with growth and reproduction. Some are also of zoonotic and public health importance.Because of the lack of legislation and poor public service veterinary services, it is recommended that hatcheries and producers produce their own plans for early identification and control of key fish diseases.The production of larvae and fry remains risky for some species because of the lack of control of the microbiota in rearing systems. Conventional approaches, such as the use of disinfectants and antimicrobial drugs, have had limited success in the prevention or cure of aquatic animal disease. Use of antibiotics is also inappropriate because it can result in an imbalance of microflora for the fish larvae and promote antibiotic resistance. The development of a disease control program is a better and cheaper approach to disease prevention and control, especially in hatcheries.Immunostimulants offer one alternative strategy to the use of antimicrobials in disease control and have already been widely developed and successfully applied in aquaculture.As aquaculture practice in Egypt is developing and becomes increasingly complex, conflicts with other resource users will increase. There are also growing environmental concerns as farming practices intensify. The potential conflicts and concerns require careful evaluation and proper management. The Egyptian Ministry of Water Resources and Irrigation (MWRI), Ministry of Agriculture and Land Reclamation (MOALR), as well as the Ministry of Environment (MOE) must take the lead in tackling this important issue. The government of Egypt should increase their support to the aquaculture sector as a source of animal protein, while paying close and careful attention to aquatic environmental quality.  Method of disease spread from fish to fish and from place to place must be determined;  Steps can be taken to prevent the spread of disease by controlling the transfer of infected fish or eggs into areas believed free of disease; Elimination of infected carriers from the water supply to a facility and the introduction of specific therapy programs to reduce disease; Quarantine measures have been useful in containing outbreaks of disease in new areas after a disease control program has been put into operation.Farmers should be aware of general signs of fish diseases: The presence of dead or dying fish.  Fish often stop feeding and may appear lethargic.  Healthy fish should eat aggressively if fed at regularly scheduled times.  Pond fish should not be visible, except at feeding times.  Fish are observed moving listlessly in shallow water,  Fish are gasping at the surface, or rubbing against objects.  Other behavioral abnormalities.  Physical signs include the presence of sores (ulcers or hemorrhages), ragged fins or abnormal body confirmation (e.g. a distended abdomen or \"dropsy\" and exopthalmia or \"popeye\").Veterinarians should follow the guidelines required to accurately diagnose fish diseases, summarized as: Case history, dates of fish stocking, size of fish at stocking, source of fish, feeding rate, growth rate, daily mortality and water quality. Clinical signs, good records of behavioral and physical signs exhibited by sick fish, as well as morbidity and mortality rates. Check the water quality, especially dissolved oxygen, ammonia, nitrite, and pH, total alkalinity, total hardness, nitrate (saltwater systems) and chlorine (if using city water). Ideally, daily records should be available for immediate reference. Postmortem examinations of sick fish.  Laboratory examinations after very careful sampling.Quarantine is the best method to reduce disease introductions. Introduction of exotic fish provides a degree of both benefit and risk. The risks include the possible introduction and establishment of a disease. If a disease is suspected but not clearly established, it is best to consider both precautionary and control methods: Quarantine reduces the disease potential by the isolation of hosts (however, there is a great difference between disease and pathogen presence); The disease agent is not allowed to pass unchecked into a culture system, where it could rapidly increase in numbers; If newly arrived stock is placed in quarantine, a disease may be recognized after a suitable incubation period; Quarantine may establish a \"disease free\" or \"pathogen free\" status of imports.The purpose of quarantine is to: Allow fish to acclimatize to captivity in a controlled environment;  Allow treatment of disease in a controlled environment;  Reduce the stress of acclimation;  Reduce cost associated with medication and fish mortality;  Allow easy observation of new fish in case of disease.The development of quarantine measures: Facilitates holding and observation of fish in a biosecure environment;  Allows testing of fish for infectious agents in a diagnostic lab;  Facilitates access to more specialized laboratories and resources;  Protects the surrounding aquatic environment and biota;  Facilitates subdivision of risks into lower and higher categories. Quarantine facilities should be located within or close to existing fish heath facilities.  Facilities should have 24 h supervision.  Facilities should be lockable and access restricted to designated personnel.  Construction should avoid accidental spill or discharge of water or animals or equipment to the surrounding water. Intake water should be obtained from a clean, unpolluted source to prevent physiological stress or masking of infectious agents by opportunistic infections (water analysis recommended). No loss or release of quarantined fish. No loss of contaminated water or equipment.  Tanks, ponds, pools or other containers should be isolated from the aquaculture facilities as well as municipal and open water. All water leaving quarantine should be considered as potentially infected. It should be discharged into reservoir or pond that permits chemical disinfection or discharge into a land-based pit or pond. All equipments used in the quarantine (such as nets, containers, pipes, hoses, pumps) should remain within the containment facility and not be removed or used for any other purpose unless disinfected.Fish disease laboratory facilities in quarantine facilities: Should be located in an enclosed area.  Should have the materials necessary to prepare samples. Should be able to conduct microscopic examinations during quarantine. The containers and reagents as well as stains should be available to permit sample dispatch to the diagnostic lab. Samples leaving a high-risk quarantine facility should be transported by approved quarantine personnel and be preserved and secured for handling by non quarantine personnel.An immunostimulant is a chemical, drug, stressor, or action that enhances the innate or nonspecific immune response by interacting directly with cells of the system, thereby activating them. Innate defense includes both humoral and cellular defense mechanisms, such as the complement system and the processes played by granulocytes and macrophages.Immunostimulants increase immunocompetency by increasing resistance to infectious disease, not by enhancing specific immune responses but by enhancing non-specific defense mechanisms. No memory component is involved and the response is likely to be of short duration. Injection of immunostimulants enhances the function of leucocytes and protection against pathogens. However, this method is labor intensive, relatively time-consuming and becomes impractical when fishes weigh less than 15 g. Oral administration or immersion should thus be used. However, fish cannot be protected against all infectious diseases by immunostimulants.Immunomodulation of larval fish has also been proposed as a potential method to improve larval survival by increasing the innate responses of the developing animals until their adaptive immune response is sufficiently developed to mount an effective response to the pathogen. The delivery of immunostimulants as a dietary supplement to larval fish may thus be of considerable benefit in boosting innate defenses, with little detriment to the developing animal. During 2004-2009, the senior researcher and program leader of fish health at Worldfish (Dr. Salah Aly) carried out a series of experimental studies on the effect of immunostimulants on growth, survival and disease resistance in Nile tilapia, the most common freshwater fish in Egyptian aquaculture. All the results have been published and their Abstracts are accessible on the internet (52)(53)(54)(55)(56)(57)(58)(59)(60)(61)(62)(63)(64)(65)(66)(67)(68)(69)(70)(71) .Factors to be considered in the implementation of immunostimulation strategy: Stimulation of an immune system can be too intense and can harm or even kill the host.  The mode of action of different immunostimulants should be understood.  The immune system of larvae is poorly developed, consisting mainly of nonspecific defenses. The maternal immune defenses are significant only during early developmental stages. Research aimed at developing methods for immunostimulation of larvae should prioritize the stimulation of non-specific defense mechanisms, including that of nonspecific maternal defenses. The best treatment is good animal husbandry  Drugs and chemicals are often used to correct errors in management. While this may be used as a stop-gap, it cannot be used to prop up poor culture programs. Indiscriminaet use of therapeutic agents should be avoided.  The continuous feeding of low levels of antibiotics in the diet as a prophylactic measure against outbreaks of bacterial disease during periods of stress, or to improve growth rates, are questionable practices. It results in the removal of only those bacteria most sensitive to the drug and can lead to the development of drug resistant strains. Drug resistant bacteria can transmit resistance to bacteria that have never been exposed to the drug. Treatment with antibiotics is recommended only when needed, and then only at prescribed treatment levels. If it is decided to use antibiotics, treatment should be conducted for the full time period required. Foreshortened treatments encourage the development of drug resistance and can lead to the need for elevated drug levels, and eventually, to loss of effectiveness. The casual use of therapeutics on a routine basis is not without possible adverse effects on the general health of the fish and is not recommended,  Whenever possible, seek a positive diagnosis of any disease problem by a professional fish health specialist. Start treatment with the correct drug at the recommended level.  If a chemotherapeutant is needed, treat quickly and effectively.  Users are advised to proceed with caution and to follow label directions.  Recommended rates of treatment are based on the levels that researches have found to be necessary and that various fishes will tolerate. Although there is a built-in safety factor, using more than the recommended rate is not necessary, may be harmful, and even illegal. A two week withdrawal period from all chemotherapeutic treatments before the intended release or harvest date is recommended.Before treatment  Ensure that information on chemical characteristics of the water supply is available before application. Ascertain how environmental conditions on the farm are likely to affect the toxicity and efficacy of the treatment. What will work at one place may not be effective elsewhere because of differences in water chemistry. Before using any chemical, be sure to test it first on a small number of sick fish.  Keep in mind that healthy fish can tolerate chemical treatment more readily than sick fish and that treatment levels may need to be reduced if the fish are weak or in poor condition. Ensure that, rearing facilities are clean before treatment. Dirty raceways or tanks may contain organic matter that can absorb part of the treatment chemical and reduce its effectiveness. If the fish density is excessive it should be reduced, if possible, prior to static treatment. Supplemental aeration should be provided if needed. During hot weather, treatments should be made during the coolest part of the day, using chemicals that create the least environmental hazard or stress. Starving fish for l-2 days prior to treatment will reduce oxygen consumption and ammonia production and will increase resistance to scale loss. Treatment within 4 h of feeding should be avoided. Any parasitism of the gills should be treated first since such parasites may affect the respiratory capability of the fish. Monitor dissolved oxygen levels before treatment. Fish are stressed during treatment and their oxygen requirements increase. Before treating with a new compound or formulation or using a product for the first time on an installation, always treat a small group of fish first and watch for unexpected mortality. During treatment  Always observe fish during treatment to watch for signs of stress or unexpected toxicity.  Monitor dissolved oxygen levels during treatment. Fish undergoing treatment will be stressed and their need for oxygen increases. Always check calculations (0.1X will be ineffective; 1.0 is effective; but 10X will be fatal).If possible, have the figures corroborated independently. After treatment  Keep records of all treatments, their purpose, and the results for future reference.Treatment in the diet Commercial feed with antibiotic additives, if available, is cheap and easy to use. Medicated feed stores well and can be used in place of the regular diet. If commercially medicated feed is not available, medicated feed can be prepared on site. It is best to suspend such drugs in oil when preparing medicated feed (cod liver oil seems to have better palatability than soy bean or corn oils, but any of these will do). Once treatment has begun , the recommended dose and treatment schedule should be adhered to. It is a mistake to ry to save money by stopping treatment when mortalities stop, by using less than the recommended amounts, or by reducing the period of treatment.External: Localized skin applications are feasible only for broodstock and other valuable fish. The drug or chemotherapeutant used should be relatively insoluble in water, act on contact, and either be denser than water or readily adhere to the fish. Internal: For small numbers of valuable fish, injections of antibiotics may be used, but can be prohibitively expensive and labor intensive. Intraperitoneal injection is superior to subcutaneous or intramuscular injection. It may be best to anesthetize the fish with MS-222 (tricaine methanesulfonate), benzocain, clove oil, or some other recommended fish anaesthetic prior to injection.Dip bath:This involves a short bath treatment varying in duration from a few seconds to 5 min, depending on the chemical and concentration used. Dip treatments are often used on broodstock. While effective, they can be highly stressful. After treatment, fish should be rinsed in clean water before being returned to the holding facility to avoid transfer of chemical to the tank. Short baths:For treatments of <1 h, when fish are held in facilities where fresh water is available and adequate oxygen levels can be maintained, short baths are useful because high concentrations of chemicals can be used. Considerable care is required to avoid chemical overdoses or overly long contact times.This method is suitable only for treating stock held in fish ponds. Low concentrations of chemical are used and allowed to dissipate in the pond. Treatments may have adverse effects on the biota or on dissolved oxygen levels.In treatments of this type, a measured amount of concentrated chemical is added at the inlet and allowed to flush through a pond or raceway. Amounts of chemical used must be accurately determined. Lowering the water level in the holding unit reduces the quantities of chemical needed and also facilitates rapid dilution of the treatment when fresh water is added to restore normal conditions.In constant flow treatments, the chemical is metered into the water inflow at a constant rate to maintain a given concentration for a given period of time. This method requires accuracy and is expensive in terms of the amount of chemical needed. The method requires no special attention to oxygen or ammonia levels, since the water flow remains unchanged.General considerations before using antibiotics  Antibiotics only control the population of bacteria in a fish long enough for its immune system to eliminate them. Before antibiotics are even considered, sources of stress such as poor water quality (including sudden and large temperature changes), nutrition, genetics, and handling or transport must be removed or reduced. Affected fish should also be examined for parasites.  Any of the above factors -and, indeed, others, such as attacks by predators -may be the primary cause of disease, as bacterial infections are often secondary to such management problems. Contacting a fish health specialist early in a disease outbreak helps identify contributing stresses and the rate of bacterial infection, thereby reducing losses.The ideal solution to bacterial diseases involves working with a fish health specialist to culture the organism and to run sensitivity tests. Although culture and sensitivity tests generally take two or three days, they are, by far, the best methods for selecting an antibiotic that will successfully and economically treat an infection. A fish health specialist should provide instructions on submitting samples to a diagnostic laboratory: Affected fish should not be treated with antibiotics until after a pathogen sample has been analyzed. Samples should be taken from at least 3 to 5 fish showing typical symptoms of the disease. Fish that are submitted after they have been given antibiotics often provide poor culture results. While waiting for the culture results, the fish health specialist may suggest a broadspectrum antibiotic that can be used until culture and sensitivity tests have been completed. Legalities must also be considered when selecting antibiotics.  Fish health specialists will be able to provide information on legal constraints for specific antibiotics, information on appropriate dosages, methods of administration and other concerns.Although selecting the correct antibiotic is an important first step in controlling bacterial disease, proper administration of any antibiotic for the recommended number of days is equally important. Fish health specialists should provide instructions on the amount of antibiotic to use (dose), the frequency and duration of treatment. Withdrawal time (time required, after the last dose of antibiotic has been given, till selling the fish) should be known. The pharmacokinetics of a specific antibiotic should be determined.If the dose is too high or treatment times are too long, there is a danger of toxicity to the fish, frequently causing liver, kidney, or other organ damage that may or may not be reversible.If the dose of antibiotic is too low or treatment time is too short, the bacteria will not be killed or weakened sufficiently for the immune system of the fish to remove them, greatly increasing the risk of the bacteria developing resistance to the antibiotic.It is important to remember that fish diseases are not the only constraint facing freshwater aquaculture in Egypt: many other environmental factors and poor management practices also contribute to low productivity. Water quantity, extreme or changeable temperatures, and the quality and quantity of feed used, all increase the risks of disease. Knowing how to minimize the risks of disease outbreaks, how to monitor for key risk factors and what to do when they occur, can make the difference between a farm being profitable and not. Low temperatures during the winter season predispose farmed fish, especially tilapia, to attack by bacterial and fungal pathogens Aeromonas hydrophila, Pseudomonas fluorescens and Saprolegnia diclina are particularly prevalent and can cause massive mortalities. However, a number of studies suggest potential application of immunostimulants and probiotics in improving fish health and increase resistance to infections, one month of application providing protection for 1-2 months (see papers published by Dr. Salah Aly in this regard (42)(43)(44)(45)(46)(47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61) ).","tokenCount":"8505"} \ No newline at end of file diff --git a/data/part_1/0884207130.json b/data/part_1/0884207130.json new file mode 100644 index 0000000000000000000000000000000000000000..f5c85f4556e020b14344be2a85f5667030e0b25a --- /dev/null +++ b/data/part_1/0884207130.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"22b9d3ff1fdf315a162877a8a316e08e","source":"gardian_index","url":"https://www.cifor.org/publications/pdf_files/FTA/Handbook_the_geospatial.pdf","id":"254033023"},"keywords":[],"sieverID":"d33c6742-5edc-47d9-ad30-695186d41127","pagecount":"54","content":"This handbook is intended to provide guidance on geospatial data quality and metadata management. While it can provide the reader with answers to basic questions on the latter, it does not have all the answers. The reader should also find the information and guidance helpful when dealing with important questions on geospatial data quality and metadata.Spatial data quality can be described as a character of the data that allows users to evaluate 'fitness to use'. Usually specified along with information about the completeness, consistency and accuracy of the data.Spatial data quality is a pillar in the implementation of GIS and its applications where reliable data will enable data users to obtain satisfactory and appropriate results for the intended use of the data.One element to check the data quality is topology consistency. A tool for this has been provided in the ArcGIS toolbox. We can use this tool to test the completeness and consistency of features using the following steps:Chapter 1 1. Topology error check should be conducted in a 'file geodatabase'. To start the topology check, we need to create a geodatabase in ArcCatalog. Figure 1 is a sample of the pages used to create a topology error geodatabase. 3. Setting the coordinates is an essential step in a topology check. We need to define the coordinate system to be used in the processing. We can use WGS 1984 as the coordinate system, which is the most frequently used in mapping. (Figure 3) 4. The next step is to import the feature class (polygon) that will be checked for topology errors. (Figure 4)6. After completing the import process, we can check the feature class IDNSeram_VegetationCoverExtent_CIFOR_2010 has been imported into the file geodatabase of the topology error (Figure 6). 5. We then need to specify the name and enter this in the output feature class (Figure 5) 8. We need to set the name of the output of the topology processing and set the cluster tolerance (Figure 8). 9. Click > next > tick the feature that will participate in the topology processing click > next click > next (Figure 9).10. We need to add the rules of the topology check. Set the rules for checking the topology errors-we can explore the explanation of the 'rules' in the rule description. Add rules that we would like to use click > next click > OK > next (Figure 10). 11. Once the topology check has finished processing, we will need to validate the new topology click >yes (Figure 11)14. We can review the results by adding the topology error features to the ArcMap. To add a topology layer click > yes ('yes' will popup when you finish checking the topology errors) Results can be seen in ArcMap (Figure 15). 13. We can check the topology results and properties with a right click > properties. Click errors to find the numbers of errors in the layer based on the rules (Figure 14).15. We can change the symbology of the topology results to explore the errors including the gaps and overlapping (Figure 16). Note: In this sample we conclude that the gaps that are categorised as errors are the small islands. Thus, there are no topological errors in this dataset including overlapping and gaps.1. Open the ArcCatalog click > Menu customise click > ArcCatalog options. Then the ArcCatalog options dialog box will appear click > Metadata (menu). In the Metadata Style section there are various options related to the Metadata style, click > ISO 19139 Metadata Implementation Specifications (Figure 17). 3. After 'Edit' has been clicked, the metadata-editing menu will be displayed on the right side of the metadata. There are three sections: overview, metadata and resource. We can save the editing by clicking > Save (red box -Figure 19).• Use limitation: description about limitations or protection for using the data (Figure 21). To create metadata in ArcCatalog click > edit in the metadata menu. There are three sections where we can enter information.In the overview menu add information in the following: d. Item Description• Title: title of data• Tags: keywords in general. For example: data related keywords, data year, activity/project, location, donor.• Summary (Purpose): summary of the data• Description (Abstract): information related to the data, including an explanation of the data content, brief process of obtaining the data, pixel resolution (for raster data)/data scale, name/purpose of data activity. (Figure 20)e. Topics and Keywords• Topic Categories: spatial themes of related data. Each theme has a detailed description on the website https://apps. usgs.gov/thesaurus/thesaurus-full.php?thcode=15. When selecting the topic categories, you can have more than 1 theme or topic (Figure 22).• Content type: whether the data can be downloaded or not (example: downloadable data)• Place Keywords: keywords for the data collection site(s) or locations• Temporal Keywords: keywords for the time of the data. Usually, the year the data is entered here. a. Spatial Reference -Reference System: this is the information related to the coordinates and projection system used. Usually, this is entered automatically by the system if the coordinate system in the data is defined. For example, using the WGS 1984 coordinate system, the EPSG code 32752 is defined (Figure 31).Yes, it is necessary. As one of the pillars in using the data, this quality data report can be written as more than one type, depending on the findings of the curator regarding the attributes of the data. The data quality can be entered as follows (Figure 32):b. Quality -Data Quality -Scope level: Dataset c. Quality -Data Quality -Report: information/records related to the attributes of the data after checking, using the GIS Curator.• To add information: (Report) click 'new report' (red box -Figure 33). • Report -Report Type: type of report/notes related to findings from curation. There are various options available here, for example, in the data there is a record for the type Conceptual Consistency (Figure 34). • Report -Dimension: dimension of the check results. For example, the dimension is the horizontal dimension of the data (Figure 35). • After entering information related to the Report type and Dimension, there will be a warning at the top that will ask for information to be entered, namely a conformance result (yellow box). To add a Conformance Result click > New Conformance Result (red box -Figure 36) After the Conformance Results appear, enter the following:• Report -Conformance Result -Pass: pass/fail. If there is no problem with the data in terms of the report type, enter (�) in the pass box. If there is a problem with the data leave the 'pass' box blank.• Report -Conformance result -Explanation: the curator can enter an explanation regarding the data attribute. Example: conceptual consistency was passed because the information available in the attribute data is clear and there is no overlapping (Figure 37). • If the Conformance Result Menu has not been completed, warnings will appear as in Figure 40, which means they need to be completed.• If the pass column is blank/not marked (�) due to poor data attributes (yellow box), the warnings can be ignored (Figure 40). A lineage statement is an explanation or information regarding how to obtain data, data quality attributes and notes from the researchers themselves regarding the data. A sample of lineage can be seen in Figure 42. The distribution of information describes the product specifications when distributed such as:• Distribution -Distribution Information -Distribution Format -Format Name: information on the format of the file being distributed.• Distribution -Distribution Information -Distribution Format -Format Version: the version of the data being distributed if the data has multiple versions. If it does not exist, it can be entered using a minus sign (-) (Figure 43). • Distribution -Distribution Information -Distributor: contact information regarding the agency that will distribute the data (Figure 44). Fields -Entity and Attribute Information: provide detailed information related to the attribute table, especially the column Attribute Field. This is how the title of the data attributes is inserted into the metadata and the data Shapefile (Figure 45). • Information needs to be entered into each column (Field Attributes), for example:» The CLASS_2010 column and its illustrations (Figure 46)» Attribute: class_2010:• Definition: description related to the column CLASS_2010• Definition Source: the source of the information is obtained from the definition column. If the source is not known, enter a minus symbol (-).• Enumerated Domain: enter a minus symbol in all as the default for value, definition and definition source. Enumerated Domain filled to system request.Note: Enumerated Domain is not required for Entity Type, FID, OBJECTID and Shape.Fields -Entity and Attribute Information -Entity Type: enter '-' as default for definition and definition source (Figure 47). Metadata can be exported in xml format using the following steps:Open ArcCatalog and click > the Shapefile and the metadata will be exported. Then click > the Description menu, next click > the Export menu on the toolbar (Figure 48). ArcGIS will automatically process the data and the screen in Figure 50 will be displayed.After that, a new *.xml file will appear, which can be checked in ArcCatalog using the display below (red box -Figure 51). When viewed from Windows Explorer, the screen view will be displayed as in the red box in Figure 52. • The first step is to create a folder in Windows Explorer, for example: D:\\CIFOR\\FTA_Geoportal• The next step is to open > the CatMDEdit application and click > Add/delete repository (red box -with a hand symbol and a folder) (Figure 53).• Then the Repository Manager (and then the Repository Creation) dialog box will appear > click the repository folder that has been created (Example: D:\\CIFOR\\FTA_Geoportal) (Figure 54) Can metadata in XML format be edited in CatMDEdit?Yes, metadata in xml format such as the results from ArcCatalog can be edited using CatMDedit.• Once the Repository is available (example-FTA_Geoportal) click and wait > the Repository in question will turn blue then click > import (red box -Figure 56) • Then click > OK > Load and the FTA_Geoportal will appear in the repository list. After that click> the FTA_Geoportal folder and wait until it turns blue and an empty list column (Left) will appear, because it does not have an XML data list (Figure 55). • The Import dialog box will then appear click > add to click the XML file to be imported. After clicking the XML file click > Open then click > Import (Figure 57). When the XML data in CatMDEedit appears > double-click on the data > metadata will be entered.• A new toolbar will appear containing the HTML menu, ISO 19115 etc. Because the metadata used is ISO 19115 click > the ISO 19115 menu. Information from the metadata has 3 classes: mandatory, optional and conditional. In Figure 61, there is a screen view of what it will look like. • To change the metadata click >Edit at the bottom (red box), 'Save' and > 'Cancel' will be activated automatically (Figure 61).Here's an explanation:» Metadata file identifier: Information regarding the identification code for the data. If the identification code does not exist, a data title can be added/entered, for example 'Vegetation Cover Extent in Seram 2010'. (Figure 62)Figure 62. A unique identifier that can be implemented in the dataset » Language: this is the language used in the metadata, for example, English (Figure 63) » Metadata date stamp: this is the date the metadata was created (this is required information -red mark) (Figure 64). » Credit: creator and person in charge of data (Figure 81). We can click on the distribution information and select several options to define the distribution of data including:• Distribution format -MD_Format: format of data and version that has been used, i.e., Shapefile format.• Distributor -MD_Distributor_Distributor contact -CI_ResponsibleParty: information about the contact details of the responsible party, including the organization's name, position, contact information and role. For example, the website address on the CIFOR geonode:https://geonode.cifor.org/layers/geonode:idn_seram_ vegetationcoverextent_cifor_2010 (Figure 94)• Data quality information -DQ_DataQuality -Scope: this is information related to the data coverage. There are many options when entering data quality information. One example for spatial data is the Dataset as in Figure 95.• Data quality information -DQ_DataQuality -Report: this is where data quality may be entered, when viewed from the spatial data. Here you can enter more than one category.For example, after the data has been examined, there are notes in terms of ConceptualConsistency and TopologicalConsistency (Figure 96). For example: if this data can be accepted, then click > 'True', this means it has been passed. (Figure 98) If the validation result provides information 'not valid', we need to recheck the metadata entry (Figure 103). The red text shows the elements of information that need to be entered to complete the metadata. ","tokenCount":"2100"} \ No newline at end of file diff --git a/data/part_1/0902843755.json b/data/part_1/0902843755.json new file mode 100644 index 0000000000000000000000000000000000000000..c821ddec030b599dcbe52859a13d599cd19d5e7a --- /dev/null +++ b/data/part_1/0902843755.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"96a209d2ef38fd69bbcb148e9e63fc5a","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/2d3c9b0b-a697-4d4a-adfb-f77a80dd4020/content","id":"-763128906"},"keywords":["agroecology","indicators","multi-criteria","sustainability","tradeoffs","synergies"],"sieverID":"a9103c2f-dacb-4bc2-9e63-57aa245d04e8","pagecount":"5","content":"Agroecology and systems analysis have always been associated as at the core of agroecology is the search for synergies through the interactions of different components to support sustainable, resilient and equitable agricultural systems. Several agroecosystems analysis methods and tools have been developed. Systems approaches provide the theoretical basis and practical guidelines to capture the complexity of agroecosystems and design better, more sustainable, systems. These methodologies have been developed by and for different actors along the agricultural research and development continuum, from highly elaborated mathematical models to truly hands-on practical guidelines. Three examples of methodologies are briefly described. The Tool for Agroecology Performance Evaluation (TAPE), a global and collective effort to generate evidence on the extent and role of agroecology for transitioning towards more sustainable agroecosystems. The MESMIS framework, based on the participatory selection of multiple indicators, their quantification and integration for holistic assessment. Finally, FarmDESIGN, a model-based optimization tool allowing to assess current and alternative farm configurations and farming practices and quantify trade-offs, allowing the design of alternative, more sustainable systems. The application and adaptation of these and other systems analysis methods and tools can play a crucial role in the transition towards more sustainable agroecological systems.Agroecology is today one of the most promising paradigms for agricultural development. With origins on exploiting the ecological interactions within agricultural systems to improve their efficiency and sustainability; today agroecology is considered a practice, a science and a movement (Wezel et al., 2009).Agroecosystems are inherently complex systems.Multiple components are in constant interaction resulting in emergent phenomena at different scales in time and space. Moreover, farmers manage agroecosystems to satisfy a multiplicity individual and societ al. goals such as food and nutritional security, income generation, risk management, the preservation of cultural values and environmental stewardship, among many others. In agroecology, the complex and multifunctional nature of agroecosystems is acknowledged, and several efforts have been directed towards the development of methods and tools to capture such complexity and provide elements for the design of more sustainable agroecosystems, or more generally, natural resource management systems.Systems approaches provide the theoretical basis and practical guidelines to capture the complexity of agroecosystems and design better, more sustainable, agricultural and natural resources management. (2) The MESMIS framework. Participatory multi-The MESMIS framework is one of the first efforts to apply systems analysis for the evaluation and design of agroecosystems through the use of context specific indicators (Speelman et al., 2007).Based on a systems approach, MESMIS provides ","tokenCount":"404"} \ No newline at end of file diff --git a/data/part_1/0907279389.json b/data/part_1/0907279389.json new file mode 100644 index 0000000000000000000000000000000000000000..aa28cd3b6c4612a55b7263e601136b5fa87c6b54 --- /dev/null +++ b/data/part_1/0907279389.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e7a43c78b9a17a7e06bea458bcc9f516","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/56320c60-4db0-4df1-a67c-4bc0bfabdbd5/retrieve","id":"330579783"},"keywords":[],"sieverID":"5fff7df7-8083-413b-b65e-b530bdae548e","pagecount":"5","content":"PIP (Pesticides Initiative Programme) é um programa fi nanciado pelo Fundo Europeu de Desenvolvimento. O grupo de Estados ACP e a Comissão Europeia confi aram a responsabilidade da implementação do PIP ao COLEACP, uma organização interprofi ssional para a promoção do comércio ACP-UE. Este documento foi produzido com a assistência fi nanceira do Fundo Europeu de Desenvolvimento. Os nossos agradecimentos ao Sr. Goergen, IITA, Cotonou (Benin) pelas fotos.A mangueira enfrenta numerosos problemas fi tossanitários de ordem fi siológica, fi topatológica e entomológica. Na África ocidental a importância económica dos danos causados pela mosca da fruta (Diptera tephritidae) na manga está a aumentar, quer no que se refere às mangueiras no quintal da casa, como nos pomares de pequenos produtores ou à escala industrial. A introdução e propagação em África duma espécie de mosca oriunda do Sri Lanka, a Bactrocera invadens, descoberta em 2004, na África ocidental (pelo IITA no Benin), poderá pôr em perigo o sucesso comercial recente de todo o sector da manga.As moscas da fruta são classifi cadas como \"insectos de quarentena\". Assim, qualquer remessa de fruta exportada para a Europa e que contenha apenas uma única fruta infestada, corre o risco de todo o lote ser rejeitado e destruído pelas entidades fi tossanitárias europeias. Os frutos que evidenciam o menor traço de terem sido picados por uma mosca da fruta, devem ser identifi cados, removidos e destruídos durante a colheita ou durante a sua triagem.Todos os anos, por causa deste insecto, há contentores repletos de fruta procedente de África que são interceptados, confi scados e incinerados nos portos e aeroportos europeus, causando, assim, grandes prejuizos económicos para os exportadores.O exportador que não consegue manter o seu compromisso de negócio corre o risco de perder o cliente e a sua reputação. A confi scação dum único lote pode arruinar todo o trabalho duma campanha agrícolaDas 12 espécies de diptera Tephritidae que atacam a manga, as duas que são consideradas como mais prejudiciais são a Ceratitis cosyra e a Bactrocera invadens (ainda que outras três espécies de Ceratitis também provoquem danos económicos signifi cantes).O ciclo de vida da maior parte das espécies de Tephritidae é similar. As fêmeas implantam os seus ovos nos frutos jovens da planta hospedeira, que são atractivas quando atingem a maturação. As larvas ou lagartas desenvolvemse na polpa da fruta que não foi tratada, cavando galerias (que constituem uma porta aberta para infecções secundárias quando as larvas emergem do fruto). O crescimento das larvas acelera a maturação da fruta, que se desprende e cai no chão. As larvas saiem da fruta e as pupas desenvolvem-se na parte superior (nos primeiros centímetros) do solo. O insecto adulto, depois da emergência, começa logo a procurar alimentos de que necessita para atingir a maturidade sexual, acasalar-se e pôr ovos.Se a população de moscas atinje níveis demasiado elevados, nenhum método de combate será realmente efi caz e rentável. O único método efi caz para interromper o ciclo de desenvolvimento da mosca é retirar, diariamente, toda a fruta caída no chão e evitar que os insectos adultos ponham os seus ovos na fruta (uso de armadilhas com isco, tratamento insecticida preventivo). Daí que nos pomares se deva aplicar todas as medidas preventivas que demonstraram ser efectivas. De modo a limitar a proliferação, é essencial controlar a população de moscas, logo no início da estação.Devido aos ataques da Ceratitis cosyra e da Bactrocera invadens, as perdas na colheitas que foram mantidas em 10% no início do período de crescimento podem atingir 80% no fi nal da campanha. Na Guiné-Conakry e no Mali, as perdas das principais cultivares comercais (p. ex Irwin, Amélie, Eldon, Kent, Smith and Keitt), podem atingir 40% no meio da campanha agrícola e até mesmo ultrapassar os 50% no caso de variedades com maturação mais tardia, como seja a Brooks.A mosca da fruta pode proliferar sob as seguintes condições:Medidas a tomar:Presença prolongada no chão do pomar de frutas caídas das árvores, infestadas com larvas. As larvas completarão o seu ciclo de crescimento no solo e criar-se-ão focos de infestação.Apanhe, diariamente, as frutas caídas.Remova rapidamente a fruta do pomar e destrua-a:-enterrando-a numa vala, (40-60 cm de profundidade), coberta, uma vez por semana, com terra ou cal viva; -recolhendo a fruta num saco ou sob uma cobertura de plástico impermeável, exposta ao sol; -submergindo a fruta num tanque cheio de água; -queimando a fruta numa vala ou num tanque. Are o solo de superfíciel (5-10 cm de profundidade) do pomar de modo a expor as pupas ao sol, aos parasitas e a predadores como sejam pássaros.Presença no pomar ou nas suas imediações de plantas cultivadas (que podem servir de hospedeiros alternativos para as moscas)Evite cultivar certas plantas tais como sejam pimentos, piri-piri e pepinos como culturas intercalares; Evite plantar ou manter plantas hospedeiras nas imediações, visto que os seus frutos são atraentes para as moscas, p.ex. citrinos, goabeiras, papaieiras, anoneiras, melões, etc. Um grande número de plantas hospedeiras nas proximidades pode resultar em grandes populações de moscas da fruta no início do período de colheita da manga. Aplique aos outros frutos as mesmas regras que em relação às mangas (apanhá-las, seleccioná-las, destruí-las) pois as moscas são polífagas.Presença de pomares abandonados ou não tratados ou de árvores selvagens cerca do talhão cultivado Evite deixar estas árvores nas imediações do pomar tratado, pois constituem focos de infestação; O êxito quanto ao controlo das populações de moscas nas zonas cultivadas requer informação e responsabilidade colectiva. Presença de ervas daninhas (que podem ser hospedeiras alternativas) Elimine, cuidadosamente, as ervas daninhas em redor das árvores; a sacha facilita ver as frutas que caem das árvores; Are o solo de superfície (5-10 cm de profundidade) de forma a limpar o pomar.Presença no pomar de várias variedades (com períodos de colheita que se seguem uns aos outros) Evite a cultura de variedades de manga com ciclos de crescimento muito diferentes, no mesmo pomar; visto que as populações de moscas crescem durante o período de produção, as variedades de maturação tardia muitas das vezes são as mais infestadas; No caso da procura de mercado o permitir, produza as variedades de maturação precoce, de modo a que a fruta amadureça quando o nível das populações de moscas ainda é baixo Presença de fruta infestada no talhão ou cerca do lugar onde se acondiciona a fruta Seleccione a fruta e elimine, imediatamente, qualquer fruto que apresente traços de ataque de moscas (consuma-as ou destrua-as imediatamente); Não deixe nenhuma fruta rejeitada (frutas demasiado pequenas, infestadas e fruta infestada eliminada durante a selecção) perto do pomar ou dos lugares de acondicionamento da fruta, visto que constituem focos de infestação.Transporte de fruta infestada para os mercados locais ou regionais Se possível evite vender as frutas infestadas ou rejeitadas durante a selecção; como alternativa garanta um consumo ou destruição adequada imediatos da fruta não comercializada (queime ou incinere a fruta; não a deite num recipiente/caixa de lixo); Evite transportar fruta com furinhos de zonas de maior infestação para zonas onde a infestação é menor.Para capturar as moscas macho de certas espécies, utilizam-se, geralmente, armadilhas com paraferomonas. Actualmente estas constituem o melhor meio para detectar as moscas e, no caso de serem utilizadas em grande escala e em grandes quantidades, podem travar o crescimento da população, logo no início da campanha agrícola.A técnica consiste em colocar, logo no início da campanha agrícola tiras impregnadas com uma substância específi ca que atrai as moscas e tratadas com um insecticida de contacto (malatião ou deltametrina).Estas armadilhas devem ser instaladas no pomar pelo menos um mês antes da fruta se tornar atractiva. Recomenda-se a instalação destas armadilhas também em outros pomares de outras árvores sensíveis à mosca da fruta, p.ex. pomares de citrinos.Cortam-se blocos de madeira ou as tiras (aglomerado do tipo Triplex) em pedaços pequenos e ensopam-se numa solução que contém metileugenol de forma a atrair o macho da B. invadens. Espeta-se um prego em cada uma das tiras para as fi xar ao tronco da mangueira. Em seguida pincela-se a tira com uma solução concentrada (uma emulsão de malatião ou de deltametrina preparada a partir dum CE -concentrado emulsionável -diluído em água) e deixa-se a secar. Pregam-se, então, as tiras nas árvores (1 para 10 árvores, ou cerca de 10 por hectare). Para que seja fácil retirá-las facilmente, não se deve espetar completamente o prego na árvore. A tira deve ser renovada todos os meses. Por debaixo da tira, pode-se pendurar um recipiente (p. ex. uma garrafa plástica cortada ao meio), para recolher as moscas capturadas.Pode-se usar o SUCCESS APPAT® produzido por DOW AGROSCIENCES (1 l/ha de SC -suspensão concentrada -com uma base de 0.24 g/l de Spinosad e uma substância alimentar incorporada, que atrai as moscas) para um tratamento localizado, num pomar de mangas (trate cada terceira árvore ou cada terceira linha). A União Europeia autoriza o uso de Spinosad na produção orgânica.Em caso de se continuar a captura de moscas na armadilha, deve-se renovar o tratamento cada 7 a 10 dias, dependendo da intensidade da população. Devem-se repetir os tratamentos na eventualidade de se registar uma queda pluviométrica superior a 10-25 mm, dependendo da intensidade da precipitação.Este tipo de tratamento tem muito pouco efeito sobre os inimigos naturais do pomar e os riscos para a pessoa que o aplica são muito baixos.O produto deve ser aplicado utilizando um pulverizador de dorso ou trajectória do jacto equipado com uma mangueira com um bico de 1-2 mm (diam). O disco do bico deve ser retirado de modo a se obterem gotinhas entre 1 e 5 mm (não utilize um nebulizador, a pressão deve ser mínima). O volume de pulverização deve ser entre 4 e 10 litros/ha. Aplique a calda na camada superior das folhas (cerca de 1 m2), com rotação em volta da árvore (não aplique sempre na mesma área das folhas) e tente penetrar ligeiramente no interior da folhagem. É melhor não tratar os frutos. Este tipo de aplicação localizada utilizando um pulverizador de dorso, permite fazer uma aplicação mesmo antes da colheita e até mesmo durante a colheita, visto que a pessoa que faz a aplicação pode evitar pulverizar os frutos.A decisão para se tratar completamente todo o pomar depende dos resultados da captura, quer dizer, no caso de haver enxames densos de moscas logo no início da período de crescimento e quando a fruta se torna mais sensível (os limiares de tolerância têm que ser minuciosamente defi nidos nas várias zonas agroecológicas).Nos pomares foram identifi cados muitos dos agentes de controlo biológico (quer dizer, dos inimigos naturais ou auxiliares) e podem ser usados para restringir o desenvolvimento das pragas, p.ex. cochinilhas pulverulentas e tripes. Um tratamento completo encerra riscos devido à potencial eliminação da maior parte dos agentes de controlo biológico, podendo desencadear uma recrudescência de determinadas pragas que, até então, tinham sido de menor importância.Para proteger os inimigos naturais é preferível limitar o número de tratamentos completos no pomar, por campanha agrícola, a não mais de duas aplicações, com um intervalo de 10 dias.As estratégias de controlo da população de moscas assentam na observação da infestação (armadilhas) e intervenções passo-a-passo: tratamento localizado e, em alguns casos excepcionais, em todo o pomar. Apenas podem ser usados produtos registados localmente. Deve-se iniciar o tratamento ou quando se detectaram as primeiras moscas (fêmea da Bactrocera sp. Ou da Ceratitis sp.) na armadilha ou na presença de frutos propensos à infestação pelas moscas (para a Ceratitis, na fase de maturação das frutas propensas a infestação, ainda mais cedo em relação à Bactrocera).Deve-se aplicar o primeiro tratamento atempadamente visto que o produto apenas tem um efeito preventivo, não é curativo (as larvas que crescem na fruta estão protegidas).Que produto utilizar?Os produtos são seleccionados na base do seu espectro, da sua efi cácia sobre as moscas, do LMR (limite máximo de resíduos) no caso das mangas e dos intervalos pré-colheita (IPC). Com um IPC de 7 dias, podem ser usadas certas substâncias activas (p.ex. bifentrin e lambda-cialotrina), até mesmo durante o período de colheita, sempre que se respeitar o LMR.Podem-se recomendar os seguintes insecticidas: lambda-cialotrina a 25 g/ha (1 kg/ha de Karate Max 2,5 WG® produzido por Syngenta) ou bifentrin com uma dose de 50 g/ha (0,5 m/ha de Talstar 100 EC® produzido por FMC).Antes de qualquer tratamento é importante decidir qual o método de aplicação e depois escolher e adaptar, devidamente, o equipamento de tratamento mais adequado à situação. Utilize um pulverizador pneumático -de dorso, trajectória do jacto -apetrechado com uma bomba centrífuga de modo a garantir uma distribuição homogénea do produto por toda a árvore. Um ensaio prévio com água permite determinar o número de árvores que podem ser tratadas com um tanque cheio. É necessário ter esta informação, assim como informação sobre a densidade plantas/ha, para se calcular o volume de mistura a preparar e a taxa de diluição do produto que respeita a dose necessária de substância activa por hectare. O volume da mistura varia, geralmente, entre 400 e 700 l/ha para pomares adultos. Aplique cada produto respeitando as boas práticas agrícolas, particularmente no que se refere às doses recomendadas e aos intervalos de pré-colheita (IPC) indicados no rótulo das embalagens. Tal aumentará a efi cácia do tratamento, evitará problemas de fi totoxidade e garantirá o respeito dos limites máximos de resíduos (LMRs).","tokenCount":"2199"} \ No newline at end of file diff --git a/data/part_1/0931263172.json b/data/part_1/0931263172.json new file mode 100644 index 0000000000000000000000000000000000000000..29e23f2d73652bb383992fbe3a95a496ad6d1228 --- /dev/null +++ b/data/part_1/0931263172.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"9cbb107844f1eda634e90b02e9b43162","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/17cdb235-b47b-4be5-97f8-cd7b581752ec/retrieve","id":"-1519445115"},"keywords":["Mekong Project 5: On Coordination and Multiple Stakeholder Platforms (MSPs)","3","Project Data Duration Target Commence Date Finish Date Duration: 52 months"],"sieverID":"42f3db6c-51ce-4e45-ab7a-748a2d9a5a01","pagecount":"20","content":"Maximum budget requested from CPWF: US$ 1.4 mill__________________________problems, opportunities and progress. M&E will be reinforced by frequent, ad hoc, meetings with project staff, and a constant flow of information between the Coordination Project and the projects in the field. Formal reporting requirements are that projects deliver these sixmonthly, for scrutiny and review by Project 5. After consolidation, these reports are then transmitted to the CPWF Secretariat with recommendations for action, and the release of funding tranches. These events will also be opportunities during which project staff will engage with -and receive feedback from -the Mekong MSPs.The project's M&E activities will also contribute to the information needs for BDC adaptive management (i.e. early identification of opportunities, threats and unexpected consequences together with appropriate response from and redefinition of the BDC (if necessary); and impact assessments). Project 5 will also implement so-called 'innovation research' as an integrated part of M&E, which examines how different types of research outputs and knowledge do (or do not) move along impact pathways in different contexts, and what types of network are required to achieve developmental outcomes and impacts.Project 5 is also responsible for the development of a communications strategy for the basin, which will be used to disseminate project results, from both Phases 1 and 2. While such communication will rely on conventional media -such as contributions to the CPWF newsletter, a website, posters and booths at regional and international fora -the Project will focus on the development of novel media and methods for disseminating these results, in close collaboration with the CPWF's Communications Coordinator.Central to the success of the communications strategy are the Project's Multiple Stakeholder Platforms, which are considered more fully below.Multi-Stakeholder Platforms are widely promoted as an institutional setting for participatory water management. They are defined as a 'decision-making body (voluntary or statutory) comprising different stakeholders who perceive the same resource management problem, realise their interdependence for solving it, and come together to agree on action strategies for solving the problem' (Steins and Edwards, 1998). That they are multiple stakeholder platforms refers less to the diversity of stakes (although these certainly characterise MSPs), and more to the diversity of actors represented within them. MSPs represent ways of managing increasing degrees of variety (diversity) and variability (dynamics). This diversity of views, stakes and interests can be articulated, tabled and discussed within MSPs, and, in turn, yield more integrated and sustainable outcomes, able to deal with increasing complexity, diversity and the dynamics of water management. MSPs are problem-solving institutional innovations, to democratise water management, to manage conflict, or even to make water management more efficient.MSPs will contribute to project goals in two key ways: first, these platforms serve a dual purpose: (a) as a conduit back into government agencies and dam development programs (as well as other agencies), allowing for transparency and information exchange with the Mekong BDC, enabling and strengthening implementation; and to function as a diverse and supportive technical network, serving to enrich research and implementation, and to benefit from a variety of perspectives.(b) To serve as conduits for research results and solutions, translating these into developmental impact. By developing trust and mutual respect between all partners involved in the BDC, this process serves to reinforce the BDC's impact pathways and improve impact potentials.Provisionally, three specific platforms have been identified: technical, government and dam developers/operators. A fourth, and very important platform is referred to as the 'Basin Advisory Committee', a group of individuals -drawn from the other three platforms, as well as other agencies -who represent diverse interests, and which will provide guidance and advice to Project 5 on the implementation of the CPWF's projects within the Mekong. MSPs membership will be derived from the existing networks of the CPWF in the basin, as well as those of MPOWER. Characteristically, these networks continue to expand and deepen.Key aspects of Projects 1 and 2 are to improve the benefits derived from reservoirs and the catchments within which they are located. Where such complementary and alternative uses are identified, Project 3 will attempt to attach dollar values to these benefits. These data will be crucial to improving the likelihood that technical and institutional innovations are adopted; and, through valuation, will also reveal the benefits of multiple use reservoirs and dam operation to the BDC's dam development and management partners. Project 5 will work to generate attractive scenarios (or 'simulation models') if dam developers, operators and associated government agencies adopt the technical and institutional solutions yielded by the BDC. Key aspects of these scenarios will be to demonstrate the zero or limited cost to dam operations if these innovations are adopted, and the gains in terms of reputation, benefits to riparian communities, reductions in environmental damage and reduced sediment loads into reservoirs. In addition, similar benefits derived from sequential dam operation will also be demonstrated. Collectively, these scenarios will make important contributions to negotiations both between the BDC and stakeholders, as well as between other agencies concerned with similar problems.The project is responsible for ensuring the coherence of the overall research program by ensuring that project activities contribute to agreed BDC impact pathways. It therefore links to all Mekong BDC projects.CPWF Mekong Project 5 is divided into two components, the first relating to coordination, and the second to the development, management and maintenance of multiple stakeholder platforms.The Basin Leader leads this project team, which is responsible for coherence of the overall BDC research program through ensuring BDC research remains problem-, opportunity-and impact-focused. For the duration of the project, the Basin Leader will work full time for the CPWF, and will report to both the CPWF Research and Innovation & Impact Directors, and will be supervised by the CPWF Research Director. Specifically the project is responsible for: Ensuring BDC research coherence through maintaining agreement on overall BDC vision and the impact pathways to achieve it.  Overseeing the development and regular updating of BDC impact pathways as a basis for monitoring and evaluation (M&E) to provide the information needs for BDC adaptive management (i.e. early identification of opportunities, threats and unexpected consequences together with appropriate response from and redefinition of the BDC).  Ensuring that appropriate 'intelligence' (from BDC social research itself, and other sources) and adequate reflection spaces are provided to adequately evaluate progress along BDC impact pathways as part of BDC adaptive management.  Coordinating BDC M&E and impact assessment.  Seeking opportunities to foster the uptake and use of Phase I outputs, in particular, but not limited to, those with direct relevance to the BDC.  Overseeing the development and implementation of a BDC communications strategy as an impact-oriented approach to disseminating research results. This is part of the project workbook.Professional discipline Provide a brief text statement on why the lead institution is well placed to lead the group.The CPWF is strategically placed to contribute to the coordination of its own projects, having considerable vested interest in making sure that they succeed, and a long history of experience in the water-and-food field, network development, the use of impact pathways as a planning and management tool. In addition, it has a five-year history in the Mekong, and an already existing network base there. This expanding network base includes: Provide brief text statements on why the proposed institutions are qualified to carry out the proposed work. Institution 1: CPWF (see www.waterandfood.org) has a long history of experience in the water-and-food field, network development, the use of impact pathways as a planning and management tool and good relationships in the Mekong Region. Previously, the CPWF was housed in the Mekong River Commission, a key inter-governmental agency with focus on the management of the Mekong Basin (see www.mrcmekong.org). During this time, the CPWF coordinated 13 multi-partner projects throughout the region, as well as developing networks and contacts of relevance to the present BDC. The then Basin Coordinator will be Project 5's Basin Leader, while one of its key consultants served as the interim Basin Coordinator, also at the MRC.Institution 2: The MSP component of Project 5 will not be lead by an institution, but a network. The Mekong Program on Water, Environment and Resources's (MPOWER) (see www.mpowernet.org) action research program is organised around comparative and regional studies and cross-cutting governance themes. Synthetic activities are guided by research leaders that build up multi-country and multi-organisation teams and help bring together the individual experiences of partner organisations. Capacity building and sharing are important goals of this network and supported by a fellowship program. MPOWER is presently coordinated by the Unit of Social and Economic Research (USER) of Thailand's Chiang Mai University. The network comprises multiple regional institutions, all of relevance to this BDC, and including multiple government agencies, dam developers and operators, and NGOs. In Project 5, the network will be represent by a single placement, drawing on the combined resources of the network. The formal members of the group are: The CPWF has a five-year experience in the Mekong River Basin. During Phase 1, it was based at the Mekong River Commission (MRC), an agency that will be central to the successful implementation of the Mekong BDC, and for the uptake of research results. During Phase 1, the CPWF developed excellent networks of relationships amongst key agencies within the basin. This will contribute directly to the successful implementation of this BDC, and the subsequent uptake of results emerging from it.During the first phase, 13 CPWF projects were implemented in the Mekong (three Small Grants projects, and ten open call projects), covering a wide diversity of foci. Of particular relevance to the Phase 2 BDC were Projects 50 (Enhancing Multi-scale Mekong Water Governance), 25 (Companion Modeling and Water Dynamics), 28 (Multiple use systems), 35 (Community-based fish culture) and 67 (Improving Water Allocation in the Mekong). From elsewhere in the CPWF basins, Projects 36 (Improved livelihoods through dam management), and 34 (Improved Fisheries in Tropical Reservoirs) also directly inform this BDC.Currently, there are several initiatives that this BDC will complement, and which possess the potential for this BDC to 'piggy-back' upon. These include the MRC's Fisheries Programme (www.mrcmekong.org/programmes/fisheries.htm) initiative to explore the impact of river barriers on fish migrations and breeding; and the cumulative impact of dams on the fisheries of Cambodia's Tonlé Sap (Great Lake), as well as elsewhere in the system. Also of importance at the MRC is its Initiative on Sustainable Hydropower (ISH) (www.mrcmekong.org/ish/ish.htm), with which this BDC intends to forge a close working relationship; and the Basin Development Program (BDP) (www.mrcmekong.org/programmes/bdp.htm), which also contains within its scope hydropower.Beyond the MRC, there are multiple other initiatives of interest to this BDC. These include Sustainability Assessment Protocol of the International Hydropower Association (IHA) (www.hydropower.org/sustainable_hydropower/IHA_ Sustainability_Assessment_Protocol. html), which is being tested on two dams in the Mekong, and, if tests prove successful, will be implemented at multiple other dam sites across the basin. The Mekong BDC sees considerable promise in contributing to this process.The Mekong Program on Water, Environment and Resilience (MPOWER) (www.mpowernet.org) is a regional network comprising 28 institutions and agencies with diverse experiences, interests and backgrounds. The program has been closely involved with the CPWF for five years, implementing two of its projects within the Mekong. MPOWER will be implementing the multiple stakeholder platforms (MSPs) component of Project 5, bringing to bear its extensive networking experience in the region, and enabling the formation of MSPs through its diverse network of highly relevant contacts. Amongst a wide variety or projects, MPOWER includes a focus on hydropower development, governance, fisheries and other aspects relevant to this BDC. The CPWF's Mekong BDC is implemented at a particularly auspicious time. Several funders, including the World Bank, ADB and other international finance banks, require some degree of assurance from dam developers that the sustainability of dam facilities is improved, both in terms of physical and engineering structure, but also in broader, contextual terms -as components along a river's reach, a catchment and the basin as a whole. This includes a growing concern in China that its dam developments are attracting increasingly negative press, especially in Lao PDR.What are the lessons or conclusions that can be drawn from this work?  The CPWF is well placed to deliver on this BDC in terms of its institutional (research) experiences in-basin and beyond.  That the CPWF's pre-existing network give it a powerful spring-board into the region, both in terms of improving its research, as well as increasing the likelihood of innovation up-take. In addition, the long-term experience of this project's staff in the region provides it with the capacity needed to expand upon these relationships. In particular, MPOWER's continuing network activities, and the maintenance of its contacts across the region are an important asset for the implementation of the Mekong BDC's multiple stakeholder platforms.  That the BDC commences at a particularly auspicious time -when several other programs are aiming in complementary directions, and international pressure is being applied to basin governments and dam developers to improve the sustainability of their dams.CPWF Mekong Project 5 comprises multiple components, of which research is just one. The bulk of Project 5's work will be to coordinate the other four CPWF Mekong Projects, and to develop multiple stakeholder platforms (MSPs). The methods to be used to implement each of these aspects -coordination, MSPs and research -are described below. The conceptual organization of the project is presented in the figure on the next page.Narrative: Project 5's central responsibility is to implement the Mekong BDC Impact Pathway, which will be developed together with the teams from Projects 1-4 at an inception workshop in Vientiane in January, 2010. Throughout the lifespan of the Mekong BDC, adaptive management will be employed to implement the impact pathway. Adaptive management refers to the ability to learn from experience and make early identification of opportunities, threats and unexpected consequences together with appropriate response from, and redefinition of, the BDC agenda. As the project unfolds, Project 5 will adapt coordination and management to respond to the challenges of implementation, research results as they emerge, and the changing socio-political context within which this program will be implemented (this socio-political context is extremely important to the success of this BDC, given the regional sensitivities surrounding hydropower development). A key tool in this respect will be 'reflection workshops' -annual events during which time project teams and other stakeholders will gather to evaluate progress along the impact pathway, as well as the quality of their experiential learning and the decisions they make as a result. The methodology that will be employed at these workshops is Participatory Impact Pathway Analysis (PIPA), used to both develop the BDC's impact pathway, as well as to evaluate progress along it. New problems and opportunities will be identified, and adjustments to the impact pathway will be made as necessary. Monitoring and maintaining the impact pathway will not, of course, be restricted solely to these workshops alone. Daily inspection and monitoring by the Basin Leader and his staff through frequent interaction with project teams and other stakeholders with similar interests will occur. To support this process, an 'evaluative culture' will be developed within Project 5, in individual project teams, and across the whole BDC. An organization can be said to have an evaluative culture when it engages in self-reflection and self-examination, seeks evidence, makes time to learn and encourages experimentation and change. Such introspection will be developed not just through reporting requirements (i.e. reporting formats that not only reveal implementation.Progress, but also critical self-reflection), but through training as necessary, encouragement and frequent interaction with the Project 5 team. Fora -particularly the reflection and CBWG workshops, as well as PIPA, will be employed to enrich the process, and to harvest lessons from it.Also of importance to both co-management and this evaluative culture, is Project 5's participation in annual Cross-basin Working Group (CBWG) workshops. Given the novelty of this implementation and management design, these are important to critically assess and openly discuss Project 5's management experience in the Mekong, and to learn from similar efforts in other CPWF basins. These workshops will also have relevance to the Project's research responsibilities, as described below.Needless to say, all of these processes will not only contribute to the implementation of the Mekong BDC, but also efforts to maintain the overall quality of integration. It is essential to the success of the BDC that the tools it employs to implement its research, and obtain impact, that this integration occurs.It is also clear from the above that the central management processes deployed by Project 5 are intertwined with its monitoring and evaluation (M&E) obligations. The impact pathway, the adaptive management used to maintain it, and the evaluative culture that support it all contribute to ensuring that oversight is maintained, research outputs delivered and impact generated. Project 5 focuses on monitoring for (a) accountability and (b) for adaptive management. Drawing on the CPWF's Monitoring and Evaluation Strategy, the central questions regarding accountability are, inter alia:  Is the BDC research program contributing to tackling the BDC?  Are projects delivering on agreed outputs and outcomes?  Is the Topic Working Group (TWG) with which the Mekong Basin BDC is associated producing generalisable knowledge?  Are funds being properly spent? Insofar as monitoring adaptive management is concerned, key questions are, inter alia:  Is BDC performance improving?  Is the BDC adapting to emerging opportunities and threats?  Is the TWG contributing to cross-basin learning? Impact pathways link BDC interventions with outcomes. Combined, the processes described above all contribute towards impact assessment. The lag time between and intervention and impact is, on average, about 24 years. There exists, however, scope for initial assessments of ex post impact, and for this Project 5 will obtain Most Significant Change stories from the research teams. An ex ante impact assessment will be carried out during the BDC inception workshops, where the research teams will contribute to identifying the kind of impact their individual projects will generate, and how this can be measured. These indicators will feed into the impact pathway, and used to track progress and implementation.Responsibility: the CPWF will lead on this activity, with major input from MPOWER, as well as consultancy-based support. Integrated projects evinced by publications that reveal cross-project collaboration and cognisance.  Collated project reports bi-annually.  Annual reflection workshops (4)  MSC stories as reports or synthesised in publications.  Monitoring and evaluation reports and feedback.  Mekong BDC website.  Contribution to CPWF newsletters and other programmatic outputs.  Innovative communications outputs to describe progress, initiatives and Phase 1 research.  Input to Cross-basin Working Group meetings.  Frequent report back to MSPs through a Mekong Basin email newsletter.The strategy for developing the Mekong BDC MSPs is tiered. As shown in the figure above, Project 5 will initially establish four platforms. The first of these, the Basin Advisory Committee, will contribute to M&E across the BDC, and represents a two-way conduit between the program and diverse basin interests, including dam developers, operators, government agencies and research interests. Its function is to deliver critical comment, suggestions and guidance on the BDC's implementation. It has a primarily administrative function designed to obtain buy-in from regional interests. Its membership will be obtained through personal interactions between the Basin Leader as well as the MSP coordinator.The second is the technical platform, whose task it is to improve the diversity of perspectives contributing to the research implemented under this BDC, and provide technical commentary and review of this research. Its function is primarily quality control and as a knowledge resource. Its membership will be obtained through personal interactions and the development of relationships between the BDC teams and such technical resources.The third is the government platform and international agency platform, comprising representation of state electricity generating agencies, ministries of development, planning, environment and/or water; as well as international agencies, particularly those who finance dam development, including the World Bank, ADB and regional and international financing mechanisms. This platform provides an enabling function -by keeping this group of interests well informed (via Project 5's communications strategy), access will be gained to government plans, dam electricity generating data, data on water flows and turbine through flow, and planning ideas for catchments. This platform also serves a scaling-up function, and will benefit the Mekong BDC by recommending the adoption of its innovations; and through influencing broader, regional decisions. This platform will have a broader perspective of dam development and hydroelectric dam management than the fourth platform (see below), viewing dams within the wider context of catchments and, indeed, the basin as a whole.The fourth platform is hydroelectricity (HE) developers and operators. This group comprises individual companies and agencies who set out to develop dams and/or may then operate them. Their focus tends to be restricted to the construction of the dam, its operation with a view to maximizing profit margins, and managing their power supply commitments. Once again, the key method for developing this platform will be networking, one-on-one with potential members.Ultimately, as the BDC progresses, all of these individual platforms will be merged into a Regional Forum on Hydropower Planning and Development. The reason for initially treating each platform independently is to ensure that each gets the attention it deserves. Trust and dialogue take time to develop, and treating all platforms as a single unit at the start makes no sense if the objective, at this stage, is to develop the relationship as opposed to the dialogue. In addition, each group has a separate batch of interests to protect, technical jargon, and associated networks. By gradually merging the platforms over the lifespan of the BDC, the chances of a regional hydropower forum emerging are considered much better. Finally, maintaining individual platforms at this stage allows Project 5 to tailor-make communications products to suit each set of interests and work to break down barriers to dialogue and cooperation.Enabling this dialogue to occur implies developing capacity for negotiation and dialogue, backed up by methods for negotiation, and communications to support this process.Responsibility: MPOWER as lead with significant input from CPWF and consultancy services. Discrete stakeholder platforms, monitored and reported upon.  Mekong Hydropower Forum with once annual meetings.  Ad hoc round table meetings as opportunities present themselves.  Reporting contributions to Project 5 reports to CPWF Secretariat.  Contributions to publications based on MSP development and experience (see research initiatives below).  Contributions to Mekong BDC communications outputs.  Frequent report back to MSPs through a Mekong Basin email newsletter.All of Project 5's research work will be action research -i.e. learning by doing. Its adaptive management strategies feed the research process and vice a versa, while also contributing to its own 'evaluative culture' (see below). Where research techniques lie beyond the abilities of the Project 5, the team will draw on the expertise of the CPWF's Topic Leaders, the MPOWER Network and its resident expertise, it's regional science networks, and, if necessary, consultants. No budgetary allocation is set aside for Project 5's research, given the degree to which it is integrated into its implementation processes.Project 5 responds to three research questions: (1) How can stakeholder platforms be used to support the integration of information on the consequences of adoption into on-going process of design and implementation?Work anticipating the impact of CPWF innovations will be based on scenarios development. Because the Mekong stakeholder platforms play such an important enabling and up-take role, the platforms become research objects in themselves, allowing the project to anticipate in what ways impact might be generated should innovations be adopted. The platforms, indeed, represent the main source of information in this respect. The impact pathways will anticipate what research products projects will generate, and it is the responsibility of Project 5 to relate this back to the platforms to inform the scenario development process. In turn, the results from this analysis will feed back into the impact pathway monitoring process, informing its reorientation if necessary.If the Mekong BDC is successful, the following will be achieved: reservoirs will be managed in ways that are fairer and more equitable for all water users. The management of Water Storage Infrastructure (WSI) will take into account fisheries and agricultural potential as well as hydropower generation, and riparian communities will be able to utilize these water sources for multiple purposes. Catchments will be managed in ways that reduce erosion and the siltation of WSI, while benefiting riparian communities by opening up farming and other opportunities. Of importance will be the ability to manage WSI sequentially, along the length of rivers, so as to optimize benefits for all. In order to achieve this, water governance -the capacity to negotiate amongst water users (including dam operators) -must be improved, paving the way for policy and administrative changes that enable the sharing of benefits among riparian communities, among water users and between nations. Project 5's scenarios work will be based on Cross-impact Analysis. This is a technique for analysis of complex systems. It concentrates on the ways in which forces on an organization, external or internal (events or trends), may interact to produce effects larger than the sum of parts, or to magnify the effect of one force because of feedback loops. It has been used successfully where dominant forces can be identified, and can be used to increase management's understanding of the relative importance of various factors. The technique draws on experts relevant to the future being imagined, in this case, the MSPs. The structure used for understanding the impact of events and trends on each other is called a Cross-Impact Matrix. The task, then, confronting Project 5 is to develop plausible scenarios based on the adoption (or non-adoption) of research products, and then to anticipate what the impact will be and what this might look like at various scales. In addition, it will assign probabilities as to the likelihood that particular scenarios (impacts) will occur, should adoption prove successful.Because MSP membership includes those likely to be affected by the successful adoption of these products, not only will a deeper understanding be obtained of stakeholder perceptions, but these can be brought to bear to generate outputs that better reflect their requirements; and better integrate information on adoption amongst potential next-and end-users.(2) How can dialogue and negotiation in stakeholder platforms be most effectively informed regarding the likely consequences of different strategies?A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or 'monolithic system' to solve. In Phase 1, the CPWF project on 'Companion Modeling for Resilient Water Management: Stakeholder's Perceptions of Water Dynamics and Collective Learning at the Catchment Scale' operated in the Mekong, and drew on MAS to try and understand and develop management systems along stretches of river, and between up-and down-stream water communities. This technique has particular relevance to negotiation, and the development of mutual understandings between strategic interests. The tool is both analytical (i.e. revealing strategic interests) and a solution (reconciling such interests and associated differences). Other negotiation techniques and options -such as 'desecuritization' work from the Okavango River Basin -will also be employed to facilitate and enable negotiation.The focus of this work will be the MSPs. Drawing on the above methodologies, the strategic positions of members within and between MSPs will be identified and mapped; once the scenarios work is complete, these same techniques will be employed to understand how strategic positions have changed. Where tensions continue to exist, these methods will be employed to resolve them, and obtain cooperation among different interests. Finally, these data will be employed to identify different routes that innovations can take through to impact, negotiating a variety of interests, and taking advantage of sympathetic ones.Gaining common agreement and understanding suggests the need to ensure that all players are able to empathise with the interests and strategic positions of other players. MAS, in part, allows this to occur. Other methods, such as organizing site exchange visits, will also be brought to bear to enable such common understanding to occur.(3) How do different types of research outputs and knowledge do (or do not) move along impact pathways in different contexts, and what types of network are required to achieve developmental outcomes and impacts.Action research is a reflective process of progressive problem solving led by individuals working with others in teams or as part of a 'community of practice' to improve the way they address issues and solve problems. Action research can also be undertaken by larger organizations or institutions, assisted or guided by professional researchers, with the aim of improving their strategies, practices, and knowledge of the environments within which they practice. There are profound similarities between action research and adaptive management, and for this reason, all research conducted by Project 5 is action research.The method for solving this research question is intuitively based on the methodology for the entire project, starting with impact pathway development, through reflection workshops and other interventions designed to alter it, through the development of innovations, and finally, impact. Problems and solutions, tensions and cooperation are all catalogued, and, via feed back loops, serve to strengthen the research initiative, as well as the implementation of adaptive management.Responsibility: CPWF, with input from MPOWER, consultants and Topic Leaders.How will your research address these research questions? Previously described in Section 11.1 above.The communications plan is integral to the success of the Mekong BDC. It aims to contribute (a) to the integration between the BDC's research components; (b) the development of the MSPs; (c) the dissemination of research and impact products; and (d) the scaling up and out of this impact.Central to the communications strategy is one-on-one interaction between Project 5 staff and its communications targets. In addition, the strategy focuses on conventional communications outputs, such as peer-reviewed papers, a website, books and book chapters and other media designed with specific target groups in mind; it also aims to move beyond the conventional, to produce innovative and unusual products conveying information about progress along impact pathways, BDC outputs, Phase 1 research products and explaining what it is that the BDC focuses on. It seeks to develop a journalists' network with a view to exploiting the print, radio and TV media through which to disseminate its findings and generate influence, and to consult with experts and other consultants on imaginative and thought-provoking media products that attract attention, questions and develop dialogue. Project 5 will work closely with the CPWF Communications Coordinator in the development and implementation of its communications strategy.Briefly describe how you will support an evaluative culture in the BDC?The evaluative culture aspects of this BDC have been described in Section 11.1. An evaluative culture implies critical self-analysis both within and across the Mekong BDC's projects, a willingness to confront these, and an acceptance to change the project as a consequence. An evaluative culture has the following characteristics:  it denotes an ongoing process rather than an end state;  it encompass attitudes as well as actions;  it is focused on improvement; and  it affects people across the project.The development of an evaluative culture in the Mekong BDC will focus on the following strategies:  linking evaluation plans to the BDC impact pathway;  encouraging the use and implementation of the results of evaluations;  building ownership of and commitment to the use of evaluation findings;  Project 5 support for evaluation (by actively promoting it);  the development of good support structures including Project 5, the Topic Leaders, the Communications Coordinator, the Innovation and Impact Director, and consultancies; the development of systems to collect performance information (reporting, reflection workshops, frequent one-on-one interaction between Project 5 and project teams;  evaluation findings being made available to the public;  effective communication.In the form of a Gantt chart, constructed as an Excel spreadsheet, Which is part of the project workbook.The Mekong BDC faces one key risk. The political sensitivities associated with dam development and planning in the Mekong Region mean that Project 5 must take particular care to brief relevant government and dam development and management agencies of the BDC's intentions, and reassure them of the initiative's political neutrality. This risk will be addressed through the project's MSP and communications activities. In particular, the project will seek to include this diverse set of interests in a 'Basin Advisory Committee', which will serve to both critique project implementation, as well as serve as a conduit through which project activities and directions are communicated back to regional governments and dam agencies.Project 5 shares a close relationship with Project 4, the Governance project. The latter, however, is a research project, the principal focus of which is to (a) research and identify the managerial and institutional changes that need to accompany innovations derived from Projects 1-3 if the latter are to succeed; and (b) managerial and institutional changes that need to occur if hydro-power benefits are to be maximized at basin scales. These institutional and managerial innovations are of great importance to the work of the MSP component of Project 5, and it is through this latter facility, the MSPs it develops and the influence it generates that the entire 'package' of innovations derived from Projects 1-4 will yield impact. ","tokenCount":"5503"} \ No newline at end of file diff --git a/data/part_1/0932357370.json b/data/part_1/0932357370.json new file mode 100644 index 0000000000000000000000000000000000000000..888e0fde05db5e0a52ca986ec3a4560ac0976866 --- /dev/null +++ b/data/part_1/0932357370.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"fbf09ce677934288506d3a3d62dd4ae7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ed66bd2c-e0b4-4929-9ad3-445e0342ae4d/retrieve","id":"464017744"},"keywords":[],"sieverID":"59b1425d-5c2d-4ddb-841d-4df20f49d5b3","pagecount":"16","content":" Background  Objectives  Process of smoking fish in the area of Abidjan  Materials and methods• More than 80% of the country's fresh fish is traditionally smoked for sale in the local market and for export.• During the smoking process, Benzo(a)Pyrene, PAH of reference, can be released. It is potentially genotoxic and carcinogenic for humans and was found in products destined for export to the EU in 2007.• In 2006, a European by-law (EC no. 1881/2006) determined maximum levels of specific contaminants in food produce (BaP in smoked fish) and thus required surveillance of all smoked products (ETP) to be exported to the EU.3 Background 4• The application of these regulations is a severe setback for this profitable market in Côte d'Ivoire.• Smoked fish accounts for 0.73% of the total export volume which corresponds to 2.30% of foreign currency.• The sector employs approximately 70,000 people who feed another 400,000. There is a risk -423 respondents (88% are women), 59% are no scolarised -67% of operators use branches of rubber tree -Fat fish is preferably used for smoking -GPHs are very unknown as well as dangers encountered-Level of fat content in fish used for smoking > 6% -Concentration of PAHs varies according to the nature of constituents, smoking and compliance of GPHs (fluoranthene is higher in low-fat fish than in fat fish) ","tokenCount":"223"} \ No newline at end of file diff --git a/data/part_1/0946491058.json b/data/part_1/0946491058.json new file mode 100644 index 0000000000000000000000000000000000000000..4128c7074765311e2a0701b01f6231ca26d16fe0 --- /dev/null +++ b/data/part_1/0946491058.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b00193982d25045998856682c24a19ff","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/e2313a5f-b270-4cd1-b1c4-e0bc6e4b82b7/retrieve","id":"1408796234"},"keywords":[],"sieverID":"1a783494-f40c-42dd-9ff3-b6b580574179","pagecount":"6","content":"Developing a sustainable and resilient seed system is vital for enhancing agricultural productivity and ensuring food security in Nigeria. This brief highlights the successful implementation of a stage-gate approach in introducing new potato varieties in Nigeria, offering valuable lessons for improving research and development efforts. The collaboration between the Nigeria Potato Seed Security Partnership (NPSSP) project, National Root Crop Research Institute (NRCRI), and Fruit and Veggies Global Ltd. resulted in the successful introduction of four potato varieties, namely Babban, Juriya, Kyau, and Unica with an explicit focus on trait combinations for climate resilience, disease resistance, and processing qualities, targeting differing CIP thanks all donors and organizations that globally support its work through their contributions to the CGIAR Trust Fund. https://www.cgiar.org/funders/agro-ecologies. These varieties received formal approval for registration and release in June 2023, marking a significant milestone as the first new open-access varieties to be introduced in nearly a decade. They are high yielding and carry more robust, market-demanded traits than those currently grown, striking a balance in addressing farmers' limited ability to purchase inputs and meeting diverse market demands. Newly released open-access varieties are pivotal to stimulating market interest and simultaneously uplifting the local seed system. Deployment of newly released varieties is a viable option for variety and seed system development. Increasing farmer access to these varieties that are adapted to different local conditions will help strengthen food and livelihood security in the country.To adapt to the changing climate and build resilience to pests and diseases, farmers need access to a range of affordable quality seed of varieties that are adapted to meet local needs, markets, and agro-ecological environments, such as Babban, Juriya, Kyau, and Unica -the four new varieties released in Nigeria. Nigeria is a major potato producer in Africa, with a large cultivation area of about 350,000 hectares and a strong reliance on potatoes as a cash crop. The crop's potential is evident, as it offers nutritional benefits and climate resilience, producing more food per unit of land and using water efficiently compared to many cereals. However, challenges hinder the realization of this potential. Actual yields fall short of demand at just 3-4 tonnes per hectare due to limited access to improved varieties and affordable seed. High incidences of diseases are also a concern, resulting from inadequate crop management and the reuse of infected or low-resistant varieties. The adoption of better-quality seed, improved potato varieties, and Good Agricultural Practices (GAP) could significantly improve yields.Further, Nigeria's reliance on seed importation has been very unsustainable due to the complex logistics, lengthy process, and huge cost involved making the seed too expensive for farmers. This was aggravated by the disruptions caused by the COVID-19 pandemic, which further reduced seed availability. Production of early-generation seed (EGS) from European varieties is restricted due to proprietary rights. Without the starter material (tissue culture planting materials), developing new potato varieties and seed systems is not possible.Local seed production is needed to boost seed security, giving producers and policymakers a viable alternative that complements seed imports, to enhance resilience to future natural, political, or economic shocks.Addressing these issues is vital to unleashing the full potential of potato production in the country, promoting food security and economic opportunities for farmers and communities. To achieve this, the first crucial step is to establish a sustainable and resilient seed system capable of adapting to local conditions. An initiative undertaken by the NPSSP project in collaboration with NRCRI and Fruit and Veggies Global Ltd., with support from GIZ, demonstrated the importance of embracing a holistic approach in introducing new open-access potato varieties that are well-suited to the local environment. Embracing such local-based solutions can significantly enhance agricultural productivity and contribute to the livelihood security and overall development of Nigeria's potato sector.For nearly a decade, Nigeria faced significant challenges in its potato seed system as new varieties had not been released during this period. Relying on imported seed, the available stock degenerated and remained unchanged for an extended period. Existing varieties were not open access and were protected by proprietary rights, hindering the seed system and varietal development program in the country. Moreover, proprietary rights restricted seed cleaning and multiplication as the owner's permission was required, further complicating seed system development. This limitation also affected the availability of diverse varieties for various market segments in the country. Recognizing these constraints, stakeholders within Nigeria expressed the urgent need for open-access, climate-smart, disease-tolerant, and market-responsive robust varieties to bolster seed security and agricultural development.The International Potato Center's breeding team initiated a collaborative effort with national stakeholders in Nigeria to identify desired characteristics for potato varieties suited to the country's diverse agro-ecologies, and to meet consumer demand and market needs. Utilizing valuable input from stakeholders, the breeding team selected 10 advanced clones from the CIP breeding program that precisely met the identified criteria and needs of the Table 1. Evaluation and activities undertaken for the release and registration of new potato varieties in Nigeria Nigerian context. Subsequently, the selected advanced clones were presented to stakeholders for consideration.Local partners played a pivotal role in facilitating the smooth importation of the selected materials as tissue culture plantlets by preparing import permit. Once in Nigeria, these valuable plantlets were preserved and multiplied at the International Institute of Tropical Agriculture (IITA) located in Ibadan, ensuring the availability of material for selection through on-station, multilocation, and on-farm testing and evaluation process, and their nomination for variety release and registration process.The collaboration between public and private sector stakeholders proved instrumental in creating a local multiplication mechanism for the imported materials.The National Root Crop Research Institute (NRCRI) and Fruit and Veggies Global Ltd established seed multiplication units within their facilities, adopting the efficient Rooted Apical Cutting (RAC) technology. This allowed for rapid multiplication and bulking of the introduced material, ensuring a sufficient supply of seed for the release and registration process. While two out of the ten varieties did not survive during the multiplication process and were excluded, the remaining varieties thrived.Remarkably, within less than a year, these two institutions successfully produced the required amount of seed needed for the variety release and registration process.The eight advanced clones were submitted for evaluation for variety release and evaluation following the guidelines for registration and release of new crop varieties in Nigeria by the National Centre for Genetic Resources and Biotechnology (NACGRAB) ( Trials took place at NRCRI-Kuru in both the 2022 and 2023 cropping seasons. Planting and field management followed recommended GAP. Nicola and Marabel were used as local checks/controls. Data were collected on growth, canopy size, height, number of leaves and stems, stem diameter, tuber number, and weight as well as its resistance to diseases including late blight and bacterial wilt.Trials took place in both the 2022 and 2023 cropping seasons in eight locations across three states with the eight genotypes, and two local checks/controls, Nicola and Marabel. Planting and field management followed recommended GAP. Similar data were collected to those gathered in the on-station trails.Out of the original eight, six were evaluated in fifteen locations across three states.To ensure effective and objective evaluation from farmers, the trials were designed so that individual farmers got the seeds of three test genotypes and the two local checks/control varieties, Nicola and Marabel. This is to indicate the potential acceptability and adoption of test genotypes as substitutes or replacements over local varieties.Composition analysis and sensory testing 10 kg of tubers from each genotype were subjected to additional testing. Four tubers were analyzed to understand their composition -fat, moisture, protein, fiber, and ash content -while the remaining tubers were processed into boiled tubers, French fries, and chips which were then tested by consumers in a participatory way who rated them in terms of how much they liked (or did not like) the end products.Based on a series of evaluations, the project team recommended the release and registration for commercial use of six best-performing genotypes: CIP381381.13, CIP392797.22, CIP393371.157, CIP393371.58, CIP398190.200, and CIP398208.29 to the National Crop Varieties and Livestock Breeds Registration and Release Committee.The candidate varieties surpassed the yield of local checks by more than two-fold across all locations of on-station trials and the yields were stable across all the sites and seasons. This is corroborated by comparably higher yields in both multi-location and on-farm trials. Candidate varieties also showed relatively higher levels of resistance and tolerance to most common potato diseases such as late blight, bacterial wilt, and potato viruses compared to the local checks. The proximate composition of these candidates also indicates superiority in terms of ash, fiber, protein, starch, and Vitamin C content compared to the local checks.The candidate varieties not only have exceptional performance in terms of yield and disease resistance but also have desirable quality traits such as high dry matter content, tuber shape and size, tuber skin, and flesh color, which make them highly promising addition to the Nigerian potato industry based on their adaptability and fitness for different market segments. The stage-gate approach adopted ensures a structured and systematic evaluation of candidate varieties at different stages of the introduction process. Each stage serves as a gate, allowing only the most promising varieties to progress to the next phase. This helped in identifying and promoting varieties with a higher potential for success and impact. The approach also ensured that stakeholders, including farmers, researchers, and other experts, are actively involved in the evaluation and decision-making. This participatory approach ensures that the released varieties align with the needs and preferences of the end-users, increasing the chances of successful adoption.The public-private partnership between NRCRI and Fruit and Veggies Global Ltd. exemplifies the importance of collaborative efforts, stakeholder engagement, and innovative approaches in successful variety introduction, release, and registration in Nigeria's agricultural sector.The partnership leveraged the expertise and resources of both public and private entities. NRCRI brought its research capabilities and knowledge in breeding, while Fruit and Veggies Global Ltd. contributed its experience in seed multiplication and distribution. This synergy allowed for a more comprehensive and efficient approach to variety introduction.The successful establishment of seed multiplication units at the facilities of both NRCRI and Fruit and Veggies Global Ltd. highlights the importance of local-based solutions in variety introduction, release, and registration in Nigeria. By developing a local seed system, the partnership has significantly improved farmers' access to quality seed and increased the availability of improved varieties. This shift towards local seed production reduces the country's reliance on seed imports, promoting self-sufficiency and resilience in the agricultural sector. Moreover, the local breeding program's development enables a more agile response to","tokenCount":"1745"} \ No newline at end of file diff --git a/data/part_1/0947762973.json b/data/part_1/0947762973.json new file mode 100644 index 0000000000000000000000000000000000000000..6bc6f4053adb5efa298d88edb9a9d49441bd9bb1 --- /dev/null +++ b/data/part_1/0947762973.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"910c95cfa75b3a382e6c1212fba723b4","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/11d679f2-ae01-4a2f-95e1-a89b298cdf02/retrieve","id":"1184711541"},"keywords":["www","climatesecurity","cgiar","org Africa Climate Crisis Security Observatory www","climatesecurity","cgiar","org Climate Security Observatory Series"],"sieverID":"c208f6e4-b066-42a2-8121-682d4709e3d6","pagecount":"18","content":"This factsheet gives answers on how climate exacerbates root causes of conflict in Kenya, using a climate security pathway analysis. Two main pathways are identified:Climate Security Observatory Series : Impact Pathways KENYA This publication is part of a factsheet series reporting on the findings of the CGIAR FOCUS Climate Security Observatory work. The research is centered around 5 questions*:How does climate exacerbate root causes of conflict?1. Resource availability and access: Climate-related impacts limit the availability of valuable resources such as water, pasture, livestock, and fish, making access to these resources highly contested. This is especially true in the country's drought-affected arid and semi-arid lands (which cover more than 80% of the land area), where small-scale resource-related conflicts between pastoral groups are facilitated by the proliferation of small arms, as well as grievances fed by marginalization, a lack of basic services, limited employment opportunities, weak governance, and erosion of formal institutions. The resulting climate-related insecurity has the potential to spread across administrative boundaries within Kenya as well as internationally.Rising temperatures, erratic rainfall, and flooding all threaten climate-sensitive livelihoods and food security by reducing agricultural productivity. Rural populations may migrate to other rural or urban areas in response to rising food prices, food and nutrition insecurity, and a lack of alternative livelihood options. The strain on local infrastructure and resources can exacerbate tensions between host communities and migrants. Those who remain in rural areas, particularly dissatisfied youth who lack access to education and employment, may become targets for recruitment by armed groups offering financial incentives.Tanaya Dutta Gupta, Gamal Mohamed Hassan, Abdimajid Nunow Abdi, Ignacio Madurga-Lopez, Theresa Liebig, Leonardo Medina Santa Cruz, Niklas Sax, Peter Läderach and Grazia PacilloWith a diverse topography and with more than 80 percent of land area under the fragile arid and semi-arid lands (ASALs) ecosystem, Kenya experiences a mix of climatic conditions: from the hot and arid north and northeast, a hot and humid coastline, to the cooler and more temperate central highlands (The World Bank Group, 2021). Kenya's western, central, and coastal areas, while comprising less than 20 percent of the entire country, are home to 90 percent of its 55 million population. These densely populated areas also feature a rich natural resource base, including forests, wetlands, aquatic and marine resources, together with productive and primarily rainfed agricultural land (The World Bank Group, 2021).Unlike temperatures, there is high variability in rainfall across the country. While characterized by two distinct wet seasons, rainfall patterns in Kenya are also heavily influenced by shifts in the Inter Tropical Convergence Zone (ITCZ). Geographical and seasonal variations in rainfall are not only connected with extreme rainfall events and flooding, but also to prolonged droughts, both of which have become more common in recent decades. Drought cycles now occur every 2 to 3 years, whereas earlier they were recorded every 5 to 10 years. Along with drought, extreme flooding remains one of the leading causes of land degradation and soil erosion, adversely affecting the highly climate-sensitive livelihoods of the rural poor (The World Bank Group, 2021). Moreover, long-term average temperatures in Kenya are projected to rise (1.7°C by the 2050s and 3.5°C by the end of the century) across all emission scenarios (Ministry of Environment and Natural Resources, 2016;The World Bank Group, 2021).As a country highly exposed to ecological threats, Kenya faces serious consequences from both drought and flooding (Institute for Economics & Peace, 2020, The World Bank Group, 2021). There have been 28 recorded incidents of severe drought in the past 100 years and the increasing frequency and severity of such events have had huge socio-economic impact. For example, the economic cost of the 1998 to 2000 drought was approximately $2.8 billion, mainly owing to the loss of crops and livestock, damage to fisheries, and the adverse effects on energy production and water supply (National Environment Management Authority, 2015). This severe drought affected food security for millions of Kenyans, while rising temperatures also resulted in the further spread of diseases like malaria (Government of Kenya, 2010). As of 2022, people in Kenya´s ASAL regions have experienced a fourth consecutive below-average rainy season (OCHA, 2022). This ongoing drought is the longest reported in the country for over 40 years, and has left at least 4 million people experiencing acute food insecurity. The amount of people without access to water has increased by 50% in the last year alone, and pastoral communities have faced significant losses in livestock, with more than 1.5 million cattle having died as a result of drought.Faced with these challenges, socio-economically disadvantaged Kenyans are becoming increasingly more exposed and vulnerable. Owing to their physical locations in hazard-prone zones, counties like Baringo, Kisumu, West Pokot, and Laikipia face a risk of disaster, necessitating significant investment in protection measures (Development Initiatives Kenya, 2019;Ministry of Foreign Affairs, 2018). Furthermore, while low-lying coastal plains and wetlands remain at risk from saltwater intrusion and storm surges due to rising sea levels, other areas in the country face water stress as glacial losses on Mount Kenya and inland flooding contribute to diminished availability and quality of water for agricultural, energy, and domestic use (USAID, 2018).The agricultural sector (including crop, livestock, and fisheries sub-sectors), contributes around one-third of Kenya's GDP and is highly vulnerable to the impact of climate variability and extremes.Supporting more than 70 percent of the rural population (FAO, 2021), this sector, serving as a major source of food production and livelihood security for the rural poor, remains heavily dependent on seasonal rains (The World Bank Group, 2021). Climatic stressors such as rising temperatures, rainfall variability and increasing frequency and intensity of drought and floods have caused huge losses and damage to crops and livestock, with serious consequences for human lives and security (Government of Kenya, 2015;USAID, 2018).Despite being one of the fastest growing and largest economies in Sub-Saharan Africa, Kenya continues to face challenges related to poverty, inequality, weak investments, and corruption, as well as internal and external shocks (World Bank, 2021). Economic disruptions due to the COVID-19 pandemic, along with pressure on health care infrastructure, have exacerbated these challenges.With a major portion of the population living in poverty, and a widening gap between rich and poor, more than two-thirds of families in Kenya experience vulnerabilities due to food insecurity and poor nutrition and health outcomes (USAID, 2021). Further, as a net wheat, fuel, and fertilizer importer, Kenya's economy remains vulnerable to global price shocks, such as that from the Russia-Ukraine war (World Bank, 2022a).In comparison to most of its neighbours with violent histories of civil conflict, Kenya has enjoyed prolonged civil peace, albeit punctuated with brief periods of violence (Theisen, 2012). In this ethnically and culturally diverse context, violence has usually been found to be associated with the occurrence of elections, especially during the polls that took place in 1992, 1997, and 2007(Theisen, 2012)).Following the violence around the contested 2007 election, the fragile states index (FSI) for Kenya peaked. Effects of this violence led to long-term population displacement, domestic supply chain disruptions, and food insecurity (Kenya Food Security Network, 2008). A reformed political economic governance system was introduced with the passage of a new constitution in 2010, and an ambitious decentralization process initiated aimed to transfer autonomy and decision-making power to county governments at subnational level (Kebede et al., 2021;World Bank, 2022). Devolution remains a key factor for Kenya, with implications for shaping local decisions and adaptive capacity of vulnerable communities in the face of worsening climatic shocks and stresses.Unlike some of its neighbours, Kenya enjoys relative stability and an absence of civil war. Nonetheless, there are occurrences of small-scale intercommunal resource-related conflict, along with political disputes and tensions, spanning different regions of the country. In the arid and semi-arid lands, for instance, where pastoralism features as the main source of livelihood, climate-induced scarcity of land and water has been connected with resource-based violent conflicts (Government of Kenya, 2015).Prominent examples include violence between groups such as the Samburu and Pokot, and between the Turkana and Pokot, (Greiner 2012;Ide et al., 2014). In Machakos and Makueni Counties of Eastern region, there has been an observed rise of conflicts over pasture and water in the last few years, undermining inter-communal peace (Maguta et al., 2020). This has possible spillover effects across Kenya's internal administrative boundaries as well as international boundaries with neighbouring countries.While climate may not be directly responsible for driving such localized conflict dynamics, the impact of climate variability and extremes, interacting with a range of socio-economic and political factors, can shape and exacerbate risks of human insecurity, conflict, and fragility. How might such indirect and complex linkages between climate and conflict, quite extensively studied for the African continent (Scheffran et al., 2019), manifest in a context like Kenya? The following pathways represent logical mechanisms of how the climate-security nexus may operate in Kenya, based on a triangulation approach combining: 1) a systematized search and interpretation of existing knowledge in academic and grey literature; 2) key points of discussion emerging from the June 2022 ClimBeR Climate Security workshop held in Nairobi; and 3) preliminary findings from fieldwork conducted in September 2022 across specific sites representing distinct ecosystems and livelihoods within Kenya.Climate-induced impacts on land, water, and food systems across Kenya may not only limit the availability of precious scarce resources, including water, pasture, livestock, and fish, but also make access to these resources highly contested. This is especially the case in the drought-affected arid and semi-arid lands (or ASALs, comprising more than 80 percent of land area in the country), where small-scale resource-related conflict between pastoral groups, usually manifesting in the form of livestock raids by male youth, are exacerbated by the proliferation of small arms, along with grievances fed by experience of marginalization, lack of basic services, limited employment opportunities, weak governance, and erosion of legitimacy of formal institutions. The resulting climate-related insecurity can spillover administrative boundaries within Kenya as well as across international boundaries.The effects of climate variability and extremes, interacting with existing socio-economic and political factors, can increase the risk of violence between communities relying on climate-sensitive pastoral livelihoods. The \"spiral of violence\" between Turkana and Pokot communities, for instance, can be connected to grievances fed by the experience of marginalization and insecurity, exacerbated by drought, heat stress, diseases, and hunger affecting the livestock, which could even lead to their death (Scheffran et al., 2014, USAID, 2018, Siedenburg, 2021).Livestock deaths are potentially both economically and culturally devastating for pastoralists, who might move in search of water, pasture, and market access to avoid losing their livestock, coming into conflict with other communities seeking the same resources (Siedenburg, 2021). An increasing frequency of drought not only affects livestock health, but also threatens pastoral livelihoods by affording pastoralists less time to recover from livestock losses (Schilling et al., 2014;Opiyo et al., 2015).Contested access to scarce resources like water, pasture, and livestock, along with the availability of small arms can shape risks of insecurity and violence, typically manifested in the form of livestock raids carried out by male youth (Scheffran et al., 2014).Neither drought nor conflict are new phenomena in Kenya's ASALs. Pastoral communities like the Turkana have historically depended on alternative tactics, including mobility and use of social networks, to access resources like pasture and water spanning over large areas, with accompanying ecological benefits (Akall, 2021;Western et al., 2020). Declining drought resilience, land degradation, together with land use changes and conversion for agricultural development and wildlife reserves, have led to a breakdown of traditional pastoral institutions based historically on social reciprocity and resource regulation (Western et al., 2020). As a logical consequence, when faced with the impact of climate variability on resource availability, as evidenced through an increase in prevalence of drought and diseases, and in a context characterized by access to small arms and deepening reliance on famine relief, there would likely be conflict over limited resources, including livestock (Blackwell, 2010).In a study on Turkana County, Ember et al., (2012) find that the intensity of violence is associated with periods of less than normal rainfall. The reasoning for this is framed around the desperation of groups seeking survival in situations of scarcity and where access to resources cannot be arranged peacefully.Conversely, other research has found that drier periods in the drylands potentially reduce the risk of conflict and increase the possibility of cooperation, making violent incidents like livestock raiding much less likely (Witsenburg & Adano, 2009). This has been attributed to the imperative for survival during harsher conditions, a decline in the economic value of livestock, and realization that \"fighting during a drought is suicidal'' (Eaton 2008), making times of hardship during drought-induced scarcity relatively peaceful. Indeed, there is strong evidence for the time following wetter years to be less safe than the drier years (Theisen, 2012), fueling opportunistic behavior as more time and effort can be given to strategically plan raids (Seter, 2016). Hence, rather than scarcity, conditions of abundance, including periods with more abundant vegetation, seem to be associated with a greater risk of violence and a higher incidence of livestock raiding (Meier et al., 2007, Witsenburg & Adano, 2009). Furthermore, little evidence has been found that scarcity in itself and in election years would lead to violence (Theisen, 2012). This is not to say resource scarcity or abundance by themselves inevitably lead to conflict, but rather to underline that under certain conditions the availability and access to water, pasture, and forage, due to unreliable rainfall, may inform risks of conflict among pastoral groups who depend on these resources for their livelihood security.For example, empirical evidence from community conservancies in Laikipia and Samburu counties of northern Kenya reveals the influence of climate on conditions of resource scarcity and competition, which can heighten the risk of insecurity and conflict. But the extent to which climate may act as a risk multiplier in this context, and at what point competition over critical resources may catapult towards violent conflict, depend on the question of \"how resources are managed in times of scarcity\" as well as the adaptive capacity of communities (Campbell et al., 2009).Moreover, conflict can itself be a part of the political dynamics of adaptation instead of being a factor inhibiting local adaptive capacity. This is the case in areas like Turkana, where the loss of livestock in raids that are increasingly becoming more violent and predatory, carry implications such as impoverishing 1 This report combines key insights emerging from a series of common visioning exercises around the climate security nexus in the ASALs, conducted with 45 diverse stakeholders working across humanitarian, development, climate, and peace sectors in Kenya.social networks and ties that previously played a key role in replenishment and exchanges through loans and gifts (Eriksen and Lind, 2009).Insights from a recently conducted fieldwork (Medina et al., in press) in Kenya reveals that communities in other parts of the ASAL region are also witnessing increasing intensity of violence during livestock raids. For instance, the Yakuu Indigenous Peoples of Mukogodo forest, living in an ecotone between the arid and fertile rangelands around Mount Kenya, have traditionally experienced instances of cattle rustling by neighbouring communities. Cattle rustling, although involving acts of violence, is also a long-established and culturally accepted practice, aiding in cattle replenishment, dowry exchange, and representing a rite of passage for male youth \"warriors.\" Individual instances of rustling are not necessarily deemed an act of conflict by the Yakuu community. Today, however, cattle rustling dynamics have shifted significantly. Death of cattle is a constant stressor for pastoralist wellbeing, mostly fuelled by drought, lack of pasture and diseases-all related to the effects of climate change.Longer migratory routes, adopted by pastoralists due to a lack of pasture in the more arid regions to the north, imply that a higher number of pastoralists now come in contact inside and around Mukogodo. In recent years, members of the Yaaku report a noticeable increase in the frequency and intensity of rustling conducted by neighbouring communities, which they directly relate to the impacts of drought over livelihoods and the availability of resources. Attacking raiders not only steal cattle, but also destroy infrastructure and displace people to secure access to land, waterholes, and pasture. This is echoed in key insights emerging from discussions during a June 2022 workshop on climate security held in Nairobi as part of the One CGIAR initiative: Building Systemic Resilience against Climate Variability and Extremes (ClimBeR). As highlighted in a pathway named \"warrior culture\" in the workshop report \"Towards a Common Vision of the Climate-Security Nexus in Kenya\" 1 (Medina et al., 2022), there is a significant gap in how climate-induced resource scarcity might influence \"religious environmental sense-making\" of pastoral communities in the ASALs, with the potential to shape localized conflict dynamics \"driven by sacred beliefs around entitlements and attachments to cattle.\" Group discussions with experts and practitioners during the workshop revealed that religious organizations, including churches, other faith-based organizations and even non-state armed groups with certain religious orientation can facilitate both radicalization as well as peacebuilding through resource sharing and cooperation, by offering resource support and filling a vacuum created by regional marginalization, lack of basic services, and eroding legitimacy of governmental institutions.Furthermore, influenced by a development policy bias of the state that has overlooked pastoralism as a viable livelihood in the drylands, relief operations have historically tried to relocate herders to more sedentary activities like fishing and irrigated agriculture schemes, leading to a shift away from livestock-keeping (Eriksen and Lind, 2009). Such strategies, under a conventional development paradigm, are not only ineffective in reducing inequity in distribution of resources, they also erode the legitimacy of formal institutional interventions by failing to consider local needs, aspirations, and adaptation efforts. Thus, conflict-sensitive institutional arrangements such as peace committees, and governance mechanisms considered critical for fostering cooperation and peace, could be disregarded as being imposed structures in parts of the ASALs (Eriksen and Lind, 2009;Adano et al., 2012;Scheffran et al., 2014). This is evidenced in conservation efforts involving rural communities as participants and beneficiaries, which though intended to ameliorate existing conflict outcomes actually result in the opposite, heightening risks of further conflict over communal resources. In the drought-prone East Pokot, along with neighbouring counties of Samburu, Turkana, Laikipia and Baringo, violence associated with livestock raids, and facilitated by the proliferation of small arms and weapons since the 1980s (Mkutu, 2008), is increasingly becoming embedded in politically-driven conflicts over control of land, infrastructure and territorial rights along ethnic lines and administrative boundaries (Schlee, 2010, Greiner, 2012). This can be negatively influenced by interventions in existing land use and tenure systems, such as the establishment of conservancies on group ranches that limit pastoral mobility and alienate groups from existing claims over lands, especially if they fail to consider regional communal dynamics related to past and present struggles over access and use of common pool resources (Greiner, 2012).Extractive activities like oil exploration with the discovery of reserves in northwestern Kenya, mainly in Turkana and surrounding areas, have the potential to amplify already existing climate vulnerabilities and conflict risks (Schilling et al., 2015). Oil extraction in the region has been justified by the government as contributing to national economic growth, facilitated by a marriage of interests between local elites and external investors. But this process can have detrimental consequences for the local environment and people of this region, through pollution of land and water, dumping of toxic wastes, disruption of pastoral migration routes, as well as marginalization and displacement of local populations (Mkutu and Mdee, 2020). This rush to extract oil could further feed a downward \"spiral of violence\" and vulnerability, aggravating existing climate-related conflict dynamics between the Turkana and Pokot communities in this arid area, one already harshly impacted by rainfall variability and frequent droughts (Scheffran et al., 2014).The risk of conflict between local communities and the oil interests may be amplified, as expectations around employment and development remain largely unmet in a region already suffering from weak governance and lack of access to basic services and security (Schilling et al., 2015). Adequate resource governance efforts, including institutional mechanisms for land use and rights, sharing of oil revenues among different stakeholders, as well as for mediating non-violent interactions between local communities, oil companies and the government, would be needed to address and mitigate this potential vicious cycle of climate-resource-conflict nexus (Schilling et al., 2015).Moving the spotlight from the pastoral dynamics to livelihoods based on farming and fisheries in the arid and semi-arid lands as well as other parts of the country can help illuminate how Pathway #1 might operate in specific sub-national contexts. Communities in Burat and Kinna of Isiolo County engaged in agricultural livelihoods, and dependent on natural resources like water, strongly perceive the impact of drought in terms of water stress, crop failure and declining yields. Under particularly harsh drought conditions, households relying on irrigation have also turned to erosive coping strategies such as charcoal making, using nearby forest resources. Conflicts over scarce resources were reported from these communities, mainly in the form of livestock raiding, inter-ethnic clashes, and disputes with local wildlife authorities over access to grazing lands within the Meru National Park (Quandt, 2021).With livestock an important asset for millions of rural Kenyans, conflict occurs not only between drought-affected pastoral groups but also between mobile pastoralists and sedentary farmers competing for diminishing resources, including water, land, and fodder (Mugonya and Hauser, 2022).For example, increasingly frequent droughts and erratic rainfall have amplified resource-related conflicts between Pokomo farmers and Orma herders in the Tana River Delta. While the Pokomo inhabit the riverbanks to cultivate crops in this wetlands area, the Orma herds, needing access to the river, pass through the agricultural lands, resulting in damaged crops and sparking intercommunal conflict. With the violence reaching a peak ahead of the 2013 elections, there was not only mistrust between the communities, but also toward the authorities, with local people securing arms for their own protection (Climate Diplomacy, 2012).Along with access to water, the question of effective governance of land resources is key to understanding the dynamics of cooperation and conflict over resources. This is especially relevant in livelihood transition zones, where actors depend on diverse livelihoods yet the same resources may collide with each other. Triggers like drought or political tensions around elections can tip the scale toward violent conflict (Greiner, 2013;Fox, 2018). For instance, recent research on Mukogodo forest in Laikipia County has found that in this zone of transition from pastoralism to agro-pastoralism, with a variety of land tenure arrangements, users and overlapping claims to resource rights, there exist tensions between multiple actors at multiple levels of governance and decision-making over forest and rangeland resources-national and county governments, communities, and NGOs. Despite a devolved governance system and the passage of the Community Land Act of 2016, the replacement of traditional mechanisms of cooperation by formalized institutions may erode social cohesion and exacerbate alienation, further marginalizing those historically deprived of formal rights to these land resources (Muok et al., 2021).Struggles over access and rights to resources characterize the condition of several communities across Kenya, especially those facing the increasingly harsh impact of a changing climate amidst global shocks and an evolving political-economic landscape. Drawing on preliminary insights from recently conducted fieldwork in the country, the experience of the Endorois community can exemplify such dynamics. The Endorois Indigenous Peoples, inhabitants of the area around Lake Bogoria for several centuries, were forcefully displaced by the Kenya government in the 1970s for the creation of Lake Bogoria Game Reserve. The community has since the 1980s organized in demanding the restoration of their rights and compensation for past injustices. More recently, the Endorois have been experiencing violent attacks from the neighbouring Pokot, with characteristics like other tribal territorial conflicts across Kenya. Driven by election-based violence, these conflicts have continued to revolve around political boundaries, access to land and the interests of political and economic elites.With thousands of internally displaced persons (IDPs) dwelling within the Endorois territory, many hundreds killed, dozens of thousand livestock stolen or killed, and infrastructure like water tanks and roads destroyed, the Endorois people today reject the term \"cattle rustling\", referring instead to \"terrorism\". Given that poverty and marginalization drive the recruitment of Pokot youth, mainly 13 to 20-year-olds participating in the attacks, increasing degrees of vulnerability could be understood as enhanced through climate impacts, rendering young populations more susceptible to recruitment for violence. At the same time, the effects of conflict have worsened Endorois' vulnerability to climate risks y undermining collaborative and adaptive capacities.Compared to populations engaged in pastoral and agricultural livelihoods, communities relying on fishing can be found scattered across the country, located along the coastline, wetlands, and lakeshores. Traditional fishing activities in lakes and floodplains around the Tana River have decreased over recent decades with the decline in fish yields (Leauthaud et al., 2013). This can be attributed to changes in the frequency and duration of floods, and the resultant drying up of lakes, along with dwindling populations of fish that served as a vital resource and source of identity for the Pokomo community. Artisanal fishing communities mostly live without alternative sources of income, and with low levels of education-factors which make them highly dependent on natural resources (Dzoga et al., 2019). Changes in the flooding regime, reduced water availability, and climate-induced degradation of productive capacities have spelled serious consequences for human security and social cohesion in the region (Leauthaud et al., 2013). Along Kenya's coastal lowlands, there are households dependent on marine fishery resources (Somoebwana et al., 2021). Fish catches in these fisheries are affected by warming seawater temperatures and the variability of the monsoons, influenced by El-Niño/La-Niña events (Kamau et al., 2021). With a growing population dependant on coastal resources, and climatic stressors projected to alter ecosystem dynamics, effective management and governance of near-shore fisheries becomes critical for avoiding resource over-exploitation and habitat degradation, with long-term benefits for the Blue Economy (Kamau et al., 2021).Commercial fishing in offshore waters also faces governance issues related to Illegal, Unreported, and Unregulated (IUU) fishing, at great cost to the country's economy (Benkenstein, 2018). Kenya's maritime governance, crucial to ensure access to coastal resources, is complicated by boundary disputes with the neighbouring countries of Somalia and Uganda. While the dispute with Uganda is around an island on Lake Victoria, the dispute with Somalia is over demarcation of a maritime boundary needed to strengthen security in the context of surging Somali-based maritime piracy in the Indian Ocean after 2005, as well as non-traditional security challenges, including illegal fishing, disasters, climate impact, marine pollution and the smuggling of drugs, weapons and people (McCabe, 2019). Overall, there remains an obvious gap in the literature around the role of fishery resources in influencing climate-related security of Kenyan communities.Nevertheless, any understanding of climate security pathways in Kenya focusing on 1) availability and access to land and water resources, as well as 2) livelihood and food insecurity, remains incomplete without adequately considering the transboundary dynamics and spill-over effects linking the impact of climate on localized and cross-border conflict outcomes.PATHWAY #2: Livelihood and food insecurity Summary Livelihood and food insecurity can act as an mediating mechanism between climate and conflict risk, not only in the context of drought-induced resource scarcity, but also in relation to risks of flooding. Rising temperatures and rainfall variability challenge climate-sensitive livelihoods by affecting productivity of agriculture, livestock, and fisheries. Rural populations confronted by rising food prices, food and nutrition insecurity, and lack of alternative livelihood options, may migrate to urban areas. Whether it is internal migrants in urban slums or refugees in camps, the pressure on local infrastructure and resources can fuel tensions between the host community and migrants.On the other hand, those staying in rural areas, especially discontent youth with lack of access to education and employment, may become targets for recruitment by armed groups offering economic incentives.As elaborated in Pathway #1 on resource availability and access, communities practicing climatesensitive livelihoods in the arid and semi-arid lands face risks of conflict with similar or different livelihood groups competing over dwindling resources. Over longer time, they can also experience food and nutrition insecurity, gradual livelihood erosion and eventual livelihood loss. Availability and access to resources including water, land, and food become critical here. In the words of a participant in the ClimBeR climate security workshop:In Kenya, we have seen an increasing frequency of droughts, which are now almost a continuous occurrence and affect an increasing number of people. The decreasing availability of water affects people´s livelihoods in multiple ways and induces conflict amongst communities. As we speak, whole areas of Marsabit are under curfew due to drought-driven conflict. (Joshua Laichena,Discussions during the workshop highlighted the role of food insecurity in mediating climateconflict linkages (Medina et al., 2022). Cattle rustling by male youth from drought-affected pastoral communities could be used to replenish livestock and food reserves. Communities can also turn to alternative-and less harmful-strategies for their source of income and survival. For example, in Turkana, during times of food shortages, a common practice has been to sell livestock for food. Other avenues may include gathering wild food, engaging in informal trade, and providing casual labour (Eriksen and Lind, 2009).With adaptation options in Turkana largely shaped by colonial and post-colonial development policies biased towards \"settling\" pastoralists (Lind and Eriksen, 2006), in past decades irrigation and fishing schemes have been introduced as part of relief operations. However, as fishing or farming alone could not meet all the needs for food and nutrition security, efforts to adopt sedentary livelihoods in such an arid area made pastoral communities even more vulnerable, rendering Turkana a hotspot where climate and conflict risks coincide (Eriksen and Lind, 2009).Empirical research focusing on other parts of the ASALs, such as Laikipia County, find that adaptation pathways are not homogenous for entire communities, but rather shaped by axes of social differentiation, including gender, age, and wealth (Ng'ang'a and Crane, 2020). At the scale of individuals, research finds that those who have reported moving due to drought and water shortages are more likely to experience violence than those who have not (Linke et al., 2018).Whether violence is an outcome or a driver of migration, climate and conflict-induced human mobility and insecurity play a key role in this pathway. The presence of refugees from Somalia and other African countries in the Dadaab camps, located in Garissa County of northeastern Kenya, has been identified as a factor stressing local resources (Kumssa and Jones, 2014). The majority of refugees in these camps are fleeing political instability and violence in Somalia, but their continued influx into this area close to the Kenya-Somali border should also be understood in the context of environmental and socio-economic impact of drought and famine on the region. Short-term humanitarian aid provided by international agencies and other NGOs is inadequate for sustaining the refugees in Dadaab, who are in need of longer-term development support and a durable solution to their plight. With a growing refugee population in and around the camps, there are concerns around reduced economic opportunities, along with human security challenges including sexual and gender-based violence faced by women, in part owing to a dearth of adequate shelter and having to walk long distances to collect firewood. Climatic stressors like inadequate rainfall in this highly drought-prone region compound risks of insecurity, mainly related to food and livelihoods for refugees and host communities alike, pushing them toward erosive activities like cutting trees. In the absence of adequate government policy and capacity-building programmes to address pressure on local resources, such a situation can in turn exacerbate environmental degradation, further fueling tensions between the host community and refugees (Kumssa et al., 2014).More recently in northeastern Kenya, there have been repeated incidents of violence on schools and teachers perpetrated by Al-Shabaab, the Somalia-based militant group opposing the Somali government. In retaliation against Kenya's military deployment to Somalia in 2011 to fight their insurgency, Al-Shabaab's activities in Kenya have mainly focused on bordering northeastern counties like Mandera, Wajir and Garissa, in addition to attacks in the capital Nairobi and a military airstrip in Lamu County. As one of the most marginalized and underdeveloped parts of Kenya, there are glaring regional inequalities between the northeast and the rest of the country, reflected in poor indicators of public health, education, and employment. These inequalities are deeply entrenched in the socioeconomic fabric of the northeast, with its roots in policies developed during the colonial era that largely neglected this Muslim-majority region (The World Bank, 2019).Security risks in this part of the country have continued to persist even after Kenya's policy of devolution, which aims to provide greater autonomy to county governments by distributing power and resources away from Nairobi (The World Bank, 2019). By mobilizing grievances related to persistent inequalities and a sense of marginalization in the region, Al-Shabaab's violent activities have forced the Kenyan government to withdraw all non-local teachers from the affected counties, resulting in what is being called an \"education crisis\" affecting the already long-neglected northeast. Effects of climate variability in this drought-prone region can exacerbate the crisis, with dire implications for security, including livelihood and food insecurity, providing Al-Shabaab with fertile ground to recruit youth discontented with a lack of access to education and employment (International Crisis Group, 2020).Livelihood and food insecurity act as major drivers of conflict risk in other parts of the country as well.In western Kenya, the Nyando river basin, comprising the Kano floodplains and the Nyando wetland, part of the bigger Lake Victoria Basin, represents one such fragile ecosystem, with land use divided between crop production and livestock rearing as the dominant sources of livelihood. According to official statistics of the Kenya government, over 70 percent of the population in this wetland region, which faces an increasing risk of flooding, live below the national poverty level (UNDP, 2009). Weak socioeconomic and health indicators, together with a growing youth population, can explain the heavy dependence of local people on its dwindling natural resource base for subsistence, resulting in over-exploitation and environmental degradation (Raburu et al., 2012).Additionally, the combined effects of variability in rainfall and river discharge, resulting in frequent floods (Kitheka et al., 2021), along with poor infrastructure and lack of access to basic services can compound risks of livelihood and food insecurity, which in turn can have devastating ecological consequences for the wetlands. Furthermore, shifting of rivers and water levels in the region can be linked to risks of human-human and human-wildlife conflicts. These can take multiple forms, including boundary disputes between communities like the Nyakach and Kano, as well as displacement of wildlife such as the hippopotamus due to destruction of papyrus swamps. Another type of risk can be seen emerging in this context, when resource use by local people, such as excessive water use, papyrus harvesting, sand harvesting, or immature fish harvesting, come into conflict with conservation efforts (Masese et al., 2012).For many Kenyans in areas around the lakes, wetlands, and the coast, fish constitute a major source of nutritious food. Harvested fish resources, along with crops, and forest products serve as dietary safety nets during challenging times (Fiorella et al., 2015). With women largely excluded from fishing and trading activities within the local economy, they often enter into jaboya relationships (involving transactional sex-for-fish exchanges) with fishermen to gain better access to fish for selling.Examining how the Lake Victoria ecology can influence these relationships, Fiorella et al., (2015) find that a climate-induced decline in fish catch is resulting in a \"scramble for the fish,\" heightening the importance of jaboya relationships for fish access, albeit with risks of HIV infection and social stigma.Insights from empirical observations during recent fieldwork further reveal the climate-induced livelihood insecurity faced by fishing communities around the Lake Victoria region, such as the Banyala Indiegenous Peoples of Busia County (Medina et al., in press). The Banyala are a traditional fisherfolk community who have been transitioning towards subsistence and small-scale cash crop farming since the 1990s owing to the plummeting of fish stocks in Lake Victoria and increasingly harsh regulation imposed by the Kenyan and Ugandan governments. However, with the increase in flooding, finding viable alternative sources of livelihood is becoming extremely challenging. Despite a reduction in the number of fishermen during past decades, recent years have seen an increase in their numbers. Faced with diminishing fish populations and changing behavioural patterns of fish resulting from the impact of climate change, Banyala fishermen are forced to go deeper into the lake and across the Ugandan border, where they are subject to risks of arrest, torture, and even death by Ugandan authorities and pirates. Kenya's post-independence period has been characterized by government policies protecting industry at the expense of the agricultural sector, which has been relatively neglected and penalized, thereby accounting for high rural poverty levels, limited diversification of agriculture, poor rural infrastructure, and gaping inequalities between rural and urban areas (Alila and Atieno, 2006). Together, they act as a push for internal migration from rural to urban areas, largely driven by livelihood insecurity in rural areas, which, in turn, is increasingly linked to the impact of climate variability on agricultural production, food and nutrition insecurity and lack of alternative livelihood options. The presence of migrants in urban areas puts pressure on urban infrastructure, leading to overcrowded living conditions and competition for jobs, which together with lack of access to public services can fuel ethnic and cultural tensions between urban residents and migrants (Spilker et al., 2020).It is worth noting here the gendered dynamics of rural-urban migration, with men migrating to urban areas for alternative livelihood sources, leaving women in rural areas with the added burden of agricultural and household work. Along with the expectation of adhering to climate-sensitive gender roles in providing food for households, this can make existing structural inequalities even more deeply entrenched; for instance, through denial of land rights and barriers in access to land for women (Etale and Simatele, 2021). The interaction of gender inequality with climate variability and other factors can make women differentially more vulnerable to food insecurity and risks of violence, including genderbased violence at home, despite women playing a key role in climate adaptation efforts.Key insights emerging from the analysis of climate security pathways in Kenya can be summarized as follows:1. Firstly, the two pathways discussed above do not operate in isolation. Rather, they are interdependent and mutually reinforcing. Lack of adequate access to critical resources may challenge livelihood and food security, while livelihood and food insecurity may further push people toward harmful alternative strategies that lead to degradation and depletion of vital resources.2. Secondly, there are linkages and inter-dependencies between the ASAL and non-ASAL regions that can become especially visible in the livelihood transition zones. Climate-induced resource depletion and scarcity in the ASAL region can exacerbate competition and overlapping claims over limited resources that can be found in the non-ASAL regions.3. Thirdly, the climate-security nexus in Kenya represents a vicious cycle between climate and conflict. The impact of climate, acting as a \"risk multiplier,\" can indirectly influence conflict risks through intervening mechanisms, the effects of which then further restrict coping and adaptive capacities when confronted by the impact of conflict on resources and livelihoods. 4. Fourthly, although there is a growing understanding of the climate-security nexus in Kenya as captured in academic and grey literature, the empirical focus to examine climate-conflict linkages remains overwhelmingly on pastoral livelihoods. There is scope for a more nuanced understanding and unpacking of the nexus in the context of agriculture and fishery-based livelihoods.5. Finally, the analysis of climate security pathways for Kenya reflects the need for more empirical examinations of intervening mechanisms through which climate impacts may indirectly amplify and translate into conflict risks. Developing multi-methods research frameworks with complementary quantitative and qualitative analyses could be the way forward.","tokenCount":"6587"} \ No newline at end of file diff --git a/data/part_1/0959201559.json b/data/part_1/0959201559.json new file mode 100644 index 0000000000000000000000000000000000000000..8412f5e559f0093fd14b6e0626efddf3d50be78e --- /dev/null +++ b/data/part_1/0959201559.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"5a2297e6c6a6c0b0f7f8a72199ec98ee","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/009ba0cc-1b3e-433d-8c2f-89deb6295e98/retrieve","id":"2094128941"},"keywords":["No milestones associated Sub-IDOs: Contributing Centers/PPA partners: Evidence link: • www","shademotion","net"],"sieverID":"cee5b7a7-0aed-452a-a551-b47be5543cee","pagecount":"2","content":"A conceptual framework was develop to aid researchers and practitioner to optimally design the shade canopy of tree crop systems such as coffee and cocoa. The framework was published in an all encompassing book on the state of the art of science in cocoa covering all aspects of agronomy, economics and policy science in this field. As a complement to the conceptual framework, a simulation software (www.shadeemotion.net) was prepared to explore how shade canopy trees provide the right levels of shade to the understory crop and help agronomy to decide on the interventions needed to adjust shade canopy design to both the objectives of the farmers and the need and tolerance to shade of the main crops in the understory.","tokenCount":"120"} \ No newline at end of file diff --git a/data/part_1/0981437810.json b/data/part_1/0981437810.json new file mode 100644 index 0000000000000000000000000000000000000000..8c9a366ce077b636c65779eed98e28d6b2331b1b --- /dev/null +++ b/data/part_1/0981437810.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c8472b1245804866aab9324e23b59e19","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6c9d7bc5-79dc-4c42-adcd-f9890a7984f8/retrieve","id":"-1449522995"},"keywords":["AdobeStock","pvi: Thiébaud Faix/Unsplash","p7: Zeke Tucker/Unsplash","p23: Benjamin DeYoung/Unsplash","p33: Edvin Johansson/Unsplash","p35: Przemyslaw Stroinski/Unsplash"],"sieverID":"d81aae77-7a22-4b3e-b5bd-add9f0dae08f","pagecount":"43","content":"This report is licensed for use under a Creative Commons Attribution 4.0 International License (CC BY 4.0). IFPRI do not necessarily own each component of the content contained within the work and therefore does not warrant that the use of any third party-owned individual component or part contained in the work will not infringe on the rights of those third parties. If you wish to reuse a component of the work, it is your responsibility to determine whether permission is needed for that re-use and to obtain permission from the copyright owner. Examples of such components can include, but are not limited to, tables, figures and images.Mozambique is already vulnerable to extreme weather events and climate change is projected to exacerbate their frequency and intensity. The occurrence of cyclones and flooding has increased in recent years and the trend is expected to continue. The country's coast-where 60 percent of the population, the three biggest cities, and critical infrastructure are situated-is most exposed to climate change-related risks, including damage from cyclones and projected sea level rise. Densely populated and low-lying regions, such as Zambezia, Nampula, Sofala, and Maputo Provinces, are particularly exposed to risks from flooding. More broadly, climate change is projected to increase average temperatures across the country and to result in higher variability in precipitation, especially in the south.The most critical economic sectors vulnerable to climate change in Mozambique are agriculture, transport, and potentially energy. In agriculture, maize is likely to be the most affected key crop. This can pose risks to food security (alongside expected higher food inflation because of climate change), given maize's widespread cultivation and role in nutrition. The impact on other crops is likely to be more limited, and to a large extent driven by damages from increased frequency of extreme weather events. This could exacerbate challenges in the sector, which is already constrained by low productivity and limited arable areas. That said, climate change could create some opportunities; for example, rice yields are projected to improve. Most studies project agricultural production in the central region to be most adversely affected by climate change, albeit the impact varies by crop and within regions. Mozambique's transport infrastructure is highly vulnerable to climate change due to the projected increase in flooding, the low proportion of paved roads, their limited interconnectivity, and the vulnerability of ports to cyclones and storm surges. Damages to Mozambique's transport sector are likely to have knock-on effects to other sectors and can have significant regional implications, as the country serves as a conduit for landlocked neighboring countries. Infrastructure damages, alongside the projected coastal erosion, may severely affect the tourism sector. Furthermore, Mozambique's high dependence on hydropower exposes it to losses from rainfall variability, which is expected to increase. The country's largest hydropower plant is located downstream on the Zambezi River, which various studies project to dry up due to climate change. Increased water use in upstream countries (such as because of greater irrigation needs and in response to growing populations) could also pose risks to Mozambique's hydropower sector.Mozambique needs to manage risks to its economy because of global mitigation efforts. This is because its main exports (aluminium, coal, and petroleum) are highly carbon-intensive. This poses risks to its trade balance and economic growth, given its already very limited fiscal space. While global mitigation efforts would be positive for the country because they would help limit the impact of the physical risks from climate change, the implications of a global transition to a low-carbon economy may pose more immediate risks.The Government of Mozambique (GoM) is taking steps to respond to climate change-related risks. Various national-level climate change policies and the integration of climate resilience considerations in sectoral policies (such as agriculture) include the National Climate Change Adaptation andMitigation Strategy (2013-2025) and updated Nationally Determined Contributions (NDCs). The GoM has limited deforestation, which has adaptation and mitigation co-benefits. Notably, Mozambique is following a decentralized approach to climate adaptation, prioritizing the development of Local Adaptation Plans (such plans have been developed for 132 out of 154 districts as of 2021). These will inform the GoM's national-level climate adaptation and resilience strategy, including the ongoing development of its National Adaptation Plan (NAP). The key constraints to the country's climate change preparedness include limited technical capacity for policy formulation and implementation, difficulties in government coordination, as well as challenges in mobilizing funding for adaptation at the necessary scale (and mobilizing funding from the private sector in particular).This report proposes that climate adaptation and resilience efforts in Mozambique focus on ensuring the country can adopt a strategic, transformative, and coordinated approach at national and regional level. More precisely, efforts include to: (i) strategically help the agriculture sector adapt to projected climatic changes to reduce food inflation and food security risks, including diversifying away from maize; (ii) prioritize improving the climate resilience of critical infrastructure, including improving road quality and use of ecosystem-based solutions along the coast; (iii) consider how to ensure that climate and economic resilience considerations are reflected in the national industrial strategy, including with respect to energy sector development; (iv) develop technical capacity and modes for accessing updated climate change-related data and modelling from global sources; and (v) facilitate policy coordination and effective strategy implementation of climate adaptation measures by developing a climate Adaptation and Resilience Investment Platform (ARIP) at national level so that mobilization of funding at scale can occur.Mozambique is located in southeastern Africa along the Indian Ocean, with a long coastline stretching over 2,500 kilometers (km) (World Bank 2023b). It shares borders with Tanzania, Malawi, Zambia, Zimbabwe, Eswatini, and South Africa. It is highly vulnerable to climate change, ranking 154 out of 185 on the 2021 Notre Dame Global Adaptation Initiative (ND-GAIN) index (ND-GAIN 2021).Mozambique has a tropical to subtropical climate across most of its geography. The country features a vast expanse of low-lying grassland plateau that spans nearly one-half of the country's land area, starting from the coastal areas and gradually ascending toward the mountainous regions in the north and west. The plateau has a tropical savannah climate (Figure 1) and provides important habitat for wildlife and agricultural activities (World Bank n.d.-a). The country's abundant forests occupy 43 percent of its territory (World Bank 2018a). The north and central inland areas have relatively higher elevations where the climate is largely temperate, with a dry winter and a hot summer. These areas receive about 1,000 millimeters (mm) of average rainfall per year. Along the coast, the country receives relatively higher rainfall compared to inland areas, with annual average rainfall varying was the most affected country in the world by the impacts of extreme weather events in 2019, and the fifth most affected when considering the period 2000-2019 (Eckstein, Künzel, and Schäfer 2021). Furthermore, Tropical Cyclone Freddy hit Mozambique twice in 2023, causing widespread flooding around Zambezia Province (where a large part of the country's agricultural land is concentrated) (UNDRR 2023; Armand, Gomes, and Taveras 2019). The World Meteorological Organization is evaluating whether Freddy broke the record as the longest-lasting tropical cyclone on record (WMO 2023). 1 Figure 2 illustrates the areas most prone to extreme weather events.A number of studies highlight the increase in intensity and frequency of extreme events, including droughts, floods, and cyclones, over the past 20 years in Mozambique (Manuel et al. 2020;Mozambique, Government of Mozambique 2017;UNDP, UNEP, and GEF 2020). While historically floods have been the most frequent extreme weather events (based on data for 1980-2016), in recent years the frequency of cyclones significantly increased, making them the most common event for 1980-2019. Overall, recent trends suggest that Mozambique is affected by a tropical cyclone or a flood every two years on average, and by a drought every three years (Mozambique, Ministry of Land and Environment 2021). 2 USAID (2018) reports that since 1960, southern Mozambique has experienced more persistent droughts, while the coastal regions have had more episodic floods. Figure 3 illustrates the increased frequency of extreme weather events in Mozambique, according to the World Bank's data and classifications. The last five decades witnessed stable and noticeable growth in Mozambique's average temperature.According to the World Bank Climate Change Knowledge Portal, the mean temperature increased by 1.46°C from 1963 to 2020 (Panel A of Figure 4). Consequently, the number of days with a temperature higher than 35°C has expanded since the 1960s in Mozambique. In comparison, overall, annual Trend 1951-2020Trend 1971-2020Trend 1971-2020Annual Precipitation Trend 1951-2020Trend 1971-2020Trend 1971-2020 Projected climate trendsTemperatures are expected to continue rising across the country and rainfall to become more volatile, especially in the south of Mozambique. Figure 5 shows the projected change in Mozambique's temperature and annual precipitation. Based on World Bank estimates, the increase in temperature is likely to continue until 2090 (Panel A), while annual rainfall does not vary significantly over time but is expected to have a higher variance relative to historical trends (Panel B). Aid (2017) both expect temperatures (and the number of hot days) to increase on average but do not forecast significant changes in precipitation (apart from an increase in the intensity of rainfall events). Irish Aid (2017) projects dry seasons to be drier and rainy seasons wetter.Figure 6 exhibits the predicted trend of Mozambique's weather conditions by region. Overall, the average temperature is projected to grow in a similar magnitude across all regions until 2091, albeit the central and southern areas might experience a marginally greater temperature increase in a high emissions scenario. Average annual rainfall overall does not differ significantly by region but the fluctuations in precipitation in the south region of Mozambique are noticeably higher than in other regions, irrespective of the hypothetical scenarios for global emissions.Mozambique's NCCAMS (2012) projects more erratic rainfall in the south but expects that precipitation will decrease overall in the south and increase in the north. Mozambique's NDC (Mozambique, Ministry of Land and Environment 2021) does not make regional climate projection references. USAID (2018) projects more marked temperature increases in the interior (central), southern, and coastal areas (including an increase in droughts for the central and southern regions, as well as more floods during rainy seasons). It expects climate change to decrease the duration of the rainy season, particularly in the central region and Zambezi Valley. Irish Aid (2017) similarly notes a higher rate of warming in the interior (central) parts.The frequency and intensity of extreme weather events in Mozambique is expected to continue rising because of climate change (UNDP, UNEP, and GEF 2020; Mozambique, Ministry of Land and Environment 2021). Increased river flows are projected to increase flood risk, particularly from January to March, while high intensity rainfall is likely to increase flash flooding along the coast. The magnitude of large flood peaks could increase by 25 percent along the main stems of both the Limpopo and Save Rivers in the south (USAID 2018). Fant, Gebretsadik, and Strzepek (2013) find that the recurrence of high-damage flood events, greater than the 50-year event intensity, could increase significantly in Mozambique, potentially tripling the base occurrence, 4 with a tail risk of six to eight times more highdamage flood events. Droughts are also expected to last longer (Mozambique, Ministry of Land and Environment 2021). Irish Aid (2017) expects tropical cyclones to become more intense due to climate change but notes uncertainty about the frequency of cyclones and storms and their interactions with other features of climate variability in the region (such as the El Niño Southern Oscillation). Sea levels are projected to continue rising substantially. USAID (2018) estimates an additional sea level rise of 13-56 centimeters (cm) by 2090 while UNDP, UNEP, and GEF (2020) project 18-59 cm by 2090. This is consistent with a projected 45 cm rise by 2100 due to thermal expansion under Mozambique's NDC (Mozambique, Ministry of Land and Environment 2021). 5 Mucova et al. (2021) find that the mean sea level rise for the Mozambican coast is likely to be higher than the global average for all representative concentration pathways (RCPs), even those compatible with the Paris Climate Agreement goals-with projections of 54-55 cm (in more moderate climate scenarios; that is, RCP2.6, 4.5, and 6.0) and of 70 cm (in a high emissions scenario, RCP8.5) for 2081-2100 (relative to 1980-2005). Moreover, even small rises in sea levels are likely to dramatically increase the probability of severe storm surges (USAID 2018;World Bank Group 2010). Impacts are projected to materialize in the short to medium term as well, including potentially losing an estimated 4,850 km 2 of land to sea level rise by 2040 (USAID 2018).Mozambique is extremely sensitive to climate change risks because of its: (i) high reliance on natural resources (the agriculture sector in particular, as farming takes place in areas prone to drought and flooding); and (ii) critical infrastructure and population being situated along the coast, a high-risk area. The World Bank Group (2010) identifies the agriculture, energy, and transport (road infrastructure) sectors and coastal areas to be most vulnerable to climate change in Mozambique. The agriculture sector accounts for 70 percent of total employment (among the highest proportions in the world) (World Bank n.d.-g); together with forestry and fisheries it accounted for 27.5 percent of total gross domestic product (GDP) in 2021 (World Bank n.d.-e). Similar to neighboring countries, it is predominantly rainfed, which makes it very sensitive to climate variability, in addition to the relatively higher risk of extreme weather events. Climate change is projected to reduce agricultural productivity in Mozambique, where it is already lower than the southern African region average (Manuel et al. 2020). Hydropower accounts for 78 percent of Mozambique's installed electricity generation capacity, and relies heavily on water availability in the Zambezi River Basin, which is projected to decline (ALER and AMER 2022; Uamusse, Tussupova, and Persson 2020). The tourism industry, which accounted for 6.2 percent of GDP in 2019, is extremely vulnerable to climate change due to the projected substantial erosion of coastal areas, as detailed below (WTTC 2022; Mucova et al. 2021).The rising frequency and intensity of extreme weather events is a key climate change-related risk for Mozambique's economy and society. The GoM states that it lacks accurate data to estimate the precise value of direct and/or indirect economic losses associated with climate-related events (Mozambique, Ministry of Land and Environment 2021). According to a World Bank (2023a) analysis, climate shocks and security risks could lower Mozambique's GDP growth by 1.5 percent in 2023-2025. Arndt and Thurlow (2015) estimate that the economy of Mozambique could be up to 13 percent smaller in 2050, with 70 percent of the future climate scenario resulting in GDP losses of 0-5 percent.The study highlights agriculture, roads, hydropower, and the combination of sea level rise and cyclone strike as the major impact channels. Irish Aid (2017) posits that climate change may cause Mozambique's GDP to fall between 4 percent and 14 percent by 2050 and that the country will lose 1.1 percent of its GDP every year due to the economic impacts of droughts and floods.Mozambique's coastal regions are particularly vulnerable to climate change, with significant potential economic implications. Mozambique has one of the longest coastlines in Africa and hosts 60 percent of the population within its low-lying coastal lands (USAID 2018). The key risks from climate change stem from the projected increase in sea levels and the associated higher frequency of extreme weather events. The World Bank Group (2010) estimates that this could force 916,000 people to migrate by 2040 (2.3 percent of the 2040s population). Zambezia, Nampula, Sofala, and Maputo Provinces are projected to suffer the greatest damages and costs, as they are low-lying and densely populated. The cyclone risk from even small sea level rises is projected to increase substantially for Beira and Maputo 6 6 Mozambique's three most populous cities-Maputo, Matola, and Beira-are all located on the coast (World Population Review n.d.).(even when assuming no change in the intensity or frequency of cyclones), with Beira estimated to be relatively more vulnerable (World Bank Group 2010). Coastal erosion (90 percent of which is attributed to climate change) will result in loss and damage to important ecosystems, such as coral reefs, mangroves, and seagrass, with implications for biodiversity (USAID 2018). The economic implications of the climate change-related damage on Mozambique's coastal areas are likely to be substantial, as detailed below. They include losses in tourism and agriculture (particularly cashews, coconuts, and fisheries). Climate change-related damages to critical infrastructure, such as ports, and to major cities would have knock-on implications for various sectors and the economy as a whole. The climate change impact on Mozambique's coasts is likely to have food security implications, as coastal fisheries (which depend strongly on coral reefs) provide a livelihood for 6.6 million people in Mozambique and one-half of the nation's animal protein (USAID 2018).Mozambique is exposed to risks from the transition of other countries to low-carbon economies. This is because it relies on carbon-intensive exports such as aluminium, coal, and petroleum. Global measures to reduce greenhouse gas (GHG) emissions, such as the European Union (EU) Carbon Border Adjustment Mechanism (CBAM), could therefore adversely affect Mozambique's economic growth and trade balance, as detailed below (ACF and LSE 2023;Pleeck, Denton, and Mitchell 2022). That said, such measures would reduce the physical risks to the economy, so the net effect would depend on the approach and timeline of global transitions. For example, Manuel et al. (2020) find that in Mozambique, a scenario of aggressive emission reduction policies (L1S) generates positive impact compared to an assumption of unconstrained emissions, for roads, energy, sea level, and cyclone scenarios. This is corroborated by Arndt et al. (2019), as illustrated in Figure 7.Mozambique's agriculture sector is characterized by a high proportion of smallholder farmers, limited arable land, and reliance on rainfall. Agricultural land accounts for 52.7 percent of total land area (as of 2020; World Bank n.d.-d), while the rest of Mozambique's territory is covered with forest. However, only 7.2 percent of the total land is arable (World Bank n.d.-f), and less than 10 percent of the arable land is used, as a large proportion of farming takes place in flood-and drought-prone areas (FAO n.d.). The southern provinces need irrigation the most but have only a small share of land suitable for irrigation.Irrigation is predominantly used by commercial farmers who are largely in the southern region and focus on export crops such as cotton, cashew nuts, sugar cane, tobacco, and tea (FAO 2016). The main irrigated crops are sugar cane, vegetables, and rice (INIR 2013). Most irrigation schemes use surface water from rivers while groundwater is used to a very limited extent, mainly by the family smallholder sector (FAO 2016). Smallholder farmers-who produce 95 percent of the agricultural productionlargely practice rainfed agriculture, which exposes them to climate variability (FAO n.d.). Maize is the main food crop, accounting for 72 percent of the total small and medium farming units, followed by cassava and beans (Manuel et al. 2020). Smallholder farmers also produce rice, pigeon peas and, to a lesser extent, some cash crops (cotton, tobacco, seeds, and tea) and tree crops (cashew and coconut). Subsistence farmers raise cattle, pigs, chickens, and goats but cattle production is limited by the prevalence of the tsetse fly in two-thirds of the country (USAID 2011). Fisheries are an important source of income and daily protein, given Mozambique's extensive coastline. The subsector represents around 2 percent of Mozambique's GDP but has much larger potential, as only 1 percent of suitable area is currently used for aquaculture production (World Bank Group 2021).Climate change is projected to significantly affect Mozambique's agriculture sector, mainly due to the projected frequency and intensity of extreme events. This in turn is expected to result in inundation and waterlogging of low-lying crops, flooding of roads connecting crops to markets, and shifting growing seasons (USAID 2018). These impact channels could result in an agricultural GDP loss of 4.5-9.8 percent by 2050. The increased risk of floods due to climate change is expected to affect key value chains, such as for soy, pigeon pea, and sesame, with adverse implications for local markets and farmers' income (USAID 2018). Baez, Caruso, and Niu (2020) find that a cyclone, flood, or drought event leads to a drop of up to 25-30 percent in per capita food consumption. Overall, the risks from the adverse impacts of extreme weather events on agricultural production are particularly acute in rural areas, where agriculture is the primary source of livelihood for 90 percent of the population (INE 2015). Mozambique's adaptive capacity for climate change risks is likely to be compromised by preexisting vulnerabilities in the agriculture sector. These include inadequate water infrastructure, power outages, inadequate storage and logistics facilities, and underinvestment (ITA 2022). The high proportion of smallholder farmers is likely to create implementation challenges for the adoption of adaptation measures and for the introduction of climate-smart agriculture (CSA) practices more broadly. While irrigation could help manage climate change-related risks, water availability is projected to decline and irrigation demands are likely to be unmet in Mozambique (Fant et al. 2015;USAID 2018).Projections regarding the overall impact of climate change on crop yields in Mozambique vary, and several studies predict expected high variance. Arndt and Thurlow (2015) project that the average value added in agriculture for 2046-2050 is likely to decline by 4 percent, albeit declines of up to 10 percent are possible. Manuel et al. (2020) project the central region to be the most affected, with a likely decline in agricultural value added of 19 percent (and potentially up to 25 percent) by 2050, assuming global emissions are not constrained. On the other hand, the northern region is likely to be the least affected, with a mode of only 0.6 percent change but significant uncertainty (between -18.5 percent and +16.2 percent). The potential impact of climate change on agricultural production in the south is most uncertain, with outcomes running from -31 percent to +32 percent (Manuel et al. 2020). Arndt and Thurlow (2015) estimate that by 2050 yields will decline by about 3-4 percent on average across all climate scenarios relative to the baseline path. That said, declines of more than 10 percent are possible for some crops in specific climate scenarios. Similarly, the World Bank Group (2010) projects a 2-4 percent decline in the yield of major crops, which alongside the impact of more frequent flooding on rural roads, is expected to result in an agricultural GDP loss of 4.5 percent by 2050 (and potentially up to 9.8 percent). Mozambique's NDC (Mozambique, Ministry of Land and Environment 2021) suggests that climate change could reduce yields by as much as 25 percent, including a 20 percent yield reduction for the main crops for food security. Climate change is also projected to reduce the land available for agriculture in low-lying areas (where the majority of the population lives).Maize is likely to be most affected by climate change from the main crops in Mozambique. Climate change will likely increase the frequency of low-yield events for maize, resulting in a potential decline of about 15 percent by 2050 under a high emissions scenario (Table 1) (based on the Decision Support System for Agrotechnology Transfer (DSSAT) crop model (Jones et al. 2003) and the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) climate models). 7 USAID (2018) projects maize yield to potentially decline by 11 percent on average (2046-2065). Fant, Gebretsadik, and Strzepek (2013) predict Mozambique to experience a worse decline in the yields of rainfed maize compared to Malawi and Zambia. This impact is likely to exacerbate Mozambique's food security risks and dependence on food imports, as detailed below, given the importance of maize to the Mozambican economy and diet.The average impact on other crops is likely to be lower, and there may even be some gains, particularly for rice. Cassava is likely to be adversely affected, albeit to a lesser extent than maize. For example, USAID (2018) states that the yields of cassava, sorghum, soybeans, and groundnuts could decrease by 2-4 percent over the next 40 years. That said, Table 1 also shows potential yield increases in Mozambique, even in a high emissions scenario. In particular, rice production is likely to increase most significantly by 2050 among the major essential crops in Mozambique. In contrast to USAID (2018), this analysis anticipates that most regions in Mozambique will witness an increase in groundnut production in 2050 compared to their groundnut yield in 2005; sorghum yields will also increase slightly at the national level in 2050, with most agroecological zones in Mozambique experiencing a minor change in sorghum production (-2 percent to +2 percent). (Figure 8). In stark comparison, the projected loss in maize yield in Inhambane and Cabo Delgado (southern and northern coastal areas, respectively) is noticeably lower. Some subregions within Inhambane and Cabo Delgado are even expected to experience 2-10 percent growth in maize yield under the \"Median\" scenario. USAID (2018) finds that climate change could reduce maize yields up to 45 percent in some regions, such as Tete Province (Zambezi River Basin). Manuel et al. (2020) project climate change to reduce maize yields particularly in the south where the (mode) impact is expected to reach -10.2 percent by 2050 if global emissions are not constrained (but with significant uncertainty, implying that the change in yields could range between -20 percent and +40 percent). The northern and central regions are also expected to be adversely affected, though the most likely projected impact is lower: -1.5 percent and -3.5 percent, respectively. That said, the study finds an overall likely positive impact from climate change on maize production in the north (in terms of real gross value added), as smallholder farmers could expand their production area to compensate for the projected (relatively low) negative change in yields. The southern region is already a net maize importer (while the north and central regions produce surplus maize) (Manuel et al. 2020). Climate change is therefore likely to exacerbate regional food security dependencies.For other crops, several studies project the central region, including Zambezia, to be the most adversely affected by climate change. But positive gains are possible in various areas. Zambezia will likely experience a reduction in the yield of sorghum, most notably in 2050 (Figure 9). On the other hand, growth in groundnut yield is projected to be particularly outstanding in Inhambane, where groundnut output is likely to expand by more than 40 percent, whereas Zambezia and Tefe are predicted to experience major losses in groundnut production (Figure 10). USAID (2018) similarly projects sorghum and groundnut production in the central region to be most adversely affected. Manuel et al. (2020) project the greatest adverse impact from climate change on root crop yields to be in the center, albeit the southern region shows the highest variance in possible outcomes (and some cassava production takes place along the southern coast). The north region-where a large part of cassava production takes place-is expected to be negatively affected but to a lower extent. Growth in rice production in Sofala and Inhambane is likely to be most outstanding compared with that in other regions, while Nampula is among the few agroecological zones that will experience a loss in rice yields (Figure 11). 8 Traditionally, rice is a main source of income, particularly in Inhambane and southern Zambezia (FEWS NET 2014). Extreme weather events also pose risks to cashew and coconut production, as they are usually raised in coastal areas (USAID 2011(USAID , 2018)).8 The reference is to the estimates in the \"Median\" scenario. Climate change is generally expected to reduce Mozambique's hydropower capacity. Uamusse, Tussupova, and Persson (2020) project that reduced runoff to hydropower stations due to climate change make it impossible to use their maximum capacities, resulting in a 10-20 percent decline in total power generation available annually in the 21st century. In particular, the study estimates that electricity output of the Cahora Bassa hydropower plant will be reduced by 20 percent until 2100. When also considering the hydropower plants under development, hydropower energy generation in practice may constitute 70-80 percent of the planned hydropower capacity for the country. Similarly, Spalding-Fecher, Joyce, and Winkler (2017) estimate that output from major Zambezi hydropower plants could decline by 10-20 percent due to climate change under drying scenarios (while wetter scenarios would result in only a marginal increase). Moreover, Mozambique could be particularly vulnerable to increases in electricity generation costs, potentially reaching 20-30 percent in the near term, due to its high hydropower dependence. The World Bank Group (2010) also expects a significant energy deficit due to climate change relative to base generation potential in Mozambique by 2050. In contrast, Arndt et al. (2019) do not predict a change on average in the runoff for Cahora Bassa by 2050, albeit extremes could reach ± 20 percent. The analysis suggests that the overall impact on hydropower generation in Mozambique may be mild due to a portfolio-type effect stemming from a large contributing area. Fant, Gebretsadik, and Strzepek (2013) state that the reservoirs behind Mozambique's hydropower plants have significant storage and are located downstream, which makes them less sensitive to changes in runoff. Hydropower demand is also small in proportion to the generating capacity in Mozambique-albeit that may change when taking into account regional trade and opportunities for export. The following paragraphs set out in more detail the vulnerabilities of Mozambique's hydropower sector to climate change. 9 Mozambique has 13 major river basins (listed from south to north): Maputo, Umbeluzi, Incomati, Limpopo, Save, Buzi, Pungwe, Zambezi, Licungo, Ligonha, Lúrio, Messalo, and Rovuma (Uamusse, Tussupova, and Persson 2020).Climate change may affect Mozambique's hydropower sector due to increased rainfall variability and frequency of extreme weather events. Hydropower generation is dependent on a predictably steady precipitation pattern (Uamusse, Tussupova, and Persson 2020). While precipitation in Mozambique is overall not projected to change significantly, several studies find that climate change is likely to lead to higher evaporation and more variable rainfall, which would adversely affect hydropower generation in Mozambique (USAID 2018; Uamusse, Tussupova, and Persson 2020). Mozambique already experiences frequent power shortages, mainly due to extreme weather events (ITA 2022). Climate change increases the probability of drought events, which could reduce electricity generation (Uamusse, Tussupova, and Persson 2020). For example, the 2015/16 major drought led to an unprecedented reduction in the water levels at the Cahora Bassa Dam reservoir to about one-third of total capacity (Kuo 2016) The underdevelopment of Mozambique's road network makes it vulnerable to climate change.First, this is because of the large proportion of unpaved roads. Mozambique's road network spans 30,562 km, with approximately only 20 percent (5,958 km) being paved. The remaining 80 percent is nonpaved, comprising secondary and tertiary roads (DLCA 2018a). 10 This exposes the country to climate change risks because unpaved roads are susceptible to increases in precipitation (such as because of flooding or heavy rainfall), as well as traffic increases (for example, if traffic needs to be redirected due to climate change damage to other roads in the areas) (Chinowsky et al. 2015). The country has other means of transportation, including a limited railway network (2,500 km long and primarily used for goods transportation), a number of airports (including several international ones), and five ports 11 (DLCA 2023(DLCA , 2018b)). However, road transportation remains the dominant means of moving people and goods in the country (ITA 2022). The road network (as well as the rail network) is focused around three main logistics corridors (Maputo, Beira, and Nacala), with limited linkages between the corridors and between urban and economic clusters (PwC 2013). This is likely to 10 In a recent interview, Mozambican President Filipe Niusy said that the country's inadequate road network is a major constraint to its economic development. He was quoted specifying that 27 percent of roads are paved, and that 69 percent of roads are in a \"reasonable\" condition, but the remaining 31 percent are in a poor or \"impassable\" condition (Club of Mozambique 2023a). 11 The major ones are Maputo, Beira, and Nacala (DLCA 2023).exacerbate the economic implications of climate change-related damage to the road network, including knock-on effects to other sectors. For example, Espinet et al. (2018) assert that accessibility to rural areas is currently low due to lack of road infrastructure, especially in Zambezia and Nampula Provinces. This disconnects farmers from large urban markets and could affect food security and inflation under climate shocks. The World Bank (2018b) also notes that fiscal constraints in developing road infrastructure and the effects of recurring natural disasters limit the agricultural productivity of rural communities and contribute to poverty.Climate change is projected to damage Mozambique's road network-mainly due to increased heavy rainfall, flooding, and cyclones-with significant economic implications. The World Bank Group (2010) notes the vulnerability of the country's road infrastructure to flooding; climate change is expected to increase the frequency and intensity of floods and heavy rainfall, as discussed above. For example, the severe floods in 2000 cut national and regional roads, including the rail line to Zimbabwe, which led to a decline in economic growth of 1 percent (Arndt et al. 2011). Absent adaptation measures, Chinowsky et al. (2015) estimate that Mozambique could face a potential opportunity cost of 15 percent under median climate scenarios, translating into a lost potential of expanding the existing paved road network or upgrading unpaved roads in the country by 3,213 km of paved road. The impact is likely to be compounded by the projected increased frequency and intensity of tropical cyclones. During Cyclone Idai in 2019, for example, damage to road infrastructure limited humanitarian interventions from Beira into the northern hinterland, as sections of primary roads and many secondary were cut off (Comino 2021;Petricola et al. 2022). Cyclone Freddy in 2023 caused severe damages to the road infrastructure in the provinces of Zambezia, Nampula, Manica, Tete and part of Sofala (ANE 2023).Climate change-related damage to Mozambique's road infrastructure is likely to have regional impacts but its vulnerability varies by area. In southern Mozambique, flooding-such as due to storm surge, cyclones, and sea level rise (particularly after 2030)-could damage road links with the rest of the country. The plain of the lower Limpopo River southeast of Xai Xai, the lower Incomati River northeast of Maputo, and the estuary at Maputo and the lower Maputo River are the most vulnerable to flooding (INGC 2009). This could have implications for one of Mozambique's three main \"growth\" corridors: 12 the Maputo Corridor, the main one in the south, passing through landlocked regions and connecting the country to South Africa (Gauteng Province), as well as to Swaziland (Arup and Cities Alliance 2016; PwC 2013). In particular, while most of Maputo City is positioned on high ground, which provides some protection from extreme weather events, the Port of Maputo, its rail links, and its oil facilities are situated on the nearby estuary (INGC 2009). The projected higher risk of flooding in Maputo Province (World Bank Group 2010) also means that climate change increases the likelihood of flood-related damages to the national highway (NH1), which runs north-south, connecting the capital city, Maputo, with major cities northward. This risk was highlighted during the recent flooding in the area (Club of Mozambique 2023b; ACAPS 2023). Indeed, the GoM has been considering building an alternative road, linking Maputo Province to Manica, to connect the country in flood situations when the NH1 is damaged (Artigo 2022).The second major transport link-Beira Corridor (in the center, connecting the port city of Beira to Tete Province, and internationally to Harare, Zimbabwe, and Lusaka, Zambia, as well as Democratic Republic of the Congo (DRC) and Angola)-is particularly vulnerable to climate change. This is in part due to the risks to Beira City from cyclones and sea level rises (discussed above), and in part because of the risk of flooding in some parts of Tete and Sofala Provinces. Finally, the northern regions have the major routes moving east to west, from large port cities into provinces, with some connecting cities like Blantyre in Malawi (DLCA 2018a).Northern Mozambique is relatively less vulnerable to sea level rise and cyclones because the coastal zone is on higher ground, with fewer rivers, compared to the central and southern regions (INGC 2009). This implies that risks to the third key growth link-the Nacala Corridor (which passes through Nampula and links Mozambique to Malawi and Zambia, as well as the north of Mozambique to Tete Province)-are relatively lower. That said, the national-level roads that link Zambezia to international corridors are at risk, given the high susceptibility of the region to flooding, which could affect national and international trade, particularly harming the agriculture sector. Notably, damage to Mozambique's transport infrastructure is likely to have regional impacts, as the country is an important conduit for access to global markets, especially as four of its six neighboring countries are landlocked (UNDP, UNEP, and GEF 2020).Similarly, Mozambique's port infrastructure, an important component of the national and regional economy, is at risk from climate shocks. Mozambique has five ports, in Maputo, Beira, Nacala, Quilimane, and Pemba. The Port of Maputo is the largest in Mozambique and offers an important access route for import and export cargoes from South Africa, Swaziland, Zimbabwe, and Botswana (DLCA 2023). 13 However, as discussed above, it is highly vulnerable to flooding (INGC 2009). The Port of Beira is the second largest in Mozambique, and the main port for exports and imports from Sofala, Manica, and Tete Provinces, and is a strategic gateway for the landlocked countries in southeast Africa. It particularly serves transit cargoes, such as copper, tobacco, chrome, timber, and consumer goods, to/from Zimbabwe, Malawi, Zambia, Botswana, and DRC. A fuel pipeline links the port to Zimbabwe (DLCA 2023). This port, however, is vulnerable to flooding and requires adaptation measures even under more moderate projections for sea level rises (INGC 2009). The current seawall (3.4 meters) and the vegetative dune barrier that protects the port and city would be unable to withstand coastal erosion under a high sea level rise scenario, or intense cyclones, thus putting the port and maritime infrastructure at risk (INGC 2009). Similar to the road infrastructure, increased climate shocks on Mozambique's port infrastructure would disrupt regional trade, particularly affecting neighboring nations (Meeuws 2004).Food inflation due to climate change is likely to exacerbate food security risks in Mozambique.Mozambique is a net importer of food and is ranked 94 out of 113 on the 2022 Global Food Security Index 14 (ITA 2022;Economist Impact 2022). Its main food imports include rice, wheat, palm oil, sugar, and maize. Its main food exports are tobacco, sugar, legumes, soybeans, seeds, and nuts (cashew, coconut, and Brazil nuts) (FAO 2021;OEC n.d.). Odongo et al. (2022) find that rainfall and temperature variability significantly increase both food and overall inflation in the country. Temperature variability affects Mozambique's capacity to generate electricity, which has implications for food prices (as well as other items in the consumer basket). Baez, Caruso, and Niu (2020) find that maize prices in particular exhibit higher volatility in food markets that are close to areas affected by extreme weather events-which could further increase food security risks for vulnerable communities. Odongo et al. (2022) find a strong transmission of foreign inflation through imported prices to domestic prices. Mozambique predominantly relies on the regional market for some of its key food imports, such as wheat, suggesting that extreme events with regional impact would exacerbate food inflation and, therefore, food security risks in Mozambique. The projected lower yields for maize in Mozambique could increase the country's reliance on maize imports, which are likely to become more expensive, as climate change is also expected to negatively affect maize production in most parts of neighboring countries, such as Zambia and Malawi (Ngoma et al. 2021;Thomas et al. 2022). That said, the climate change impact will vary by crop; for example, the projected improvement in rice yields could create opportunities to reduce Mozambique's dependence on rice imports. Overall, given Mozambique's poverty challenges (more than 60 percent of people live in poverty [World Bank 2023b] and the country ranked 106 of 116 on the 2021 Global Hunger Index [Concern Worldwide and Welthungerhilfe 2021]), food inflation is likely to significantly affect its already vulnerable population.Mozambique's dependence on exports with high carbon emissions exposes it to risks from global climate change mitigation efforts. In particular, its main goods exports are: (i) mineral fuels, mineral oil, and products of their distillation-over 40 percent of total goods exports (largely petroleum gas and coal briquettes, as well as some coke and refined petroleum); and (ii) aluminium articles-about 25 percent of total goods exports (predominantly raw aluminium). 15 This exposes it to international price volatility, while global mitigation policies are projected to relatively reduce fossil fuel prices (Bauer et al. 2016;Carney 2015). Mozambique is expected to be affected by the introduction of the EU's CBAM. According to UNCTAD (2021), it is the 12th most exposed country in the world and second most exposed in Africa (after South Africa), based on the 2019 aggregated value of exports to the EU in sectors considered to be in the CBAM. The CBAM will enter into force in its transition phase as of October 1, 2023, and will apply to imports of cement, iron and steel, electricity, aluminium, hydrogen, and fertilizers. When fully operational, EU importers of goods covered by the CBAM will need to buy CBAM certificates (linked to the EU Emissions Trading System) whose price will be calculated depending on the emissions embedded in the relevant products (Ivleva, Månberger, and Kirr 2022;EC n.d.). For Mozambique, the impact is driven by its aluminium exports, 54 percent of which went to the EU in 2019, amounting to 7 percent of the country's GDP in 2020 (Pleeck, Denton, and Mitchell 2022). Estimates of the CBAM's impact on Mozambique's economy vary: Pleeck, Denton, and Mitchell (2022) calculate that the CBAM could increase the cost of aluminium exports by 39 percent and lead Mozambique's GDP to fall by 1.6 percent (if demand follows the price change). ACF and LSE (2023) expect Mozambique to be affected by the policy but estimate the cost to represent only 0.07 percent of GDP. The impact of the policy will depend on various factors, such as the price of carbon, Mozambique's ability to divert production to non-EU countries, etc. Overall, global transition efforts are likely to pose challenges for Mozambique's mining industry and the risks should be managed strategically to limit the adverse impact on the economy. However, such efforts would help minimize the physical risks from climate change, which are expected to have profound economic and social impacts on the country, as this report illustrates.Mozambique has limited fiscal space to take climate adaptation actions, similar to other countries in southern Africa. Its government debt stood at 102.6 percent in 2022 and interest payments comprised 10.7 percent of revenues in 2022 (AfDB 2023a; Fitch Ratings 2023). Mozambique is exposed to currency risk as 71.0 percent of its total debt stock is foreign exchange-dominated (Fitch Ratings 2023). As described above, climate change could adversely affect its trade balance in the future. Mozambique's fiscal vulnerability could be exacerbated by the ongoing conflict in the northern parts of the country, which creates challenges for political stability and requires increased security spending while disrupting investment flows and tourism activity (AfDB 2023a). While taking adaptation measures could be more cost-effective than frequent disaster relief (Aligishiev, Bellon, and Massetti 2022), it is also likely to have significant implications for Mozambique's fiscal positions under the current climate finance architecture. That said, the recent offer by the Belgian government of a €2.4 million \"debt-for-climate swap\" could be a positive step toward improving climate and economic resilience in Mozambique (Belgian News Agency 2023). 16Climate change policies and government's response disaster risk management, and water resource management-as one of eight priority areas. It aims to increase its climate-resilient infrastructure by 2024 and to increase the length of dykes from 74 km to 107 km to reduce the vulnerability of communities and the economy to climate risks. In addition, AfDB (2023b) notes that Mozambique has developed climate-informed macroeconomic forecasts, which should also support its policy preparedness to manage climate change-related risks and the integration of climate considerations into other regulatory actions.Mozambique is in the process of developing its National Adaptation Plan (NAP). In 2017, the country, with the support of the National Adaptation Plan Global Support Programme (NAP-GSP), commenced development of a roadmap to develop Mozambique's NAP (UNDP, UNEP, and GEF 2020; Irish Aid 2017). It also produced a stocktaking report that analyzed the information and knowledge gaps and the barriers: (i) financial; (ii) technological and knowledge; and (iii) political and institutional (UNDP n.d. Annex A summarizes the GoM's climate change governance framework and highlights a number of key projects. Other measures in key climate-sensitive sectors are detailed below.The GoM has taken steps to enhance its preparedness for climate change in agriculture. Note: Chen et al. (2015) provide details on the methodology for calculating the ND-GAIN Index, including how it reflects a country's readiness and vulnerability assessments. UNDP, UNEP, and GEF (2020) underscore the lack of technical capacity to mainstream climate change in national, provincial, and district planning and budgeting systems as a huge limitation to scaling adaptation in Mozambique. On-farm adoption of CSA practices and technologies by small-scale farmers is generally hindered by low access to knowledge and technology, high investment costs (especially in the case of multifunctional boreholes), as well as limited opportunities for credit and insurance access (CIAT and World Bank 2017). More broadly, AfDB and GGGI (2022) find the limited capacity for and experience in formulating and enforcing green growth legislation and standards to be a key constraint to Mozambique's green growth readiness. Low human capacity is identified as a critical challenge for the implementation of NDCs and Sustainable Development Goals in Mozambique, especially for scaling up private sector involvement.Mozambique faces significant challenges to closing the substantial funding gap for climate adaptation measures. These include the limited capacity and coordination to drive a national framework to mobilize and raise funds; insufficient coordination between public and private sectors; low awareness of green finance; and limited dissemination of information on programs and policies, including insurance schemes (EED Advisory 2021; Tafese 2016). Structural constraints, such as Mozambique's fiscal position and the underdevelopment of its financial sector, exacerbate these challenges. Annex B provides an overview of Mozambique's climate finance landscape.This report aims to support and inform the approach and design of Adaptation and Resilience Investment Platforms (ARIPs) that help mobilize funding for adaptation at scale. For Mozambique, investment would be particularly important with respect to adapting the agriculture sector to projected changes in the climate in the country (with focus on food security) and to improving the resilience of critical infrastructure. The latter will also help reduce adverse knock-on effects from climate change to other sectors, as well as to other economies in southern Africa, given Mozambique's role as a conduit for regional and international trade. Overall, this report underscores the importance of a broader approach to climate adaptation that also helps achieve industrial diversification and structurally reduce Mozambique's exposure to climate-sensitive sectors. A potential ARIP could help support future adaptation efforts, such as by facilitating:Adaptation of the agriculture sector, including diversification away from maize production. This could help reduce food security risks in Mozambique, as well as take advantage of new opportunities where changing climate conditions can have a positive impact on other food crops. A strategic approach may also require further cost-benefit analysis and consideration of what the impact of climate change on agricultural production regionally would mean for Mozambique, given its dependence on food imports. Improved regional coordination on climate change adaptation for agriculture, which platforms like ARIP could help facilitate, could help address food security risks at regional level (particularly as maize production is likely to be adversely affected by climate change in neighboring countries) and identify comparative advantages under the changing climate conditions. For example, Odongo et al. (2022) suggest development of coordinated climate action strategies, including a continental green growth investment package with clear responsibilities across African countries to address food import dependencies. Adaptation measures for the agriculture sector include improved use of irrigation, which would help manage drought periods, particularly in areas where agricultural production takes place in arid or semi-arid lands. However, the increased occurrence of floods from heavy rainfall and cyclones requires an ambitious consideration of how to improve the sector's climate resilience, including through improved use of agricultural insurance. In addition, Manuel et al. (2020) report evidence of lack of coordination between different initiatives in the agriculture sector, which results in overlaps.Improvement of the climate resilience of critical infrastructure. The GoM's efforts to improve early warning systems have already yielded important benefits, as they helped reduce the casualties during Cyclone Freddy (UNDRR 2023). But more consideration of how best to limit the economic costs of increasingly frequent and intense extreme weather events would support economic resilience. Such measures include sealing unpaved roads and strategically expanding the road network to offer alternatives to transportation in flood-prone areas and with respect to international corridors' interconnectedness. With regard to coastal climate resilience, the World Bank Group (2010) highlights the likely high costs and therefore recommends focusing on vital coastal infrastructure (such as key ports) and on reducing the impact on people (rather than the loss of land). It also suggests that the relocation of critical infrastructure may ultimately be necessary. Mucova et al. (2021) recommend the use of ecosystem-based adaptation to address coastal erosion. This includes protecting mangroves, as well as planting other species along the coast that help capture and stabilize coastal sediments, to serve as a natural barrier to strong winds, dampening the rise of seawaters and safeguarding biodiversity. Such measures are likely to yield adaptation, conservation, and mitigation co-benefits. Overall, given the regional and international benefits of Mozambique's transport infrastructure, funding mechanisms could be explored on a regional basis and with more engagement with the private sector, given the potential climate risk management benefits particularly for export-oriented companies, as well as broader environmental benefits of ecosystem-based adaptation.A strategic approach to climate adaptation, ensuring that climate considerations are integrated in the nation's industrial strategy. This could, for example, involve consideration of how climate change may affect the development of Mozambique's hydropower sector, building on the observations in this report and on the adaptation and mitigation strategies of neighboring countries. Uamusse, Tussupova, and Persson (2020) note the need for strong and cooperative governance arrangements, including at regional level, to manage shared water resources, particularly given the likely expansion of irrigation, planned hydropower capacity improvement, and the projected increased precipitation variability due to climate change. They also suggest increasing transmission capacity within and between countries (such as through initiatives akin to the joint European electricity market). Odongo et al. (2022) recommend focusing on expanding solar and wind sources to reduce reliance on hydroelectricity, which is expected to help reduce electricity prices and inflation. Similarly, while Mozambique's industrial strategy considers agricultural priorities, ensuring that these reflect robust, up-to-date climate projections would support their effectiveness. Overall, a national-level, crosssectoral climate adaptation and investment strategy could facilitate such considerations. This vision is particularly important given Mozambique's decentralized approach to climate adaptation. While the approach presents an interesting case study for the benefits of a locally led adaptation response, it may need to be supplemented with more analysis to identify strategic opportunities for transformative adaptation (that is, going beyond disaster risk management and exploring opportunities for climate and economic resilience).Development of technical capacity and improved access to robust, up-to-date climate projections.An ARIP could support the development of Mozambique's climate adaptation and resilience strategy, including its NAP process, by facilitating access to technical expertise and relevant data and modelling. This could help address the capacity challenges to the GoM's response, as noted above.It could also help ensure that climate-related policies, as well as industrial policies such as PRONAI, reflect the latest projections of the potential impact of climate change in Mozambique. Support with technical capacity could also help the GoM and relevant regulatory bodies in developing a green finance framework, including supporting policies and guidelines.Mobilization of finance for adaptation at scale that delivers a consistent and effective climate adaptation response. Mozambique's limited fiscal space and challenges in mobilizing investment from the private sector represent key constraints to its ability to take climate and resilience adaptation measures, including the recommendations in this report. An ARIP should therefore prioritize efforts for mobilization of funding for climate adaptation and resilience. A national-level adaptation and resilience strategy, including an investment plan and a pipeline of projects, could facilitate the country's ability to engage with donors and investors. It could also help reduce duplication and maladaptation risks. For example, Manuel et al. (2020) find evidence of poor communication and knowledge-sharing between resilience initiatives in the agriculture sector in Mozambique. A nationallevel investment plan could help ensure that funding mobilized through different initiatives (such as through debt-for-climate swaps) is implemented in a manner that supports the national adaptation strategy.• Climate Resilience: Transforming Hydro-Meteorological Services Project for Mozambique, World Bank (2013-2019): The objective of the initiative is to strengthen hydrological and meteorological information services to deliver reliable and timely climate information to local communities and to support economic development (UNDP, UNEP, and GEF 2020).• Pilot Program for Climate Resilience (PPCR): Deployed by the Climate Investment Fund (CIF) and MTA, it covers drought insurance, smallholder irrigation, and land and water resource management across the country. 18 The US$89 million PPCR investment plan also supports upgrading infrastructure, enhancing climate services, and developing its local and national capacities for climate-resilient planning and action (Mozambique, Ministry of Land and Environment n.d.).• Nature, People and Climate investment program: In 2022, the African Zambezi River Basin Region was selected as one of the first participants in the program, under which Mozambique (as well as Malawi, Namibia, Tanzania, and Zambia) will seek finance to support restoration of 30,000 hectares of degraded wetlands along the Zambezi River Basin. ","tokenCount":"8945"} \ No newline at end of file diff --git a/data/part_1/0993290519.json b/data/part_1/0993290519.json new file mode 100644 index 0000000000000000000000000000000000000000..1e73f2481443acec269aae0ad956191cee28b96b --- /dev/null +++ b/data/part_1/0993290519.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"d5ac941f682896fcdcffc26cb5601b50","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/d14a527b-038e-42f4-a9cd-7df71c124d3d/retrieve","id":"1263786344"},"keywords":["Cobb-Douglas","Elasticity","Mechanization","Rice","Technical efficiency"],"sieverID":"28971fea-a971-4267-8393-42f9af5f0a49","pagecount":"10","content":"The study was conducted among 274 mechanized and 220 traditional rice farms using multistage sampling technique to assess the technical efficiency in rice production among mechanized and traditional farmers in Jhapa, Sunsari and Bardiya districts. The Cobb-Douglas functional form of the stochastic production frontier was employed to obtain the technical efficiency in mechanized and traditional rice farms. The overall technical efficiency of the mechanized and traditional rice farm ranged from 40.31 to 92.23 and 31.21 to 85.02%t with the mean technical efficiency of 80.56 and 70.11% respectively. The scope of increasing output by adopting the technology adopted by the best performer was 19.44% in mechanized and 29.89% in traditional rice farm respectively. Majority of the farmers were operating at an efficiency level 70-80% and 60-70% in mechanized and traditional farms respectively. The average technical efficiency of mechanized rice farm was higher than that of traditional rice farm and the difference was significant. There was scope of increasing output through rational use of existing resources in both farm categories. Manures, chemical fertilizers had significant and positive effect to total yield of rice kg/ha. The effect of machine use to total yield of rice was positive and significant. Rice farms adopting machines were more technically efficient compared to traditional rice farm.Agriculture is the main stay of Nepali economy contributing 26.98% to country's Gross Domestic Product (GDP) (MoALD, 2019) and engage 60.4% of its labor force (NPC, 2020). Food security is the burning issue in Nepal with more than two-thirds of the districts facing food shortages every year (Joshi et al., 2012). Rice is placed at the first rank among cereal crops in terms of area and production, contribution to GDP and AGDP and livelihood of the people (Regmi, 2017). Rice contributes about 20% and 7% to AGDP and GDP respectively and also supplies about 40% of the food calorie intake in Nepal (CDD, 2015). Currently, from the area of 1.49 million hectares of land, 5.61 million metric tons rice is produced in Nepal and the Terai region of the country shares more than 70% in term of area and production in Nepal (MoALD, 2019). However, the trend of importing rice (Milled and grain) has increased from 487 thousand metric ton to 769,000 metric tons in terms of quantity while the value has almost doubled from NRs.16 billion to NRs.32 billion in the last 6 years (DoC, 2019). Thus, this situation clearly demands the calls for improving yield of rice to ensure food and nutritional security in Nepal.Adoption of improved technology and focus on agriculture research is one of the best options to increase agricultural production and productivity (Asfaw & Bekele, 2010). Government of Nepal (GoN), Nepal Agricultural Research Council (NARC) has been playing a significant role to improve the rice productivity in the country. The current production is not sufficient to meet the demand of growing population and ensure food security in the country (Shrestha et al., 2020a;Shrestha et al., 2020b). However, the results have not been achieved satisfactory. The average growth rate in area and production of rice is only about 0.35% and 1% per year (Regmi 2017). Rice is labor intensive crop and thus requires large number of labors during various farm operations (Bhandari et al. 2015& Dhital, 2017). The rice productivity is greatly affected by labor scarcity during crop establishment (Liu et al, 2017). For the successful crop production, the timeliness of farm operations is important and use of improved implements and machineries is important for undertaking the farm operation in time. In this context, farm mechanization can help address shortage of labor, ease drudgery, enhance productivity and the timeliness of agricultural activities, promote efficiency in resource use (ESCAP, 2018).Mechanization is important option to ensure profitability in agriculture (Vortia et al., 2019). According to Asefa (2012), if existing inputs and technologies are not efficiently utilized, trying to introduce new technologies will not be cost-effective. Thus, a technical-efficiency analysis is crucial to find out if farmers are efficient in the use of the existing resources and to decide when to introduce new technologies in mechanized and traditional rice farms. The role of mechanization in enhancing the efficiency in production system has still remained to be analyzed in Nepal. There have been several studies on exploring the production efficiency of rice in Nepal but study on farm mechanization impact on rice production efficiency has not been conducted till date. Thus, the present study examines the technical efficiency in mechanized farm and compares it with traditional rice farm so that farmers can be motivated to adopt new technologies. The study is also required to understand how the resources have been used and what are their contribution to output. The study also explores the efficiency distribution at which farmers in both the mechanized and traditional rice farm are supposed to fall.The study was conducted in Jhapa, Sunsari and Bardiya districts of Nepal. Jhapa and Sunsari districts were two Terai districts of province no. 1 and Bardiya was one of the Tarai districts of Province No. 5. These three districts were among the most potential district in rice production in Nepal. The selected three districts share 12.6% and 14.1% to total national area and production in Nepal (MoALD, 2019). These districts were also the command areas of Rice Zone and Super Zone units of Prime Minister Agriculture Modernization Project (PMAMP) which is a government owned project being implemented to facilitate for industrialization of rice sector via promotion of mechanization as one of the strategic interventions. Within the selected districts, respondents from one local unit from Jhapa (Kachankawal Rural Municipality), two local units from Sunsari (Duhabi Municipality and Gadi Rural Municipality) and two local units from Bardiya (Rajapur Municipality and Geruwa Rural Municipality) were selected for taking data through structured and semistructured questionnaires.Multistage random sampling technique was adopted for the selection of study area and sample respondents for collection of information required for the study. The rice growing farm was divided into two categories i.e. Mechanized and Traditional rice farms. Mechanized farm referred to the rice farm that uses at least one or more of agricultural machines for at least one or more farm operations in tillage, transplanting, harvesting, threshing. Traditional farms were referred as rice farm that used none of the agricultural machines for rice cultivation. The rice grower of selected rural municipalities and municipalities were considered to be in sampling frame. The data was collected through structured and semistructured questionnaires. Based on the population size, the sample size of the study was 494 respondents which constituted 220 respondents from traditional and 274 respondents from mechanized rice farms. The focused group discussion, key informant interview, stakeholders analysis were performed during study. The sample size was determined using the following formula and was also verified by using Raosoft software for determination of sample size. The sample size was determined using the following formula: The field survey was conducted in the month of December 15, 2018 -April15,2019.The technical efficiency was calculated by adopting Input-Oriented Measures. In order to estimate the technical efficiency of mechanized and traditional rice farms in study area, stochastic production frontier was used. The data was analyzed using STATA software. Where, Ln =Natural logarithm Y ij =Output (kg) of i th crop on j th type of farm X ij1 = Human labor (man days) for i th crop on j th type of farm X ij2 = Seed (kg) for i th crop on j th type of farm X ij3 = Machine hours (hours) for i th crop on j th type of farm X ij4 = Manures and fertilizers use (kg/ha) i th crop on j th type of farm X ij5 = Chemical Fertilizers (kg) for i th crop on j th type of farm X ij6 = Agro Chemical (litre/ha) for i th crop on j th type of farm X ij7 = Irrigation (hours/ha) Vi = Error term measuring errors not under the control of farmers Ui = Error term measuring errors under the control of farmers. β 1, β 2............. = Coefficients to be estimatedThe technical efficiency was calculated by adopting Input-Oriented Measures. In this frontier model the yield (kg/ha) was dependent variable for both types of farm. The maximum possible independent variables influencing the dependent variables were explored and fit into the model. The independent variables identified were machine hours (hours/ha), seed rate (kg/ha), compost and manures (kg/ha), chemical fertilizers (kg/ha), agro-chemical use (liter/ha), irrigation hours (hours/ha), bullock use (days/ha), human labor (man days/ha). To estimate the technical efficiencies of mechanized and traditional rice farms, natural log transformation was done for dependent and all the independent variables. The coefficients estimated for mechanized and traditional rice farms using stochastic production frontier is presented in the Table 2.The estimated coefficient (-0.011) for human labor was negative and insignificant which means additional use of labor in mechanized rice farm does not increase the output anymore. This finding was in line Uldare (2014) with who found the estimated coefficient of labor was positive and non-significant for mechanized and non-mechanized rice farms in Nigeria. The estimated coefficient for seed was positive but insignificant. This means additional use of seed per hectare will not increase the output. This could be because farmers were already using the seed more than recommended rate so that additional seed per hectare would not contribute to the output increment significantly. Similarly, coefficients for compost/manures and chemical fertilizers was positive and significant at 5% and 1% level of significance. Oladiebo and Fajuyigbe (2007) who concluded the significant positive relation between level of fertilizers and output for upland rice cultivation in Osun state. The study revealed that the estimated coefficients for agro-chemicals used in mechanized rice farm was 0.908 and was significant at 5% level of significance depicting one percent increase in use of agro-chemicals would increase the output by 0.9 percent. This result is consistent with Canete and Temanel (2017) who found the use of chemicals to control disease pest and chemical fertilizers had significant positive effect to total yield. Coefficient (0.059) for machine use was positive and significant implying that increase in hours of machines use for rice cultivation would increase the output level significantly. Negative and significant coefficient (-0.04) for bullock use indicated that every percent increase in bullock use (in days) would decrease the rice output by 0.04 percent. The presence or absence of technical inefficiency was tested in the study using the important parameter of log likelihood i.e. λ = σu/σv. If λ = 0 there were no effects of technical inefficiency, and all deviations from the frontier were due to noise (Aigner et al. 1977). The estimated value of λ was 1.231 significantly differed from zero. So, the null hypothesis that there is no inefficiency effect was rejected at the 0.1 percent level using the Z-statistic, suggesting the existence of inefficiency effects for rice farmers in mechanized rice farm category. Note:  and  indicate significant at 5% and 1% level of significance respectively.The estimated coefficients obtained from the Stochastic Frontier Production Function for traditional rice farm is presented in the Table 3.The estimated coefficient (0.273) for compost/manures was positive and significant at 5% level of significance. This implied that increase in use of composts and manures by one percent would increase the output level by 0.27%. There was significant effect of chemical fertilizer to the total output indicating that one percent increase in chemical fertilizers would increase the output by 0.015%. The coefficient for human labor was positive and significant at 5% level of significance which means increase in human labor (man days) by one percent will increase the output by 0.028 percent. Estimated coefficient (0.034) for bullock labor use in traditional farm was significant Journal of Agriculture and Natural Resources (2020) 3(2): 82-91 ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) DOI: https://doi.org/10.3126/janr.v3i2.32484 at 5% level of significance. This showed that increase in bullock labor use would significantly contribute to output increment. The effect of seed use to the output was found to be negative and insignificant. This indicated that the additional use of seed for rice cultivation would not increase the output level significantly. This was because farmers of all category were using the seed in excess of recommended rate and thus increase in seed rate beyond the recommended rate would not increase the output. Similarly, the estimated coefficient for plant protection measures (agro-chemicals) was found to be positive and non-significant indicating that increase in agro chemicals as a plant protection measure would not significantly increase the output.The presence or absence of technical inefficiency was tested in the study using the important parameter of log likelihood i.e. λ = σu/σv. If λ = 0 there were no effects of technical inefficiency, and all deviations from the frontier were due to noise (Aigner et al. 1977). The estimated value of λ was 1.176 significantly differed from zero. So, the null hypothesis that there is no inefficiency effect was rejected at the 0.1 percent level using the Z-statistic, suggesting the existence of inefficiency effects for rice farmers in traditional rice farm category. Table 4 depicts efficiency categories of mechanized and traditional rice farm in the study area. The overall technical efficiency of the mechanized rice farm ranged from 40.31 to 92.23 with the mean technical efficiency of 80.56 percent. This indicates that famers of mechanized rice farms could lessen their input use on an average of 19.44% in order to operate at full efficiency level, Therefore, the study concluded that there is still possibility of increasing the rice yields by 19.44% adopting the technology adopted by the best performers. Similarly, the overall technical efficiency of the traditional rice farm ranged from 31.21 to 85.02 with the mean technical efficiency of 70.11 percent. This implies that the nonmechanized rice farm produces 70.11% of the maximum attainable output with given input Journal of Agriculture and Natural Resources (2020) 3(2): 82-91 ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) DOI: https://doi.org/10.3126/janr.v3i2.32484 88 levels. Wide gap between low and high technical efficiency was evident for both mechanized and traditional rice farm. This also mean that rice farmer could achieve the technical efficiency level of its most efficient counter parts. Kea (2016) also found the gaps in technical efficiency in rice production system with the mean technical efficiency of 78.4% indicating room to further improve the technical efficiency.The mean technical efficiency in mechanized rice farm implies that on an average farm produces 80.56% of the maximum attainable output with given input levels. The average rice grower in mechanized rice farm could increase output by 12.65% approximately (1-80.56/92.23). Similarly, the most technically inefficient farmer could increase the production by 56.29% (1-40.31/92.23) if he/she could increase the level of technical efficiency to the most efficient counterpart. Since the mean technical efficiency of mechanized rice farm is 80.56%, it can be concluded that the 19.44% of the output is lost due to the inefficiency in rice producing system.Similarly, the mean technical efficiency in traditional rice farm implies that the average farm produces 70.11% of the maximum attainable output with given input levels. The average rice grower in traditional rice farm could increase output 17.53% approximately (1-70.11/85.02). Similarly, the most technically inefficient farmer could increase the production by 63.29% (1-31.21/85.02) if he/she could increase the level of technical efficiency to the most efficient counterpart. Since the mean technical efficiency of traditional rice farm was 70.11%, it can be concluded that the 29.89 % of the output is lost due to the inefficiency in rice producing system. In mechanized rice farm, majority of the farmers were operating at an efficiency level of 0.7 to 0.8 (i.e. 70% to 80% efficiency). About one-third farms were at efficiency level of 0.7-0.8 followed by one-fourth farms at 0.8-0.9 and remaining farms were operating below 70% of efficiency. Similarly, in traditional rice farm, majority of the farmers were operating at an efficiency level of 0.6 to 0.7 (i.e. 60% to 70% efficiency). About 40.0% farms were at efficiency level of 0.6 -0.7 followed by one fourth farms at 0.7-0.8 and remaining farms were operating below 60% of efficiency.Journal of Agriculture and Natural Resources (2020) 3(2): 82-91 ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) DOI: https://doi.org/10.3126/janr.v3i2.32484The estimated means of technical efficiency between mechanized and traditional rice farm was tested with t-test to find out whether the difference of means of technical efficiency were significant or not. The mean difference of the technical efficiency between mechanized and traditional rice farm was found to be 0.1045. The average technical efficiency of mechanized rice farm (0.8056) was higher than that of traditional rice farm (0.7011) and the difference was statistically significant at 1% level of significant. This was in line with Vortia (2019) who concluded that rice farms with higher level of mechanization are technically more efficient than the others although both farm groups are technically inefficient in rice production. The current study revealed that there was still scope of increasing output level of rice by increasing the efficiency of farm through wise mobilization and use of existing resources. The Pearson's Chi-square value was 91.53 and the difference in efficiency between mechanized and traditional rice farm was found statistically significant at 1% level.The overall technical efficiency of the mechanized rice farm and traditional rice farm ranged from 40.31 to 92.23 and 31.21 to 85.02 percent with the mean technical efficiency of 80.56 and 70.11 respectively. This indicated that that famers of mechanized rice farms and traditional rice farm could increase the output by 19.44% and 29.89% in order to operate at full efficiency level respectively. Wide gap between low and high technical efficiency was evident of inefficiency for both mechanized and traditional rice farm. This also mean that rice farmer could achieve the technical efficiency level of its most efficient counter parts. In mechanized rice farm, majority of the farmers were operating at an efficiency level of 0.7 to 0.8 (i.e. 70% to 80% efficiency and in traditional rice farm, majority of the farmers were operating at an efficiency level of 0.6 to 0.7 (i.e. 60% to 70% efficiency). The overall efficiency level of both the farms suggest that increase in output and decrease in cost could be obtained using available technology. The elasticity of various input used for rice production in both the farm indicated that the manures, chemical fertilizers had significant and positive effect to total yield of rice kg/ha. The effect of bullock use (days) was positive and significant to total output kg/ha whereas it had non-significant impact in mechanized rice farm. The effect of machine use to total yield of rice was positive and significant indicating additional use of machine hours would increase the output. There is scope of increasing the efficiency of rice production system through use of machines and inefficiency can be minimized by creating awareness, educating farmers, technical capacity buildup of farmers.","tokenCount":"3125"} \ No newline at end of file diff --git a/data/part_1/1012030966.json b/data/part_1/1012030966.json new file mode 100644 index 0000000000000000000000000000000000000000..b1bdd6b00fdcd1924e7d4b058bf4e77b4e0dcec6 --- /dev/null +++ b/data/part_1/1012030966.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2c441caee5ad9d61ec61244afb5e3441","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/eb4163d7-1bc0-49b2-8268-0f33130b0e03/retrieve","id":"-1274396136"},"keywords":[],"sieverID":"280e701d-edc8-412a-8985-7784e9a02d3f","pagecount":"26","content":"Fair dealing and other rights are in no way affected by the above. The parts used must not misrepresent the meaning of the publication. ILRI would appreciate being sent a copy of any materials in which text, photos etc. have been used.Editing, design and layout-Step 1 -Setup of the sentinel zones 21.a -Selecting sentinel zones and identifying sentinel clusters 21.b -Participatory field feasibility and validating sampled SZ and SCs 4Step 2 -Set up data collection 52.a Contributor selection and training 52.b Drought recall exercise 72.c Identify rangeland transects 8Step 3. Network managementThere is increasing interest and investments in drought risk financing (DRF) tools for pastoral systems. Nonetheless, existing data is insufficient for assessing the quality or improving these tools in most pastoral regions (ILRI 2021).The sentinel zone (SZ) concept aims to address this gap by maintaining a network of SZs, sampled for socioenvironmental representativeness, that generate indicators specifically developed to track the impacts of drought on the productive resources and welfare of households, and at a frequency appropriate for tracking their dynamics (Fava and Jensen, 2021). Within the SZs, indicators from each of these domains-rangeland conditions, value of production, and household consumption-are quantitatively measured, to reflect the changes before, during and after droughts.Data collection is performed weekly by a network of contributors. While there are many possible models for such arrangements, it is important to ensure that contributors are local, so that they are aware of the circumstances and conditions in the participating community, and that they can consistently collect repeated measurements in specific rangeland locations, markets, and households. 1 The longitudinal nature of the data generated by the SZ network is one of its key features, so consistency is extremely important.Information on rangeland forage conditions is collected from specific transects of pastures identified in each sampled community. This task includes a set of images and subjective forage-condition assessments, which are then used to estimate the fraction of bare ground, the composition of vegetation, and trends in available forage. Together, these three indicators are all aimed at tracking forage available for livestock production in the region.Forge conditions then impact household welfare through, among other channels, livestock productivity, which is tracked through milk production, livestock births, livestock losses, and livestock body condition within the participating households. While such production can be consumed directly through milk or livestock slaughter, the value of production is impacted by market prices, which can also be sensitive to forage conditions, so commodity and livestock prices are also tracked. Indicators of consumption and food security then provide metrics of household wellbeing. More details on motivation for the selected indicators can be found in Fava and Jensen (2021) and this report provides more details on sampling and how to collect the indicators.The SZ network was launched in March of 2021 with two SZs, one in Ethiopia and one in Kenya. These two sites provided an opportunity to refine the sampling and data collection protocols developed in Fava and Jensen (2021), as well as develop training programs for contributors and participants. Ideally, several stakeholders in the pastoral regions will launch SZs moving forward, potentially with or without support from the current research and implementation team. This document targets an audience interested in launching an SZ in their area of operation.This manual is a guideline on launching an SZ to integrate the data it generates into the broader SZ network database. Figure 1 summarizes the critical steps that are taken when setting up a functional SZ.Figure 1: Steps for setting up and maintaining an SZ and SC.Step 1a: Identify the promising sentinel zones from the socio-environmental classes and related sentinel clusters from the environmental sub-classes.Step 1b: Participatory field feasibility and validation of sampled SZ and SC. Identify boundaries of the SCs and engage local communities.Step 2a: Select and train local and appropriate contributors to collect the data.Step 2b: Perform the drought recall exercise to identify the period and severity of large natural shocks that occurred in the past ten years.Step 3a: Monitoring data collection to track the transmission of drought's impacts from forage conditions to livestock production, to household welfare.Step 3b: Monitor and manage the contributors to ensure that accurate data are consistently collected.Step 2c: Identify participating households, markets and rangeland transects.Step 1 -Setup of the sentinel zones 1.a -Selecting sentinel zones and identifying sentinel clustersThe objective of the SZ network is to provide information that can be used to track the environmental and household production and welfare conditions over time at a temporal and spatial resolution that is sufficient for assessing and improving DRF tools. In this section, general principles for selecting the SZ location within a large region and, subsequently, the specific sampling locations, are illustrated. It should be noted that this is not a rigid procedure, as it could and should be customized based on the most recent and accurate geospatial data available to characterize pastoral systems both environmentally and socio-economically.In the framework of DIRISHA, the SZs are sampled from socio-environmental classes (SE Strata henceforth) as described by Fava and Jensen (2021) and illustrated in Figure 2. The two layers were selected for the IGAD region, and they are openly available 2 . However, alternative geospatial products can be used for the initial stratification of the region of interest based on environmental and socio-economic criteria. As examples, the boxes in Figure 2 represent suggested locations for SZs in the IGAD region with bimodal seasonality. These suggestions are created to illustrate the concept and are not intended to be prescriptive in shape, size, or location. But there are some parameters and recommendations to follow when locating an SZ. Notably, the SZs should be located and shaped so that there is not a great deal of variability within the SZ in the SE Strata shown in Figure 2. The idea is that each SZ focuses on and represents a single SE Strata.3 As is discussed below, subsampling within SZ will capture heterogeneity within that SE Strata, so that the SZ network will provide information on both the variation between SE Strata (between SZs) and heterogeneity within SE Strata (within SZ). For example, the easternmost blue square in Figure 2 is mostly low rangeland production in the regions with bimodal seasonality (top panel) and with high social vulnerability (bottom panel). One should use the maps in Figure 2 to identify areas of operation where there are fairly large regions (e.g., 100 km2) dominated by a single SE Strata.Once prospects for SZs have been located, local knowledge should be used to identify regions that are appropriate for this exercise. Recall that the intention is for the SZ to provide information on pastures and pastoralists that depend on them. Therefore, the SZs should be in regions where livestock is commonly grazed and represent a primary source of income for households; that is, populated pastoral regions. 4 In addition, while selection bias is always a concern, logistical and security considerations, such as accessibility, conflict, and national boundaries, should also be considered. 5 Once a SZ location has been identified, sentinel clusters (SC) are selected, one from each of the main environmental sub-classes of the primary SE Strata in that SZ. This environmental sub-stratification within the primary SE Strata aims to capture environmental heterogeneity within the SE Strata. Here again, the implementor will use the local context to locate appropriate communities and related pastures for their SCs. Each SC should include pastoral households and the rangelands that the community members commonly depend on. These parameters might result in SCs that are quite misshapen as pastures are rarely spread uniformly in all directions for households. What is important, is that the households in the SC commonly depend on the rangelands within the SC. 6 With regard to the spatial or population size of the SC, there are no hard bounds, but the implementation plan calls for sampling 8 households within each SC that have livestock, have at least one child less than 5 years old, and commonly use the sampled rangelands. One would hope that the 8 households are drawn from a larger roster of relevant households (i.e., the SC has more than 8 households that fit the criteria). The distribution of population and rangelands will play a large role in determining the boundaries of the SC (Figure 3). The conceptual formulations and justification of the sampled SZ and SCs need to be followed by a field visit to each SC. The field visit provides an opportunity to verify that the sampling process has selected a relevant region (in respect of the project objectives), to identify SC boundaries, and to begin planning for efficient operations. The field visit requires a technical team that is familiar with the research objectives and sampling design, and a familiarity with the local context. These visits also provide the opportunity to introduce the project to the regions and to begin identifying allies within local institutions, government offices, and communities.The suggested engagements during this initial scoping mission can be structured into the following themes.Community entry should take place with local chiefs, relevant local ministry representatives and administrators, and pastoral associations. The first objective is to help stakeholders understand the goals of the project and to link those project goals to other stakeholders. A second objective is to create awareness and build trust in the region. The conditions necessary for the activity to be rolled out in the SC are also outlined and verified.Collecting community details (key resources) starts with identifying landmarks in the region that are crucial in the pastoral productions -ritual sites, watering points, general assembly points or areas vital to the pastoral community.In most parts of the dryland system, localised names of rangelands or other biophysical features help collect community details. The activity also includes collecting information on the composition, spatial distribution and the population of communities living within an SC. The intention is to have an idea of specific communities within the SC that could be targeted for data collection. For instance, urban centres are avoided since they will likely be populated by people that rely less on pastoral activities. Also, communities living close to the edge of the SZ or in transition zones are avoided as they are more likely to herd their animals outside of the SZ or in a different socio-ecological zone. The information obtained is used to identify a representative community within the SC for monitoring.Identifying normal grazing boundaries of the main pastures commonly used by community members for each of the wet and dry seasons. These pasture resources are considered key feed reserves during dry and wet seasons where most households in the community send their animals for grazing. Therefore, the frequency of grazing and the number of households relying on the identified pasture resource is the key aspect of this exercise. It is preferred to sample from communities that graze within the original SZ and SC boundaries. If there are communities grazing much beyond the pre-defined SC boundaries during these normal periods, they are excluded from the targeted group. However, in cases where a large proportion of communities often graze outside the pre-defined zones, then the boundaries are revised to reflect the situation in the communities.Eliciting common livestock and pasture management strategies will ensure that the communities selected are not outliers in herd composition or herd management. Ideally, the sampled communities in the SC would be reasonably similar to other communities in the SC and even the SZ. Therefore, communities with very different rangeland management policies or herd composition than most of their neighbours should be avoided. For example, if most households in most communities in a SC herd both cattle and goats, we would not want to sample from a community where most households have only camels or mostly grow crops rather than own livestock. The intention is to be consistent with a representative sample of grazers and browsers kept in the SC. All else being equal, it is better to have communities where more types of animals are herded and especially grazers, which rely on forage that is usually more sensitive to drought.Information on general grazing patterns and pastoral resource governance is also important to obtain. It helps to understand the utilization and management of the rangelands. For example, some communities preserve specific pastures for the dry season or have individual enclosures to be used for sick or lactating animals. Information should also be collected on the types of available vegetation, and how they are distributed within the SC. Together, with information on the spatial distribution of dry and wet season pasture, the details on livestock management and distribution of forage types are used to identify the rangeland transects with community members.Eliciting common markets, while not necessary for selecting SCs, is an activity that can be performed with the same group of individuals and at the same time, as the above verification activity. The objective is to identify the markets commonly used by communities within the SC for purchasing and selling commodities, milk, and livestock. In many cases, there will be small local markets for purchasing commodities and occasional sale of livestock. However, larger and more important livestock markets will fall outside of the SC boundaries. If these larger markets are frequently used by community members, then those markets should also be included in the data collection activities.Step 2 -Set up data collectionOnce the SCs have been identified and validated, the next step is to recruit a network of contributors who will support the project by helping to facilitate future activities and collect the weekly surveillance data. Each SC will have at least two contributors. As much as possible, the contributors should be recruited from the local communities to reduce the burden of data collection (both on the contributor and participating households), reduce the risk of missing data, and to minimize costs. Local contributors can more easily locate and travel to participants and visit local rangelands, which can minimize attrition and missing data. It also lowers the cost of field activities and puts the contributor in a position to recognize gross misreporting. There can also be advantages related to language and trust. As such, contributors should have the following traits.• They should live and work within the target community.• They should be trusted by the community members because the job includes engaging community members and visiting households.• They should have knowledge and understanding of the communities and the livelihoods within the SC.• They should have prior knowledge of the local livestock and commodity markets, an understanding of the market operations and have contacts at the market.• They should be literate and able to use digital data collection tools.• They should have some familiarity with smartphones so that learning to collect the smartphone-based surveys is not a large burden.A good practice is to collect a list of potential contributors from the local stakeholder during the SZ and SC validation exercises. These stakeholders can use their understanding of the project and their local knowledge to identify promising candidates. The candidates' interest and competence should then be assessed by the technical team. In this case, the candidate must be someone the team can trust to work with. This is because these contributors will often act as liaison with the community and participants, and sometimes they can be responsible for handling payments to participants. The selected team is invited for training, but a list of other potential candidates should be held in case a replacement is needed in the future.All the contributors within an SZ should be trained at one time in a location within the SZ if possible. A single training for all the contributors is not only cost-effective, but also helps facilitates peer-to-peer learning and builds comradery within the team, which can be important when contributors need to ask their colleagues for ICT support or to help cover each other's activities when necessary.The training program should start by explaining the project's objectives and then outlining the expectations for the contributors and the incentive structure. At that point, trainers should check with each contributor to be sure that they are available for the project period and are still committed now that they understand what is expected of them. In our experience, there is often a risk that candidates attend training to collect per diems/stipends with little intention of participating for the duration of the project, for example, if they are a student and plan to return to a distant school in a month. While some contributors will end up resigning from their position, it is frustrating and wasteful to have one leave just after training, which would require identifying and training a new candidate. Further, high turn-over rates could negatively impact consistency and quality of the data.Once the contributors have committed, they should be trained on how to access and use the data collection platform. All data is collected on smartphones using a mobile survey application. The survey software (application/ platform) will have some basic hardware and system capacity requirements, and some tasks require that photos and GPS points are taken, so the devices and software must be compatible with those needs. Certainly, the software should function offline. The International Livestock Research Institute (ILRI) uses the KAZNET platform to task contributors, but the survey forms could be directly launched on any Open Data Kit (ODK) service or could be migrated to another platform. 7 No matter the data collection software used, training should include handson training on phone maintenance: charging, how to add airtime and internet bundles, how to download and install apps, how to use location services, best practices on taking photos, and a discussion about connectivity requirements for submitting data. Once the phone maintenance issues are covered, it is time to turn to the survey application. Work with the contributors to download and install the application. Credentials for the survey software should be created logically -so that contributors can easily remember them -and documented by the project in case they are lost by contributors. It should be assumed that contributors will change phones and potentially sim cards 7 The KAZNET platform is a micro-tasking platform that was developed through a collaboration between ILRI and ONA (https://company.ona.io/). The platform allows administrators to create tasks, which are ODK survey forms that are geo-fenced (form completion is restricted by location) and can only be completed in pre-designated periods. The contributor engages with the platform through a smartphone application that provides a menu of available tasks and details on the parameters of the task (e.g., incentive, location, and period restrictions) which the contributor can select and complete. See Chelanga et al. 2021).during the course of the project. Indeed, we have had cases of contributors sharing phones, lost phones, stolen phones, and deleted apps. This is all to say that it is useful for the contributors to know how to download, install, and sign into the programs that they are asked to use.The survey application training should be hands-on and can take place while training on each of the tasks. Start by describing the three types of data they will be collecting: household, pasture, and market. The details of each task are described in detail in Appendix A, as are links to the paper version of the survey forms. Each of the tasks has its own set of objectives, forms, and protocols. For instance, market tasks are only performed inside markets during market days-any market tasks performed out of these parameters should be rejected. Individual survey questions should be discussed for each of the tasks in terms of the information targeted, how to frame questions in the local language, the link between questions, and quality controls embedded. In these sessions, relevant changes to the surveys can be made in response to feedback from the contributors, for example, by adjusting the acceptable domain of acceptable cattle prices to reflect local conditions or adding hints to remind contributors of the aim of a specific question. Like any data collection exercise, it is important that contributors discuss the meaning of the survey tasking and their translations into the local language.While training on each task, be sure to highlight and discuss the time and location in which every task can be performed. Data collection is done weekly. This means a contributor should perform each of her/his rangeland transects and visit each participating household weekly. Additionally, contributors will be responsible for attending weekly market days to collect information. There is some flexibility in timing for the rangeland and household data, but most livestock markets, at least in our experience, have specific main market days. Contributors should understand their responsibilities, how they are paid, where there is flexibility, what is expected of them, and the consequences for non-participation.Contributors are encouraged to communicate effectively and respectfully with their peers, the supervisory team, households, market stakeholders and any interested party in the community. Trainings on formal survey consent and soft skills in communication are part of the training. Use of additional communication platforms (e.g., WhatsApp groups, short message services [SMS]) can be very helpful. The intention of this session is to create avenues for continuous learning during the project period, and to minimize friction from the frequent contact with communities. Forming WhatsApp groups allow for quick and efficient sharing of problems and solutions.Hands-on training through role playing, practice rounds with selected pre-test households and rangeland transects, and livestock markets help teach contributors about data collection protocols and requirements for quality data. This offers the trainers an opportunity to identify and address weaknesses in the contributors and issues with any task.The objective of the drought recall exercise is to identify the period, severity and main cause of large natural shocks that occurred in the past ten years to better understand the relative importance of drought in the region and to provide a dataset that can be used to assess the accuracy of drought indices. The drought recall exercise is performed separately, in each SC. It is a participatory activity in the form of focused group discussions with stakeholders drawn from target communities in the SC. The target group of stakeholders is similar to those engaged in the feasibility and validation activity in the SC. A relatively larger number of participants is preferred (e.g., around 10) for triangulation of information; matching shocks to years and assessing their relative magnitude can be challenging. It is strategic to use the newly trained contributors as facilitators to leverage their local knowledge, interpretation of local the language and context, and continued training. It also helps to verify their position in the project to members of the communities.The drought recall activity requires concentration and commitment by the stakeholders to avoid errors in identifying events, matching them to years and seasons, and ranking them according to severity. Be sure to motive the activity by linking it to that larger agenda.Start the recall exercise by first developing a series of reference points in time within the recall period, especially at the beginning of the recall period. These reference points help participants place events more accurately and need only be events that took place at a time agreed upon by the group members, for example, elections, cultural ceremonies, locust invasion, football championships, and other unique events that most participants are aware of. The group also needs to agree on the cycle of seasons, when wet season(s) take place, and when dry season(s) take place.Once the reference calendar is agreed upon, work with the participants to identify the 3 best periods for forage availability. Then begin discussing the worst seasons for livestock. There are several reasons for seasons that are especially bad for livestock and that can cause livestock losses. There are many options on how to progress through this process (e.g., focusing first on drought or first on the seasons with the highest losses, no matter their cause) but the object is the same-to identify the 3 periods with the highest losses due to drought and understand the magnitude of those losses with respect to losses caused by other shocks. A template found in Appendix B provides a structured form for recording the timing, type, and severity of shocks. Notes should also be made and collated for referencing later. These can be lively discussions that could lead to adjustments in the existing monitoring questions or the addition of extra tasks.During the discussions, focus on the common risks to livestock. To rank the severity of shocks, use a hypothetical starting herd of 10 animals and ask how many would have been alive after the shock. Or, if livestock losses do not seem to well capture the severity of the drought, take note of key coping strategies adopted during and after the major shocks, and use them as an alternative way to rank severity.The drought recall exercise provides coarse information on when historic shocks took place and their severity. This is useful for assessing the relative importance of drought and verifying if the drought index accurately captures severe drought. The objectives of the monitoring data are more ambitious, to reveal and track the transmission of drought's impacts from forage conditions to livestock production, to household welfare. Illuminating such dynamics requires high-frequency and longitudinal data across several domains. This requires that we identify a set of rangelands and households to track overtime. In addition, information is collected from local markets to track the terms of trade that livestock producers face, which can exacerbate or mitigate the impacts of drought.Building on the information obtained from stakeholders during SC feasibility and validation, households, markets, and rangelands are selected from each community. In each SC, our team has used eight households, four rangeland transects, and the 2-4 most commonly used, local, livestock markets. Participating households should be identified by community members. Target households are those with near community-median livestock holdings, have some children below five years old living at the homestead (so that Mid-Upper Arm Circumference -MUACmeasurements can be tracked), that often graze their livestock within the SC, and that have livestock herders living at the homestead (so that household members have information on both household consumption and livestock production). Once the households have been selected, the local contributor and field coordinator should visit the participant and introduce the project to them. Contributors should be made fully aware of the project's objective and timeline. The contributor should walk the participant through the type of questions that they will be asked each week, and it should be clear that participants are expected to work with the contributor to ensure that the survey is collected weekly as much as possible. The contributor should then request and record formal consent from the participant. Compensation/tokens of appreciation should also be discussed at this point, and the participants' eligibility should be verified. Finally, the participant's profile task should be collected by the contributor. This is an excellent time for the field coordinator to provide the contributors with feedback on how they interact with the participants and the data collection platform..Rangeland transects are identified from the important local rangelands identified during the stakeholder engagements. The technical team, SC contributors, and a community guide should organize targeted visits to commonly used dry and wet period pastures to identify and mark the potential transects. 8 It is desirable to track both dry and wet period pasture, but in situations where dry period pastures are not well defined or located too far from settlements, additional wet period pastures may be monitored. For proper identification and tracking, each transect is given a convenient and mnemonic name. Once identified, each contributor is assigned two distinct transects to monitor over the project period. The survey tools should be updated to include the transect names for contributors to select them when performing their tasks in the future.The relevant markets for tracking index commodities, livestock prices, and livestock volumes are identified through community engagements. These could all be in a similar location or quite distinct. For example, commodities prices might be tracked at a local store in a neighbouring community while livestock prices and volumes are tracked at a livestock market in a different location. The objective is to focus on the places that community members use most often for buying and selling the good of interest.Step 3. Network managementOnce the preparatory work is completed, and the contributors have been registered, weekly data collection commences. While this process runs, several monitoring and maintenance activities are required to ensure accurate data is consistently collected and submitted.Managers should monitor submissions for both quantity and quality. Setting up automated processes for summarizing data, flagging outliers, and highlighting missing data can save time and increase data consistency and quality. Managers should communicate with contributors and, when necessary, replacements (of either households or contributors) should be made quickly and transparently without a great deal of commotion as the project relies on the support of the community members and the team of contributors.Contributors should be aware that tasks could be adjusted, and methods for communicating changes should be in place. We note that many survey platforms have remote update features, so as long as the contributors are appropriately trained, updating tasks can be quite simple.The contributor network must be monitored, paid, and communicated with. Communication is the most important component of maintaining the network. Be sure to have clear and simple modes of communication set up. Social platforms can encourage peer-to-peer support, and provide a venue for gamification and information dissemination.Payments to contributors and participants should be transparent and clear. One option is to send the list of payments to all contributors and participants so that everyone is aware of how much they are receiving and why. In our implementations, contributors are not paid per task and are not paid for contributions that are deemed invalid, for example, if the verification photo cannot verify the task. Managers need to be very consistent, clear, and explicit as to why submissions are rejected. In our experience, contributors become frustrated very quickly if they do not know why their submissions are being rejected. Clear and timely communication can quickly increase and maintain data quality and consistency. Delays in payments or disputes about payments can also be a large issue, but this too can usually be addressed with communication and transparency. Where available, electronic payments systems (e.g., bank transfers, M-Pesa) to both households and contributors can reduce transaction costs and risks. 98 More details on the desirable characteristics of the rangeland transect are found in Appendix A.9 While there can be many benefits to electronic payment systems, implementors also need to weight them against potential costs related to registration and access, which can cause bias in the sample or impose limits on who in the household control the payments.Challenges, such as application breakdown, market closures and household attrition are addressed by the system administrator. This implies that the administrator should be on standby and in close contact with the team of contributors to allow timely responses to any issues arising.The long-term viability of sustained data collection requires that there are sufficient funds available to support it. Here we outline the main costs for would-be implementors.Launching an SZ requires a considerable amount of in-person fieldwork for identifying SCs, community entry, managing the drought recall exercise, identifying rangeland transects, training contributors and recruiting participants. In our experience, the process requires a minimum of 25 days in the field per SZ. For this, we suggest using two staff working together in one vehicle. The main costs for this activity are meals, incidentals and lodging (MI&L) for staff, transportation for staff, MI&L for contributors, transportation for contributors, and finally expenses related to community entry and the drought recall exercise. While the actual rate of MI&L and transportation will vary by site, what is clear is that one would, at a minimum, need to have a budget for MI&L for 50 staff days (2 staff, 25 days each), and 112 contributor days (8 contributors, 14 days each), a vehicle for at least 25 days, resources for contributor transportation (i.e., either reimbursing transportation needs or providing transport) and the budget required for community entry and the drought recall exercise (e.g., transportation for participants, meals provided, drinks, and stipend).Once the SZ has been launched, the maintenance expenses are reasonably predictable and low. The primary direct expense is paying the contributors. While many different payment schemes are possible, we estimate about USD 15/ contributor/working day, and each contributor works about 2 days per week to cover her/his households, transect points, and market. The project should agree with contributors about who will be responsible for transportation costs and smartphone data costs related to data collection and submission. Participants should be compensated for their time at a rate that is appropriate for using 1-2 hours of their day each week. Projects should also plan to visit each of the SCs every few months after launching data collection. This allows community members and participants to raise any issues before they have festered for long and allows the research team an opportunity to follow up on any curiosities they are seeing in the data. This is also a good opportunity to run a refresher training with the contributors and to work with the community to build engagement, for example by providing summaries of the trends in the data for their region and from other SZs.Note that the above does not include any staff salaries, which can be considerable considering the amount of time spent in the field for the initial launch, managing the network of SZs, verifying submissions and making payments to contributors and participants, and for using the data.A rough budget is as follows.• Initial SZ starting activities cost about USD 15,000 in direct field expenses• Data collection plus three maintenance trips cost about USD 25,000 per year in direct field expenses• Hardware and subscriptions: USD3,000• Field technician: 50% FTE• Researcher/PI: 15% FTEThe above budget would generate about 52 survey sets from each of 32 households, 52 collections from each of 16 rangeland transects, and 52 survey sets from each of 4 livestock and commodity markets. Because there are many and varied expenses related to collecting household surveys using conventional approaches, it is not easy to provide a clear comparison between the data collection approaches described here and the more conventional household surveys. However,, as a point of reference, using the same budget our team at ILRI could collect 10-15 rounds of the same surveys from the same sample using conventional methods, rather than the 52 rounds that we will collect using the local enumerator approach. 10Launching and maintaining an SZ will surely come with a host of challenges and issues. We close this manual with a list of best practices for managers and implementors. Above all, be sure to keep the objectives of the mission consistent and accurate data in mind.Early and effective mobilization of stakeholders for engagement in all the participatory processes is crucial. It not only reduces costs but helps to draw a broad range of stakeholders; both those that happen to be available and those that are near the site on the day of activities, which should improve the quality of the discussion and community buy-in. These stakeholders will also provide a channel for feedback during the implementation. It is important to schedule activities around local calendar of events, such as market days or traditional ceremonies. It is also good practice to plan a feedback session with the local stakeholders and participants a few months after data collection has commenced. This is a time to show the community some of the uses for the data being collected, receive any feedback on how to better meet the SZ's objectives and identify any grievances before they have had a long time to fester.Having clear and easy communication with contributors is one of the most important strategies for maintaining consistent and accurate data collection. The DIRISHA team has experience maintaining several remote teams and communication consistently surfaces as the most important management practice. Be sure to set up a number of appropriate communication groups (one for SZ contributors, one for each SC) with a member from the implementation team that is responsible for monitoring and replying to issues that arise. In our experience, poor communication is the leading cause of poor quality or missing data.A streamlined process for monitoring data should be used to monitor and provide feedback on data quality and quantity in a timely fashion. Data submitted should be checked and validated soon after submission. This helps to identify errors, make corrections, and follow up on delayed submissions. Rejected data should be accompanied by a justification, and whenever appropriate, an individual follow-up call should be made (especially early in the implementation). This should be supported by well-built frontend (phone side) data quality controls including timestamps for ensuring data is collected during the required times, GPS locations associated with submissions, maximum and minimum rages for variables, and effective skips patterns.The importance of having consistent, high-quality, weekly measures should be emphasized to contributors. For household data, data collection should be scheduled at the convenience of the participant. Note that the householdlevel data requires a period when both livestock are available, and the respondent has time.Flexible data collection software: While most tasks should be stable by the time data collection starts, there is often a need to update tasks or even add tasks as circumstances change. The SZ should be implemented using software that allows for remote updating, and contributors should be trained on that process. In cases where changes are made, the change schedule and details should be communicated in advance. Develop a confirmation process so that contributors confirm that they have updated their tasks and have the correct version of the tool.10 The above calculation assumes that training costs are approximately equivalent between approaches because the number of data collectors and training content is nearly identical. Further, we assume that both approaches require a field technician to provide the training and manage the data and a researcher/PI to oversee the project. Therefore, direct field expenses of data collection are where the main cost differences are. Assuming that the actual enumerator time spent collecting data is the same for each round, then the main difference is that: (1) there is no public transportation in these regions and 4x4s are needed, which cost $200/day, and (2) providing enumerators with room and board, which costs $30/enumerator/day.The rewards for each task should be communicated and calculated in such a way that contributors can easily calculate their expected payments and dispute discrepancies. We suggest contributors to be paid per completed and verified task, but there is a threshold for contributing, under which the contributor is replaced. Participants should be paid a single flat rate each week for participating and multiple weeks without participation is the reason for replacement. Payments for both household tokens and contributor rewards should take place at agreed intervals and using previously agreed upon modes. They should be on-time, and any delays should be communicated well and early. In cases of reduced pay due to a high number of rejected tasks, the administrator should provide sufficient explanation to the contributor early enough. It is important to focus on data quality from the beginning to set the expectation high.As with all collection of data that may contain sensitive information, there are ethical considerations to consider when implementing an SZ. There are two main concerns. First, the data collection activities themselves should not pose any risk to contributors or participants. This includes ensuring that the activities are not too large of a burden for the participants and that contributors are paid sufficiently for their efforts. As we have mentioned earlier, it is important to perform community entry activities thoroughly and well, so that community members understand and support the objectives of the project. This community entry should also reduce the risk that participating households are discriminated against by community members, but the contributors should monitor informally for such discrimination. Finally, because there is conflict in many dryland regions, it is important to be sure that the contributors can safely collect the data that they are charged with; pay attention to boundaries between groups of individuals with a history of conflict and be sure that the contributor is comfortable communicating concerns related to conflict to those managing the SZ. Second, the data should not pose any risk to contributors or participants. Anonymizing data before sharing, by dropping identifying information and adding random errors to the latitude and longitude of household locations is one step required for keeping private information safe. In addition, if the information is shared back to communities, it should be aggregated at a level that ensures anonymity for the participating households, which means aggregating to the SZ level since participating households within each SC will be commonly known. Certainly, all activities should be approved by a Research Ethics Board and meet all research requirements of the country.A final note on collaboration: We hope that this manual has helped you think through the process of setting up an SZ. Please do reach out to the contacts listed in this manual to discuss your implementation. Not only can we provide support, but we also want to be sure to work together so that you are able to meet your objectives in joining the SZ network, and that the data collected by the SZ that your institution is launching, can be integrated into the SZ network's databases.Rangeland transects should be located in dry-period and wet-period pastures commonly accessed and identified by the targeted communities. In cases where dry period pastures are practically constraining for the contributors to access (e.g., very far away or changing each season), then focus can be put on wet season pastures. A transect of 100 meters should be defined across an important grazing area in each pasture. The start and endpoints of the transect should be marked or recorded in some way with easy to identify and fixed objects, like poles or rock piles.To perform the transect path, start at one end of the transect and complete the first portion of the task, then the next portion should be repeated at each transect point, which should be spaced every 10 meters, as instructed in the tool. Each time the transect is collected, pictures and GPS should be taken at in a uniform camara position. Nadir images should be taken with arms directly out at chest height. The task includes a question for the contributor to provide an assessment of the conditions at the rangelands where the transects are drawn. Some of the questions require observation and comparison of the transect forage conditions relative to condition in the last visit-mostly a week.For example, a question on whether there was rain at the transects requires the contributors to either observe any changes in the rangelands that could indicate the occurrence of rain. Also, they could tell if it rained over the 7 days if they were present in the community over the period. Other subjective assessments of the rangelands require past knowledge of up to 5 years-so the contributors compare the current conditions to a similar period in the past.Market prices for basic commodities.Prices and availability of basic goods consumed in the communities in identified market location are tracked on a weekly basis. In our implementations we track sugar, milk, rice, fodder, meat, beans, and cabbage. Prices of standard measurements of commodities e.g., in kilograms or any other relevant standard applicable in the local context should be used. The task should be performed at the same market every weekly cycle of data collection.Prices should be recorded in the local currency and that currency should be recorded by the survey software. Demand and supply shocks occasioned by changes in environmental conditions are expected to impact the market prices of these commodities commonly consumed by pastoral communities.Market prices for all animal types traded in sampled markets are collected during the main weekly market. Specific animal categories found to be commonly traded in the market (e.g., mature, moderate, non-castrated animal types) should be selected for tracking to increase likelihood of consistent data. These decisions should be informed by initial market assessment and discussions with community members. During the market day hours, contributors approach a seller who has just completed a deal with a seller, and record the final prices paid for the animal. To increase the representativeness of the data, contributors should be encouraged to make multiple submission within each category each week. Prices should be recorded in the local currency and that currency should be recorded by the survey software.This task targets data on the number of livestock, per animal type, supplied to the markets for trade at a particular market day. When available and deemed reliable, contributors should acquire the total count of animals bought/ sold on that market day, from the records of market management agents. If such records are not available, then the contributor could perform and record a headcount of the number of each type of animal, during the busiest part of the day. As long as the contributor uses a consistent practice, this head-count spot-check, should vary with throughput, and therefor provides an alternative when throughput itself is not available.Household livestock milk production.Milk production in pastoral settings is a notoriously difficult variable to track because production is not often tracked by the household. This set of tasks targets two indicators, total milk production within the household's herd and the milk production of a specific index animal. The idea is that, while the total production is the ideal measure, those at the household may not be able to accurately estimate milk produced by portions of the herd. So, we assume that total milk recorded by the task, is a coarse approximation of total milk produced. Milk production by the index cow should be much more accurate but may not reflect the conditions that other animals in the herd face. Milk production is recorded weekly cycle, but is done so using 24-recall period. Amounts of milk should be recorded in units of measurement that are appropriate for the region, but the amount in litres should be calculated by the survey software and recorded.This task targets data on food availability and consumption of different food categories by the households to obtain a household dietary diversity score (HDDS). It also focuses on strategies applied to cope with food shortage-with is commonly referred as 'reduced coping strategy index' (rCSI). The HDD task is developed by following the protocol Kennedy et al. (2011). Household consumption choices from a list of 16 food categories is deemed to indicate access to food and a proxy to nutrient adequacy. The rCSI tasks are made up of questions adopted from Maxwell et al. (2003). The households recall how they managed scarce food times, by re-allocating different quantities across day and night mealtimes. A reference period of 7 days is targeted for both HDDS and rCSI data. The tasks should be performed at homesteads of the sampled households and the contributor should be sure to interview a household member that is well informed on the household's consumption.The MUAC measurements for the caregiver and children below five years old are measured in this task. The roster of eligible children is obtained from the household's profile task. They are populated in the MUAC task to reduce the risk of inconsistency in tracking measurements. Eligible children should be precisely identified at each measurement period. Using a tailor-made tape commonly called MUAC-tape, the measurement is taken of the mid upper left arm, while the arm is held in a relaxed position. The tape is calibrated in centimetres (CM), with arrow pointers and colour codes to guide the contributor. See UNIFEC (2020) for more information on the MAUC tapes and a video on how to measure MUAC can be found at https://www.youtube.com/watch?v=3pQUtOsjjSY. Four our project, the MUAC is measurements are taken after every 7 days. The data provides a quantitative measure of severe or moderate acute malnutrition of caregiver and child tracked.The task entails tracking multiple dimensions of animal's body conditions and weight. Assessment of physical body condition follows standard protocol set by Kenya Bureau of standards (KEBS) of giving body score depending in the appearances of specific body parts. Contributors are trained how to assess and score body conditions of different animal types. Camels and cattle are scored into four categories: fat, moderate, thin, and emaciated. Goats and sheep are scored in three classes: fat, moderate, and emaciated. Following the protocol by Goopy et al. (2017), body weight is measured using standard hearth girth tape. The protocols for measuring cattle are widely used and thus we focused only on cattle on our SC. A specific index cow should be identified in the households for the weekly tracking.The animal body conditions are assumed to change depending in the forage conditions in the accessed rangelands.This entail recording the numbers of death and births occurrence over the previous seven days among animals herded by a household. The main cause of death is also collected for each reported loss.ISBN: 92-9146-753-7The ","tokenCount":"8148"} \ No newline at end of file diff --git a/data/part_1/1023227510.json b/data/part_1/1023227510.json new file mode 100644 index 0000000000000000000000000000000000000000..6795087265104a6108836e2af0d07465a534b09e --- /dev/null +++ b/data/part_1/1023227510.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eeee035c780cf6f028e0f9c55cb389cf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/cdf96ba7-08b4-4d6e-adee-a41691fab63a/retrieve","id":"-64724614"},"keywords":[],"sieverID":"d69906fc-468b-4ec2-8df5-ec32108b08a3","pagecount":"11","content":"Assessing soil organic carbon (SOC) is vital for water retention, soil health, nutrient cycling, greenhouse gas emissions, and pollutant reduction and thereby contributes to sustainable agricultural production and food security. Thus, using long-term climate, soil, and land management inputs, the Rothamsted Carbon (RothC) model was applied to assess the current and future SOC stocks in the Anjeni watershed using long term climate, soil and land management data. RothC was calibrated with long-term SOC, land management, and climatic data from the Anjeni watershed in north-west Ethiopia. The correlation coefficient between simulated and observed SOC in 1997 and 2021 were 0.77 and 0.86, respectively, suggesting that the model could characterize the SOC of the Anjeni watershed. Then, the RothC was used to estimate SOC in the watershed for 30 years, from 2022 to 2052, under three slope gradients and four land use type and carbon storage scenarios (business as usual (BAU), low, medium and high carbon inputs). The result indicated that in the lower slope gradient, the current SOC simulation is less than all future scenarios considered under all land use types. Grass/fallow land showed higher current and projected SOC than cultivated land and plantation forest. Moreover, grass/fallow land with a gentle slope gradient had higher SOC than the watershed's middle and high-elevation parts. Overall, the model projected an increase of SOC under different future scenarios that could be due to climate and land use cover changes, the long-term soil-water conservation camping works and better soil and land managements in the watershed. This future assists for water retention, soil health, nutrient cycling, soil aeration, and greenhouse gas emission reduction, which in turn could enhance agricultural productivity, food security, and sustainable development.The soil organic carbon (SOC) level is a critical determinant of soil productivity (Deressa et al., 2020;Mondini et al., 2017). Soil can sequester or release carbon depending on various factors such as environmental conditions, management practices, and other influencing factors (IPCC, 2019;Afzali et al., 2019). Proper soil management and agricultural practice can increase soil productivity and decrease the decomposition of SOC, further reducing the emission of carbon dioxide into the atmosphere (IPCC, 2019;Yokozawa et al., 2010).In the Ethiopian highlands, the growing population and increasing demand for food are putting pressure on the agricultural sector and forces to expand traditional agricultural practices with no proper management (Zerssa et al., 2021;Agidew and Singh, 2018). The sustainability of agricultural production relating to soil quality is becoming affected by the nature of intensive and inappropriate farming, with the removal of crop residues accelerating the decomposition of SOC that leads to soil degradation (Fantin et al., 2022;Chatterjee et al., 2020). Consequently, the carbon emitted from improper soil management increases the concentration of CO 2 in the atmosphere, which raises the global temperature (Chatterjee et al., 2020). The SOC loss due to land use pattern change (from forest or grassland to agriculture) is expected to be high, particularly in Ethiopian highlands (Baye, 2017;Assefa et al., 2017;Amsalu et al., 2007;Hurni et al., 2005).In the Anjeni watershed, most of the population relies on agriculture. However, agricultural output is declining, and its sustainability is in doubt due to significant land degradation, soil erosion, and deteriorating soil fertility, even though sustainable agriculture is recognized as a crucial issue to achieving the 2030 agenda for Sustainable Development Goals (SDGs) (Bayabil et al., 2015;Alemu et al., 2013;Setegn et al., 2010). On the other hand, smallholder farmers in Ethiopia, especially those in the Anjeni watershed, have struggled to meet the community's growing demand for food by increasing the area of their farms within forested or grazing areas. Additionally, farmers use fallow times that are too short or nonexistent to adequately replenish soil fertility, which generally leads to a decline in agricultural production (Wawire et al., 2021;Alemu et al., 2013).Ethiopia has actively pursued soil and water conservation techniques campaigns since the 1980s to reduce land degradation, sedimentation, and soil erosion that help promote soil fertility. Recently, the Ethiopian government approved a 15-year plan to safeguard the nation from the negative consequences of soil degradation and create a climate-resilient green economy by 2025 (FDRE, 2011). Additionally, a five-year, two-phase strategy (2010)(2011)(2012)(2013)(2014)(2015)(2015)(2016)(2017)(2018)(2019)(2020) has been established by the Growth and Transformation Strategy Plan (GTP) to adopt soil and water conservation (SWC) methods with community involvement (EGTP, 2023).The Anjeni watershed is a pivotal site for the Soil Conservation Research Program (SCRP), aimed at implementing soil and water conservation techniques to mitigate erosion. Over time, the Amhara Regional Agricultural Research Institute (ARARI) has sustained research efforts in soil and water conservation, making Anjeni one of the longeststanding watersheds with substantial land management investments. Diverse soil and water conservation practices have been implemented to address land degradation and soil erosion and enhance soil fertility. Notably, the Anjeni watershed was severely degraded before 1984 (Hurni et al., 2005(Hurni et al., , 2010)). Therefore, assessing the SOC dynamics using process-based models in various land uses and slope gradients is necessary for evaluating SOC stocks of various land uses and slope gradients in the Anjeni watershed using a process-based SOC simulating model.The Anjeni watershed's sustained efforts in land management and conservation agriculture prompt an examination of how sustainable land management practices influence SOC dynamics across varied landscapes and slopes. To identify pathways of C release from soil or retained in soils, it is crucial to understand the dynamics of SOC in connection to LULC change and agricultural management practices (Chatterjee et al., 2020;Adhikari et al., 2019). For sustained agricultural output and a stable ecosystem, it is crucial to increase soil carbon levels by increasing carbon imports or reducing the decomposition of organic matter in the soil (Amanuel et al., 2018). To address the sequestration of carbon in agricultural soils, several management techniques are known to increase soil organic carbon (SOC) contents in croplands, including organic amendments, cover crops, crop rotations, agroforestry, or conservation agriculture (Fantin et al., 2022;Sharma et al., 2019). On the other hand, the intense agricultural practice brought about by the rising population and the great need for food made it harder to implement the aforementioned conservation agriculture measures (Wassie, 2020;Sharma et al., 2019).Given the diverse land uses, slope classes, and various land management and agricultural inputs, process-based models are instrumental in comprehending soil organic carbon (SOC) dynamics in the Anjeni watershed. These models facilitate timely evaluations of soil fertility for sustainable agriculture by analyzing SOC fate under different scenarios, leveraging long-term experimental datasets that encompass soil types, climate conditions, and land uses specific to the study watershed.Process-based models are widely used to simulate SOC changes for various scenarios because field observations are expensive (Mishra et al., 2019). Additionally, a process-based model aids in extrapolating data gathered through observation to hypothetical future situations. These models increase the research's level of relevance but also give farmers and stakeholders vital information they need to make decisions about various agricultural systems (Jordon et al., 2022). Hence, the Rothamsted Carbon Model (RothC) has been used in several countries as well as different ecosystems, climate, and land cover types such as the UK, Austria, Brazil, Spain, Zambia, China, Japan, Germany, Italy, India, and Kenya were used for this study (Mishra et al., 2019;Mondini et al., 2018;Yao et al., 2017;Senapati et al., 2014;Yokozawa et al., 2010;Kaonga and Coleman, 2008;Guo et al., 2007;Ludwig et al., 2007;Kamoni et al., 2007;Cerri et al., 2007;Shirato and Taniyama, 2003;Romanya et al., 2000;Coleman et al., 1997). Using the RothC model under specific environmental and management conditions necessitates a validation process using comparable observed SOC stock. Therefore, the rationale of this study is to calibrate and validate the RothC model for the Anjeni watershed and simulate SOC under different scenarios. There is growing interest in using process-based models to understand the dynamics of natural and edaphic factors on soil carbon. Therefore, this research article will serve as a benchmark for future research. Ethiopia, only two studies have been conducted so far related to RothC. The first study, which was carried out over entire Ethiopia (Abegaz et al., 2022), was on a large scale, which is difficult to use for policymaking, and the second study was in the Tigray region (Mesfin et al., 2020) which is in semiarid agro-ecological zone in the northern part of Ethiopia. Thus, this study assessed the soil's current carbon stock and future potential using different scenarios in the Anjeni watershed. Regular evaluation of the watershed is vital to detect the effects of soil conservation works in the watershed.Thus, validating the widely used RothC model for estimating C turnover can enhance the assessment of SOC dynamics in different land cover of the Anjeni watershed that can be extrapolated to areas under the same climatic condition to assist in the management strategies in a long-term perspective. The objectives of this study were to (i) test and validate the RothC model for estimating SOC stocks in different land covers and slope gradients at the Anjeni watershed in Ethiopia and (ii) simulate and evaluate the future SOC based on different scenarios using the RothC model.This study was conducted at the Anjeni watershed of the Blue Nile basin in the west Gojam zone (Demebecha district) in the northwestern part of Ethiopia. The geographical location of the watershed is at 10 • 40′59 ″N latitude and 37 • 31′57″E longitude, with mean elevation ranges from 2100 to 2500 m (Fig. 1). The watershed is a mixed croplivestock subsistence farming system with an area coverage of 108.3 ha. The watershed is categorized under the Wet Weyna Dega (wet subhumid) agro-ecological zone with an annual average rainfall of 1650 mm and temperature of 16.5 • C (Alemu et al., 2013). There are about five major land use land cover types in the watershed, including cultivation land, plantation forest, grassland, settlement, and fallow land, covering 70 %, 14 %, 10 %, and 6 %, respectively (Geremew et al., 2023). The dominant soil types in the watershed are Alisols, Nitisols, Regosols, Leptosols, and Cambisols, with coverage of 41 %, 23.8 %, 12.4 %, and 19 %, respectively (Setegn et al., 2010).The soil sampling collection was based on the slope and land use cover type that the entire Anjeni watershed was classified into three slope gradients as gentle slope (1-15 %), moderate slope (15-30 %), and steep slope (> 30 %). Four land uses were identified for each of the three slope gradients in the watershed: fallow land, cultivation land, settlement, grassland, and plantation forest. We had collected the soil sample in 2021, from average soil depths of 0-30 cm, as recommended by IPCC (2003). Moreover, undisturbed soil cores were collected from the two soil depths (i.e., 0 -15 cm and 15 -30 cm) and average soil depths of 0-30 cm to assess the bulk density. As reported in Geremew et al. (2023) reported, 36 disturbed soil samples were gathered, representing four land use cover categories, one depth, three replicates, and three different slope gradient categories. All sampling locations were georeferenced using a GPS to obtain their coordinates, and soil laboratory analyses were conducted at the Debre Berhan Agricultural Research Center in Ethiopia.Based on the climate data obtained from the Water and Land Resource Center (WLRC) of Ethiopia from 1983 to 2022, the average monthly rainfall is 135.9 mm, with the highest in July (381.1 mm) and the lowest in January (11.1 mm). The average monthly minimum temperature is 9.7 • C with the highest in May (11.9 • C), while the lowest was in December (6.6 • C). The highest monthly maximum temperature was observed in March (27.3 • C), while the lowest was in August (19.8 • C). The average monthly maximum temperature was 24.2 • C. The highest monthly average temperature was indicated in April (19.2 • C), whereas the lowest was in August (15.5 • C). Based on the data analysis from 1983 to 2022, the monthly average temperature was 16.9 • C. The highest average monthly potential evaporation is 80.3 mm in May, whereas the lowest was in December (55.5 mm). The average monthly potential evaporation is recorded as 64.3 mm.The monthly vegetation indices is one of the inputs of the RothC Model. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite product of the National Aeronautics Space Administration (NASA) was obtained from the United States Geological Survey (USGS) web service (https://lpdaac.usgs.gov/products/mod13q1v006/) (Didan, 2015). The 16-day composite monthly NDVI of 250-meter spatial resolution (Level 3 product) was used for this study. The NDVI is computed as the ratio of the difference between Near Infrared and Red band reflectance to the sum of Near Infrared and Red band reflectance, and the values range from − 1 to 1, where higher values are for green vegetation, closest to 0 for bare soil, and negative values for water bodies. As shown in Fig. 3, the monthly NDVI pattern is similar to the monthly rainfall time series (Fig. 2), with high NDVI values in June, July, August, and September, in the major rainy season called Kiremt.Once the NDVI vegetation indices were extracted from MODIS, the NDVI was converted into Net Primary Production (NPP) to get the monthly carbon input from vegetation cover using MIAMI model of NPP based on annual temperature and rainfall. A detailed description of MIAMI model, processes, and r script is available from the FAO publication (FAO, 2020). The most used SOC simulating models are RothC and Century (Falloon and Smith, 2002). In this study, the R version the RothC Model available as SoilR package (Jordon, 2021;R Core Team, 2020;FAO, 2020;Sierra et al., 2012) was used due to its suitability to simulate SOC in different land uses with limited data availability (Wiltshire and Beckage, 2022;Mishra et al., 2019). The (RothC) was originally developed at Rothamsted Station in the UK. This model has been adopted by several countries across the globe for different ecosystems or climatic conditions including croplands, grasslands, and forests (Jordon et al., 2022;Coleman and Jenkinson, 1999). The RothC model is easy to use with readily available datasets, whereas other models require various challenging datasets; for example, the century model requires soil temperature rather than air temperature. Coleman and Jenkinson (1997) provided excellent descriptions of the RothC model. Since most models are parameterized under particular management and climatic regions, SOM models could have several limitations. It is generally suggested that models such as RothC may be limited by failing to account for soil pH effects on soil carbon turnover (Jenkinson, 1988;Parton et al., 1989;Jenkinson et al., 1992;Motavalli et al., 1995). The RothC model also lacks algorithms for carbon input estimation and a differentiated consideration of carbon input sequestration from organic amendments commonly used in agricultural soils. Additionally, RothC does not accurately simulate SOC dynamics in waterlogged soils, though there has been some improvement.Using the soil type, moisture content, temperature, and plant cover of the particular experimental site/watershed, the model was used to simulate organic C turnover in topsoils that were not waterlogged (Coleman and Jenkinson, 1999). The model does not compute C inputs to the soil from above-ground and below-ground biomass, nor does it include a sub-model for plant growth and yield as it is not used for crop growth simulation (Jordon et al., 2022;Coleman and Jenkinson, 2014). The soil organic C in the RothC model is divided into four active fractions, namely, decomposable plant material (DPM), resistant plant material (RPM), microbial biomass (BIO), and humified organic matter (HUM), including the fifth minor inert organic matter (IOM) fraction that is resistant to breakdown (Coleman and Jenkinson, 1997). A first-order decay process with a unique characteristic rate breaks down each fraction (Coleman and Jenkinson, 2014). The general methodology and the structure of the model are shown in Figs. 4 and 5. The RothC model computes the total organic C (tons per hectare) in a monthly time-step.The minimum data required to run the RothC model are weather/ climate, soil, and land management datasets (Wiltshire and Beckage, 2022;Coleman and Jenkinson, 2014), it is well described in Table 1. The average monthly climate input datasets required for the model, such as rainfall, air temperature, and potential evapotranspiration, were acquired from the Amhara Agricultural Research Center (Anjeni Watershed Directorate Office) at the Water and Land Resource Center (WLRC) from 1983 to 2022. Temperature-based Thornthwaite empirical equation was applied to estimate the potential evapotranspiration (PET) at Anjeni Watershed (Thornthwaite, 1948).Where, PET is monthly potential evapotranspiration in mm, T mean is monthly mean temperature ( • c), I is heat index for the location = ∑ 12 i=1 i, and i is monthly Thornthwaite heat index = ( Tmean) 1.514 α = 6.75*10 − 7 I 3 − 7.71*10 − 7 I 2 + 1.79*10 − 2 I + 0.49(2)RothC is a SOC decomposition model simulating SOC changes in agricultural soil under different environmental conditions and management practices solely concerned with soil processes that SOC partitioned into five conceptual pools such as DPM, RPM, BIO, HUM, and IOM (Mondini et al., 2017). Except for IOM, each pool's decomposition proceeds according to a first-order decay mechanism, with the rate of decay being influenced by meteorological factors (such as temperature and moisture) and clay content (Yao et al., 2017) (5)The amount of carbon (Z) from each active pool decomposes in a given month according to an exponential decay function (Afzali et al., 2019;Jordon et al., 2022)That considers the initial amount of carbon in the specific pool (Z 0 ), and the parameters a, b, and c stand for rate-modifying factors for temperature, soil water content (moisture), and soil cover, respectively. K is used to denote the compartment's specific decomposition rate constant, and (t) = 1/12 (0.0833) is used to translate k into a monthly time step, as k is based on an annual decomposition rate (Coleman and Jenkinson, 2014).The decomposition rate modifying factor b is computed as follows: if the Accumulated Topsoil Moisture Deficit (ATMD) less than 0.444 of the Maximum Topsoil Moisture Deficit (MTMD), then be is fixed as 1 meaning that no effect of moisture (Coleman andJenkinson, 1997, 2014). Otherwise, b is computed asThe model uses average monthly air temperature rate modifying factor a, and the factor a is computed as follows, a = 47.911 + e ( 106.06 T+18.27Where T is the average monthly air temperature.The CO 2 / (BIO + HUM) ratio x, is computed from the clay content of the soil based on the following equation: Based on experimental data, the scaling factor 1.67 is used for all soils to set the CO 2 / (BIO + HUM) ratio in Rothamsted soils (23.4 % clay) to 3.51.The amount of available soil water and the soil temperature impact how much carbon is lost from the soil through microbial breakdown processes (Coleman and Jenkinson, 1996). The soil water-based rate modifying parameter used by the RothC model is through a soil moisture deficit dependent on the soil's clay content, monthly average rainfall, and pan evaporation (Afzali et al., 2019;Jordon et al., 2022). The accumulated soil moisture deficit is determined monthly from the balance in soil water between rainfall and evaporation, and the maximum soil moisture deficit is connected to clay content through a quadratic function (Mishra et al., 2019). The partition between CO 2 evolved and BIO + HUM generated depends on the amount of clay content in the soil. A DPM/RPM default ratio of 1.44, for example, suggests that for agricultural and grasslands, 59 % of plant material is DPM and 41 % is RPM, dividing the carbon intake from plants into the soil (Coleman and Jenkinson, 2014). The RothC utilizes a DPM/RPM ratio of 0.25 for tropical woodland or deciduous forest, with 20 % of DPM and 80 % of RPM (Jordon et al., 2022;Falloon and Smith, 2002). Fig. 3 shows that the decomposition of the DPM and RPM produces CO 2 , BIO, and HUM, which are released into the atmosphere. However, the amount of CO 2 , BIO, and HUM production depends on the soil's clay concentration (Coleman and Jenkinson, 2005). Once more, BIO and HUM decompose to generate CO 2 , whereas BIO + HUM by default splits into 46 % BIO and 54 % HUM. Manure is thought to decompose more quickly than plants that split into 49 % DPM, 49 % RPM, and 2 % HUM (Senapati et al., 2014;FAO, 2020;Coleman and Jenkinson, 1997).Because permanent crops have a high lignin content and a high resistance to decomposition, the DPM/RPM ratio is 1. In a study carried out Zambia at Msekera fallow land standard DPM and RPM ratios (1.44, 0.25) and other constants like 0.95 and 1.1 were used for the RothC model (FAO, 2020; Kaonga and Coleman, 2008).The spin-up involves an initialization by which the model runs for 500 years, to realize the SOC equilibrium state in the five pools, repeating the agricultural land management in the watershed (plant residues, manure), land use, and long-term monthly average hydroclimatic data (1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000) inputs of RothC model. Clay and SOC content data collected in 2021 from the four land use types at the three slope gradients (lower, middle, and upper part of the watershed) were additional data inputs used for the model spin-up in this study. In a model spin-up initialization, the C quantity in each pool is initially set to zero. Then, the pools are allowed to attain equilibrium under stable agricultural land management and long-term hydro-climatic data. The DPM/RPM ratios reported in Table 3, as recommended by Coleman and Jenkinson (1996), were used for this study as input for agricultural land management. For example, the DPM/ RPM ratios of 1.44, 0.67, and 0.25 were used for the identified land use types in the Anjeni watershed.The model is designed to operate in two modes: forward or direct mode, where known inputs are used to calculate changes in SOC, and inverse or indirect mode, where known changes in SOC are used to compute the inputs. The RothC model was iteratively run in the forward mode for 500 years by initialization of the soil carbon in the five pools, by which summed corresponds to the baseline SOC, in order to fit the model output to the baseline SOC data acquired from 72 sites of the Anjeni watershed. The model operates in the forward mode for calibration while considering the hydroclimate data (2001-2022) and decadal NDVI once the equilibrium state has been achieved iteratively during initialization. While the model's other inputs and default values (Tables 2 and 3) were identical to those used in the spin-up run. The RothC model is calibrated until the simulated and measured SOCs in each of the land use types match in an equilibrium condition. The SOC fractionation method used by various previous studies and described by Zimmermann et al. (2007) or FAO, 2020 was utilized to isolate SOC to various pools.We evaluated the accuracy of different initialization techniques with SOC data obtained in different years. As indicated in Geremew et al. (2023) in Fig. 1, the SOC collected by Gete in 1997 from 16 sites was used for model validation. The significant linear relationship between the measured and simulated SOC was analyzed by different statistical methods. Model validation was a continual process in which the model was examined under various conditions and considering recently obtained information and requirements.The SOC trends were projected to the year 2052 using the NDVI and hydro-climate data (monthly mean rainfall, temperature, and potential Evapotranspiration) from 2001 to 2022 after the model had been set to run in the forward mode. Once the forward simulation reaches an equilibrium state through iterative initialization based on the current (2001-2022) dataset, the SOC was projected for 30 years from 2022 based on different scenarios to predict the SOC for 2052. The general methodology of RothC model is presented in Fig. 5 where RPM (Resistant plant material), DPM (decomposable plant material, BIO (Microbial biomass, soil microbes), HUM (Humidified SOM, humus), IOM (resistant to biological transformations), and NDVI (Normalized Difference Vegetation Index).Descriptive statistics and correlation analysis were applied to examine the observed collected and model simulated datasets in this study using R statistical software. The observed SOC correlation with RothC model predicted SOC was evaluated using Pearson correlation coefficient (r) as defined by Pearson (1920). A two-tailed, 5 % significance level was used for this study, assuming that both variables are normally distributed. Suppose that the two correlating variables are b (observed SOC) and c (model simulated SOC), both owing n values b 1 , b 2 , b 3 and c 1 , c 2 , c 3 …, correspondingly, and then r is defined as follows: Correlation coefficient (r) varies between -1 ≤ r ≤ 1. When r close to 1 indicates that as observed SOC increase, there is an exact predictable increase in model simulated SOC. However, when r close to 0 indicates that as observed SOC increase or decrease, model simulated SOC can't be predicted.The Root Mean Square Error (RMSE) that is used to compare the difference between observed and simulated SOC, which is expressed as follows;Where n is the number of measured values.In most cases, the SOC change occurs due to land management/use changes; thus, regular assessment of SOC dynamics is vital using a costeffective physical processes-based model like RothC. The climate, soil, and land management datasets such as rainfall, air temperature, potential evapotranspiration, NDVI/NPP, SOC, and clay content that controls the carbon turnover were used as inputs to run the RothC model to simulate the current and future SOC of Anjeni watershed. Based on the data from 1983 to 2000, the RothC model was spin up to initialization for the SOC to reach at equilibrium state. Then, the model was again run using the dataset from 2000 to 2022 to eventually match the simulated SOC to that of the observed in each of the pools with the suggested spin-up run of 500 years to minimize the computational times (Jordon et al., 2022;FAO, 2020;Nemo et al.,2017). The model performance in the Anjeni watershed context was tested as follows.The model spin-up initialization was carried out using long-term monthly average hydro-climatic data (1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000), agricultural land managements of the watershed (plant residues, manure), SOC, clay content, and land use inputs to estimate the initial SOC stocks of each pool. For the model warm-up and forward simulation, the collected SOC data in 2021, clay content, and long-term NDVI and hydro-climate data from 2001 to 2022 were used. Moreover, the RothC Model performance was verified using independent SOC data obtained from Gete, which was collected in 1997 from 16 sites. Fig. 6 shows the correlation between the simulated and observed SOC, for the forward simulation with the 2021 and 1997 observed SOC, with the correlation coefficient (r 2 ) of 0.86 and 0.77, respectively, implying that the RothC model characterized the SOC of the Anjeni watershed well. The RSME, representing the total divergence between the simulated versus observed values of 2021 and 1997, were 0.013 and 0.074, respectively. The model performed well in predicting the SOC of the watershed. The observed and simulated SOC values were nearly distributed along the 1:1 line. However, the correlation of forward simulation with the 1997 observed SOC was slightly lower than forward simulation with the 2021 observed SOC. This might be due to the watershed's data quality, climate, and soil management practices. Overall, the model underestimated the observed SOC; the simulated SOC values were greater than the observed, possibly because of model limitations in addition to data quality, the watershed's climate, and its soil management practices.The observed soil sample was collected from plantation forest along with cultivated, grass, and fallow lands. Nevertheless, as the fallow field cover type lacked specified DPM and RPM ratio values, it was regarded as grassland. The default grassland value, 1.44, was applied to the fallow land simulation. Consequently, the fallow land in the RothC simulation was grassland. Furthermore, the lower, middle, and upper portions of the watershed were designated by the three slope gradients-gentle slope (1-15 %), moderate slope (15-30 %), and steep slope (>30 %), respectively. As indicated in Fig. 7, relative to plantation forests and cultivation lands, the observed and simulated SOC was higher in grass/ fallow lands. The SOC in plantation forests is slightly higher than that of cultivated land, though grass/fallow lands had the highest SOC values of all three types of land use and land cover (LULC). The higher SOC value The default decomposition rate constant (k) per year of the active pools is set as follows:. The RothC default DPM and RPM ratio for various land cover types.Land cover type DPM/ RPM Agricultural/arable/ crops, cultivated land 1.44 Grassland (improved grassland), fallow land 1.44 Forestry (deciduous/tropical woodland, trees), plantation forest 0.25 Semi-natural (unimproved grassland/scrub), weeds, grazing land 0.67 Tree-crop intercropped systems 0.95 in grass/fallow land could be attributed to several factors such as (vegetation type, land management practice, root system characteristics, residue management, and microbial activity) as a result, grasses and fallow lands often have a higher input of organic matter from plant residues, root turnover, and decaying biomass (Ntamwira et al., 2023). The simulated SOC value is higher than observed in all LULC types. The gentle slope (lower land) received clay content in cultivated land, grass/fallow land, and plantation forest were 61.8, 63.1, and 62 %, respectively. The moderate slopes (middle land) clay content was 65.5 % for cultivated land, 64.9 % for grass/fallow land, and 69 % for plantation forest. The steep slope (upper land), the collected clay content in cultivated land, grass/fallow land, and plantation forest were 65.7, 63.3, and 62.7 %, respectively. In addition to mixing soils from the deeper layers, the higher clay concentration in upper-farmed land may be the result of greater physical and chemical weathering (Mulat et al., 2018).After the RothC model was initialized and validated in the watershed based on two independent periods of observed SOC, the SOC in the Anjeni watershed was projected for 30 years, from 2022 to 2052, as the efficiency of RothC model was verified that the model well characterizes the historical SOC dynamics of Anjeni watershed. The projected total SOC including DPM, IOM, RPM, BIO and HUM SOC indicated higher SOC by 2052 for grass/fallow land as compared to cultivated land and plantation forest (Fig. 8). This could be due to long-term fallow practice, well-managed grassland/fallow lands with large amount of grass roots and high grass root biomass turnover rate, which is important as protection from erosion and lack of tillage. Similar results were reported previously (Geremew et al., 2023;Geleta and Laekemariam, 2022;Wiesmeier et al., 2019;Muktar et al., 2018). Moreover, the total SOC of grass/fallow land at the lower/gentle slope gradient of the watershed was higher relative to middle and high elevation. This could be due to the soil forming factors, deposition, long-term fallow practice, and differences in geomorphological processes on gentle slopes. Similar results were reported by (Geleta and Laekemariam, 2022;Betemariyam et al., 2020). The total projected SOC various from upper cultivated land (2.1 ton/ha) to lower grass/fallow land (4.15 ton/ha). Concerning the five pools (Fig. 8), the SOC in HUM were higher as compared to DPM, IOM, RPM, and BIO, this could be due to that humified organic matter has undergone a stabilization process, making it a more persistent pool of organic carbon in the soil (Wiesmeier et al., 2016). In addition, the decomposition, inert, and resistant organic matter might have lower concentrations of SOC because they are either actively decomposing or are composed of materials that are less prone to contributing to the soil carbon pool (Lal, 2014). The second reason could be Humified organic matter generally has a higher concentration of Soil Organic Carbon (SOC) compared to other forms (Gerke, 2022). Also, the lowest SOC was in IOM varying from middle cultivated land (0.02 ton/ha) to lower grass/fallow land (0.07). The lower value of IOM could be associated with that inert organic matter generally refers to organic materials in the soil that are resistant to decomposition and have a longer residence time in the soil (Dai et. al, 2021). The other reason also linked to the chemical composition, microbial decomposition, physical protection, and environmental conditions (Almagro et al., 2021). These materials are often more stable and less prone to microbial breakdown. The increase of SOC in some of the slope gradients could be due to the long period intensive soil and water conservation work at Anjeni watershed that has increased vegetation cover for the last decades (Geremew et al., 2023).For projected 30-year analysis of SOC, different possible scenarios were considered such as business as usual scenario (BAU) (i.e., based on current technology, management and agricultural land practices); low scenario (i.e., sustainable soil/land management to increase 5 % of carbon input); medium scenario (i.e., sustainable soil/land management to increase carbon input by 10 %); and high scenario (i.e., sustainable soil/land management to increase carbon input by 20 %). Possible soil/ land management practice that could be implemented are: enhancing biomass production and residue returns to the soil, residue retention; grazing management, plant nutrition; species introduction; manure or organic amendment application; using cover crops and/or vegetated fallows; promoting agro-forestry; managing crop residues and grazing to ensure optimum soil cover etc. Based on lower gradient high scenarios, the SOC increased from current cultivated (2.1 t/ha), grass/fallow (4.0 t/ha), and planation forest (2.98 t/ha) to cultivated (3.42 t/ha), grass/ fallow (5.13 t/ha) and planation forest (4.7 t/ha) LULC types of the watershed. At the lower slope gradient, in all the three LULC types, the current SOC simulation (SOC_t0) was lower than the future BAU, low, medium, and high scenarios of SOC. While in the middle and upper slope gradients the SOC at SOC_t0, BAU, low scenarios were inconsistent depending on the LULC types (Fig. 9).The implications of the RothC simulation results in the Anjeni watershed indicate that proper land management is essential to enhance soil carbon and increase agricultural production. Additionally, there should be a greater emphasis on acquiring soil and land use data for Ethiopia. In future projects, it is crucial to explore the need, scope, and availability of socioeconomic data associated with decision-making at farm, regional, and national levels, which may influence the actual selection of land management practices in both space and time and their impact on SOC accumulation would be crucial.In general, the basic controls on SOC stock changes are understood in this research, and it is reasonably well-known which management practices can be used to increase SOC storage across the Anjeni watershed. Furthermore, Applying results from small-scale experiments to larger areas is necessary in order to understand the potential role of soils in sequestering or releasing carbon under different land management scenarios and to inform management and policymakers about likely consequences of land-use and sustainable soil management changes on soil carbon in specific regions. Besides, the local community uses this information to improve the soil quality.As indicated in Fig. 10, besides the three scenarios, the minimum and maximum possible C turnover under different LULC types and slope gradient based on SOC_t0, BAU and medium scenarios were assessed. Based on the current simulation (SOC_t0), the possible minimum C turnover under different conditions could varies from middle gradient plantation forest (0.5 t/ha) to lower gradient grass/fallow land (2.4 t/ ha), whereas the maximum C turnover varied from middle gradient plantation forest (1.3 t/ha) to lower gradient grass/fallow land (4.4 t/ ha). In most of the cases, the maximum possible C turnover were noticed at the lower gradient grass/fallow land, while the minimum were observed at middle gradient plantation forest (Fig. 10). The increase in the SOC in the future could be attributable to the higher temperature, which increases plant photosynthesis, induced a CO 2 fertilization effect, and enhanced plant growth. Moreover, the higher development of above-and belowground biomass due to natural resource management work in the watershed consequently increases the carbon input to soils that in turn increases the SOC stock.Analyzing the current and projected soil organic carbon (SOC) at watershed level is vital to support the government's plan for land use planning and management to implement the development of different agricultural activities to enhance sustainable agriculture and productivity. Besides to this, the research result will serve as helpful information for government bodies by providing enough details about how soil carbon amounts are depleted and enhanced in response to different land management scenarios. Additionally, since soil plays a significant role in sequestering atmospheric carbon, understanding the interaction between different land management scenarios and soil carbon dynamics across various land use systems is crucial for the carbon market as well. Soil organic carbon plays an essential role in enhancing food security via soil stability, aeration, water retention, pollutant reduction and nutrient cycling. Therefore, cost-effective physical processes based on RothC model were applied to assess the current and future SOC in Anjeni watershed. The long-term required climate, soil and land management datasets were used to initialize and verify /run the RothC model to simulate SOC in Anjeni watershed. The forward simulation of RothC model was applied based on two independent period-observed SOC in the watershed. The forward simulated SOC correlation with two independent period observed SOC, which were the 2021 observed SOC and 1997 observed SOC, the correlation coefficients (r 2 ) were 0.86 and 0.77, respectively, indicating that the RothC model characterized the SOC of Anjeni watershed reasonably well. Although in most of the cases, the model slightly overestimated the SOC in the watershed, which could be due to the model limitation, data quality, and climate conditions.Once it was verified that the model well characterized the SOC of the watershed, the SOC in the watershed is projected for 30 years, from 2022 to 2052. The SOC was projected under three slope gradients (i.e., gentle slope (1-15 %), moderate slope (15-30 %), and steep slope (>30 %)) and LULC types (i.e., cultivated land, grass/fallow land, and plantation forest). The current and 2052 projected total SOC (DPM, IOM, RPM, BIO and HUM) indicated that the SOC was higher in grass/fallow land as compared to cultivated land and plantation forest, which could be due to long-term fallow practice, well managed grass/fallow lands, and high grass root biomass turnover rate. Furthermore, the total SOC grass/fallow land of the lower/gentle slope gradient was higher relative to middle and higher parts of the watershed, which could be due to deposition, long-term fallow practice, and differences in geomorphological processes on gentle slopes. Regarding the five pools, the SOC in HUM were higher as compared to DPM, IOM, RPM, and BIO that could be due to better plant residue and manure practice at the watershed.Other possible scenarios were considered such as business as usual (BAU); low; medium; and high scenarios. The results indicated that the high scenario upper gradient SOC increased from current cultivated (1.97 t/ha), grass/fallow (3.9 t/ha), and planation forest (3.1 t/ha) to cultivated (3.7 t/ha), grass/fallow (4.5 t/ha) and planation forest (4.2 t/ ha) LULC types. Concerning the lower slope gradient, in all the three LULC types, the current SOC simulation (SOC_t0) < future BAU, low, medium and high scenarios of SOC.Overall, the RothC model projected an increase of SOC in the future, which is good for water retention, soil stability, aeration, decrease greenhouse emission, and nutrient cycling that further improve agricultural productivity. Finally, This study clearly articulates that the RothC model performance is good to simulate the SOC change under different land uses and land management scenarios. Further research it is recommended to investigate climate change impact on the soil organic carbon using carbon models. It is also suggested that the broad socioeconomic issues and management scenarios should be considered as drivers of SOC change.","tokenCount":"6553"} \ No newline at end of file diff --git a/data/part_1/1031278832.json b/data/part_1/1031278832.json new file mode 100644 index 0000000000000000000000000000000000000000..215bc1880798f312d2bfdb0e1a8d94f93307c66f --- /dev/null +++ b/data/part_1/1031278832.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7b4b8bddfaed14d6cb3ba2e92b0c3397","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f95bc838-eea2-4d24-bd56-036726aedd9d/retrieve","id":"1753260944"},"keywords":[],"sieverID":"197aad95-f96c-4cd0-ac85-15e23c4d0496","pagecount":"1","content":"Cooking banana is the main staple crop in Uganda produced mostly by smallholders for food and income (Kalyebara et al., 2005). Lescot (2015) reported an average annual banana production of about 8.9 million metric tons. Haggblade and Dewina (2010) reported an annual per capita consumption of 172kg/person/year, making Uganda the largest consumer in the world. Selling cooking banana by visual inspection without measuring its weight is a common practice in East and central Africa. This system is very subjective and thus considered inefficient as it presents a huge risk of economic losses along the value chain. In some instances, cooking banana is weighed, for instance at wholesale level in Rwanda (Bauer, 2011) and at export level in Uganda (Nalunga et al., 2015). Attempts to introduce weighing at farm level have proved to be futile. This study assesses the perceptions towards and willingness to adopt a weightbased pricing system (WPS) in the cooking banana value chain in Uganda• A market study was conducted among different VC actors between July and September 2015 • Two districts in south western Uganda (Rakai and Isingiro) and eight markets were selected for the study; respondents were randomly selected • A pretested structured questionnaire was administered to producers, traders, and consumers • Checklists were used to gather information from key informants (including market masters, bicycle traders, brokers, wholesalers, exporters and supermarket representatives) • Means and standard deviations were used to compare VC actors' willingness to adopt and perceptions towards the WPS • To determine the factors affecting willingness to adopt the WPS, two model specifications were estimated; Probit regression for producers and retailers and multinomial regression for consumersTable 1 : Perceptions about the weight based pricing system by VC actor and gender (%)• Respondent's age, education, extent of economic losses, experience in banana marketing, existing knowledge about the weight-based pricing system, perceived improvement in trust and perceived improvement in prices had significant positive effects (at p<0.05) in embracing the WPS • However, distance to the nearest market, stock turn over rate and membership to farmer/trader group had negative significant effects in embracing the WPS • WPS is perceived as:  A key innovation for more transparent, trustworthy and efficient price setting  Great contribution to reducing economic postharvest losses • 98% of the producers, 40% retailers, 75% supermarkets and 50% consumers were willing to adopt the WPS Generally, value chain actors are willing to adopt the WPS. The WPS for cooking bananas is perceived as key innovation for more transparent, trustworthy and efficient price setting for banana and a tool for reducing postharvest economic losses, thus improving income across the value chain. To enable effective standardization of the cooking banana pricing system, we recommend that all value chain actors' feelings toward the WPS need to be considered, this will provide a basis for developing strategies for its effective and efficient introduction among the cooking banana value chain actors in Uganda. Providing more factual information and understanding of how the WPS works and what benefits it would bring is crucial ","tokenCount":"503"} \ No newline at end of file diff --git a/data/part_1/1034403201.json b/data/part_1/1034403201.json new file mode 100644 index 0000000000000000000000000000000000000000..7ad374c681d73c26d48161b7b7f5b2ec48358c3b --- /dev/null +++ b/data/part_1/1034403201.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3bc02f7967df92fd165c5c8bc08975fd","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/5e75a58e-114f-489c-8757-d787b46308c8/retrieve","id":"-1635065545"},"keywords":[],"sieverID":"6d9233d8-54d6-4357-9aef-1720885041b5","pagecount":"2","content":"In the Ganges Brahmaputra floodplain thousands of beels form an extensive inland open water fisheries system. Floodplains provide a diverse range of livelihoods and ecosystem services for local communities and are responsible for 30% of Bangladesh's fish production. But these floodplains are under increasing stress from pollution, overfishing and infrastructure development.The CGIAR Research Program on Water, Land and Ecosystems funded a project called 'Floodplain Fisheries and Aquaculture in Bangladesh and India', with the goal of demonstrating the social and environmental benefits of properly managed, community-based fish culture. The project was implemented by WorldFish and built upon ten years of previous research on community fisheries. Between January 2012 and December 2013 the project worked in six focal sites to develop better strategies for managing fisheries, including adaptive fishing methods and organizational improvements.Decisions regarding management of Bangladesh's floodplains should move beyond simple considerations of aggregate yield to include reflections on how agriculture and aquaculture might improve livelihoods. In 2013 pilot beels were stocked with mola broodfish, which in addition to growing into sizeable fish by the end of the rainy season, also bred and produced a large number of additional mola fry. Other small changes to the normal aquaculture management practices of the cooperatives allowed small, un-stocked fish to flourish.The net result was big gains for the communities. The harvest of small fish, not traditionally considered to be an important source of food and income, increased from 9,295 kg in 2012 to 19,024 kg in 2013. Contribution of mola and other un-stocked small fish to fish production increased from 6.30% in 2012 to 18.45% in 2013.• Encourage a community-based approach to fish culture in the floodplains • Introduce large-size fingerlings of suitable fish species to the region's ecosystem • Promote simple technologies to create a system that is suitable for the production of both stocked and un-stocked indigenous fishCommunities benefit most when natural resource management schemes attempt to foster social inclusion and the sharing of benefits between members of society. The research team worked with the communities to develop a system whereby the fishing coops (made up of land owners and professional fishers) granted permission to landless community members to harvest the small fish using traditional gear. Small fish have provided an important source of food and income for some of the poorest members of society, and as a result have fostered community harmony.• Encourage the participation of floodplain land owners, fishers and the landless within fishing cooperatives • Mandate access for poor and landless members of society to the floodplains for traditional harvesting of small fish For more information, contact Dr. Benoy Barman, WorldFish (B.Barman@cgiar.org).Photo: Balaram Mahalder Photo: M. Yousuf Tushar gv ‡Qi Ae`vb 2012 mv ‡j kZKiv 6.30 fvM †_ ‡K †e ‡o 2013 mv ‡j kZKiv 18.45 fv ‡M Av ‡iv Z ‡_¨i Rb¨ †hvMv ‡hvM Kiaeb: W. webq eg© b, Iqvì© wdk (B.Barman@cgiar.org; +8801712192423).","tokenCount":"476"} \ No newline at end of file diff --git a/data/part_1/1047122368.json b/data/part_1/1047122368.json new file mode 100644 index 0000000000000000000000000000000000000000..8af1ca36e0c9a0bbfc83029d0dc01fc4fe24f99c --- /dev/null +++ b/data/part_1/1047122368.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"ca78b33d9af086c2730da43b69d61e55","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/9abae140-95e6-4750-8791-a6a7c56207d2/retrieve","id":"1118364712"},"keywords":[],"sieverID":"5f48d2f9-eb2f-4344-929a-99ef8401011a","pagecount":"72","content":"The Gender Audit Team wants to acknowledge the stimulating and constructive ideas and suggestions we received from Barun Gurung (CGIAR Systemwide Program on Participatory Research and Gender Analysis, PRGA), Hilary Feldstein (PRGA), Dannie Romney (ILRI), Esther van Hoeve (ILRI), and Nina Lilja (PRGA). We also appreciate the thorough reviews of the manuscript by Shirley Tarawali (ILRI) and Anandayasekeram Ponniah (ILRI -IFPRI) which significantly improved the quality of the report. We thank the management of ILRI for participating full heartedly in the audit and providing us with institutional support to conduct the study. Many ILRI staff showed interest and patience and spent significant amounts of time to answer our queries and to contribute toward a prioritized and workable plan of action for mainstreaming gender analysis.This publication includes sections on introduction, methodology, findings from the gender audit, a report of the action plan development workshop, conclusions and recommendations, and appendices. The introduction outlines the concepts and definitions of gender analysis and gender equity adopted in this study and explains the objectives of the gender audit. The methodology section describes the process leading to and influencing the present study. It is important to note that the present study analyses and builds on the outcomes of a previous study with similar objectives conducted in 1997. The principles of mainstreaming, adopted in the design of the present study, and the various components of the study are also described in the methodology section. The approach of the gender audit was based on a method developed by the Commission on the Advancement of Women (CAW), which recommends the use of pie and bar charts for presentation of univariate analysis results. The responses in the audit questionnaire have resulted in 46 pie and 8 bar charts. Although the carefully designed audit questionnaire resulted in several pie and bar charts (each providing essential information to help understand the current status of gender analysis in ILRI), only a few charts have been presented in the main text for the sake of brevity. The remaining charts have been given in the appendix, which nevertheless remains an integral part of the analysis results of the gender audit. The chapter on the workshop for developing an action plan illustrates how the participatory process was extended into planning the action towards institutional change. The last chapter synthesizes all the inputs from the audit and action planning phases, and presents the final conclusions and recommendations made by the Gender Audit Team. The objective of this gender audit was to conduct an institutional assessment to identify the opportunities and constraints for mainstreaming gender sensitive research approaches in ILRI. The audit consisted of the following activities: meetings, follow-up study on the 1997 portfolio review, open and semi-structured interviews, survey, ILRI literature study, and SWOT analysis. Throughout the analysis four main elements for successful mainstreaming were considered: political will, accountability, technical capacity, and organizational culture. A deliberate effort was made to focus on gender analysis in research rather than gender equity in staffing, without however treating the two issues as disconnected.In 1997, a portfolio study was conducted in ILRI to review the institute's research, training, and dissemination activities with a gender and user perspective, and to recommend how attention to gender analysis could be strengthened. However, the implementation of these recommendations was far from satisfactory, given the lack of appropriate follow-up to the 1997 review. Respondents in the present gender audit suggested that the list of recommendations was too long, and lacked both prioritization and a clear strategy for implementation. Nevertheless, in the present gender audit, interviewees generally agreed with the recommendations of the 1997 reportIn the present gender audit, 58 staff across levels, themes, and professions were interviewed with a formal questionnaire. The results revealed a generally good understanding of concepts of gender analysis in research, gender equity in the organization, and mainstreaming. A vast majority thought it was necessary to mainstream gender analysis in ILRI. There appeared to be good policies on gender equity in the organization, but no policy on gender analysis in research existed. It was often mentioned that gender analysis in ILRI is more talked about than actually practiced and that ILRI strategic and priority documents hardly mention it. In the MTP 2006MTP -2008, gender could easily be fitted into statements about vulnerability analysis (Theme 1), policy options for sustainable land use (Theme 5), or livestock and human nutritional status (Theme 5). There was much confusion about whether ILRI has a gender focal point, and if so, about its responsibilities. It was evident from the response that the management is committed to promoting representation of women at senior levels. The survey also highlighted certain observations in other areas: training efforts in gender issues towards management and board are strong, and are mostly on gender and diversity (G&D); very little training on gender analysis goes on at the Operational Project level and below, and it is not budgeted; good performance in gender analysis is not rewarded; there is discrepancy between reflection of gender perspectives in ILRI's public awareness material and ILRI's research publications. Many respondents mentioned collection of gender disaggregated data, but these data are neither analysed nor published in most cases. The major obstacles to integrating gender analysis in ILRI were about (1) lack of staff training, awareness, understanding, and information;(2) lack of institutional priority; (3) qualification and skills of staff; and (4) availability of gender analysis tools. The recommendations most frequently mentioned by the respondents were: (1) create awareness, provide training, make information easily accessible;(2) establish a gender expert unit or person;(3) to add gender criteria in total quality management (TQM) and other project approval processes; (4) ensure increased commitment from management.A workshop was held on 21 st and 22 nd March to discuss the results of the review and to develop an action plan for mainstreaming. The audit team's recommendations, incorporating all other inputs, can be summarized as follows:1. ILRI to allocate resources to identify or recruit a Gender Resource Person (GRP) and provide him/her with public support and endorsement to assist management in integrating gender aspects in policy documents, MTP and log frames; assess knowledge needs and gaps of projects and themes in ILRI and coordinate training activities; lead specific case studies of gender analysis in livestock research; compile existing literature on gender analysis and make it accessible to staff; develop a training manual; develop a detailed plan of action with indicators and time frames for monitoring and evaluation of progress in gender analysis; to integrate gender criteria in the TQM process. 2. In the medium term, to add gender analysis responsibilities in job descriptions and terms of references where applicable; to include gender criteria in performance assessment formats. 3. In the long term, to develop proposals to attract donor funding for gender related research projects across different themes of ILRI. 4. In the long term, to continue to improve female representation in various staff levels at ILRI and working conditions for women, in close collaboration with the G&D program of the CGIAR. 5. In the long term, to transform the GRP into a gender expertise team consisting of several gender experts integrated in the various research themes. 6. In the long term, to identify livestock innovations that have a high potential of impacting livelihoods of men, women and children. Liaise with stakeholders in relevant innovation systems to enhance dissemination and uptake.1 IntroductionGender analysis is often considered a guide to help better understand the social and economic set up of livelihoods through understanding of the gender differences and relationships. The definition provided by DAC (box 1) for gender and gender equity is adopted in this report.As the global outlook of understanding development is shifting to addressing inequalities, the United Nations Millennium Development Goals also value to attend gender issues in the course of development. For the eight development goals that include income and poverty, sustainability, and global partnership, the concern of gender is clearly reflected in most.Gender analysis provides valuable insights to understand specific demands for specific groups in the society. Recognition of this helps to know more about vulnerable groups, cause of vulnerability, and also to draw attention to solve associated problems.Similarly gender analysis in ILRI can help to understand disparities in livestock production and help to design innovative research initiatives. This in turn will add value to increase efficiency of improving livestock productivity and improving livelihood system for vulnerable groups, therefore adding more value to the impacts of ILRIs' research activities.ILRI's vision is a world made better for poor people in developing countries by improving agricultural systems in which livestock are important. ILRI works at the crossroads of livestock and poverty, bringing high-quality science and capacitybuilding to bear on poverty reduction and sustainable development for poor livestock keepers and their communities. The three pathways through which ILRI seeks to improve the contribution of livestock in poor households are:• Securing assets of the poor.• Improving the productivity of their livestock systems.\"The term gender refers to the economic, social, political and cultural attributes and opportunities associated with being male and female. In most societies, men and women differ in the activities they undertake, in access and control of resources, and in participation in decision-making.In most societies, women as a group have less access than men to resources, opportunities and decision-making. The nature of gender definitions (what it means to be male or female) and patterns of inequality vary among cultures and change over time.Gender equality requires equal enjoyment by women and men of socially-valued goods, opportunities, resources and rewards. Gender equality does not mean that men and women become the same, but that their opportunities and life chances are equal. Achieving gender equality will require changes in institutional practices and social relations through which disparities are reinforced and sustained. It also requires a strong voice for women in shaping their societies\" Source: DAC (1999), Guidelines for women empowerment in Development Cooperation, OECD, France.• Improving their market opportunities.ILRI realises the importance of women's roles in livestock production systems of the poor, and the potential effects that livestock innovations have on the livelihoods of men and women. However, there has been very little focus on the integration of gender perspectives in ILRI's research agenda. In 1997 a portfolio study was conducted in ILRI to review the institute's research, training, and dissemination activities with a gender and user perspective and to recommend how attention to gender analysis could be strengthened. The study revealed that the concepts of gender analysis were not completely new to ILRI, they were often used in the social science sector, and had great potential to contribute to the improvement of livelihoods of rural women especially through small ruminants where women often have greater managerial roles. In the chapter 'Recommendations', 2 recommendations were made related to priority setting of research, 15 recommendations related to the various stages in a research process, 11 recommendations related to capacity building within the institute, and 4 recommendations related to strengthening of NARES (appendix 1). However, no clear responsibilities for the implementation of the recommendations were suggested. In 2005, it seemed not clear to anyone within ILRI to what extend these recommendations had been implemented.Mainstreaming gender analysis is commonly understood as the integration of the gender perspective into every aspect of research cycle: design, implementation, and monitoring & evaluation. For successful mainstreaming, there needs to be a political will, technical capacity, a conducive organizational culture, and accountability for gender integration in work plans and their results. In 2005, ILRI management approached the CGIAR Systemwide Programme on Participatory Research and Gender Analysis (PRGA) to assist in reviewing the status of gender analysis in ILRI and to recommend strategies for mainstreaming gender analysis in the institute. PRGA provided a grant to develop a strategy for mainstreaming gender-sensitive research in ILRI. The first step was to conduct an institutional assessment to identify the opportunities and constraints for mainstreaming gender-sensitive approaches in research. The second step was to develop a concrete plan of action for mainstreaming based upon the results of the assessment. The third step would be to operationalize the action plan within ILRI. The first two steps are within the scope of the Letter of Agreement between (LoA) ILRI-PRGA, and are described in this report. The third step is beyond the LoA and beyond the scope of this study and will be the responsibility of ILRI.The specific objectives of the gender mainstreaming initiative based on the LoA between ILRI and PRGA were:• To conduct an diagnostic study to identify opportunities and constraints for mainstreaming gender analysis in ILRI. • To assess the status of GA in the institute, including the changes since the 1997 review.• To conduct a planning workshop in collaboration with the System-wide Program on Participatory Research and Gender Analysis. The purpose of the workshop was to report findings of the diagnostic study these to develop a plan of action for mainstreaming gender analysis in ILRI.In March 2005 a meeting was held in Nairobi with representatives from different ILRI research themes, ILRI management, and PRGA. The objective was to discuss the need for participatory research and gender analysis in ILRI, concepts of mainstreaming, and preliminary plans for a process of mainstreaming. One of the results of this meeting was the formation of a 'Gender Core Team 1 ' consisting of representatives from each research theme (app. 5) and the directorate. Towards the end of 2005, ILRI Management Committee asked Director Theme 5 to be responsible for a gender analysis mainstreaming initiative and Theme 2 was asked to develop the initiative.Ralph Roothaert was made the coordinator, and two consultants were recruited: a research assistant (Maria Mulindi) and a gender expert (Yeshi Chiche). In consultation with the Gender Core Team and PRGA, a plan was developed for the mainstreaming initiative, consisting of (1) a diagnostic phase (gender audit), followed by (2) the development of an action plan. An intensive communication initiative was launched to create awareness among ILRI staff, to increase the chance of voluntary participation in the diagnostic activities, and to enhance ownership of the gender mainstreaming initiative and the action plan. Information about the objectives, concepts, and procedures were sent through email to all staff and progress reports were posted on the ILRInet. The institutional diagnosis was referred to as 'gender audit', and later toned down to 'gender analysis review'.The following tools were used in the gender audit:• Semi-structured interviews • Informal discussions and meetings • Formal survey • SWOT analysis • ILRI literature review For the second step, a workshop was organised. During the entire audit, four elements of mainstreaming were considered: political will, technical capacity, organisational culture, and accountability. Political will represents the foundation for mainstreaming any new idea or approach within an organisation. Political will is translated in policy documents and allocation of funds. There also needs to be a mechanism to ensure that policies are implemented, which we refer to as accountability. Incentives for staff to implement activities according to new policies and its monitoring and evaluation mechanisms are part of accountability. Staff of an organisation also need to be capable and have the necessary knowledge to implement activities that contribute to the policy and mission of the institute. This is referred to as technical capacity. Lastly, there needs to be a conducive environment for new ideas, policies and strategies to thrive. This is reflected by the organisational culture. For instance, integration of gender analysis in research is unlikely to be successfully implemented if the organisation consists of only men or only women, or if working conditions prevent a balanced staff composition. The four pillars are conceptually represented in the mainstreaming tree (fig. 1).The emphasis of this initiative is on mainstreaming gender analysis in the research programme of ILRI. As described in the example of the previous paragraph, gender equity in the staffing of the organisation is an important factor that contributes to the organisational culture, but is only one element out of four which are required for mainstreaming gender analysis. This study has tried to balance all factors. In terms of assessment of previous achievements, the study has focussed on gender analysis in research rather than gender issues in staffing persee. ILRI has been actively participating in the CGIAR programme on Gender and Diversity (G&D) which aims to improve gender equity and cultural diversity in recruitment processes and in career opportunities, and to create a conducive and gender sensitive working environment. The report from 1997 by a team which reviewed the research, training and dissemination activities in ILRI with a gender perspective was retrieved from the hard disk of an ILRI scientist who had been involved in the study. A new study was designed to assess the changes that had occurred as a result of the recommendations made in the 1997 study. For this purpose, semi-structured interviews were conducted with some ILRI staff. Issues for discussion were:• Awareness of the 1997 portfolio review.• Personal views on the recommendations stated in the report.• Perception and examples of implementation of recommendations.• Reasons for lack of implementation.• Successes and challenges of integrating gender analysis.• Suggestions for mainstreaming.• Available ILRI publications or reports reflecting GA.Ten staff were originally selected to participate in the follow up study, but only eight agreed to be interviewed or respond through email. The criteria for selecting the ten staff were:• Institutional memory (from 1997 to date).• Professional engagement in gender analysis.• Thematic spread.• Geographical spread representing ILRI focal areas. Out of the eight staff, five were interviewed directly, whereas three responded through email.Informal discussions were held with members of the management committee. Initially these discussions were held to assess the mandate and support for the gender audit, and to create a common understanding of the purpose of the initiative. A second series of discussions were held towards the end of the diagnostic phase, with management and other staff. These discussions provided insights into realistic scope for implementation of an action plan for mainstreaming, and the availability of resources. Most discussions were face to face, some in groups, some individual, and some through e-mail.A questionnaire was designed for a sample of ILRI staff. The questionnaire had the following focal areas:• Evaluation of the understanding of concepts related to gender analysis in research, gender equity in the organisation, and the mainstreaming of gender analysis. These were open ended questions. A list of professional staff was obtained from HR in January 2006. The total number of professional staff were 195, 47 of whom were female. The total number of staff to be included in the survey was 60, about 30% of the total population which was considered a statistical minimum for a reliable representation. Purposive sampling was applied to include all the DG, DDG, all Directors, and all Operational Project leaders, totalling 24 staff. Of the remaining 171 staff, 41% were IRS and 59% NRS (including students).The IRS:NRS ratio was maintained in the random sampling of the remaining IRS and NRS to make up a number of 36 staff to be interviewed. An equal balance of male and female respondents was maintained among the remaining 36 respondents. The reason for maintaining an equal male:female ratio was to ensure a big enough sample of female perspectives towards gender mainstreaming issues. The implications of this biased sampling was a higher proportion of female respondents compared to ILRI's staff composition: 38% of total respondents were female, whereas only 24% of ILRI staff are female (app. 6.3).A strengths, weaknesses, opportunities, threats (SWOT) analysis was planned to analyse the outcomes of the follow up study of the 1997 review and the results of the survey. Initially the SWOT was planned as a participatory exercise with the Gender Core Team, but due to time constraint of its members, it was conducted by the coordinator, the assistant and the consultant of the gender audit team. The results of the SWOT analysis served as an entry point for informal discussions and meetings with management and staff to discuss the scope of activities and resources within an action plan for mainstreaming gender analysis. Feedback and additions received during these meetings were incorporated in the SWOT analysis.From the follow up study of the 1997 ILRI portfolio review and from the survey a list of reports and publications was obtained about research activities which interviewees had mentioned as examples of gender analysis outputs in ILRI's research. Some respondents also mentioned ILRI policy documents which had sections on gender analysis and gender equity. Among the more than fifty reports and publications with aspects of gender analysis (see also appendix 7), about 20 were selected and reviewed by the audit team. Criteria for selection were inclusion of clear gender aspects in policy, clear gender perspectives in research, implementation of research after 1997, geographical spread, and representation of ILRI's five research themes. The most relevant research case studies were presented in the workshop on developing an action plan for mainstreaming gender analysis.A workshop was organised on 20 th and 21 st March 2006 to discuss the results of the ILRI gender analysis review, and to develop a plan of action for mainstreaming gender analysis in ILRI, with representatives from different research themes and the directorate. A total of seventeen people participated in the workshop (app. 5).Responses from the interviewees have been compiled in appendix 2. All staff who were interviewed had been employed by ILRI before the 1997 study was conducted and the report published, but only half of them were aware of it. The awareness had often been created through the communication campaign which was started with the current gender mainstreaming initiative in 2005. It was worrying that among the staff which were selected based on a criterion of being involved in gender studies, awareness was small. One of the reasons was that, according to the scientist who retrieved the report, the report had not been circulated and that the recommendations had reached very few staff.After seeing the recommendations part of the report, respondents generally agreed with them, and gave an average score of 7.5 out of 10, 0 meaning total disagreement and 10 meaning total agreement (app. 2). It was noted that the list of recommendations were too long, and that the report didn't provide a clear strategy on how to follow up the recommendations and implement activities. Suggestions were not prioritised.The follow up study reported many successes that ILRI has achieved since 1997, such as gender outcomes in the broad bed maker project in Ethiopia and the crop-livestock project in W. Africa, and gender integration in the project implementation plan of the IPMS project in Ethiopia. In other projects, gender considerations had been incorporated partially, such as in the diagnostic phase of the water-livestock project, or in the implementation phase of the fodder innovation project. Increased partnerships with grass-root level organisations were also mentioned several times as an effective way through which ILRI has increased gender aspects in its work. Some project had trained and recruited female enumerators which enhanced direct involvement of women farmers. It was also mentioned though that successes might not have been induced by the 1997 report, but by other factors such as concerns by donors, and individual interests.Many challenges were described in mainstreaming gender analysis, and are related to policy and incentives, human expertise, culture and practices:• Lack of a structured approach to mainstreaming, priority of the institute, and commitment. • Funds haven't been identified. • An incentive system for staff has been absent.• Strong focus on project milestones, and inflexibility of those milestones which discourages the practice of integrating lessons learned and adjusting project design according to recommendations from lessons learned.• From the responses it became clear that there is no consensus about the best strategy to establish and utilise expertise on gender analysis. The recommendation in the 1997 report is to hire an anthropologist, sociologist or animal scientists with strong skills in gender analysis. The role of this scientist would be to work with other scientist and strengthen their skills rather than to implement an independent study. One of the issues is whether or not to hire or identify a person in ILRI who has a supportive role. Theme 1 has already made that decision, and recruited a person with responsibilities on gender analysis. • Very little training of staff, project heads and students on gender analysis had taken place in the past few years. • There has been no 'gender champion' in the organisation.• Gender analysis is sometimes regarded as a women's issue and the responsibility of women scientists only. • Implementation of new ideas depend on instructions from above, and in case of mainstreaming gender analysis these instructions have been absent. • Many opportunities were missed, when gender disaggregated data were collected but not analysed, such as in projects in West Africa and in Ethiopia.There were also some misconceptions and isolated individual opinions of influential people which can form a barrier to accepting principles of gender analysis for minds alike. For instance:• The argument of whether the desire for mainstreaming gender analysis was based on ILRI's values or based on Western values. From the subsequent gender audit survey it became very clear though that the desire to mainstream is inherent to ILRI as opposed to driven from outside. This observation needs to be communicated clearly within the institute. • Some respondents believed that gender analysis has become part of a policy and quoted the ILRI strategy to 2010' or the 'ILRI Assessment of priorities to 2010 (Thornton et al., 2000)' documents as evidence. After reviewing these documents, we failed to spot any evidence in the official publications, although in the short revised publication of 'Strategies to 2010' one guiding principle related to gender analysis is mentioned. It will be important to alert management on these short comings. • One commented that gender analysis needs to rely on individual's interest and inquisitiveness. This realm of thinking promotes a freedom of choice for individuals to embrace concepts of gender analysis or to reject them. It antagonises the concept of mainstreaming, which promotes changes in policies, accountability, culture and capacity building at all levels in the institute, towards increased application of gender analysis. The audit team does not support this individual opinion. • Someone else commented that gender analysis is not a profession but a philosophy or attitude. The audit team thinks that it is not a matter of either or but of both. Gender analysis is part of a research process which improves the process as a whole and its outcomes. The pathway to becoming a good scientist leads through formal and informal education and through practice. Proper training and relevant experience of practitioners benefit the quality of science. In that regard, gender analysis is not different from other sciences. It is also true that the cultural background of a scientist affects his or her research priority setting practices and approaches of implementing research, with either negative or positive effects on integration of gender analysis in research. This is why it is important to build a conducive culture in the institute for conducting gender analysis. However, as has been explained in Chapter 2 and fig. 1, culture forms only one of the four pillars of mainstreaming. Building technical capacity and hence professionalism is another essential pillar. • It was mentioned that one of the constraints to gender analysis in ILRI is the lack of gender disaggregated data in certain regions of the world that one could work with. One could turn this around and argue that this is even more reason to conduct gender analysis.The audit team recommends that these misunderstandings and misconceptions are acknowledged and that a safe and open environment is created to discuss them. This process will lead to a stronger culture for mainstreaming gender analysis.Most responses of the survey have been analysed and presented in pie and bar charts in Appendix 4 in an attempt to improve the readability of this section. A few charts have been repeated in the main text to illustrate the variability of responses. Results of the survey have been grouped in different sections and are summarised below.The majority of respondents had sufficient knowledge about the meaning of gender analysis in research (fig. 2, main text). Many responses were related to understanding the heterogeneity in the target group and adding gender variables in research. All respondents from IPMS, the Directorate, HR and FA, and PC gave answers which were in line with the concepts of gender analysis adopted by the gender audit team. A relatively high proportion in Theme 4 responded with 'I don't know'. Female respondents had a better understanding than male respondents, and in locations outside Nairobi they had a better understanding than in Nairobi (app. 4, figs. 3a and b). Overall, there was a good understanding of the meaning of mainstreaming. Among NRS and students though, 50 % or more didn't know its meaning. Eighty percent of all respondents thought it was necessary to mainstream gender analysis in ILRI (fig. 3, main text). Although the emphasis of the gender review was not gender and diversity (G&D) issues in staffing, some questions were directed to G&D. The majority of respondents did not know or thought ILRI doesn't have a policy on gender analysis in research (app. 4, fig 7). The ones who responded positively mentioned the presence of a policy in theme 3, IPMS (3 times), MTP, ILRI strategy to 2010, ILRI mission statement, CGIAR policy, G&D program, or in recruitment. Upon verification, the only existing policies on gender analysis seem to be in IPMS and indirectly in the MTP. The MTP mentions poverty and vulnerability analysis (Theme 1), management and policy options for sustainable land use by poor livestock keepers in marginal lands (Theme 5), livestock keeping and child nutritional status in poor households (Theme 5). IPMS has clear goals on gender related issues and a written strategy on how to address them. The MTP touches upon gender issues, but doesn't specifically mention it, nor does it indicate gender strategies. Poverty issues in the MTP seem to assume that gender analysis is included. ILRI strategy to 2010 document was revised in 2002, resulting in a much smaller document; 25 pages in stead of the original 122 pages. The revised document mentions several guiding principles for strategic planning, one of them being: 'Incorporate gender analysis to identify the needs of poor women in all research activities, in view of the vital role that they play in agriculture in the developing world, their effectiveness at channelling benefits to families, and their marginalised status.'In the section about policy on gender analysis, a question was asked about whether ILRI has a gender focal point (GFP). More than forty percent of the respondents thought that ILRI had one (app. 4, fig 8). When asked who this GFP was, half of them mentioned names of staff who had been involved in the G&D program at one point, or still are. Persons in theme 2 were also frequently mentioned (app. 4, fig 9). The diversity of responses reflects the confusion in the institute. Many names that were mentioned in relation to the G&D program were part of HR, but they don't seem to form a coherent group. In terms of a GFP for gender analysis in research, there is more confusion, and our conclusion is that it doesn't exist.Less than 25% of all respondents thought integration of gender analysis in projects was mandatory in ILRI to a moderate or great extent. Only 5 % of the respondents stated that gender questions or criteria were always or frequently included in TQM or other project approval processes. Study of documents revealed that there are no questions or criteria in the ILRI Total Quality Management (TQM) process for proposal development and approval related to gender analysis.To a moderate extent To a limited extentCannot answerTo the fullest extent Very few respondents thought that professional staff have adequate knowledge and skills to integrate gender analysis in their work (fig. 5, main text). Fifteen percent of respondents thought that there is a person or division responsible for enhancing gender sensitive research in ILRI to a great or moderate extent, and thirty-six percent responded to a limited extent (fig 6, main text). Out of those, half allocated this responsibility to someone in Theme 2 (app. 4, fig 12). One third of all respondents thought that ILRI drew upon this person or division for providing gender expertise in planning, designing, implementing and analysis in research projects to some extent (app. 4, fig. 13). However, in the MTP 2006-2008 there is no mention of such a mandate for Theme 2, and in practice Theme 2 might not provide much services in gender analysis.Two-thirds thought that there was no training of professional staff in gender sensitive planning and analysis in their OP (app. 4, fig. 14). More emphasis is placed on training of senior management and board members: the majority of management interviewed thought that they are trained in integrating gender equality in the organisation (app. 4, fig. 15).Elements of gender analysis are hard to find in the 'Terms of Reference' or job descriptions of professional staff (fig. 7, main text). On very few occasions is gender analysis included in job and individual performance evaluation (app. 4, fig. 17). On the occasions that it is, it is a result of the documentation of a gender related output that an individual scientist has agreed to produce during that particular year. The evaluation form as such does not mention gender. Only 10% thought that good performance in gender analysis is awarded in ILRI (app. 4, fig. 18). There don't seem to be adequate resources for implementing the ILRI gender policy (fig. 8, main text; fig. 20, 21, app. 4). However, in the absence of a clear policy on integration of gender analysis this is not surprising. Gender analysis seems to have more chance in special projects than in projects funded from core money. Thirty-eight percent thought that training in gender analysis is budgeted for to some extent. A majority thought that gender perspectives are incorporated in ILRI's fund raising strategies (fig. 23, app. 4). There is an overwhelming agreement that ILRI promotes teamwork involving men and women as equal partners, and that management is committed to promoting female representation at senior levels of ILRI, including the board. Opinions are divided about whether management and staff in ILRI are gender sensitive (fig. 9, main text). Gender research issues are discussed openly, but perhaps not always seriously. A majority agrees that women view gender research issues differently than men. More people agree than disagree about staff being enthusiastic about the gender work they do, 47 and 24 percent respectively. Sixty-six percent think that gender analysis fits into the image of ILRI. Ninety-seven percent think that a gender perspective is reflected in ILRI's public awareness materials to some extent. An almost similar proportion thinks that gender perspectives are reflected in ILRI's research publications, but the intensity of agreement is much less. A majority, 57 %, think that the organisational culture of ILRI does not place higher value on the ways males tend to work, although almost 40 % of respondents think the opposite. About equal numbers of respondents agree or disagree that the working environment has improved for women over the past two years. Most respondents, 60 %, disagree that males have an easier time to establish personal and professional networks in ILRI. A vast majority, 91 %, think that ILRI could do much more to institutionalise gender analysis (fig. 24 -33, app. 4). When asked what the three most important characteristics of an ideal professional staff at ILRI are, the highest number of responses were related to being able to communicate well in different ways, to be a team player, being able to motivate others, and good networking skills. The second most important characteristic related to professional excellence, expertise, skills, intelligence, leader among peers and understanding research issues. Third most mentioned characteristics related to the three R values of ILRI: respect, responsibility and responsiveness, but including honesty, faithfulness, transparency, integrity and being ethical (fig 34, app. 4).A majority of respondents thought that gender analysis considerations are included in the design of projects in their OPs. Many scientists would use participatory methods to incorporate views and preferences of male and female end-users in project design.When it comes to implementation of projects, even more scientists take into account existing gender roles and interests of male and female farmers. A vast majority thinks that collecting gender disaggregated data are useful for the design and evaluation phases of research, and they collect them in several fields, such as amount of labour required or spent, participation in decision making, or control over benefits. Only 13 % of female respondents gave a 'don't know' reply when asked about the understanding of gender analysis, versus 25 % of male respondents (fig 1b, app. 4). When asked about the meaning of gender equity, relatively more female respondents gave replies related to equal treatments and benefits, discrimination, and career opportunities, but in the other reply categories (balance among staff, working environment, other) there was no difference. For the question about whether management takes responsibility towards the ILRI's gender policy, replies from male and female respondents were similar. Also, for the question whether management is committed to promote female representation at senior levels, answers from male and female respondents were similar. Fifty percent of female respondents disagreed or strongly disagreed with the statement that management and staff are gender sensitive, whereas only 19 % of male respondents disagreed. There was no difference in agreement about 'a gap between how men and women view gender issues in research'.To the question about whether working environment has improved for women in the past 2 years, more men agreed and more women disagreed.There was no difference in understanding about concepts of gender analysis between IRS and NRS (fig 1b, app. 4). When asked about the meaning of gender equity, most NRS' replies were related to balance of gender among staff, equal employment opportunities, fair recruitment procedures and HR policies. IRS' responses varied more (see fig. 2, app. 4). To the question whether management and staff are gender sensitive, there was no difference in replies between IRS and NRS. To the question about whether working environment has improved for women in the past 2 years, most IRS agreed, whereas most NRS disagreed.A SWOT analysis was carried out by the audit team taking into account the analysis of the follow up study, the survey, and informal meetings. Results are presented in tables 1 -4. Most cells in the tables have several pieces of information, which means that a comprehensive approach for follow up is required in terms of an action plan for mainstreaming. • Increasingly competitive environment to source funding for proposals limit successful funding of proposals with a strong gender component. • Talk, no action.• Minority does not believe in relevance of mainstreaming gender analysis, and wants to keep it completely optional.A workshop was held on 20 and 21 March 2006 to discuss the results of the ILRI gender analysis review, and to develop a plan of action for mainstreaming gender analysis in ILRI, with representatives from different research themes and the directorate (app. 5).The first part of the workshop was reserved for reviewing cases where gender analysis has made an impact on a better understanding of livestock research issues, adjustment of research and development practices, and livelihoods of poor men and women.The following case studies were presented, mostly based on ILRI and its partners' experiences:1. 'The Role of Gender in Risk Analysis' presented by Tom Randolph. This case showed how application of gender analysis tools in the diagnostic phase of research shaped the agenda for research questions that address the human health aspects associated with urban livestock production. 2. 'Gender Outcomes of Dairy Research in Ethiopia' presented by Alexandra Jorge.The case analysed the roles of women in livestock production in Ethiopia which were strikingly different from men. Introduction of cross-bred dairy cows initially increased the workload of women, but later resulted in hiring more labour and a shift from farm to more profitable off-farm activities by women. 3. 'Alley farming for improving small ruminant productivity in West Africa' presented by Maria Mulindi. This case showed the relevance of difference between gender in ownership of land towards adoption of technologies, and the relevance of female extension workers. 4. 'Dual purpose cows for smallholder farming systems in the highlands of Ethiopia'presented by Maria Mulindi. The study showed the effect of adding gender variables in research towards understanding adoption patterns of a technology. 5. 'The Broad Bed Maker, Ethiopia' presented by Ralph Roothaert. This case showed a modest but effective approach of involving women in the dissemination phase of a land cultivation technology, which resulted in empowerment of women to access micro-credit, agro-inputs and increased contacts with extension workers, and increased adoption of the technology, in an environment where women farmers were traditionally marginalised. 6. 'Farmers' perception of benefits of improved dual purpose cowpea, Nigeria' presented by Ralph Roothaert. It described how reflecting on research results with a gender lens lead to a new hypothesis. 7. 'Pathways out of poverty in Western Kenya' presented by Ralph Roothaert. The last case described how individual open interviews with two women farmers added a whole new dimension to understanding dynamics of falling into poverty.Several generic lessons were learned:• ILRI can dramatically and efficiently increase its impact in gender analysis by partnering with other ongoing projects and institutes. For instance, collecting human blood samples requires awareness of ethical concepts and approaches which organizations working with HIV/AIDS have much experience in. • In order to obtain credible data on gender impacts, households for testing technologies should be randomly selected during the planning phase of research. Self selection of households results in biased adoption patterns and associated livelihood benefits. • Esther van Hoeve and Barbara van Koppen (2005) have written an excellent tool for incorporating gender aspects in the design of livestock research, using a gendered sustainable livelihood framework. It is recommended as a tool to incorporate gender in the design phase of research to all ILRI researchers. • Researchers are biased by their own cultural background (e.g. 'this is how things are done, it is normal, it has always been like this'), which affects the identification of gender issues in research. • Gender aspects are highly relevant in poverty analysis studies, but structured gender analysis has not taken place yet. Gender aspects could be easily incorporated in the design phase. Participatory methods will be powerful tools to complement structured surveys and to enhance understanding. Outcomes of participatory methods need to be incorporated in research publications. Surveys need to be planned in such a way that analysis of gender disaggregated data is possible. • In some cases surveys have collected gender disaggregated data, but incentives to analyse and report them have been absent.Ranjitha Puskur presented a framework of integrating gender perspectives in the IPMS project in Ethiopia. It became clear that a top-down approach can be very effective in mainstreaming gender analysis. Although nobody objected to gender issues in IPMS, it has largely been the strict donor requirements that affected a gendered project implementation plan. It has resulted in mainstreaming of gender principles across all staff, partners and field activities. The lesson learned here is that a donor requirement together with strong management directives goes a long way in successfully mainstreaming gender analysis in a program.There is a general agreement within the institute that it has a good track record on improving gender equity and diversity among its staff, and that management is committed to improve it further. The G&D program has contributed to streamlining gender aspects in the personnel policy manual and job advertisements. This creates a favourable environment for mainstreaming gender analysis in the research programs. ILRI likes to portray itself as a gender sensitive organisation, both in terms of working etiquette and in terms of research for development issues. There is a strong back-up from donors.There is a fairly good understanding about the meaning of gender analysis in research.On the other hand however, and according to staff, the biggest obstacles to mainstreaming gender analysis in ILRI are related to human expertise. Very few scientist have been trained in gender research methods, and many feel that this inhibits them from integrating gender analysis in their projects. There is an clear lack of awareness of the methods and tools available that one could use. Although many tools have been developed for research in INRM, some of which specifically addressing livestock issues, many researchers would not know where to find them. There is no person or division in ILRI that supports gender analysis in a systematic way, although some staff are regarded as having expertise in gender analysis. Theme 2 is viewed as the place where most experts are housed, but the Theme has no mention of gender in any of its strategic documents, and it is doubtful whether the Theme actually provides this expertise.ILRI has invested a lot in improving gender and diversity in the workplace. This might have resulted in some improvements in the capacity for conducting gender research, since women have a slightly better understanding and motivation. On the other hand, one can not assume that all women are good practitioners of gender analysis. A more effective strategy for capacity building is to include of both men and women in training programs. The scope for increasing expertise in gender analysis in ILRI is also closely related to the second biggest obstacle mentioned by staff: institutional priority and support from senior management. This includes policies, guidelines, mechanisms to put a practice in place, lack of incentives, and focus on technical issues.The two main obstacles link very well with the most frequently mentioned suggestions for mainstreaming. ILRI staff would like to see a wide variety of options implemented to increase the awareness and capacity on gender analysis concepts and tools. There are many good suggestions to build an internal information system to support this (see section 3.2, p. 24). One important strategy frequently mentioned is to establish a gender expert person or unit. Suggested responsibilities are to mainstream gender in workplans, collaborate with themes, and strengthen the capacity of others in gender analysis. A very practical suggestion is to integrate gender analysis aspects in the TQM process, whereby research proposals need to indicate how gender aspects have been integrated in the design, or need to indicate why integration of gender aspects is not appropriate. Staff also expect more intellectual leadership and support from management on gender analysis.It is evident that gender analysis is more talked about than actually implemented in ILRI. At all levels there is a desire to change this situation. However, the mechanisms are not in place. ILRI needs to start with developing a policy or strategy about what it aims to achieve in terms of outputs, outcomes and impacts that affect women, children, elderly, HIV/AIDS affected families, and marginalised groups of a society or members of a community. We advise that gender analysis should not be confused with poverty analysis, nor should activities on poverty analysis cover up for absence of gender analysis. In themes 1, 2, 3, and 5, there are clear and direct opportunities to integrate gender aspects in their strategies. Much research in theme 4, however, is laboratory based, and therefore integrating gender analysis in its research projects is not always relevant or straight forward. Nevertheless, theme 4 should not be excluded from the mainstreaming exercise, as scientists ought to feel they are part of the 'bigger picture' and need to know how their research contributes towards gender sensitive research outcomes and impact. As for the other themes, theme 4 staff are positive towards mainstreaming gender analysis.Gender aspects need to be integrated and made explicit in the TQM process. For projects that have been identified as highly gender relevant, gender analysis criteria and outputs need to be made specific in job descriptions and performance evaluation systems of project staff members.As indicated earlier, a potential danger lies in the fact that some staff would like to keep integration of gender analysis in research completely optional. If the institute follows this path, there is a great likelihood that technical projects, programs or themes will leave out gender considerations. The gender audit team recommends that all researchers at ILRI are trained in concepts of gender analysis. They should have a clear understanding of ILRI's mission and understand how their particular piece of research fits in the wider picture of fighting poverty in a gender equitable way. In addition, researchers who are not laboratory based need to acquire skills on how to integrate gender analysis in the design, implementation and evaluation phases of research. An easily accessible information system on gender concepts, tools for integrating gender analysis in research, and cases that show evidence of impacts of gender analysis needs to be developed within ILRI.A monitoring and evaluation system needs to be developed to track progress on integration of gender analysis in the research agenda of ILRI. This could be linked to the MTP performance indicators. ILRI needs to select or recruit a qualified, experienced or highly motivated staff member who will take on the responsibility of coordinating and targeting capacity building on gender analysis in research, to support themes with queries on methodologies, to coordinate an information system, and to assist in monitoring and evaluation of gender analysis outputs. Resources need to be made available or sought not only to implement capacity building in various programs, but also to cover the time of this resource person.The action plan presented in this section was developed based on outcomes from the gender audit, recommendations from the gender audit team, and the action plan workshop. The goals and their related activities have been grouped into short, medium and long term to reflect priority and achievability, and they have been sequenced chronologically (table 5). The first priority is to adjust ILRI's policy as this is the foundation for mainstreaming.Short term goals (1 -12 months):1. ILRI to allocate resources for establishing or recruiting a Gender Resource Person (GRP). 2. ILRI to identify or recruit a GRP and provide him/her with institutional and well communicated support and endorsement to implement the following activities:a. Assist management in integrating gender aspects in policy documents 4 , which are currently reflecting a strategy upto 2010, but might want to be extended beyond 2010. b. Assist management and other staff in integrating gender aspects in MTP and log frames. c. Launch a campaign to increase gender awareness, e.g. seminars, production of brochures, etc. d. Assess knowledge needs and gaps to implement integration of gender analysis in projects and themes in ILRI. e. Coordinate training activities based on identified needs, liaise with other institutes who can contribute, e.g. University of Nairobi. f. Compile existing literature on gender analysis, organize an information system on gender analysis which will be easily accessible to professional staff, e.g. on the ILRInet. g. Develop a training manual for integrating gender analysis in the project cycles and impact assessment of research at ILRI. h. Identify one or two existing projects where gender can immediately be integrated and have an impact. Assist in planning and conducting case studies. i. Lead specific case studies of gender analysis in livestock research. j. Develop a detailed plan of action with indicators and time frames for monitoring and evaluation of progress in gender analysis.3. ILRI, with assistance of the GRP, to develop gender criteria for integration in the TQM process. This ensures gender aspects being part of new proposals where appropriate.Medium term goals (1 -2 years):The GRP will need to work with management, human resources and supervisors to achieve the following goals.4. To add gender analysis responsibilities in job descriptions and terms of references of scientists where applicable. 5. To include gender criteria in performance assessment processes. 6. Develop a reward mechanism for outstanding research in gender analysis, e.g. during APM. 7. Include a section on the annual report on achievements in gender analysis.Long term goals (> 2 years): 8. Develop proposals to attract donor funding for gender related research projects across different themes of ILRI. Institution-wide responsibility. 9. ILRI management to continue giving the G&D team support and financial resources to improve working conditions for women and female representation in various staff levels at ILRI. 10. The concept of GRP will be transformed into a gender expertise team consisting of several scientists from various research themes with good conceptual knowledge on gender analysis and experience in integrating gender analysis in research. The roles of the team will be: a. Continued responsibilities as mentioned for the GRP. And in addition: b. To develop and maintain a learning based monitoring and evaluation system to feed back lessons learned on gender analysis. 11. For the gender expertise team to identify livestock innovations that have a high potential of impacting livelihoods of men, women and children. Liaise with stakeholders to enhance dissemination and uptake.Considering the current reorganisation process within ILRI with regards to Theme 1, Theme 2, and the DDG office, and the urgency of starting the activities mentioned under short term goals, the gender audit team recommends that initially the GRP be housed in Theme 5. The current director of Theme 5 has experience in the G&D program and gender analysis in research. Theme 5 would also offer easy entry points where gender analysis can immediately be integrated (2h), such as the risk analysis project. Once the reorganisation of Theme 1, 2 and the DDG office has been finalised, the GRP can be transferred to the newly proposed 'Innovation learning and impact unit 5 ' which is intended to mainstream innovation systems perspectives and approaches, gender analysis and impact assessment within the organisation as a whole. Activities 2e, f, g, i, j as well as the activities mentioned in the medium and long term goals will be ideally housed in the innovation learning and impact unit. By this time the GRP will have transformed into a gender expertise team (10). As with most research projects, considerably more time went into the design, implementation, analysis and documentation of this gender audit than originally planned. However, we feel that the extra time was well spent. During the design phase there was an intense discussion among key ILRI staff and outside resource people about the necessary focus of the study in terms of balance between gender equity issues in the organisation and gender analysis issues in the research program. We found more need and support to focus on gender analysis issues which has influenced the design of the gender audit, but we believe that we found an acceptable compromise among interested parties. Much time was spent during this discussion, but is was an essential part of the process to develop ownership of the gender audit. The high degree of ownership which resulted has already paid dividends: management, board and other staff are anxious to implement the action plan for mainstreaming of gender analysis in ILRI.Another part of the gender audit which consumed considerable more time than planned was the review of literature. Many examples of gender issues in research projects and publications were mentioned by staff who were interviewed during the follow up study of the 1997 portfolio review and during the formal survey. Not every report and publication could be reviewed. Ideally the gender issues in these projects, reports and publications would have been reviewed during in depth discussions with the authoring scientists, but neither the audit team nor the scientists had time for that. We believe though that we have formed a fair and representative view of current gender analysis practices in ILRI through the sample of documents reviewed.The Gender Audit Questionnaire Handbook published by the Commission on the Advancement of Women has provided helpful guidance to design the formal survey and to illustrate issues and questions that are relevant for mainstreaming gender analysis.• Impact assessment. This is perhaps the most critical area for insisting that ex post studies of the impact of technologies look beyond adoption rates and numbers to the actual impact on household members. The studies being done by in Addis are a positive step in that direction. Before and after comparisons will provide insights into actual shifts in labor, resource allocation, and distribution of benefits when new technologies are adopted. What is the connection between increased production, increased income, individual and household expenditures, and the welfare and livelihood impacts? Are there changes in resource control such as the possible shift in ownership of cows and proceeds from dairying with the introduction of crossbred cows?• Feedback research results into research planning• In animal and forages collections and characterization, include information from men and women farmers where possible. The use of participatory techniques, particularly focus groups is likely to enhance the reliability of this knowledge.• In problem assessment, especially at benchmark sites:• Continue the use of participatory appraisal techniques • Maintain principles of gender disaggregation and analysis • Include inquiries on user preferences and indigenous knowledge• Include users as early as possible in selection and testing of new technologies.• In field based studies, increase efforts to work with NGOs. They are often very knowledgeable about patterns at the field level and gender relations. They may provide access to groups not usually in the public domain.• Put identification of specific beneficiaries in the logframe, proposals and concept notes. The data for such identification will depend on improved information from ILRI's own studies and those of others. Draw on case studies, GIS, information from production systems and benchmark sites.• Consider how to make diagnostic tests and vaccines user friendly.• Hire an anthropologist or sociologist with gender expertise. An animal scientist with strong social science skills would also be appropriate. The role of this scientists should be carefully defined ensuring that a strong focus is on working with other scientists, strengthening their research rather than focusing on independent long term studies. The focus of his or her portfolio should be methodology refinement, identifying where gender is relevant in ILRI's current research activities and building in appropriate strategies or methods for getting that information, especially at the benchmark sites.• Train staff in key positions, such as project heads, in gender analysis. Reinforce such training by developing an inhouse capacity and mechanism for reinforcing this learning.• Continue to raise awareness of biological scientists about the implications of their research at the field level through seminars and through periodic review of their work from the perspective of the application of the knowledge they are generating. Such reviews might include national livestock scientists well grounded in field studies and practice.• Support the efforts to improve institutional exchange of information from ongoing studies.• Hold short gender analysis training courses for ILRI graduate students every 18 months. Such a course would bring together biological and social scientists in joint problem solving and give them practice in the benefits and practices of interdisciplinary research.• Include interested scientists and project and subproject leaders in such a course.• Make special efforts to recruit and train female enumerators. Where female enumerators from agriculture or extension agencies are difficult to find, consider using outreach staff of other institutions, such as teachers, nurses, home economists, community development agents as well as personnel from NGOs.• Conduct a literature review on gender roles and livestock production. ILRI has a vast collection of livestock literature including fugitive pieces. Georeferencing the findings on ILRI's GIS would contribute to building a base of information which scientists could use to formulate hypotheses about the relevance and particular pattern of gender relations in different environments.• Develop case studies based on ILRI and others' research for use as teaching materials and in ILRI's own public awareness materials.• Integrate user perspective and gender analysis into training courses and manuals. Scientists, policy makers and extension agents should know the development objectives and context of their work.• Technical courses should include awareness raising with results from research and case studies. The objective is to ensure that scientists see where this information as important to their research.• Social science and field based courses should include methods for gender analysis and gender sensitive participatory research.• Consider integrating gender analysis workshops and gender expertise into in network and collaborative research activities with NARSs and NGOs. At the workshop we held on the Nairobi compound there were several scientists from KARI who were interested in learning more practical approaches to gender analysis.Do you agree with these recommendations? Answer on a scale of 0 -10 (0= don't agree with any of them; 10 = completely agree with all of them). Please motivate your answer. Answers: 6.5,7,7,8,8,8.5 Average: 7.5 • List is too long, some are generic, some are very specific. Difficult to identify a starting point, e.g. female enumerators? It is not workable. • Some are a bit mechanistic. E.g. hire an anthropologist. Not my strategy.• The list of recommendations might be influenced by values and norms that I don't share. Gender might not always be an issue, even in downstream research.Assess the relevance of gender first and then look for expertise and appropriate processes.b) Do you think that any of these recommendations have been implemented?Yes: 3 No: 2 Partially: 3 Some implementation might not be a result of this report.• My overall impression is that our attention to gender has simply 'risen with the tide' of concern and expertise on the analysis and awareness of gender. In part that must be due to not appointing the social scientists/anthropologists to ILRI. However, among our partners and within individual projects there has been more attention to gender. I suspect this has been driven more by donor concern and priorities than by in-house initiatives. Please explain your answer.• Institutionally we have gone through changes. Currently the structure is more conducive for gender analysis. Approaching the ideal is better than to strive for the ideal. • In some projects in Ethiopia gender is integrated.• Implementation of recommendations depends on instruction from above.• We've come a long way in linking participatory and other methods such as livestock surveys and GIS, but we still haven't got a research project specifically looking at the role of livestock for women in different systems and locations and the implication for livestock-relate policies and interventions. A proposal is on the way in Theme 1.If none of these recommendations were implemented since the 1997 review, or if you think they were not sufficiently implemented, what do you think were the culprits?• First of all, to head in a new strategic research directions takes either a commitment of a substantial chunk of core funds and hiring a committed, creative person to lead it (which hasn't happened), or by convincing a new donor that it is hugely important. For all the talk by donors about caring about this area, I'm not sure who to go to right now with such a proposal. • Priority of the institute, and its commitment. • Lip service. Posters portray ILRI's concern about gender. ILRI is cautious but doesn't internalise it. There is no deliberate effort. Integration of gender analysis should not be imposed but it needs to be build in ILRI's philosophy. • If there is no systematic mainstreaming, there is no progress.• Lack of efficiency of the institute.• I don't think many scientists in ILRI have been impressed by the efforts of the PRGA. My own experience (participation in a training workshop in the Philippines) was that they do not try to relate their concerns and expertise to the mainstream work of research. They seemed more concerned in making gender a research topic (this is quite a valid objective) and less in using gender analysis to make overall research outputs more effective. • So the culprits are likely to be a failure to appoint staff with expertise in gender analysis with an appreciation of how our mainstream research works. Gender analysis is one tool from the social sciences that needs to be made available to all ILRI programs but it is only one (albeit very important) aspect of society that contributes to our understanding of livestock issues and affects the potential impact of our research outputs. • There was no gender 'champion' in ILRI.gender, and children need to be understood and their needs need to be prioritised, with the emphasis on poverty (our very specific mandate). Maybe we have so much trouble understanding poverty that we have little patience for the interactions between gender, ethnicity, poverty and livestock. This is a complex research area. My own challenge is to simultaneously recognise that these are issues, my (our) relative helplessness to understand how to deal with them and at the same time keep research going.• Knowledge base: how many people know about gender analysis, which data do you collect, and how do you collect them. • As a women, I am always regarded as the appropriate person to lead such research, and I find that assumption annoying.• It is crucial to integrate gender in livestock research. Create awareness and training. ILRI needs to be in a strong position. • Management needs to make gender analysis a policy.• Add gender and other key elements as a checklist in the TQM.• There needs to be an incentive system, e.g. an annual award for gender sensitive research during the APM. • Monitor and evaluate the research process. OP leaders have to take an active role to include it in the portofolio. • We need a gender unit or expert at ILRI to backstop and provide services, but the person needs to be integrated in existing projects. • Engendering research is not a profession, it is an attitude. • There is no need for a gender expert in ILRI. We need to continuously train ILRI staff on gender issues. We have a bad experience with a 'gender office' in institutions in Africa. • I have always tried to let the research question guide the appropriate method or approach to use, and not start with the method (i.e. gender analysis).Are there any reports or other publications that describe gender analysis in work carried out by ILRI? Please give references or indicate where we can find them.• See Appendices. ","tokenCount":"10998"} \ No newline at end of file diff --git a/data/part_1/1048699495.json b/data/part_1/1048699495.json new file mode 100644 index 0000000000000000000000000000000000000000..79d04c427a83af40794a4e53061679b969f3f07c --- /dev/null +++ b/data/part_1/1048699495.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"359f94efe01f6e3ef82f46729b9c462a","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/83a5a8d1-2d2d-4f00-b39e-2250a393efa8/retrieve","id":"607448380"},"keywords":[],"sieverID":"139eb28d-9bf3-412a-ab81-9f398f36e6e0","pagecount":"13","content":"OUTPUT 4 Development of genetic stocks and improved gene pools adapted to the sub-humid environments.Activity 4.1. Evaluations and selections in the sub-humid environment.For logistic reasons, improvement activities developed for several regions of the Northern Coast of Colombia were centralized initially in Barranquilla. Many of the materials evaluated there can then be transferred to the more humid region in the Departments of Córdoba and Sucre, and to the Middle Magdalena (Department of Santander). Table 4.1 lists the most relevant trials, whereas the other tables show results specific to each one. As mentioned in the previous Output (Table 3.5) a total of 4452 seeds were germinated and 3091 seedlings from these botanical seeds (targeting this particular environment) were transplanted at CIAT-Palmira in an isolated field. The planting of the F1 stage is isolated to reduce as much as possible infection by diseases that can be found at later stages of the evaluation process. Seedlings from botanical seed are considered to be disease-free and efforts are made to maintain this condition for as long as it can possibly be done. Enough vegetative cuttings from 1189, 10-months old plants (grouped in 57 families) from the F1 nursery planted the previous year could be obtained and planted in the Clonal Evaluation Trial (CET) for the sub-humid environment in Santo Tomás (Atlántico Department) on June 19, 2004. The trial will be harvested in April-May 2005. A second CET was planted with the 376 F1C1 genotypes, which did not produce the number of stakes required and, therefore, Project IP3: improving cassava for the developing world Output 4-2were grown again during the previous cycle (See Table 4.1).Clonal Evaluation Trials are very large experiments around one hectare in size. A major constraint in their evaluation is the experimental error associated with the unavoidable variation in environmental conditions in such a large experimental plot. Because this is the first evaluation and selection stage (See Output 3) only 7 stakes are available from each genotype. Replication of each clone, therefore, is difficult to implement. On the other hand clones are grouped in either full-or half-sib families. Since many clones are generally available from each family they are randomly allocated in one of three blocks in which the field is divided. In other words instead of planting all the clones from a given family together one after the other, they are split in three groups, which are planted in the three blocks the entire evaluation is divided into (Figure 4.1). This approach allows for two interesting advantages:a) There is a replication effect for the families because all the clones from a given family are scattered in three \"repetitions\" in the field. The averages from all these clones are less affected by the environmental variation in such a large experiment.b) Selection is made within each block. This is similar to the stratified mass selection suggested by Gardner (See Activity 3.5, page 3.15). This approach effectively overcomes the environmental variation that can be measured by comparing the means of each block. Because all the clones from the CET were divided, the average performance of each family were more precisely estimated, since each family was scattered in three different parts of the field, whereas before it was concentrated in just one sector (Figure 4.1). As a consequence, the estimates of GCA for each family is much more precise.A summary of the results from the CET for the Sub-Humid environment harvested this year is presented in Table 4.2. The 1157 clones included in the CET were allocated in three blocks with 388, 386 and 383 clones each one, respectively. Checks were also included in each block. Table 4.2 provides information on the averages for each of the three blocks. The variation among these three blocks is an error that eventually affects the selection process. By selecting within each block, however, this environmental effect could be effectively eliminated. Since selection indexes were calculated within each block there is no major variation for this variable across blocks. On the other hand the average fresh root yields were 18.7, 27.1, and 29.7 t/ha respectively for Blocks 1, 2 and 3. This highlights the large environmental variation that is overcome by stratifying the selection within each block. In Table 4.3 the size (number of clones) and the number of selected clones from each family has been consolidated. This data has been obtained by combining information of the three blocks in which the CET was divided into. The average selection index has also been included. The use of selection index has been already described in Output 3.Family CM9955 had 11 clones scattered in the three blocks of the CET. Eight of these clones (73%) were selected. The average selection index for this family was 13.40. A family with an average performance would have a selection index around zero. Positive selection indexes mean an average performance better than the mean of the population. A negative selection index suggests a performance below the mean of the population. In the case of family CM995, it is obvious that the general performance of that family was outstanding because its selection index (averages across the 11 clones that conformed this family) was 13.40. The information from Table 4.3 can be further consolidated around the average performance of each progenitor used to generate the CET. This is so because each progenitor can be used to produce more than one family. For instance Clone SM 1411-5 (Table 4.4) was used as one of the progenitors in seven full-sib families. Table 4.4 provides information for the most important characteristics of the progenies from each parent. This information is very closely related to the GCA estimates and reflects the breeding value of each progenitor. This information is very useful for defining the parents to be included in the crossing nurseries in the future. Project IP3: improving cassava for the developing world Output 4-6The parental clones listed in Table 4.4 have been ordered based on the proportion of clones selected. Clone SM 1665-2 was used in two families, which combined included 55 clones, 28 of them were selected (51%). Clone SM 1411-5 participated as progenitor in seven families, generating a total of 138 clones of which 53 were selected (38%). On the other hand, at the bottom of Table 4.4 it is clone CM 6758-1. It was one of the progenitors in five families and was represented by a total of 140 clones of which only 7 were selected (5%). The relevance of this information should be obvious to the reader. Furthermore information from Table 4.4 points out the strengths and weaknesses of each progenitor, as reflected in the average performance of their progenies. For instance the progenies from clone SM 1665-2 (Top of the table) showed the highest average fresh root yield (25.5 t/ha) and harvest index (0.61), but tended to have low dry matter content (30.7%). The second best progenitor, on the other hand, produced progenies with a much better average dry matter content (32.4%), but with lower fresh root yield (21.9 t/ha) and harvest index (0.51). The progenies from clones located at the bottom of Table 4.4 tended to have lower average for fresh root yields, harvest index, and/or dry matter content. Clone CM 2772-3 is adapted to the acid soils savannas environment and the Putumayo Department, it was included as progenitor in this trial because it has yellow roots.As explained in Output 3 (Figure 3.1) the following step in the selection process is the Preliminary Yield Trial or PYT. Clones evaluated in these trials are those selected during the CET conducted the previous year. The seven plants from the CET produce more than 30 stakes. Therefore, the PYT are planted with three replications of 10-plant plots. Each experimental plot consists of two rows with five plants each. Since selections at the CET stage are conducted in there different blocks selections within each block generate a respective PYT. The clones allocated to each block at the CET (and selected) are therefore, competing among themselves also at the PYT phase. The reasons for this are: a) This approach maximized the genetic variability within each PYT by maximizing the number of families present in it; b) The performance of the cassava plant depends heavily on the quality of the stake from which it grew, and the quality of the stakes, in turn, depends on the environmental conditions in which the mother plant grew. By keeping together in the same PYT trial the clones that grew together at the CET a better uniformity of the quality of the stakes is achieved and, therefore, the experimental error at the PYT is somewhat reduced.The The trials from the 2003 CET had average dry matter yields of 8.0; 7.9; and 5.7 t/ha respectively for PYT4, PYT5 and PYT6. It seems that the environmental conditions for PYT6 were in this case much worse that those for PYT1 and PYT2. The average dry matter yield in the selected group of 20 clones from each trial was 11.4; 11.7; and 11.3 t/ha, respectively for PYT4, PYT5 and PYT6.An interesting feature from the PYTs described in Tables 4.5 to 4.7 is the frequency of clones from a given family selected. Families CM 9957 and GM 290 had 7 of their clones selected (across the three PYT experiments). Family CM 9958 had four clones selected and families GM 274, GM 262 and CM 9966 had three.During the June 2001-May 2002 season a Diallel Study was conducted. That trial was used for generating valuable quantitative genetics information regarding the inheritance of the most relevant traits in cassava. The trial was also used for selection purposes and the best clones from that experiment were included in a CET during the June 2002 -May 2003 and the selected clones were grouped for a PYT whose results are presented in Table 4.11. It is worth to mention, for example the outstanding performance of family GM 258, which had three of its clones selected from PYT-7 (Table 11). Families CM 9954 and GM 246 had two of their clones selected. ","tokenCount":"1666"} \ No newline at end of file diff --git a/data/part_1/1055922133.json b/data/part_1/1055922133.json new file mode 100644 index 0000000000000000000000000000000000000000..6c1fd7210ccec4f711324fd7d0256510f91e1910 --- /dev/null +++ b/data/part_1/1055922133.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"aeba0f292ce2358417224c46200c78cf","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/62a50abc-7f62-4ada-a5f1-5b9935b42c55/retrieve","id":"23041899"},"keywords":[],"sieverID":"32cf261c-63d1-46ae-b1ae-e7d0fc8bd3f4","pagecount":"19","content":"The discussion of different aspects related to integrated control of diseases and pests is presented emphasizing the cultural practices, varietal resistance and biological controls. Cassava, a perennial vegetatively propagated crop cultivated in a wide range of ecosystems, requires integrated control programs for diseases and pests as a prerequisite for yield stabilization and satisfactory production •Most agricultural'research is directed toward the investigation of a specific factor or set of factors related to the production system of different erop species. The results of this research are rarely integrated in a logistic production package. More reeently, researeh has been oriented on a cornmodity basis, making the integration of scientifie teams to study one crop appear more reasonable; thus scientists can develop broader concepts of the erop and its problems, leading to more applied results.With regard to cassava, there are several reasons why an integrated control program for diseases and pests is a prerequisite for yield stabilization and satisfactory production. Among these are the fol1owing: l. Cassava is a perennial crop with undetermined physiological maturity (Jennings, 1976); consequently, an established biotic problem could be perpetuated.2. The vegetative cycle is long, ranging from 8-24 months, depending on the cultivar and/or ecosystem. During this time, the plants can suffer climatic and edaphic pressures (e.g., drought, low or high tempera-tures, nutritional deficiencies or toxicities). as well as attack by pathogens, insects, mites and nematodes. The intensity and severity of these stresses vary among ecosystems and from one growing season to another, and are related to the ecological conditions occurring throughout each growing cycle and to the existence of material susceptible to the stresses presento 3. Cassava is propagated vegetatively from cuttings of lignified stems.The quality of the planting material is determined by the climatic. edaphic, pathological and entomological stresses (negative production factors, NPFs) of the genotypes cultivated in a given cycle and their resistance to these stresses. The quality of the stem cuttings determines, to a great extent, the overa11 success in achieving optimal yields (CIAT, 1979(CIAT, , 1980;;Lozano et al •• 1977). On the other hand.infected and/or infested propagation material is highly probable in cassava un1ess preventative measures are taken (Lozano, 1977a).Manihot esculenta is composed of cu1tivated clones that have be en selected for desirable characteristics over many years by farmers in each ecosystem. primarily based on tolerance to the NPFs existing in a given region. The introduction of one or several NPFs from other ecosystems and/or planting clones in ecosystems different from the native one can cause serious damage to the original clones, as well as to those planted outside their native ecosystem (Lozano. Byrne & Bellotti. 1980).5. Several cassava clones are planted in each region throughout the whole or most of the year. Consequently, in most ecosystems, tissues of diverse genotypes susceptible to different biotic problems are present throughout the year. The reason for the lack of epiphytotics in traditional plantations or for the presence of biotic problems at levels below the economic threshold is due almost entirely to the biological balance that exists in the ecosystem; and this must be maintained.6. Cassava has a long genetic cycle (up to 3 years), which de1ays the development of new, improved varieties, to1erant to specific problems (Kawano et al., 1978); thus a stable-type resistance is preferred.7. Cassava growers need to exercise great care in the production of their own p1anting material in order to avoid sanitary, agronomic and economic problems caused by a. The 10w multiplication rate (5-10 cuttings/plant) (Lozano et al., 1977) b. damage caused to cuttings since they are easily injured during preparation and transportation, as well as the difficu1ty of subsequent storage (40% of the buds in sorne clones failed to germinate after only 2 weeks' storage) (Lozano et al., 1977) c. Packing and shipment of cuttings are difficult and expensive because of their weight and volume (10,000 cuttings required to plant 1 ha weigh ca. 1 ton and occupy 2 m 3 ). 8. Most cassava growers are traditional farmers (Phi11ips, 1974) with 1itt1e technica1 know-how and few economic resources. Prob1ems re-1ated to this crop shou1d be sol ved using a simple, inexpensive but efficient cu1tivation system.Based on the foregoing factors, the importance of integrated crop management in the control of pests and diseases can be seen; this system 4 must combine good cultural practices with biological control and varietal resistance.Uniform cultural practices cannot be recornmended across all cassavagrowing areas; they should be adapted to the specific characteristics of each ecosystem. Moreover, the incorporation of different practices should be based on a cost-benefit analysis, bearing in mind the farmer's capacity and that stability of production is the ultimate goal. Sorne practices may appear unessential, but the roots (the cornmercial product) may be affected and, unfortunately, can be appreciated only at harvesting time.The following are sorne cultural practices that, when applied in combination, can reduce or even eliminate stresses due to NPFs in a given ecosystem, thus producing stable yields. l. When cassava is planted irnmediately after the removal of forest, perennial or woody annual crops, severe root-rot problems can appear due to pathogens and/or pests that affect these plant species as well as cassaya (Booth, 1977;Bellotti & Schoonhoven, 1978b). A decrease in soil infestation can be obtained by planting nonsusceptible crop species (e.g., cereals) befo re cultivating cassava and bunning the plant debris left on the ground (Booth, 1977;Lozano & Terry, 1977).2. Soil preparation should be as for any other traditional crop. As cassava is susceptible to flooding and to pathogens favored by this condition (i.e., Phytophthora and Pythium spp.), soil drainage must be adequate for the quantity and distribution of rainfall in each ecosystem. For example, planting on ridges is recornmended when rainfall is higher than 1200 rnm/year. The size and depth of these ridges will vary in re1ation to soi1 texture and frequency of rainfa11 (Booth, 1977;Lozano & Terry, 1977;Olivero, Lozano & Booth, 1974).3. It is we11 known that the quality of p1anting material is crucial for the successfu1 cultivation of any vegetative1y propagated crop. This is one of the most important factors in any cassava production systems programo responsible not only for good crop stand and establishment (good rooting of cuttings and bud germination), but a1so for the sanitary conditions of the crop and final yield (commercia1 roots/p1ant) per unit areal cyc1e (CIAT, 1978(CIAT, , 1980;;Lozano et al., 1977).The qua1ity of the cuttings depends on certain agronomic characteristics (lignification, thickness related to each clone, size, number of nodes/cutting, ang1e of cut, and degree of mechanica1 damage), sanitary conditions (free of systemic and localized pathogens, insects and mites), and disinfestant and protectant treatments app1ied before p1anting or storage (Lozano et al., 1977).In general cuttings should be taken from the healthiest plantations on the farm or in the region, selecting the most lignified portion of the stem from vigourou$ 8-to 15-month-old plants, cutting stem pieces 20 cm long at a right angle. Any portion of the stem with signs of necrosis (discolorations), cankers, tumors, ga11s, galleries and/or insect (scales, borers, etc.) or mite infestations must be eliminated.Infested or infected cuttings can contaminate healthy ones during the storage period (Lozano et al, 1977;Vargas, 1977).Cuttings must be treated with fungicides and insecticides for di s-infestation, disinfeetion and proteetion. Planting material should not be stored unless strietly neeessary (CIAT, 1979(CIAT, ,1980;;Lozano et al.,1977) • . 4. Cuttings should be planted in aeeordanee with the terrain; satisfaetory root formation and distribution result from the position of the eutting in the ground (Castro et al., 1976). Good root development leads to vigorous plants which are more resistant to biotic problems and easier to harvest. This in turn can lead to less physiologieal and mierobial deterioration during storage, whieh are enhanced by mechaniea1 damage during harvesting (Booth, 1976;Lozano, Coek and Castaño, 1977).Considerable losses in establishment due to the failure of rooting or bud germination can oceur if planting is done during the hottest season of the year in areas with high average temperatures. This may be eaused by the effeet of so11 temperature on horizontally planted cuttings; when planted vertieally or obliquely, air eireulation eools down the extreme upper portion of the eutting, redueing the effect of hot soi1s. It is neeessary to bear in mind that the bud thermal inaetivation point of most cu1tivars is 52. 5°C min (CIAT,1974); high temperatures can also damage the stem epidermis, causing openings suitable for the establishment of pests and pathogens. 5. Good weed control is important because cassava is a poor competitive speeies (Dol1, 1978). Moreover, adequate weed control could reduce both pathogens and pest popu1ations on other host species and also allow good air circulation between plants. increasing the rate of rainfall evaporation.This reduces the relative humidity for suffieient time to deerease the rate of establishment and propagation of sorne pathogens, inseets and mites.However,certaln weeds can serve as a host and food supply for benefieial inseets, and their elimination would decrease their populations. Weed control must therefore be carried out with both these aims in mind. In large plantations, it may be wise to 7 keep p10ts or bands of native weeds to help maintain a natural biological balance.6. Periodic inspections of plantations are highly recommended in order to (a) determine the seale and timing of agronomie operations such as drainage, weed control, etc.; (b) remo ve plants or plant parts with initia1 infection or infestation symptoms of diseases (viroses, mycop1asma, etc.), inseets (scales. shoot flies, etc.) and mites, which at the initial stages attaek scattered plants in the stand. These plants should be removed from the area in plastic bags and burned to prevent the dissemination of these problems; and (e) forecast the cornmencement of epiphytotics caused by pathogens and insects, al10wing appropriate control strategies to be planned and carried out at the most advantageous time. A full-time trained worker would be justified on farms of 15 ha or larger to carry out control of agro-phytosanitary problems.7. Since the roots are highly perishab1e as a resu1t of both physio1ogica1 and microbia1 deterioration (lozano, Cock & Castaño, 1977), it is suggested that planting and harvesting operations be prograrnmed according to marketing conditions. Simi1arly, since the incidence and severity of this deterioration are enhanced by mechanical damage, this should be minimized or avoided during harvesting, packing and shipping (Booth, 1977).Recent research on fresh root storage suggests that physiologica1 deterioration is a biochemical process (Lozano, Cock, Castaño,1977;CIAT, 1980) that can ~e contro11ed by pruning 2-3 weeks before harvest. Storage of roots in sea1ed plastic bags in order to prevent dehydration by keeping up the saturated relative humidity a1so gives good control. Microbial deterioration has been contro11ed by dipping the fresh roots in a fungicide solution (Lozano, Cock & Castaño, 1977).8. P1ant debris left on the ground after harvest can act as propagation media for pathogens and pests that can cause severe damage to cassava after successive plantings (larvae of Co1eoptera; Rosellinia spp., Armil1ariella spp., etc.). The elimination, especial1y of stems and roots, can help maintain these root-rot prob1ems at low leve1s for several p1anting periods. (CIAT, 1979;Lozano, 1977b.) The determination of the percentage of root rot after each harvest, especia1ly on soils rich in organic matter, helps determine whether crop rotation or fal10wing is advisable.In general, plots that have over 3% root rot at harvest require crop rotation or fa110wing in order to decrease the inocu1um potential of biotics infesting the soil. When crop rotation is p1anned, ca re shou1d be taken in the choice of crops in the sequence since several other crops are a1so attacked by cassava pathogens; cereal s are a good choice. (Lo~ano,1977b;Lozano & Booth, 1974;Lozano & Terry, 1976).On the other hand, cutworm pests of maize and sorghum can a1so attack young cassava p1ants. If these are present, it is necessary to apply poi son baits or spray the soi1 with funga1 or bacteria1 pathogens of these insects before planting (Bel10tti & Schoonhoven, 1978b). 9. Planting time can affect pest and/or disease incidence. Periods that favor high multiplication rates of pathogens, especially wet periods in the tropics or cool seasons in semi-subtropical areas, should be avoided (Lozano,1977b;Lozano & Terry, 1976). By p1anting over several periods during several cycles, it is possible to determine the appropriate p1anting time for each ecosystem.10. Consecutive planting in the same or in different plots over long periods of time can induce a progressive increase in the inocu1um potential of pathogens and pests, causing outbreaks of increasing severity with time. A delay in planting for a few months will lead to a decrease in the biotic problem. This can a1so be reduced by planting stems of longer than usual length (0.40-0.50 m instead of 0.20 m) in arder to obtain large plants with several buás in a short period of time; these will have a higher tolerance to biotic problems such as shoot flies (Silba pendula) than small p1ants obtained from short cuttings.11. Cultivation of cassava in association with other crops has been reported to be responsible for the low incidence and severity of biotic prob1ems in tropical cropping systems; traditionally managed farms combine this with p1anting mu1tico10na1 cassava p1ots. This system should be studied and maintained wherever possible, aboye a11 where cassava is used as a staple food. Sudden changes in productíon systems may bring about unexpected changes in the ecologica1 equilibrium, which in the long term are ref1ected in the balance existing with the native biological control of the ecosystems.12. Well-planned spacing of plants can prevent the formation of microclimates favorable for the propagation of diseases and pests, as well as decrease the spread of biotic problems within the stand (e.g •• scale insects). An ideal spacing can be reached by decreasing plant populations per unit area or changing the p1anting system (i.e •• two rows separated by only 0.50 m, followed by another two at 2.00 m distance). The effects of such methods should be evaluated according to each ecosystem and its soi1 fertility, the clone type, harvesting systems used, etc.13. Improvement of growth conditions for cassava by increasing the nutritional level of the soil and the water supply during critical growth periods facilitates vigorous plant development, which in turn produces a higher tolerance to the stresses exerted by the biotic problems within a given ecosystem. However, the use of these cultural practices, their leve1s and frequency of application shou1d be determined by economic ana1ysis. In general p10ts that are selected for the production of cuttings shou1d receive the best cultural and biologica1 treatments.14. As several biotic problems are disseminated through vegetative and sexual propagation material, it is of great importance to establish and strictly observe quarantine regulations (Lozano, 1977a). In general it is suggested that only official institutions be authorized to introduce cassava propagation material; vegetative material should be introduced by meristem culture or sexual seeds taken only from healthy plantations.15. The use of sonie light traps, poison baits, pheromones, gama and xrays for sterilization. hormones, etc., are control measures that shou1d be considered in order to improve the control of insects during different periods of the crop cycle, taking into account the biotic prob1em, the ecosystem and the feasibi1ity of its execution {Be11otti & SChoonhoven, 1979SChoonhoven, , 1978b;;Bellotti, Reyes & Arias, 1980).The long production cycle of cassava makes chemical control of pests uneconomical. This fact, combined with the great ability of the cassava plant to recover from abiotic and biotic stresses, indicates that biological control may pro ve very effective (Bellotti & Schoonhoven, 1978b;Bellotti, Reyes & Arias, 1980). Moreover, many beneficial agents exist in cassava plantations: in the case of Erinnyis ello alone, some 30 parasites, predators and pathogens have been identified (Bellotti, Reyes & Arias, 1980).Biological control should constitute one of the most important approaches of any integrated control package for the diseases and pests of all ecosystems.The following suggestions can help maintain the natural biological control already present in a given ecosystem and improve it by increasing populations of native or introduced beneficial agents.1. Although pesticides are valuable components of integrated control, they must be used only when other control measures are not effective and when it is economica1ly necessary because of yie1d reductions caused by the biotic problem (Bellotti, Reyes & Arias, 1980;Lozano, 1978). If an outbreak requires pesticide app1ication, this should be selective with, if possible, a low letha1 effect on beneficia1 agents (Bellotti & SChoonhoven, 1978;Bellotti, Reyes & Arias, 1980).2. A detailed inventory of beneficial insects and microorganisms as wel1 as of pests, diseases, hosts and foad sources of these pests is urgently required. The evaluation of each biotic problem in each ecosystem will aid in the establishment of priorities for each approach to biological control. 12 3. Ecological studies directed towards explaining the relationship between parasites. pests and the environment will provide valuable information for future strategies on biological control for each ecosystem.4. Natural biological control can be improved by increasing the populations of the most beneficial species through mass rearing. followed by liberation and colonization (Bellotti. Reyes & Arias. 1980). It can a1so be improved by the introduction of new. more efficient beneficial species or biotypes that can be adapted to the condítions of a particular ecosystem. 5. Even though modern agricu1ture uses the monoculture/homogeneous genotype system for several crop species, our experíences with cassava 1eads us to suggest that it wou1d be better to use the multivarietal system in monoculture or mixed cropping with other crop species, as is the current practice among most cassava growers. The genetic clona1 variability in plantations restricts the asemic propagation of pests and pathogens, keeping their populations at low levels, greatly reducing the risk of sudden outbreaks.6. Alternate hosts of pathogens and pests,grown in or near cassava plantations (e.g., Poinsettja pulcherrima. host of the causal agent of superelongation disease).should be removed, as well as any source of food for pathogens and pests (the hornworm eats leaves of rubber trees; fruitflies feed on rotting fruits; several soil-borne pathogens live on decaying cassava root debriSj etc.). Extension programs should explain the advantages of carrying out these practices and if hosts cannot be e1iminated because of their economic importance (rubber trees in Malaysia and Brazil, for example), integrated control programs should also be planned for these crop species.7. The liberation of irradiated insects or interspecific hybrids of pests in the area has not yet been done in cassava, but would be a promising biological control system for the future. Spraying the soi1 with bacteria, fungi, viruses, etc., that are pathogenic to soil-borne insects and pathogens of cassava, is another good possibility that merits study.Yield stability with time in a given ecosystem is related to the stresses resulting from the NPFs existing in each ecosystem, as well as to the genetic capacity of clones to tolerate these stresses. Since cassava clones ha ve been se1ected for a very long time in loca1ized areas and perpetuated vegetatively, the cassava/ecosystem interaction is great. A good, welladapted clone with tolerance to a given ecosystem could be severely affected by the NPFs of another ecosystem. Consequently, in each particular ecosystem, regional clones or clones from similar ecosystems should be preferred to those introduced from ecosystems with different sets of NPFs.Introductions should be made specifically to improve the gene pool existing in each ecosystem (regional clones). Improvement programs should be decentralized and located in areas selected on the basis of extensive agrosocioeconomic studies (Lozano, Byrne & Bellotti, 1980).The concept of varietal evaluations should be mu1tiple, integrating the following three general concepts: (a) satisfactory yield of fresh roots, stareh, fo1iage, etc. according to its uti1ization; (b) good production of high-quality planting material; and (e) highly acceptable root quality aceording to the socioeconomic requirements in each region. Clones selected according to these critería wou1d probab1y be the mast stable over time, being the most acceptable to farmers.Clona1 evaluation in each ecosystem should be directed to identifying genotypes with the widest type of resistance to the NPFs existing in it; this eva1uation should be performed by observations in areas where the NPFs of each eeosystem are severest and most frequent. These eva1uations should be integrated, performed by scientists of different disciplines and during severa1 consecutive eyc1es (CIAT, 1978(CIAT, , 1979;;Lozano, Byrne & Bel1otti, 1980). This should not e1iminate or underrate evaluations direeted to identifying tolerance to specific important biotic problems because this eould be needed to improve clones having widetype resistance but susceptible or defieient in certain required characteristies.Varieta1 resistance obviously improves biological control of the area because economie damage oeeurs only at higher population levels, faci1itating the increase of beneficial biotics and reducing or e1iminating the need for pestieides. In cassava an attack of Erinnyis spp. can produce up to 40% defoliation without causing any yie1d 10ss; this permits a delayed inseeticide app1ication for their control or the use of any other control measure compatible with the bio1ogical equilibrium of the region.The foregoing general recommendations for the integrated control of diseases and pests in cassava shou1d be complemented by scientific support given by research and extension agencies to growers and pro-cessors. The long-term success of cassava production in a given country or region may depend on both the research support and the appropriate application of these control measures.","tokenCount":"3504"} \ No newline at end of file diff --git a/data/part_1/1076787539.json b/data/part_1/1076787539.json new file mode 100644 index 0000000000000000000000000000000000000000..e4966dc59edb3a58fb8d24e8b99e40c697a1d86a --- /dev/null +++ b/data/part_1/1076787539.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"eeda15ac3c3ef1bee97a474de989635d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/7ecf3914-407e-4219-b36c-90fc842f30d8/retrieve","id":"-1096918158"},"keywords":[],"sieverID":"2dd8d536-a01b-4f8b-bbf3-177772208ddf","pagecount":"11","content":"Models can play a key role towards improving understanding about critical environmental and development challenges, such as declines in soil fertility due to inadequate management practices, or drops in returns to labor as soil fertility declines. They serve as logical constructs that offer a simplified representation of complex systems to provide insights into a 'perceived reality' (McCarl 1984), or a specific part of their inner workings (Gershenfeld 1998). In particular, mathematical models focus on the effects of different components of the 'target system,' and describe or predict behaviors using mathematical concepts, theories, and language (ibid 1998). In the fields of agriculture and natural resource management (NRM), decision-making models, land use planning models, statistical relationship-based or process-based models may be used to analyze biophysical and/or socioeconomic phenomena.The purpose of this brief is to identify considerations for integrating gender and social inclusion considerations in mathematical modeling focused on agriculture and natural resource management. The brief is not a guideline per se, nor is it exhaustive in terms of entry points for gender integration in mathematical modeling. Rather, it is intended to stimulate thinking on ways to engage with gender relations to develop models that can support analysis on innovations that promote equitable and sustainable agriculture and natural resource management.There are many different ways to design and use models depending on the type of phenomenon to be analyzed and type of questions the model needs to answer. Econometric models can and often do include gender considerations or 'gender' as an explanatory variable. In contrast, models that describe only biophysical processes will not include gender per se in the model, but may nonetheless carry gender implications that require consideration (i.e. treating gender relations as an exogenous variable that shapes the biophysical world or that influences the impacts of biophysical change). Integrating gender considerations into models requires analyses that acknowledge the complex, shifting and context-specific nature of gender roles and relations (Doss et al. 2001, Gladwin et al. 2002). Drawing on the scarce literature on gender in modeling, we demonstrate below that gender relations require consideration across key phases of the modeling cycle, including when: 1) conceptualizing the model/framework; 2) collecting data to populate the model; and 3) interpreting model outputs.Models are informed by and reflect a conceptual framework. They (often implicitly) embed assumptions about inter-agent interactions and institutions (Swallow and Swallow 2015). Gender analysis, which can be supported by and/or conducted with a scientist with gender expertise, is needed to underpin socio-economic or bioeconomic models so as to include relevant elements in the model. As gender relations are contextually-specific, models will need to consider their particularities in the settings of interest (Fontana 2015). Moreover, depending on the scale at which a model is pegged and its substantive focus, certain gender issues may be more relevant than others.A first important concept for gender-responsive models of household-scale processes is that of gender-differentiation within the household, which commonly involves an unequal distribution of costs and benefits and of decision-making power among members (Udry 1996, Doss et al. 2001, Gladwin et al. 2002, Mudhara et al. 2002). As Sen (1990) demonstrates, the household is a site of coinciding and competing interests among members, wherein women and men engage in distinct, but also shared and overlapping processes in production, as well as consumption, and decision-making. 1 Moreover, gender interacts with other social identities (age, marital status, ethnicity and so forth) to create diverse social positions within the household, which shape intrahousehold power relations (see Box 1). For example, a mother-in-law may have more decision-making power than a daughter-in-law; and a young man may have less authority within the household than his father. Given this intra-household differentiation, models should not assume equal opportunities or outcomes for different household members.Gender-responsive modeling may involve integrating variables in the model that account for an unequal access to and control over resources and assets among different groups of women and men. As Fontana (2015, p. 1) reports in her guidelines to integrate gender in bio-economic research, \"looking at issues of environmental, economic and social sustainability through a gender lens means being aware that women and men have a different capacity to access, control and use assets and resources, and that women tend to face disadvantage more than men in a number of domains.\" Women and men also frequently have different capacities to access information, due to unequal access to formal education, social networks, and extension services (Doss andMorris 2001, Ragasa et al. 2013). Hence, in a study on adoption of improved fallows to enhance soil fertility in Eastern Zambia, Keil et al. (2005, p. 234) account for \"differences in land and labor endowments as well as wealth status found between male and female headed households.\" Their model shows that these differences in the availability of land and labor among women and men account for women's relatively lower adoption rates.Another key gender issue for models focused on agriculture and natural resource management are the labor (or time) constraints rural women typically experience given their heavy work burdens. These are due to women's responsibilities in what are commonly called 'productive' activities (which generate incomee.g. agriculture, trade) and 'reproductive' activities (unpaid activities, which maintain the householdsuch as domestic tasks, collecting water and firewood, caring for children, elders, and ill household members, etc.), as well as in women's more limited ability to mobilize other people's labor compared to men (Grassi et al. 2015). Differences in labor availability among men and women farmers, when relevant, need to be accounted for to avoid the generation of 'biased' outputs. For example, Gladwin et al.'s (2002) intraand inter-household decision-making model shows that a lack of access to land and labor prevented women from adopting a range of agroforestry innovations in Eastern Zambia.Gender differences in access to assets and resources and the gender division of labor also shape women's and men's preferences and decisions. Models may thus also need to account for gendered preferences and decision-making, as preferences can be systematically different for men and women, even within the same household (Siddiqui 2009). For example, in an experimental role-playing game in Indonesia, Villamor and van Noordwijk (2016) found that women and men had a different willingness to assume risks associated with changes in land use, and thus had different land use preferences. Willingness to adopt new technologies may also be genderspecific. For example, given their labor constraints, women may not be willing to adopt productivity-enhancing technologies if they increase their work burden or decreases their ability to tend to other tasks (Doss 2001). Moreover, as noted above, women and men may not have the same information; and this will shape their preferences and decisions with respect to resource management.Hence, some models account for the gender-specificity of preferences, access to resources, and decision-making in agriculture and natural resource management, with attention paid to the underlying causes for gender differences. For example, Gladwin et al. (2002) use participatory role-playing exercises to investigate gender-specific preferences in land use. They integrate gendered disparities in access to land, credit, and other resources in a model to study how these factors affect land use patterns and consequent delivery of ecosystem services. Similarly, Baker et al. (2015) develop a model to reflect the number and type of ecosystem services related to water that are important to, and used by, different gender groups. Villamor et al. (2014) use agentbased modeling based on participatory mapping and role-playing exercises to complement quantitative data exploring the potential effectiveness of a payment for ecosystem services (PES) design in a rubber eco-certification scheme. Rather than treating the household as a unit, their simulation incorporates decision-making processes for heterogeneous households. Their results show that gender is an important factor in decision-making about land use options; hence, integrating gender considerations in their models improves the model's accuracy.Due to the gender differences and inequalities described above, the distribution of costs (e.g. monetary, labor or other) and benefits (e.g. consumption, income) from adopting different practices or innovations may also be gender differentiated. A model predicting the impact of an innovation should reflect that this impact is likely to differ for women and men, and for different groups of women and groups of men, as gender shapes \"relative female/male wages, gender differences in the distribution of time between paid and unpaid work, women's and men's shares in total household consumption\" (Fontana 2015, p. 10).In developing a model, it is critical to consider which social relations beyond gender have an important bearing on the phenomenon under study. An 'intersectional' analysis that explores how gender interacts with age, education level, marital status, ethnicity, position within the household, or other salient social relations is required to understand resource management processes.Intersectionality refers to how different axes of social marginalization (e.g. based on being a woman, being young, belonging to a particular ethnic group or following a particular religion) interact to create distinct experiences of discrimination and marginalization (Cho et al. 2013, Kabeer 2015). It means that the experiences of any individual is shaped by several aspects of their identify, such that the experiences of a better-off woman, for example, can be quite different from those of a poorer woman, or those of a young married woman different than those of an older widow.What intersectionality implies is that a model may need to include several social categories (e.g. gender, age, socio-economic status) to describe or predict gendered outcomes. For example, Haggith et al. (2003) use the Forest Land Oriented Resource Envisioning System (FLORES) simulation model to capture interactions between rural communities in forest margins and natural resources. Based on anthropological studies that describe the rules and relationships that mediate land distribution processes, the authors integrate gender, marital status and childbearing as variables affecting how land and labor are allocated within the community. Likewise, Villamor et al. (2015) adopt an intersectional approach that puts gender and household wealth in relation to each other to understand land use decisions. In this way, the model offers greater explanatory power than it would if it accounted for social differentiation based solely on gender.Efforts to integrate gender analyses in models often include attention to 'male' versus 'female' household headship. This information is commonly collected during household surveys and available for use in the model. Yet, while disaggregation by gender of household head has been useful for learning about these different household configurations, it overlooks gender inequalities occurring in households with two (or more) spouses, and the experiences of women in these households who typically have different strategic interests, livelihoods, and constraints than their male counterparts (Chant 2004).In their seminal study on women's adoption of agricultural innovations in Ghana, Morris and Doss (1999) problematize research designs that survey only female-headed households because these engage with only a small sample of women, leaving behind those who live and work in dual-headed households (often referred to as 'male headed') and are the vast majority of women farmers. In their study on of bananarelated disease management practices in Uganda, Kikulwe et al. (2017, p. 88) criticize the use of the household head sex to investigate gender because it ignores that \"men and women within the same household cultivate and own crops either independently or jointly\". The authors interview men and women from dual headed households to understand gendered adoption preferences and constraints for banana Xanthomonas wilt (BXW) control technologies. Results show that women tend to have lower adoption rates than men because of a lack of access to physical and financial assets. For example, the adoption of banana tissue culture cloned from disease-free banana plantations was more frequent in men owned banana plantations because of the high cost of acquiring this technology.A focus on 'female-headed households' as a homogeneous group is also misleading because it tends to conflate different types of households, including those wherein women are widowed, divorced or separated, and those wherein a spouse is temporarily or permanently away on migration. Yet, these different realities have distinct implications for household resources and resource allocations as well as decision-making. Hence, Mudhara et al. (2002), in their study of technology adoption, consider households to be divided into 'male-headed,' de facto 'female-headed' (where the 'male head' is not residing on the farm), and de jure 'female-headed' (formally identified as female headed as per land ownership and inheritance laws). They further differentiate female-headed households by marital status: married women, single women, widows or siblings of absent male household heads, who will experience different levels of power and control over resources according to the higher or lower status assigned to their position by local norms and rules. In their gender-sensitive model, Mudhara et al. (2002) include several variables for labor (e.g. who is employed in plowing, planting, weeding and harvesting, and who has command and control of the necessary labor), account for gendered cash constraints, and land area availability to simulate the effects of the introduction of a new crop.A model's descriptive or predictive ability depends on the quality of the data used to populate it. Gender-responsive sampling and data collection are thus important considerations when developing and populating a conceptually gender-sensitive model. Questions around who to include as participants in data collection to ensure representativeness of respondents are primordial. Doss (2014) explains principles of sex-disaggregated quantitative data collection that also apply to modeling activities relying on empirical data. Moreover, surveys, interviews and/or participatory approaches to data collection will need to overcome constraints that may preclude the full engagement of both women and men research participants. Elias (2015) explores gender-responsive strategies for data collection, which range from identifying suitable places and times to engage with women participants, to using gender-responsive language, and facilitating discussions in inclusive ways. Indeed, the ways questions are framed in data collection instruments will influence data quality.For instance, Caldwell et al.'s (2007) model of China's CO2 sequestration potential is based on a GIS-based integrated assessment approach that brings together five models for carbon sequestration, crop income, timber income, carbon credits, and Grain for Green (a national reforestation program that pays farmers for converting fields into forest). A complementary household survey module to assess the program's impact on different gender and ethnic groups is included, with gender-specific questions on changes in labor burdens and workloads resulting from the implementation of the Grain for Green program. Although the questionnaire includes important questions for conducting gender analyses, 92% of the survey respondents were male. Moreover, the authors note that the survey was difficult to read and understand, which may have further biased the results, as women in the area generally had less formal education (which also contributed to lower survey completion rates by women than men). Inclusive sampling schemes and data collection instruments designed with due consideration for respondents' capacities, and settings and interactions that put socially diverse participants at ease, are needed to gather data that will populate gender-responsive models.Finally, a gender lens is required when interpreting and utilizing model outputs. Even biophysical models, which may not explicitly include gender, may generate outputs on phenomena that carry gender implications. Hence, additional gender analyses may be required to supplement biophysical outputs in order to draw gender-relevant implications. For example, outputs from a model predicting changes in soil carbon as a result of increased use of inorganic fertilizer should be understood within the context of gendered soil management processes. This means recognizing that women and men from differentiated social groups (e.g. richer or poorer) will have unequal capacities to access and apply inorganic fertilizer, and that they may be impacted differently from changes in the concentration of soil carbon (Zhang et al. 2019). For other models that already explicitly include gender, the interpretation needs care. Either way, interpretations will require a solid understanding of gender relations, which may be acquired through the literature as well as through complementary data collected using methodologies that can provide rich insight into historically rooted, place-specific social relations (see, for instance, guidelines on integrating gender into biophysical research prepared by the CGIAR Research Program on Dryland Systems, 2015).Gender integration in mathematical models focused on agriculture and NRM is important for research and practice to be more responsive to the realities and strategic interests of all those who the work is intended to benefit-both women and men from socially differentiated groups. Doing this requires asking the right questions about gender and conducting gender analyses to reveal the gender-specific experiences, constraints, and opportunities of women and men. For example, this means considering how gender relations shape access to resources and assets, time and mobility, interests and preferences, and ability to have voice and influence in decisionmaking processes. Neither women nor men are homogeneous groups, and attention to how gender intersects with other social factors, such as age or stage in the life cycle, socio-economic status, ethnicity or caste, among others, is needed for informed analyses. Ensuring adequate sampling and engagement with different social groups in data collection are critical for gender integration, as is an informed interpretation of model outputs. This brief has sought to provide a starting point towards this integration to support the development of equitable innovations, and contribute to efforts to enhance gender equality and social inclusion through agriculture and NRM.","tokenCount":"2839"} \ No newline at end of file diff --git a/data/part_1/1103662030.json b/data/part_1/1103662030.json new file mode 100644 index 0000000000000000000000000000000000000000..2d8e06f05eac6024a5691aedda71bdf3f6e3dcf3 --- /dev/null +++ b/data/part_1/1103662030.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"6e15e5fe1f1eaec0319c649daef407c0","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/81e6e8b5-f40c-4f17-8864-c7973954a6f8/retrieve","id":"604184184"},"keywords":[],"sieverID":"1197beaa-d955-4f08-b0af-0e48d101ddc8","pagecount":"1","content":"The CSA Papers aim to generate critical insights into five key areas of CSA based on unpublished scientific information.n Contributors of Papers will participate in a writeshop, be provided honoraria, and be eligible for travel grants to showcase their work.The Climate-Smart Agriculture Papers ('CSA Papers') will support the documentation and sharing of lessons from unpublished or on-going research and development interventions relating to climate-smart agriculture (CSA) broadly, with emphasis on experiences in Eastern and Southern Africa. While there is a significant body of knowledge available on technologies, varieties, models, and institutional arrangements relevant for agricultural development, there is much less information that specifically address the three objectives of CSA. This project will support scientists and development actors to finalize and release data, to create new knowledge on CSA and get the information in front of development actors.This project will create a think tank-type of atmosphere, where thought leaders come together with ideas and data to answer key questions on the following five topic areas: The CSA Papers will convene a write-shop, offer honorariums to authors and reviewers, and support travel grants for select participants to present their papers.This project will produce an open-source book, with 6-8 chapters on each of the five topics. Additionally, a selection of the papers will be presented in relevant scientific and development meetings. The initiative will help form a cadre of thought leaders that can help take CSA to the next level of implementation. ","tokenCount":"239"} \ No newline at end of file diff --git a/data/part_1/1104143114.json b/data/part_1/1104143114.json new file mode 100644 index 0000000000000000000000000000000000000000..9b7f4c5eaf170a72235b22a3a14c4f900f81d2d5 --- /dev/null +++ b/data/part_1/1104143114.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"711209a417d5c04520027cedfc2c1f70","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/7709cab1-00a8-4b14-b42d-c4d0f9ad43a6/content","id":"564120756"},"keywords":["plant breeding","GWAS","spatial analysis","abiotic stress","early testcross"],"sieverID":"2995e598-a1be-45a8-baa5-694f519aa2a1","pagecount":"19","content":"Introgressing Drought Tolerance From Landraces under drought conditions. Our results indicate that the positive diversity delivered by landraces are still present on the backcrosses and this is a potential breeding strategy for improving maize for drought tolerance and for trait introgression bringing new superior allelic diversity from landraces to breeding populations.Current climate change models predict an increased frequency and intensity of drought for much of the developing world within the next 30 years. These events will negatively affect maize yields, potentially leading to economic and social instability in many smallholder farming communities. Knowledge about the genetic resources available for traits related to drought tolerance has great importance in developing breeding program strategies. The aim of this research was to study a maize landrace introgression panel to identify chromosomal regions associated with a drought tolerance index. For that, we performed Genome-Wide Association Study (GWAS) on 1326 landrace progenies developed by the CIMMYT Genetic Resources Program, originating from 20 landraces populations collected in arid regions. Phenotypic data were obtained from early testcross trials conducted in three sites and two contrasting irrigation environments, full irrigation (well-watered) and reduced irrigation (drought). The populations were genotyped using the DArTSeq R platform, and a final set of 5,695 SNPs markers was used. The genotypic values were estimated using spatial adjustment in a two-stage analysis. First, we performed the individual analysis for each site/irrigation treatment combination. The best linear unbiased estimates (BLUEs) were used to calculate the Harmonic Mean of Relative Performance (HMRP) as a drought tolerance index for each testcross. The second stage was a joint analysis, which was performed using the HMRP to obtain the best linear unbiased predictions (BLUPs) of the index for each genotype. Then, GWAS was performed to determine the marker-index associations and the marker-Grain Yield (GY) associations for the two irrigation treatments. We detected two significant markers associated with the drought-tolerance index, four associated with GY in drought condition, and other four associated with GY in irrigated conditions each. Although each of these markers explained less than 0.1% of the phenotypic variation for the index and GY, we found two genes likely related to the plant response to drought stress. For these markers, alleles from landraces provide a slightly higher yieldMaize is a major crop cultivated in many regions of the world and is one of the most important cereals for food production, occupying around 193 million hectares in 2018 (Faostat, 2018). That corresponds to about 15% of the total area in agricultural use. Globally, the majority of maize hectares planted are in subtropical and tropical regions including many parts of Latin America, Africa, and Asia (Faostat, 2018). Millions of smallholders and subsistence farming communities in these regions rely on maize as a major source of calories as well as income to pay for basic needs and schooling for their children. For optimal yields, maize demands a large amount of water; therefore, drought events at key junctures in the growing cycle can cause significant losses in grain yield and year-to-year yield fluctuations (Harrison et al., 2014). This yield instability creates great financial incertitude in the farming communities of developing countries where maize is important. Unfortunately, most climate change forecast models concur that an increase in the frequency and intensity of drought events is occurring and will continue to occur throughout the 21st century in many global regions (IPCC, 2007(IPCC, , 2014;;Dai, 2013;Hoegh-Guldberg et al., 2018;Lu et al., 2019;Spinoni et al., 2020). These data suggest that if maize varieties with novel sources of drought tolerance are not soon developed, smallholder and subsistence farmers in many parts of the world will become even more vulnerable to yield fluctuations and the financial insecurity that entails. Fortunately, maize is a species with immense genetic variability and breeding for drought tolerance is an essential tool for overcoming the effects of climate change in maize production (Fisher et al., 2015). This genetic diversity has largely been collected in the world's germplasm banks and is additionally evident in the fields of many smallholder farmers that still plant landrace populations (Sanchez et al., 2000;Prasanna, 2012;Arteaga et al., 2016). In this context, the more than 25,000 maize landrace accessions maintained in the germplasm bank of the International Maize and Wheat Improvement Center (Spanish acronym, CIMMYT) are a tremendous resource for identifying novel resistance and developing new cultivars better able to maintain grain production in water-limited conditions. The reality, however, is that maize breeders in the private and public sector have for many years not used as new sources of variation the landrace accessions held in germplasm banks. This is mostly due to such factors as linkage drag, adaptation issues, poor agronomic characteristics and low yield potential (Goodman, 1985;Goodman et al., 2014). For that reason, in 2011 CIMMYT initiated the Seeds of Discovery project (SeeD), one of the components of MasAgro initiative, which has been largely funded by the Mexican government. The objective of SeeD called later MasAgro Biodiversidad, is to mine the unexplored allelic variation in the maize germplasm bank for important abiotic and biotic pressure as well as nutritional and end-use characteristics.Under abiotic stress conditions, tolerance is the ability of the plant and its yield component traits to maintain grain production during an extended period under that stress (Schafer, 1971;Miti et al., 2010). Between stand establishment and physiological maturity, maize has two periods in the growth cycle when the crop is most vulnerable to yield loss due to drought conditions: (i) from the late vegetative growth stage through to the end of flowering and (ii) during the grain filling period (Sayadi Maazou et al., 2016). Of these two, the flowering stress is considered the more devastating because of the greatly increased anthesis-silk interval (ASI) that can be provoked by drought conditions (Bolaños and Edmeades, 1996). ASI measures the number of days from when anthesis occurs to when receptive silks (stigmas) emerge. In non-stressed conditions, the maize male inflorescence typically begins releasing pollen one to two days before silk emergence and releases pollen for 4-7 days, existing a considerable variability in this period across genotypes (Hall et al., 1982;Struik and Makonnen, 1992;Uribelarrea et al., 2002). However, under drought stress the interval between anthesis and silk emergence can be greatly increased resulting in significantly reduced yield because a reduced amount viable pollen is available when the silks finally do emerge. In more extreme drought conditions, silks may emerge too late to receive pollen or may not emerge at all resulting in barren plants and no grain production. Because of this vulnerability, ASI is one of the most studied traits in maize, and it has been used as a secondary trait for indirect selection for grain yield and drought tolerance (Bolaños and Edmeades, 1996;Xue et al., 2013). CIMMYT has conducted long-term recurrent selection breeding in two populations for drought tolerance focused on decreasing ASI and maintaining grain yield under drought stress (Bänziger et al., 2000). These two populations, La Posta Sequía (LPS) formed in the mid-1980s, and Drought Tolerant Population (DTP) formed in the early 1990s have now gone through recurrent selection for 7 and 9 cycles, respectively. In total, fifteen official CIMMYT maize inbred lines (CML) and several open-pollinated varieties (OPV) have been derived and released from the various cycles of LPS and DTP. These CML and OPV have been used extensively in east Africa, South Asia and Latin America and are adapted to either highland, mid-altitude subtropical or lowland tropical environments. While this breeding project was successful in developing new sources of elite drought tolerant material, the LPS and DTP source material represents only a fraction of the overall diversity in the CIMMYT germplasm bank. Much more of this diversity needs to be explored, using the latest techniques to unravel the genetic control of drought tolerance in maize. And FIGURE 1 | Scheme of the plant material formation showing the populations, the crosses, and the testcrosses. CML 376 is the maize line used as recurrent parental. The X means a cross. BC represents the backcross between the F1s and the CML 376. BC1F1 is the population resulted from the backcross, BC1S1 is the result of BC1F1 self-pollination, likewise, BC1S2 is the population resulted from BC1S1 self-pollination. The ⊗ means a self-pollination. TC1 and TC2 are the two testcross trials carried as field experiments. IPs is Individual Plants of the BC1F1 and BC1S2 that were crossed with the tester(s). T1, T2, and T3 are the three tester genotypes. The yellow G means that the population was genotyped, and P means that the field trials were phenotyped. The number in the lower left corner of the boxes is the number of genotypes, or populations in the case of Landraces and F1. The \"Selection\" on a dashed line means that we used the results of TC1 to select the superior BC1S1 genotypes, this process selected the 174 superior genotypes among the 1326 existing in BC1S1, the selected genotypes formed the BC1S2.while ASI remains a trait of importance in developing drought tolerant maize, a plant's response to drought stress is based on physiological and morphological modifications that involve a complex number of genes and molecular pathways (Rengel et al., 2012;Min et al., 2016). By better comprehension, the genetics underlying drought tolerance, and by accessing more of the genetic diversity available for this trait, breeding programs working on this trait will improve selection precision and the speed of breeding cycles.In order to understand both the genetic diversity of a specie and the complex genetic factors controlling response to abiotic stress, molecular markers are an important tool for geneticists and breeders (Xu et al., 2017). Methodologies such as genome-wide association studies (GWAS) seek to relate molecular markers to observed phenotypes and thus discover the chromosomal regions associated with the trait of interest. In maize, this procedure has been used for many different traits, both abiotic and biotic (Xiao et al., 2017). In others important cultivated plants, GWAS has been used in studies on millet (Jaiswal et al., 2019), common beans (Fritsche-Neto et al., 2019), rice (Huang et al., 2010), soybeans (Hwang et al., 2014). In a review on the use of GWAS in maize, Xiao et al. (2017) showed that most studies use a panel of inbred lines with per se phenotypic data or, seldomly, testcross hybrids. For crops such as maize where hybrids are used to exploit heterosis, the testcross is an important strategy in research for the development of improved hybrids, as it represents the real genotypic constitution of the crop grown by farmers. Additionally, early generation testing (EGT) of semi-inbred lines as testcrosses is a common strategy used in maize breeding programs, being a cross between a tester inbred or F 1 with a S 2 or S 3 experimental line. The aim is to take advantage of early selection for yield potential, avoiding future testing costs on unpromising families (Bernardo, 2010). EGT takes advantage of the fact that yield potential can be identified early in the inbreeding process and shortens the time to line release because the inbreeding and testing process can be done in tandem instead of sequentially. Early testcross populations to date have not been commonly used in GWAS studies. Therefore, this study aims to identify genomic regions related to drought tolerance in two sequential inbreeding generations of early testcrosses obtained between landrace-derived semi-inbred lines and elite testers. The main reason to use landraces is to bring novel positive alleles to a breeding population, we intend to do that combining some breeding, genetics, and analytics techniques, as back-cross, early-testcross, GWAS, selection index and mixed models.Before the evaluations discussed in this study, 326 landraces of subtropical adaptation were evaluated in per se drought trials over 2 years (data not shown, see https://seedsofdiscovery. org/catalogue/maize-drought-tolerant-landraces/ for more details). Subtropical adapted maize landraces are from areas between 800 and 1800 m above sea level (Edmeades et al., 2017). The 326 were selected from the CIMMYT International Germplasm Bank and the Mexican National Maize Collection collected and managed by Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias (INIFAP) using an aridity index described in Ruiz Corral et al. (2013). The rank of allele frequency of superior alleles considering the 10 significant SNPs (General) and the 4 SNPs with superior allele originated from landraces (Landrace origin), 1 is the first position, i.e., with the highest frequency and 20 the last, with the lowest. Highlighted the top five landraces for each rank of superior alleles frequency.They originated from dryland production areas, with 290 (89%) coming from Mexico and the rest from Argentina and Chile. At least 24 different maize races were represented in the selected set of accessions, however, 17% of them were not racially classified. Although latitude also plays an important role in adaptation, we did not consider latitude in the selection of the landraces as drought evaluations in Mexico are conducted during the winter dry season and much of the photoperiod sensitivity that could potentially be provoked by a change in latitude is negated. Based on the results of the per se evaluations, the 20 highest performing accessions were used to develop semi-inbred lines by the SeeD maize breeding project in the Genetic Resources Program of CIMMYT.In deriving inbred lines from maize landraces, crossing to an elite line is a common practice to avoid severe inbreeding depression and to add favorable alleles for important agronomic traits (Tarter et al., 2004;Meseka et al., 2015;Navarro et al., 2017). In this case, the 20 selected landraces were crossed with the elite CIMMYT line CML376 to generate 20 segregating F1 populations (Figure 1). The F1 populations were then crossed again to CML376 (backcross) and ears were harvested and shelled individually creating 1480 BC1F1 lines with an average of 74 lines per landrace population and each line averaging 25% landrace genome. In the following cycle, individual plants were selfed to produce BC1S1 lines and at the same time the plant was crossed to the F1 tester CML264/CML311 (hybrid produced by crossing CML264 and CML311) to produce testcross seed for yield trial evaluations (TC1) in the winter of 2015-2016. This tester was selected because it is a commonly used subtropical tester in Mexico and has the advantage of producing large quantities of testcross seed. Based on their TC1 yield performance under drought and well-watered conditions, 68 entries were selected for further testing (Table 1). The BC1S1 lines had been selfed in a nursery while the yield trials were conducted but only 64 of them produced harvestable BC1S2 ears. Two to three ears per BC1S1 line were harvested for a total of 174 BC1S2 ears. In the summer, these 174 BC1S2 lines were crossed to 3 testers for TC2 trials in The accuracy (Acc%), coefficients of genetic (CVg), and error (CVe) variation and heritability are also presented. ns, not significant; + p < 0.2; *p < 0.05; **p < 0.01; ***p < 0.001.the winter of 2016-2017. The testers used were the TC1 tester, CML264/CML311, plus CML373 and CL501801.From the 1480 BC1F1 individual plants selfed and crossed to the tester CML264/CML311, 1326 produced sufficient seed quantities of both selfed seed and testcross seed. Six check hybrids were added, so the TC1 experiment had a total of 1332 entries. The TC1 was carried out at three locations: the INIFAP experiment station at Santiago del Ixcuintla (SI) -Nayarit State, the CIMMYT experiment station at Tlaltizapán (TL) -Morelos State and the INIFAP station at Los Mochis (LM) -Sinaloa State. In each location there were two treatments, drought (DR) and well-watered (WW). A sparse phenotyping arrangement of genotypes in location was used due to restrictions on field space and seed amount, but the landraces ancestry was balanced in each location. That means, we did not test the entire set of 1332 genotypes in all locations, using so an unbalanced distribution of genotypes across location. The distribution of the testcross entries was: 266 tested only in TL (∼13 progenies of each 20 landraces), 266 tested only in LM (∼13 of each 20 landraces), 265 tested in TL and LM (∼13 of each 20 landraces), 529 tested in the 3 locations (∼26 of each 20 landraces). Thus, the TC1 experiment consisted of 6 combinations of location and treatment (3 locations and 2 irrigation treatments). The experiment was designed in a way that each location contains three plots of the tested germplasm in that specific location, one plot in irrigated condition and two plots in drought condition. The irrigated (WW) treatments were planted in a modified augmented design with systematically distributed spatial check plots arranged in a chess knight move, the field implementation of this design were based mainly on the studies of Cullis et al. (1998); Muller et al. (2010), and Clarke and Stefanova (2011). The percentage of checks ranged from 11.7% in LM, 13.7% in TL, and 20.4% in SI. The DR treatments were conducted in a randomized complete block design with two replicates, except in Santiago del Ixcuintla, where even the DR experiment was conducted as the WW experiments. The checks included in the trial were classified into three different categories: (i) the genetic check consisting of the recurrent parent crossed to the tester, CML264/CML311//CML376; (ii) the comparative checks consisting of the commercially sold hybrid CML264/CML311//CL106951 and the CIMMYT standard check for drought evaluations, LPSC7-F64/CML550; (iii) and finally, the spatial checks, hybrids CEBU, P3055W, and P4082W. The TC1 trials were planted on January 14, 20, and 30 of 2016 at TL, SI, and LM, respectively. Harvest dates for the trial, in the same order, were June 4, 10, and 27. Winter planting dates were chosen because this is the dry season for much of Mexico, especially the western half of the country. Using drip irrigation in all the sites, we were able manage the amount of water delivered to each treatment. In all locations we used a tworow plot, in TL and SI were 4.5 m long with 0.75 m between the rows, and in LM, 4 m rows spaced by 1 m. The agronomic treatments (fertilizers, insecticides, and herbicides) were applied following common local practices. The irrigation in the drought treatments was interrupted 3 weeks before the expected anthesis date at each location, and after flowering terminated one more irrigation was done to ensure the grain filling. The plots were harvested by hand, the ears threshed by machine, the weight and moisture grain of each plot were taken, and the plot grain production was adjusted to 13% of grain moisture and converted to 1000 kg per hectare (Mg.ha −1 ), considering the differences in plots size at each site.The TC2 trials followed a similar protocol. The set of 174 BC1S2 lines selected using the TC1 data were tested in 18 location × treatment × tester combinations (3 locations, 2 irrigation treatments, and 3 testers. The 3 locations were TL, LM, and San Juan de Abajo (PV) -Nayarit State, replacing the SI TC1 location, the 2 irrigation treatments were WW and DR, and the 3 testers were the hybrid CML264/CML311 and the lines CML373 and CL501801. All TC2 trials used two-rows plot of 4 m length, with 0.75 m between rows, harvest was accomplished using a Wintersteiger Classic plot combine at TL and PV location, and a New Holland TR 88 2-plot combine at LM, both combines provide measures of the grain weight and grain moisture of each plot. The agronomic treatments and water supply were managed the same as for the TC1 trials.We used DArTseq technology (Sansaloni et al., 2011), developed by Diversity Array Technology company, 1 for genotyping all the 1326 BC1S1 and 174 BC1S2 lines and the recurrent parent CML376. The genotyping was carried out in the Genetic Analysis Service for Agriculture (Spanish acronym, SAGA) facility at CIMMYT, Mexico. A bulk of 10 seeds of each BC1S1 and BC1S2 line was sampled. A genomic representation was generated by digesting nuclear DNA with a combination of two restriction enzymes, PstI (CTGCAG) and NspI (CATG), and ligating individual barcodes adapters to identify the origin of each fragment after a samples pooling. Successfully amplified fragments were sequenced using the sequencer Illumina HiSeq2500 (Illumina Inc., San Diego, CA). Then, the SNP calling for those fragments was produced by the DArTsoft analytical pipeline (DArTsoft; DArT P/L, Australia 2 ) where the markers were identify de novo by comparing the sequences of fragments present in genomic libraries of samples previously processed, this process identifies and calls SNP markers against an existing library and it is totally independently of any reference genome. After this process, a set of filtering parameters were then applied to select highquality markers for this study. To obtain markers positions on the chromosomes, the DNA fragment sequences were BLASTed against the Zea mays L. reference genome (B73 RefGen_v4).2 https://www.diversityarrays.com/ This procedure resulted in a genomic profile of 47,047 SNPs. Of this total, the markers of uncertain mapping or nonnuclear were still discarded, resulting in a profile of 32,592 SNPs with excellent quality that were positioned on the maize reference genome. The 32,592 SNPs were named, for this study, by their order in the genome from M1 (the first mark in chromosome number 1) to M32592 (the last marker in chromosome number 10). A final quality control procedure was applied, and markers with minor allele frequency (MAF) <5% were excluded and a call rate ≥95% used. Thus, markers with more than 5% of missing data were excluded. The imputation of missing data was performed by the Wright method carried out using the R package snpReady (Granato and Fritsche-Neto, 2018) using the function raw.data, and resulted in a final total of 5,695 SNPs (Supplementary Table 1). The genome coverage was obtained by calculating the SNP density within a 100 Mb window, that is, the number of SNPs in each 100 Mb DNA segment for all the chromosomes, for this was used the R package rMVP (Yin et al., 2020).For analysis of the phenotypic data, a two-stage process was performed. In the first stage, adjusted yield means of genotypes were obtained by location, and then in the second stage a mixed model was fit jointly considering residual weights estimated in the first stage. The spatial corrections were applied in the first stage, using a first-order autoregressive process (AR1 AR1) to model the covariance structure of error. The spatial modeling approach was chosen due to some factors as the high number of genotypes tested, the augmented design with repeated check plots applied and the large size of the field trial.The WW treatments were designed in a complete spatial model, with no replicates of the test genotypes, and the replicated checks were systematically distributed in the field, so these trials were fitted with the following model in the first stage:where y is the vector of phenotypic data, arranged by Row x Column (plot field position), X is the design matrix of fixed effects; τ is the vector genotypes effects (and tester in the case of TC2 trials), and eventual spatial factors row and columns (as explained below); and e vector of errors e ∼ N 0, Rσ 2 ; R is the covariance matrix of e. The spatial analysis does a decomposition of the e into a vector ζ of spatial correlated effects, and a vector η of spatially independent residuals, in this spatial approach of modeling the residual we assume the error variance as:The var [η] is assumed to be independent (σ 2 I n ), and the var [ζ] is the correlated spatial error, and we assume a firstorder autoregressive, (AR1 AR1) (Gilmour et al., 1997), so the error variance is the sum of them, and we can show it as (Dutkowski et al., 2002):where AR1(ρ col ) and AR1(ρ row ) are the first-order autoregressive correlation matrices for columns and rows. The components σ 2 ζ and σ 2 η are the spatial residual variance and the non-spatial residual variance, respectively, ⊗ is the Kronecker product. The (ρ col ) and (ρ row ) are the autocorrelation parameter for field columns and field rows:The Kronecker product of them results in the symmetric correlation matrix (size n by n, where n is the number of plots) that captures the correlation between each pair of plots.Where cor 1,2 is the correlation between the plot 1 and plot 2, and η is the number of plots. Therefore, as said before, the final error variance structure for the first stage models is the sum of the correlated spatial error and the spatial independent error:The DR treatments follow the same logic for the error variance structure. The difference between the analysis of WW treatments and DR treatments is in the fixed section of the model, in the drought management there were replicates, so the factor replicate was added as fixed effects. Therefore, the model is similar, but X also contains the block design, and the vector τ also contains the fixed effects of replicates.This analysis provides a variogram plot of the residuals that shows in a geographic form any spatial pattern that may be a result of systematic variation due to the row and columns effects. Depending on the variogram of each trial, the row and column may be included as a fixed effect factor (Burgueño et al., 2000). The Wald test was used to verify the significance of adding this fixed effect in the model. And when significant they were retained in the model.Once all the individual trials were fitted to its specific model, we obtained the genotypes adjusted means (BLUE) of each location and irrigation treatment irrigation treatment.With the adjusted mean of each genotype in each combination of location and irrigation treatment irrigation treatment, we applied the Harmonic Mean of Relative Performance Index (HMRP) as a measure of genotype drought tolerance in each location. This index, proposed by Resende (2004), allows selection of genotypes that had good performance in both contrasting environments, in our case, in the drought and well-watered fields. The following equation is used to calculate the HMRP index:where HMRP ij is the harmonic mean relative performance of genotype i in site j; GYww ij is the BLUE of grain yield under well-irrigation treatment of genotype i in the site j; GYdr ij is the BLUE mean of grain yield in the drought condition of genotype i in site j; ȳww j and ȳdr j are the overall BLUE means of the well-watered and drought condition experiments, respectively, in site j.For the joint analysis (second stage), we used a linear mixed model to compute the best linear unbiased predictions (BLUPs) of the HMRP, grain yield in drought (GYDR) and well-watered (GYWW) conditions for each genotype fitting the following model:where y is the vector of BLUEs obtained in the first stage; β is the vector of fixed effects of site, g is the vector of the genotypic values of the lines, i is the vector of the random effects of the interaction sites by genotype, e is the random errors vector. X, Z, and W are the design matrix for β, g, and i. The weighting method was based on squared standard errors from stage one BLUES. As the weight of HMRP, we used the mean of squared standard errors of the well-watered and drought experiments, as the index use both adjusted means (WW and DR BLUES) as its components. The significance of the fixed effect of location was estimated using Wald statistic, and for the random effects, genotypes, and genotypes x location interaction, by Likelihood Ratio Test (LRT). The broad-sense heritability, for the joint analysis, was estimated as:where σ 2 g is the genotypic variance, σ 2 ge is the variance due to genotype by site interaction, σ 2 e is the residual variance, l is the number of sites, 3, in this study and r is the number of replicates. All the phenotypic analyses were performed using the ASReml-R v.3 package (Butler, 2009) in R, version 3.5.3 (R Core Team, 2019). In the Supplementary Material you can find R codes and some comments on how these analyses were carried out.Genome-wide association analysis based on Mixed Linear Model (MLM) was performed using the Fixed and Random Model Circulating Probability Unification in the R package FARMCPU (Liu et al., 2016) for three traits: grain yield in drought and well-watered conditions and the drought tolerance index (HMRP). Principal Component Analysis was done using genomic information to assess population structure. The genome-wide association model (MLM equation) used was:where g is the vector of adjusted phenotypic observation (BLUPs of HMRP obtained in the joint analysis presented above, or GYDR and GYWW); β is the vector of the fixed effects of intercept, single markers, and the three first principal components used for population structure control; u is the vector of random additive effects; e is the vector of random residual; the X is the design matrix of fixed effects; Z is the genotype incidence matrix driven by VanRaden's genomic relationship matrix (GRM) (VanRaden, 2008), so u∼N(0,G), where G is the VanRaden's GRM. A Multiple-test threshold adjustment was performed by a permutation method to determine the SNP significance level. This procedure was carried out in FARMCPU using the FarmCPU.P.Threshold function. The same GWAS process was done with the BC1S1 and BC1S2 populations, using the phenotypic data from TC1 and TC2, respectively.The linkage disequilibrium for the BC1S1 data was measured by the r 2 parameter (square of the correlation coefficient between two loci), using Synbreed R package (Wimmer et al., 2012). The LD decay pattern for each chromosome was evaluated by nonlinear regression fitting expectation of r 2 of each pair of markers with the distance between them to generate a curve of LD decay (Hill and Weir, 1988;Remington et al., 2001).Through the MaizeGDB (Portwood et al., 2019) and National Center for Biotechnology Information (NCBI 3 ) databases, a search into maize reference genome (B73 RefGen_v4) was carried out to check the surroundings of GWAS-significant markers. This search was done inside a window of 200k base pairs (bp) TABLE 5 | Significant SNPs for drought-tolerance index and grain yield in drought and well-watered conditions, with the SNP position (chromosome and position), polymorphism (PM) of the SNP (Reference > Alternative), genotype of CML376 (CML) for the given SNP, minor frequency allele, effect of allele substitution, heritability, and r 2 for the GWAS of BC1S1 generation. Peptidyl-prolyl cis-trans isomerase CYP21The most described genes founded in each search and the protein type/family that these most described genes encode. * Finds described in the discussion and detailed in Table 8.centered on the markers, i.e., in a chromosome segment of 100k bp going up and downstream of the markers, we used this window size based on the LD decay obtained to our population and on the maize LD decay reported in the literature. Gene ontology is not thoroughly consistent across platforms, and MaizeGDB notation was chosen as primary. The functional annotation of the genes found inside those windows was analyzed and related to a drought tolerance process.The purpose of using landraces in a breeding program is to bring novel positive alleles to a breeding population. As the recurrent parent CML376 was also genotyped, it was possible to check if favorable alleles in our semi inbred experimental lines are derived from the CML376 or the landraces. The allele frequency of SNPs associated with the traits, and derived from the landraces, was calculated for the entire population, and stratified for each landrace family group. This allowed verifying if specific landrace is a potential donor for the allele of interest.On the other hand, regarding selection, it is also important to know the distribution of the superior allele across the landrace progenies in the breeding population, regardless of its origin, landraces or the elite recurrent parent line. The superior allele is the one that causes a positive variation in the trait of interest. Therefore, we also calculated, for the significant SNPs, the frequency of the alleles with positive effects for each landrace progeny.To evaluate the population in terms of favorable alleles content, the 20 families were ranked by the sum of the ranks of the superior allele frequency for each SNPs. Two rankings were made, one considering all significant SNPs, regardless of the origin of the superior allele, and the other considering only the markers where the superior allele is from landraces. Thus, with the former we assess which landraces could be more suitable for selection and with the latter, which landraces would be the best source of superior new alleles.Validation was performed by two approaches. In the first, we compared the results of GWAS over BC1S1 and BC1S2. In the where ŷ2 is the vector (size n) of estimated genetic values in generation BC1S2, X is the genomic matrix of BC1S2 individuals, with dimension of n by m, where, n is equal to 174, that is, all the genotypes of BC1S2 generation, and m is the significant SNPs found in the BC1S1 GWAS, and finally, α 1 is the vector of allele substitution value for each significant SNP. The prediction ability was measured by Pearson Product-Moment correlation r (ŷ2,y2) where y 2 is the vector of BLUPS of the genotypes in the TC2. This procedure was carried out to the tolerance index and grain yield in both irrigation treatments.Based on the variograms surface trends, specific spatial factors were chosen as fixed effects to better fit the model to each site/irrigation treatment (Table 2). In all the individual trials, the Wald test confirmed the significance of using the spatial factors.progenies and the genetic check (Tester × CML376) distributions of grain yield means (Supplementary Figure 1) and the drought tolerance index (Supplementary Figure 2) show that there are landrace progeny genotypes performing better than the genetic check, which is a desirable situation for selection. Significant differences among genotypes were detected for grain yield under well-watered conditions (Table 3). Under drought and for the index, genetic differences were detected only to a 0.2 p-value threshold, both with a p-value of 0.15 (data not shown).Overall, the heritabilities were low, considering the joint analysis for the drought-tolerance index, GY in drought (GYDR) and well-watered (GYWW) conditions, as expected for such complex traits (Table 3). The heritability of HRMP (0.06) and GYWW (0.04) were lower than for GYDR (0.17). The accuracy was similar for the three traits, with a higher value for GYDR (25.5%).The Harmonic Mean of the Relative Performance index measures drought tolerance. Its values are around 1.0, with higher values being more tolerant genotypes and lower values less tolerant. Regardless of site, the HMRP mean is always close to 1.0 because it is relative to the population in each site (Table 4). The genotypes with higher drought tolerance index values are also those that presented higher yield under both irrigation treatments (Figure 2). In BC1S1, the tolerance index to the location TL presents a higher variance than the other locations, and LM the lower. In contrast, in BC1S2 generation the LM presents a variance higher than TL and PV, and in general, the amplitude of the drought tolerance index was lower in BC1S2 than in BC1S1 (Supplementary Figure 3) what was expected as the genetic diversity was higher in the first generation, before applying selection.The use of principal components (PC) as covariates into the GWAS model was necessary as the population structure might result in a spurious marker-trait association. This necessity was confirmed by comparing the QQ-plots of the GWAS model with no PC as covariates and the QQ-plots of models containing it (QQ-plots not shown). The QQ-plots showed a better adjustment in the models that consider the correction for the first PCs. However, the sum of variance explained by the first three PCs was just 5.58%, distributed by 2.76, 1.44, and, 1.38%, evidence that the population was not very structured. Plotting the first two PCs no clear stratification in the population is noted Supplementary Figure 4), despite that the landraces families exist in the population. Only when considering the third PC is it possible to separate the group of landraces into SNLP166 and CHIH87 progenies. The lack of population structure gives one positive side to the analysis, since there is a lower risk of falsepositive due to a possible structure, which is reduced further with the use of PCs as a covariate in the model.The association results (p-values of the marker-trait association in a Manhattan plot and the quantile-quantile plots) are shown in Figure 3 for BC1S1 and in Figure 4 for BC1S2. The quantile-quantile plots (QQ-plot) is a plot of the negative log observed p-values against the distribution of expected p-values, i.e., under the null hypothesis, that there is no association between the SNP and the trait. This is a simple tool to check how well the chosen GWAS model absorbed the population structure (covariates in the model). The dots on the upper right section of the graph are the SNPs with some association with HMRP. We expected that most markers would not be associated with the trait. Looking at the QQ-plot, most markers have a p-value observed close to the expected null hypothesis, which can be verified by the line-shaped markers' p-values that are aligned to the red line (observed equals the expected).Regarding the BC1S1 results, the thresholds calculated from the permutation (8.78 × 10 −6 for HMRP, 1.13 × 10 −5 for GY in DR, and 1.28 × 10 −5 in WW) were very close to the Bonferroni correction (0.05/N = 9.01 × 10 −6 ) for the three GWAS procedures, considering the logarithmic transformation −log 10 . Two markers associated with HRMP were found (Figure 3A), one on chromosome 1 (M2216) and another on chromosome 4 (M13512). For drought treatment, four associated markers were found (Figure 3B), two on chromosome 1 (M232 and M3547), one on chromosome 3 (M11032), and the last on chromosome 8 (M26036). For the well-watered treatment, four markers were significant (Figure 3C), on chromosomes 1 (M3299), 2 (M7826), and a two on chromosome 7 (M21270 and M22252). The minor allele frequency of these 10 SNPs ranged from 5.20% (M26036) to 31.24% (M7826). The significant SNPs together explain just 0.04% of the drought tolerance index phenotypic variation (r 2 ), and 0.07 and 0.08% of the grain yield phenotypic variation under drought and well-watered treatments (Table 5).The SNP M7826, associated with GYWW, was the only marker (among the ten) that did not have any individual in one of the homozygous classes (Figure 5). The alternative homozygous at M13512 showed a slight increase in the HMRP. In general, the heterozygous class tended to be between the homozygous classes, following a trend of additive substitution effect, except to the SNPs M3547 and M3299, where the heterozygous class had a higher grain yield (in DR and WW, respectively) than the homozygous classes. The SNPs M26036 and M11032, associated with GYDR, suggest a higher GY when homozygous for the alternative allele. Conversely, the SNPs M232 and M3547 showed lower yield when homozygous for the alternative allele. When homozygous for the alternative allele, the SNP M21270 is less productive in well-watered treatments. In contrast, the SNP M22252 shows an opposite direction, higher yields when homozygous to the alternative.The significant markers found using in this research were not stable across traits in the first generation (BC1S1). The two SNPs associated with the drought tolerance index were not associated with grain yield. Likewise, none of the SNPs associated with grain yield were in both irrigation treatments. Furthermore, none of the 10 SNPs found by GWAS in BC1S1-TC1 (Table 5) were significant in the BC1S2-TC2 GWAS (Table 6 and Figure 4). The BC1S2-TC2 GWAS had assigned 3 SNPs for drought tolerance index and 3 for grain yield under drought treatments and 5 for grain yield in well-watered treatments. In the second generation, one SNP was stable across the traits. The SNP M25973 was associated with the drought tolerance index and with the grain yield in both irrigation treatments, although it was not detected in the first generation.The correlation between the predicted values of the BC1S2 estimates based on the effects of allelic substitution of significant SNPs obtained from BC1S1 GWAS, and the observed BLUPs was -0.11 for the drought tolerance index, -0.20 for grain yield under drought treatments and -0.23 under well-watered.Putative genes for drought tolerance were identified by searching the B73 genome in the regions around the ten significant SNPs identified in the analysis (Table 7). The search was performed inside a 100k bp window up and down-stream of the markers. The linkage disequilibrium (LD) decay estimative from the BC1S1 data can be observed by plotting the r 2 against the distance of base pairs (Figure 6), a rapid decay occurs while increasing the chromosome distance between two loci for all the chromosomes. The overall LD decay extent was in a range of 50-300k bp and just for the chromosome number 3 the r 2 does not decrease to less than 0.13 within 100k bp. A more abrupt decrease of the LD was observed in chromosome 8 and, in contrast, a smoother decay was observed in chromosome 3. All the other chromosomes presented a similar decay pattern.The SNP M2216 is 60k bp upstream from a predicted gene that is still not characterized. M13512 is in a region of chromosome 4 that has nine putative protein coding sequences. The closest gene to M232 SNP is located 85k bp upstream from it, and other three putative genes are less than 60k bp away. M3547 SNP is in an intron of a putative gene and there are five more probable genes inside its search window. M11032 is also in an intron of an uncharacterized putative gene, with eight more putative genes around it. The SNP M26036 is in a region with 14 possible genes. M3299 is in an exon of an uncharacterized predicted gene and with two more in its search window. M7826 is 1.5k bp only from a putative gene, and in less than 50k bp there are seven more predicted genes. The SNP M21270 is on a chromosome region with 20 putative genes. Moreover, in the M22252 window, we could find six predicted genes. Clearly, a window of 100k bp can host a large number of genes, and possibly many more than those listed here, as annotation and gene discovery is a work in process.Regarding the allele origin, the frequency of landrace alleles in the BC1S1 lines ranges from 5 to 31%. The SNPs M3547 and M7826 present the highest frequencies for the landrace allele among the ten significant SNPs (Supplementary Figure 5). The favorable allele for four SNPs (M3547, M11032, M26036, and M3299) came from the landraces. Populations originating from the NVOL46, COAH20, COAH21, CHIH87, and COAH78 landraces are those with a higher frequency of the superior allele for these 4 SNPs (Landrace origin rank on Table 1 and Supplementary Figure 5). Regardless of the origin of the superior allele, the five landrace populations that present a higher frequency of superior allele were those obtained from SNLP17, NVOL46, COAH78 CHIH85, and COAH20 (general rank on Table 1 and Supplementary Figure 6). This suggests that these populations have a higher frequency of favorable alleles, being a good source for drought tolerance.All the field trials presented strong spatial (row and columns) trends. Therefore, the spatial modeling used in the first stage analysis was crucial to avoid, or minimize, their effects on the means, mainly in the WW treatments, where augmented design was carried out. Thus, we expected lower heritabilities in these trials (WW) than in the DR treatments, even though drought-stressed trials usually are more affected by field spatial trends (Badu-Apraku et al., 2004), resulting in lower heritability for yield. That was one of the reasons we chose to use two repetitions in the DR treatments, to be able to estimate better the residual variance and to avoid the possible complete loss of genotypes, since under stress the number of missing plots is often higher, which would greatly affect the genetic estimates in case there is only one plot of each genotype. Another reason that would explain the greater heritability in drought than in the irrigated condition may be the fact that a diverse population when tested in a stressful environment may have its individuals better discriminated than if tested in a stress-free environment, that is, genetic diversity may be more evident in the phenotypic response when in a stressful environment, which may be reflected in heritability.As the TC1 used a single tester, the tester by genotype interaction could not be separated from the estimated genotypic value (BLUEs and BLUPs). Thus, the first generation (BC1S1) data are biased by this interaction, which is acceptable since it is not feasible to perform a testcross trial with more than 1,000 genotypes crossed to a group of testers. In the second testing year this was minimized, as with only 174 BC1S2 lines, testcrossing with three testers was possible.Similar values are found when comparing the grain yield means and the drought tolerance index for the BC1 progeny testcrosses and the genetic checks (Tester crossed with CML376). However, the distribution suggests a superior performance for the BC1 progenies for grain yield (Supplementary Figure 1), and for the drought tolerance index (Supplementary Figure 2). It can be inferred that there are novel alleles originating from the landrace donor parent that contribute to drought tolerance and/or a positive interaction between genes from the different sources, landraces or CML.The usage of HMRP and other index based on harmonic mean is recognized for stress tolerance studies (Jafari et al., 2009;de Mendonça et al., 2017;Lyra et al., 2017). The Harmonic Mean Relative Performance was confirmed as a simple and efficient index that allows the selection of lines that perform well in both the DR and WW irrigation treatments, achieving the objective of these \"stressed x not stressed\" trials (Figure 2). Using the HMRP index, the breeder can select the highest performing lines in both treatments or those that perform very well in one and close to the average in the another. Additionally, the breeder can avoid selecting those that underperform in at least one of the treatments. Sites and line by site interaction effects were significant regarding the index (Table 3). Therefore, even if the means across the sites are similar, differential expression of the drought tolerance was identified, and selection based on results by location should be avoided.We believe that the final number of SNPs (5,695) was relatively low considering the start point of 47,074 markers comparing with others maize GWAS published (Xiao et al., 2017), mainly because the strict quality control filters in terms of missing data, however, the markers were widely distributed across the genome, covering all chromosome arms without any large uncovered segment and the low density areas are usually around the centromere region (Figure 7). This good genome coverage is important for this kind of study and considering the good quality of the final set of 5,695 SNPs due the strict quality control process, the relative low number is not a limitation. This number of markers may be due to the genetic mating design of the population. Crossing and backcrossing to a homozygous line (CML376) could dilute allele frequency. It could also be a reason for the restricted population structure (estimated by the PCA), even though the lines originated from 20 different landrace parents, and for the low minor allele frequency (MAF) of the SNPs associated to the traits (Table 5). Another important detail that should be considered is that the germplasm of the reference genome used to obtain markers positions (B73 RefGen_v4) has a temperate origin and certainly presents incongruities with landrace derived materials, however, it is the best reference genome available at that moment. It is important to remember that maize landraces, due to heavy transposon activity and other factors, often contain large amounts of insertions, deletions, and reorganized chromosomes. Perhaps, if a closer genome had been used to position the markers, we may have an even better coverage, however, because our population derived from Landraces crosses would be difficult to get any closer reference genome. The drastic reduction on the final set of markers, from 32,592 to 5,695, occurred during the quality control process; the call rate used was high (95%) to ensure a high-quality set of markers over a large set with many imputations.Many researchers use correlated traits to study drought tolerance such as seedling survival rate under drought (Mao et al., 2015), ear length and kernel number per row (Lu et al., 2006), and one of the most used, Anthesis-Silk Interval (ASI) (Yu, 1994;Bolaños and Edmeades, 1996;Vargas et al., 2006;Wang and Qin, 2017). This is due to the low heritability of grain yield compared with the correlated traits. Xue et al. (2013) using a diversity panel of CIMMYT lines and studying nine traits related to drought tolerance found 42 SNPs associated with those traits, any one of the SNPs listed by the authors was detected by our study as significant for the HRMP index. Setter et al. (2011) in an association mapping study of abscisic acid levels during drought stress in maize found 8 polymorphisms related with drought tolerance. One of those polymorphisms was used for the annotation of the maize gene Zm00001d034385, a validated gene associated with drought tolerance. It is mapped 24M bp from the M3547 SNP in the present study that was associated with GYDR. Although it is on the same chromosome arm (chromosome 1, long arm), it is a considerable long distance away, given a LD decay of ∼100k bp.The LD decay reported in maize varies considerably among populations (Flint-Garcia et al., 2003). In landraces or a highly diverse panel, the LD decay is reported to be smaller than in elite inbred lines, by a magnitude of 1k bp for landraces and ∼500k bp for elite inbred lines (Yan et al., 2009). Additionally, the average LD decay distance in tropical germplasm (∼10k bp) is shorter than in temperate germplasm (∼100k bp) (Lu et al., 2011). The populations used in this study were at the midpoint as the initial subtropical landraces were the donor parent in a backcross where an elite inbred line was the recurrent parent.We focused our search for genes in a window of 100k bp around the 10 trait-associated SNPs. The LD extent for our population (50-300k bp) is in accordance with those observed in the literature. This is the expectation for material that are neither landrace nor elite inbred line, since the former normally has a shorter LD decay than evidenced in our experimental lines and the latter, a larger LD decay (Remington et al., 2001;Flint-Garcia et al., 2003). Except for two cases, our genome search found putative genes that are not completely described. These two cases are SNP M232 that is associated with GYDR and is Chen et al., 2012;Xu et al., 2015;Min et al., 2016 M11032 80.7k bp Zm00001d043929 Fasciclin-like arabinogalactan Johnson et al., 2003;Faik et al., 2006;Finkelstein, 2013;Zang et al., 2015;Wang et al., 2016;Cagnola et al., 2018 The distances between the mark and the putative gene in pair of bases, the putative gene name, the protein encoded type/family and references that studied these proteins with drought stress in plants. located 85k bp close to the gene; and Zm00001d027539 that belongs to the glutathione S-transferase (GST) gene family (GST, EC 2.5. 1.18). This second gene family plays an important role in plant response to environmental conditions (McGonigle et al., 2002) plus some abiotic stresses such as herbicide (Cataneo et al., 2003), heat (Cetinkaya et al., 2014), and drought (Xu et al., 2015;Min et al., 2016). In Arabidopsis, plants with mutated GST gene were more tolerant to drought stress than wild-type plants (Chen et al., 2012). Additionally, there is the predicted gene Zm00001d043929 associated with GYDR in the present study and mapped to ∼80k bp upstream from the M11032 SNP. This gene encodes a protein with a fasciclin-like domain (FAS1), and this domain is found in Fasciclin-like arabinogalactan (FLAs) proteins that are involved in cell adhesion. Also, some FLAs have their expression regulated by the phytohormone abscisic acid (ABA) (Johnson et al., 2003). Both FLAs and ABA play an important role in plant response to stress (Faik et al., 2006;Finkelstein, 2013;Zang et al., 2015). Wang et al. (2016) points out that the participation of FLAs in enhancing cell wall synthesis in response to drought stress, which could minimize water loss and cell dehydration. Reduction of some FLA gene expressions is also associated with kernel abortion in maize (Cagnola et al., 2018) leading to a reduction in kernel number and thus lowering yield.These two findings (Table 8) are promising for further maize breeding studies. In our experimental lines, we detected markers within ∼80k bp of these genes. Thus, fine-mapping and allele variant studies in these specific loci could help to elucidate their role and could be included in a genomic selection set. These two markers (M232 and M11032) could be used in our experimental lines to drive the selection in the next generations and be a basis for further investigations. This is especially so for the M11032 SNP, where the alternative allele originates from the landrace (Figure 5) is the superior one, and the homozygous state for this allele had a slightly higher grain yield in drought treatments. The landraces ARZM12193, CHIH338, CHIH87, COAH19 are not always good sources for the superior allele, since the frequency of M11032 is null in these populations.There were three more significant SNPs (M3547, M26036, and M3299) where the superior allele is from the landraces, which demonstrates new diversity for drought tolerance alleles in the experimental lines. In this context, the landraces NVOL46, COAH20, COAH21, CHIH87, and COAH78 would be the main sources for exploring this diversity since they have a higher frequency of these favorable alleles.For the BC1S1 testcrosses, the lack of significant SNP correlation among the irrigation treatments may be a sign of differential expression of genes under contrasting water environments. For example, Cagnola et al. (2018) demonstrated that drought stress could induce a reduction in FLA gene expressions, which may cause kernel abortion in maize resulting in reduced grain yield. As discussed above, there is a putative gene inside the SNP M11032 window that belongs to this gene family.Likewise, there was no correlation of significant SNPs between the BC1S1 and BC1S2 generations. This is to be expected since selection was made in BC1S1 to generate the BC1S2 we induced a non-random allele frequency change between the generations that can affect the results as the new generation is diverging from the first (Henshall, 2013). Thus, in our study, the use of the BC1S2 generation to validate the GWAS results of BC1S1 generation was not effective.Additionally, the use of allelic substitution effects estimated using the BC1S1 data to predict the phenotype of BC1S2 generation as a validation method was not successful. The correlations between the predicted values and the observed BLUPs were low and negative to the three cases (-0.11 for the drought tolerance index, -0.20 for GYDR treatments and -0.23 for GYWW). The allele frequency also interferes with the average effect of the allele. Therefore, the selection and its incumbent frequency allele changes, also results in allelic effect deviations estimated in BC1S1, which could not be constant through generations of selection. Moreover, the heritabilities were low in BC1S1 (0.04-0.17), and the significant SNPs explain less than 0.1% of phenotypic variation, that is indicative of the complexity of quantitative traits as drought tolerance and grain yield, that reduces the efficiency of using a few SNPs for prediction, even if they are significant. Finally, there is the effect of the tester on the BC1S1 phenotypic data since the interaction tester by landrace progenies could not be estimated in this case. Thus, the allelic substitution effect is biased for this specific testcross and to use it to predict the genotypic values of a second testcross involving another tester may be unfeasible.Early testcross is a strategy to take advantage of early selection for yield and other traits that avoids excessive resource spending on unpromising families, and it can also be applied in a prebreeding program. However, as Bernardo (2010) concludes, the low heritability limits its effectiveness. The GWAS in early generations achieved promising results and was demonstrated to be a useful tool for identifying new genetic variants in our landrace population. Nevertheless, a practical and effective method to validate a GWAS in this situation still needs to be developed.The frequency of allele from landrace over the entire population are the same values of the MAF (Table 5), once the allele from landraces is, as expected, the allele in minor frequency. Landrace origin rank (Table 1 and Supplementary Figure 5) gives the idea of which landraces are the most promising source for positive variants, and it suggests that the landraces NVOL46, COAH20, COAH21, CHIH87, and COAH78 are those that could be used for further investigations regarding new variants, at the same time, the populations originated from them could be more explored by breeders to exploit this new variant superiority.The general rank (Table 1 and Supplementary Figure 6) gives the idea of which landrace populations are the promising to selection regards the combination with adapted elite genitor. This suggests that the SNLP17, NVOL46, COAH78 CHIH85, and COAH20 populations have a higher frequency of favorable alleles and/or their combination, being a good source for drought tolerance.The GWAS analysis was able to identify genomic regions associated with drought tolerance in early generation testcrosses, although they were not stable over generations or irrigation treatments. Two promising putative genes that encode proteins related with the physiological plant response to abiotic stress are located close to the significant SNPs found in this study. Some alleles from the landraces provide a slightly higher yield under drought treatments. These results indicate that the diversity delivered from landraces x elite inbred line backcrosses can play an important role for improving the maize tolerance to drought, and for trait introgression bringing new superior allelic diversity from landraces to breeding populations. As we expected for a complex trait such as drought tolerance, we did not find a unique marker with a large genetic effect, but a handful of regions that can be transferred to advanced and adapted breeding populations using landraces as origin of positive variants.","tokenCount":"9654"} \ No newline at end of file diff --git a/data/part_1/1105782489.json b/data/part_1/1105782489.json new file mode 100644 index 0000000000000000000000000000000000000000..13a3faf6c507ec7299264c49ed77b46d006b87e9 --- /dev/null +++ b/data/part_1/1105782489.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0976f51280a0a6660ce88acfaa3d573f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/3e691b7c-d7a7-4099-9a77-550b2487fe43/retrieve","id":"-2121532911"},"keywords":[],"sieverID":"bc9f6968-c73e-4896-a847-c4edf77765fc","pagecount":"6","content":"CGIAR recognizes the profound role of the food system as both the source and main impact pathway of this crisis -and has mobilized itself to support policymakers, farmers and food system practitioners amongst others make an informed response to both the immediate crisis and transforming the food system as we \"build back better\".In response, CGIAR will 1.) change existing CGIAR Research Programs to support an immediate COVID-19 response; 2.) implement CGIAR Research Programs already highly relevant to COVID-19; 3.) re-orient CGIAR's longer-term research strategy to reflect the 'game-changing' scale of and 4.) strengthen our immediate and longer-term response capability.Before this current crisis the need for change was already clear. Most of the world's population eats too little, too much, or the wrong type or combination of food -at an unsustainable cost to the climate, the environment and human health.The food system is creating and multiplying risks. For example, a new zoonosis -a disease transmitted between animals and people -breaks out on an average of every four months. This is the predictable consequence of the ever-intensifying interactions among humans, animals and the natural world. Zoonotic diseases develop and intensify when human and wildlife interactions increase, often due to habitat loss hand-in-hand with intensified agriculture and food markets. COVID-19 is the latest materialization of this risk. As the pandemic now accelerates in less resilient social and economic contexts, the public health, social and economic impacts of COVID-19 -and measures to slow or stop its spread globally and locally -have undermined incomes and exposed large underlying inequalities. This is morphing into a food security and nutrition crisis, and a clear illustration of the huge costs of the 'externalities' of the food system.The way this crisis will unfold in the medium to longer term is uncertain, but one thing is clear, it presents a unique opportunity to reset the world's food system, to \"build back better\" -to finally implement what has been advocated for some time by CGIAR and many others: a sustainable food systems revolution -as urgent as the agricultural revolution that launched CGIAR, yet exponentially more complex. This was articulated in CGIAR's most recent System Business Plan -whose transformation elements remain valid although with more emphasis needed in the One Health agenda to reduce the risk of a repeat pandemic.Our research response to COVID-19 is addressing four thematic areas to maximize the relevance and utility of support to policymakers and practitioners.¡ Food systems: Improve functioning of the full food supply chain and its enabling environments to secure jobs and livelihoods, and to ensure access to sufficient, safe and nutritious food for all. ¡ One Health: Manage the human, animal and environmental health interface to improve prevention of, detection of, and response to emerging and endemic zoonoses. ¡ Inclusive public programs: For food security and nutrition -implement social protection, agricultural development and other inclusive programs to mitigate food and nutrition insecurity among vulnerable populations. ¡ Policies and investments: Enable more effective cross-sectoral policies and investments linking beneficial environment, economic, social and health outcomes for crisis response, economic recovery and improved future resilience.CGIAR's research response is anchored on three overlapping phases of the COVID-19 pandemic: ¡ Short-term crisis response: Provide immediate evidence and tools for decision-making to support food availability and access, health interventions and public programs, policies and investments at scale. ¡ Medium-term recovery: Support understanding of the impacts of crisis response and adapt policies and programs to reflect initial experiences and consequences for all groups in society. Recovery actions form the basis for addressing longer-term resilience issues. ¡ Long-term resilience: Generate evidence and tools to prevent and manage emerging disease threats and comparable food system shocks and build greater resilience into food, land and water systems. CGIAR must, and will, focus on COVID-19 in delivering its new mission statement, \"Ending hunger by 2030 -through science to transform food, land and water systems in a climate crisis\".As the world's largest global agricultural innovation network, CGIAR is playing a leading role in the global response to COVID-19 -on the immediate response, on the medium-term recover and on the essential long-term resilience-building needed to build back better. CGIAR is deploying its 8,000 scientists and staff in over 100 countries, depth of expertise, +3,000 partnerships and the world's genebanks.CGIAR is providing knowledge, evidence, technologies and methods to help key implementing and policy partners mitigate the pandemic's effects on agriculture and food security. Working closely with national stakeholders, CGIAR is identifying country-specific demands for COVID-19 relevant research, carrying out multidisciplinary research in response to this demand and supporting uptake of evidence-based policy and investment decisions to deliver impacts on the ground. This is set out in a new report entitled Responding to COVID-19. Four key elements underpin our response plan:Three-quarters of all flagships in the CGIAR Research Programs and Platforms adjusted their 2020 budgets to include activities to maximize relevance and utility for governments and other partners in relation to their COVID-19 response. At the same time, 100% of CGIAR research is already relevant to building back better food systems.Among activities to address the new challenges posed by COVID-19, CGIAR is:• Redeploying livestock data analytic capacity to support the development of a COVID-19 vaccine;• Providing online tracker tools on poverty effects and public policy responses to COVID-19's impacts on food systems; • Updating digital tools to include COVID-19 market information for small businesses; • Monitoring the effectiveness of nutrition programs during the pandemic.Two-thirds of the 2020 CGIAR Research Portfolio address two or more near-term COVID-19relevant themes (e.g. food production, trade and markets, human and animal health, pro-poor policies), while 100% of the portfolio aims to deliver on long-term resilience of food, land and water systems. Collectively, CGIAR is making available its latest research and analysis on COVID-19 to support informed decisions. Integrated support is being provided on-demand to governments seeking to improve their food system responses and social protection programs. Ongoing efforts draw on the four research pillars outlined above: food systems; One Health; inclusive public programs for food and nutritional security; and pro-poor policies and investments.• In a number of countries, including Ethiopia, CGIAR is using economic models to is assess the economic and food security impacts of COVID-19; • In Bangladesh, CGIAR is working with local partners to monitor supplies and prices of food, labor and inputs, and to advise on appropriate policies, with an emphasis on mitigating COVID-19 impacts on the most vulnerable members of society;• ILRI Nairobi laboratory temporarily re-purposed to process human COVID-19 tests for the Kenyan Ministry of Health.Re-orient CGIAR's longer-term research strategy to reflect the 'game-changing' scale of COVID-19CGIAR's new research strategy, covering our work up to 2030 and for approval this year, will fully reflect the scale and substance of COVID-19 in the context of CGIAR's new mission to transform food, land and water systems. This is likely to include placing sharper focus on building greater resilience into food, land and water systems; and more emphasis on the One Health agenda in the form of generating evidence and tools to prevent and respond both to emerging disease threats and to comparable shocks. The aim to 'build back better' -not return to business as usual following the COVID-19 crisis -is a priority for a united CGIAR in its efforts to transform food systems to meet global goals on food security, sustainable development and climate change.","tokenCount":"1215"} \ No newline at end of file diff --git a/data/part_1/1130290981.json b/data/part_1/1130290981.json new file mode 100644 index 0000000000000000000000000000000000000000..8c661ce3855e341c3c5a791cb54a799d21c24384 --- /dev/null +++ b/data/part_1/1130290981.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"04454d231b92de0d1bc352f91d3f76b4","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c1a1bd4d-5426-4205-ba4b-dbdf5d80d5b6/content","id":"-1648900688"},"keywords":[],"sieverID":"2b4b7981-fb5f-420b-ad78-08a0dd60c160","pagecount":"13","content":"A functional and granular spatial yield forecasting system is demonstrated.• Spatial-temporal variability of soil, weather, and management was considered.• Combination of crop modeling with statistical approach insured good performance.• Forecast captured the mean yield at the sub-regional level.• Forecast uncertainty decreased as the growing season progressed.Seasonal climate variability determines crop productivity in Ethiopia, where rainfed smallholder farming systems dominate in the agriculture production. The highly variable nature of the climate in the country, particularly rainfall and temperature changes, increased frequency, and magnitude of droughts (Korecha and Barnston, 2007;Tesfaye et al., 2015a) poses many challenges for farmers and agricultural communities. Under such conditions, farmers, agricultural experts, and policy makers are lacking the information on the likelihood of achieving the optimal crop production level and making decisions. In such circumstances, reliable and timely issued crop yield forecast can play a vital role for pre-season and in-season planning of crop production. Therefore, forecasts must have a reasonable lead-time and accuracy, which is required for operational preparation and then implementation of suitable strategies (Troccoli,et al., 2008).Nowadays, state-of-the-art seasonal climate forecasts are providing relatively accurate, location and time specific products and can be linked to various systems, including process-oriented crop simulation models (Cabrera et al., 2009;Jones et al., 2000;Basso and Liu, 2019). Liu and Basso (2020) developed a new method to forecast maize yield across smallholder farmers' fields by integrating field-based survey with a crop simulation model. The yield forecasting algorithm used historical weather to select years in which temperature and precipitation matched the reported in-season temperature and precipitation characteristics. Years were then categorized as colder, normal, and hotter than normal. They were also grouped into drier than normal, normal, and wetter than normal categories. The algorithm then selected weather series where the temperature and precipitation categories matched with the reported inseason weather characteristics to conduct simulations. The method has shown to provide acceptable forecasts 14-77 days prior to maize crop harvest across the three districts in Tanzania.Detailed process-based crop models' suite, such as the Decision Support System for Agrotechnology Transfer (DSSAT), is designed to simulate the response of crop to weather conditions among other factors affecting crop production (Jones et al., 2003;Hoogenboom et al., 2019). Recent studies (Kirthiga, 2013;Shelia et al., 2019;Shin et al., 2010;Tesfaye et al., 2015b) have demonstrated the use of the DSSAT suite of crop models to understand causes of spatial yield variability and conduct yield gap analysis for factors that limit yield. To facilitate the use of DSSAT for decision support on a spatial scale and to conduct regional yield forecast, automated procedures and related tools are needed to implement crop growth simulations spatially (Elliott et al., 2014;Shelia et al., 2019;Thorp et al., 2008).Recently, Ogutu et al. (2018) provided probabilistic maize yield prediction over East Africa using the European Centre for Medium-Range Weather Forecasts (ECMWF) system-4 ensemble seasonal climate hindcasts and the World Food Studies (WOFOST) model. In their study, the authors predicted annual maize yield anomalies 2-months prior to planting and found that the prediction had good probabilistic skill at above-average and below-average yield categories.Various regional and national institutions provide operational seasonal climate forecasts. In Eastern Africa, the Greater Horn of Africa Climate Outlook Forum (GHACOF) organized by the Climate Prediction and Applications Centre (ICPAC) of the Intergovernmental Authority for Development (IGAD), the World Meteorological Organization (WMO), and other partners issues such forecasts. The forum tries to give a consensus estimate of the likely impacts of the forecast on-climate sensitive sectors such as agriculture and water resources, among others (Hansen et al., 2011). However, the impact assessments of the forecast are based on expert knowledge and thus, to a certain extent they are subjective. Additionally, use of impact models that can translate climate forecast into output forecasts such as crop yield are also limited.Integrated modern seasonal climate forecast and crop modeling for crop production forecasts can support those who are engaged in climate risk management in agriculture (Ordonez et al., 2022;Troccoli et al., 2008). The use of crop simulation models along with climate predictors of yield and climate forecasts allows decision makers to make early planning of contingency options. Preparation and effective planning for the coming season and proper management helps reduce risks associated with weather uncertainty. Such tools could be employed by the GHACOF process to enhance the effectiveness of seasonal climate forecasts by translating them into yield forecast using crop models to provide an estimation of direct impacts of climate drivers on crop production (Ogutu et al., 2018).A detailed overview of the eight main global and regional scale agricultural monitoring systems currently in operation and their comparison based on the input data and models used, the outputs produced and other characteristics such as the role of the analyst, their interaction with other systems and the geographical scale at which they operate was provided by Fritz et al. (2019). One example is the Famine EWS Network (FEWS-NET) that provides decision support to food assistance programs and relief agencies (Funk and Verdin, 2010) based on data from various sources, but especially agroclimatology data and by building monthly scenarios for further analysis (Brown et al., 2007;Senay et al., 2015). Similarly, the Global Information and Early Warning Systems (GIEWS) is monitoring the condition of major food crops across the globe to assess production prospects by utilizing remote sensing data on water availability and vegetation health during the cropping seasons (Rojas, 2015). Another example is GEOGLAM (GEO GLobal Agricultural Monitoring) that brings together key players in the global agricultural monitoring community to provide an assessment of crop growing conditions, crop status, and agroclimatic conditions that could have an impact on the global production of wheat, maize, rice, and soybean (Justice et al., 2015).Such crop monitoring systems largely focus on soil water availability by crops without considering the complex interactions between weather variables, crop physiology and management practices (Ogutu et al., 2018). They are tailored to meet the needs of different stakeholders and, hence, they differ in the importance they place on inputs to the system as well as how they disseminate their results. Additionally, these systems mainly depend on data recorded by remote sensing satellites and reanalysis products, which assist with the assessment of crop condition anomalies that can then be used to infer information on yield, area, and production reductions. However, this approach is unable to provide a production forecast that ideally is needed for strategic and tactical crop production and food security interventions.An operational real-time crop yield forecast system is the MARS-Crop Yield Forecasting System (MCYFS) (Lecerf et al., 2019). MCYFS is based on 25 km resolution gridded runs of WOFOST model (Boogaard et al., 2014). A team of experts together with the Consortium partners operates and maintains the system and provides crop yield forecasts to the public. Several decades ago, its earlier version was used in East Africa (Rojas et al., 2005). MCYFS is focused on Europe and neighboring countries. There are only a few examples of its use in Northern Africa.There are various approaches currently being used or developed to produce seasonal and in-seasonal crop yield forecasts. They cover a broad range of approaches from data-driven statistical techniques to more physically based model-driven approaches (Basso and Liu, 2019;Schauberger et al., 2020). In data-driven approaches, the Machine Learning (ML) algorithms play major role to achieve accurate yield prediction for different crops (Chlingaryan et al., 2018;Liu et al., 2017). The most successful ML techniques have been Artificial Neural Networks (Emamgholizadeh et al., 2015;Gonzalez-Sanchez et al., 2014) or in some cases its combination with Multiple Linear Regression (MLR) (Maya Gopal and Bhargavi, 2019). Data-driven approaches have several limitations. They strongly depend on the data quality, model representativeness and the dependencies between the input and target variables (Chlingaryan et al., 2018).Yield forecasting approaches that rely on crop models generally are combined with seasonal climate or weather forecasts. Crop models operate at a daily time step and require daily weather as one of the inputs. In their approach for linking seasonal climate forecasts with crop models Capa-Morocho et al. (2016) disaggregated seasonal climate data into daily weather data. In another approach, Togliatti et al. (2017) used combination of short-term daily weather forecasts from the Weather Research and Forecasting Model (WRF) along with the current and historic weather data to drive crop model. There is an example of using ensemble of yield predictions based on seasonal climate predictions in eastern Africa (Ogutu et al., 2018). Crop growth-based yield forecasting models are data intensive and are currently applied only for the USA by the USDA and for Europe by the MCYFS (Fritz et al., 2019). If agricultural communities are to benefit from crop production forecasts in managing climate risks, the information must be presented in terms of production outcomes at a scale relevant to their decisions, with uncertainties expressed in transparent terms (Hansen et al., 2006). In addition, such information can contribute to enhancing index insurance quality through better detection of adverse conditions. As yield estimation techniques improve, index insurance programs will ensure that they deliver on their promise of detecting and protecting against largescale, community-wide shocks (Benami et al., 2021).One way of achieving crop yield forecasts is using a lightweight desktop application compared to other systems such as the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT) (Shelia et al., 2019). CRAFT is a flexible and adaptable software platform that is based on a crop engine that can run pre-installed crop models and is linked to the Climate Predictability Tool (CPT) (Mason and Tippett, 2016) for seasonal climate predictions to produce a crop yield forecast. In developing countries where smallholder agriculture is the dominant livelihood and the economic sector the forecasting system similar to CRAFT has not been widely used to support early decision making and in-season tactical interventions. A functional, granular (0.083 • or ~ 10 km resolution grid) spatial yield forecasting system such as CRAFT could provide agricultural risk management options leading to greater economic and social benefits for highly variable environments. CRAFT has been successfully applied for in-season yield forecasting of wheat and rice cropping systems in Nepal and Bangladesh and is currently being evaluated for yield forecasting and climate change applications in West Africa in collaboration with Agrhymet, and the CASCAID Project of ICRISAT (NeKSAP, 2017).This study aims to evaluate a methodology implemented in CRAFT that links seasonal climate forecasts with gridded crop simulations for in-season yield forecasting for East Africa. Specific objectives of the study were a) to calibrate and evaluate spatial simulations of CRAFT and b) to determine CRAFT's ability and applicability in forecasting maize yield of smallholder farming systems at a fine spatial resolution at the region of Oromia State in Ethiopia.The study area covered the Oromia regional state in Ethiopia (Fig. 1a), which consists of 17 administrative zones (CSA, 2016). Oromia regional state is the most populous subnational entity in all of Africa (Aynalem Adugna, 2021;Geremew, 2020) and the world's 42nd most populous subnational entity. Oromia is the major agricultural production region accounting for 50 % of major food crops production in Ethiopia (CSA, 2020). Out of the 5.86 million ha covered by grain crops in Oromia, 1.2 million ha (21 %) is covered by maize, which is grown by 72 % of the smallholder farmers (CSA, 2019).In this study, we have used CRAFT version of 3.4 for yield forecasting (https://craft.dssat.net/). CRAFT is a Windows desktop application with a graphical user interface. It is an integrated modeling framework for gridded crop simulations at two spatial resolutions (0.083 • and 0.5 • ) and within-season yield forecasting, risk analysis, and climate change impact studies (Shelia et al., 2019). It runs pre-installed ensemble of crop models although the default crop engine is DSSAT. Gridded simulations can be conducted for any region and for up to three levels, but only for one level at a time. The levels could be for example, a country / state/ district if the administrative area is the region of interest or any other customized levels, represented with corresponding GIS shape files.A crop engine, such as DSSAT, in CRAFT, requires daily weather data, comprehensive soil profile data used in the soil water and nutrient simulations by the crop model, crop and cultivar genetics, and management data. Accordingly, data required for gridded simulations are weather data, soil profile (s) data, and masked data for crop and management (inorganic and organic fertilizers, etc.) for each grid cell. They can be prepared based on provided templates and uploaded in CRAFT's MySQL database. The toolbox allows creation of projects such as calibration, yield forecast, climate change, and risk assessment. The conducted spatial simulation's results then can be viewed in thematic maps and summarized in tables with various statistics for the entire region and for each grid cell in the region.Prior to yield forecasting, the observed yield data can be detrended.The state of Oromia and sub-regional administrative zones overlaid with the total maize harvested area (A), and the planting area for two maize hybrids (BH660 and Melkasa-II) used for simulations (B).After the optional detrending procedure, a yield correction factor for calibration can be applied to the regional yield aggregated from the simulated yield on a cell scale in order to minimize the root mean square error (RMSE) with observed regional yield (Challinor et al., 2005;Hansen and Jones, 2000). CRAFT combines crop simulations and a statistical approach to integrate the seasonal climate forecast with the crop yield forecast (Shelia et al., 2019). Preparation of a forecast for a certain date during the crop growing season in the current year can be described in four steps: (1) yield is simulated first with observed antecedent weather data for the current year up to the forecast date and then with weather data from available historic years one by one until final harvest is simulated (Hansen et al., 2004). ( 2) The resulting time series of simulated yields are treated as the predictand and used with a time series of appropriate seasonal climate predictor fields (e.g., fields of seasurface temperatures (SSTs)), to train a multivariate statistical model using the Climate Predictability Tool (CPT) (Mason and Tippett, 2016).(3) The forecast yield value for the current season is a forecast produced from current seasonal climate predictor observations fitted in the multivariate statistical model. ( 4) The yield forecast distribution is then obtained from cross-validated hindcast residuals, centered on the expected value of the yield forecast (Hansen et al., 2004;2006).The daily precipitation data of the Climate Hazards Group Infrared Precipitations (CHIRPS), satellite data combined with gauge observations, at 5 km resolution were obtained from the data library of International Research Institute (IRI) for Climate and Society of the Columbia University (IRI Data Library). Dinku et al., (2013Dinku et al., ( , 2018) ) evaluated CHIRPS with rain gauge data over Ethiopia and found that it performed well for all spatial and temporal scales with the most significant improvement in reducing biases. The daily maximum and minimum air temperature data of the AgERA5 historic and near real time forcing data at a 0.1 • horizontal resolution were obtained from the Copernicus data portal (Boogaard and van der Grijn, 2019). The AgERA5 dataset provides daily surface meteorological data, tailored for agriculture, for the period from 1979 to present. The service is based on the fifth generation of ECMWF atmospheric reanalysis of the global climate (ERA5). Daily solar radiation data were obtained from NASA's POWER (Prediction Of Worldwide Energy Resource) data (Stackhouse et al., 2018), which is freely available for download at a spatial grid resolution of 0.5 • (http s://power.larc.nasa.gov/). Weather datasets were re-gridded to 0.083 • resolution on which CRAFT operates, using nearest-neighbor remapping.The high-resolution soil profile data required by DSSAT were directly extracted from SoilGrids (https://soilgrids.org/), a system for digital soil mapping based on a global compilation of soil profile data (WoSIS) and environmental layers by the International Soil Reference and Information Centre (ISRIC). Several essential soil physical and chemical properties such as bulk density, silt, and clay content, and organic carbon were obtained from Harvestchoice data portal (IFPRI, 2020). Then, pedo-transfer functions were used to derive soil hydraulic properties (Rawls and Brakensiek, 1985;Saxton et al., 1986). Other soil parameters not available from SoilGrids were estimated from the Harvest Choice generic soil profiles (HC27) (Han et al., 2019). A single soil profile represents dominant soil properties for each 10 km grid-cell and the data are stored in the DSSAT soil database using the *.SOL file format. A soil mask containing a CellID, Soil Profile ID and percentage share of the soil profile within the grid-cell were used for the simulation area.Maize production shows an expansion in area during the last decade in the regional state and maize has relatively better technologies compared to other crops. The region benefits from enough supply of improved hybrid seeds, better agronomic practices, and supply of synthetic fertilizers because of its proximity to the national fertilizer distribution centers through well-organized farmer unions and cooperatives. There is also a tendency of an increase in the use of improved hybrids over time. Popular maize hybrids BH660 and Melkasa-II are the most dominant varieties in the Oromia region. The maize annual total harvested area data at a 0.083 • resolution (Fig. 1A) was obtained from the Spatial Production Allocation Model (SPAM) product, a spatially disaggregated crop production statistics data in sub-Saharan Africa for 2017 (IFPRI, 2020). The maize crop mask, the fraction of a grid cell covered by maize, was created by computing the ratio of the SPAM maize area in a grid cell to the total area of that particular grid cell. Maize crop mask was staying the same over the years during simulations. Dominant in the region and calibrated for maize mega environments (Tesfaye et al., 2015b) two varieties BH660 and Melkasa-II (Table 1) were assigned to entire maize crop area (Fig. 1B) and were used for the gridded simulations.In the Oromia Regional State, the planting window for maize is from April to June with a harvesting period ranging from September to January. Almost all farmers in the region grow maize for food (MoA, 2020). Most importantly, a significant portion of the maize area increased with improved hybrids et.al. A rule-based automatic planting was used with a 120-day planting window starting from 1 April for the model runs over the 1991-2019 period. The maize hybrid BH660 was sown at a population of 4.44 plants/m 2 over areas having an elevation above 1800 m, whereas Melkasa-II was sown at a population of 5.33 plants/m 2 over areas with an elevation below 1800 m (Fig. 1a). As smallholder farmers in Ethiopia generally use crop residues from the prior harvest as animal feed, the soil was initialized with 100 kg/ha of root weight from previous crop and 50 kg/ha of fully incorporated crop residue at a depth of 10 cm with a 0.8 % nitrogen content (Tesfaye et al., 2015b).Although fertilizer application rates have increased over time, the amount still falls short of the national recommendation of about 110-130 kg/ha of urea and di-ammonium phosphate (DAP) (MoA, 2020). Approximately 60 % of maize growers use 100-150 DAP kg/ ha (18-27 kg N/ha, 20-30 kg P/ha) and about 56 % used 150-200 urea kg/ ha (70-93 kg N/ha) in 2020, depending on the hybrid, as higher rates are recommended for hybrids (CSA, 2020). The Ethiopian Ministry of Agriculture (MoA) provided sub-regional levels of fertilizer types, application rates, timing, and frequency of application (Fig. 2).As CRAFT operates on up to three levels, regional (level 1: Oromia) and sub-regional (level 2: its sub-regional administrative zones) levels, observed maize yield data from 2004 to 2019 were obtained from the annual agricultural sample survey database (AgSS, https://www. statsethiopia.gov.et/our-survey-reports/) of the Central Statistical Agency (CSA) of Ethiopia. CSA provides national level area planted, production and yield data since 1980 for over 26 crops and a regional level area planted, production and yield dataset since 1999 (CSA, 2015). The agency's agricultural production survey typically evaluates over 500,000 agricultural plots, 38,000 households in 1,850 Enumeration Areas (EAs). While the CSA takes area measurements for all sampled agricultural plots, they do not measure yield estimates from each plot, instead five crop cuts at most ultimately determine the productivity for an entire woreda for any given year (Warner et al., 2015).The seasonal climate for Ethiopia has a significant inter-annual variability. One of the important mechanisms that control this variability is the El Niño-Southern Oscillation (ENSO). The ENSO is now understood to be among the dominant modes of variability dictating climate and yield anomalies, besides the primary source of predictability so far in Ethiopia (Clarke, 2008;Diro et al., 2010;Tesfaye and Assefa, 2010). The National Meteorological Agency (NMA) of Ethiopia uses the pre-season ENSO state and the associated equatorial pacific Sea Surface Temperature Anomaly (SSTA) to provide an operational outlook for the coming season and its expected impact on the crop production (Korecha and Sorteberg, 2013). The ENSO phases provide a rough categorization of underlying climatic variables and can be associated with crop yield (Rosenzweig and Hillel, 2008). In addition to SST, Lee et al. (2022) used precipitation, temperature, evapotranspiration, and vegetation index as a predictor field and demonstrated a potential for predicting maize yield over sub-Saharan Africa using machine learning approach. Similarly, Laudien et al. (2020) showed the potential of using SST of the Indian Ocean Dipole (IOD) and weather variables as predictors in robust statistical models to predict maize yield over Tanzania.The Nino-3.4 SSTA was used as a gridded predictor field for the maize yield forecasts in this study. The 3-month running average SSTA of Nino-3.4 from the Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5) (Smith and Reynolds, 2003) for the domain located in the Pacific ocean (between 5 • North and 5 • South, and between 120 • West and 170 • West) were obtained from the IRI data library of the Columbia University.This study investigated the linkage of the anomaly pattern and the strength of the linear relationship between the regional (Oromia) aggregated simulated maize yield and the pre-season Niño-3.4 SSTA index using correlation and composite analyses (Boschat et al., 2016). Composite analysis is a sampling technique based on the conditional probability of a given event that will occur (maize yield anomaly) if it is certain that another event has taken place or will take place (SSTA). Thus, the composite analysis will provide information on the probability of the maize yield being in the above-average, near-average, or belowaverage category based on the state of ENSO episodes, i.e., El Niño, Neutral, or La Niña.The National Oceanic and Atmospheric Administration (NOAA) operational definition of El Niño, La Niña and Neutral was used to determine the historical distribution of the ENSO episodes. Accordingly, the phases are categorized as El Niño when the SSTA departure is greater than or equal to + 0.5 • C, La Niña when the SSTA departure is less than or equal to − 0.5 • C and neutral when the SSTA departure is between − 0.5 and + 0.5 • C. In the composite analysis, the simulated maize yield data is converted to categorical data, e.g., above, near, and below average maize yield categories, using tercile cut points. Then, for each El Niño, Neutral, and La Niña event, the number of each above, near, and below values of average maize yield were counted. These category counts were recorded, and the probability of occurrence were calculated. This probability represents the historical event distribution or probability of the simulated maize yield being in the above, near, or Fig. 2. Sub-regional fertilizer application rates in Oromia, Ethiopia. below average category given the occurrence of El Niño, Neutral, and La Niña episodes (Fig. 3).The maize crop simulations were conducted on the 0.083 • or ~ 10 km resolution spatial grid by the CRAFT toolbox using the DSSAT crop model as a crop engine and data for 1991 -2019. The crop model simulation requires input data, such as weather, soil properties and management, and other data that varies in space and time. The model needs initial values to resolve daily changes in some aspects of the soil process, particularly, soil water and nutrient balance. However, acquiring initial values to initialize the soil water and nutrient balance every season on regional gridded simulation is difficult. One way to initialize the model is to 'spin-up' (initialize with the model simulation itself), so that the run will establish values for these state variables. The spin-up period is the time of adjustment it takes for the model to reach a state of equilibrium in soil water, carbon, and nitrogen conditions. When spinning up, the model should be run as a dynamic system to simulate carbon and nitrogen process fully to allow the soil profile to adapt, evolve and respond to the seasonal and inter-annual cycles of water redistribution in the system and soil organic matter pools. The maize simulations were initialized on the first day of each year (Jan-01) to allow for a 3 to 5-month spin-up period to equilibrate the soil water and nutrient balance.Yield often shows an increasing trend over time, which can be attributed to technological improvements such as new varieties or enhanced crop management. Therefore, prior to calibrating simulated yield, time series of the observed yield data should be detrended (Lu et al., 2017). Time trend analysis is one of the most common methods used to detect the impacts of changes in yields over time. This is based on the hypothesis that the time trend may reflect the improvement of production techniques by crop yield observations (Chen, 2011). The observed maize yield will be regressed against time, and correlation between these two variables, i.e., the maize yield and time itself, will be tested. Some other factors that impact the maize yield may also correlate with time trend, which could be simplified by using time trend alone to detrend the yield. We assume the time trend is chosen as the main factor to detrend the yield over time, since maize production technology improvement may be the major impact. Thus, the observed regional yields (2004 -2019) were detrended by CRAFT's detrending functionality using linear regression prior to their use.When using dynamic cropping system models for spatial analysis, their ability to extrapolate the temporal patterns of crop growth and yield beyond a single experimental site is crucial. Thus, the quality and strength of crop models is related to the quality of scientific data used in model development, calibration, and evaluation (Bellocchi et al., 2009;Thorp et al., 2008). When a model is applied in a new environment, the calibration and evaluation steps are crucial to link model outputs to real world situations. Crop models are usually calibrated and evaluated using measured yield and yield components trial data from field plots for their use for field-level applications (Timsina, 2007). However, it is not always appropriate to extrapolate field-level model evaluations to largescale conditions indicating the need to evaluation models at a higher scale to avoid the problem of extrapolating results from a plot level to a regional level in spatial modeling.In CRAFT, the calibration process is based on long-term regional observed yield data after the cultivar parameters for a model are calibrated for a set of cells. As part of this empirical calibration process, yield is simulated from 2004 to 2019 and then by fitting a linear regression between the simulated and observed yield by conditioning that the regression line goes close to the X and Y axes intersection, i.e. (0,0) point, a value for the modification factor is determined. Thus, the empirical calibration was done using a yield modification factor, which was then applied to the simulated yield per cell aggregated to the regional level. As a result, the calibrated simulations will have the same yield levels as the observed yield at the aggregated regional level, since the simulated yield is scaled by a modification factor.The 3-month running average of Nino-3.4 SSTA indexes, January to March (JFM), February to April (FMA) and March to May (MAM), were used as gridded predictor fields to produce the pre-season and in-season maize yield forecast at the grid cell and at the regional level. CRAFT uses the Climate Predictability Tool (CPT) as an external engine to derive multivariate statistical model between the predictor (SSTA) and predictand (yield). In this study, the training period for the statistical model was a 29-year time span with the crop model simulated yield data. The yield forecast was conducted at different dates in 2020. Each yield forecast update was initialized on the first day of each month until maturity using the presiding 3-month average Nino-3.4 SSTA index Fig. 3. Simulated yield composites (1991Simulated yield composites ( -2019) ) showing the ENSO episode probabilities. JFM-January, February, March; FMA-February, March, April; MAM-March, April, May; AMJ -April, May, June. as a predictor. The maize yield forecast uncertainty is presented as cumulative probability distributions at the grid cell or aggregated regional level.The crop simulation results were evaluated using sub-regionally aggregated observed yields. Visualizing tools such as a frequency histogram and a boxplot were used to display the evaluation metrics. The yield forecast was verified using a hindcast simulation initialized on April 1 from 2015 to 2019 and 5 years observed yield data (2015-2019) that were not used during the calibration process. In case of the yield forecast verification, a 2 x 2 contingency table (Table 2), that counts the frequency of occurrence of each combination of hindcast and observed yield category was constructed from dichotomous (Below-Above) of hindcasts. Then the well-known forecast quality measures were derived from it. The sub-regional aggregated yields were converted to binary events, i.e., below-average yield corresponds to a value of 0 and aboveaverage yield corresponds to a value of 1.By using a forecast quality measure derived from the contingency table, a performance diagram (Roebber, 2009) is produced. Through the performance diagram, the accuracy, bias, reliability, and skill of the hindcast yields can be simultaneously visualized and the underlying relationship can be easily understood. The key forecast quality measures in the performance diagram are the probability of detection or a hit rate (POD), false alarm ratio (FAR), bias, and critical success index (CSI), also known as the threat score, are then defined:(1)(2)where A and D, are the number of correct hindcasts; B and C are is the number of false alarms. With some algebraic transformation, POD, FAR or its equivalent, a success ratio (SR = 1 -FAR), bias, and CSI can be related as presented in the following formula:Inter-annual yield anomalies are often linked to variations in systems that control the regional climate with quasi-periodic fluctuations, such as ENSO and Nino-3.4 SSTA. The existence of ENSO signals in the maize yield anomaly could have a potential to drive the inter-annual variations in maize yields. Recent studies also suggest strong potentials for predicting crop yield using the pre-season and in-season ENSO state in eastern and western Africa (MacCarthy et al., 2017;Ogutu et al., 2018;Rojas et al., 2014;Rosenzweig and Hillel, 2008). The Nino 3.4 region provides a good measure of Sea Surface Temperature Anomaly (SSTA) gradients that result in changing the pattern of deep tropical convection and atmospheric circulation. It influences the local rainfall distribution and maize crop production sensitivity at varying magnitude over different spaces and times (Haile et al., 2021). The results from this study showed a positive correlation between Nino-3.4 index and the maize yield anomaly (Table 3).The regional aggregated maize yield anomaly tends to increase as the Nino-3.4 SSTA index increases and vice-versa. The existence of this lag relationship raises the possibility of using the pre-season and in-season Nino-3.4 SSTA index to predict the performance of the expected maize production. This positive relationship was particularly observed in the temporal pattern of maize yield anomaly (Fig. 4). Few years are under the influence of only one specific El Niño phase while most years are characterized by a transition phase. For instance, the years from 1999 to 2009 were dominantly under the influence of La Niña episode, where we observe frequent negative yield anomalies. On the other hand, frequent positive yield anomalies are observed during the years from 1991 to 1994, in which the El Niño phase was dominant.The historical (1991 -2019) maize yield composite probabilities during the ENSO episode event distributions are presented in Fig. 3. The composite analysis suggests that the cycles associated with El Niño episodes are dominated by normal to above normal yield whereas La Niña episode are dominated by normal to below normal yield is more or less equal chance of getting normal, above normal or below normal yield during neutral years.The empirical calibration was applied to simulated regional aggregated yields from 2004 to 2019 using a modification factor (0.98) calculated by CRAFT. After the calibration process the RMSE decreased from 267.9 to 254.5 kg/ha (Fig. 5).The mean spatial patterns of sub-regional level observed, and simulated yield are shown in Fig. 6. On average, observed spatial variability of yield across sub-regions agreed well with the simulated yield. The model overestimated the observed yield in Bale, Arsi, and east and west Harargie zones. The simulation captured the mean spatial maxima of observed yield in the western part of Oromia. The frequency and cumulative frequency distribution of the aggregated observed and simulated yields at sub-region level is presented in Fig. 7. The simulation underestimated the observed distribution for lower (<3500 kg/ha) yield and overestimated the observed distribution at relatively moderate (3500---4500 kg/ha) yield levels. On the other hand, the simulation accurately reproduced the observed yield above The temporal pattern of the spatial variability of observed and simulated yield across sub-regions as a box plot (which includes minimum and maximum values, lower and upper quartiles, average, median and outliers) is presented in Fig. 8. Accordingly, Fig. 8 shows more variability in the observed than in the simulated dataset. Nevertheless, the simulation performed relatively well in producing the year-to-year fluctuations of the observed yield across sub-regions having around 6 % bias (PBIAS) and 955 kg/ha of error (RMSE). Yet, the simulation slightly overestimated the observed yield in 2007 and 2010.The hindcast aggregated yield was assessed against the observed regional and sub-regional yields. The regional aggregated hindcast simulation from 2015 to 2019 was evaluated against detrended yield (Fig. 9). The hindcast simulations performed well with a RMSE of 164 kg/ha.The quality of yield hindcast was assessed using aggregated subregional yields (Fig. 10). The comparison statistics show level of accuracy of the forecast with CSI value of 0.31 and SR value of 0.5. As SR increases, the POD decreases indicating that the slope of the contours remain negative.The cumulative distributions of the regional yield forecast made on April 1, May 1, and June 1 are shown in Fig. 11. As expected, the interval of the forecast uncertainty decreased as the season progress. For the April 1 forecast, the predicted regional yield distribution ranged from 3900 to 4800 kg/ha while it ranged from 4150 kg/ha to 4600 kg/ha for the June 1 forecast.We assumed that the mean simulated regional yield from 1991 to 2019 can be considered as Normal yield. Then, the percentage deviation of predicted sub-region yield from the normal yield was calculated for the April 1, May 1, and June 1 forecast dates. In general, a normal yield (-5% to 5 % of the mean) was predicted for all the forecast dates that were considered (Fig. 12). The April 1 forecast prediction showed 5 % to 15 % increase in yield relative to the normal over North Showa zone, Borena zone, and over adjacent areas of eastern and southeastern highlands. Those areas are considered marginally suitable for maize and hence the crop less cultivated in those areas. Surprisingly, the yield for May 1 prediction showed a − 5% to − 15 % deficit yield over the southeastern highlands, a complete reversal from the previous one. For June 1 forecast, most of the areas showed a close to normal yield prediction. High-resolution gridded crop yield forecasts that can adequately capture spatial variability of factors such as soil, weather, and management affecting growth and development and ultimately yield, are highly important for decision makers to advise smallholder farmers. The CRAFT toolbox can provide such forecasts. For demonstration, a maize yield forecast at a granular level is presented in Fig. 13, for a grid cell near Bako (9.12 • N, 37.06 • E) of the Oromia Regional State. The predicted values for this location ranges from 3200 kg/ha to 4100 kg/ha and there is 80 % chance that the location could produce up to 3900 kg/ ha of maize yield.The maize yield prediction by CRAFT presents a skillful forecast at aggregated level and a reasonable forecast at a granular level. The maize prediction also captures the spatial variability (heterogeneous nature) of the maize production in the regional state. The forecast shows poor performance over areas that are less suitable for maize production (over districts where maize production was fewer or scarce). Such limitations can be improved when management data such as fertilizer input, dominant cultivar type and planting window can be provided at finer spatial scale (district level). Because of the uncertainty associated with CSA's yield estimation and data scarcity, the calibration and evaluation of the maize simulation was only performed at a course scale (regional and sub-regional) using aggregated values, which could introduce additional sources of uncertainty. There was no indication that the area of planted maize in a sub-regional and regional level influenced the relationship between aggregated modeled yield and CSA regional yield estimates. The range of maize prediction values can also be improved with better representation of the spatial variability if the empirical calibration of the crop simulation is performed at a sub-regional or even district level. In this study, we were not able to analyze different maize cultivars effect on yield forecast. The reason for this is that CSA has provided yield estimations as aggregated values, not the disaggregated observed yield by varieties. Accordingly, we did not have comparable yield values with forecast.Our study shows that functionality implemented in CRAFT has potential to contribute addressing pre-seasonal and in-season crop production strategic planning, through procedures related to maize management technology, particularly, variety selection, sowing (timing, areas, etc.), fertilizer applications (timing, rates). Because crop management related parameters are crop model inputs, and this allows developing various scenarios of those inputs. Our study also demonstrates effectiveness of seasonal climate forecasts, in this case SSTs, that are translated into granular maize yield forecasts, 10 km Cell level in CRAFT, that more useful for farmers. Derived maize production forecast can be used for strategic and tactical interventions for food security at district or country level.The difficulties of adopting a dynamic crop simulation model, such as DSSAT, in CRAFT is associated with the intensive data requirement for the model simulation and evaluation. Data limitation was often a heavy burden on this study in order to provide detailed information at a finer spatial scale. Despite these challenges, CRAFT provides the capability of using crop models that can be run at a local or district scale with less demand on required data inputs. However, this can be improved if sufficient data on the local cultivar, crop management practices, and observations such as phenology and crop yield are available. This will provide the opportunity for calibration at a local scale of the cultivar coefficients and will allow for capturing the spatial variation of the local cultivar to variability in the seasonal climate for different locations.In this study, we have shown the potential of CRAFT for yield forecasting and its ability and applicability in forecasting maize yield for smallholder farming systems. Normal-to-above normal maize production was forecasted for the 2020 growing season over the Oromia regional State of Ethiopia. Assessment of the potential predictability of maize production in Oromia indicates a relatively good performance of the forecast model in capturing the mean yield level at administrative level and its spatial and temporal variability. However, the forecast was not accurate in all cases; poor performance was observed in the marginal maize environments, which affected forecast accuracy.The study indicated that CRAFT can be used to study the mesoscale nature of spatial and temporal crop yield variability, as well as it can be used as a decision support system for early yield estimation of major food security crops at the national level by institutions that oversee Agriculture. In addition, it also opens a pathway to ICPAC and AGR-HYMET to consider the CRAFT toolbox as a regional crop yield forecasting system in East and West Africa, respectively. Future studies should re-evaluate and address the importance of the size of agricultural areas while comparing aggregated simulated yields with yield data collected from a fraction of the target area.Practical implications.The study evaluates a methodology implemented in the CCAFS Regional Agricultural Forecasting Toolbox (CRAFT) (Shelia et al., 2019) for spatial yield forecast for maize hybrids across Oromia region in Ethiopia, where maize is one of the most important staple crops for food security and a source of smallholder farmer incomes. CRAFT as a climate service links seasonal climate forecasts with gridded crop simulations for in-season probabilistic yield forecasting in the spatial scale. For spatial yield forecasting it requires gridded data sets on weather, soil, crop and crop management. In this study calibration was conducted using regional level observed maize yield data (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014) and the yield hindcast was evaluated against sub-regional (2015-2019) aggregated observed yields. The results showed that the hindcast simulations were performed well (RMSE of 164 kg/ha).A functional, granular (0.083 • or ~ 10 km resolution grid) spatial yield forecasting system such as CRAFT could provide probabilistic yield forecast with various lead time and thus, can serve as an early warning system. It can also provide agricultural risk management options for greater economic and social benefits for highly variable environments. Functionality implemented in CRAFT has potential to contribute addressing pre-seasonal and in-season crop production planning. Crop management related parameters are inputs for the Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2019), and thus, it allows us to develop various scenarios of those inputs, particularly for selection of maize hybrids, sowing (timing, areas, etc.), and fertilizer applications (type, timing, rates) characteristics for decision making on the optimal management. ","tokenCount":"6999"} \ No newline at end of file diff --git a/data/part_1/1150685572.json b/data/part_1/1150685572.json new file mode 100644 index 0000000000000000000000000000000000000000..68ba158b7fd650acd9929636b801121b8b1ad966 --- /dev/null +++ b/data/part_1/1150685572.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"024cf505a9aebc196eeeb10ff9bb3088","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/fd6c1397-2bdf-4e9e-9f1f-65ded10f5a92/retrieve","id":"-388165533"},"keywords":[],"sieverID":"d1dacfdb-5305-4c13-8e98-711c8063aadc","pagecount":"61","content":"1. Types ofwatershed ll . Tools developed by Ciat and our eollaboratol> The nioe Ciat guides Tools relaled lo the informalioo technology sector Cial primers 1f1. Olher eiat Manuals aod Methodological Documents IV. Glossary of terms used Referencese I A T Individuals can use decision support, but ir is of most value when used to share information among many groups representing different perspectives, whose own infom1ation about a situation in the watershed is only partial.That is why we describe this approach as decision support based in discovery: because it is built around providing the tools and technologies that help to build capacity for the research and information management needed for making good decisions about watershed resource rnanagement. The local people or organizations themselves choose the tools they feel are required for their particular purpose and area, having first been trained in their use . We supply the training and tools; we do not make recommendations. Our approach helps people in ¡he capacity of discoveringwhat it is that (hey ought lo do. We suppOli their process offinding out what the options are, evaluating the options, and making well-informed decisions .The approach offered in this booklet (Box 4 offers a surnmary) is not exhaustive and is in a continuing process of developrnent and growth. lt covers sorne key decision poinls and actions in the process of planning and implementing a learning process approach to stakeholder watershed management. Water and the sustainable management of watersheds are vital to the welfare of humanity. Even more than food, water has become a cIitical limiting factor in human development and the elimination of poverty. Massive urbanization in the developing world is putting huge strains on the capacity of lhe rural landscape, and in particular its watersheds, to provide burgeoning cities with healthy and adequate supplies of water. The elimination ofmral poverty depends critically on intensifying agriculture on smallholdings, and on sustaining adequate stream flow to meet basic domestic, agIicultural, and small-scale agroenterpIise requirements. Rural and urban poverty is connected and interdependent through the need for water. Water is a product of the rural landscape and depends on sound land management just as much as does the production offood.The CIAT approach to watershed management is not centered on the water ¡tself, but rather on the relationship of people with natural resources. lt is important to motivate the comrnunity and give the raise local interest in conserving their natural resources. We seek sustainable development at the local leve!. This means addressing lhe immediale needs of the people (increasing production) while dealing with, and making local people aware ofpossibility to, the need to care forthe environment.For the farm families managing the natural resources, sustainability may be more closely associated with their livelihoods and the survival of the :Jimily than with the natural resource base itself. At the worst, increasing population, decreasing farm size, and declining labor producti vity could combine to lead to a set of farmer decisions that result in soil erosion and fertility decline, deforestation, pesticide abuse, surface and ground water contamination, and eventual deeertification (Ashby et al. 1994).Individual farmers on their own farms cannot solve problems of land degradation in tropical America. Ihis reql1ires a landscape perspective. CIAI has developed a suite of tools lin.ked to geographic information systems (GIS) and partieipatory methods as components of deeision support (DS) systems that help stakeholders with eonflicting interests identify eornmon problems at the landscape sea le (CLAI 1999a).Projects of the partieipatory watershed type have greatly increased at national, intemational, and bilateral levels over the past 10 years. Ihis approach appeals in its promise to satisfy Agenda 21 's complex demands with a single coherent strategy of involving local stakeholders and communities at multiple sea les and zones while addressing cross-ecosystem issues and interactions related to fanning and narural resource conservation. However, the newness, complexity, and ambition of multi-purpose, multiscale watershed approaches make success elusive even in the best circumstances. Organization is highly complex, and co-leaming methods and eomputer-based tools are needed to deal with plural stakeholders with conflieting goals operating at levels and time scales usually alien to most agricultural and natural resouree scientists (Rhoades 1998).In a watershed, crops, livestock, and forestry products are all marketable and paid foro Water is another produet of a watershed yet is almost never paid for, although it is sold onwards by a water authority to downstreallL users. Traditionally, the foeus ofwatershed management has eentered on the water itself, ofien only as a product for eonsumption outside the watershed even though it is intrinsieally tied up with lhe other watershed produets. Existing problems are addressed rather than any attempt being made to devel op the resouree. In the past, a top-down planning approach was based on land capability, rather than on lhe capacities and needs of local people, and typically promoted activities that were forced upon residents and cornrnunities from outside. This lack of fit between human and biophysical boundaries has caused tensions and antagonisms between local populations and outside watershed project managers (Datta and Virgo 1998). The other extreme was to assume that participation would solve the failure of centrally control!ed, extemal!y driven watcrshed projects with no local ownership (Farrington and Lobo 1997). Presumably, respecting local views and tapping into local knowledge in making decisions on research and management questions can help design and have accepted more sustainable, locally-relevant management systems (Hufschmidt 1986). Neither of these extremes works well. We need a synergetic point between ¡he perception and actions ofboth lhe local people and the specialists, a combination ofboth the technical and scientific aspects with local participation.The essential component of an agro-ecosystem is its people producers and with al! tbe dimensions that accompany them socially, IAconlorrlÍc,llly, and environmentally (Waltner-Toews 1993). The people we ost want to help tend to be concemed with daily problems; they may not k too far ahead. Their children are hungry lJOW, production must be creased lJOW, the effect on their natural resources líes in the future. We leam about situations, draw principIes to develop the tools needed, then can extrapolate results and upsca le them . Box 1 shows how the CIPASLA organization (a local consortium of watershed stakeholders in Colombia), Box 1. CIPASLA: P.,'ncnhlp. d .. wlng using the CIAT approach, has helped • on ,'.o'cale •• d applied .. ,e.reh Self-financed budget USS300,OOO increase the resources available to its A leaming proeess approaeh is used rather than a \"blueprint\" approaeh beeause an understanding of the situation is required if the eommunity is going to undertake watershed resouree management. This leaming approaeh is not new, it has been used suecess fully in other afeas, and it has begun to be used in watershed management over the past deeade. The ~ oftooll1sed in training is new, ineorporating scientifie elements, GIS, collaborative work, models , et cetera in an aecessible and usable form at municipality leve!. The approach can also be used as a complement to top-down management approaches to inform, adjust, and aid in decision making. Research management involves a series of deeisions, we support people in making good decis ions.A watershed can be as large as the Amazon basin, accounting for a large slice of a continent, or as small as the runoff from a few fields into a stream (see Appendix 1). Why then do we in CIAT use a watershed as a unit ofanalysis for research , as a framework for organizing training, and as a foundation for the research and development of partnerships needed to do this research and training? Beeause, when combined with other issues of scale, it is a usefiJI, demarcated, agro-ecological mosaic in which agriculntral activity affects the yield and quality ofwater. The working size of a CIAT watershed is delimited by rhe groupings of farmers, foresters, and orher enterprise owners that interact in its management. To a large extent, the stakeholders in a watershed define the boundaries ofthe geographieal space in which it is meaningful to take decisions in order to improve their management of the watershed resourees. Stakeholder interests define who is \"in\" the watershed and who is outside or off-site. The biophysíeal boundaries ¡hat define the watershed as a functional hydrological system are also essential to this approach. The watershed allows biophysical seientists to clearly delimit the study unit, making it easier to eonduct input-output studies, decision-making and simulation models, and expet1 systems (EI-Swaify and Yakowitz 1997, cited in Rhoades 1998). A watershed is no! a \"natural\" socioeconomic uni!. Ofien a cornmunity \"domain\" covcrs different watersheds, and usually the same watershed is shared by different cornmunities Ihat also use the neighboring watersheds. This poses problems that should be addressed through collective action:CIAT facilitates this process through the fonnation and support to local consonia ofwatershed stakeholders provided in this approach. We combine the geographical unit (watershed, subcatchments) where water flows , with social units (communities, municipalities) where decisions are made. The social boundaries for decision making ofien overlap the watershed boundaries (see Figure 6). This is essential, because managing the multiple natural processes of a watershed requires dealing with multiple social actors.The many activities taking place within a watershed affect water quality, quantity, and stream peak flows. Cultivation affects sediment load and infiltration rates, thus changing water quality and soil/subsoil water storage. Good, economically viable, soil conservation measures can increase water quality and smooth stream flow peaks. Tree planting usually (but not always) reduces peak run-off and hence lowers flood risk and evens out water flow rates. Pastures planted for livestock often stabilize against erosion, but animal effiuent can a rrect water quality (nitrates plus disease organisms). Both forestry and permanent pastures actually iocrease water consumption wilhin the watershed. Rapid changes of land use can have unforeseen effects on water quality, yield, and stream flow peaks if the full functioning of tbe watershed is not well known. For example, large-scale plowing of old pastures can resul t in a flush o f ni tra tes to the stream flow.Pesticide and herbicide residues may wash directly into flowing water (e.g., from inappropriate washing of application machinery, or dumping of residues), 01' may leach through the soil to ground waters. Box 3 shows an example of one project where farmers are farrning organically in arder to reduce agrochemical pollution of grotind water. Postharvest processing can be a source of stream polllltion ir residues are allowed to drain directly to streams (e.g., in cassava starch production and sisal processing). Fish farming, although local, may be a majar water user within the watershed; it is also a maj ar polluter ifthe tank and processing effiuents are not treated. Even smal! areas of dense vegetation acting as stream flow buffer zones along stream bOllndaries can ameliorate the effects of dirty nlnoff where it is unavoidab le.an integrated approach to NRM In sorne areas of the Andean zone, farrners spray their crops as ofien as once a week. The \"chemical culture\" these farmers embrace is reinforced by habit and rooted in their fear of crop failure. Under a CIPASLA-sponsored project, extension workers from Colombia's Servicio Nacional de Aprendizaje (SENA) are helping farmers establish organic gardens of aromatic and medicinal herbs, among other crops, for sale in nearby urban markets. The booklet suggests, for the different work areas ofthis process, when and how stakeholder can make use of a number of too1s fo r deci sion support, collecting and orgallizing information, organizing, and rnonitoring and eva luation.The CIAT publication \"Decision making for sustainable natural resource rnanagernent: Nine tools !hat help\" (CIAT 1 999a) describes the rnain rools used in tbe process up lO presentoThe glossary at!he end ofthis booklet explains sorne ofthe terminologyused !hat is spec iftc to thi s subject. The sustainable management of natural resources depends on people's capacity to take \"sustainable\" decisions, wbether tbe level of decision making is the municipality, the watershed, or the village. Thus, the CIAT Methodological Guides are support lools for decision taking and not resource managementtoolsper se.With this in mind, the focus of attention moves , for example, from the problem of tbe quantity and quality of water available for human consumption to the exploration of future scenarios that tbe community wisbes to construct to guarantee sufficient quality and quanti ty ofwater for the next 20 years, based on present decision taking (Knapp et al. 1999).The approach offered in this booklet (Box 4 offers a sUITunary) is not exhaustive and is in a continuing process of development and growth. It covers sorne key decision points and actions in the process of planning and implementing a leaming process approach to stakeholder watershed management.Box4. The CIAT learning process approach is aimed at stimulating its users to identify new work areas and new tools that they need lo inelude in their process, to develop their own applications of methodological tools, and to systematize their experience into guides like those we provide. People have to make decisions, we aim to help them. The CIAT approach addresses the following questions.• Where are we going to work? We need to define the physical boundaries and the decision-making or social • units.Who are the key people for the key problems in this our • priority area?What is the vision of tbe future for this watershed? How • should we organize for better management?• What technological options do we have for change?How do we monitor and evaluate and check that the watercourse is really becoming a better place to live in, that conservation is occurring, and the watershed is being managed for the long-terrn? We train and help in the use oftools to answer these questions. Then we go through the process ofthe five components below, and the tools we have developed fit in as and where required. Finally, we hold a forum where the people of the watershed address tbe questions together and the process is worked through witb the tools that they choose to u ' \" e I A TThe main elements ofthe process here descri ,d are called componenls. It is an iterative process and canoot be carried tone component al a time, or with one component following another; us lIy several components will be implemented at a time. Sorn e might be s ed before others are fini shed. At any one time, tbe user may need to go ackward or forward in tbe list of co mponents outlined below. Grimble et al., 1995 define stakeholder analysis as: \"An approach for understanding a system by identifying the key actors or stakeholders in the system and assessing their respective interests in that system. Stakeholders include all those who affect, and are affected by, the policies, decisions, and actions of the system; they can be individuals, communities, social grou ps or institutions of any size, aggregation,or level in society. The terms thus inelude policymakers, planners and administrators in government and other organizations, as well as commercial and subsistence user groups.\"Stakeholder analysis is relevant for NRM because: • What is the poverty or wealth of different stakeholder groups? Depending on the \"systern\" or the issues in question we rnay need to know the levels ofpoverty existing and tbe spatial distribution ofpoverty orwell-being in the watershed.For that purpose we have developed a rnethodological tool to identifY local indicators of well-being and to construct regional profiles for rural poverty. This is integrated with and cornplernentary to dernographic databases such as census data with variables relating to, for exarnple, the accessibility of services, type ofhouse construction, and levels of education. With this kind of data, we can begin to draw profiles ofthe basic resources available to farmers and can get sorne idea ofwhat people have attheir disposition .• What are the ownership and usufruct rights and customs that guide how different stakeholders use these resources? Ownership is sornetirnes available on census data, but can be a delicate subject on which people do not always speak frankly or truthfully, and this should be borne in mind. At present, CIAT does not research these topics .• What are the formal and informal organizations active in the watershed and their objectives? How do they work together? Organizations can work together through consortia. Inter-institutional consortia should involve at least the fom1al organizations. Workshops help bring together different organizations and have them define their objectives.The rnain stakeholder with whorn CIAr works is the local organization at socioeconomic leve!. In the technological sense, stakeholders are much more diverse. Producers continue in participatory research (e.g., the Hillsides Options Supermarket or SOL, its Spanish acronyrn, where strategic research also takes place and different types ofpartners are involved, see Box 6) . There are stakeholders at watershed and higher levels (rnunicipalities), and we should al so consider those stakeholders beyond tbe watershed who are decision makers and should be involved. All ofthese are connecled 00 separate questions. The vision is not limited to the watershed , but goes beyond, those ourside are also importan!.For sra keholder management of watersh ed resources, lbe relevant stake hold ers need ro be brought togeth er to decide on lhe appropriate management innovations, bow to enforce tbern, how to reward or sanction thern, how to monitor cornpliance, who is better orworse off as a result ofthe changes, and whether these are having the desired effect on lhe watershed. Sorne stakeholders rnay like these changes, sorne may be opposed, and olhers may be indifferent. Thestakeholders ofa collective decision-rnaking process need to decide w ho are rhe relevant people who need 10 meet for this nlllmc,.e' Leaving our so me srakeholder group could be fatal to success.Scien ti sts and technicians know their subject, but farme rs ha ve local knowledge and traditions. Jt is important to get to know them in order to work with them, we cannot assume that anyone's knowledge is comp lete. Thus, on arrival in a work area, a quick sounding is taken to interact with the hnm \" ,r< find out rheir customs, way ofworking, socioeconomic factors, tbe too1s they use , rhe crops rbey grow, and so forth . Through di alogue, tbose farmers can he1p and rbose wbo ha ve problerns are identified. Producer and technician share their know1ed ge to identify local indicators of soil use, p1ants, fertil ity, physicochernic al propelii es of land el cetera througb local terminology and classificarion.This makes it possible ro take berrer decisions on th e managemenr ofnatural resources in re1ation with their stare of degradation. The Committees for Local Agricultura1 Resea rch (CIALs, rhe Spani sh acronym) are a good example of how rhis works. These commirrees of four or more farmers, elected by their communi ty, carry out adaptive technology resting in the local environment, combining local knowledge and exotie technologi es , on topi es chosen by the co mmuni ty (Ashby et al. (995). Collecting local infonnation and knowledge can be done in rnany ways, from a participatory diagnostic to sorne type of formal interviewing. The use of a maqueta is helpful for bringing the information IOgether (Box 5).Box 5. Maquetas. The people with local interestare those who best know the countryside. A tool we have found highly useful in gathering local knowledge is the \"maqueta\", a threedimensional structure made of the watershed out of papier-ma ché or other locally found materials. The community puts it together, using sorne GIS information such as altitudes, but mostly their own knowledge of the area. They put houses, schools, roads, et cetera in place then work out the land uses, in effect constructing their watershed. The great advantage ofthis is that they become sensitized, are made aware of, the larger environment beyond the small boundary of the farm, and that they look at the larger picture. They come to realize that their problems relate to what happens outside their own small sphere. They visualize the actual natural resources ofthe region and are thus able to better understand project possibilities. The maqueta is a powerful tool for stimulating group discussion and creating a sense of community.Local knowledge and information is an important input to decision making involving the natural resources of a watershed.At the end of the diagnostic process, a synthesis can be made of the actual present situation. Problems and opportunities, their relationships, and their causes and effects are identified. Both the human aspect and natural resources are included. These three types also represent a gradation from success ro failure, implying that using local knowledge, building on indigenous worldviews , and encouraging ownership are the best predictors of long-term sustainable success. The importance ofthe CIAT focus is that it is not based on rhe usual top-down methods used in watershed management. With them identify what is in place, rhen mobilize local institutions so that they deal with problems or take advantage of oppottunities. We do not make decisions for people, give support and training so that they can make their own decisions.In every case, CIAT aims to increase tbe natural resources and improve the quality of life for producers. Both these aspects are being worked upon, generating sustainable uses and giving technological help at the small-scale level and moving outwards lo watershed leve!. The priority is that the producers use the tools developed, that rhe whole group involved in the watershed can collaborate, and that CIAT complements the work being undertaken. Demand-driven research and development means that stakeholders will talk about all problems, notjust water and crops (Rboades 1998), which may lead to the pitfall of unrealistic expectations. However, planning from local demand through the participatory planning by objective helps to identifY further strategic research and researeh for collaborators or for opportunities in adaptive researeh (Figure 1).IARC., CIALs.. The organizational idea is to support the basie users producers, campesinos.The focus is to get them to look towards the organizations that are becoming more cooperative. The CIAT strategy is 10 strengthen existing local eonsortia, or help form new ones if necessary, to keep the sustainability of natural resources at a higher level (e.g., Campos Verdes see Box 7) . Impact cannot be immediate, a period of 5 years is more realistic, when the consortia has become strong enough to rnanage projects and when clients in the projects have resouree eonservation in mind as well as produetivity. Figure 2 shows what demand-driven researeh is being conducted to date using the CIAT approach to watershed management.Decisions have to be made on what are the priorities and opportunities that can be realistieally addressed. The approach supports those collaborating in making these decisions. A theoretical framework is established using a simplified model ofthe origin of soils. It is applied borh to modem concepts of pedology and lo soil c1assification so Ihal the producer and technician can share their knowledge lo understand and analyze Ihe origin, evolution, and distribution of soils. In this way it is possible to take better decisions on the management of soils in relation with their state of degradation.Wben choosing combinalions of technology options to test for cropping systems, agroforestry, agrosilvopastoral systems et cetera, the use of soil quality indicators (SQ!s) impacts on choices more to do with the timing of certain managemenl options. For example, if we have a system to recover degraded soil (e.g., green manure systems), identifying orusing certain SQIs guide us as to when the soil has fully recovered before retuming to the croppi ng phase.is important in lhe efficiency ofusing time and space in an agricultural ser-•up. The LSQ! (Local Soil Quality Indicators) Guide also covers the issue of upscaling. This links with how LSQI at plot scale are affected by management at the farm scale, and how the collective management of several farms within a watershed can provide an impacl al the watershed scale that can be meas ured or synthesized in the water quality for example.We are now aiming at establishing a link between water and soil quality ~.:\"--• indicators. These types of indicalors help in making decisions on the best options for the use of the land.[n choosing options for crop diversification, an institution within tbe watershed undertakes a marker study. The prodllcts identified are evaluated to find out which are the most promising options incllldingparticipation wilh farmers. Introduction ofhigh value crops can inerease farmers' benefits in the long mn, making it worthwhile for farmers to use Ihe resouree eonserving praetices (figure 3). Evaluation is made with tbe farmers using a concept board outlining in simple form what the best options offer (already screened for their agronomic and eeonomic viab ilities), including profits. It beco mes a joint decision-making process as to which options the farmers develop as projeets. lt ends in a portfolio ofpossible produets. The system has been used in Cabuyal-Colombia, Yoro-Honduras, and Pueallpa-Pem with good results. For example, in Cabuyal, the growing ofblackberries was shown to be viable and through its own dynamism , this is now a principal erop in the area. Dairy prodllets were also identified throllgh this approach; a small processing plan! has been set up producing yogurt and cheese (Figure4). At this stage, an Action Plan comes about as a result of planning and synthesis (prioritization). Tbe \"Methodology for decision taking for multiple interest groups\" (Knapp et al. 1999) calls in data from the information technology tools. It is a goal-oriented as opposed to problem-oriented methodology. A forum or worksbop is held to go through the activities (see page 30). Goals are defined by desired future conditions giving specific targets. This is useful for planning acti vities, because specific information is needed for planning, and the models are naturally called into process to give concrete quantitative infonnation about system variables.Decision makers need to come together, have as much information available as possible, and discuss and compare in order to make valid decisions. The decision support system (DSS) is a methodology designed 10 help multiple stakeholder groups come to terms with the future oftheir landscapes. Tbe methodology is accompanied by a user friendly computer program that is able to record all infolmation that is colleeted and eondensed during group discussions . The DSS is ab le to bring fOlward all infonnation that bas been obtained through the use ofthe otherCIAT Guides. They should not be used in the sp irit of a central planner who \"knows better\", but in the spirit of helping the different stakeholders in their negotiation process. Most watershed uses are conflictive and one wants to support al! the groups who have a stake in the watershed, especially the weaker ones.There now exist different types of models that can compare altemative scenarios. CIAT has been testing several of these model types such as biophysical watershed models, optimization models, and cellular automata. Most ofthese tools are made user friendly so as to allow local technicians to run them and explain the results in an easy way.Sorne ofthe applications include 3-D presentation ofthe watershed so as to see in quasi real-Ji fe how the landscape would change under different decisions or extemal driving forces. CIAT's objective is now to make these tools available to local organizations that are involved in watershed management or in conflict resolution to help in their decision making. From 1982-88, the Crap Systems Uníts ofthe CIAT Programs ran many field tríals evaluatíng germplasm and exploring aspects such as varíetíes , fertilizatíon , and planting density. Verificatíon tríals took place with the partícipation of producers. Demonstration work was also undertaken and was similar to later work wíth the CTALs. Research was workíng on how to select work areas/farms/number of places ín which to conduct trials to be taken ínto account for trustworthy statistics.CTAT has the expertise to help farmers ín running theír own Irials or in fOtming organizations that do so. The SOL sites províde another area for farmer-run and scíentific tríals. The SOL (Box 6) ís an ínítiative ofthe CTAT-Híllsides project to develop technological options and offer these to poor farmers, technicíans, producers, and institutions. The aim is to develop technologíes that establish profitable, sustainable production systems through multi-institutional alliances, using a participatory approach (design, planning, monitoring, and assessment), which ineludes shared responsibilíty at all decision-making levels. The SOL links farmer experimentation with formal research.Box 6. The SOL (Supermercado de Opciones para Ladera, or Hillsides Options Supermarket) aims to develop technological options that are economically viable and environmentally sustainable. A participatory approach is used lhat ineludes shared responsibility at all decision-making levels. Strategic principIes allow for extrapolation and upscaling. In Honduras, the SOL site is the Tascalapa River watershed, in Nicaragua, lhe Wibuse-Jicara watershed. Men and women of the communities actively participate in different activities (e.g., alternative grass species, seed production for grass and legume spp., soil conservation, natural regeneration of native species, and identification ofmarket products). While still in the initiating stages, the SOL sites are expected lO help develop technological options that small-scale farmers will readily adop!. The CJA Ls are a method for experimenting with options and they use tools such as the crAL Primers. A committee offour farrners, elected by their own cornmunity, analyze and execute research themes deterrnined or identified by their community in different places ofthe same. Eight steps are followed: the CIAT Seeds Unitgave training and investigated and generated seed handling technology. This first began with industry in mind, to supporting small-scaIe producers. Small-scale technology generated including equipment for seed cleaning, selection, drying, storag,e, and treatment. The equipment was of wooden construction and artisanal type, but equally as efficient as industrial equipment. Within watersheds, consortia (e.g., CLODEST and CIPASLA) identified diversification and marketing as being necessary to be able to reach sustainable production systems. When new crops are identified, diversification occurs, incorporating higher value crops into the production system with or without processing; or value may be added through postharvest handling and processing of existing and introduced crops. These generate ineome and employment in the region , leading to reduction in poverty, then farmers beeome motivated to invest in their resource base, breaking the vieious eirele of mining their resourees . This can lead to more sustainable landseapes.Experimenting with options and evaluating them is a necessary basis OIl which lo make decisions on !and use.Six tasks have been identified as critical for community-Ievel organization (Knapp et al. 2000) : l.Identifying stakeholders and ensunng their representation ID management effort. 2.Providing forums for analysis and negotiation ofdiverse interests. Organizing a fornm could be ad hoc. It may include stakeholders who do not have a real commitment to what is under discussion. Once their positions are made clear and they approve ofthe project, they may not want 10 take actual parto The method ofparticipatory planning by objectives method helps in the organization of a forum or workshop.In organizing a network for GIS information exchange, the Intelligent TeamIDecision Support System (lT/DSS) synthesizes the six tasks identified aboye. The \"Intelligent Team\" modifier connotes that our DSS is designed to support a team ofmultiple-goal-pursuing stakeholders as opposed to singleproblem, single stakeholder decisions. The most important part is forum management. The lTlDSS electronic forum workbook is now complete and in the process of publication in a similar format to the DS tools. The electronic fornm solicits information and adds a further dimension to the work model used by the Hillsides team. The forum componen! motivates and compels participants towards making decisions for sustainable NRM.Box7. Campos Verdes This association was formed in 1997 in the Calico River watershed, Nicaragua and has successfully obtained funding for cornrnunity projects through national and international institutions and nongovernment organizations. lt has established direct links with three NGOs (CARE, PRODESSA, PNUD), three GOs (the Mayor's Office, MAGFOR, UNA) and three local organizations (Cooperativo Sueños Realizados, UCOSD, CJALs), about 38% oflhe 27 entities involved in the San Dionisio Municipality. The association contri bu tes etTectively to community developrnent in such a way that GOs and NGOs find it an efficient support for their programs, demonstrating the convenience of its permanency and actions in the ditTerent communities. Organizing a forum could be ad hoc. It may include stakeholders who do not have a real com.mitment to what is under discussion. Once their positions are made clear and they approve ofthe project, they may not want to take actual parto The method ofparticipatory planning by objectives method helps in the organization ora forum orworkshop.In organizing a network for GIS information exchange, the Intelligent TeamlOecision Support System (IT/OSS) synthesizes the six tasks identified aboye. The \"Intelligent Team\" modifier connotes that our OSS is designed to support a tea m ofmultiple-goal-pursuing stakeholders as opposed to singleproblem, single stakeholder decisions. The most important part is forum management. The ITIDSS electronic forum workbook is now complete and in the prócess of publication in a similar format to the OS tools. The electronic forum solicits information and adds a further dimension to the work model used by the Hillsides team. The forum component motivates and compels participants towards making decisions for sustainable NRM.Box 7. Campos Verdes This association was forroed in 1997 in the Calico River watershed, Nicaragua and has successfully obtained funding for community projects through national and international institutions and nongovernment organizations. lt has established direct Imks with three NGOs (CARE, PROOESSA, PNUD), three GOs (the Mayor's Office, MAGFOR, UNA) and three local organizations (Cooperativo Sueiios Realizados, UCOSO, CIALs), about 38% ofthe 27 entities involved in the San Dionisio Municipality. The association contributes efTectively to community development in such a way that GOs and NGOs find it an efficient support for their programs, demonstrating the convenience of its perroanency and actions in the difTerent communities. The support of associalions, local organizations, institutions, and govemment create space for better planning and decision making municipallevel.Capacity building is done thJOugh a series of workshops in which the Guides are brought together and validated. First an Induction Workshop is held for decision makers and candidates and trainers from institutions who have expressed interest in applying one or more of the melhodological Guides or in helping others apply them . This is an opportunity for explaining more about lhe Guides and c1arifyi and responsibilities. Action Plans and their important role are explained. AIl candidates are interviewed forthe final selection of 16 to make up a national team oftrainers who are given copies ofthe Guides to study.Later, a Training ofTrainers Workshop takes place after a meeting with CIAT instructors to go over the trainees' knowledge ofthe Guides. In the workshop, trainees work in groups with instructors, going through the Guides and how to use them. The new trainers can then bold national Workshops, with some supervision at first from CIAT iostructors. At these workshops, Action Plans are elaborated (Box 8). These are smal! projects through which people commit themselves at institutionallevel to use what they have leamed during training with the Guides. Organizatioos participating io Workshops are asked to write down their mission and vision so that everyone in the forum can understand exactly with whom they are going to work. The Action Plans identify wbo could be affected and who should be involved in what is being planned.Plan s cover in simple tabular form:I.The character oftbe institution involved, its address, mission, and reason for wanting to use the tools.2.1dentification of the desired situation, who will be affected, and how decisions will be taken.3.Methodological tools to be applied and the environment or areas where tbey are to be applied. The training in the use of the Guides leads to the making of Action Plans, which are decisions taken by participants on what needs to be done and how to do it in their specific areas .It is highly impOItant to maintain an efficient infonnation system within a project and with its partners, and palticularly so in situations of multiple collaboration such as occur in watershed management. It is also highly important to exchange infolmation with other projects ro share experiences, lea m from our mistakes, and provide assessments. The erAL Primers are aimed directly for farmer use. During 2001, Primers are to be developed corresponding to each of the Guides so that members of the organizing groups ofilie community can use them as workbooks.At locallevel, interviewing to gain local information can work both ways, the occasion being used to inform farrners of what is being done or may be done in the watershed and of projects that are underway. The Workshops to which they are invited also disseminate infonnation at the locallevel.Good decision making depends upon access to good and ample infOlmation.Project monitoring is considered both as a tool for measuring the impacts of the activities carried out and as providing ongoing opportunities for analysis and reflection about the progress made toward achieving the project's objectives. This in tum provides feedback to improve the monitoring system. Figure 5 illustrates the process.This goes together with lhe implementation componen!. lt needs to be a tool for reflection on what has been and is being done, giving the experience of those involved. It is a feedback and improvement ofthe process. At this stage we work on the most important aspects for follow up and later define the indicators to use. We determine the initial situation or base line then follow up the implementation and howthis influences the indicators ofprocess.We use this information for motivating people's reflection on whether they are doing well, the results are as expected, why or why not, what to do next, and so on. This is a \"learning by doing\" approach (Implementation), which Monitoring and Evaluation (M&E) promotes. Including the M&E of the process of implementing our approach is vital to its success, th at is, M&E both looks at the outcomes of improving resource management and improves the process. It also improves people's decision-making abiliries. When confronted with multiple stakeholders with the sanctioned right to press for their needs, grass-roots workers need not only a \"paradigm shift\" but good science, appropriate methods, organizational skills, workable technologies, su fficient funding, and donor patience (Rhoades 1998).Since its inception over 30 years ago, CLAT has accumulated a great deal of information and experience and is well placed for strong impact at watershed leve!. We also take into account what other entities are doingthis aspect is important and needs constant verifYing. In Central America many other institutions are working at watershed leve! , but more on rural development and less on research, training, and the use of lools. Concenlrating on these aspects, CIAT is filling a void.It is importan! to involve other partners (research and development institutions) with comparative complementary advantages who can contribute in making up a package Ihat satisfies the expectations of the technological component for the management of natural resources. In an ongoing research process, CIAT contiulIes lO design and validate new methodological guides.Amongst these are the \"Des ign, use, and updating ofa GIS at locallevel\" , \"Use of tbree-dimensional models for the development of a holislic understanding of the environment-maquetas\", and \"A decision support system for groups of multiple interests\".Also planned are guides on the ITIDSS , the SOL, organic matter and soil management, ami soil macrofauna (in collaboration with the CGIAR SWNM, www.swnm-org, systemwide program on Soil, Water and Nutrient Management), maquetas, site similarity analysis, and gender analysis. As work continues, olher needs wil! emerge and further guides will be developed. The CIAT approach of decision support to stakeholder watershed resource management has been used with sorne success for local sustainable development in small areas. lt takes ioto account socioeconomic and environmental aspects. The results of this approach can be seen relatively quickly from the socioeconomic perspective (Box 9); its effects on natural resources will take longer to quantify. CIAT can readily apply its ample experiences and this methodology to watershed management.Box 9. What results can we expect of using this learning process approach? We can expect changes in:• Resources both natural and human (welfare) • Management • Skills and knowledge • Organization These can be seen in the success ofthe CIPASLA Although watersheds are a useful unit for organizing research, this does not imply that theobjective will always result in management plan s thatoptimize water resources (Knapp et al. 2000). Rather, the objective is lO inelude the analysis of water as well as soil and vegetation in the family of indicators that provide a \"feedback mechanism\" for stabilizing and sustaining hillside production systems (CGIAR 1996).When poor farmers seize Ihe chance to make decisions themselves, to exploit the besl oftraditional wisdom and formal science, they take a crucial step on the slow path to prosperity. CIAT continues working to empower poor fanners, presenting them with wider choices, new opportunities, and hope for a better life (CIAT 1999b). Watersheds can be described in very specific geographic terms using the walercalchmenl (ridgeline) as Ihe dividing line on a diagram ofrivers. Where Ihe river goes inlo Ihe sea is then the primary watershed, where the river di vides beco mes the secondary one, and so forih. Thi s is a theoretical way of dividing the rivers into a graph, but it does not give an idea ofwatershed size.There is a hierarchy of different sizes ofwatershed depending upon the type oflerraio.A hierarchy of communities also exists. CIAT work s in watersheds because they often coincide with communities of people who work together, or interact, in terms ofwhat goes on in the physical area ofthe watershed. The community sizes are much related to the hierarchy of watersheds country boundaries, regional organizations, local govemment, veredas (local parishes). These overlie a physical watershed in different ways.The pbysical watersbed interacts with the community depending upon the teITain and scale. How the river networkl terrainl watershed reacts with the comrmmity mainly depends upon the type of countryside. Figure 6 is intended to give some idea of the complexity of scales and the overlays of different boundaries.Communications tend to run in the same pattems as ri vers. In some areas, the ri ver system is used as transport and becomes the form of communications, whereas in other areas the rivers may be fastrunning or difficult to cross in the wet season and therefore impede communication. In mountainous terrain, the ridgeline of very high mountains is often an impediment, while in lhe mid-elevalion Andes the community of a municipality is ofien on both sides of the ridge between the rivers . In the forest margins, in many cases communications mn along the tivers, and deforestation and colonization tend to spread out from either a ti ver or a road.If a valley is shallow with good agricultural ground on either side, then lhe community forros by the river and is demarcated by the ridges. There may even be a different community on either side ofthe tiver. Yoro and Yorito are examples of fluvial communities (in the valley and going up the side of the hill), while Cauca, Cabuyal, and Ovejas tend lO be interfluvial as the rivers cut deeply into the hills.The size of cornmunity we can manage to work with is what defines the watershed. We try to find a community that fits into a communication catchment area and that is defined by a watershed pattem. We try as much as possible to capture !he human interaction in the area, thus it is natural to stop at a boundary to communications. The idea is that ifwe can define a particular type of catchment area where people fonu a coherent unit, then when we find another similar area results can be extrapolated to it by using site similatity analyses. . aking an Atlas . . arreto H, Jiménez P, Lamy F. 1998. Atlas of Yorilo and Sulaco, Yoro Honduras). Guide 6 (in Spanish) of the series \"Methodological instruments for decision taking in natural resource management\". ClAT, Cali, Colombia. 79 p.~entifying Market Opportunities. stertag CF. 1999. Identifying and evaluating market opportunities for small-scale rural producers. Guide 7 (in Spanish) of the series \"Methodological inslruments for decision taking in natural resource management\". CIAT, Cali, Colombia. 182 p. sing Simulation Models. strada RD, Chaparro 0, Rivera B. 1998. Use of simulation models for ex-ante evaluation. Guide 8 (in Spanish) of the series \"Methodological instruments for decision taking in natural resource management\". CIAT,Cali,Colombia. 194 p. eveloping Organizing Processes. eltrán lA, Tijerino D, Vemooy R. 1999 Developi ng orgal1lzmg processes at local level for collective management of natural resources. Guide 9 (in Spanish) of the series \"Methodological instruments for decision taking in natural resource management\". CIAT, Cali, Colombia. 147p.e I A TIhese include humanlsocialleconomic/productive mapping, and the use of remote sensing, aerial photos, and other G[S tools. Water/hydrological modeling is also useful, bu! should be calibrated; CIAT has models for the Central American and Andean regions. We can do model aspects of water management, e.g. estimate how much water is produced, when it is produced, the times of cleanest water, times of shortage et cetera.1. The Accessibility Wizard -We have developed computer-based tools Ihat produce, for example, accessibility maps that allow us lO make maps oftime to marketsetc.2. Soil-water budget model (SWBM). Ihis model allows simulation of future scenarios as fitness tests for the water component, the ability ofthe landscape to regulate water. We can then app ly scenarios as stresses to the watershed to see what reaction ensues. palticipating institutions or other participants write up small pro in the form of Action Plans, in whieh one or more ofthe tools are 1 If approved, these plans are then eamed out by the institution eva!ualed as paltofthe training seheme.Decision support system: This is a system of support fordeeision taking. It ineludes an oper eomplementary group of methodologíes (whieh in their tum ine proeesses and tools) and of information tools (software and di and numeriea! data) . These are of permanent aeeess to people groups, allowing lhe support of their deeisions of inversion polities about the area withi n their arnbit of responsibility Decision support tooVinstrument: Used in or for lhe support ofdeeision taking . Each ofthe nine rnethodologieal lools described in \"Informed dee l rnaking for sustainable natural resource managernent: Nine too!! help\" can be a decision support tool when used towards that end.A system of organisrns oeeupying a habitat, together with t aspeets ofthe physieal environment with whieh they ¡nterae\\. Thus agro-ecosystem : agriculture and ecosystem. The nine tools produced lo date contain the essential components of each decision support tool and materials to accompany the training (e.g., questionnaires, objectives, and exercises). The leaming model used by the Guides sustains that practice is the most important aspect of leaming in helping develop the abilities and attitudes needed for decision taking.A tool for application of a method in a particular field.In developing the CIAT Guides, the terrn methodological tool has been used with the same meaning as methodological instrument.When it is incorporated in a decision-making system, it takes on the cbaracter of\"decision support too\\\".A person or a group with an interest or concem in the process of watershed management including farmers , researchers, planners, technical experts, community development workers, different agency professionals or others in volved in the use and man agement ofnatural resources.ln tbe process ofplanning and implementing this approach: TI1e rcsearchers, planners, technical experts, community development workers or other agency professionals or those involved in the use ofnatural resources.Sustainable: Able to be maintained at a certain rate or leve!.Sustainable development: Is a permanent process, a perpetual search for a balance between the demands generated to satisfy human needs and the capacity ofNature to cover these demands without irreversible degradation. Because human demands change with time, tbi s balance is not static, bul has 10 be redefined constantly.","tokenCount":"7860"} \ No newline at end of file diff --git a/data/part_1/1165885886.json b/data/part_1/1165885886.json new file mode 100644 index 0000000000000000000000000000000000000000..d8e12b06d6c09ab11cbbe8158a4a9c18a4882a83 --- /dev/null +++ b/data/part_1/1165885886.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"44ecb1e5fa5fe1415b3b874ac4cc71b4","source":"gardian_index","url":"http://www.scielo.org.co/pdf/rcen/v31n1/v31n1a05.pdf","id":"1962522944"},"keywords":["Whiteflies","Species","Biotypes","RAPD-PCR","Host plants","Insecticide resistance"],"sieverID":"5282ac4a-4204-4610-a4d7-c4f4f5d6bf5e","pagecount":"8","content":"Resumen. Para actualizar la información obtenida en el año 1997 sobre la composición de especies y biotipos de moscas blancas en cultivos anuales en el Valle del Cauca, se hizo un nuevo reconocimiento en 37 localidades de 23 municipios del departamento. Se tomaron muestras de adultos y pupas en once cultivos. Por observación de las características morfológicas de las pupas se hizo la diferenciación entre las especies Bemisia tabaci (Gennadius) y Trialeurodes vaporariorum (Westwood). La reconfirmación de la identidad de especies y la diferenciación entre los biotipos A y B de B. tabaci se realizó por medio de polimorfismo en ADN amplificado al azar (RAPD-PCR). T. vaporariorum, predominante en 1997 con 73% de las muestras, ocupa ahora un lugar secundario con apenas 22,7% de las muestras. El biotipo A de B. tabaci (en 1997 con 15,5% de las muestras) no fue encontrado en ninguno de los muestreos realizados en 2002-2003. Por el contrario, la incidencia del biotipo B se incrementó de 11,5% en 1997 a 62,6% en 2003. Su mayor presencia se evidenció además por la común ocurrencia de desórdenes fisiológicos como la maduración desuniforme en frutos de tomate, el plateado de las hojas del zapallo y la clorosis de pecíolos y vainas en habichuela, que no habían sido señalados en el departamento. Habichuela, soya, pimentón, batata y uva fueron registrados como nuevos hospedantes del biotipo B. En 14,6% de las muestras se halló mezcla de biotipo B y T. vaporariorum. El biotipo B mostró altos niveles de resistencia a insecticidas convencionales y susceptibilidad a insecticidas novedosos (neonicotinoides y reguladores de crecimiento). Se discute la importancia que estos cambios en la composición de especies y biotipos de moscas blancas pueden tener para la agricultura de la región.Palabras clave: Moscas blancas. Especies. Biotipos. RAPD-PCR. Hospedantes. Resistencia a insecticidas.Summary. To update information on whitefly species composition and occurrence of whitefly biotypes affecting annual crops in the Cauca Valley of Colombia, a new survey was conducted in [2002][2003]. Thirty-seven sites in 23 different locations were visited. Adult and pupal samples were taken from 11 crops. Differentiation between the species Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) was based on morphological characteristics of the pupae. Reconfirmation of species identity and differentiation between biotypes A and B was done by means of random amplified polymorphic DNA (RAPDs-PCR analysis). T. vaporariorum, the predominant species in 1997 (present in 73% of the samples), now occupies a secondary place detected in only 22,7% of the samples. The Biotype A of B. tabaci (15,5% of the samples in 1997) was not found in any samples taken in [2002][2003]. On the contrary, the incidence of the B biotype increased from 11,5% in 1997 to 62,6% in 2003. Increased incidence of the B biotype was also evidenced by the common occurrence of such physiological disorders as irregular ripening of tomatoes, silver-leaf symptoms on squash and pod chlorosis on snap beans. These disorders had not been recorded in the Cauca Valley before. Snap beans, soybeans, pepper, sweet potato, and grapes were recorded as new host plants for the B biotype. A mix of T. vaporariorum and biotype B was found in 14,6% of the samples. The B biotype showed high levels of resistance to conventional insecticides and susceptibility to novel insecticides (neonicotinoids and insect growth regulators). The importance that these changes in species composition and biotypes of whitefly have to the regions agriculture are discussed.Una de las especies de mosca blanca que ha sido más estudiada en los últimos años es Bemisia tabaci (Gennadius), debido a su amplia distribución geográfica, gran número de hospedantes afectados y la marcada capacidad de transmitir virus (Na-ranjo y Ellsworth 2001). En 1991, ataques severos de B. tabaci sobre alfalfa, brócoli, algodón, tomate y papa en Estados Unidos causaron pérdidas cercanas a 500 millones de dólares (Perring et al. 1993). Por medio de estudios detallados se encontró que los ataques severos se debían a la presencia de una variante de la especie deno-minada biotipo B de B. tabaci (raza Florida, raza Poinsettia, o B. argentifolii Bellows & Perring), forma totalmente diferente de la B. tabaci nativa (raza California, raza algodón, biotipo A) (Perring 1996). Morfológicamente no se pueden distinguir los dos biotipos de B. tabaci; sin embargo, existen algunas características biológicas que los diferencian: el biotipo B presenta mayor rango de hospedantes, ataca en mayores densidades de población y presenta mayor capacidad para adquirir resistencia a los insecticidas que el biotipo A (Cahill et al. 1996). Además de estos aspectos, el biotipo B induce desórdenes fisiológicos en tomate (maduración desuniforme de los frutos) y cucurbitáceas (plateado de las hojas) que no son inducidos por el biotipo A (Perring 2001). Una identificación más precisa se puede hacer a nivel bioquímico y molecular, por medio de esterasas no específicas y polimorfismo en ADN amplificado al azar (RAPD) respectivamente, ya que los dos biotipos presentan patrones de bandas que permiten diferenciarlos y determinar la presencia de cualquiera de ellos en un cultivo o región determinada (Perring 2001).En Colombia, Quintero et al. (1998) registraron mediante pruebas bioquímicas y moleculares la presencia del biotipo B de B. tabaci en poblaciones de moscas blancas colectadas en la costa Atlántica durante 1995, que habían causado pérdidas considerables en algodón debido a la excesiva excreción de melaza y en tomate por la maduración desuniforme de los frutos. A partir de este primer registro, se realizó un muestreo de moscas blancas en cultivos semestrales de Colombia y Ecuador, donde por medio de la técnica de RAPD´s se identificó a Trialeurodes vaporariorum (Westwood) como especie dominante en el trópico alto y valles interandinos de los dos países sobre cultivos de fríjol, habichuela, tomate y papa, ubicados entre 600 y 2.830 msnm. El biotipo B de B. tabaci se encontró en el trópico bajo entre 0 y 890 msnm desde Córdoba hasta la Guajira en Colombia. En el Ecuador el biotipo B fue la única especie identificada en la costa. Los hospedantes registrados para el biotipo B fueron ahuyama, berenjena, algodón, col, melón, fríjol lima, pepino, sandía, tomate y tabaco. El biotipo A sólo se halló en los departamentos de Córdoba, Sucre, Valle del Cauca y Huila sobre berenjena, tomate, tabaco, soya, brócoli y poinsetia entre 50 y 1.350 msnm (Quintero et al. 2001). Para complementar el diagnóstico, se realizaron estudios de resistencia a insecticidas por medio de la técnica de viales impregnados sobre adultos de moscas blancas en varias regiones de los dos países (Cardona et al. 2001). Las poblaciones de T. vaporariorum fueron susceptibles a metomil, medianamente resistentes a cipermetrina y muy resistentes a metamidofos, mientras que las poblaciones del biotipo B de la costa Atlántica mostraron altos niveles de resistencia a metomil y a metamidofos en la mayoría de los sitios; tan sólo tres localidades presentaron niveles de resistencia intermedia a cipermetrina. Estos resultados confirman los registros de resistencia a organofosforados, carbamatos y piretroides que han mostrado poblaciones de biotipo B en algunas regiones del mundo (Elbert y Nauen 2000; Palumbo et al. 2001).Para el caso específico del Valle del Cauca, Rodríguez y Cardona (2001) diagnosticaron la problemática de moscas blancas sobre cultivos semestrales en 15 municipios hortícolas del departamento durante 1997 y 1998, por medio de identificaciones morfológicas (cuarto ínstar ninfal), electroforesis de α-β esterasas y RAPD´s. T. vaporariorum fue la especie dominante (73% del total de las muestras tomadas) en tomate, tabaco, pepino, habichuela, zapallo, berenjena, fríjol, repollo, cilantro, pimentón, arveja, col y geranio en un intervalo de altitud entre 828 y 2.040 msnm. El biotipo A de B. tabaci se encontró en segundo lugar con 15,5% de los casos. Como hospederos para el biotipo A se registraron los cultivos de soya, tabaco, poinsettia y algodón en intervalo de altura de 850 a 950 msnm. El biotipo B ocurrió en la menor proporción del muestreo (11,5% de las muestras) sobre plantas ornamentales de poinssettia, dalia y maní forrajero mantenidos bajo cubierta entre 963 y 995 msnm. Este biotipo también fue hallado a 1.200 y 1.700 msnm sobre plantas de poinssettia importadas de los Estados Unidos y mantenidas en ambiente artificial.La presencia del biotipo B en el Valle del Cauca detectada en 1997 no tuvo mayores repercusiones iniciales en el sector hortícola del departamento. Sin embargo, como consecuencia de un período prolongado de sequía durante el 2002, en septiembre del mismo año algunos agricultores de municipios como Pradera, El Cerrito, Guacarí y Roldanillo observaron poblaciones excesivas de mosca blanca, ataques más agresivos en diversos hospedantes y desórdenes en la maduración de los frutos de tomate (síntoma denominado arco iris por los cultivadores). Estas situaciones no se habían manifestado en años anteriores en el departamento y causaron pérdidas considerables a la producción. Simultáneamente, en habichuela se detectó la ocurrencia de un desorden fisiológico (clorosis de pecíolos y vainas), sintomatología asociada a la presencia del biotipo B en Egipto (Hassan y Sayed 1999), además de síntomas típicos de un begomovirus nuevo transmitidos por B. tabaci. Surgió entonces la necesidad de actualizar la información sobre la presen-cia de especies de moscas blancas en las principales regiones hortícolas, con el fin de confirmar la posible presencia del biotipo B de B. tabaci y determinar si había cambios en la composición de especies. Además, como los agricultores incrementaron el control químico como principal estrategia de manejo, y como las moscas blancas tienen gran capacidad de adquirir resistencia a insecticidas (Denholm et al. 1996;Palumbo et al. 2001), se vio la necesidad de hacer evaluaciones de resistencia a algunos productos en adultos y ninfas en aquellas zonas en las cuales predominaba el biotipo B.El área de muestreo se dividió en cinco zonas: norte, centro-norte, centro, centrosur y sur. Se colectaron 123 muestras en 22 municipios del Valle del Cauca y uno del norte del Cauca (Tabla 1). Las visitas se realizaron entre julio de 2002 y julio de 2003. Para cada muestra se registraron los datos de altitud sobre el nivel del mar, el nombre de la planta hospedante y observaciones correspondientes a la presencia de síntomas característicos de la presencia del biotipo B en hospederos específicos.Para la identificación morfológica se colectaron en cajas de petri hojas infestadas con pupas de moscas blancas, que fueron revisadas bajo estereoscopio en el laboratorio. Las especies se clasificaron utilizando las características registradas en la clave de campo para inmaduros de moscas blancas de Centro América (Caballero 1994). Los adultos fueron colectados con aspiradores bucales y se conservaron en etanol al 70% hasta el momento de la identificación molecular, la cual partió de la extracción de ADN de insectos individuales según el método descrito por Quintero et al. (1998). El ADN de todas las muestras se amplificó por medio de RAPD´s con el cebador OPA-04. Se utilizaron como testigos los biotipos A y B de B. tabaci criados sobre Phaseolus vulgaris L. (var. ICA Pijao) a 23 o C y 70% HR y T. vaporariorum criado sobre el mismo hospedante a 21 o C y 80% HR. La comparación con los testigos de las colonias permitió la identificación de las Las evaluaciones de resistencia de adultos a insecticidas tradicionales (organofosforados, carbamatos y piretroides) se hicieron en campo mediante la técnica de viales impregnados con la dosis diagnóstico de cada producto (Rodríguez et al. 2003). Los individuos colectados directamente de las plantas en cada zona visitada se introdujeron en los viales. Seis horas después se registró el número de individuos vivos y muertos en cada vial con el fin de calcular el porcentaje de mortalidad. Se utilizaron como controles viales tratados con acetona pura. Para los insecticidas sistémicos (imidacloprid y tiametoxam) se colectaron hojas infestadas con pupas, que fueron llevadas a cuartos de cría del CIAT para esperar la emergencia de adultos. Cuando los adultos así obtenidos tenían cinco días de edad, fueron utilizados en pruebas de resistencia por el método de inmersión de pecíolos (Rodríguez et al. 2003), que consiste en sumergir pecíolos de fríjol de la variedad ICA Pijao por 16 h en soluciones acuosas de las dosis seleccionadas para cada producto, de tal manera que el insecticida sea absorbido por los pecíolos y luego traslocado a las hojas. Posteriormente, se cortaron discos de follaje de 5 cm de diámetro, que se colocaron sobre agar noble en cajas de Petri. Como testigos se utilizaron pecíolos sumergidos en agua destilada. El tiempo de exposición a los insecticidas fue de 48 h. Tanto en las pruebas con viales como en las de inmersión de pecíolos se registró el número de individuos vivos y muertos en cada repetición. En los dos tipos de prue-ba se usó un diseño de bloques completos al azar con diez (10) repeticiones por dosis de cada insecticida y 20 adultos por repetición, para un total de 200 individuos evaluados por dosis de producto.Para medir la resistencia en ninfas, se levantaron crías de cada raza a partir de hojas infestadas con pupas, colectadas en cultivos afectados en cada una de las zonas visitadas. Los adultos emergidos de las pupas se mantuvieron en plantas de fríjol variedad ICA Pijao, bajo las mismas condiciones ambientales (23 o C, 70% HR) a las cuales se crió la raza susceptible. Se estableció una población de ninfas de primer ínstar de cada raza que fuera suficiente para las pruebas, mediante la confinación por 24 h de 10 adultos de siete días de edad en jaulas pinza sobre trifolios de fríjol. Se esperaron por lo menos 10 días para que ocurriera la eclosión de los huevos. Como en cada jaula ocurren números variables de ninfas, se marcó el área de ubicación de ellas y se contó el número de individuos por repetición así obtenidos. Los trifolios con ninfas se trataron con las dosis seleccionadas de cada uno de los insecticidas por inmersión de follaje durante 5 s (Rodríguez et al. 2003). Como tratamiento control para corrección de mortalidad, se usaron trifolios infestados con ninfas inmersos en agua destilada. Luego de 26 días se contó el número de exuvias (emergencia de adultos) en el área demarcada de cada repetición. La diferencia entre el número inicial de ninfas y el número de exuvias por repetición, constituye una medida de supervivencia y se usó para calcular el porcentaje de mortalidad obtenido con cada dosis. Se usó un diseño de bloques completos al azar con cuatro repeticiones por dosis diagnóstico de cada producto.En todos los casos (adultos y ninfas), la mortalidad se corrigió por la fórmula de Abbott (Busvine 1971) y no se aceptaron pruebas con porcentajes de mortalidad en los testigos superiores al 10%. Todos los datos se sometieron a análisis de varianza previa transformación a arco seno de la raíz cuadrada de la proporción. En el trabajo se presentan las medias sin transformación. Cuando la prueba de F fue significativa, se hizo la separación de medias por Diferencia Mínima Significativa (DMS) al 5% (STATISTIX 1998) con el propósito de comparar las respuestas de las razas de campo con respecto a la respuesta de la raza susceptible de biotipo B mantenida en CIAT.Para identificar posibles cambios en los niveles de resistencia en poblaciones de adultos a través del tiempo, las mortalidades obtenidas en la primera medición de resistencia (2002B) con cada raza, en cada sitio, fueron comparadas con las mortalidades obtenidas en la segunda medición (2003B). La comparación se hizo mediante el análisis de los datos en un diseño de parcelas divididas; las mediciones periódicas de resistencia constituyeron las par-celas mayores y las razas fueron las parcelas menores. Se hizo separación de medias por DMS al 5% (STATISTIX 1998).La interpretación de los datos de mortalidad corregida se hizo mediante la siguiente escala arbitraria para clasificar la resistencia o susceptibilidad de las poblaciones: 0-50% de mortalidad, resistencia; 50-80%, resistencia intermedia; > 80%, susceptibilidad (Cardona et al. 2001;Rodríguez et al. 2003).De las 123 muestras colectadas, 108 (87,8%) fueron identificadas por morfología de pupas. T. vaporariorum y B. tabaci fueron identificadas como las dos especies de moscas blancas predominantes en la zona. Estas dos especies han sido reconocidas por la mayoría de autores como plagas causantes de grandes pérdidas económicas en distintos cultivos.De las técnicas de identificación de moscas blancas disponibles, la técnica de RAPD es una de las más adecuadas, porque es rápida y permite distinguir con precisión diferencias entre los fragmentos de ADN de los dos biotipos de B. tabaci (Perring 2001). Otra de las ventajas que posee esta técnica, es el manejo fácil de las muestras en campo sin necesidad de refrigerar (Quintero et al. 2001). Como lo han señalado diversos autores, el uso del cebador OPA-04 en el presente trabajo también reveló un alto grado de polimorfismo entre T. vaporariorum y los biotipos A y B de B. tabaci (Gawel y Bartlett 1993; Quintero et al. 1998Quintero et al. , 2001) (Fig. 1). Hubo 100% de coincidencia entre las identificaciones morfológicas y las moleculares. En algunos de los cultivos, el biotipo B estaba asociado con T. vaporariorum (Tabla 2), mezcla que no había sido registrada anteriormente en Colombia.Además de las identificaciones morfológicas y moleculares que permitieron registrar la presencia del biotipo B en el Valle del Cauca, se observaron desórdenes fisiológicos característicos causados por este biotipo tales como la maduración desuniforme de los frutos de tomate y el plateado de las hojas de zapallo. Es importante vo (Fig. 4). Este desorden (conocido en inglés como chlorotic pod), fue asociado a la presencia del biotipo B en cultivos de habichuela en Egipto (Hassan y Sayed 1999). La situación en el departamento del Valle se complicó además, con la aparición de síntomas de una enfermedad causada por un nuevo begomovirus transmitido por el biotipo B en habichuela, al cual Morales et al. (2002) denominaron Virus del arrugamiento foliar del fríjol. Las plantas afectadas por este virus muestran arrugamiento foliar severo y amarillamiento moderado (Fig. 5). Estos begomovirus son capaces de atacar gran cantidad de especies cultivadas, debido a que son transmitidos de malezas a cultivos por adultos y ninfas de B. tabaci (Morales 2001). La alta incidencia de begomoviurs en las plantaciones de habichuela revela el gran potencial epidemiológico que estos virus transmitidos por B. tabaci han demostrado poseer en otras regiones tropicales y subtropicales del mundo (Morales et al. 2002). Los resultados del presente estudio para el cultivo de habichuela, originaron el desarrollo de investigaciones encaminadas a la búsqueda de fuentes de resistencia al begomovirus por parte del CIAT, como alternativa de manejo para el problema diseminado en las regiones hortícolas del departamento, ya que a pesar de que existen fuentes de resistencia a begomovirus en fríjol común, éstas no han sido usadas para mejorar variedades de habichuela que satisfagan las características agronómicas y de calidad que demandan los productores del Valle del Cauca (Morales et al. 2002).Los porcentajes de mortalidad corregida obtenidos con metamidofos en los tres sitios de estudio fueron inferiores al 50% y destacar que la presencia de estas sintomatologías son indicativos de la presencia de biotipo B en una nueva área geográfica (Perring 2001).En habichuela (hortaliza de importancia económica en el departamento), se registra por primera vez la aparición de un desorden fisiológico caracterizado por la decoloración de los tejidos jóvenes y las vainas de la planta; esta sintomatología es ocasionada por el daño que originan poblaciones altas del biotipo B en el culti- (2001), quienes detectaron altos niveles de resistencia a metamidofos en todas las razas de biotipo B evaluadas en la costa Atlántica. Se registraron niveles de resistencia altos a monocrotofos en la Unión e intermedios en Rozo. La raza de Santa Helena exhibió resistencia intermedia (50-80% de mortalidad corregida) a este ingrediente activo. Los niveles de resistencia a organofosforados son frecuentes en razas de T. vaporariorum y B. tabaci debido al excesivo uso de este grupo químico por parte de los agricultores en el departamento (Rodríguez y Cardona, 2001;Rodríguez, et al. 2003).La raza de La Unión presentó resistencia intermedia a metomil en tanto que la de Rozo, a pesar de haber sido catalogada como susceptible en las dos mediciones de resistencia, manifestó disminución significativa en la susceptibilidad en el 2003. Para Santa Helena, la respuesta a metomil fue de resistencia intermedia en la primera medición y de susceptibilidad en la segunda (Tabla 3). La resistencia del biotipo B a metomil también fue encontrada en varias razas de Córdoba, Atlántico y Sucre por Cardona et al. (2001) y confirma la mayor capacidad de este biotipo para tolerar el carbamato en comparación con T. vaporariorum, especie que es muy susceptible a metomil en diversas regiones de Colombia y el Valle del Cauca (Cardona et al. 2001;Rodríguez et al. 2003). En las evaluaciones de resistencia con carbofuran se detectó resistencia alta en Santa Helena y La Unión e intermedia en Rozo. Con carbosulfan, en la primera medición Rozo y Santa Helena fueron tan susceptibles como la raza CIAT, durante la segunda evaluación las poblaciones mostraron aumentos significativos en su nivel de tolerancia a este producto y pasaron a ser medianamente resistentes. La Unión mostró resistencia a carbosulfan en las dos evaluaciones (Tabla 3). De acuerdo con los resultados de Rodríguez et al. (2003), carbosulfan era uno de los productos eficientes para el control de moscas blancas en zonas como Rozo; la eficiencia se explicaba por la presencia de poblaciones de T. vaporariorum susceptibles a ese producto; no obstante, la mayor incidencia del biotipo B en esta región, hace que el insecticida aparezca ahora como poco efectivo para el control de adultos.Se encontraron altos niveles de resistencia a cipermetrina en Rozo e intermedios en La Unión. Hubo una disminución significativa en la susceptibilidad a este piretroide en la raza de Santa Helena durante la evaluación realizada en el 2003 (Tabla 3). La resistencia a cipermetrina también ocurre en razas de biotipo B de Sucre y Córdoba (Cardona et al. 2001). Para el caso del Valle del Cauca, en los registros de Rodríguez et al. (2003) cuando la especie dominante en Santa Helena era T. vaporariorum, se había manifestado susceptibilidad y el producto figuraba como eficiente para el control de moscas blancas. Los resultados del presente trabajo sugieren que cuando ocurre un cambio en la composición de especies en una región determinada, el uso de este tipo de piretroides es poco efectivo para el control de adultos. La raza colectada en La Unión fue susceptible a cialotrina; las de Rozo y Santa Helena, catalogadas como susceptibles en el 2002, pasaron a ser medianamente resistentes al producto en el 2003. Todas las razas del biotipo B evaluadas con bifentrin presentaron diferencias significativas con respecto al testigo susceptible CIAT y se clasificaron como resistentes al piretroide (Tabla 3).Los cambios en la resistencia de adultos de biotipo B a insecticidas tradicionales (organofosforados, carbamatos y piretroides), están relacionados con el historial de exposición a insecticidas para el control de mosca blanca y otras plagas en las regiones con mayor actividad agrícola en el departamento. Los niveles de resistencia a insecticidas informados en este trabajo, señalan que existe una problemática de moscas blancas difícil de manejar en las zonas más afectadas por el biotipo B en el departamento. También aportan información fundamental para el diseño de futuros planes de control químico del biotipo B, donde los insecticidas modernos (neonicotinoides y reguladores de crecimiento), juegan un papel fundamental. Estos ingredientes activos constituyen herramientas importantes para una alternativa química que, manejada adecuadamente en programas de rotación y aplicada con criterio a niveles de población cercanos a umbrales de acción, pueden hacer parte del paquete de manejo integrado de moscas blancas en zonas con ataques críticos del insecto tales como Rozo, Santa Helena y La Unión. La asociación de la presencia del biotipo B con desórdenes fisiológicos y begomovirus, complica aun más la situación de cultivos como la habichuela, para el cual es necesario incluir la resistencia varietal al virus como pilar fundamental en el manejo integrado de la plaga, debido a la mayor importancia socio-económica que los begomovirus pueden cobrar en Colombia (Morales et al. 2002). ","tokenCount":"3959"} \ No newline at end of file diff --git a/data/part_1/1233220769.json b/data/part_1/1233220769.json new file mode 100644 index 0000000000000000000000000000000000000000..f909e491c039e926c33dfb23453b9a2565491720 --- /dev/null +++ b/data/part_1/1233220769.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"cc4a83f32e76c725cffdf7bfbbedf15c","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/925e59d8-a6cc-4bb7-896d-6121f100f88d/retrieve","id":"1762534300"},"keywords":[],"sieverID":"0c2ce6d1-93ca-4c21-a0db-0593adaf17a2","pagecount":"34","content":"The Nexus Project is a collaboration between IFPRI and its partners, including national statistical agencies and research institutions. Our aim is to improve the quality of social accounting matrices (SAMs) used for computable general equilibrium (CGE) modeling. The Nexus Project develops toolkits and establishes common data standards, procedures, and classification systems for constructing and updating national SAMs. This addresses the need for greater transparency and consistency in SAM construction to strengthen model-based research and policy analysis in developing countries. Nexus SAMs allow for more robust cross-country comparisons of national economic structure, especially agriculture-food systems. The Nexus Project's guiding principles are that all data should be traceable to original sources and/or assumptions, and that all SAMs should be freely available online. Greater transparency and accessibility should facilitate more data validation and participation of the modeling community. Statistics are continuously being revised and errors are often only identified when data is used for analysis, and so we welcome your suggestions on how the SAMs can be improved to reflect new and/or better information.A national SAM is an economy-wide data framework that captures the detailed economic structure of a country. A SAM is a square matrix in which each account is represented by a row and a column. 1 Each cell reflects a payment from the column account to the row account, i.e., incomes appear along rows and expenditures along columns. Double-entry accounting requires that, for each account, total revenue (row total) equals total expenditure (column total). Table 1 shows an aggregate SAM, with verbal explanations in place of numbers.Nexus SAMs distinguish between \"activities\" (entities that carry out production) and \"commodities\" (representing markets for goods and non-factor services). SAM flows are valued at producer prices in activity accounts and at market prices in commodity accounts, i.e., inclusive of indirect taxes and transactions cost margins. Commodities consist of activity outputs, either exported or sold domestically, and imports. In the activity columns, payments are made to commodities (intermediate demand) and factors of production (value-added, equal to operating surplus and compensation of employees). In the commodity columns, payments are made to domestic activities, the rest of the world, and various tax accounts (for domestic and import taxes).The government in a Nexus SAM is disaggregated into a core government account and various tax collection accounts. Tax accounts are necessary since otherwise the economic interpretation of certain payments becomes ambiguous. Direct payments between the government and other domestic institutions are reserved for transfers. Payments from the government to factors are captured in the government services activity. Government consumption demand is a purchase of the output from the government services activity, which in turn, pays labor. Domestic nongovernment institutions: Domestic nongovernment institutions consist of households and enterprises. Enterprises earn factor incomes (reflecting their ownership of capital) and receive transfers from other institutions. Enterprise incomes are used for corporate taxes, enterprise savings, and transfers to other institutions. Unlike households, enterprises do not demand commodities. In the SAM, enterprises are an aggregation of financial and nonfinancial corporations, as defined within the System of National Accounts (SNA).Household consumption: Nexus SAMs distinguish between home (own) consumption of activities and marketed consumption of commodities by households. Home consumption, which appears in the SAM as payments from household accounts to activity accounts, is valued at producer prices, i.e., without marketing margins and sales taxes that may be levied on marketed commodities. Final household consumption of marketed commodities appears as payments from household accounts to commodity accounts, valued at consumer prices including marketing margins and taxes. Activities and commodities: Standard Nexus SAMs separate domestic production into 42 activities, as shown in Table 2. 2 Each activity represents a group of industries from the International Standard Industrial Classification system (ISIC Revision 4). The 4-digit ISIC codes corresponding to each SAM activity are shown in Table A1 in the appendix. Agricultural activities are further disaggregated using the FAO's classification system, as shown in Table A2 in the appendix. Information on production technologies comes from national input-output tables (IOT) or supply-use tables (SUT). Activities and commodities have a one-to-one mapping based on a concordance between ISIC industries and Harmonized System products (HS Version 2012). Nexus SAMs separate factors into three broad categories: labor, land and capital. Labor is further disaggregated across three education-based categories, as shown in Table 3. There is greater consistency in education categories across countries since these are based on the number of years of schooling that workers report having completed (see the notes provided in Table 3). Information on total labor value-added as a share of sectoral gross domestic product (GDP) is drawn from national IOTs or SUTs. This is disaggregated across labor subcategories 2 Nexus SAMs are aggregations of IFPRI's detailed country SAMs, which adopt a standard classification (90 activities/commodities, 13 factors, and 15 household groups). Some SAMs are even more detailed, but all can be aggregated to the standard 90/13/15 Nexus structure (and to the 42/5/10 structure documented here). 3 The lengthy concordance between Nexus SAM commodities and HS 2012 codes are available upon request.using wage and salary data as well as imputed earnings by unpaid family members as reported in household and labor force surveys (see Section 5).Capital is gross operating surplus (GOS), plus a portion of the mixed income reported in national IOTs or SUTs that is not assigned to either labor or land factors. Crop and livestock capital are paid directly to households, while capital earnings in other sectors are paid to enterprises. Households: Nexus SAMs separate national populations into 10 representative household groups, as shown in Table 4. Rural and urban households are distinguished based on a country's official definition of these areas and may vary between countries. Rural and urban households are further disaggregated into per capita consumption quintiles. Quintiles are defined at the national level, meaning that rural and urban quintiles are comparable and that the combined population of each quintile is equal to a fifth of the national population. Per capita consumption groups are not adjusted for adult-equivalency and, like national accounts, include all (most) consumption items reported in a country's household survey (see Section 5). The latter implies that the consumption estimates and quintiles in Nexus SAMs may deviate from poverty-oriented consumption measures and groupings, since these typically use adult equivalence scales, exclude \"nonessential\" items (e.g., airplane tickets), and impute a \"use value\" for durable and semidurable assets (in addition to housing). The remaining accounts in the Nexus SAMs are shown in Table 5. These include the transaction costs of moving goods between producers, domestic markets, and national borders, as well as the various indirect taxes imposed on marketed commodities. The previous section outlined the broad structure of a Nexus SAM, including its standardized classification of accounts. This section describes the information included in each row and column entry in the SAM. One advantage of Nexus SAMs is that their Macro SAMs have a common classification or definition of cell entries. This section describes each of the blocks of cells in the Macro SAM following the numbered sequence shown in Table 8.The Macro SAMs are compiled using three key data sources. First, the International Monetary Fund's (IMF) Government Finance Statistics (GFS) database provides detailed information on government revenues and expenditures and follows a standardized accounting framework. Nexus SAMs use the 2014 GFS Manual (GFSM) (IMF 2014b) and a mapping between GFSM codes and macro SAM accounts can be found in Definition: Value-added is the returns earned by factors during the production process, such as labor wages and salaries, land rents, and capital profits. Land and capital includes gross operating surplus (GOS), part of which may be reported as \"mixed income\" in national accounts or IOT/SUTs.Estimation: Total value-added by activity is estimated in two steps. First, national accounts report the level of gross domestic product (GDP measured in basic prices) for aggregate sectors and these are assigned to groups of SAM activities. Second, aggregate GDP estimates are disaggregated to the level of the SAM activities using information on sub-sectoral production from sources beyond national accounts. The value of activity level agricultural production is estimated using production quantity and producer price data from national Ministries of Agriculture and/or the FAO's FAOSTAT database (FAO 2021). Total value-added in each agricultural sector is estimated by multiplying the ratio of GDP to gross output (derived from IOT/SUTs) by the estimated value of activity gross output. Similarly, information on activitylevel industrial production is derived from manufacturing or industrial surveys (or possibly from changing weights of producer price indices).Labor value added is disaggregated across the worker categories in Table 3 using national household and/or labor force survey data. 4 Workers in these surveys report their sector of employment, their earnings (wages, salaries, in-kind, etc.), and their education levels. Earnings from farm and non-farm enterprises are usually reported at the household level in surveys, and in such cases, these earnings are allocated across individual household members based on their reported employment status and sector of employment. It is assumed that paid and unpaid family members earn equal shares of household enterprise incomes (net of input costs).Definition: Net taxes on production (or subsidies if value is negative).The total value of activity taxes (atax) is taken from the IMF's GFS and includes \"taxes on payroll and workforce\" (GFSM code 112). This is disaggregated across activities using information from national tax authorities and/or from the IOT/SUT. For the latter, tax rates are derived from the IOT/SUT and then applied to the sectoral value of GDP and intermediate payments (see Entries 1 and 2). This provides an initial estimate of net activity tax payments, which are then scaled to match the total value of activity tax collections.Definition: Value of domestically produced goods and services that are supplied to markets, either for domestic use or for export. Marketed output is net non-marketed or home produced and consumed goods and services (see Entry 18).Estimation: This is a residual balancing item for activities. The value of gross output less the value of non-marketed consumption is paid from each activity to its corresponding commodity, thereby balancing activity rows and columns.Definition: Trade and transport costs associated with moving goods between producers, markets and national borders, either for domestic, import or export trade. For example, exporters incur transport fees when moving goods from their factories to the national border, whereas importers incur fees when delivering goods to domestic markets.Estimation: There are two approaches to estimating transaction costs in Nexus SAMs. First, margin payments as a share of total demand are estimated using past IOT/SUTs. These rates are then applied to total demand estimates in the SAM, including exports, to derive new transaction costs. Second, margins are estimated by the gap between producer and market prices, net of indirect taxes, using price data supplied by national statistical agencies. The first approach is preferred and is the one typically used for Nexus SAMs (see detailed description of each SAM's data sources for information on which approach was used). Finally, transaction cost margins generate income for trade and/or transport activities.Definition: All indirect taxes imposed on goods and services (or subsidies if value is negative).Estimation: Nexus SAMs separate taxes on products into three categories: sales taxes (stax), export taxes (etax), and import tariffs (mtax) (see Table 4). The total value of tax collections is taken from the IMF's GFS. Sales taxes are \"taxes on goods and services\" (GFSM code 114), which is a summation of various tax instruments, most importantly value-added taxes (GFSM 11411), sales taxes (GFSM 11412), and excise duties (GFSM 1142). Import tariffs (mtax) are \"taxes on international trade and transactions\" (GFSM 115), excluding \"taxes on exports\" (GFSM 1152), which are assigned to export taxes in the SAM.Tax revenues are disaggregated across commodities using national tax authority data and/or tax rates estimated from the IOT/SUT. If the IOT/SUT is outdated, then weighted import tariff rates are taken from the United Nations Conference on Trade and Development's Trade Analysis and Information System (TRAINS) (UNCTAD 2021). Tax rates are applied to the level of domestic sales, imports or exports (see Entries 7 and 32). This provides an initial estimate of commodity level tax payments, which are then scaled to match the total value of each tax revenue category, as estimated above.Definition: Value of goods and services imported from abroad, less the cost of carriage, insurance and freight.Estimation: The total value of imports is taken from national accounts, and this is then disaggregated into total goods and total services using current account data from the IMF's BOPS (i.e., BPM6 codes BMG for \"goods, debit\" and BMS for \"services, debit\"). BOPS provides detailed information on services imports by commodity, and this is used to assign imports to service commodities in the SAM (see Table A5 in the appendix). Goods imports are disaggregated across commodities using 6-digit HS gross import flows from the United Nations Commodity Trade Statistics (COMTRADE) database (UNSD 2021).Definition: Capital payments to enterprises after paying factor taxes and after transfers to the rest of the world (see Entries 10 and 11). Payments equal gross operating surplus (GOS) generated outside the crop and livestock sectors (see direct payments to households below). GOS includes the value of consumption of fixed capital during the production process.Estimation: This is a residual balancing item for the capital account. Total capital income less capital taxes and foreign transfers is paid to the enterprise account, thereby balancing capital's row and column.Definition: Labor, land, and crop/livestock capital payments to households, after paying factor taxes and making transfers to the rest of the world (see Entries 10 and 11). These payments equal compensation to workers, returns to land, and the capital earnings (i.e., GOS) generated in the crop and livestock sectors.Estimation: This is a residual balancing item for labor and land. Total factor incomes less factor taxes and foreign transfers are paid to individual household accounts, thereby balancing these factors' rows and columns. Labor payments to households are disaggregated across household and labor categories using information from national household or labor force surveys (see Entry 2 on treatment on workers' shares of household enterprise incomes). Land and livestock capital payments to households are disaggregated using survey households' reported revenues from agricultural crops and livestock.Definition: Direct taxes paid by capital to the government.The value of capital tax collections is taken from the IMF's GFS. Factor taxes are \"taxes on property\" (GFSM code 113), which is a summation of various taxes, including wealth and estate taxes and capital levies.Definition: Labor, land and capital incomes paid to foreign households or enterprises. For example, workers belonging to foreign households may earn some or all of their labor incomes in domestic industries and this income may be repatriated back to workers' home countries.Similarly, some profits generated by foreign-owned mining companies may be repatriated to company headquarters in another country.Estimation: Factor transfers to the rest of the world are from the IMF's BOPS. Labor transfers are \"compensation of employees, debit\" (BPM6 code BMIPCE). Capital transfers are \"investment income, debit\" (BPM6 BMIPI), which includes, amongst others, payments on equity and investment funds to foreign investors.Definition: Indirect capital payments by enterprises to households, after paying corporate taxes and saving and making transfers to government and the rest of the world (see Entries 13, 14, 15 and 16). This includes indirect gross operating surplus paid from the earnings of household nonfarm enterprises.Estimation: This is a residual balancing item for the enterprise account. Total enterprise income less taxes and transfers is paid to households, thereby balancing the enterprise row and column. Enterprise earnings are paid to households based on households' earnings from nonfarm enterprises, dividends and private pension funds as reported in national household surveys.Definition: Transfers from enterprises (financial and non-financial corporations) to governments, other than direct tax payments (see Entry 13). For example, domestic banks may provide loans to the government, or parastatal enterprises may pay dividends or repay loans to the general government. Enterprises may also contribute to public social welfare schemes on behalf of their employees.Estimation: Transfers received by the government from financial and non-financial corporations are taken from the IMF's GFS. This is \"property income\" (GFSM code 141), which includes, amongst others, interest and dividend payments and payments for rented public property. Transfers from enterprises also include \"other taxes\" (GFSM 116), which are either paid by business or are unidentifiable. Finally, enterprises include employer contributions to social security (GFSM 1212) and other social schemes (GFSM 1222).Definition: Corporate and other direct taxes paid by enterprises (financial and non-financial corporations) to the government.The total value of taxes collected from enterprises is taken from the IMF's GFS. This includes taxes \"payable by corporations and other enterprises\" (GFSM code 1112) and \"other taxes on income, profits, and capital gains\" (GFSM 1113).Definition: Domestic private savings by enterprises (financial and non-financial corporations). This includes reinvested earnings as well as the value of the consumption of fixed capital (i.e., provision for capital depreciation).Estimation: Total domestic private savings is back-calculated by subtracting public and foreign savings from the value of gross capital formation (see Entries 21, 26, 29 and 36). Unfortunately, few developing countries have the detailed national accounts data needed to disaggregate domestic private savings across corporations (enterprises) and households. Accordingly, in the absence of this information, the Nexus SAMs assume that enterprises and households have similar savings rates, after enterprises have subtracted their allowance for the depreciation of working capital.Definition: Secondary income transfers from domestic financial and non-financial enterprises to the rest of the world.The value of enterprise foreign payments comes from the IMF's BOPS. This includes \"other transfers, debit\" (BPM6 code BMISOOT).Definition: Activity output that is both produced and consumed within the household, i.e., \"own\" or \"home\" consumption.Estimation: Non-marketed consumption is estimated in three steps. First, the share of total private consumption for each Nexus SAM commodity is estimated using aggregate private consumption from national accounts and commodity-level consumption from national household surveys. Second, the share of home consumption in total consumption of each commodity is estimated using the household surveys, and this share of then used to separate total commodity consumption into marketed and non-marketed components. Third, home consumption is disaggregated across household groups using household survey data. Home consumption is defined as any products not purchased in markets, including the consumption of both home produced products and products received \"in-kind\" from other households (i.e., without monetary payment).Definition: Commodities that are purchased in markets and consumed by households.Estimation: Marketed consumption is estimated in three steps. First, the share of total private consumption for each Nexus SAM commodity is estimated using aggregate private consumption from national accounts and commodity-level consumption from national household surveys. Second, the share of home consumption in total consumption of each commodity is estimated using the household surveys, and this share of then used to separate total commodity consumption into marketed and non-marketed components. Third, marketed consumption is disaggregated across household groups using household survey data. Marketed consumption is defined as any products purchased in markets, i.e., not home produced or received \"in-kind\" from other households.Definition: Payments by household to the government other than for direct taxes (see Entry 19). For example, households may contribute to public social welfare schemes, including retirement and healthcare funds.The total value of transfers is taken from the IMF's GFS. This is social security and other social contributions, including payments by employees (GFSM codes 1211 and 1221), self-employed and unemployed people (GFSM 1213), and unallocable and imputed contributions (GFSM 1214 and 1223). Household transfers to government also include various other revenue sources, including from sales of goods and services (GFSM 142), and fines penalties and forfeits (GFSM 143).Definition: Direct income or personal taxes paid by households. For example, households often \"pay as you earn\" (PAYE) taxes to the government based on their wages and salaries.Estimation: Total tax collection is taken from the IMF's GFS. It includes taxes on income, profits and capital gains that are \"payable by individuals\" (GFSM code 1111). This is disaggregated across the household groups in the Nexus SAMs using personal income tax rates reported by households in the national household survey. If tax data if not available or is poorly captured in the survey, then incomes from secondary/tertiary educated labor is used as a proxy for disaggregating total direct tax collections (see Table 3).Definition: Domestic private savings by households.Estimation: Total domestic private savings is back calculated by subtracting public and foreign savings from the value of gross capital formation (see Entries 21, 26, 29 and 36).Unfortunately, few countries have the detailed national accounts data needed to disaggregate domestic private savings across enterprises (corporations) and households. Accordingly, in the absence of detailed information, the Nexus SAMs assume that enterprises and households have similar savings rates, after enterprises have subtracted their allowance for the depreciation of working capital. Household savings are then disaggregated across household groups in the SAM using information from national household surveys. Although survey households often report the value of deposits made into bank accounts or the amount of savings during the year, including private pension contributions, this information is often poorly captured. In such cases, proxy indicators are derived from household earnings from enterprises and incomes from more educated labor.Definition: Secondary income transfers from households to the rest of the world.The value of household foreign payments comes from the IMF's BOPS. This includes \"personal transfers, debit\" (BPM6 code BMISOPT). Transfers are disaggregated across household groups in the SAM using information from national household surveys that capture the amount of remittances households sent abroad.Definition: Government recurrent spending on goods and services. Public consumption demand by the government institution is the primary source of demand for services produced by government activities, which consist of public administration, education, and health and social work.The total value of government consumption is drawn directly from a country's national accounts data. This is cross-checked against recurrent expenditures in the IMF's GFS, which reports government's \"compensation of employees\" (GFSM code 21), \"use of goods and services\" (GFSM 22), and \"consumption of fixed capital\" (GFSM 23). Total consumption is disaggregated across commodities using budget shares derived from the IOT/SUT, and then adjusted to reflect changes in the composition of supply of public administration, education, and health and social work services.Definition: Transfers from the government to enterprises (financial and non-financial corporations). For example, the government may pay interest or repay the principal on a loan from a domestic bank, or the government may lend money to parastatal companies.Estimation: Transfers paid by the government to financial and non-financial corporations are taken from the IMF's GFS. This is interest payments to nongovernment residents (GFSM code 242), subsidies to public corporations and private enterprises (GFSM 25) and \"other expenses\" (GFSM 28). The latter includes property expenses like dividend and rental payments.Definition: Payments by the government to households. For example, governments may pay households from a public pension or cash transfer scheme.The total value of transfers is taken from the IMF's GFS. This is social benefits (GFSM code 27), which includes social security, social assistance, and other employmentrelated social benefits, each of which may be paid in cash or in-kind.Definition: Recurrent fiscal surplus for the government (of deficit if cell entry is negative). Note that this is the difference between revenues and recurrent expenditures, i.e., before public capital investment. Recurrent expenditures include public consumption spending (see Entry 25) and transfers to domestic and foreign institutions (see Entries 24, 25 and 27).Estimation: This is the residual balancing item for the government account, although it crosschecked against the difference between total revenues and total recurrent expenses in the IMF's GFS (GFSM codes 1 and 2). Any deviation from GFS data is due to the Nexus SAM giving preference to statistics from national accounts (for indirect tax collections and government consumption spending, see Entries 3, 6 and 23) and to the IMF's BOP database (for foreign transfers, see Entries 27 and 35).Definition: Transfers from the government to the rest of the world. For example, government may provide foreign aid to other countries, or must pay interest or repay loans to foreign governments and financial enterprises.The value of government foreign payments comes from the IMF's BOPS, and is cross-checked against the IMF's GFS. BOPS-based payments include \"general government transfers, debit\" under secondary income (BPM6 code BMISG). GFS-based payments include interest payments to nonresidents (GFSM code 241), and grants paid to foreign governments and international organizations (GFSM 26).Definition: Revenues transferred from individual tax accounts to the government account.Estimation: This is a residual balancing item for the tax accounts in the SAM. The distinction between taxes and the government account allows the SAM to disaggregate indirect taxes on commodities, i.e., sales taxes, export taxes, and import tariffs (see Entry 6).Definition: Combination of gross fixed capital formation (GFCF) and changes in stocks or inventories. GFCF is the spending on commodities involved during the investment in capital stock. For example, investment typically involves the purchase of machinery, vehicles and equipment, as well as payments for constructing new factories and storage facilities. Changes in stocks occur when businesses carry-over stock for sale in subsequent years, or when they sell products in the current year that were produced in previous years. Positive values in the SAM indicate an accumulation of stocks and negative values indicate a depletion of stocks. Finally, note that the Nexus SAMs combine private, public and foreign investment, just as they combine private, public and foreign savings (see Entries 15, 21 and 26).The Nexus SAMs distinguish between GFCF (s-i) and changes in stocks (dstk). SAM entries are determined in two steps. First, the total value of GFCF and stock changes are taken from official national accounts data. Second, these total values are disaggregated across commodities using expenditure shares from the IOT/SUT. In some cases, countries report the composition of GFCF on an annual basis, in which case this information is used in place of the IOT/SUT shares. The same is true for stock changes, although most countries only report detailed stock changes when a new IOT/SUT is produced during the rebasing of national accounts. Although commodity level stock changes in Nexus SAMs may deviate from national accounts, this may be less concerning since these flows are typically exogenous within economywide models.Definition: The accumulation of stocks for sale in subsequent years are added to the amount of savings available in the country (and a depletion of stocks reduces savings). For example, if an activity produces a machine this year for sale next year then they are effectively saving the value of the machine (or investing in future sales). This transfer of total stock changes to the savings account was not shown in Table 1, because it nets to zero in SAMs that aggregate gross fixed capital formation (GFCF) and changes in stocks.Estimation: This is a residual balancing item for the change in stocks account (see Entry 29). The total value of stock changes is paid to the savings account. A positive value means a net accumulation of stocks and a negative value means a net depletion.Definition: Value of goods and services exported abroad.The total value of exports is taken from national accounts, and this is then disaggregated into total goods and total services using current account data from the IMF's BOPS (i.e., BPM6 codes BXG for \"goods credit\" and BXS for \"services credit\"). BOPS provides detailed information on services exports by commodity and this is used to assign exports to service commodities in the SAM (see Table A5 in the appendix). Goods exports are disaggregated across commodities using 6-digit HS gross export flows from the United Nations Commodity Trade Statistics (COMTRADE) database (UNSD 2021).Definition: Labor, land and capital incomes received from the rest of the world. For example, workers belonging to domestic households may earn some or all of their labor incomes working in a foreign country and this income may be repatriated. Similarly, domesticallyowned companies may repatriate profits earned abroad.Estimation: Factor transfers from the rest of the world are from the IMF's BOPS. Labor receipts are \"compensation of employees, credit\" (BPM6 code BXIPCE). Capital receipts are \"investment income, credit\" (BPM6 BXIPI), which includes, amongst others, income on foreign equity and investment funds.Definition: Secondary income transfers from the rest of the world to domestic financial and non-financial enterprises.The value of enterprise foreign receipts comes from the IMF's BOPS. This includes \"other transfers, credit\" (BPM6 code BXISOOT).Definition: Secondary income transfers from households to the rest of the world. For example, households may receive remittance incomes from family members working abroad.The value of household foreign incomes comes from the IMF's BOPS. This includes \"personal transfers, credit\" (BPM6 code BXISOPT). Transfers are disaggregated across household groups in the SAM using information from national household surveys that capture the amount of remittances households received from abroad.Definition: Transfers from the rest of the world to the government. For example, government may receive foreign aid from other countries.The value of government foreign receipts comes from the IMF's BOPS, and this is cross-checked against the IMF's GFS. BOPS-based receipts include \"general government transfers, credit\" under secondary income (BPM6 code BXISG). GFS-based payments include grants received from foreign governments and international organizations (GFSM code 131 and 132).Definition: Current account balance equal to total foreign capital or savings inflows.Estimation: This is the residual balancing item for the rest of world account, although it crosschecked against the current account balance reported in the IMF's BOPS (BPM6 code 1). Any deviation from BOPS dataand this is usually smallis due to the Nexus SAM giving preference to total the value of imports and exports reported in national accounts (see Entries 7 and 31).Nexus SAMs are constructed in three stages using the IFPRI SAM Building Toolkit. The toolkit uses a standardized template in Microsoft-Excel® to construct and export an unbalanced SAM to a compilation and balancing program that is executed in the General Algebraic Modeling System (GAMS).During the first stage of the SAM Toolkit, a Macro SAM is constructed using the data described in previous sections. The three main data sources for the Macro SAM are national accounts, GFS, and BOPS. Unfortunately, in many developing countries, these three data sources are not fully reconciled. For example, the total value of exports and imports in national accounts may not exactly match the values appearing in BOPS. Preference is given to certain data sources. For instance, Nexus SAMs always use national accounts data instead of trade data from BOPS or government consumption spending estimates from GFS. Similarly, preference is given BOPS over GFS when estimating transfers between the government and the rest of the world. Row and column totals in the Macro SAM are reconciled manually through various residual balancing items, as listed below:• Marketed supply balances the activity accounts (see Entry 4)• Transfers to households or enterprises balances the factor accounts (see Entry 8 and 9)• Transfers to households balances the enterprise account (see Entry 12)• Household and government savings balance the household and government accounts (see Entries 21 and 26) • Foreign savings balances the rest of world account (see Entry 36).During the second stage, income and expenditure shares derived from surveys and other sources are used to disaggregate the Macro SAM entries across detailed activities, commodities, factors, and households. Sectoral and product data is used to disaggregate production and trade, and survey data is used to disaggregate factor and household incomes and consumer demand. There are always imbalances between the level of supply and demand for commodities and between household incomes and expenditures. These imbalances are manually checked for misclassification issues and logical errors in data collection and reporting. However, imbalances invariably remain, and so Nexus SAMs use cross-entropy estimation techniques to reconcile row and column totals at the detailed commodity and household level. For more information on cross-entropy-based reconciliation of SAM accounts, see Robinson et al. (2001).The 2021 Zambia SAM follows the Standard Nexus Structure (see Section 2). Table 9 lists the specific data sources used to construct the SAM. Most sources are consistent with those used in Standard Nexus SAMs (see Section 3).Activities: Zambia's national accounts were rebased using a 2010 base year. The SUT was aggregated to the Nexus activities using the ISIC Revision 4 concordance (see Table A1 in the appendix). National accounts provided GDP estimates for 19 sectors, which were further disaggregated to the Nexus 68 sectors using crop and livestock production and producer price data from FAOSTAT (see Table A2) and gross output values for manufacturing subsectors from Zambia's 2010 SUT. National accounts provided sufficient detail for service sector GDP. The final SAM was aggregated to the standard 42 activities for dissemination. Commodities: National accounts report GDP by expenditure group, i.e., private and public consumption, investment demand, and exports and imports. These groups were disaggregated across the Nexus commodities using the following data:• Six-digit COMTRADE and itemized BOPS data were used to disaggregate international goods and services trade, respectively. • The 2015 Living Conditions Monitoring Survey (LCMS), which is a nationallyrepresentative household survey distinguishes between marketed and own consumption spending, and this information was used to disaggregate total private consumption spending across activities and commodities.• The 2010 SUT provided information on the breakdown of public consumption spending across public administration, health and social work, and education. This was updated using GDP estimates for public administration, education and health. • Initial indirect tax rates were first estimated from the 2010 SUT and then adjusted using more recent data on tariffs and VAT collections by commodity. Rates were then scaled uniformly to match total revenues by tax instrument. • Transaction cost margins (as a share of commodity supply) were estimated from the 2010 SUT.Labor: The SUT separates sectoral GDP into compensation of employees, and gross operating surplus. Labor value-added was disaggregated using sector-level worker and household income shares derived from the LCMS. This includes wage earnings, as well as farm and non-farm enterprise revenues. The latter were apportioned equally to individual household members based on their reported employment status and sector of employment. For example, if more than one household member reports being employed in agriculture, then each of these members are assigned an equal share of the households' reported farm earnings.Households: Household incomes and expenditures were disaggregated across representative household groups using information from the LCMS. Households receive factor incomes based on reported earnings of individual household members. The value-added generated by crop land and livestock capital were paid to household groups based on their reported farm enterprise revenues. Direct tax payments were assumed to be proportional to secondary/tertiary-educated workers' wage and non-farm enterprise earnings. Finally, transfers received from the government and the rest of the world were assigned to households using information from the LCMS. More specifically, the ratio of transfer earnings to total household consumption was used to estimate initial transfer incomes, and these were then scaled uniformly across all households to match the total value of transfers appearing in government and balance of payments statistics. ","tokenCount":"5767"} \ No newline at end of file diff --git a/data/part_1/1236996181.json b/data/part_1/1236996181.json new file mode 100644 index 0000000000000000000000000000000000000000..a2aab8b68aebff22a7fd1174833c6878cdf7af2b --- /dev/null +++ b/data/part_1/1236996181.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"34108f967ed6109e6c7519a08613fe73","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/10da85f4-26ce-4d25-8838-c30c71c4afc4/retrieve","id":"-2044565812"},"keywords":[],"sieverID":"f3d9830c-bd31-4c95-a9a4-c25228cd53b1","pagecount":"38","content":"One of AE-I's WP3 tasks is to identify the potential for co-developing/upgrading business models (and the value chains (VCs) they are part of) through the integration of HLPE's agroecological principles. In order to do so, one has to first analyze the selected VCs and diagnose their current agroecological status, which constitutes the main objectives of this Rapid Agroecological Value Chain Analysis (RAVCA) guideline.The CGIAR initiative Transformational Agroecology across Food, Land and Water Systems develops and scales agroecological innovations with small-scale farmers and other food system actors in seven low-and middle-income countries. It is one of 32 initiatives of CGIAR, a global research partnership for a food-secure future, dedicated to transforming food, land, and water systems in a climate crisis. www.cgiar.org/initiative/31-transformational-agroecology-across-food-land-and-water-systems/The Agroecology Initiative (AE-I) follows the High-Level Panel of Experts' (HLPE)'s (2019) definition of agroecology, which in essence holds that it is a dynamic concept encompassing a scientific discipline, an array of sustainable agricultural practices and a social movement.The HLPE (2019) recommends thirteen principles for the agroecological transition of food systems involving technological and institutional innovations that go beyond the farm scale (see Table 1, and Figure 1 and Figure 2 below). AE-I's third work package (WP3 -\"Inclusive business models and financing strategies\"), constitutes one of AE-I's two adaptive scaling strategies, i.e., along with WP4 -\"Strengthening the policy-and institutional-enabling environment\". One of AE-I's WP3 tasks is to identify the potential for co-developing/upgrading business models (and the value chains (VCs) they are part of) through the integration of HLPE's agroecological principles. In order to do so, one has to first analyze the selected VCs and diagnose their current agroecological status, which constitutes the main objectives of this Rapid Agroecological Value Chain Analysis (RAVCA) guideline. (HLPE 2019). Source: Biovision Figure 2: Linking FAO's 10 elements, Gliesmann's 5 levels of food system transformation and the 13 HLPE principles (Atta-Krah et al., 2021) An Agroecological VC is an environmentally, socially, and economically sustainable VC that incorporates agroecological principles at the farm, business, and institutional levels to foster the transformation of the whole food system, by:• including and promoting the participation of all relevant stakeholders in the co-creation of a common VC vision. • strengthening stakeholder engagement and agency, empowering vulnerable and marginalized groups, and addressing power inequalities. • supporting diversified, nutrition-sensitive and resilient production systems, including mixed livestock and agroforestry, which preserve and enhance biodiversity, as well as the natural resource base. • promoting diversified and healthy diets as a pathway to support transitions towards more sustainable, diversified and resilient food systems. • adopting agroecological innovations (both technological and institutional) that foster co-creation and co-learning through the integration of science and local knowledge. • creating strategic partnerships with food VC innovation platforms, incubators and aggregation mechanisms in which private and public sector actors invest in and reward sustainable food producers and the production of public goods. • supporting the development of local and regional markets, processing hubs and transportation infrastructures to increase employment and business opportunities, and to promote circular economies.Table 1: HLPE consolidated set of 13 agroecological principles (HLPE, 2019) The RAVCA framework presented in this document has been tailored to contribute to achieving AE-I's WP3 main outcome, namely \"Investors, trading partners, NGOs, and farmer organizations participate in at least one strategic business partnership established in each Agroecological Living Lab (at the end of the first three years) that leads to the co-development or adaptation of business models linking agroecological innovations to markets\". It has been further designed to respond to two of the Initiative's specific objectives, which are a) to determine the extent to which agroecological principles are currently being incorporated along the VC (i.e., an agroecological VC assessment), and b) to assess the scaling potential of agroecological innovations currently in place in the VCs.A VC encompasses all business operations related to a particular product, including the provision of inputs and services throughout the value adding process, i.e., from primary production (i.e., of the selected/prioritized agricultural products), through transformation and marketing, until the sale to the final consumer, (cf. definition at the end of this document) 1 .Multiple tools are available for conducting in-depth VCA, and this guide does not attempt at reproducing nor replacing any of them with this guide. Instead, the goal of this guide is to integrate an agroecological lens into a rapid VCA framework, while limiting its scope to the achievement of the Initiative's outcomes in the expected timeframes. For this purpose, we have adapted and simplified elements from various well established VCA guides, mainly: Participatory Market Chain Analysis for Smallholder Producers (Lundy et al., 2007), ValueLinks (Springer Heinze, 2018), Making Value Chains Work Better for the Poor (M4P, 2008), Developing Sustainable Food Value Chains -Guiding Principles (FAO 2014), and MarketLinks (USAID, n.d.), which we suggest using as complementary references. It is important to note that these guides use different terms for similar concepts. Therefore, we have included in the annex a glossary of the terms employed in this document to avoid ambiguities and facilitate its use by VCA practitioners with different backgrounds.While all the actors in a VC should be considered when carrying out a VCA, the work from WP3 should focus on the actors and potential partners identified for the establishment of the Agroecological Living Landscapes (ALLs), following AE-I's WP1 Guiding Principles for engaging with national & local stakeholders. This set of actors will be henceforth referred to as core stakeholders. Accordingly, the starting point for the analysis should be the predefined group of farmers in a prioritized region along with its current trading partner(s), or an enterprise with operations in the region of interest and with a solid commitment to adopting agroecological principles (i.e., current exporters, processors, local market representatives, institutional market representatives, among others). It is important to mention that the group of core stakeholders will be expanded as additional relevant actor groups for the establishment of ALLs are identified during the RAVCA process.In view of the above, this document offers a general framework and guidelines for the development of the following three products that together make up the RAVCA:The VC map is a graphical depiction of the VC structure that, among others, encompasses the different processes, actor groups and product flows along the VC. VC maps are living documents that can and should be permanently updated to e.g., include newly identified actors or production flows as well as changes in descriptive statistics.The VC characterization presents a detailed description of each VC element by providing quantitative and qualitative information on the number and type of actors in each stage (the generic stages being production, aggregation, processing, commercialization, and consumption), their main characteristics, activities, input and product flows, market demand and prices, the type of business relationships, and value chain governance. It thus complements the VC map, by providing relevant contextual information of each value chain stage.The VC diagnostic provides key intervention points by presenting the results of a participatory assessment of underperformances and opportunities for upgrading based on the inputs from experts and local stakeholders.The VC assessment according to agroecological principles provides information to describe and assess the activities and elements along the VC that relate to HPLE's (2019) three agroecological operational principles (i.e., not to be confused with HLPE's 13 agroecological principles), namely i) improvements in resource efficiency, ii) resilience strengthening and iii) securing social equity and responsibility, as well as the identification of gaps and opportunities for improvements and scaling.This is a document (typically a spreadsheet) with strategic information on the actors currently involved in the VC at the micro, meso, and macro levels (see definitions in the glossary). Besides the actors currently involved in the core VC, the stakeholder map should include information on further actors along the VC that may be of interest due to their potential agroecological alignment with the Initiative or that could significantly influence the Initiative (i.e., among others, potential customers, producers, input and service providers and NGOs who are, or have expressed interest in applying agroecological principles in their operations/consumption).While the following sections separately describe the content of the products, the activities for data collection and analysis are deeply interlinked and many occur simultaneously. Most of the primary data collection will be carried out through semi-structured interviews, focus groups discussions and stakeholder workshops. Therefore, the VCA country teams should plan and prepare the activities and adapt tools in advance to avoid duplication of efforts and respondent fatigue. In the annex, we provide examples and recommendations for the development of tools, which should be adjusted for each specific context. In addition, the country teams should look out for potential collaboration and/or synergies between work packages. Such potential for collaboration and synergies is highlighted in italics throughout this document.The goal of conducting a rapid VCA implies limiting the exercise to the core stakeholders and to the actors directly relevant to both upstream and downstream operations. One must be wary that some of the actors identified during the mapping process will likely be engaged with other actors (e.g., producers and trading partners) beyond the operations that immediately concern the core stakeholders, whose assessment may add unnecessary complexity and require further resource-consuming information. The team may nonetheless be interested in obtaining a broader understanding of the VC in the prioritized geography/food system, or of a particular VC stage, e.g., when presuming inefficiencies that can be turned into opportunities. This is particularly important, as root causes for underperformances and key binding constraints that affect the core stakeholders may emerge from different stages of the value chain and from the meso and macro levels. In such cases, the approach for data collection and analysis will be the same but, as suggested above, may amount to a substantial cost and time increase. What is more, extending the scope of the analysis may also reduce the specificity of the results and their derived recommendations. At any rate, a widening of the RAVCA scope should be justified by a strengthened contribution to attaining AE-I's WP3 main outcome.Based on the principles of synergy and economic diversification, it is almost certain that some core stakeholders (e.g., group of farmers) are or will be involved in more than one value chain, or that an agroecological upgrading strategy involves incorporating additional crops/products in the prioritized productive systems. It is therefore important to conduct a rapid VCA and agroecological assessment for each VC that is (or will be) commercially relevant for securing the farmers income and food security. Crops and products destined exclusively for self-consumption should thus not be included in this analysis.VCA results are commonly used as a base for the co-creation of a common VC vision. In turn, this common vision, together with the VCA results, serves as a guide for the co-development of VC and business model upgrading strategies. Potential synergies from the overall rapid VCA: A common VC vision can be cocreated in collaboration with AE-I's WP1, which in its activity plan includes the \"application of participatory methods to build collectively a vision of the desired agroecological transition pathway(s) in each ALL\".A VC map is a visual representation of the analyzed VC and the foundational element of VCAs. It provides a panoramic view of the VC, by illustrating the different VC stages, identifying the position of the VC actors, visualizing product flows and indicating linkages between VC actors. VC mapping is an iterative process where the design can be subject to updates as more information is found throughout the analysis phase.To prepare the VC map, a round of consultations with key informants should be carried out, who can share their knowledge on the structure of the VC, product flows, actor types, end markets, governance mechanisms, input and services provision and enabling environment. To this end, semi-structured interviews will be carried out, starting with representatives from the core VC, followed by their key input and service providers, and other sectorial experts if necessary.With the information obtained through the semi-structured interviews, the following steps can be followed to develop a VC map:1) Determine the end products, distinguishing between characteristics such as fresh, processed, conventional, organic, etc. 2) Identify end markets, determining different end market segments, e.g., domestic vs. export market. 3) Identify the successive VC stages, starting with production and ending with consumption. 4) Identify actor types per VC stage, by strategically categorizing businesses (e.g., organic vs. conventional producers, small vs. large producers, industrial vs. artisanal processors, etc.). 5) Visualize the product flows, from production to consumption using arrows. 6) Identify main channels, based on the end markets and the different actor types involved at each stage (e.g., the informal vs. the formal channels, the fresh vs. the processed channel, etc.). 7) Map the indirect actors, using a separate map that only shows the value chain stages (i.e. not the value chain actors), to include the input and services providers as well as governance institutions that play a key role in each step.Because value chain mapping is an iterative process, we recommend carrying out the seven steps listed above during the following three phases:• Using information collected from the desk research (e.g., literature review) and current knowledge of the sector, draw an initial draft map, illustrating stages, direct actors, indirect actors, and relationships in the VC. The assessment team should not be excessively concerned about the accuracy and level of detail during this phase.• After the fieldwork phase, update the map using the collected data and insights.• As a third step, the VC map should be validated with key informants that have a broad overview and knowledge of the value chain. This validation can be done either in a multistakeholder workshop or through individual meetings and interviews with key informants.The ValueLinks methodology (Springer Heinze, 2018) proposes a useful set of conventions (see Fig. 2) that can be employed to illustrate the different elements of the VC. In their conventions, VC operators correspond to the direct actors, which in our case would be limited to the individuals and enterprises performing the core functions within the VC of interest (i.e., the core stakeholders). The VC supporters and enablers correspond to the indirect actors in the meso and macro levels, which in our exercise should be limited to those directly affecting the core VC. The map can use various types of arrows to display relevant differences in business linkages (i.e., primary vs. secondary channels, formal vs. informal business linkages, commodities vs processed products, etc.).The VC map should depict the end-market (and different market channels if applicable), VC stages (the generic stages being production, aggregation, processing, commercialization, and consumption; depicted in Figure 3 as white arrows), actors, and business linkages. The end-markets (depicted as white circles at the top of Figure 3) subdivide the VC into different sequences of business operations (i.e., sub-VCs or market channels), highlighting the different supply flows and their corresponding actor types involved in each channel. In the case of production systems with multiple products, we recommend drawing a map for each VC as many of the actors and channels will differ.The example shown in Figure 3 depicts a maize VC map, with a first channel conducting to a domestic food market, a second channel to an intra-regional export market, the third channel to the domestic flour market, and a fourth channel to the animal feed market. It is important to note that in our case, the VC map will be a more simplified version, as the channels will only be differentiated according to the end markets reached by the products of our core stakeholders.Key input providers (such as seeds) may be mapped at the micro level (as shown in Figure 3), together with the core stakeholders, but we recommend mapping all input and service providers as actors representing common interests of the VC at the meso level. The VC map usually depicts meso level actors (coded as yellow rectangles with the upper left corner cut off) and macro level actors (coded as yellow octagonal rectangles) placed adjacent to the relevant VC stages they serve. VC mapping can, but does not necessarily, include the macro level of a VC. Moreover, additional relevant information may be included in the map, such as the number of actors, traded volumes and traded values per end-market as shown in Figure 3. mapping key policy stakeholders and key food system actors in each of the ALLs, which could complement the VC map and thus be carried out in collaboration with WP3.The objectives of the VC characterization and diagnostic are a) to obtain a deeper understanding of each element of the VC, b) to identify underperformances and key binding constraints, and c) to identify upgrading opportunities at the micro, meso and macro levels.As a first step of the process, the team should conduct an end-market analysis, which provides a rough understanding of the existing and potential end-markets, and should broadly cover the following items: market sizes and growth rates (i.e., a 5-10 year trends analysis), (import and export) trade flows, prices and price trends, market drivers (including demographic changes), market segments (price, quality, niche), order specifications (including standards, volumes, payment mechanism), critical success factors (CSFs), unique selling propositions (USPs) for the domestic and competing products (competitive benchmarking), and consumer perceptions and behavior.The characterization and diagnostic of the rest of the VC should be guided by the VC structure, including a description of the main characteristics, key challenges, risks and opportunities for the following VC elements:• At the micro level, for each relevant core stakeholder along the different VC stages.• At the meso level, focusing on the provision of inputs and services with highest strategic importance for the VC core stakeholders and for the agroecological transition.• At the macro level, identifying actors and characteristics of the enabling environment that critically affect the VC performance, distinguishing between natural elements (climate, soils, water quantity and quality, biodiversity, etc.) and societal elements (including infrastructure, institutions, organizations, and socio-cultural norms).For the diagnostic, specific questions will be included in the semi-structured interviews and workshops to identify challenges, risks, and opportunities for improvement. Challenges and risks are identified by asking \"why\" questions, following up on replies such as \"things are not functioning well\" that may be mentioned during the semi-structured interviews (i.e., to understand the root causes of key binding constraints). These questions may, for instance, be directed at understanding: why production is low; why there are limited capacities for maintenance despite trainings; why access to spare parts remains a constraint and equipment endowment; why local small-scale producers have no land titles, etc.Note: Given that we are interested in the core stakeholders, it is likely that most of the information will be obtained from interviews and workshops. Nevertheless, it is important to include secondary information and regional / local statistics, when available, on area, production, prices, practices, weather, and traded volumes, as they will allow triangulation by comparing the data with the information collected from the core stakeholders. In the annex we provide a set of recommended questions for each type of actor to guide the VC characterization and diagnostic.In the following, guidance is provided with regards to the sections and content of the VCA. However, because this guide presents a rapid appraisal approach, it is important to stress that not all listed items need to be covered, while it is important to focus on the challenges and risks.Discussing the different topics listed below during key informant interviews, one is likely to quickly find out which of them are critical for a more sustainable functioning of the VC and should, therefore, consequently be studied in more detail. On this account, one should follow the rough structure presented below but also adapt the focus to the specific characteristics of the VC and the needs of the local team.General description of the production system based on the three AE operational principles (i.e., i) improving resource efficiency; ii) strengthening resilience; and iii) securing social equity/responsibility), as well as the product characteristics of all derived products.General description of the region and/or area of interest, with relevant social, economic, and environmental indicators (main economic activities, relevant agricultural products, area, production, prices, and yields of relevant crop/products, poverty indexes, land distribution, education level, yearly temperature, and precipitation). It should include maps displaying the locations of the productive areas and major markets for each product of interest. Any existing special markets for the agroecologically produced, traded or processed products should be highlighted. Highly relevant contextual information such as the presence of ethnic/religious minorities, land use conflicts, armed groups, political instability, among others, should be mentioned.This section should briefly describe how the crop entered the region, key moments in recent history related to the expansion of the crop and relevant social dynamics.The VC map with a brief description of the depicted VC stages, actor types and product flows should be presented in this chapter.A short analysis of the main end market opportunities and market dynamics should be presented here.This characterization should include a diagnosis and recommendations regarding the identified challenges, risks and upgrading opportunities for an agroecological transition at the product/crop level (i.e., following the instructions for an agroecological assessment provided in Section 4).Micro level (core VC): includes all relevant information organized per VC stage. Below we suggest a list of generic stages which should be adapted and described taking into account production, processing, procurement and marketing practices, infrastructure and equipment used, competitiveness, general business skills, and main challenges, risks and opportunities.• Production: The different identified actor types should be described in terms of number of producers, socio-economic characteristics, volume of production, farm gate prices, productive practices, seasonality, business arrangements. A description of gender roles, governance and participation mechanisms should be included. A diagnostic of challenges, risks and upgrading opportunities should follow.• Aggregation: This section should describe the different types of aggregators, agents, practices (i.e., purchasing, product handling, grading and sorting, transport & cold chain logistics), factors affecting quality and losses, compliance with handling standards. A diagnostic of challenges, risks and upgrading opportunities should be included. • Processing: The different identified actor types should be described in terms of number of processors, trade volume, product specification, buying and selling prices (inputs and outputs) and type of business arrangements. A description of gender roles, governance and participation mechanisms should be included. This segment may include various stages of formal and informal processors and distributors as part of the core stakeholders VC. A diagnostic of challenges, risks and upgrading opportunities should be included. • Commercialization: the identified formal and/or informal aggregators should be described in terms of number of traders, trade volume, product specification, buying and selling prices, and type of business arrangements. A description of gender roles, governance and participation mechanisms should be included. This VC segment may include various levels and type of actors such as fresh markets, institutional markets, and wholesalers or retailers of fresh or minimally processed products if part of the core stakeholders VC. A diagnostic of challenges, risks and upgrading opportunities should be included.• Final consumer (from fresh and/or processed products): describes the different identified consumer groups, together with information on estimated market size, locations, characteristics, purchasing prices, and product preferences.Meso level (actors providing inputs and/or regular support services or representing the common interest of the VC):• Input providers (e.g., seeds, fertilizers, packaging material, etc.): the type of inputs, regulations, availability and access, quality and prices should be briefly described. A diagnostic of challenges, risks and upgrading opportunities should be included • Operational service providers: this section focuses on transport and logistics service providers and should describe the service, regulations, availability and access, quality and prices. A diagnostic of challenges, risks and upgrading opportunities should be included • Support service providers, mainly:➢ Financial services providers: describes financial products offered, access by VC actors, products adapted to the needs of the VC, informal financial services providers. A diagnostic of challenges, risks and upgrading opportunities should be included.➢ Technical assistance and training: describes the type and quality of services offered, financing schemes (public, private, NGO), costs and prices, scope. A diagnostic of challenges, risks and upgrading opportunities should be included• Other key support service providers: Highlight services that are important to the different VC actors (e.g., quality control, soil analysis, etc.), briefly describe services providers, describe availability, costs and quality. A diagnostic of challenges, risks and upgrading opportunities should be includedMacro level: This section should only include highly relevant information, as a more thorough analysis of the enabling and policy environment falls under the scope of AE-I's WP4 -\"Strengthening the policyand institutional-enabling environment\".• Societal enabling environment:➢ Policies, regulatory bodies and other institutions: what are the main challenges/opportunities regarding laws, regulations, norms and standards, support programs, etc.? Which elements are obstructing the functioning of the VC (e.g., ensured access to land)? Which elements are missing? Are regulations, etc. effectively enforced? Are policies aligned or in conflict?➢ Socio-cultural elements: what are main challenges/opportunities regarding religion, presence of ethnic minorities, conflicts and levels of crime, gender and youth norms, entrepreneurial spirit (openness to innovation), dietary habits, etc.➢ Infrastructure: what are the main challenges/opportunities regarding roads, public markets, railroads, water supply, wastewater management, ICT networks, electricity supply, etc.?➢ Organizations and projects: identify and describe relevant organizations (e.g., ministries, public agencies, R&D centers, universities, industry and trade associations, etc.) and projects that impact or could impact the VC and describe how.➢ In addition to the characterization and diagnostic per VC segment and level, a rapid governance analysis is also critical, as governance mechanisms oftentimes explain actors´ behavior. A governance analysis should cover the following types of linkages: Horizontal linkages: describe the nature and dynamic of formal and informal relationships, levels of coordination and information exchange, levels of competition, collective action and economies of scale, roles of associations, cooperatives, levels of trust, corruption, etc.➢ Vertical linkages: describe the nature and dynamic of formal and informal relationships (e.g., in the channels identified in the VC map), which actors have the power to influence price setting, nature of the dominant transaction arrangements, nature of market/transaction structure (competitive market, oligopoly, monopoly), dependencies and power imbalances, asymmetries in knowledge and information, political power, level of trust, corruption, etc. Follow steps outlined in example above for other value chainsThis chapter should cover the potential challenges and opportunities that an agroecological upgrading of the analyzed VCs could signify at the food system level. At the field scale for instance, if applicable, the report should mention how integrating various products (i.e., VCs) in a mixed crop-livestock system may generate synergies (and/or trade-offs), the necessary conditions for such synergies to take place, etc.Applying the holistic agroecological lens, the challenges, and opportunities of integrating HLPE's thirteen agroecological principles at the food system level, through the analyzed VCs, should be discussed.The key challenges, risks, and opportunities of the RAVCA should be briefly discussed and summarized and next steps should be presented.This assessment should be made at the product (i.e., VC) level, including the information on the actors, products and practices that align with agroecological principles in each VC stage (e.g., production, aggregation, processing and commercialization) and level (i.e., micro, meso and macro), as well as the strengths, weaknesses, opportunities and threats (SWOT) identified at the food system level of furthering the agroecological transition, followed with a general discussion and recommendations.The agroecological assessment should be included in the different sections of the VC characterization and diagnostic (i.e., within the description of each VC stage and level). Potential challenges and opportunities associated with an agroecological upgrading should be summarized in chapter 3.4. of the RAVCA report.In the annex we provide a set of recommended questions and guiding topics for each type of actor that may help with the agroecological assessment.The agroecological assessment should also include questions regarding potential challenges and opportunities, and existing strategies/mechanisms for scaling up.A stakeholder map is usually developed along with the VC mapping exercise, and thus, the identification of stakeholders and the characterization of actor categories can be considered a VCA by-product. This byproduct will populate the stakeholder map that will be led by AE-I's WP1, which will also be complemented by the political actors and institutions identified by WP4.Actors of potential agroecological relevance that are currently not involved in the core stakeholders VC can be identified through a combination of desk research and snowball sampling (i.e., requesting references and contact information to the interviewed actors). During this exercise, one should also consider identifying different types of actors along the VC, such as input suppliers, operational service providers and support service providers 2 with agroecological potential.For ease of access and use, the information collected can be systematized in a spreadsheet file (e.g., MS Excel). While the information may vary according to each ALL's objective, the file should at least include names and descriptions of the mapped actors (including core activities, services, and role in the VC), interest in the Initiative and power to influence the Initiative, location and contact information. The stakeholder map may also include further information regarding the identified actors, among others, their alignment with the Initiative and with national/regional objectives, their strengths and weaknesses, potential synergies with other efforts, and conflicts of interests.synergies between WP3, WP4 and WP1.Once the information has been analyzed and systematized, a workshop should be conducted with all relevant stakeholders. The workshop will provide a space to present, discuss and validate findings and fill information gaps. Based on the VCA and AE assessment, a SWOT analysis should be conducted with all stakeholders, considering the AE principles and VC stages in each of the quadrants (i.e., strengths, weaknesses, opportunities, and threats). Specialized facilitation is key in this activity as it will be the facilitators' role to bring up and streamline the AE principles in the discussions in order to prevent the conversation from deviating or overemphasizing e.g., commercial aspects.The results of the SWOT analysis will be used in later workshops and WP3 activities to determine courses of action that may be prioritized by VC actors according to their roles and capacities (i.e., VC upgrading strategy). In particular, the results of this process will be key inputs for the participatory assessment and codesign/upgrading of the AE business model.The role of an AE facilitator is to promote participation and inclusiveness in the discussions as the AE principles are mainstreamed in every step of the process. As reflecting on these discussions requires time and the conclusions drawn will have important implications on the core stakeholders' businesses and livelihoods, we recommend dividing the different validation and participatory planning activities in various sessions, giving enough time in between for the actors to ponder, discuss and validate the shared results.7. AnnexesDirect actors are those directly involved in productive processes, postharvest handling, processing and commercialization. These actors take direct possession of and are owners of the product in one or more links in the chain, therefore running direct risks linked to the product (Gottret, 2011). These actors are also called Micro Level Actors (Springer-Heinze, 2018).Indirect actors are those who offer operational services and/or support services to the direct actors at various points in the chain. Even though the product may well pass through their hands at some link in the chain, they do not assume possession of it at any time. They are therefore also facing indirect risks regarding the product. Indirect actors include suppliers, operational service providers, support service providers and regulatory bodies (Gottret, 2011). The indirect actors that provide inputs, operational and support services to direct actors are also called Meso Level Actors, whereas regulatory bodies are categorized as Macro Level Actors in the ValueLinks guide (Springer-Heinze, 2018).Macro level, encompasses the enabling environment, distinguishing between natural elements (i.e., climate, soils, water quantity and quality, biodiversity, etc.) and societal elements, including infrastructure, socio-cultural norms, and institutions and organizations (i.e., financial system, insurance companies, and relevant government institutions that together with the judiciary and, among others, major providers of public utilities, determine policies and regulate the conditions for doing business in a country or region). Only some of these institutions are particular to a specific value chain.Governance: is the setting, monitoring, and enforcing of norms and rules with which the stakeholders in a collectivity manage their common affairs. The collectivity can be a value chain (thus value chain governance) or a local, national or global community of people interested in resolving a common problem or promoting a common goal. Basic types of governance include markets, networks, and hierarchies (Springer-Heinze, 2018).A value chain stage constitutes a categorical instrument that allows to group direct actors with similar characteristics, to facilitate its visualization in the value chain and subsequent analyses. While these stages are specific for each value chain, there are some generic stages common to most agricultural value chains that can be used as reference and adapted as required:1. Primary production: Includes producers of the VC commodity, which may be further categorized by size of the enterprise, technification, marketing channel, etc. 2. Intermediary trade: Includes formal and informal actors whose main activity is aggregating and traders the VC commodity, (i.e., intermediaries, traders). 3. Processing: Includes formal and informal actors involved in the processing of the agricultural commodity. May involve first or further transformations into higher added value products.4. Exporters: Includes primarily the exporters of the agricultural commodity in its raw state or with low value addition. In the case of exporters of processed products, these actors may be better located in the processing stage. 5. Wholesalers and Retailers: Actors who trade the commodity or value-added product directly or almost directly with the final consumer.The differentiation of stages depends on the actor's characteristics and their business operations; it may be the case that the producers in a particular VC trade directly with processors and wholesalers, making it irrelevant to include the stage of intermediary trade. The differentiation of stages should only be displayed when they correspond to business operations specific to a relevant group of existing value chain actorsFinally, as mentioned before, indirect actors may be grouped into four: suppliers, operational service providers, support service providers and regulatory bodies. We suggest that the assessment team considers the following indirect actors in the analysis:1. Input suppliers: Includes suppliers of relevant agricultural inputs, machinery, seeds, propagation material, etc. 2. Operational service: Includes transport and logistic service provider 3. Support service providers: Financial and insurance services, rural extension, technical assistance and training, agricultural research, setting of professional standards, provision of information, trade fairs and export marketing, quality control, political advocacy, representation of common interest of a set of actors. 4. Regulatory bodies: Phytosanitary and zoo sanitary control, environmental agencies, agricultural agencies, trade agencies.The following guide contains a list of leading questions and topics for inquiry to explore with key informants for the purpose of conducting a rapid VCA, with specific questions and themes for the different stages and levels of the value chain The themes are divided in different modules as follows: • Encourage and sensitize for seasonal and regional demand: action supporting a stronger seasonal and regional demand • Support healthy, diversified and culturally appropriate food traditions and diets: build food systems based on the culture, identity, tradition, social and gender equity of local communities that provide healthy, diversified, seasonally and culturally appropriate diets, support and protect cultural identity and values tied to food systems • Support the right to adequate and culturally appropriate food: support the ability of people to make decisions about the quality and type of food they hunt, fish, gather, grow and eat • Education program on sustainable, seasonal, and local consumption, campaign on the benefits of local and seasonal consumption, seasonality chart • Assessment of cultural values around food system, promotion of local breeds/varieties/products for their specific taste and nutritional value, scheme that protect cultural identity (territorial approach…), subsidies for traditional/cultural performances in food system 10. Fairness Does your organization support dignified and robust livelihoods for all actors in the food system (trade, employment, intellectual property rights, transparency) If not, why? If yes, how does it happen (example). How does it contribute to your organizations objectives, mission, and financial results?• Targeted investments and subsidy programs, access to finance to smallholders, barriers and opportunities to regional value generation, public procurement schemes targeting regional demand • Living income indicators • Fair trade certifications • Distribution of profits or royalties among producers.• Fair and short distribution networks, embedding food systems in local economies 11. Connectivity: Does your organization ensure proximity and confidence between producers and consumers? If not, why? If yes, how does it happen (example). How does it contribute to your organizations objectives, mission, and financial results?• Fair and short distribution networks, embedding food systems in local economies • Business support for re-establishing the connection between producers and consumers: assisting in the development of local food systems, short value chains and webs, developing trading relationships with local growers • \"Supporting regional value generation: embedding food systems into local economies, connecting local producers with other value-adding activities at the local or regional level, including postharvesting, processing, packaging\" • Community-supported agriculture (CSA), re-localization of food systems and markets within same territories, engagement of communities and businesses in sustainable operations, new innovative markets, participatory guarantee schemes (PGS), local producer's markets/more traditional territorial markets, denomination of origin labelling and certification, e-commerce schemes 12. Land and natural resource governance Does your organization strengthen institutional arrangements to include the recognition of farmers as managers of natural and genetic resources? If not, why? If yes, how does it happen (example). How does it contribute to your organizations objectives, mission, and financial results?• Community-supported agriculture (CSA), re-localization of food systems and markets within same territories, engagement of communities and businesses in sustainable operations, new innovative markets, participatory guarantee schemes (PGS), local producer's markets/more traditional territorial markets, denomination of origin labelling and certification, e-commerce schemes • PES Schemes.• Price premiums and profit sharing with ethnic groups • Royalties","tokenCount":"6254"} \ No newline at end of file diff --git a/data/part_1/1243509846.json b/data/part_1/1243509846.json new file mode 100644 index 0000000000000000000000000000000000000000..c8929c79f41a411ac3dea4ea2cee938e44cea17e --- /dev/null +++ b/data/part_1/1243509846.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"b7e89a826a56f2989ca7007d1a06202e","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/d51e5e71-3732-43f1-8fd0-969ab3d468f6/content","id":"1612553813"},"keywords":[],"sieverID":"f0b4ce4e-d794-4cca-96db-31bf9391a067","pagecount":"7","content":"Bread wheat covers over 240 million hectares globally and is considered a staple food of around 40% of the global population and contributes one-third of total world grain production. It is projected that world wheat production must increase by at least 60% to meet the estimated wheat grain demand in 2050. Among biotic factors, plant parasitic nematodes, diseases and insects are important constraints leading to substantial reductions in per unit area production. Cereal cyst nematodes (CCN), root lesion nematodes and seed gall nematodes are significant species on wheat in most regions of the world and are present in the Central Western Asia and North Africa (CWANA) (Dababat and Fourie, 2018;Seid et al., 2021). In the CWANA regions, wheat yield is negatively affected by a complex group of Heterodera species. Heterodera avenae, H. filipjevi and H. latipons are the most important CCN. The damage caused by CCN is not well known to those working in these countries.This chapter emphasizes the economic importance, distribution, biology, symptoms of CCN in addition to recommended integrated nematode management (INM) tools to control CCN in wheat.Wheat produced in the rainy winter season in the semi-arid regions of CWANA is highly vulnerable to CCN and considerable yield losses of up to 50% can occur (Dababat and Fourie, 2018). H. avenae is also the most destructive plant parasitic nematode of wheat in the climatic conditions of Northern Europe where it causes an estimated 10% loss in grain yield. Wheat in CWANA is a monoculture in most countries and CCN are serious problems with wheat grown in the cool rainy winter seasons across North Africa all the way to Northern Europe.Although the true level of losses across all of CWANA is poorly worked out, the average yields in the region are very low when compared to the world average. This could be due to the lack of INM. Yield losses can exceed 50% under the harsh climatic condition characterized by low precipitation and high temperature in the region. Nevertheless, the reports regarding wheat grain yield losses do not accurately portray the magnitude of economic losses at the regional or national level because documentation has been mostly based on research plots located in infested areas of fields, i.e. sick plots (Smiley et al., 2017). (Dababat and Fourie, 2018).Heterodera avenae infects graminaceous crops especially wheat, oats, barley and rye. Other hosts include grasses from the genera Agropyron, Alopecurus, Agrostis, Arrhenatherum, Anisantha, Brachypodium, Avena, Bromus, Dactylis, Echinochola, Festuca, Hordeum, Koeleria, Lolium, Lhalaris, Poa, Polypogon, Phleum, Setaria, Sorghum, Secale, Triticum, Trisetum, Vulpia, Zerna and Zea. Senebiera pinnatifida belonging to the Brassicaceae family is the only non-graminaceous host recorded so far.Major hosts of H. filipjevi include bread wheat, oat, false wheat, barley, rye and quack grass. However, Triticum discocoides, T. durum, T. tauchi, T. monococcum, T. ovatum, T. turgidum, T. umbellatum, and T. ventricosum are well characterized experimental hosts of H. filipjevi. Maize is a weak host of H. filipjevi. The J2 are able to invade maize roots but females fail to reproduce and therefore the crop is used in India as a trap crop.Heterodera avenae is the most widely distributed CCN around the globe (Fig. 3.1). Wheat producing regions with temperate climatic conditions in Asia, Africa, North and South America, Europe and the Mediterranean are typically CCN occurrence zones (Smiley et al., 2017).CCN species establish their feeding sites called syncytia on the roots of wheat plants and this blockage of the vascular system leads to weakening of the root system. The damage caused is primarily characterized by patches of plants showing poor growth and chlorosis, which are unevenly distributed in the field. In a large field cultivated with a susceptible cultivar (monoculture is standard in the CWANA region), these patches merge and can cover the entire field within a few years. Severe infection of CCN in wheat leads to stunting, leaf chlorosis, reduction in leaf area, lower numbers of productive tillers and shorter spikes with fewer grains. Below ground symptoms caused by H. avenae include enhanced production of roots, i.e. root proliferation (Fig. 3.2A), and knot-like formations due to induction of syncytia containing multiple females (Fig. 3.2B). These root symptoms are usually noticeable 1 to 2 months after sowing in the CWANA region.Both H. avenae and H. filipjevi complete one life cycle in a year. In most cases they require a diapause of up to 4 and 2 months, respectively, before the juveniles can emerge. The life cycle is illustrated in Fig. 3.3. Important is the fact that juvenile emergence only takes place when ample amounts of moisture under favourable soil temperatures are prevailing, which triggers the release of specific root exudates by the host plant. However, not all the J2 emerge at the same time, which is an important survival strategy harboured by CCN in the semi-arid regions.Heterodera avenae infection in the root-tip region leads to growth inhibition, induction of typical branching and swelling of roots. Formation of syncytia differs between H. avenae and H. latipons; however, the impact of H. avenae on wheat growth and yield is more pronounced than H. latipons. This is due to different hatching behaviour of these two species and H. latipons juveniles penetrate at sites more distant from the root tip.CCN have considerable intraspecific diversity in the form of its pathotypes or biological races. The race system for CCN has been developed on the basis of the ability of the local populations to reproduce on barley cultivars containing different resistance genes according to ICCNTA (International Cereal Cyst Nematode Test Assortment). This system could be used to identify various races with distinct characteristics present in the CWANA region. The H. filipjevi pathotypes were tested for several populations in Turkey and fortunately were found to be similar. However, the race spectrum in the region for all CCN species needs to be collaboratively studied among the nematologists in the CWANA region so that different pathotypes can be identified and considered in the wheat-breeding programmes. The soil-borne pathogens programme at CIMMYT annually screens thousands of wheat lines and the most resistant lines are shared with the International Winter Wheat Improvement Program (IWWIP) who distribute those materials to more than 150 collaborators representing around 50 countries in the CWANA and beyond.Although interactions among various plant pathogens are well established, such interactions regarding CCN are not well studied. This is the reason why only a few reports concerning complex interactions of CCN with other nematodes and pathogens are available in the literature. Cook in 1970 observed the first interaction of H. avenae with a fungal pathogen, Gaeumannomyces graminis var. tritici, the causal organism of take-all disease in wheat and described severe symptoms of take-all disease that are always associated with low population densities of H. avenae in the field. Smiley et al. (1994) further Similar nematode-fungus interactions were reported for H. filipjevi and Fusarium culmorum pathogens in winter wheat in Iran under rainfed conditions. However, the effects of these two organisms on plant growth were additive rather than synergistic (Hajihassani et al., 2013).Wheat growers in CWANA basically do not recognize nematodes as a problem. In fact, most of them do not know that what nematode species are in their fields affecting yield, which is why the term 'hidden enemy' perfectly applies to the problems in the region. INM is therefore not practiced in the entire region and nematodeinduced yield losses are simply accepted. The yield reduction in wheat due to CCN in CWANA could be lessened by improving and understanding the concept of INM in the region where the practice of winter monoculture of wheat is the norm. Management of cereal nematodes, especially CCN, could involve an integrated approach that includes crop rotation, genetic resistance, crop nutrition and appropriate water supply.The following control measures are being used by some progressive wheat farmers in the CWANA region.Damage from CCN is greatest when monoculture practices exist especially with susceptible crops. Yield losses become very high in 2-year rotations of cereals even with the traditional summer fallow as well as in 3-year rotations such as winter wheat, spring cereal and a non-host broadleaf crop or fallow. Crop rotations that include broadleaf crops (tobacco), corn, fallow and resistant wheat, barley or oat cultivars reduce nematode density. For the most part, farmers in the CWA-NA region still perform summer fallow for two reasons, firstly to help the soil maintain high moisture levels and secondly to reduce diseases. CCN may also persist on a wide range of weed grasses. Grassy weeds such as quack grass, crabgrass, brome grass, foxtail, wild oat, rat-tail fescue and others should not be allowed to grow during any phase of a crop rotation in a field that is infested with CCN. Weed control is a commonly used practice in the CWANA -not to reduce nematode densities, but instead to keep the soil moisture content at higher levels to boost the establishment and growth of the next crop with ultimately better germination.The use of host resistance is an effective method of controlling CCN. Resistance is defined as the ability of the host to inhibit nematode multiplication.In some cases nematodes still penetrate resistant cultivars and cause damage even if not able to multiply. The benefit of resistance is that it reduces the intensity of risk to the next crop of barley, oats or wheat. Ideally, resistance should be combined with tolerance to nematode penetration. The development of cultivars with only tolerance, which is the ability of the host plant to maintain its yield potential in the presence of nematodes could also be used in management where resistance is not known.There are no wheat, barley or oat cultivars currently available that are fully resistant to CCN in CWANA.Tolerance and resistance genes by CIMMYT for CCN were recently identified (Pariyar et al., 2018;Dababat et al., 2016). The most effective wheat resistance gene for controlling CCN and their pathotypes is Cre1 which has been crossed into local varieties. The Cre1 gene appears to suppress but not eliminate production of CCN.Planting winter wheat rather than a spring crop of wheat, barley or oat cultivars can favour strong, deep root development before the majority of J2 emerge from cysts during the spring. In addition, where sufficient water is available, planting a susceptible host as a trap crop during the fall or early spring can reduce CCN densities in soil. The trap crop is invaded when J2 migrates from the cyst into the soil during early spring. The trap crop is then killed during mid-spring before new egg-bearing cysts can be developed. This strategy is particularly useful where growers plan to produce a warm-season crop such as chickpea or bean that can be planted during late spring after the trap crop has been killed in an infested field that will be planted to wheat or barley the following year.Since the greatest crop loss occurs when nutrients or water are scarce at important growth stages, supplying optimal plant nutrition and, where possible, supplemental water during intervals of drought can minimize (mask) crop damage, particularly when the nematode damage is only slight or moderate. However, crops that are severely damaged by CCN usually do not respond well to additional applications of nutrients or water. If severe damage becomes evident early enough in the spring, it may be more profitable to destroy the crop and replace it with a non-host (broadleaf) crop.Non-fumigant, in-crop nematicides especially the use of seed treatments is effective and widely used on other crops and has been used to reduce losses by CCN (Dababat et al., 2014). However, the use of nematicides is not economically feasible on most grain crops.Applications of currently available biological nematicides have not been effective for increasing the productivity of wheat in the region. However, in some locations, naturally occurring fungal or bacterial parasites invade and kill some of the CCN eggs that are still inside the cyst. These 0005182346.INDD 24 9:12:29 PM natural parasites of eggs reduce the density of CCN, but even in fields where they are known to be present and active, reduction in yields of wheat and barley continue to occur. Ways to amplify the benefit of these natural biological agents in commercial agriculture have not been identified.Tillage does not have an appreciable effect on the density of cereal nematode species. Populations are likely to be similar in both cultivated and till verses non-tilled fields.There is a need for more research to develop high-yielding and disease-resistant wheat cultivars adapted to a wide range of environments.In addition, improved technology for sustainable management of plant pathogens including CCN is needed (Ali et al., 2015). The major requirements for the future management of CCN are:1. Create awareness among the farmers in the developing countries especially through educating researchers at the extension services to support growers. The accessibility to genomic resources like genome sequences and high throughput data on genomes and transcriptomes provides a huge array of information that could be used for wheat improvement for grain yield and CCN resistance.For instance, survey of complete genome sequences of different CCN may help to identify novel effector coding genes which could be manipulated through host-induced gene silencing technology. Likewise, recent release of complete wheat genome offers enormous opportunities to study and understand molecular wheat-nematode interactions leading to development of CCNresistant wheat. Similarly, worldwide wheat germplasm collections of wild and cultivated wheat accessions provide unique opportunities for wheat genetic improvement. Furthermore, the availability of several genome-wide association studies could enable the wheat breeders to identify genomic regions associated with CCN resistance in wheat. Ali et al. (2019) recently reviewed and summarized the transgenic opportunities to enhance CCN resistance in wheat, which included employment of R-genes, host-induced gene silencing of vital effector CCN genes through RNAi, anti-feedant proteinase inhibitors, antiinvasion chemodisruptive peptides and manipulation of gene expression specifically in syncytia. One of the potential future directions to develop CCN resistance could be the pyramiding of two 0005182346.INDD 25 9:12:29 PM or more of these strategies which may lead to complete control of CCN in wheat.Targeted mutagenesis through the application of CRISPR/Cas9 system could be deployed for non-transgenic and targeted deletion or addition of sequences in wheat genome for induction of CCN resistance in bread wheat.","tokenCount":"2346"} \ No newline at end of file diff --git a/data/part_1/1259474586.json b/data/part_1/1259474586.json new file mode 100644 index 0000000000000000000000000000000000000000..8651284713689a2d1bf829a214a078aba8ba373f --- /dev/null +++ b/data/part_1/1259474586.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f09f81fe3ecb1c8f91a42cc6c3d62cf7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/507e2e3b-7a39-4aba-82c3-a8e6c25600c5/retrieve","id":"89308312"},"keywords":[],"sieverID":"041dc6f4-c454-4c9a-aeb9-3480a27f25d7","pagecount":"52","content":"Bioversity's modus operandi is based firmly on working with others, leveraging our funds and abilities so that we not only achieve results, but also help to build capacity in those we work with and for. So strong and plentiful are these links, however, that to list them all in every case would make for a very long and dry document. In the following stories some of our partners have been mentioned by name while others have not, but we would like to take this opportunity to thank them all. Bioversity depends on partnership and partners to get the job done. We also acknowledge the support of all our donors, especially those that contribute unrestricted funds. Agricultural biodiversity covers a vast array of topics, and Bioversity neither could nor should try to research all of them to the same extent. Instead, the organization has chosen to focus its attention on six circumscribed areas, and with the successful adoption of these Focus Areas we feel we are well on the way to becoming the kind of organization we need to be to make a greater difference in the fight against hunger and poverty.It has been a long journey, with many twists and turns along the way. Thanks to steadfast input from staff and the valuable support of our stakeholders we now have the structures, focus and vision to renew our commitment. We should stress that Bioversity will not be abandoning its roots. Working on ex situ conservation, researching better methodologies and improving access to information will continue to be central to our work. But we will also be expanding our efforts to show how agricultural biodiversity can deliver better nutrition and health, improved livelihoods and more sustainable production systems. Commodity crops, such as banana, cacao and coffee, are another area of special concern where we will pursue a research agenda tailored to the specific needs of poor farmers.Bioversity has also been proud to take its place on the global stage, drawing attention to the importance of agricultural biodiversity. Through our Global Partnership Programme we were asked to coordinate inputs for the first International Technical Conference on Animal Genetic Resources for Food and Agriculture in Switzerland in 2007. We played a similar role of honest broker and provider of unbiased technical information in the various meetings and consultations that led up to the International Treaty on Plant Genetic Resources for Food and Agriculture and look forward to mobilizing our relevant expertise to address problems of animal and microbe diversity.Aside from its research programme, Bioversity has also been paying attention to codifying and implementing the best practices of governance as suggested by the Secretariat of the CGIAR. In 2006 the Board formally adopted a policy on gender and diversity that ensures we will pay as much attention to workplace diversity as we do to agricultural biodiversity. And while we have long published our risk management statement, this year we add a narrative explaining changes in our financial position to provide a context for the balance sheet. These are little things, but they mean a lot, and they send a clear signal that Bioversity is focused not only on carrying out research to improve the lives of the poor but also on ensuring that our donors and stakeholders can rely on us to conduct the research they need in a clear and transparent manner.In essence, all Bioversity's research is directed at sustainability: the sustainability of farming systems, the sustainability of natural resources and the sustainability of human lives. We are now in an ideal position to deliver lasting solutions to many of the problems of hunger and poverty.Board ChairDiversity of plants and animals offers unparalleled opportunities not only through breeding but also by delivering a raft of far-reaching benefits. Some are direct, such as the better nutrition and greater sustainability that come with locally adapted crops. Others are more indirect, like the ecosystem services delivered by healthy populations of pollinators, biological control agents and soil microbes. Bioversity seeks not only to provide the necessary compelling evidence of the wider benefits of agricultural biodiversity for human well-being, but also to explore what types of diversity can make the greatest contribution and in what ways this can be done. However, because the field of agricultural biodiversity is so broad, the organization has chosen to focus on six well-defined areas.Focus Area 1: Managing agricultural biodiversity for better nutrition, improved livelihoods and more sustainable production systems for the poorWe see: Accumulated evidence for the many benefits of agricultural biodiversity informs policies and practical activities that together improve the productivity, resilience and resistance of farming systems, thereby improving the lives of poor farmers, especially in marginal areas.Agricultural biodiversity is always associated with a body of local knowledge about how to use and manage it. The two aspects of this asset-the diversity itself and the accompanying ability to make use of it-are being lost or used suboptimally because they are not properly understood, valued or managed. Poor people themselves may not make best use of agricultural biodiversity, perhaps because knowledge about it has already been lost. Other sectors of society, notably decision-makers and professionals, also may be unaware of the value of agricultural biodiversity, particularly under conditions of rapid economic development and cultural change. What is needed is evidence.Enhanced understanding of the broad benefits of agricultural biodiversity is crucial to promoting its wider use to advance the well-being of the poor. Nutrition, income and sustainability can all be improved with agricultural biodiversity; clear demonstrations of these benefits, with better management of the resources, will result in improved conservation as well as increased use. An important activity will be to understand how systems work in one place and under one set of circumstances and then to use that knowledge to tailor solutions in other places. This will help to build a body of widely applicable approaches, rather than off-the-shelf solutions that may not succeed. There is also a need for greater efforts in public awareness and advocacy to ensure that politicians and other agents of change are aware of the ways in which agricultural biodiversity can improve the well-being of poor people.Among the outputs of this area will be greater recognition of the nutritional and health benefits of agricultural biodiversity and the identification of options for increasing incomes, especially for the most marginalized people who need it most. These will be linked to the use of agricultural biodiversity to improve productivity, resilience and resistance in farming systems and to strengthening areas such as the informal seed sector that enable communities to make use of diversity. This is particularly important in marginal areas, where the greatest poverty occurs. As a result, agents of change at all levels, from the international to the local, will mobilize in support of the use of agricultural biodiversity. Most importantly, as farmers see the benefits of agricultural biodiversity they become selfmotivated agents of change, making better use of their resources.Focus Area 2: Conserving and promoting the use of diversity in selected commodity crops of special importance to the poorWe see: Smallholders use a wider range of commodity crops and locally processed products to meet the food security, income and health needs of their communities. Formal and informal networks link farmers, extension workers and researchers, who learn from one another and improve livelihoods further.Certain crops play a special role among poor rural communities.Commodity crops such as banana, coconut and cacao (specific Bioversity targets) are often the mainstay of poor communities, but to date research and development on these crops has been for the benefit of consumers in industrialized countries and of industrial producers and processors in developing countries. The poor people who grow and depend on banana, coconut and cacao require a research agenda that meets their needs and that will help farmers and their families to derive maximum benefit from effective use and management of biodiversity.A pro-poor research agenda for banana, cacao and coconut needs to address two intertwined issues: low incomes and sub-optimal use of genetic diversity. Genetic diversity is threatened by market forces that sideline traditional varieties, by epidemic diseases that attack the crops and their wild relatives and by the loss of habitat that supports wild relatives. Research needs to identify traits of value to poor people, such as the ability to withstand biotic and abiotic stresses and also to deliver better nutrition. Conventional research is predicated on low-diversity highinput production systems that deliver a uniform, low-cost product. Bioversity will develop and promote alternative approaches using diversity to enhance productivity and sustainability. Higher incomes for smallholders and their communities will also follow from research on biodiversity to provide novel products, novel processes and novel ways to capture a greater portion of the income stream, for example by finding new ways to link traditional varieties to markets.Breeding-as well as conserving the diversity on which breeding dependsare important activities in commodity crops. Bioversity maintains the ex situ collection of banana diversity in trust for humanity, and works with partners to secure collections of coconut and cacao. Bioversity also gathers the information breeders need to use these resources, and conducts and coordinates multisite trials of improved material. Effort is devoted to using biodiversity to deliver ecosystem services such as healthy soil and resistance to pests and diseases, so that production is improved with lower inputs. Work will also continue to devise, develop and disseminate high-value products based on the commodity species.A successful pro-poor research agenda for commodity crops will see smallholders use a wider range of those crops to meet their food security and health needs while conserving the resource base. Linking a range of partners, encouraging collaborative research, promoting information exchange and supporting formal networks will contribute to these outcomes and build national capacity to conduct independent research.Focus Area 3: Enhancing the ex situ conservation and use of diversityWe see: Genebanks effectively conserve fully representative collections of the genetic diversity of useful species, which farmers and scientists use to create varieties that help to deliver better and more resilient production systems.Even if people are aware of the benefits that agricultural biodiversity can deliver in general, they may be unable to make use of it in specific cases, either because the diversity itself has been lost or is unavailable or because information about it is lacking. There is thus a need to ensure that properly maintained ex situ collections of diversity are both representative and well characterized and that people have the capacity to make use of the resources and information in the collections. This need assumes greater urgency in the face of the challenge to feed a population that is still increasing on land that is increasingly degraded and subject to other stresses, such as those caused by climate change. Useful and potentially useful diversity must be collected, evaluated and conserved and then made known to researchers, breeders and others who can use it to help people feed, clothe, heal and shelter themselves.In the wake of the Green Revolution strenuous efforts were made to build collections of crop diversity and hundreds of thousands of varieties are currently conserved in genebanks. However, many of the collections were assembled hurriedly and ad hoc and as a result contain gaps and duplications that diminish their efficiency and cost-effectiveness. Furthermore, many important species are not conserved in genebanks, either as a result of scientific neglect or because their biological characteristics do not allow them to be dried and stored at low temperatures. Another challenge is inadequate management of many genebanks. Research on conservation and additional well-targeted collecting missions will ameliorate the situation, as will disseminating best practices and training genebank staff to make use of them. Research is also needed to improve ex situ storage, in particular for species, including forest trees, with seeds that require specific storage techniques. Bioversity will work with partners to conduct this research.Conservation, however, is not enough. If it is to yield benefits, the diversity conserved in genebanks must be reintegrated into agricultural systems. Thousands of accessions need to be screened and information about the accessions and their characteristics made available to all who can make use of them to improve sustainable agricultural production. Research will show how new molecular tools can best be used to reveal useful characteristics. Other tools will enable subsets of collections to be assembled and will assist in pre-breeding. Bioversity will also work to strengthen the links among genebanks, breeders and farmers so that each is better able to make use of the others' resources. The end result will be more material conserved more effectively and more widely used to improve the overall performance of poor farmers' agriculture.Focus Area 4: Conservation and sustainable use of forest and other wild speciesWe see: In situ conservation in protected areas and managed forests and ex situ conservation in genebanks and botanic gardens stem the loss of useful wild species. The widespread planting of wild species improves livelihoods.There is a continuous spectrum between the utterly wild and the thoroughly domesticated, and while domesticated crops receive the lion's share of attention, people also make use of thousands of wild species for subsistence and for income. Chief among those that people use directly are forest species that supply timber and non-timber products. The wild relatives of crop species are also valuable to breeders for the many useful genes they possess. Wild species are often useful in themselves, for example as medicinal species, forages and sources of timber and living fences. Farmers may also select and then make use of diversity introduced accidentally into their crops from the wild. Bioversity has a clear interest in the diversity of wild species, which are especially important to some of the world's most marginal groups of people living in forests and woodlands where agricultural production is uncertain.Wild species are vulnerable in part precisely because they are wild; they usually have no property rights associated with them and so fall prey to overexploitation, environmental degradation, climate change and other impacts, human and otherwise. If the importance and value of wild species were better appreciated, that might help in their conservation, so Bioversity works with partners to analyse and document those values. One obstacle is that the thousands of important wild species differ in so many ways, for example in their biological characteristics, geographic spread, conservation status and type of use. This makes it essential to identify priorities and criteria so that insights derived from the careful study of a reasonably small number of species can be applied much more broadly.Wild relatives of crops need to be conserved in the wild, where they can continue to evolve the characteristics that make them such important sources of traits to improve agricultural plants. Tree species must also be conserved in the wild, because most of them cannot be conserved in ex situ collections. Bioversity works with partners to develop strategies and mechanisms to conserve populations of useful wild species and, equally important, to promote them to relevant stakeholders. Forest trees pose particular challenges, partly because reafforestation efforts commonly reduce the diversity of the cut trees they replace. Also, plantations typically replace diverse multispecies forests with monocultures. Bioversity will work with partners to address these issues, and also to domesticate some species that are threatened by overexploitation in the wild.Through this work, Bioversity expects to integrate criteria and indicators for sustaining the diversity of species harvested in the wild and to work with other players to ensure that they place sufficient emphasis on within-species diversity. It will also contribute to the protection of important populations, especially crop wild relatives, in protected areas. As a result these species will be better conserved and used and will thus make a more effective contribution to sustainably improved livelihoods.We see: An improved system of global conservation and use, as foreseen by the International Treaty on Plant Genetic Resources for Food and Agriculture, is supported by robust and effective policies, a sound and sustainable funding framework and the necessary knowledge and evidence.Agricultural biodiversity is essential to global food security and it cuts across national borders; no country's agriculture is independent. Global interdependence on the diversity of species important for food and agriculture requires the entire world community to be concerned about threats to such diversity, regardless of where they occur. Similarly, a global response is often appropriate. Cooperation at national, regional and global levels is needed to address scientific, policy and practical constraints on efficient conservation and equitable use of genetic resources. Bioversity's role is to support such processes and to ensure that the specific requirements of agricultural biodiversity are understood and acted upon in international and regional plans and programmes.Over roughly the past 35 years, collaborative initiatives on genetic resources have sprung up all around the world, often associated with a significant level of international participation. One such initiative is the collaboration of CGIAR-supported centres through the System-wide Genetic Resources Programme. Bioversity has hosted the SGRP Secretariat since its inception, and will build on that experience to ensure close collaboration and representation in global efforts concerned with agricultural biodiversity. One of the most important efforts will be directed to developing the Global System envisaged by the International Treaty on Plant Genetic Resources for Food and Agriculture.At the moment several elements of a global system exist, among them the genebanks of the CGIAR-supported centres and information systems such as SINGER, the System-wide Information Network for Genetic Resources. Bioversity will contribute to the development of a rational global system that can underpin the effective and efficient conservation and use of important plant genetic resources.The negotiations of the International Treaty on Plant Genetic Resources for Food and Agriculture were successful at least partly as a result of Bioversity's provision of unbiased and technically sound policy analysis on behalf of the CGIAR centres. Work on policy will grow in importance as Bioversity helps countries to implement the Treaty and works with a range of stakeholders to ensure that they are able to take full advantage of the Treaty's provisions. In other areas too, Bioversity will use its policy expertise both to inform and to influence discussions. A more general aspect of policy is the need to ensure that potential participants do indeed appreciate the benefits of joining larger collaborations. Bioversity will work to facilitate processes that optimize collaboration, and will go beyond plants to become increasingly involved with international collaboration for the conservation and use of animals and microbes.As a result, influential people around the world will be informed of the importance of the conservation and use of genetic resources and will respond with supportive policies. Mechanisms to encourage collaboration in the conservation and use of genetic resources will reinforce global political efforts, and increased awareness will prompt greater support. A more effective Global System, able to deliver the benefits of agricultural biodiversity, will result.Focus Area 6: Status, trends and valuation of agricultural biodiversityWe see: Bioversity makes available information on the status and trends of within-species diversity of economically important plants and promotes strategies and actions that will sustain this diversity and, better yet, reduce its loss.Agricultural biodiversity continues to be lost around the world, and yet the extent of the changes and their causes are not fully understood. A key problem is that while the conventional benefits of biodiversity have been measured and recognized, especially in terms of the value of ex situ conservation, the broader range of benefits are not properly valued by decision-makers or societies. Complicating the matter, much of the value is shared between private and public goods. Thus, poor farmers maintain agricultural biodiversity and derive private goods from it, but they are neither recognized nor compensated for the wider public benefits to society at large-now and in the future-that flow from their efforts. To a large extent this is because tools for capturing these values are lacking. Assessing the status of genetic diversity and monitoring erosion and other trends is also hampered by lack of tools. There are currently no tested procedures for collecting, compiling, analysing and interpreting data on diversity over space or time for crop and forage production systems (as opposed to for specific genebank holdings or production areas).Bioversity will work to fill the gaps, developing tools that can be applied locally, nationally and regionally. Case studies at regional and national levels will address selected target crops and wild species of socio-economic importance. Bioversity will also work with partners to ensure that they are able to use these tools to deliver the information on which sound policy decisions can be based. For banana and coconut, where it has a special mandate, the organization will play a more active role in carrying out global evaluations of status, trends and values.Limited resources require rational decisions on what to conserve, where and how. Many international decisions and programmes of work have stressed the need not only to understand more fully the current status of genetic diversity but also to be able to monitor genetic erosion and other trends. Vital partners in all this area's activities will be national agricultural research systems, especially of developing countries, who will need training and tools in order to implement their obligations under the various agreements.Bioversity expects to see countries able to report on status and trends among important crops and wild species and for this information to feed directly into various global commitments. Along with information from valuation studies, this will help policy-makers to take steps to reduce the rate of loss of biodiversity. However, real progress will occur only if societies develop a greater appreciation of the services and benefits delivered by agricultural biodiversity; raising public awareness is thus another crucial activity for this area of work.Currently, few people around the world are able to make optimal use of diversity to meet their aspirations for the future. Bioversity is focusing on providing the scientific tools and approaches needed. Ultimately farmers and others will have access to the resources they need to adapt their systems to better meet their needs.The Science Council of the CGIAR has established five sets of priorities to guide centre research.This table shows in dark green how each of Bioversity International's Focus Areas links with the CGIAR's priorities. Nepal is one of the least developed countries in the world, with adult literacy less than 50%, half the children underweight or stunted, and very low incomes. And yet the combination of in situ conservation, participatory plant breeding and strong policy work has put Nepal at the forefront of developing and formally recognizing farmer varieties.Official approval for an improved traditional rice variety in Nepal B. Sthapit/Bioversity International all these reasons, 'Jethobudho' fetches a premium in the market. As a result, and against a background of threatened rice diversity, 'Jethobudho' remained popular. It was grown by 15% of the farmers and covered almost 10% of the agricultural area in Pokhara.It does, however, have problems. Farmers told Bioversity, working in partnership with LI-BIRD, a local NGO, and the Nepal Agricultural Research Council (NARC) that blast, a fungal disease, and the tendency to lodge, or fall over as a result of weak stems, were the two problems they most wanted to eliminate. They also wanted higher yields. Accordingly, the project began in 1998 by collecting 338 samples of 'Jethobudho' from farmers in the area. These were grown side by side for three years and assessed by the farmers and other team members. That whittled the number down to 46. These were assessed again for so-called post-harvest traits, most notably: did they smell, taste and feel right? Six lines were chosen as the 'authentic' 'Jethobudho'. (As an aside, although the six varieties are outwardly very similar, molecular profiling revealed that they are genetically distinct. When dealing with landraces and farmer varieties, a name does not necessarily uniquely identify a breeding population.)A mixture of the six lines constitutes the new variety, 'Pokhareli Jethobudho'. Seed producers sow a mixture of the six as their foundation stock, the harvest of which is sold to others farmers to grow for food. In addition, LI-BIRD is maintaining the six varieties separately so that it can make the mixture for the foundation seed afresh each year. As Sthapit explains, \"This approach maintains the diversity within the 'Jethobudho' population and helps in coping with the vulnerability created by crop uniformity.\" Most importantly, perhaps, the selected 'Pokhareli Jethobudho' meets the farmers' expressed needs: they recorded grain yields of up to 3.35 tonnes per hectare, as against 2.4 tonnes per hectare in 1999 before the selection started.That's the research side of the story: farmers and scientists joining forces to improve an old landrace. Commercializing it brings in the policy experts.Nepalese seed law is complex. The formal sector consists of two closely cooperating channels. NARC focuses on crop improvement, while the Department of Agriculture and private companies deal with the multiplication and sale of seed. In practice, Nepali farmers get roughly 90% of the seeds they sow through informal sources, but the team decided it would be appropriate to be able to disseminate 'Pokhareli Jethobudho' through official channels.The project, along with the government agricultural extension office of Kaski district, set up Fewa Seed Producers Group, a community-based seed production system to supply farming communities throughout the Pokhara valley. They also named the farmers who had maintained the six chosen lines as custodian farmers. But while the Nepalese Seed Act allows anyone to apply for variety registration and release, the National Seed Board requires the applicant to have at least an MSc degree and to have a breeding infrastructure that meets a number of stringent criteria. That makes it effectively impossible for farmers to apply for registration for their varieties. The application for 'Pokhareli Jethobudho' was therefore submitted by the project in the name of all the stakeholders and specifically included the Fewa Seed Producers Group and the six named custodian farmers.It was this application that the Variety Approval, Registration and Release Committee approved in June 2006, recognizing farmers as co-owners of a new variety for the first time in Nepal's history.Step one in the recognition process requires that the variety is distinct, uniform and stable, although stability is assessed over only a single season and traditional knowledge is fully acceptable as evidence of distinctness and stability. However, step two-commercialization of the variety-has much more stringent requirements for uniformity and stability, including results from trials over three growing seasons. In this case, the VARRC adopted the view as that as one of the key agronomic aspects of 'Pokhareli Jethobudho' is its diversity, the uniformity criterion could be relaxed somewhat, as long as it was uniform in the important factorsA little boy and his father pose with a bouquet of rice in a community seed production site in Pokhara valley, Nepal.of plant height, time of maturity and grain quality. Having overcome this hurdle, 'Pokhareli Jethobudho' can now be sold, and three seed production groups around Pokhara, including the original Fewa Seed Producers Group, are growing it.Challenges and problems remain. The farmers will be growing a couple of tonnes of seed outside Kaski district in 2007, to see how it performs and how other markets will respond to the variety. There is also a pressing concern that better market opportunities will tempt some seed farmers to adulterate 'Pokhareli Jethobudho' with inferior varieties. The seed producers plan to tackle this by packing seed from individual farmers separately, with a label that gives the name of the farmer. In this way, they hope to hold each seed farmer accountable, because it will be easier for other farmers to connect quality issues to a particular source. In addition, people have raised the argument that the intense concentration on 'Jethobudho' will diminish rice biodiversity in the Pokhara valley. But the project points out that, if nothing else, the six selected lines will be more likely to hold their own against improved varieties from elsewhere. Furthermore, the farmers of the valley grow 70 different varieties, which they are unlikely to abandon.(An impact study on the multiple values that farmers accord their varieties has just been published in a book of impact assessments. See New light on the value of old rice, Annual Report 2002, p. 23.) 'Jethobudho' matures later than other traditional varieties. The farmers grow other varieties partly as insurance against an abnormally short season.On the policy side, the detailed question of ownership remains undecided. The Seed Act does not refer to the ownership of varieties, but it does reference a set of rules that establish ownership if the breeder applies for it. Indirectly, the Seed Act touches on ownership by defining the breeder, the only person who can apply for registration, as \"any person, organization or body which brings into use any variety of the crops by producing or selecting it for the first time\" (emphasis added). That phrase, \"for the first time\", suggests that once a variety exists, proof being that the breeder registered it, a second person cannot apply for registration because they could not logically be the breeder.The person who first registers a variety would thus be the only person who has the right to commercialize it. This de facto ownership, say Bioversity's policy experts, is probably the most important objective of any intellectual property protection mechanism and it seems that Nepal's current Seed Act does indeed give the applicant effective ownership.The case of 'Pokhareli Jethobudho' has aroused intense interest from farmers' groups, NGOs, policy-makers and others, and was discussed extensively at a workshop on protection for farmers' varieties organized by the Genetic Resources Policy Initiative in Hanoi, Viet Nam, in October 2006. The proceedings of that workshop will be published soon.Further information b.sthapit@cgiar.orgJethobudho', an improved rice variety developed with the help of Bioversity International and local NGOs.Banana xanthomonas wilt (BXW) is an unforgiving disease. Rather than just reducing yield, as many diseases do, it causes the fruit to ripen prematurely and rot. Eventually the plant dies. Moreover, direct challenge by injecting the disease bacteria straight into plants has so far uncovered not one resistant variety, only differences in the speed and severity of the disease. BXW, also known as banana bacterial wilt, started making headlines in 2001, when it was seen for the first time in Uganda. Since then it has turned up in the Democratic Republic of Congo, Kenya, Rwanda and Tanzania. In heavily affected areas of Uganda, losses of up to 80% have been observed. Among the worst affected varieties is 'Kayinja', a juice banana known elsewhere as 'Pisang awak'.Given the importance of cooking bananas as a staple food and of juice bananas as a source of income in the Great Lakes Region of Africa, the consequences of letting BXW run rampant would be devastating.Fortunately, the spread of the disease can be contained. Frederick Kisegerwa discovered as much in 2004 when he first noticed the symptoms on his 'Kayinja' plants. The Ugandan farmer had heard about various control measures on the radio and from his local agricultural extension office and he started to put them into practice. He dug up all the sick plants on his farm and chopped them into pieces, which he buried. He also started to remove the male bud from all his plants because that reduces the number of new infections by reducing the attractiveness of the plant to insects. As a result, he rarely runs into infected plants anymore, even though his field is surrounded by the sick plants of other farmers. With fewer bananas to supply the local market-'Kayinja' bananas are used to make beer and a type of gin called waragi-staying ahead of the disease Above right Banana leaves are often cut and sold as a food wrapping but this practice is now being discouraged, for fear that contaminated tools may spread BXW.Right Frederick Kisegerwa with the forked stick he uses to snap off male buds. That reduces the risk of insect transmission, but he has to remain vigilant not to spread BXW with contaminated tools.A new banana disease that takes no prisoners has emerged in East Africa. Bioversity's experience with bugtok, a very similar disease in Asia, gave it an opportunity to promote simple yet effective control techniques to local partners. After some persuasive efforts Ugandan authorities agreed to trial those techniques and put them to work in farmers' fields.Dealing with a deadly banana diseaseA. Vezina/Bioversity International A. Vezina/Bioversity International has enabled Frederick Kisegerwa to double his income.Bioversity is also actively trying to rein in the disease on a broad front. For the past few years, the regional office in Uganda has been involved in efforts to coordinate a two-pronged regional strategy. There is a management component to help farmers to sustain production in affected areas and to prevent the spread of the disease, and a surveillance component to spot new outbreaks. And to ensure that the advice they offer is based on sound evidence, Bioversity scientists in collaboration with colleagues at the National Agricultural Research Organisation (NARO) in Uganda have also been testing control options as part of the USAID-funded Uganda Agricultural Productivity Enhancement Program.BXW is caused by the bacterium Xanthomonas campestris pv. musacearum. Bacteria normally get into the plant through a wound of some sort. Inside the plant they multiply rapidly and, when the plant is wounded again, they emerge as an exudate that is the source of fresh infections. This bacterialaden ooze may be carried to healthy plants by flying insects or by farm tools, if farmers move from infected to uninfected plants without cleaning their tools in between.A common type of wound is the opening on the flower stalk made by a fallen bract, the modified leaf that rolls back to reveal flowers. Some varieties have persistent bracts and flowers that stay on the flower stalk and these are less prone to infection from insect transmission. The majority of currently used varieties do lose their bracts, but it is possible to disrupt insect transmission by removing the male bud at the end of the flower stalk as soon as the last fruits have set.Removing the male bud, however, carries its own risks. Farmers must take care that they do not actually spread the disease. They are advised to use a forked stick to break off the male bud rather than cutting it off with a knife attached to a stick, which might transmit the disease if the blade has been in contact with the bacterial ooze of an infected plant. This simple measure, and the vigilance of farmers who promptly take action at the first sign of the disease, has prevented BXW from getting a foothold in the region that produces most of the cooking bananas that Ugandans eat at almost every meal. It also helps that the East African highland bananas areThe invisible hand of technology will soon allow Ines van den Houwe, curator of the International Musa Germplasm Collection, to inform online database users of additions to the collection by simply keeping her own records up to date. The genebank management system installed at Bioversity's International Transit Centre (ITC) in Belgium is scheduled to feed information into Bioversity's Musa Germplasm Information System (MGIS), which is itself hooked up to the SINGER online database of all accessions of crops held by the centres supported by the Consultative Group on International Agricultural Research (CGIAR).Each plantlet carries a barcode that is the key to its identity. The computerized system makes it easier to manage the in vitro genebank by storing daily records of everything that was done to each plantlet. Online users of MGIS and SINGER will be spared that level of detail. But every time a new accession is officially added to the collection, the usual information on its identity, its main characteristics and whether it is available for distribution will be automatically sent to the databases. The system will also keep track of where plantlets have been sent. When it comes to bananas, the SINGER database gives data only on ITC accessions, but users wanting to browse the holdings of other banana collections can use MGIS to do so.I. van den Bergh/Bioversity International less susceptible to insect transmission than other varieties such as 'Kayinja'. But even though debudding is easy to implement and has been shown to reduce the incidence of new infections due to insect transmission almost to zero, its uptake is uneven. At the regional level, a recent survey conducted by the International Institute of Tropical Agriculture (IITA) indicates that debudding is not yet routine. Even though more than 60% of the respondents said that they remove the male bud, less than 25% do so regularly and less than 10% do it with the intention of managing BXW. Indeed, it is proving difficult to persuade 'Kayinja' farmers to debud healthy plants and destroy infected plants. Farmers are not in the habit of fussing over their 'Kayinja' plants, which are normally very hardy. Some farmers also resist debudding because they think it will reduce the potency of the waragi spirit they distil from the fermented fruit.Misunderstandings about the process of debudding also abound. Some farmers are not aware that they should use a forked stick rather than a knife, or that timing is important. Waiting too long after the emergence of the last hand of fruits means that wounds from fallen bracts will form, increasing the likelihood of insect transmission.Removing a shrivelled male bud, the first sign of insect transmission, is also counter-productive. It will not prevent the disease from following its course because the bacteria are already on their way to infect the other parts of the plant. The best solution is to destroy the plant.The standard recommendation is to dig up the entire mat-the mother plant and its offshoots, called suckerschop it up and bury the pieces. \"This is hugely labour-intensive and has not been readily adopted by farmers,\" notes Frank Turyagyanda of Bioversity. Looking for a less cumbersome alternative, Bioversity and NARO scientists tested the effect of removing only the mother plant by simply cutting it off at the base as soon as the male bud started showing signs of being infected. \"It does not save the bunch,\" Turyagyanda admits, \"but it saves the mat.\" Unfortunately this simpler procedure will not work if the fruits have started to ripen and rot or if some of the leaves are already wilted, because by that time the bacteria will have invaded the entire mat. Cutting up infected plants is, in any case, a double-edged sword as it may spread the disease if farmers do not disinfect their knives before using them again on healthy plants.To avoid transmission through cutting tools, farmers are also asked to refrain from pruning their plants and not to let outsiders, such as traders or brewers, use their own tools when they harvest bunches. The exchange of planting material is also discouraged unless the source is reliable, as healthy looking suckers may come from infected Right Selling surplus bananas production is a vital source of income for farmers in East Africa.A shrivelled male bud and rotting fruits come first, but even if the farmer notices them, it may be too late to save the plant. Prevention is the answer.1 mats in which the infection has gone undetected.In an unexpected twist, anecdotal evidence suggests that rich farmers may contribute disproportionately to the spread of BXW because they can afford to hire workers who, by moving between fields, may inadvertently help spread the disease. Rich farmers also tend to introduce more planting materials into their fields than smallscale farmers. On the other hand, they are better placed than poor farmers to implement the recommendation to use disease-free, but more expensive, plantlets produced through tissue culture.Despite the glitches that inevitably arise when coping with a new disease, more and more success stories show that the disease can be contained. In similar situations, resistant varieties would usually be offered to farmers, but none has been found so far. As with other diseases and pests of banana, breeding for resistance to BXW is a testing process that will require years of dedicated work because of the high levels of sterility of most domesticated bananas. Genetic engineering is an alternative and scientists at a NAROrun biotechnology centre are working on BXW-resistant 'Kayinja'.These and other options may become available in the years to come, as scientists identify the solutions that best meet farmers' needs. In the meantime, the responsibility for safeguarding the livelihoods of banana farmers rests in their own hands, through careful management of their own banana plots.Their communities and governments need to support the farmers' efforts at local, national and regional levels.Further information g.blomme@cgiar.org MGIS is at http://mgis.inibap.org SINGER is at http://singer.cgiar.org/Until it showed up in central Uganda, the disease was restricted to Ethiopia, where it also attacks ensete, a close relative of the banana. Nobody knows how the disease jumped from Ethiopia to Uganda, given the large distances that separate the producing regions of the two countries. The most likely explanation is the introduction of infected suckers because the other means of transmission do not have the same reach. But as the disease has spread, so have misconceptions.Q: Are the recommended control measures too costly and labour intensive for smallholders? A: NO! Early removal of the male flowers-which is the best way to prevent insect transmission from infected to healthy plants-is quick, easy and effective. Keeping a field of one hectare free of the disease takes only a couple of hours of work twice a week. Excluding the disease in this way reduces or eliminates the need to uproot and bury infected plants (which is indeed too labour intensive for many farmers to contemplate).Q: Does debudding make the plant immune to infection? A: NO! A debudded plant is less susceptible to insect transmission but is still at risk of transmission through contaminated tools.Q: Have resistant varieties been found? A: NO! None of the cultivated varieties tested so far have shown signs of resistance when inoculated with the bacteria.Q: Are plants infected with BXW poisonous to humans and animals? A: NO! No evidence has ever been found that the bacterium is harmful to humans or animals.Q: Can bananas be replanted in a heavily infected field? A: YES! Even in the worst situation, when an entire field has been infected, bananas can be replanted after allowing enough time for the bacteria in the soil and infected plant debris to die. Current knowledge suggests that a period of about six to eight months is sufficient.Q: Can the disease be controlled using chemical products (e.g. pesticides)?A: NO! Since the disease infects the vascular system of the plant, a chemical product that kills the bacteria would be hard to administer. It is also impossible to kill all the insects visiting banana plants.Don Pedro has about 1000 cacao trees on his farm in Venezuela. He sells the beans to local buyers but the price fluctuates widely. The farm he inherited from his father used to have many Criollo trees-a traditional type renowned for the flavour of its beansbut over the years he replaced many of them with hybrids because these yielded better than his father's trees.But that was before some people in the West developed a taste for premium chocolate made from Criollo beans and started to pay up to three times as much for them, and before diseases became the problem they are today.He would like to take advantage of the new markets, and to produce more from his trees; a new project may help him to do so.The project, funded largely by the Common Fund for Commodities (CFC) and coordinated by Bioversity, is a follow-up to one entitled 'Cocoa Germplasm Utilization and Conservation, a Global Approach.'The main aim of that effort was to encourage international collaboration in breeding after a decade of low cocoa prices that caused producer countries to scale down their breeding activities.The new project brings farmers into the process of developing new varieties, hence its name: Cocoa Productivity and Quality Improvement, a Participatory Approach. Twelve cacao-producing countries are collaborating on it, together with research institutes in France and the UK.Farmers still predominantly rely on traditional cacao types, which fall into three groups: the increasingly rare Criollos, Forasteros and Trinitarios (see photos, p. 15). Breeders started to offer improved varieties to farmers in the 1950s, but uptake was very limited; only about a quarter of the trees on the average farmer's holding are improved varieties. The main reason for the low uptake was that farmers did not have access to highyielding varieties that were also disease resistant, in part because not all breeders were targeting diseases and in part because distribution of improved varieties was patchy. So the farmers took to collecting seeds from their own trees, often the improved varieties, and growing them on to replace old trees.One of the best ways to improve farmers' livelihoods, in addition to selecting the best-performing varieties, is to train farmers to manage their trees more effectively.Smallholder farmers grow 90% of the world's cacao, and they often struggle to make a living in a market characterized by boom and bust cycles. High losses caused by pests and diseases also make it hard for them to take advantage of business opportunities. A five-year project that started in 2006 aims to reduce the vulnerability of farmers by working with them to select and distribute improved varieties.B. Eskes/Bioversity International 1 \"But because the seeds are the product of uncontrolled pollination, stands of farmers' materials tend to be a mixed bag of trees,\" says Bertus Eskes, the Bioversity scientist who coordinates the project. \"Still, farmers are good at spotting the ones that have high disease resistance and yield.\" The promoters of the project hope that, in addition to identifying the best performers, the farmers involved in selection and in the evaluation trials will also accelerate the delivery of superior varieties to other farmers.The normal procedure for improved varieties fresh out of the breeding programme is first to have their performance evaluated at a field research station. The ones that make the first cut are then shipped out to other stations around the world to be further tested across a range of growing conditions. But because these conditions are rarely in farmers' fields, breeders run the risk of having their improved varieties rejected when they finally reach the farmers. If farmers are going to reject some varieties-and they are-it's better that they do it sooner rather than later. \"Some breeders thought it would be lower,\" says Eskes. \"The fact that it is not suggests that farm materials offer a great potential for obtaining better varieties.\"The true potential of the selected trees will take some time to evaluate as they are still young, but so far the screening of selections from the farmers' materials has uncovered some individuals in Cameroon, Côte d'Ivoire and Ghana that are resistant to Phytophthora pod rot, an economically important disease.In Papua New Guinea, where selection of farm materials started earlier, some of the advanced selections yield up to 60% more than even the best improved varieties.Many farmers have enthusiastically welcomed the chance to participate in the evaluation of new material and large numbers applied to host a trial on their farm. Where droughts and pests and diseases threaten the survival of the young seedlings, the project gives farmers irrigation equipment and pesticides to help them cope.Above Cacao flowers.Below The three basic types of cacao pod-Criollos, Forasteros and Trinitariosdiffer in colour, size, shape and, most importantly, the quality of the beans they contain.The breeders also need support.Eskes notes that in some countries the number of experienced cacao breeders and scientists has not recovered from the neglect and lack of investment of the 1990s. Moreover, the fact that in most countries extension and breeding services fall under two different administrations makes it difficult for extension workers to help breeders to cope with the extra workload of supervising the on-farm trials in addition to their own trials at the research stations.Despite these and other obstacles, the project has opened up a previously neglected channel of communication between farmers and breeders. When all the results are in it will be hard (and probably unwise) to go back to excluding farmers from breeding programmes. It may also speed up the advent of the new, and profitable, cacao varieties that many farmers, including Don Pedro in Venezuela, would like. Seedlings growing in the nursery prior to planting out and evaluation.1In the developed world quinoa is something of a novelty, an exotic grain with a slightly fringe reputation for good nutrition and environmental friendliness. In the Andes, where people have cultivated quinoa for around 5000 years, quinoa has been the breakfast, lunch and dinner staple, not to mention snacks and sweets.The rise of quinoa in developed countries created opportunities for poor farmers in one of the harshest agricultural environments in the world, but it brought problems too. Damiana Astudillo, a Mickey Leland Congressional Hunger Fellow, has been working with Bioversity for the past two years to understand the challenges of commercial quinoa cultivation in the southern Bolivian Altiplano.Conditions on the Altiplano are tough.Temperatures can range from -18°C to 27°C in a day. There is overnight frost 225 days a year, rainfall averages less than 25 mm a year and soils are sandy with very little organic matter. Quinoa (Chenopodium quinoa) is one of the few crops that thrives there, and it provides excellent nutrition. Protein content ranges from 11% to 19% and is of very high quality, containing all eight amino acids essential for human health. The seeds are rich in vitamins and minerals too. In fact the United States' Academy of Sciences describes quinoa as \"the most nutritious grain in the world\".Above Roasting the quinoa seeds is an essential first step in processing, to loosen the layer of bitter saponins that cover the seeds.Left Quinoa is one of the few crops that will thrive at high altitude and in thin soils.Promoting neglected and underutilized species can be a double-edged sword. A recent project with the communities that surround the Uyuni Salt Flat in Bolivia showed that although farmers' incomes rose, their use of crop diversity decreased and there may also have been bad nutritional consequences for farm families. But the study also showed ways to improve matters. Although the communities of the southern Altiplano lack education, basic infrastructure such as roads and running water, and capital, they have not been slow to respond to demand for their wonder grain in Bolivian towns and cities and in the developed world. Production increased from about 5600 tonnes in 1980 to more than 13 500 tonnes in 2001, the result not only of doubling the area of land under cultivation, but also of a 25% increase in yield per hectare. In her study, Astudillo identified four major impacts of this switch from subsistence to commercial production.Quinoa diversity is being lost. A single variety now makes up 37% of production, and the top three account for 72%. This is the flip side of market demand; although it has boosted the total amount of quinoa being grown, it has also created a focus on commercially valuable varieties that are homogeneous and large-seeded. Smaller-seeded and more variable varieties are no longer being planted as much.Flowing from this have been changes in dietary diversity and impacts on the environment. Farmers and their families used to eat quinoa at almost every meal. Now, with the money they earn from quinoa sales, they can afford to buy other sorts of food. One reason they buy these foods is that they are much easier to prepare, while quinoa is time-consuming and laborious. With the demands on their time that commercial growing makes, it is no surprise that many women have turned to pasta, rice and processed foods. Dietary diversity has increased but, paradoxically, nutrition may have suffered, because the substitute foods are not nearly as nutritious as quinoa.The shift to commercial cultivation has also impacted on the environment. Previously, family farms were small and quinoa was grown mostly on the slopes. Villagers reap larger harvests by moving quinoa off the hills and onto the flat lands, but this has promoted the use of inappropriate technology, such as disc harrows, that promotes wind erosion. In addition farmers are not leaving the land fallow as long as they once did, leading to further erosion and a depletion of the few nutrients present in the soil.Finally, there has been an impact on the social life of the community. Before, although plots were family-based, families helped one another when needed and often worked together. Now, with increased mechanisation, the work tends to be much more solitary and families do not need one another's help. The result is that they are more isolated.Astudillo did more than merely record what was going on in the communities of the southern Altiplano. She also worked with the people to see whether things could be changed. Workshops aimed at parents with young children focused on the importance of good nutrition and raised awareness of the value of local quinoa, but one of the perennial complaints about quinoa is that it is boring. Working with the parents, Astudillo helped to develop new recipes that made quinoa more appealing, including a quinoa pancake that had children queuing up for more. Even the best recipes, however, do not address the fundamental problem: preparing quinoa is a pain.Quinoa seeds are coated with a layer of saponins; exceedingly bitter, toxic chemicals. To get rid of this layer, women first toast the seeds on a metal tray over a fire. This helps to loosenGrowth in planted area and yield of quinoa in the southern Altiplano. Above After roasting and treading the seeds, the saponin dust is removed by winnowing in a steady breeze.Left Just some of the quinoa diversity, much of which is disappearing from farmers' fields as they concentrate on a few more marketable varieties.Right The quinoa harvest drying in the fields.1 the saponin layer and, while it may not be strictly necessary, enhances the flavour of the seeds. Then the hot seeds are tipped into a stone basin and the women tread them with their bare feet.The friction loosens the saponin coat and reduces it to dust. Treading also often gives the women blisters and chronic lower back pain. The saponin powder now has to be cleaned from the seeds, which is done by waiting for a day with the right kind of steady wind and then winnowing the seeds repeatedly so that the wind blows the dust away. Finally the seeds are rinsed in a couple of changes of water and set out to dry.Quite apart from the sheer drudgery and discomfort of the work, which is usually carried out in the bitter cold of winter immediately after the harvest, it can take 6 hours to process 12 kg of quinoa.In some ways, this proved an easy nut to crack. Astudillo worked with Rolando Copa, a local mechanic and inventor, to build a quinoa processing machine that duplicates all the necessary steps and that reduces the time it takes to process 12 kg of seed from 6 hours to 7 minutes. The communities were at first deeply sceptical that the machine would produce acceptable quinoa. To overcome that, Astudillo arranged for blind tastings in five different communities. Not only did the families find the machine's quinoa totally acceptable, they even said they would be willing to pay up to 75 US cents to process 12 kg. This is crucially important, because the machines cost around US$ 800, more than a family could afford. There are, however, precedents for making a machine available as an incomegenerating opportunity to a family or an entire community, not least from Bioversity's work in the Kolli Hills of India (see Annual Report 2005, p. 23).As Astudillo notes, \"the machine will reduce the burden of women's work, have a positive impact on their health and potentially improve nutrition by facilitating the consumption of a nutritious grain. This is a lowinput, high-impact opportunity for any organization committed to practical rural development and the improvement of livelihoods of marginalized populations.\"That leaves the problem of quinoa diversity in the field. Although the local genebank stores samples of essentially all known quinoa varieties, so that they will be available for future use, for the farmers those varieties appear to have little value at the moment. Nevertheless, diverse quinoa varieties do have different agronomic and nutritional properties. Some are more frost resistant, for example, while others mature early. Nutritionally, there is the overall difference in protein quantity, which varies from 11% to 19%, and there are almost certainly differences in other components, like vitamin and mineral contents. These differences were probably much more important when farmers were growing quinoa as an element of their survival strategy. These days, farmers are freely abandoning most varieties to concentrate on the few that have the greatest value in the market. That may one day prove to be an error, in which case the samples stored ex situ will have earned their keep.On the other hand, many families are using the extra money they are earning to educate their children, and those children may well decide to abandon the hard life that quinoa cultivation represents. In which case, there might be no immediate need for the genebank samples. But where, then, will the developed world get its quinoa? Coconut trees can live 100 years or more, but only neglected individuals are allowed to reach such an age. In commercial plantations, the 'useful' life of a tree is usually 50 years, after which it is replaced. Field genebank specimens are also taken down, either when they start producing fewer nuts because they are too old or when they have grown too tall to work with easily, generally when they exceed about 10 metres.In Côte d'Ivoire, Bioversity is working with local partners to implement the Global Crop Diversity Trust's decision to support the regeneration of 50 coconut accessions designated most at risk of being lost from the field genebank. Each accession held at the Marc Delorme Research Station of the Centre National de Recherche Agronomique (CNRA) is represented by tens of trees, many of which date to the establishment of the collection in 1967, although some go as far back as the 1950s. At the time, the number of trees planted was dictated more by circumstances than by any desire to represent adequately the genetic diversity of an accession. As a result the number of trees per accession can be as low as 69 or as high as 359. From now on, says Jean-Louis Konan, the project leader and curator of the coconut collection, each accession will be represented by 100 trees.The CNRA collection is one of the five regional field genebanks that make up the International Coconut Genebank For all the useful services they provide, field collections cannot afford to be retirement homes for coconut trees that have passed their productive peak. As part of its strategy to support important genebank collections, the Global Crop Diversity Trust is funding the regeneration of half of a field collection in Côte d'Ivoire.Controlled pollination of coconuts is a complex procedure. Hervé Lomoh, a technician, prepares to climb the tree, which can be 30 metres tall, in order to cut off the male flowers. These are buried to prevent accidental cross pollination.A special bag protects the female flowers, which will be fertilized with pollen from the same variety. Months later the ripe nuts are collected and set to sprout in nursery beds, ultimately to replace the older trees.Regenerating an accession is all about making sure that the genetic integrity of the variety is maintained. That means ensuring that the female flowers are not fertilized with the pollen from another variety. This is easier for Dwarf types than for Tall types (most cultivars fall into one of these two groups), and not just because they are short. Dwarf types tend to have male and female flowers that mature at the same time on a given tree, so it is a reasonably simple matter to pollinate the female flowers and then prevent other pollen getting to them. Tall types are protandrous; the male flowers generally shed their pollen before the female flowers on the same tree are receptive.To control pollination, some trees are chosen to be the females and others the males. For each accession, the project team tried to select a maximum of 100 females and 30 males, based on their health status and past agronomic performance. On the female trees, the male flowers are removed three months before the start of pollination and the female flowers bagged to keep them pure. Male flowers are also bagged to prevent accidental contamination, and the pollen collected. Fortunately, coconut pollen can be easily frozen until the female flowers are ready. When they are, the pollen is thawed and placed on the receptive females, which are then bagged again.The harvest begins about a year later. The nuts are sown in a nursery where they stay until the best seedlings can be planted out in the field. The project started in 2005, and in the first two years 37 accessions were carefully pollinated. By the end of 2007, the final 13 accessions slated for regeneration will be growing in the nursery.So far, 6000 nuts representing 22 accessions have been harvested. That's many more than strictly necessary for regeneration but Jean-Louis Konan quotes a local saying: \"There is no such thing as too much meat in a sauce\". He recalls an instance when he was able to replace losses incurred in another project because he had produced more seedlings than needed for regeneration alone. p. 9). The impact, particularly in Kenya, has been considerable. On the practical side, thanks to a broad-based partnership and tightly focused efforts, awareness of the benefits of traditional leafy vegetables is substantially higher than it was three years ago. More to the point, people in Nairobi are buying and eating them more often (see Assessing the impact of our work, p. 24).The project also helped to create a platform that enabled a wide range of stakeholders to come together to discuss the ways in which dietary diversity and traditional foods could be incorporated into national policies.In Kenya, the project was able to influence the content of two Bills being prepared for parliament. One covers nutrition and dieticians and the other addresses Kenya's policy on food security and nutrition. Both are progressing with support from several ministries and other important players with an interest in better health and better use of biodiversity. The building of such alliances, which are now able to take things forward with wide support, has been a valuable result of the project in each of the four countries in which it operated. These networks will be able to tackle national policy questions more effectively, but the business of gathering data and evidence has not been neglected. At the Institut de technologie alimentaire in Senegal, the emphasis was on analysing specific varieties and dishes made with them. The study focused on two crops, Moringa oleifera, known locally in French as nébédaye, and Hibiscus sabdariffa, roselle or bissap.Moringa, also known as drumstick tree for its pods and horseradish treeThe use of traditional and local crops to boost nutrition and income has become a core element in Bioversity's efforts to research agricultural biodiversity to improve livelihoods. A project on dietary diversity came to an end in 2006 and provides a sound basis for expanded work in this area.A tasty approach to dietary diversityAbove The fleshy calyces of roselle (Hibiscus sabdariffa) flowers are generally made into a refreshing drink, but they and, more importantly, the leaves are also an important traditional vegetable.Left The project team in Senegal. Meissa Diouf, local project leader, is on the far left.for the taste of its roots, is a source of many important resources, including leafy greens and seedpods for human consumption and animal forage. It is generally grown as a shrubby, shortlived perennial that is highly resistant to pests and diseases and does well with no fertilizers and with fluctuating availability of water. The study looked at three varieties, one produced by the World Vegetable Centre (AVRDC), one from the Centre pour le développement de l'horticulture (CDH) in Dakar, Senegal, and a more traditional variety known as 'Kothiary'.Hibiscus, like moringa, is grown for many purposes and goes by many names, among them roselle, kakade and bissap. The flowers and, especially, the calyces that enclose and support the flower petals, go into refreshing drinks and teas, but in Senegal it is the leaves and flowers that play a primary role in the diet. As with moringa, the study looked at three varieties, called 'Pied 22', 'Vert de Fatick' and 'PS24'.People, of course, eat meals, not leaves. So in addition to sampling the leaves for chemical analysis, the Senegalese team also mounted missions to two rural areas and one urban centre specifically to collect traditional recipes. They spoke to women and collected information about the sorts of foods they prepared for their families and recorded detailed recipes for dishes that used moringa or hibiscus leaves. The recipes were then prepared in the laboratory for biochemical analysis and testing.At this stage, the measurements remain very basic, as even that information is not very plentiful. Nevertheless, two impressions emerge. One is that these species are rich in nutrition, as has always been said. The other is that there are differences between varieties with respect to some constituents. Quantities of some minerals were two or three times higher in one variety than another. The differences showed up in meals too. For example, a dish called gnankatang made with hibiscus cultivar 'Vert de Fatick' contained four times as much zinc as the same dish made with cultivar 'PS24' (0.88 vs 0.22 mg per 100 g), although the dishes contained identical amounts of iron at 0.42 mg per 100 g. Dishes made with different varieties of moringa did not show great differences in mineral contents, although couscous with 'Kothiary' sauce contained only 1.67 mg of iron per 100 g, compared to 2.33 mg of iron per 100 g in the same dish made with the CDH variety. Samples are too few at this stage for the observed differences to be statistically significant, but the results are certainly indicative of important differences among varieties and recipes, a topic that would probably repay further study.In addition to the biochemical analyses, and to extend that information, the team also asked a panel of tasters to assess dishes made with the different varieties. Again, some interesting and suggestive differences emerged. For example, an overwhelming 11 out of 12 (92%) panellists preferred the hibiscus variety 'PS24' over 'Pied 22'. In a larger test of moringa, 12 of 22 (55%) panellists preferred the sauce made with the CDH moringa, while 7 (32%) preferred the same sauce made with 'Kothiary'. Why remains elusive, although the Senegalese scientists note that \"the CDH variety is richer in protein, vitamin C, zinc, potassium, sodium and iron\". (The AVRDC variety was first choice of only 3 (13%) of the panellists.)Patrick Maundu, an ethnobotanist at Bioversity who has worked closely with the project, points out that while moringa seems to be more nutritious than hibiscus, hibiscus is good as a source of zinc. \"There is no one species that is better in everything,\" says Maundu, \"hence the need to diversify diets. Many cultures have a tendency to mix vegetables because they complement each other. It helps with bioavailability too. The essence of all this is 'we should diversify'.\"Given the insights and practical impact of this first project, a second proposal has been prepared for possible support by the International Development Research Centre. This second phase will extend the findings to more countries and seek to promote policies that will support and sustain the use of dietary diversity.Composition of Moringa oleifera and Hibiscus sabdariffa varieties.For each species, three different varieties were measured. This table shows maximum and minimum average values, regardless of variety, for some constituents. For absolute measures, the quantity is per 100 g fresh weight. Bioversity has long extolled the multiple virtues of traditional African leafy vegetables (ALVs) across sub-Saharan Africa. They are nutritious, they thrive in marginal environments, they can be a source of income, especially for women, and they are environmentally friendly. Developing the sector, however, requires not only that farmers be able to supply traditional leafy vegetables but also that shoppers, especially in urban areas, want to buy them. Alas, early indications were that urban shoppers did not think much of traditional leafy vegetables. They were considered unattractive and backward, and many urban dwellers did not know how to prepare them properly. They were also often sold under unhygienic conditions. Project partners developed a multipronged campaign to address these concerns, and a study by Bioversity staff member Elizabeth Obel-Lawson discovered that the campaign had worked. \"Between 2003 and 2005 there was a tenfold increase in consumer demand for ALVs in supermarkets despite their high cost in comparison to exotic vegetables,\" Obel-Lawson's report notes. But there is far more to her report.The campaign used several channels of communication to get the message across, including media such as newspapers, magazines and radio.But it turned out that word of mouth may have been the most important. Roughly 60% of respondents said that they got information from their family (especially mothers) and other social relationships. However, there may well be a multiplier effect at work here, with some people who are receptive to messages in the media and who then distribute those messages further through their network of interpersonal relationships. Obel-Lawson cautions that future campaigns cannot afford toThe sons of Josephine Osea, Programme Assistant to Bioversity International's Regional Director, shop for traditional leafy vegetables in a supermarket in Nairobi, Kenya. African leafy vegetables are very nutritious, containing high levels of folic acid, iron, calcium and magnesium among other nutrients.Bioversity's intention is to use research on agricultural biodiversity to improve lives. Good intentions, however, are not enough. We need to do what we set out to do, and then show that it has the desired effect on people. Impact assessment studies indicate that the organization is on the right road.Assessing the impact of our work ignore broadcast media, and that for maximal effectiveness the messages should be credible, consistent and of high quality. The campaigns provide the information; interpersonal communication then helps to drive changes in behaviour.There is evidence, too, of such changes in behaviour (or at least selfreported changes). About 14% of the people surveyed said that they had changed their diet by replacing red meat, cabbage, kale or spinach with traditional African leafy vegetables. Government too was responsive. Legislators introduced a Bill for a nutrition policy for Kenya and the National Food Policy was reviewed with the possibility of including traditional foods; these initiatives are making progress.Obel-Lawson's study, for which she was awarded an MA in communications studies, formed an integral part of the African Leafy Vegetables project and added to the value of the project by pinpointing some of the project impacts and helping to identify the drivers of change. Bioversity intends similar impact assessment studies to be a feature of all future projects.Further information e.obel-lawson@cgiar.orgOne of the problems that bedevils plant breeding work is that farmers may not show any interest in the improved materials developed. Getting farmers to participate in breeding and selection activities can help (see Participating in better breeding efforts, Annual Report 2002, p. 19). It can also be helpful to study the various factors that influence a farmer's decisions to adopt the varieties on offer. In 1997 the Katholieke Universiteit Leuven (KUL), which hosts the Bioversity banana collection, began a project to multiply pest-and disease-resistant varieties obtained by Bioversity from the Fundación Hondureña de Investigación Agricola (FHIA) and to introduce them to farmers in the Kagera region of Tanzania through the Belgium-funded Kagera Community Development Programme (KCDP). Impact studies by Bioversity scientists with colleagues at the International Food Policy Research Institute (IFPRI) shed light on farmers' choices and preferences and the impact on their lives.In its first three years the project distributed about 2.5 million suckers of the new varieties, which on-farm tests had established would produce bunches that weighed an average of 18.9 kg, compared with 9.7 kg for local varieties. In 2002, a survey in Kagera region revealed that 29% of households had planted at least one new banana variety. However, in high-rainfall areas, where pests and diseases put farmers under more pressure, adoption was 100%. In medium-rainfall areas, only 6% of the farmers had grown one of the new varieties. A more recent study of 260 households in Kagera extends these findings considerably. For example, even outside the specific area where the project was distributing the new varieties, about one in five farmers was growing one of the new varieties. This reflects the strength of farmer-based informal systems for exchanging new planting material. Exchanges like this generally do not involve money, depending instead on social relationships; the fact that varieties spread from farmer to farmer, even when this was not a formal part of the project, suggests that this mode of dissemination should be deliberately incorporated into future projects.The hybrids were intended to reduce the vulnerability of households to losses from banana pests and diseases, which they did. Households in areas where the project had operated lost about 3% of their expected yield to pests and diseases, compared with losses of about 8% suffered by households outside the project area. What really matters, though, is not whether the farmers were actually in the project area, but whether they were growing hybrid bananas. Those outside the project who had obtained the hybrids from friends or relations enjoyed the same yield benefit, pointing up again not just that hybrids do what they were intended to but also that informal farmer-to-farmer distribution channels are really important.Because the hybrids yield larger bunches, they enable a household to meet its needs with fewer banana mats (the mother plant and offsets from it). The family can eat more bananas themselves, while their consumption is actually a smaller proportion of their harvest, so their nutrition should be improved at the same time as they can earn more. The additional productivity of the FHIA hybrids also frees land that can be used to grow other crops and to support livestock. Farmers who take advantage of this can earn twice as much as non-adopters each year and are less dependent on bananas.One of the crucial differences that the impact study identified concerned visits from extension agents. Farmers who received more visits from extension workers were much more likely to grow the hybrid bananas. While this requires further study, it does suggest that concentrating on extension and targeting relatively deprived households (in terms of income and of wealth), at the same time as strengthening informal exchange, may be the most effective means of improving the livelihoods of banana farmers in East Africa. The award recognized the efforts of all concerned to conserve and manage collections of plant genetic resources as global public goods. It is hard to overstate how important the collections are. Centre genebanks contain more than 650 000 accessions of some 3000 species of staple crops, forages and agroforestry species essential to human food security and nutrition. These genebanks are fundamental to the CGIAR's work on plant improvement, and they hold the world's largest collections of plant diversity for food and agriculture. The genebanks are repositories not only of plant diversity but also of information and expertise unique in the scientific and agricultural spheres. This information, and the plant accessions 2006 was a truly significant year for the world's food security. Genebanks were upgraded and new agreements on access to materials and information were signed. The System-wide Genetic Resources Programme collected an award for managing the upgrade, just one of several honours conferred in 2006. The crop genetic resources held by the centres are vital to the CGIAR's achievement of its objectives. An investment in securing the collections is thus an investment in the CGIAR's chief goals. Over the past ten years, the centres have taken serious measures to review their genebank operations and to ascertain the costs of effectively and efficiently conserving the collections under their care. This allowed them to identify practical and strategic actions to ensure that they continue to be able to meet their obligations.These costing studies provided the sound basis needed to secure World Bank support to upgrade the facilities of genebanks holding these collections. Being part of the SGRP has greatly enhanced the capacity of CGIAR centres to meet the policy and technical expectations that their intrust role has created. The policy dimension goes back to the 1990s, when the centre genebanks signed agreements with FAO that placed their collections in trust for humanity. As the partnership award recognized, the SGRP has brought coherence, effectiveness and efficiency to the genetic resources activities of the CGIAR system in support of its development goals. Jane Toll, SGRP coordinator, collected the award on behalf of the entire community, and was at pains to point out that it really was a team effort, and, as she put it, \"teamwork is the essence of SGRP\".Further information j.cherfas@cgiar.org Bioversity's Board of Trustees has responsibility for ensuring that an appropriate risk management system is in place which enables management to identify and take steps to mitigate significant risks to the achievement of the centre's objectives.Risk mitigation strategies have been ongoing at the centre and include the implementation of systems of internal control which, by their nature, are designed to manage rather than eliminate the risk. The institute also endeavours to manage risk by ensuring that the appropriate infrastructure, controls, systems and people are in place throughout the organization.The Board has adopted a risk management policy that has been communicated to all staff together with a detailed management guideline. The policy includes a framework by which the institute's management identifies, evaluates and prioritizes risks and opportunities across the organization; develops risk mitigation strategies that balance benefits with costs; monitors the implementation of these strategies; and reports, in conjunction with finance and administration staff and internal audit, semi-annually to a Task Group of the Board and annually to the full Board, on results.The Board is satisfied that Bioversity has adopted and implements a comprehensive risk management system. ","tokenCount":"13016"} \ No newline at end of file diff --git a/data/part_1/1275804896.json b/data/part_1/1275804896.json new file mode 100644 index 0000000000000000000000000000000000000000..fc4a89a624fd11c3d2429cc2fc1d811cd98bea68 --- /dev/null +++ b/data/part_1/1275804896.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"f75625ff2701a5dd855936747fdf57b6","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/63a4bb59-cb85-44af-96cf-74382e37a750/retrieve","id":"79720952"},"keywords":[],"sieverID":"736330ae-ddf9-4a28-8c68-e3471dbcf6e0","pagecount":"2","content":"The livestock sector is a major contributor to food security in sub-Saharan Africa. It is a vital source of income to most of the rural poor as it is the largest employment sector in the region. Livestock also provide nutritional benefits through animal source foods that are protein dense and contain key micronutrients not found in plant-based foods.However, livestock production is especially vulnerable to climate change because it relies heavily on precipitation and stable temperatures. In drylands, livestock systems are often challenged by scarce water and vegetation and suffer from droughts that are becoming more frequent and intense with ongoing climate change. Vulnerabilities caused by climate change underscore the importance of pursuing adaptation strategies in livestock systems.Livestock production is not only affected by climate change, but also contributes to it. In many countries in the region, the agricultural sector is the largest source of greenhouse gas (GHG) emissions, a large proportion of which comes from livestock production. Such emissions are released during the digestive process of ruminants, storage and application of manure and production of fodder. These high GHG emissions are mainly due to poor animal health and lowquality feed, which lead to low productivity.The concept of climate-smart agriculture has been widely adopted in the agriculture development community to contribute to food security by increasing agricultural productivity, adapt agricultural systems to future climate change and recognize possibilities to mitigate GHG emissions by closing nutrient cycles in agriculture.The program for climate-smart livestock systems (PCSL) will support interventions to increase the contribution of livestock production to the three key pillars of climatesmart agriculture: increased productivity, mitigation of GHG emissions and adaptation to climate change.The program will be implemented across major livestock productions systems in three focus countries-Kenya, Ethiopia and Uganda-and will run from 2018-22.The program works to direct the practices, sector strategies, policies and investments of livestock stakeholders towards climate-smart livestock systems.PCSL will support governments, the private sector and local stakeholders in realizing their development objectives, while also fulfilling their commitments to achieve climate change adaptation and mitigation goals.The program will support countries to improve the reporting of their nationally determined contributions (NDCs) in the livestock sector within the frameworks of the Paris and Katowice agreements.The program is implemented by the International Livestock Research Institute (ILRI) in partnership with the World Bank. Activities focus on combining scientific data collection with solution-led field research on climate-smart livestock production. By doing this, PCSL will contribute to the creation of new insights, knowledge and evidence related to climate-smart livestock development. ","tokenCount":"415"} \ No newline at end of file diff --git a/data/part_1/1278333988.json b/data/part_1/1278333988.json new file mode 100644 index 0000000000000000000000000000000000000000..9916920bd454ac67c8bc8fd582922537174e21cc --- /dev/null +++ b/data/part_1/1278333988.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c68d76fe6db05c85c1141bf76a84b2ad","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/246b85ad-b1be-4931-bdfb-7e4a927281f2/retrieve","id":"-1440398166"},"keywords":[],"sieverID":"a56f7ce2-909b-4e76-8739-605a7aec1656","pagecount":"4","content":"The Paris Agreement opens the door for more adaptation and mitigation in the agriculture sector  Countries must take urgent action to reduce emissions from the agriculture sector in order to limit global warming below 2 degrees C. Funding and political will are needed to support developing countries to implement their plans to combat and adapt to climate change in the agriculture sector The global agriculture community, including CGIAR, must step up and engage in key UNFCCC processes between now and 2020 to drive action and innovation on issues related to agricultureIn December 2015, parties to the United Nations Framework Convention on Climate Change (UNFCCC) agreed on a global climate change agreement to replace the nearly expired Kyoto Protocol. The Paris Agreement aims to limit the increase in global average temperatures to \"well below two degrees C\" and to pursue efforts to limit it to 1.5 degrees C, and will come into force in 2020. Food security and agriculture are not overlooked in the Paris Agreement. In fact, the collective outcomes of COP21 offer many opportunities for action on food and farmingto be seized by the global agriculture community.Food security, food production, human rights, gender, ecosystems and biodiversity are explicit in the Agreement  The preamble of the final agreement text makes specific reference to \"the fundamental priority of safeguarding food security and ending hunger, and the particular vulnerabilities of food production systems to the adverse impacts of climate change\". The preamble also refers to human rights, gender, ecosystems and biodiversity, all issues that are central to agriculture. The preamble also \"recogniz [es] the importance of the conservation and enhancement, as appropriate of sinks and reservoirs of greenhouse gases referred to in the convention\" which makes mitigation in agriculture possible. Article 2.1 of the agreement outlines its \"aims to strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate poverty\". This includes actions for \"increasing the ability to adapt to the adverse impacts of climate change and foster climate resilience and low greenhouse gas emissions development, in a manner that does not threaten food production\".An entrepreneurial farmer in Ethiopia has restored her soil by harvesting rainwater. COP21 has created new opportunities for farmers like her. Photo: G. Smith (CIAT)The ambitious 1.5 degree C target offers some hope for farmers and food security  The Paris Agreement aims to limit global temperatures \"well below\" two degrees C, and pursue a 1.5 degree target. As outlined by Campbell (2015), the debate between a 1.5 or two degree C target means different future scenarios for agriculture. For example, staple crops maize and wheat both show a trend towards greater yield losses at two degrees C than 1.5 degrees C. If global warming can be limited to 1.5 degrees, this will also produce fewer climate extremes than a two degree C temperature rise. This is good news for farmers in the tropics, as they will be on the frontline of heatwaves, droughts, floods and cyclones.On the whole, country commitments to reducing emissions will not limit global temperature rise to two degrees  The text also notes that \"much greater emission reduction efforts will be required\" than what have already been put forward. As noted by Campbell (2015) a 1.5 degree C target will require even more mitigation effort from the agriculture sector than a two-degree target. But even with a two degree C target, by 2050 we will likely run out of viable options for reducing emissions from the industrial, transport and energy sectors. Reducing emissions from agriculture will be imperative as it will be impossible to stay within either a 1.5 or two degree C target if agriculture does not contribute to emissions reductions. A comprehensive analysis of agriculture in national climate plans by Richards et al (2015) reveals that agriculture is discussed in 80% of Intended Nationally Determined Contributions (INDCs). Considerable finance is needed for agricultural adaptation and mitigation by Least Developed Countries (LDCs)in the order of USD 5 billion annually (Richards et al. 2015). This sum, which may be an underestimate due to the small sample, is much higher than current commitments to climate funds for agriculture and is at least ten percent more per year than multilateral climate funds spent on agricultural projects in the last decade. It remains unclear exactly how developing countries will be supported to implement their INDCs. The Paris Agreement commits developed countries to set a new collective financing goal of at least USD 100 billion per year, \"taking into account the needs and priorities of developing countries\" (para 54), but does not include binding requirements on financial contributions by individual countries. The Green Climate Fund (GCF) and the Global Environment Facility (GEF) are entrusted to administer support for developing countries, particularly to implement national adaptation plans and actions. It remains to be seen if there is sufficient political will to move from business as usual to necessary action, and if countries will channel the much needed funding to where it is needed. Issues related to agriculture are being discussed in a slow-moving parallel process under the Subsidiary Body for Scientific and Technological Advice (SBSTA), a process initiated in 2014 Now is the time for countries and observers to prepare their submissions on agriculture to SBSTA. In SBSTA discussions held in parallel to COP21, discussions were on issues relating to agriculture. The resulting SBSTA conclusion notes the two agricultural workshops that took place in June 2015, and the two that are scheduled for June 2016, and decides to discuss the workshop reports at its upcoming sessions in May and November 2016. Countries and observers to the UNFCCC have until 9March 2016 to make submissions on the identification of adaptation measures, and identification and assessment of agricultural practices and technologies to enhance productivity in a sustainable manner. The SBSTA will work on a report to be presented at its November 2016 meeting, which will form the basis for a decision on agriculture, for example a possible work programme, at the SBSTA 45 inThe Paris Agreement opens the door to further work on agriculture between now and 2020, when the agreement takes hold. This is the chance for the global agriculture community, including CGIAR, to step up and drive action: Support countries to implement INDCs in agriculture and food systems, via robust technical and institutional options, prioritization and metrics, and approaches for reaching scale. This includes helping Parties 'take stock' of progress on limiting emissions from all sources in 2018. Engage with the adaptation committee and LDC expert group to ensure modalities to recognize adaptation efforts can recognize adaptation in agriculture. Engage with the Paris Committee on capacity building, which will look at critical gaps and areas for action. It could also become a platform for agreeing to a common accounting methodology for agriculture, which is currently missing. Make submissions to the SBSTA 44 call on adaptation measures for agriculture, and assist Parties in reaching a consensus and plan for progress on agriculture. Contribute to the agriculture, food system, forestry and land use chapters of the IPCC's 6 th Assessment Report (AR6), and assist with the IPCC's special report on agriculture and food security ahead of AR6. Give solid technical contributions to countries' applications to GCF and GEF to undertake actions on adaptation and mitigation in agriculture. Facilitate dialogue to coordinate action across sectors, particularly between forestry and agriculture and across the food-energy-water nexus, including biofuels. ","tokenCount":"1238"} \ No newline at end of file diff --git a/data/part_1/1281688845.json b/data/part_1/1281688845.json new file mode 100644 index 0000000000000000000000000000000000000000..8cc7f489a03db8136ddafb51a4ed26a3fcb239ed --- /dev/null +++ b/data/part_1/1281688845.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"57659a38f543e758236d33a9783ca8b3","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/05698eb4-ee27-4338-876d-0e6932ed9d7b/retrieve","id":"1261649050"},"keywords":[],"sieverID":"c8dc10cf-e6a8-4e3d-aae9-f5351c2a2feb","pagecount":"4","content":"A growing suite of innovative low-cost decision-support tools and soil datasets produced by ICRAF and its partners through the Africa Soil Information Service (AfSIS) and are being used by 14 African governments and other investors to map soil properties and measure crop nutritional responses to different soil management regimes. These technologies are guiding the sustainable restoration of degraded lands and have results in the development of several state-of-the-art national soil information systems (in Ethiopia, Ghana, Nigeria, and Tanzania).Description of activity / study: Nutrient and organic matter depletion in African croplands is a significant land degradation process. This work is contributing to the restoration of degraded croplands by measuring and mapping soil properties, and plant nutritional responses, to different soil management interventions, thus enabling the refinement and better targeting of soil management measures.• GlobalComments: The speed and low cost of light-based soil-plant diagnostic tools allow soil and plant analysis to be applied and assessed at national scale (Continent level mapping in 14 African countries).Contributing CRPs/Platforms: ICRAF/WLE developed soil-plant spectral diagnostic protocols for rapid and low-cost analysis of soil properties and plant nutrients using only light (infrared, x-rays). The technology allows soil and plant analysis to be conducted faster, and at much wider scales, than previously possible, allowing quicker and cheaper sample analysis from many georeferenced sites. This in turn permits digital mapping of soil properties and measurement of nutrient constraints faced by different crops in multiple agronomic trials over large areas [1][2][3][4][5]. ","tokenCount":"241"} \ No newline at end of file diff --git a/data/part_1/1304997126.json b/data/part_1/1304997126.json new file mode 100644 index 0000000000000000000000000000000000000000..a3c8eb6db02cd16a15022976f2a7e5ac35b26b92 --- /dev/null +++ b/data/part_1/1304997126.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3547139d195c13318b4a0862b57a8928","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/84101d05-ae16-4922-971c-85a42450eb03/retrieve","id":"1820211731"},"keywords":[],"sieverID":"bee95045-39ac-4251-85a6-5f5e26f43d9e","pagecount":"9","content":"As part of the U.S. government's Feed the Future initiative to address global hunger and food security issues in sub-Saharan Africa, the U.S. Agency for International Development (USAID) is supporting multistakeholder agricultural research projects to sustainably intensify key African farming systems and as a way of bringing a regional focus to the CGIAR's Integrated Systems CRPs 1.1 and 1.2. The International Institute of Tropical Agriculture (IITA) is the lead institute for development and implementation. This research project focuses primarily on rice-production systems in North-West Tanzania but is intended to result in spill-over effects in other similar agro-ecological zones. This region was chosen based on analysis of cropping systems, poverty, population, country development priorities, and the potential for successfully improving agricultural productivity. The north-west of Tanzania, the area between Mwanza and Shinyanga also known as Sukumaland, is considered the national rice basket as 60% of all rice is produced there. The development of this region will be based around research in best management practices for sustainable intensification of production. This will require well-coordinated efforts involving multiple donors, regional organizations, partner universities, the private sector, national and international agricultural research institutes, and Non-Governmental Organizations (NGOs).crops can be introduced as relay-intercropping crops towards the end of the wet season and when water levels go down. These crops may contribute to the generation of income, soil fertility improvement and the reduction of weed infestation in the subsequent rice growing season. Introduction of short-duration rice varieties, such as the ones generated and disseminated by AfricaRice and partners, may result in increased time availability for the relay-intercropping crops and hence increase their productivity. Crop rotation involves growing different crops in systematic and recurring sequences on the same land, as opposed to monoculture, in which a particular crop is planted repeatedly in the same field. On a seasonal basis, rotation can take place in the wet season, with rice being the most suitable crop for the wetlands, whereas during the dry season, dryland crops such as grain legumes and vegetables can be cultivated. The economic performance of different rotations and relay-intercropping systems varies according to the distance to markets, topo-sequence position in the inland valley, and water availability during the dry season. The combination of mechanized land preparation and water saving technologies with use of storage reservoirs could significantly contribute to increased water availability. Furthermore, post-harvest and value addition options can increase product competitiveness and raise farmers' incomes. Rice is usually produced as a single crop per year under rain-fed conditions with a production cycle of between 3-6 months. Irrigation provides opportunities to increase the potential yields of rice in designated locations during the major production season while promoting diversification of selected high value crops in the off-season period by making use of residual water following harvesting of the main (rice) crop. Many paddy fields are left fallow during the 5 to 6 months off-season period despite the availability of water. Yetfield research shows that rice yields could be increased by more than 1 tha -1 when grown in rotation with other crops such as potato and horticultural crops. In this regard, vegetables are most appropriate for rice-based farming systems to diversify risks in the farming portfolio because of their higher farm gate values and ability to utilize residual water from the previous rice crop. It is estimated that growing rice with horticultural crops could procure average margins of $172ha -1 against $110ha -1 for rice alone 1 .The development of more productive and sustainable rice-based cropping systems in designated irrigated regions is a way forward to reduce the pressure on rapidly degraded uplands by shifting cultivation to lowland systems without adversely affecting the environment and compromising productivity. This is likely to lead to improved soil fertility and soil structure, reduced pressure of weeds and reduced alternative hosts for diseases and pests 2 , resulting in increased rice yield.Farm incomes are affected by low producer prices due to limited access to markets. Even in cases where farmers are able to access markets, farmers are typically affected by lower producer prices for their produce during peak production periods driven by excessive supply beyond consumer demand. This can be compensated for by the development of small-scale storage and processing enterprises to add value and reduce losses and by enhancing market access of complementary crops, such as vegetables, legumes. Diversified and increased income from non-rice crops or livestock products, especially during the off season, reduces farm household pressure to sell rice thereby ensuring year round household food security. In addition, increasing household consumption of nutrient-rich vegetables -which contain essential micronutrients, bioactive compounds, and often proteins -and animal products alongside staples would increase household dietary diversity and would serve as the most cost-effective and sustainable solution to counter the hidden food crisis of micronutrient deficiencies in human diets. The project locations in Tanzania will be identified with partners during the January 2012 workshop. Links will be sought with project locations of other, similar initiatives in both areas.AfricaRice has an extensive network in sub-Saharan Africa. Most if not all rice experts in the region have benefited from training and collaborative activities with the Center. AVRDC has established collaborative networks on vegetable research and development activities with a number of public and private sector partners and trained staff of selected private seed companies. This project uses an innovation systems approach to research and responds to the call in the Framework for African Agricultural Productivity (FAAP) developed by the Forum for Agricultural Research in Africa (FARA) of making a paradigm shift away from a principally technological package approach to a truly integrated agricultural research approach, ensuring that researchers (national and international) work together with smallholders, pastoralists, extension agencies, the private sector and NGOs to have impact on the ground.The current project builds on the achievements of the European funded project \"Realizing the agricultural potential of inland valley lowlands in sub-Saharan Africa while maintaining their environmental services\" (RAP). This two-year project was funded by the EU as part of the Annual Action Plan (AAP) 2008 through IFAD (Project number: SUPP-ECG 34 SWP-WARDA 2009-2010). It is coordinated by AfricaRice, and covers two West-African countries: Mali and Benin and will move in 2012 into its second phase. A similar project is planned to be carried out in northern Ghana and this will provide us with the opportunity to make cross-country comparisons which will enable scaling-up and -out excercises.The goal of this project is to improve livelihoods through sustainable intensification and diversification of rice-based systems in north-western TanzaniaTo enhance the productivity and competitiveness of inland-valley lowlands through sustainable intensification and diversification of agricultural productivity and product value chain development, while conserving land and water resources. • Farm diversity at regional level characterized (agronomic and socioeconomic data).• Constraints and opportunities for rice-based diversified production systems are evaluated on-farm • New rice-based cropping systems using participatory approaches (prototyping) are defined and proposed to MSPs to be tested to manage soil fertility, pest, and weeds Years 2-4: • Rice-based cropping systems using a participating approach (prototyping) to manage soil fertility, pest and weeds are tested. A validation study is prepared for the next year that will be conducted to assess the results with stakeholders The main target group is comprised of resource-poor smallholder farmers and their organizations in Tanzania and local entrepreneurs (product processors, traders, etc.). Change agents from NARES and NGOs will act as the main service providers and will thereby greatly benefit, as they will be exposed to new methods dealing with remote-sensing, integrated natural resource management, co-innovation, competitive product value chain development and multi-stakeholder platforms within the dynamic and diverse nature of inland valley systems.The NARS of Tanzania (Lake Zone Agricultural Research Institute) will be responsible for planning and implementation of project activities. The NARS teams will be multi-disciplinary in the domains of agroecology, agro-economy, business development and socio-anthropology.Other actors include government agencies, NGOs, and private sector and development projects. AfricaRice as the convening center of the Inland Valley Community of practice will provide backstopping with respect to actionresearch, lowland NERICA varieties, lowland rice integrated crop management, remote sensing and GIS mapping procedure, water productivity and project management. AVRDC will contribute to development of sustainable rice-vegetable systems.The typology of inland valley systems that will be developed in the first years of the project ensures that results can be scaled-out to appropriate recommendation domains (a function of e.g. degree of water control, distance to markets, degree of organization of producers etc.). The use of participative approaches and Multi-Stakeholder Platforms will ensure ownership of research results and rapid diffusion of knowledge beyond the key sites in each target country. Active linkages will be sought with development projects and the private sector. Videos will be used as a primary vehicle to out-scale results obtained. AfricaRice will also ensure that project results and methodologies are reported during annual meetings of the National Experts' Committee (attended by representatives of AfricaRice's 24 member countries) and the Inland Valley Community of practice (IVC).In each work package, training sessions are planned in different key domains like water management, conception of sustainable cropping systems, value chain analysis, gender and equity, impact assessment and overall competitiveness of the cropping systems in the lowlands, for different type of trainees (researchers, technical agents, farmers, students). A minimum of 30% of participants in these training sessions will be women.AfricaRice will work with AVRDC and other partners to assist the project in defining indicators to be monitored yearly and conduct a base-line survey. Yearly workshops will allow for evaluation of results obtained and refining annual work plans.The project will be supervised by AfricaRice as part of an on-going effort to develop inland valley systems in sub-Saharan Africa through the Inland Valley Community of practice (IVC). All activities will be conducted by national partners from Tanzania, with backstopping from AfricaRice and AVRDC. The project will have a national coordination unit chaired by a representative from LZARDI in Tanzania.See under section 5.","tokenCount":"1648"} \ No newline at end of file diff --git a/data/part_1/1317667564.json b/data/part_1/1317667564.json new file mode 100644 index 0000000000000000000000000000000000000000..a7ce81d81e3939ce398a9755b4fecf7a409cea6a --- /dev/null +++ b/data/part_1/1317667564.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"75d3dd2a984ff31508df398f525510fe","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/c3052170-fd74-467a-81ea-c5cd5e8cfbae/retrieve","id":"1717119656"},"keywords":["CTA Practical Guide Series","No. 12 CTA Practical Guide Series","No. 12"],"sieverID":"0eaf0d70-e23d-42da-bbb7-68105b49f6be","pagecount":"4","content":"The information in this guide can be freely reproduced for non-commercial use, if credited as coming from CTA.Reproduction for commercial use requires prior authorization from CTA.Step 1: Choosing the tomatoes Select tomatoes that are ripe, red, have a firm texture and are free of disease and mould.Step 2: Washing Wash the freshly harvested tomatoes in clean water in a large bucket.Step 3: Slicing Cut tomatoes into slices 0.5 cm thick.Step 4: Drying Spread the tomato slices on a clean, raised platform to sun dry. Use a solar dryer for a better quality product. To prevent contamination during open sun drying, cover with mosquito netting. For commercial-scale production, drying tomatoes using a hot-air dryer is advisable.1Tomatoes are widely grown and used in Eastern Africa. During the peak season most farmers sell their tomatoes at throw-away prices and substantial quantities go to waste because they are highly perishable.To avoid this, farmers can process tomatoes into various products for storage and use at home or as value-added products for income generation.Tomatoes are rich in: • vitamins and minerals, which are important for health • lycopene (the substance that makes tomatoes red) which has cancer-preventing properties.Cooking pans; plastic buckets with lids; a sharp knife; clean water; a stove (charcoal, kerosene, gas or electric); wooden spoons and ladles.Package in either glass or plastic jars and bottles. Plastic is lighter, cheaper and does not break easily.You will also need crown caps for bottles and lids for jars.For commercial-scale tomato processing you may also need: pulping machine or blender; crown cork sealer or bottle capping machine; sealing machine; glass bulb thermometer; weighing scale; chemical preservative; thickening agent (pectin); solar dryer.Step 3: BoilingPlace the tomatoes in a cooking pot. Add water and boil until they are soft and the skin peels off easily -but do not peel them.Step 4: Pulping• Remove the tomatoes from the pot using a large perforated spoon and place them in another container.• Mash using a large wooden spoon.• Use a large household sieve to separate the tomato pulp from seeds and skin.• Discard the seeds and skins or feed them to your chickens and keep the pulp.For commercial-scale production, a fruit pulper (manual or motorized) will reduce the workload and increase the yield.Pulp can be used to make tomato jam and ketchup.CTA Practical Guide Series, No. 12 CTA Practical Guide Series, No. 12Step 5: Milling Mill the dried tomatoes using a hammer mill fitted with a sieve of appropriate mesh size.Step 6: Packaging and storage• Place powder into polypropylene or polyethylene bags and seal using a candle or sealing machine (impulse sealer) and label with date of manufacture and expiry date, one year later. • Pack the bags into cardboard boxes to prevent damage caused by light. • Store in a cool, dry place.Step 1: Choosing the tomatoes Select tomatoes that are ripe, red, with a firm texture and are free of diseases and mould.Step 2: Washing Wash the freshly harvested tomatoes in clean water in a large bucket.• Use one kilogramme of sugar for each kilogramme of tomato pulp.• Mix and place in a large cooking pan.• Place the pan on a stove, bring to the boil and stir continuously to avoid burning or sticking to base. Boil until mixture thickens. • Add lemon juice (two teaspoons for every kg of jam). The juice the jam to set. • Test to see if jam is set. Take some jam in a spoon and tip into a cup of cold water. If the drop remains whole, the jam is ready. If it spreads out in the water, the jam needs further boiling. • If jam does not set even after additional boiling, add pectin (a thickening agent: one gramme of pectin per kilogramme of tomato pulp). • If jam is to be stored for more than one year, you need to add a chemical preservative (sodium benzoate, added at a concentration of 100 mg for each kg of jam). Add to mixture near the end of the boiling process. • Use a sterilizing agent (sodium hypochlorite) or hot water to sterilize the jars.• Allow jam to cool and pour into the jars while it is still flowing.• Fill sterile jars to within 3 cm from brim of the jar.• Loosely cover the jars with lids and set aside for about five minutes to allow trapped air to escape. Tighten the lids and turn jars upside-down for two to three minutes to heat the lids to kill any germs. • Allow the jars to cool to room temperature before labelling. Jam can be stored at room temperature for up to one year if not opened.• To make one kilogramme of tomato ketchup place 420 grammes of tomato pulp and 150 grammes of sugar in a large pan. Thoroughly mix and then add 300 grammes of vinegar, 300 grammes of salt, 70 grammes ground onion and 30 grammes of ground garlic and any other desired spices, such as chilli powder. Mix well. • Bring the mixture to the boil, continuously stirring with a wooden spoon.• Allow mixture to cool for about five minutes.• Pour into bottles, then cap or seal the bottles with the lids using a sealing machine.• Place bottles in a pan of cold water.• Continue cooling the bottled products by changing water in the pan.• Ketchup can be stored at room temperature for six months if not opened.• Use as a tasty sauce.Causes How is the problem corrected?Jam does not set (thicken) Over-mature tomatoes were used ","tokenCount":"914"} \ No newline at end of file diff --git a/data/part_1/1319829650.json b/data/part_1/1319829650.json new file mode 100644 index 0000000000000000000000000000000000000000..e2ce67109bfa9298c775918d5bfa9bda59209b58 --- /dev/null +++ b/data/part_1/1319829650.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c467ea898a5f54a12e061252528b1c30","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8e394498-6b87-4f52-9b07-9e7acbd1e356/retrieve","id":"-826786808"},"keywords":[],"sieverID":"a8f06540-73cc-498b-a8d6-2aabd5142f58","pagecount":"1","content":"Traditional complementary porridges are usually characterized by low energy and nutrient density below the recommended values.• The developed complementary flours may help to improve the nutritional status of children under 24 months. • The developed complementary flours can be produced and sold by beneficiaries thus create jobs and generate revenues.• Training of trainers in all sites • Training of direct and indirect beneficiaries.By using the training of trainers strategy, five (5) trainers per village will train 10 direct beneficiaries. Each of which will train 10 indirect beneficiaries. At the end, 2500 beneficiaries will be trained.• Compare the effect of three different malted flours on the viscosity and energy density of complementary porridges for children under 24 months; • Evaluate the conservation time of the malted flour on the viscosity and energy density of complementary porridges. Approaches • Malting of cereal crops and preparation of the complementary flour.• Porridge preparation and measurement of the parameters.• Maize, millet, and sorghum malts have similar effect on viscosity and energy density of complementary porridges for children. • Malting improves the viscosity and energy density of complementary porridges for children. • After 12 months of conservation, malted flours still have good effect on viscosity and energy density. • Plastic containers are better than plastic bags for cereal crop flour conservation.All cereals crops can be used to make malted flours. The malt represents a good way to improve the energy density of complementary porridges for children. It is an easy and practical technique to improve the nutritional status of malnourished children. The developed complementary flours can be produced and sold by beneficiaries , thus create jobs and generate revenues. ","tokenCount":"273"} \ No newline at end of file diff --git a/data/part_1/1336079719.json b/data/part_1/1336079719.json new file mode 100644 index 0000000000000000000000000000000000000000..f30b164754c23d5d8b7f3bc569cfd428e5486d9e --- /dev/null +++ b/data/part_1/1336079719.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8fec8b541af6011233bdf2c78a274ef7","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ddda168f-8ff2-4358-976a-f3f8b8e1fa88/retrieve","id":"285916308"},"keywords":["Spring mapping","water availability","irrigation","climate change Agro-biodiversity","conservation","crop diversity","participation","seeds Conservation","wildlife","environmental education Cooperatives","agricultural production","commercial farming","pomegranates Rural livelihoods","goats","livestock","veterinary services Poultry","rural livelihoods","income generation activities","agribusinesses"],"sieverID":"5deff41e-7ff0-4f9a-8d83-5b25e913871e","pagecount":"80","content":"The \"Capitalization of Experiences for Greater Impact in Rural Development\" project is implemented by CTA in different parts of the world, in collaboration with the Food and Agriculture Organization of the United Nations (FAO) and the Inter-American Institute for Cooperation on Agriculture (IICA), and with financial support from IFAD, the International Fund for Agricultural Development. This project aims to facilitate the adoption of an experience capitalization process in rural development initiatives, where it can help improve the analysis, documentation, sharing, and the adoption and use of lessons and good practices -as an approach for continuous learning, improvement and scaling up.The cases featured in this booklet were selected and written by those participating in the project. Responsibility for the information and views set out in each case lies entirely with the authors. Reproduction is authorised provided the source is acknowledged.In initiating and reinforcing a systematic approach to learning from development experiences, CTA invited a number of organisations working in remote rural parts of Nepal, Bhutan, Indonesia and India.The idea was to introduce Experience Capitalisation as a particularly effective methodology for this purpose.Participating organisations were expected to use this knowledge to document and analyse their own work over a period of 3-4 months with support from colleagues, partners and the communities they were supporting. This resulted in a set of written documents aimed at sharing findings with wider audiences. The finest twelve of these find a place in this collection.These stories go beyond what was achieved and what was not, to delve deep into lessons learnt, mistakes made and challenges addressed. They not only teach those who were part of these initiatives, but unfold rich wisdom for others still on their development journey.While all reflections relate to interventions made in remote areas -many in the hard terrain of Himalayan mountains -a few specifically target natural resources management as imperative to sustainable livelihoods. These include a novel effort to decentralize and democratise agro-biodiversity in Southern India keeping community at the centre; sensitising community members to the necessity of conserving animal -including the Snow Leopardand plant life in the cold and arid region of Ladakh to revive the symbiotic, harmonious but delicate balance between man and nature; and a communityled and community-managed exercise to map naturally existing water springs that have come under tremendous pressure due to rising population and use of water.Poor and marginal communities are the primary subject of all other project interventions covered, including strengthening current occupations like goat rearing, experimenting with alternatives like poultry, or using unused or degraded resources to create livelihood opportunity as in the case of the revival of barren lands by growing a suitable crop like pomegranate. Almost all stories -whether covering smaller geographical area, smaller populations or spread over very large population as in the case of JEEViKa in the state of Bihar in India -are dotted with innovations in institutional development, community participation, delivery of services, capacity building, financing, entrepreneurship and much more.Women and their empowerment is the subject of the two stories from Nepal and explore how access to finance and business skills can help them out of poverty.Finally, it is a treat to learn from the documentation of the three initiatives that are using digital toolsa GIS-based system to accurately and efficiently identify ponds spread over a vast area; a mobile phone-based information system for fishermenproviding from weather warnings to information about prices in the wholesale markets; and an online system to monitor project activities spread over difficult and inaccessible terrain. They discuss the challenges in the use of digital tools, their potential and real benefits, and the ecosystem needed for the success of these in supporting poverty reduction efforts.I invite you to become part of these journeys, some of which have not ended as yet. Learn from them, take what you find of use, and add back to the pool of this ever growing capitalising experience.Learning from experiences in rural poverty reductionRose Christine M. KharsyntiewThe state of Meghalaya, in north east India, suffers from water shortages due to its hilly topography and the inability to store rain water. The Institute of Natural Resources in Shillong, under the Meghalaya Basin Development Authority, is carrying out springs mapping and springshed development initiatives to enhance the availability of water from the local springs, all of which are improving the situation for the local population.• ground water recharge decreases during winters, and frequent terminal droughts cause complete drying of over 50% of the springs (where 'terminal drought' refers to the early cessation of rainfall);• early season droughts occur frequently with late or normal monsoon onset, followed by 15-20 days of dry spells;• there are few but highly intense rainy days with a long mid-season dry spell;• evapotranspiration rates and water stress is high in forests and agricultural crops, with increased dependence on springs; or that• crop management (mainly vegetable) is difficult due to flash flood-like situations during intense rains, particularly in the Garo hills.Many areas are water stressed due to the growing gap between the demand and the supply of water, leading to the population depending more upon -and exploiting -ground water. Change of land use, deforestation, quarrying, mining, soil erosion, jhum cultivation (the local term for slash and burn agriculture practiced by the tribal groups in the northeastern states), draughts and floods are perceived to be the main causes for the deterioration of springs and ground water regimes, which in turn, adversely affect agriculture, livestock and other allied livelihood activities. Therefore, springshed development M eghalaya has a population of approximately 30 million inhabitants, and is predominantly an agrarian state with about two thirds of its population depending on agriculture for their livelihood. It ranks amongst the wettest regions in the world, with an overall annual average rainfall of 280 cm. According to the estimates, the state has over 50,000 springs, and 78% of the total number of villages (approx. 6,800) depend on springs as their main source of water for household, drinking and irrigation purposes. A sample survey of the springs by the Institute of Natural Resources (INR) in 2015 revealed that over 54% of the springs had either dried up or their water content had significantly reduced in the past few years. Impaired springs have caused widespread water stress in the rural landscape. So despite heavy rainfall, the state suffers from water shortages. This is mainly due to its inability to store and capture the rain water because of its location in the hilly areas, which leads to increased surface water runoff.Another major cause of water stress in the state is its high vulnerability to climate change. The preliminary studies and hazard analyses carried out in Meghalaya by the INR to assess climate change vulnerability indicated that:• runoff is as high as 50% in exposed areas due to the loss of vegetation and a decrease in ground water recharge, even during monsoons;Cover Carefully documenting the state of all springs in the state initiatives are a priority in Meghalaya, and spring mapping -as the initial stage -is equally important. The initiative will create a positive impact by improving, rejuvenating and reviving the springs.The limited availability of quality data on water resources, hydrology and climate, especially at the local level, is posing challenges to make informed and economically, environmentally and socially appropriate decisions and plans for resource utilisation, and investment and management arrangements in the water sector. Therefore, the process of springs mapping is very important as it serves as a database for decision-making on initiatives related to the development of a springshed, as the area within the ground or surface water basin that contributes to spring flow.Springs mapping was started in 2015 by INR Meghalaya, which is one of the institutes established under the overall umbrella of the Meghalaya Basin Development Authority (MBDA). This started as part of the project called \"Rejuvenation and Climate Proofing of Springshed for Livelihood, Water and Food Security in Meghalaya\", under the National Adaptation Fund for Climate Change (NAFCC). Springs mapping exercises take place in all the 11 districts of Meghalaya: in 46 community and rural development blocks that cover around 6,800 villages.The main objective of springs mapping in Meghalaya are:• To create an inventory of the springs in the state;• To develop a Meghalaya spring atlas by sending data to the GIS lab;• To determine the vulnerability of the springs;• To rejuvenate and revive the critical springs and springsheds;• To ensure water security by integrating traditional and scientific approaches to sustainable spring protection;• To create para-hydrologist and master trainers for springs mapping and springshed rejuvenation through training and capacity building activities (as trainers who then train other members of their village or block);• To develop resource materials and tools for monitoring the springs.The information being collected during the springs mapping exercise includes the spring's name, latitude, longitude, elevation, village, district and spring dimension (their general identification details); the physical description -information on rainfall, sanitation and infrastructure; the necessary monitoring parameters, such as the level of spring discharge; and also some basic geological information, such as rock type, structural features, soil, spring type, strike dip and dip direction. The first 2 years of springs mapping was carried out in direct partnership with Arghyam, an organisation based in Pune, and with the National Springs Initiative, drawing experience and support from the initiative's diverse network.Intensive training was conducted for a set of master trainers drawn from the soil and water conservation department, the water resources department, the community and rural development department. It also considered registered volunteers with MBDA, as well as other agencies. The master trainers then conducted extensive training at the district level, focusing on decision-makers and departmental field staff, local leadership from village durbars (local self-governments) and selected members of the community who would become para-hydro-geologists. To date, 262 master trainers have been trained on springs mapping. The master trainers, along with the support from INR and the Basin Development Units (BDUs) located in the 11 districts of Meghlaya, are also conducting springs mapping exercises in different villages of Meghalaya. A total of 1,388 springs were mapped between April 2015 and June 2017, INR Meghalaya, along with the knowledge management team from MBDA, has also developed information series, booklets and newsletters related to (www.inrmshillong.org and www.mbda.gov.in, respectively). The institute also shares information with the line departments in Meghalaya and other institutes under MBDA and the BDUs in order to avoid overlapping or duplicating the work.The process, however, faced a few challenges. Private individuals own 90% of the land in Meghalaya, so the government has very little leverage to mandate or regulate the use of resources directly. Considerable knowledge sharing with the community must be done to raise awareness and convince landowners of the value of springs management. A proper guideline and policy is not available to master trainers, which also hinders the smooth functioning of springs mapping.Another major challenge faced by the springs mapping team was the lack of available instruments, such as GPS and tracers -a device used to measure water quality parameters. One GPS and one tracer were required per block (of which there are 46) for the smooth running of the project, but INR currently only owns six GPS devices and ten tracers. Clinometer compasses used for measuring the dip and strike direction, and abney levels used for measuring slopes, are also not available.There is no baseline data on the location of the springs, the number of springs or the topography of the area in Meghalaya. It is also difficult to find the recharge location of the spring in the main city due to increased population and housing. All the work started from scratch and was thus time consuming and demanding on human resources.A sample survey of the springs mapped revealed that over 54% of the springs have either dried or been impaired. Through springs mapping, the team was able to understand the water discharge, water quality, scarcity of water and the necessary initiatives to be taken up. Knowledge about each village was also developed, i.e. whether water is in surplus or deficit supply. People were sensitised on water management to harness maximum water during the peak season.Through springs mapping, it was also observed that most of the springshed conserving villages are not users of the spring water. Therefore, villages on higher reaches were encouraged to protect the catchment and were made aware that they would be compensated for their environmental services by villages using the spring water.In addition, the team has seen:• the creation of a local cadre to map the springs. By the end of 2017, 262 master trainers were trained all over Meghalaya, and sensitisation on the springshed initiative was conducted in all 11 districts of the state;• the development of springs atlas.The coordinates of the springs mapped was provided to the GIS team of MBDA and the first edition of the spring atlas has been developed. It is a humungous task to map all the springs in Meghalaya but this will help to constitute scaled baseline data for the springshed initiative programme;• participation and ownership. When the nearby communities or villages heard about springs mapping, some villages came forward to request for springs mapping in their village too. This shows thatProper guidelines and policies for springs mapping also need to be developed and disseminated to all the blocks and master trainers so they are all working along the same lines and towards a common goal.the villagers have gained knowledge about the importance of spring mapping. The participating communities were keen to rejuvenate the springs because they are their main water supply;• the protection and rejuvenation of vulnerable springsheds. Umtyngar is one of the villages located in the East Khasi Hills district of Meghalaya. The Umtyngar river has been highly affected by sand mining and stone quarrying, meaning the springs discharge around Umtyngar has drastically decreased. In order to solve the problem, in April 2017, INR Meghalaya dug contour trenches around the recharge area of the springs. The springs discharge has since increased compared to the discharge before the initiative and at present, the water discharge is around 490 l per minute. As a step forward, the tree species present in Umtyngar will also be mapped in order to identify and understand the local species for plantation in the areaIn Meghalaya, 78% of the villages are highly dependent on springs for drinking water and irrigation, but the state still has no records, data or information related to springs. The extensive springs mapping and survey is expected to provide precise knowledge and understanding of the basic characteristics of these springs and their present condition. With around 50,000 springs in Meghalaya, the team will be able to conduct the springs mapping exercise successfully and effectively if the necessary amount of instruments is supplied and circulated. Proper guidelines and policies for springs mapping also need to be developed and disseminated to all the blocks and master trainers so they are all working along the same lines and towards a common goal.So far, the process has been limited to mapping.should next be spread widely across the state in order to protect and rejuvenate the springs. Springs mapping will provide the data and information required for decision-making and will help in analysing the vulnerability of the springs, while springshed development will contribute to the protection and rejuvenation of the springs.The institute must capitalise on the experience of the project in order to grow and understand the successes and failures of the interventions. The data collected will also be helpful for other organisations who want to initiate similar activities, and will enable them to avoid repeating similar mistakes.A multi stakeholder participatory experiment Suma T.R., Radha E., Santhosh K.K., Jayesh P. Joseph and N. AnilkumarCultivated plant species and domesticated animal species, including their genetic variants and associated plant and animal diversity, are collectively called 'agrobiodiversity'. These resources are at risk with the expansion of industrial agriculture, and maintaining locally adapted native seed materials in micro agro-ecosystems will be vital for ensuring crop resilience to climate change.This study narrates the learning experiences of a 3-year participatory project -Networking traditional farmers and local self-governments for agro-biodiversity conservation and Wayanad community seed festival -implemented with local communities and local governments.The aim of the project was to democratise agrobiodiversity conservation efforts through a seed conservation movement in the Wayanad district of Kerala, India. • bringing the concept of agrobiodiversity conservation to the local development agenda;• facilitating the establishment of a public mechanism for the conservation of diverse crop varieties under the provisions of the BD Act; and• facilitating the establishment of a formal system at the local level to provide continuous support and recognition of custodian farmers. W ayanad is a hilly district of south India known for its unique climate and rich biodiversity. The social fabric of Wayanad is a mixture of 12 tribal communities (18.53 % of the population), migrant farm families from different parts of the state (71%), and the rest comprising of government officials, plantation labourers and merchants (12%). Agriculture is the main livelihood activity for all the tribal communities living in this region.A traditional farming family 20 years ago in Wayanad would have cultivated on average more than 20 varieties of vegetables, eight varieties of paddy, seven varieties of tubers and six varieties of cereals. However, Wayanad has witnessed a large scale transformation (from food crop cultivation to cash crop cultivation) in the last four decades, and diversity is fast disappearing due to land fragmentation, changing cropping patterns, government support to cash crop cultivation, and changing markets and agricultural policies. Traditional farmers still conserving agrobiodiversity are generally poor and located away from the cities.The project aimed to integrate community knowledge on cultivating diversity to the formal system of Panchayati Raj institutions (local governing bodies) under the legislative provisions of the Indian BiologicalEnvironment joined this programme as funding and organisational partners.The four major components of the programme included community level conservation activities, public awareness programmes, the Wayanad community seed festival and policy deliberations at different levels. The activities were designed to facilitate integration of learning from the traditional farming communities and custodian farmers to the formal systems.The process sensitised the general public, policymakers, farmers and local governing bodies on the need for agrobiodiversity conservation. The nutritional value of diverse food items was highlighted to the various actors; farmers' rights on seeds and related knowledge systems were discussed; and the science of locally adapted varieties and the increasing climate risks were introduced. Annual seed festivals were planned to maximise varietal conservation through the exchange of seed materials, and district and state level policy workshops were held to discuss existing policy gaps. The public awareness programmes were developed around the concepts of nutrition security and climate resilient farming systems, whilst the policy deliberations at local and higher levels where designed to generate awareness on the BD Act and issues of diversified farmlands.Farmers' questions and issues were taken to the local governing bodies, and recommendations were divided into practical farm -and policy-level issues, and taken to district and state level decision-makers. Strategic leadership by the Kerala State Biodiversity Board and the district panchayath was key in this process.Each community has different cultural preferences for food and crops, and a different set of knowledge associated with cultivation and consumption. Kurichya and Mullukuruma are both farming communities with land holdings, but while Kurichya continues with the tradition of large land holdings under collective ownership and cultivation, the agricultural lands of Mullukuruma are fragmented due to a recent shift towards individual management. Paniya residents are largely landless and live in hamlets of many houses in small land areas. Their source of food is the plants and small animals grown in the commons and agricultural landscapes. According to the data collected from the participatory exercise, Paniya residents have lost 81% of their food basket diversity during the last 60 years, Mullukuruma has lost 76% and Kurichya, 54%. The decline in the productivity of traditional varieties is due to land use changes and due to the changes seen in the wider landscape agricultural practices.In the first year of the project, 22 village level groups were formed among farming families with the objective to reintroduce the lost crop varieties through group farming. The crops were selected according to the cultural preferences and land availability of each community. Maximum diversification through seed exchange between groups was the focus in Kurichya. Rebuilding collective farming practices and diversification was the strategy adopted with the Mullukuruma community. Group building, collective planning and the promotion of organised farming were the strategies adopted in Paniya.After 3 years, the home gardens of the 22 activity groups -under the ownership of the local womenhad been enriched with 28 varieties of vegetables, nine varieties of legumes, nine varieties of leafy greens and eight varieties of taros, tubers and roots on average. There were also 11 varieties of dioscorea (root vegetable), and 12 varieties of rice being cultivated by different groups. The Paniya women, who historically were not involved in agriculture, started cultivating three varieties of rice on leased land.Prior to the project, data from the agricultural offices revealed that only 3% of the traditional and tribal farmers were involved in decisions regarding agricultural programmes. In the first year of the project, traditional farmers represented 12% of the participants at the panchayath level workshops. This increased to 21% in the second year and to 28% in the third year. These meetings helped the panchayaths hear the voices of the marginalised farmers. By the third year, a traditional farmer directory had been prepared by each panchayath.The forums discussed the possibilities of conserving agrobiodiversity under the leadership of panchayath Biodiversity Management Committees (BMCsstatutory bodies at the panchayath level formed under the provisions of the BD Act, and responsible for local level biodiversity conservation). As a result, 12 panchayath governing bodies out of 26 discussed the possibility of establishing community seed banks or genetic gardens in their development seminars, and six developed a project for community seed banks under their BMCs.Of the six, four were able to set apart budget provisions for the activity as a development project.An annual seed festival is organised as a platform for custodian farmers to come together and exhibit, sell and exchange their seeds. It is also a platform for knowledge exchange between farmers, children, the general public and the scientific community.Each year, the number of custodian farmers attending the festival increased by 23%, and under Seed Care, a group formed a network among themselves. By the third year, 226 custodian farmers were members of this seed festival collective.The socio political and policy concerns raised at the panchayath level workshops were taken to academic and policy seminars organised as part of yearly seed festivals. The academic seminars were attended by agricultural scientists, activists, farmers, policy makers and practitioners of agrobiodiversity conservation from different parts of the country.In the first year, the academic seminar discussed the ground level issues of agrobiodiversity conservation.In the second, it discussed the existing policy and legislative spaces that could be utilised to overcome these issues, and in the third year, an exercise was organised to develop a model for agrobiodiversity conservation in the formal system. The model focussed Right Seed festivals also served as a platform for exchanging knowledge and information on the structure, systems, sustainability and resources that would be involved. This led to a commonly accepted model for a community seed bank with participation of custodian farmers and under the management of BMCs at the panchayath level.Four panchayaths set aside money for agrobiodiversity conservation as subsidies to custodian farmers. The Edavaka Grama Panchayath has initiated a seed bank project with 16 rice varieties and runs farm schools to educate children on agrobiodiversity. The district panchayath has decided to take over the responsibility of conducting seed festivals in the coming years with budget provisions from the panchayath plan fund.The Kerala Kudumbasree mission, a state level programme initiated by Kerala state Government to empower women and to eradicate poverty, has adopted this people-centred model for agrobiodiversity conservation and set up a community seed bank for rice varieties.The main challenge faced by the panchayaths was the willingness of government officers to take over the responsibility of implementing the projects developed by panchayaths. The officers were not familiar with the idea of the seed banks and were reluctant to carry them on.The approach of this project was based on the decentralisation and participation agenda of present development discourse. The agenda empoweredThis participatory experiment was successful in bringing local public attention to the importance of agrobiodiversity conservation and helped placing it within the development agenda. This participatory experiment was successful in bringing local public attention to the importance of agrobiodiversity conservation and helped placing it within the development agenda. At the centre of this activity was farmer experience and knowledge.The process looked for ways to promote 'bottom-up' engagement and to better place the arguments of traditional farmers in the upper level of development strategies.At the end of the 3-year project, community seed banks have been put in place by the public sector as a mechanism for conservation. Panchayaths are ready to cultivate and conserve traditional rice and vegetable varieties, and according to the final plan evolved out of the participatory exercise, all the crop varieties of Wayanad will be conserved in at least one genetic garden in 5 years. This will be the model to conserve agrobiodiversity in its micro habitats utilising public funding. Through it, Wayanad has come to recognise agrobiodiversity conservation as a public responsibility.In Ladakh, north India, the Snow Leopard Conservancy India Trust is delivering an environmental education programme to children and adults in the area to revive a sense of harmony between communities and the local wildlife. With new-found appreciation for the plants and animals of the region, the villagers are being more rigorous in protecting the mountains and reserved pastures.system. This culture of co-existence was seen cutting across Muslim and Buddhist communities across Ladakh. However, whilst livestock rearing was the fulcrum for the livelihood options of these mountain communities, agriculture was only viable in the short summer season. Historically, Ladakh was one of the main trade posts along the silk route, however the society only adopted changes that were reverential to its landscape.Significant changes to the region during the mid-20th century included the accession of Ladakh into the Indian state of Jammu and Kashmir; the invasion of Pakistan and China of parts of the state and the war with these two countries; an increased presence of defence forces in the region; unplanned development processes and a large influx of tourists. All of these events have helped break the harmonious living systems of the communities. Most school children and monastics in Ladakh are ignorant to the conservation status of the region, and to the activities that hamper the behaviour and wellbeing of the local wildlife. Today, Ladakh, like many parts of India, faces severe ecological threats due to a lack of awareness and a lost respect for the traditional ecological knowledge needed when living within a fragile landscape.L adakh, located between the Himalayas, the Karakoram range and the western edge of the Tibetan plateau, has an average altitude of 3,000m above sea level. Its continuous rugged mountain terrain and extended eastern plains harbour a variety of species, which create a unique high altitude ecosystem. Whilst elusive species such as the snow leopard, Tibetan wolf and Himalayan brown bear make up the top of the food chain, the region is also home to smaller mammals such as the Himalayan long-tail marmot, the Ladakhi pika and Pallas cat, and herbivores such as the endangered Ladakhi urial, Tibetan argali and Tibetan gazelle. The designated Ramsar site Tso Moriri, and high altitude lakes such as Pangong Tso and Tsokar, also attract diverse birdlife, including the endangered black-necked cranes and migratory species such as the brown-headed gull and the bar-headed goose.Completing this mosaic of unique high altitude systems are the local communities of Ladakh. Largely undisturbed by outside influences for centuries, the people of Ladakh have lived in harmony with its harsh climatic conditions and exotic wildlife. The frugality of resources has often led to the creation of innovative agro-pastoralist systems that are both environmentally friendly and self-sustaining. With a deep-rooted respect for nature and a comprehension of human needs, the society was largely self-sufficient and waste free, with every available resource being processed back into the Cover Villagers keep a detailed record of the wildlife in their region around their village. During the field trips, SLC-IT taught the local communities to identify the animals, birds and medicinal plant species through a structured environmental awareness programme, and explained their importance for the overall ecological balance of Ladakh. The community was given equipment such as binoculars, spotting scopes and field books to record their sightings.The programme, along with other mitigation and alternative livelihood initiatives, has resulted in the community having a deeper sense of appreciation for the biodiversity of the area. Where before they were 'just things' living on the mountain, community members are now able to identify the bird and animal species spotted around the village or in the high pastures, and this ability has changed the attitude of the community towards the local species and the ecosystem they are part of. With a growing interest in wildlife, people have now started recording their sightings and are keeping an inventory that is shared locally among the villages. This practice of maintaining inventories is also, importantly, reviving local and common names for the species,While working on addressing the issue of loss of livestock due to snow leopard attacks and other predators, and to avoid retaliatory killings of the enigmatic cats, the Snow Leopard Conservancy India Trust (SLC-IT) stumbled upon the chance to revive the deep-rooted respect for nature and harmonious living among the local communities. To change the negative attitude towards wildlife and nature in general, SLC-IT began an environmental education programme in 2014. This started in the villages in which it was already working to resolve human-wildlife conflicts, and to promote the importance of protecting all species to maintain an ecological balance.The primary objective of the project was to create awareness among local farmers and villagers about the conservation issues besetting the snow leopard and other wildlife in Ladakh, and instill in them knowledge and appreciation of the local biodiversity. The ultimate aim was to change peoples' negative opinions of the snow leopard and other wild predators.From 2014, and over a period of 3 years, a series of environmental and conservation awareness workshops were conducted to engage villagers in the Sham Valley region of western Ladakh.Various information dissemination methods, such as nature-based games, activities, talks, videos and posters, were used to instill a sense of appreciation for the biodiversity of the region. After the workshop, participants were taken on a field trip to one of the many biodiversity 'hotspots', such as the high mountain pastures and valleys of Ladakh, where they were familiarised with the birds, mammals and plants they had learned about during the workshop. The villagers were also trained in how to keep a record of the wildlife The programme, along with other mitigation and alternative livelihood initiatives, has resulted in the community having a deeper sense of appreciation for the biodiversity of the area.and is forming a baseline for monitoring, which had not been possible before. The villagers are also able to share this knowledge with tourists and local stakeholders to promote the cause of conservation in the area.With a growing sense of conscious living, the local community council is also making efforts to keep a check on the over-harvesting of burtse (mugwort) and Acantholimon (prickly thrift), which are used as fuel or food. Villagers have been made aware that the unsustainable removal and use of the plants drives wild ungulates (hoofed mammals) away, increasing the chances of a snow leopard attacking their livestock instead of these mammals. The harvesting of the burtse shrub has thus been restricted to the autumn months of late September to October by the council, leaving ungulates like the Asiatic ibex and the Ladakhi urial to feed on it before the onset of winter. Similarly, where ungulates straying into the village were previously shunned away, the locals now generally do not bother them.With a new interest in local wildlife, Mrs Rigzin Chorol from Saspotshey points out that the white tit birds she used to see every winter are now not seen, and were absent for the entirety of the last winter. Whilst anecdotal, such observations are important as there is no baseline data on birds in Ladakh, and this indicates a change in the bird visitation patterns.Villagers are also recording snow leopard occurrences near to the periphery of the village, and are informing SLC-IT of the same, thereby supporting monitoring programmes on the elusive species. Communities have also started becoming more vigilant about ensuring that no poaching or bio-piracy is taking place in the mountains and reserved pastures by questioning and recording the visits of independent trekkers or strangers to the area.The adults receiving the SLC-IT environmental education programme are able to reinforce the message of nature conservation to their children, who have also been receiving environmental education by SLC-IT for the last 6 years. The generations who witnessed a shift in the local economy and traditional practices during their lifetime are now trying to go back to the traditional ecological practices of the past, along with the village elders. There has been a revival of interest among the community to study medicinal plants due to the onslaught of unknown diseases to the area. A new-found respect can also be seen for traditional agro-practices as more people are acknowledging the harmful effects of pesticides.After undergoing drastic changes in a short period of time during the 20th century, the new generations and communities of Ladakhi have become devoid of traditional knowledge and practices. However, the SLC-IT intervention has generated a revived sense of appreciation among the villagers for the traditional culture and way of living. As Tundup Tsewang, from the village of Hemis Shukpachan, mentioned, 'Such programmes are very helpful and beneficial for people like us who haven't studied in school. They provide us will opportunities to empower the women in our village.'While the environmental education efforts are complemented with other conservation and mitigation efforts, the SLC-IT programme has inspired the community to revive its relationship with wildlife.The concepts and values of Buddhism -practised by the local communities for centuries -are at the heart of this message of revival. The local people are acknowledging the past practices and religious traditions that supported their ancestors, and are bringing back these techniques in order to live harmoniously with their environment and thrive and in the harsh terrain.Right Participants prepare themselves before a field trip to one of the many biodiversity 'hotspots'The Integrated Livelihood Support Project has piloted an initiative in the state of Uttarakhand, in northern India, to facilitate the enhancement of farmer livelihoods by cultivating abandoned land holdings in the area. Through a participatory approach, the project has helped farmers come together to develop and maintain communal orchards, increasing their personal incomes and that of the wider community.Maroda village, in the district of Pauri, proposed the establishment of a collective pomegranate orchard in the untended and abandoned lands of the village, as a way to develop an income-generating resource. The ILSP project team facilitated this initiative by providing technical support and guidance through farmer training sessions and village meetings.The present case study provides a review of the innovative efforts of the Maroda Gram Panchayat to produce a pomegranate orchard for farming, and presents the collective approach followed by the village community for regenerating the abandoned barren lands of the village, and the effect this has had on the district as a whole. For a better representation of the case, efforts have been made to describe the initiative taken by the community to enhance their livelihood situation by sustainably using their resources, and by slowing down the migration rates.The outward migration of farmers from the village is a result of the fragmentation of landholdings and also of the environmental degradation which has led to water and food scarcity. These are problems affecting the viability of agriculture and of the livestock-related livelihood options that are still the mainstay of the district's economy.T he hills of Uttarakhand are characterised by small and fragmented landholdings; the average size of a plot in the state is about 0.68 hectares, which is distributed into several patches. This is much smaller than the national average of 1.16 hectares per farmer. Communities face adverse conditions as the region is prone to natural disasters like earthquakes, flash floods and landslides.The Integrated Livelihood Support Project (ILSP) was launched by the Government of Uttarakhand and the International Fund for Agricultural Development (IFAD) in 2012, with most activities starting in 2014. With the main objective of reducing poverty by developing the livelihoods of the villagers in 22 micro watershed areas, the ILSP project was designed as a participatory initiative involving all community members. Under the project, the community has decided and planned the development activities to be carried out by the Gram Panchayat (village council) of the area. A Gram Panchayat watershed development plan was prepared, which lists the different activities decided by the community and the budget allocated for each activity. Along with the general watershed activities, priority was given to sustainable agriculture practices, such as crop rotations, the use of cover crops or the application of an Integrated Pest Management approach -working to increase livelihood options at the producer group level. The Gram Panchayat of the Cover Since the area was barren for decades, all cultural activities were difficult, and weeding and maintenance was necessaryThe landholdings in the hilly regions of Pauri are fragmented and the entire patch of land is not available in one cluster; so there is therefore scope for collective community efforts for horticulture-based interventions, and for the promotion of a cluster-based approach for collective production and marketing. The selected area for the establishment of a collective orchard was identified, covering the barren lands of 80 farmers in the village. This made a total of 8 hectares.This collective approach was needed to allow the village community to work together and reap the bulk harvest, and provide a social platform whereby they are able to share their day-to-day chores, whilst at the same time being more sociable. This initiative helped establish the orchard and all land preparation activities to be carried out in a collective manner, as the workload was equally divided amongst all land owners.The steps followed were as follows:1. Problem identification. After the project inception process, a series of participatory rural appraisal (PRA) exercises were carried out with the help of the community to identify different problems, issues and possibilities regarding the natural resources and agriculture. The main problems found included the scarcity of water for irrigation, the scarcity of fodder, or the need for better cultivation practices. Mulching. Since the area was barren for decades, all cultural activities were difficult, and weeding and maintenance was necessary. The application of mulch provided many benefits: it helped reduce the costs of weeding, while increasing and retaining soil moisture level by reducing the evapotranspiration levels. This helped plant growth, especially during the dry season. 9. Irrigation. Irrigation water was collected from the perennial water source located 900 m away from the project area in low density polyethylene (LDPE) tanks. With tanks at different locations across the land, this effort provided supplementary irrigation for the entire farm -with a total of 75,000 liters available. A low cost gravity-based drip irrigation system was used in the farm in order to increase efficiency.10. Watch and ward. In order to support and increase the community's efforts to reap a good harvest, the project provided barbed wire fencing to prevent any possible damage caused by wild boars, monkeys and other animals.Training. Last, and focusing on the need to develop specific skills, the team also organized an onsite pruning training course, with many villagers joining.The hamlet of Bhandaru Tok comes under the Maroda Gram Panchayat and covers an area of 8 hectares. This particular area belongs to 80 families living in Maroda. This was the site suggested for cultivation, and then selected by the Gram Panchayat and the community.4. Layout design. The orchard layout design was prepared by the community, facilitated by the multi-disciplinary team at ILSP. Pits were dug with a depth of 60-70 cm, with a spacing of 5 x 5 m. The planting distances recommended were 4 x 4 or 5 x 5 m.The entire patch of land was covered with Lantana and Parthenium shrub species and other weed; it took 8 days to clear the entire area by the community under the leadership of the Gram Pradhan. Once cleared, the community made pits and planted the pomegranate saplings.Farmyard manure and a single super phosphate fertiliser was applied to the dugout pits.Insecticides were also used on the saplings to prevent the infestation of ants and termites.7. Planting material. In August 2015, the community planted 2,000 saplings of the Bhagwa variety, high quality tissue culture plant. The ILSP team facilitated the procurement of these saplings.This initiative helped establish the orchard and all land preparation activities to be carried out in a collective manner, as the workload was equally divided amongst all land owners.The ISLP pilot project focused on the development of a collective orchard in the region. On seeing the orchard development success, farmers from neighbouring villages showed interest in developing their own collective orchards. As a result, in 2016, 26 hectares of barren land across the villages of Bidoli, Maroda, Masso Masshetha, Masso Thapliyal and Ulli were also brought under collective management.The pilot project started with the main objective of providing a livelihood opportunity to the community. Though the first commercial harvest of the plantation will only take place later in 2018, the outcomes of the initiative are already clear. What was known as \"wastelands\" are now productive fields. It is also possible to say that the region has seen as shift from subsistence farming to commercial farming. Through the restoration of these barren lands, the shrubs and resilient weeds are being removed, and the hiding spaces for wild animals has reduced. The project has helped to lower the risk and occurrence of animal attacks.And there is also a higher degree of cooperation between community members who are now working collectively. The project has seen the establishment of a livelihood collective under the name of Molyyar Ajeevika Swayatt Sehkarita, which was registered under the Self Reliant Cooperative Act of 2003. This is already helping farmers market their products, providing additional labour opportunities.The organization of a Participatory Rural Appraisal exercise helped by highlighting the major challenges in the area, and helped understand the nature of the decision making processes in the area and the factors influencing this. The regular visits paid by the ILSP team helped guide the whole process. This initiative has shown how much is possible when community members come together and work to enhance their livelihoods. Their model of collective orchard farming on abandoned land can be an example for the entire state. Agriculture in the hilly region of Uttarakhand is mainly fragmented into small land holdings. However, through collective farming, the threats of climate risk and the non availability of labourers for farm operations can be drastically reduced.The process has begun in earnest but the production of pomegranate and walnut is not sufficient to significantly enhance the livelihoods of a farming community. Village members are therefore also thinking of developing processing units at the Gram Panchayat level, which will help them obtain higher incomes. In the meantime, the new cooperative is helping them market their products -a necessary step in their path to self-sufficiency.Though the first commercial harvest of the plantation will only take place later in 2018, the outcomes of the initiative are already clear.A FISHER-FRIENDLY MOBILE APPLICATION FOR NAGAPATTINAM Velvizhi S., Nancy Anabel and E. Thamizhazhagan• Proximity to the international border line (IBL) with Sri Lanka alerts;• SOS facility that can help rescue fishers in critical situations;• Calling facility -fishermen can communicate with each other and relevant government departments such as the fisheries department and the Indian Coast Guard;• Government scheme information and daily news.FFMA was conceptualised and developed in 2007 using a Binary Runtime Environment for Wireless platform -an application development platform for CDMA-based mobiles -in partnership with Qualcomm. Technology advancements helped the M.S. Swaminathan Research Foundation (MSSRF) to redevelop FFMA into an Android platform in 2013, and using a participatory approach that involved various stakeholders, including the fisher community, the pilot app was launched in Tamil, Telugu and English. A total of 1,026 fishers across three states (Andhra Pradesh, Puducherry and Tamil Nadu) partook in the pilot phase to refine the app and make it more user friendly. In 2 years, the app went through 37 revisions. FFMA enables fisher folk access to timely fishing-related information; minimises their risksThe coastal fishing community is one of the most vulnerable groups among the poor in India. They confront several difficulties in their lives and livelihoods, including poverty, vulnerability to natural calamities, diminishing fish stocks, increasing competition with other users of coastal resources, exclusion from alternative employment opportunities, and poor access to markets and infrastructure facilities.However, the Fisher Friend Mobile Application (FFMA) is bringing solutions to the various issues faced by the fisher community in India. FFMA provides timely and accurate seafaring information to improve the safety and incomes of fisher folk. The app has been designed to provide easy access to relevant information and knowledge related to fishing for small craft fishers. FFMA offers the following services and information to fisher folk:• Potential fishing zone (PFZ) and GPS facility for navigating directly to fishing zones;• Specific ocean state forecast (OSF) such as wave height, wind speed and direction;• Danger zones in the sea, such as sunken boats, rock substrata and dead coral;• Better market prices for various fish varieties;• Emergency disaster alerts for e.g. tsunamis, cyclones and high waves;The fishing communities of Nagapattinam, in Tamil Nadu, India, are now using a mobile app which is helping them solve issues related to seafaring safety, low incomes and timeliness in reaching fish shoals. The Fisher Friend Mobile Application has been introduced to the community using a participatory approach, helping ensure the usefulness and accuracy of the technology.The A multi-level capacity building and awareness raising strategy is now being rolled out by FFMA's whilst at sea; and maximises their economic benefits. Hence, reach of the pragmatic pan-India FFMA model was extended to benefit fisher folk across coastal India. In 2015, FFMA was made available in all the regional languages of coastal India. FFMA is also available on the Google Play store for easy access by different stakeholders. Currently, 21,000 users have accessed FFMA, all of them living in 39 districts of five coastal states: Andhra Pradesh, Kerala, Odisha, Puducherry and Tamil Nadu.To promote the application across all the 625 coastal districts in India, evidence-based ground level experiences of implementation and learnings from where the app is already being used extensively, are required. With this in mind, the Nagapattinam district of Tamil Nadu was selected for the study because the fishers have been using the app in a sustained manner over a period of 10 years. Moreover, this district is geographically situated at the head of the Bay of Bengal, and experiences frequent extreme events associated with climate change.The main aim of the study was to understand the implementation procedures of the project team to promote FFMA in Nagapattinam, and how it is benefitting fishers' lives and livelihoods. A total of 100 fishers from seven villages in Nagapattinam were randomly selected and provided with sampling questionnaires and interviews to collect information regarding the utility of FFMA. MSSRF staff involved in project implementation in the district were also interviewed to find out more about the promotional strategies of FFMA.Up to 60% of those who downloaded the app are using it on a regular basis for OSF and PFZ information, disaster alerts and weather forecasts.implementation team to increase visibility of the app, including village level meetings, one-to-one interactions, promoting fishers as FFMA ambassadors, and with social media campaigns. More than 8,223 fishers have been trained in Nagapattinam on FFMA and its features; as a result, 3,593 fishers in Nagapattinam are using the app for getting day-to-day fishing-related early warnings and other relevant information.Up to 60% of those who downloaded the app are using it on a regular basis for OSF and PFZ information, disaster alerts and weather forecasts. Around 25% fishers stated that they are also using FFMA regularly for navigating the fishing zones. Ten per cent of fishers expressed that FFMA has helped them to mark traditional fishing grounds and to store the latitude/ longitude positions. Some respondents (5%) stated that they are using the application for government scheme information and to access daily news.The overall screen view of FFMA was 1,162,933 across the three districts, of which, Nagapattinam district accounted for 411,360, or 35% of the project total screen views. This data was collected via the inbuilt Google Analytics tool within the app. When the reasons for such a high rate of adoption were further explored, it was found that 80% of the FFMA users in Nagapattinam are small-scale fishers and they don't have any other equipment/tools other than mobiles, so they rely on this technology for their fishing informationFishers have used FFMA services for planning their fishing trips, identifying fish shoals, navigating fishing grounds, avoiding danger zones, and also for avoiding crossing the IBL with Sri Lanka. It was observed that 71% of the fisher folk who used FFMA were motorised fishers using small craft for fishing up to 50 km from the shore, 27% were mechanised boat operators, and the remaining 2% were from other sectors like government officials, non-governmental organisations and other private agencies who have been involved in fishing and fishing-related developmental interventions.Almost all respondents using FFMA unanimously agreed that the application plays a very critical role in their lives. Data from the study shows that 39% of respondents reported to have economically benefited from using the app due to increased fish catch, reduced diesel consumption and by navigating the fishing zone directly. Around 44% of respondents expressed that their livelihood assets, such as boats and nets were kept safe due to early warning alerts. Some respondents (5%) also reported that the app saved their lives thanks to the timely information and disaster alerts on high waves and cyclones.I am from Nagore Pattinacherry fishing village near Nagore in Nagapattinam district. On 18 November 2016 at around 3 o'clock in the morning, myself and 3 others went fishing 35 km off the coast. Suddenly the engine cut out and we were stuck in the middle of the sea. We became anxious as there was nobody around and there were no landmarks close by to indicate to other fishers where we were. However, one of my fellow fishers told me about the FFMA GPS facility to pinpoint my boat's location. Using the app, I was able to inform my friends of our location and they were able to come and rescue us.Mr Murugan, fisherman, Nagore Pattinacherry I did not know how to use GPS prior to installing the app, but now I am well versed in it. On 9 February 2016, a friend of mine gave me the latitude and longitude points of a particular fishing zone. After reaching the point, I hauled my net for 3-5 h and caught 100 kg of seer fish. I sold my catch for Rs. 38,000 (€500). When I went to Nagapattinam during the same week, I received the information for a rocky zone from my friend who had saved it in his app and navigated to the exact location. I got 50 seer fish and sold them for Rs. 21,000 (€275). Thus, within a week I got a net profit of Rs 59,000 (€770). From then on, I have used the app to mark the places where the fish shoals are and also where the rocky areas are.Above Out of 100 respondents, 64% stated that the FFMA information helps them reduce risks to themselves and to their livelihood assetsOut of 100 respondents, 64% stated that the FFMA information helps them reduce risks to themselves and to their livelihood assets. In terms of economic benefits, fisher folk who received PFZ information through the FFMA application benefited both directly and indirectly. Direct benefits included increases in catch as well as net income. Due to increased fish harvest, there has been a rise in the wages of the fishing crew as well. Some respondents have been using their profits to pay back bank loans taken out to purchase boat assets. The fishermen also pointed out that with the advisories, they are able to decide on how much diesel/ice to take on fishing trips.At the same time, it is quite apparent from our interactions with the respondents that their expenditure on fishing inputs, particularly diesel, has been considerably reduced as a result of using FFMA.A major gain is that by using the PFZ, GPS and 'My Tracker' facilities of the app, fishers are decreasing their diesel consumption and reaching their fishing destinations on time. The boat drivers expressed that reaching the location of fish shoals has become less complicated, and the reduction in diesel expenditure is, in itself, a major economic gain.The project implementation team in Nagapattinam learnt a lot while implementing the project, which will be very helpful for further improving and scaling FFMA. The project has shown that• fishers are receptive to adopt technology if it is simple, useful, cost-effective and addresses core issues;• involving end beneficiaries as key stakeholders throughout the project -from planning, implementation and refinement of the application -is one of the keys to success;• regular meetings organised with partners at the community and government levels help the project team to understand the performance of the application and get suggestions for improving strategies for promotion, technology design and accuracy of content;• stakeholder consultation at the community, village and district levels, and periodical assessment with fishers through interviews, focus group discussions and case studies, helps collate the qualitative changes in risk reduction and income enhancement; and that• connectivity at sea restricts fishers' use of the application. This will be one of the major areas for future policy advocacy and collaborative research.Years of capacity building by MSSRF, and iteratively incorporating community feedback into the technology, have led to a wealth of learning in overcoming bottlenecks and in penetrating the community with last-mile connectivity. As a result, MSSRF has a ready package of FFMA and its implementation strategy, which can be replicated within a year, in any location.To improve progress reporting within the Commercial Agriculture and Resilient Livelihoods Enhancement Programme (CARLEP), which works to enhance market engagement and climate resilience of farmers in Bhutan, the project introduced a standardised online reporting system. The system is helping to reduce the workload of the field and implementation staff, as well as helping increase the transparency of the programme. CARLEP is built on the lessons learned and the achievements of the projects and programmes implemented in the past in Bhutan, where one of the most important lessons has been the need to improve the reporting systems to document project progress. The conventional method of reporting annual progress -whereby implementers had to manually record the progress data and submit a document to the Office of Programme Management (OPM) either by post, fax or e-mail -was tedious and time-consuming, and often created problems for the programme staff during the compilation of a report because this was not uniform.As a potential remedy, the OPM of CARLEP, working together with the Project Support Officer (PSO), developed an online reporting system using a Google sheet to produce an annual progress report (APR). This online reporting system was formally institutionalised in September 2016 among the different institutions which are part of CARLEP: the livestock and agriculture sector of the six eastern districts, the Agriculture and Research Development Center (ARDC), the Regional Livestock Development Center (RLDC) and the Regional Agricultural and Marketing Cooperative Office (RAMCO). Since then, it has been used to avoid the loss of information, save time in reporting, to build a robust knowledge repository and to have year-round access to data and information for documentation.Before the introduction of the Google sheet system, the absence of an effective data repository meant some progress data were not recorded at all, affecting the overall performance of the programme because many lessons and experiences were not captured or remained undocumented.The Google sheet is an online spreadsheet that enables authorised users to write, edit, comment, view, share and protect the intended files. The different activities of the implementing partners are comprehensively inserted into the sheet. The sheet can be shared and edited online, which is ideal for use by multiple agencies who can work on a single file at the same time, from any connected device. Other advantages include the possibility of the focal person from the three central agencies. Furthermore, a step-by-step guide to use the online sheet was also made available on CARLEP's website: http://www.carlep.gov.bt/?page_id=182. In order to further validate the system, IFAD reviewed it in March 2017, and their feedback and suggestions were also incorporated.No major challenges were faced during the implementation of the online reporting system, but there were some technical limitations, such as the poor internet connectivity experienced by several of the implementing partners. Listed below are some of the minor issues faced:1. The majority of CARLEP implementers are field staff who spend more time in the field than working on reports, therefore familiarising them with the online system took longer.The implementing partners are not only responsible for the programme, but also manage other similar programmes and activities for the ministry. The sector heads, especially the DLOs and DAOs, have different administrative responsibilities, and therefore less time to work on progress reports.• having eligible users who can enter or remove data;• editing online files in real-time;• viewing progress data of other agencies at any time;• a timely update of the progress reports;• working offline (viewing, editing and entering data); and• creating GPS-based data maps.Following the development of the Google sheet in August 2016, the OPM visited some of the implementing agencies to train them on its use, and to incorporate their feedbacks and suggestions. A round of hands-on training and operation of the system was also given to the sector heads of the six programme dzongkhags, and to representatives of the three central agencies (ARDC, RLDC and RAMCO) in December 2016.However, it was found that the implementing agencies were still facing technical difficulties, such as the inability to open files, and there was a certain degree of confusion when operating the system due to a lack of more adequate information. Therefore, an additional practical session was organised in July 2017 for sector heads (the dzongkhag livestock officers The online data can only be updated using an internet-connected device. Unfortunately, the internet connection is poor in most of the programme areas.Using the online progress reporting system, implementers can only enter numerical data. Narrative data like the description of a site selected for crop intensification, the starting date of a specific activity, and the impacts and benefits, are not accessible using the online system.The technical assistance and guidance provided by the OPM on the use of the online reporting system helped all implementers understand how the system works. The focal persons from the implementing agencies who are responsible for the reporting are now familiar with the format. In the case of emerging technical issues within the system, the OPM and PSO ensure the problems are resolved immediately.To avoid putting extra pressure on the sector heads at the end of the financial year, the OPM recommends they update the data on the same day each activity is completed. Additionally, to have consistency in reporting, the progress report for CARLEP is done on a quarterly basis. The progress reports will be done four times a year by all implementing agencies to improve accessibility to the latest updated figures, and for the creation of knowledge products such as information fact sheets, impact analysis documents and case studies.To get the narrative report, the monitoring and evaluation (M&E) section of the OPM continuously follows-up on whatever data has been reported. The CARLEP website (www.carlep.gov.bt) presents the narrative data on activities implemented in the field. The event coverage and news for most of the activities is uploaded to the website by the knowledge management (KM) section of the OPM, in collaboration with the respective implementers.There is nothing the OPM can do about the poor internet connectivity except to request that implementers update progress whenever possible. The issue of circulating progress reports, and especially narrative reports, has largely been solved through the creation of an instant messaging app by CARLEP's implementing agencies -this works even with limited or weak network coverage. Implementers use the Wechat group to share information about all programme activities and through the thread, the KM team of the OPM collects the relevant and appropriate information.Last, an important thing to mention is that viewing, editing and entering data in the Google sheets is possible offline, but updates will only register when the computer is connected to the internet. The device also has to have the Google Drive app installed to update the progress report offline.The 2016-17 annual progress reporting was done using the new system, with the OPM compiling the data to produce a set of APRs. Both the implementers and the OPM consider the online reporting system to be an effective means of reporting, especially in terms of the following parameters:In previous projects, when reports had to reach the OPM in hard copies (post, fax), it would take at least two days for the preparation (the printing and binding of all documents), one day for the report to reach the post office, and a minimum of three days to be posted to the OPM. But with the current method, the report is instantly received by the office. Similarly, if there were any errors or omissions in the data that had to be rectified, this again would take a minimum of 3 days to be corrected, whereas with the online reporting system, corrections can be made immediately. In conclusion, an average of 9 working days was required with the old method, but with the online reporting system, it takes an average of 12 hours for reports to reach the OPM.The work burden for staff, both at the implementation level and the programme management level, has been greatly reduced with the institutionalisation of the online report system. Field staff no longer have to compile, print and send annual data to the OPM, they just enter it online. Both the field and the OPM staff no longer have to travel to post offices to send their reports. With the standardisation of report formats and ease of comparison, staff members canThe work burden for staff, both at the implementation level and the programme management level, has been greatly reduced with the institutionalisation of the online report system.Karma Wangmo is the Gender and Knowledge Management Officer, Commercial Agriculture and Resilient Livelihoods Enhancement Programme (CARLEP), Bhutan. E-mail: kwangzz506@gmail.com more easily discuss programme data/progress. OPM staff no longer need to manually compile information from hand written reports as the information is accessible online.Apart from human errors when inputting data, the information accuracy of the online reporting system can be ensured because it permits the cross-checking of existing data. The data to be entered is also mostly specified by the units already added to the document, so it is easier to trace mistakes. Moreover, the information can be compared between implementing agencies, enabling them to take up the necessary actions, such as tracing of field work if, for instance, the data on agriculture activities is exceptionally high or low in comparison to that of other dzongkhags.Since the details of each activity, including the targets, fund use, beneficiaries reached (male/female), and outputs are online, the accountability, transparency and visibility aspects of the programme have increased. The system can be used as an online data repository to extract or refer to any information needed pertaining to the programme's progress, and can be shared with visiting donors and project partners.CARLEP is completing the second year of its sevenyear implementation period, and the introduction and institutionalisation of an online reporting system is a big achievement as it helps develop a robust and almost real-time M&E framework. This will also prove to be a good source of knowledge for future programmes.The online reporting system is cost-effective, efficient, user-friendly and replicable. Anybody who owns a Google e-mail account can operate the system from any internet-connected device. Except for the training of staff on how to use it, no monetary investment was incurred during the set-up of the system.Online reporting is very efficient for data transferral and information sharing. There is limited scope for loss of data; errors can easily be traced and information can be shared quickly. This system is therefore convenient and efficient for performancebased funding programmes like CARLEP.Programme progress can easily be reviewed, showing whether a project has achieved its targets and showing if funds have been used, thereby giving the donor agencies a very clear image of the status of the programme. Moreover, the online reporting system is easily replicable. The agriculture sector of Trashigang has already started running a similar tool.However, to obtain the full benefits of institutionalising this approach, there is a need for proper internet connectivity and that all staff are familiar with its application. Therefore, any new initiative needs to be communicated to all those who are part of the programme implementers, and the field staff need to be familiarised with it.43 EXPERIENCE CAPITALIZATION Fighting rural poverty in India, Nepal and BhutanIn Central India, a GIS-based geo-hydrological composite index tool has been developed to enable the selection of suitable perennial ponds for fisheries. The tool also allows users to take a comprehensive view of a district and make decisions for natural resource management interventions.F isheries and aquaculture provide livelihoods for millions of people across the world. In 2014, production from inland water capture fisheries was 160 million tonnes globally, and constituted 12.74% of total capture production. India is the third largest producer of inland fish, and the second largest producer of farmed fish. In India, nearly 65% of total fish production (presently at around 10 million t) comes from the inland sector.Madhya Pradesh is situated in the central region of India, and has a total river length of 17,000 km, and almost 4 million hectares of water area in reservoirs. Of the available reservoir area, 98% has been brought under fisheries, including 0.64 million hectares of rural ponds. Socially, fisheries have been the traditional occupation of persons belonging to scheduled caste groups such as the Bhoi, Dheemar, Kahar, Kevat, Mallah, Nishad and Raikwar. These groups live across different districts of Madhya Pradesh and are skilled in deep water fisheries.Tribal fishers have traditionally conducted capture fisheries, hunting fish by using bows and arrows, laying down fish traps and casting nets. The fisheries of tribal fishers were mostly in shallow waters and were developed for self-consumption. However, with the support of the government, these fishers have been organised and trained in aquaculture-related practices. This has led to the development of deeper pond fisheries by the tribal community. Both scheduled caste and scheduled tribal communities practice fishing, but if an area is classified as 'schedule 5', it comes under the Panchayat Extension to Scheduled Areas Act, under which the tribes have first right to the resources.In Madhya Pradesh, the selection of ponds for fisheries is not by design, but is incidental to their existence. At present, the rural ponds for fisheries are selected on the basis of their ability to retain water for different periods of time, and are classified as seasonal or perennial ponds by the Fisheries Department of the government. Once a pond is selected by the local governing body, it is leased out to either cooperatives, self-help groups (community groups that function to address social issues or improve livelihood activities) or fisher groups.Supported by the United Nations Adaptation Fund Board and the National Bank for Agriculture and Rural Development, TAAL is implementing the project called Building Adaptive Capacities of Small Inland Fishermen Community for Climate Resilience and Livelihoods Security in Madhya Pradesh. The aim of this project is to select ponds that are naturally and technically suitable, as well as socially accepted to be utilised as fisheries, through the following steps:Cover A total of 65% of the fish production in India comes from the inland sector proposal for the Jhabua hills agro climatic zone. Parts of the Alirajpur, Dhar and Jhabua districts fall in this zone. Dhar has 1,474 villages, Jhabua has 818 villages and Alirajpur has 547 villages. A total of ten administrative blocks, covering 960 villages, were considered in the project proposal.There was a need to develop a methodology that would enable an unbiased selection of the ponds most suitable for fisheries in the selected district blocks. A list of ponds was taken from the water resource department, the fisheries department and from the block level administration of the local government. The list ran into many pages and the challenge was to find the ponds that were both technically suitable as well as still physically existant.A hydro-geological assessment is a necessity before any pond is constructed. Since the project was working on existing ponds constructed by different government departments, it was safe to assume that the pond sites were naturally suitable for water impounding. However, it was important to establish that the pond sites were suitable for fisheries, and that the natural features had the potential to support the pond's perenniality -a desirable feature for fisheries.Maps were sourced from the national government. These were scanned and updated using GPS technology to determine the coordinates of the most important geographical features. The maps were referenced to village boundaries, land use and existing water bodies. GIS was used for overlaying map information onto one document. Different meetings then took place between the hydro-geologists to decide the weight of importance of the technical parameters used to determine the hydro-geological suitability of the ponds. The different parameters taken for the assessment included the drainage density and the lithology. The most favourable condition for each 1. A natural suitability analysis through the development of a GIS-based composite index tool for hydro-geological assessment (described in the subsequent sections); 2. A technical suitability analysis via visits to the pond sites and ground-truthing; and 3. Social acceptance analyses of the local community to work at the fisheries via two separate social assessments.The three districts comprising the project area, Alirajpur, Dhar and Jhabua, are predominantly rural in composition, with more than 80% of the population residing in the countryside. The districts are mostly inhabited by persons belonging to scheduled tribes, with the Bhils and Bhilalas as the major tribal groups.There, ponds under 10 hectares were chosen as they fall under the jurisdiction of the Gram Panchayat -the village governing body which is the smallest unit of local governance in India. The ponds selected were modified to increase their water retention capacity and to reduce the incoming silt load, i.e. the inlets and outlets were repaired. Structures were also built to aid fish diversity and fish handling, such as a fish pass which prevents the outflow of fish through the waste weir, and a fisherman's platform to place equipment or the fish catch.Based on the vulnerability assessment in the State Action Plan for Climate Change, TAAL developed aKalyan The tool provides a means of selecting perennial ponds for fishery activities from a list that may be based on anecdotal evidence.parameter was given priority score of 1; the least favourable received a score of 5. Soil was one such parameter to be analysed and the priority score results for the various soil types are highlighted in the table.As an example, the next table shows the overall calculations for ponds in Jhabua district.The GIS analysis and the thematic analysis of each of the technical parameters identified above provided the project an inventory of 429 suitable ponds from the 10 blocks. Out of these, 60 were selected for the project.Selecting 60 ponds became easier once the priority rankings had been calculated. The hydro-geological composite index tool was also efficient in providing accurate GPS locations for each pond. This information was useful in identifying and locating potential ponds more rapidly, and as a result, the project visited more than 150 ponds in the first year. Eighty ponds out of the 150 were selected for ground truthing and technical assessment. The remaining ponds were not selected for ground thruthing due to reasons including high irrigation, serious damage to bunds, leakage/seepage, or also because of social issues.The methodology and the results were presented to the technical advisory group made up of representatives of the Central Institute of Freshwater Aquaculture, the Central Institute of Agriculture Engineering, the Indian Institute of Soil Science, and the Water and Land Management Institute. Extensive discussions took place on the methodology of the exercise and this was approved by the group.The exercise resulted in the development of the tool: GIS-based geo-hydrological composite index tool for selection of ponds for fisheries.The tool provides a means of selecting perennial ponds for fishery activities from a list that may be based on anecdotal evidence. There was no strategic plan at the district level, and no priority list of ponds at the block or district levels. The tool developed allows the fisheries department to take a comprehensive view of the district and make decisions for different categories of ponds.This tool can give:a. Spatial locations of water bodies within a particular area;b. The number of ponds in that particular area; c. The water area of the ponds; and d. The technical details for the different parameters of the entire geographical unit, including the drainage density, landforms, structural information, the geology, groundwater information, the soil, slope and the perenniality. E-mail: chitra@taalindia.org multiple purposes. For example, the groundwater maps along with the drainage density maps can be used for planning water use, specifically drinking water in districts like Dhar, where the presence of fluoride in ground water is an issue.This exercise is a robust planning tool for natural resource management interventions. It helped the project identify the maximum number of ponds in a 'Priority 3 category', which means that the area is not the best sites for ponds due to its geology. Yet there are pockets of perenniality, which need to be optimised to meet the needs of the people and to plan for those who live in isolated or more difficult regions.Smallholder farmers in northern India are turning to goat rearing to improve their incomes and food security. The Integrated Livelihood Support Project is providing training to these farmers on improved goat feeding and vaccination practices, increasing goat prices and contributing to the local economy.A joint initiative of the Government of Uttarakhand and the International Fund for Agriculture Development, the Integrated Livelihood Support Project (ILSP) is working in 11 hill districts in the state of Uttarakhand, northern India, to enable rural households to take up sustainable livelihood opportunities integrated with the wider economy. These are areas where villagers need an alternative livelihood option to ensure their food security. Since April 2016, ILSP has been working with 3,242 households from 203 villages in the Garud block of the Bageshwar district. Based on common production activities, the project has facilitated the formation of 402 producer groups (PGs) and 125 vulnerable producer groups (VPGs) in 48 villages, covering 1,012 households. Six clusters have been identified and six cooperatives have been registered under the State Self Reliant Cooperative Act of 2003.In Bageshwar, as in a large part of Uttarakhand, goats are mainly reared for meat production. In the rural areas, large numbers of male goats are kept for religious sacrifices (e.g. Navaratri) and are slaughtered locally, and their price can be very high. The key constraints to goat production include their nutrition, as villagers rarely provide food supplements. Intensification is difficult as farmers prefer to graze their animals, and if feed supplements are used, rearers are then not able to compete in the market.At the same time, selective breeding is a long term process and the investments required are high.The project encourages the formation of producer groups, and supports them with goat vaccinations and health care, breeding techniques, and by promoting fodder cultivation and stall feeding. The PGs and VPGs are formed by between eight to ten members, with composition depending on the geographical proximity of the households, the affinity amongst group members to work together, and the common interest of all members to take up similar activities. The objective has been to see the PGs and VPGs become vehicles for the delivery of services such as health care to enhance production activities. All PG members receive INR 8,000 (~€100) from ILSP (this includes a 10% contribution from beneficiaries), and VPGs receive an additional INR 1,600 (€20) as seed money for their food security improvement plan (FSIP) -the core planning document for all groups.A cluster level livelihood collective (or LC, a self-reliant cooperative) supports the PGs with inputs and also by linking them to the market. Each LC is formed by approximately 50 to 70 PGs and/or VPGs. The location of the LCs depends on the ease of access for PGs and VPGs, the market linkage potential and the Cover Producer groups are supported with vaccinations and health care PGs. The second instalment of PG support money is treated as share capital for members, and a payment of dividend system is put in place every year. The PGs are informed by ILSP that the money they receive is not for one time use; it has to be utilised as a revolving fund. They are also told that the money is not one individual's money but belongs to the PG, which has its own rules and guidelines that need to be followed by all members.But the project also focused on the need to strengthen these groups, focusing on • Monthly meetings: Every month, all PGs have a meeting to document their proceedings. Core discussions are held on production, marketing and LC activities, and savings and loan repayment;• Governance structures: A president, secretary and treasurer have been elected for every PG and training on governance issues is provided to every group. Regular monitoring and support is provided by the field staff;cluster formation. ILSP provides each LC with grant funds via technical agencies (TAs -the project partner NGOs). The Garud block has six LCs.ILSP is supporting India's Goat Trust under its innovation linkages programme to promote goat farming in the Bageshwar and Dehradun districts.The Goat Trust also provides support to 84 PGs in terms of breeding and vaccinations. They have developed community level para-professionals called Pashu Sakhi (or \"friends of animals\") at the village level and cluster level, for the delivery of timely inputs to ensure year round production.In April 2015, ILSP began providing financial support to the PGs, releasing a first instalment of INR 3,600 (€47), plus a 10% community contribution, to the PG bank account on the condition that members repay the amount within a time frame set by the members themselves, and that the funds are used for the next crop cycle. Next is the release of a second instalment of INR 3,600 (+ 10% community contribution) to the LCs to buy agriculture inputs and sell the same to the A president, secretary and treasurer have been elected for every PG and training on governance issues is provided to every group.The next level of planning above FSIP is the AUP, or the Agriculture Up-Scaling Plan. This activity is carried out by the LCs who consolidate the FSIP information developed at the PG level. This covers a three-year period.And equally important is the provision of technical knowledge. In the villages where the Goat Trust is operating, a rigorous analysis of the feed, health and kidding practices has been carried out to identify the gaps in each sector, share the latest knowledge, and convince farmers to apply it. Preventive animal health practices like vaccination and de-worming of goats, as well as the use of local herbs to treat general ailments, have been explained to the farmers. A system of limited grazing and alternative home-based complementary feeding -especially for pregnant goats and kids -was developed and shared with all participants. The Goat Trust has trained village-based women as Pashu Sakhis and as pashu nurses, and it has also trained men and women as livelihood nurses and as cluster level coordinators to support the implementation of best practices. Those trained provide animal first aid services, monitor all farming activities, and serve as a link to the government insurance schemes.• Savings: Field workers agree with each PG member on a certain amount that has to be paid into the PG account each month to encourage the groups to save. The amount agreed upon varies from between INR 50 (€0.6) and INR 300 (€4).It is mandatory that all groups open a bank account, where they keep all the money they receive from the project and the money they collect as monthly savings. Project support has to be spent on production activities specified in the group's FSIP, but the money accrued on the group's savings can be lent to group members for their other needs. In the Garud block, the 402 PGs and 125 VPGs have so far saved INR 6,252,791 (€81,730);• Documentation: Every PG maintains two registers, one for monthly meeting proceedings and the other for incomes and expenditures. The data from these registers is monitored by the project.Under their own FSIP, all groups have to plan their goat rearing activities for the year, including choice of breed, fodder practices, health and resource management, and business marketing and governance. ILSP has drafted an FSIP format and provided training to all TA field staff who help PGs plan their annual production activities. Information regarding the expected annual production, turnover and anticipated challenges are also noted in the FSIP document.PGs were formed, it became important to infuse a sense of ownership and to motivate many group members, which became a challenge.Another difficulty was that, before the project, PG members raised their animals on traditional fodder, using traditional goat farming methods. Participants were not aware of alternative feed options, or of fodder cultivation and preservation. The provision of vaccinations and health checks was not carried out regularly before the project started, and ILSP and the Goat Trust found it difficult to encourage farmers to take up these practices.Further, due to the hilly geographical location of some areas, the delivery of first aid services and health care knowledge by veterinary outreach officers was limited.There was also an absence of a transparent pricing system for goats.But in spite of these difficulties, and after a relatively short time, goat rearing has become a profitable business activity. Prior to the project's intervention in the Garud block, PG members had 1,602 goats; as of September 2017, they had 3,405. This is a 77% growth rate within 15 months. The total estimated value of the stock is INR 11.45 million (€149,900). The average stock per PG member is 3 goats with a value of approximately INR 11,000 (€145). Before the project, group members could not sell their goats other than for religious ceremonies. Since working with the project,Due to the cultural and religious links to goats, as mentioned above, goat farming was not a popular farming activity in the rural areas of the study sites.The families rearing goats as part of the project are mostly from scheduled castes (the historically disadvantaged people), and these activities have gradually isolated them even more from their communities.At the same time, and apart from the religious and social factors, the local market for both forward and backward linkages within the goat value chain was not available in the project area. Most of the households that adopted goat farming as their primary production activity were below the poverty line, and although ILSP supported the farmers financially, it was not enough to pay for the purchase of goats and inputs, to build goat sheds, and turn the activity into a sustainable business.The social structure in the project area is based on a caste system and on the economic status of individuals. The hierarchy and local politics of the area meant that it was sometimes challenging for the field staff to select eight to ten families to take part in the programme. But in general, field workers did not have major difficulties when forming the PGs or VPGs, even if at first they did not consider the necessary activities that would lead to the sustainability of the PGs. Once thetake a couple of years to evaluate the final impact of this intervention, but it is clear that goat farming can help enhance rural community livelihoods in a sustainable way if the necessary institutional systems are in place at the village and cluster level.Strong institutions are a key ingredient for development in the rural areas, especially in mountain areas where agricultural land is scattered, where the geographic conditions are challenging, and where fewer families remain as a result of migration. The empowerment of women through capacity building initiatives, and their greater participation in the different decision making processes, helps communities accept the new goat rearing systems.Clusters need to be identified in the mountain villages to promote goat farming in these areas. They will provide an opportunity to develop regular and locally-based support systems. Clusters can also help establish an input supply and marketing support system. Uttarakhand's local government will need to monitor and coordinate all activities after ILSP so as to ensure their sustainability. The state will also have to address challenges like migration, natural calamities and global warming, which need wider rage policies.group members have sold 365 goats at the Garud market through their cluster level cooperative, and have earned INR 1,055,100 (€13,815) -a total of INR 3,493 (€45) per goat.The price of goats has risen by 20%, and this figure is expected to continue to increase with the enhanced business knowledge of the PG members and the presence of the locally-based support personnel. As a result of increased goat prices and sales, the community's economy will improve, which is one of the project's core objectives.With the project's support, Pashu Sakhis have dewormed 7,799 goats, vaccinated 3,400 goats and treated 341 goats suffering from different diseases.The community pays the Pashu Sakhis and the cluster level coordinators, which makes their services sustainable, and as a result, they represent an extension of the local veternary hospital. This has led to lower mortality rates. According to the 2012 census, the mortality rate of goats in the Garud block is 13%. Data from the project shows that among the 125 PGs, 365 goats have died in the past year, which is 9% of the total. The project has helped reduce the mortality rate in Garud, most likely due to breed improvement, improved feeding practices, the provision of goat sheds, and the improved health services. It may also be due to the fact that there is now a link between the health of goats and farmers' livelihoods.Within a very short period of time, goat farming in the Garud block has shown that it is something that should be replicated in other blocks/clusters of the state. It will Anil Maikhuri, Manager-Knowledge Management, Integrated Livelihood Support Project ILSP, Uttarakhand, India. E-mail: km@ugvs.orgHari Sharma Neupane and Krishna Prasad PaudelDue to the unavailability of financial services, the lack of products, and the cost of credit, many low-income households struggle to manage their savings and invest in, and expand, small businesses. Women, as well as poor and deprived groups, are unable to manage inputs and technologies to make their farms more productive. To boost local entrepreneurship, the Improved Seeds for Farmers' Programme (KUBK-ISFP) set out to establish 30 financial institutions to increase women's financial inclusion. Membership of a microfinance cooperative has been found to improve women's empowerment and the livelihoods of poor farmers.K UBK-ISFP is an initiative funded by the International Fund for Agricultural Development (IFAD), implemented by Nepal's Ministry of Agricultural Development (MoAD) since December 2012. The programme aims to support an inclusive, competitive and sustainable agricultural growth approach in six districts (Arghakhanchi, Gulmi, Pyuthan, Rolpa, Rukum and Salyan), working to increase the income of rural households through market-driven productivity improvements.The programme tackles two key agricultural constraints: the gaps in the formal seed sector (cereals and vegetables); and the low productivity of smallholder livestock (goats and dairy). The core components of the initiative are (i) the expansion of the formal seed sector by encouraging production of Truthfully Labeled improved seed; (ii) the commercialisation of smallholder livestock; and (iii) local entrepreneurship and institutional development.Microfinance is an effective tool for extending financial services to disadvantaged groups, but many people in Nepal are unable to access these services because financial institutions are often only located in urban areas. Loans required by smallholders are often very small, but the procedures to access these loans can be tedious, and many institutions view agricultural businesses as high risk.KUBK-ISFP explored an existing cooperative model called Small Farmer Agriculture Cooperative Limited (SFACL) to expand the outreach of microfinance services. SFACLs are member-based institutions registered under the Cooperative Act of Nepal and authorised for limited financial services -savings and credit for cooperatives members. To date, 730 SFACLs in 68 districts, all of which provide financial services for over 700,000 people, are led by the Nepal Agricultural Cooperative Central Federation Ltd. (NACCFL).In partnership with two private sector organisations -Small Farmers Development Bank (SFDB) and NAACFL -the KUBK-ISFP programme had established 30 SFACLs by March 2016. As a wholesale financing institution, SFDB provided loans to the SFACLs. KUBK-ISFP provided SFDB with a supplementary loan of US$5 million for this purpose. NACCFL established SFACLs and strengthened them through various training and mentoring activities to enable them to run their groups independently.Following a mapping exercise, potential sites were selected in consultation with local bodies. A process of social mobilisation and mentoring then began, usually lasting for 12-18 months. Newly-established SFACL's, consisting of small groups of 7-12 women farmers, were strengthened through several training and Cover Mrs Tulasha Upadhaya, one of the many SFACL members now running her own business mentoring events that focused on book-keeping and financial management, business planning, and saving and lending procedures so that the groups could function independently. The first annual general meeting then endorsed managers and a new board of directors. After the end of the social mobilisation and mentoring process, the management of the SFACL was handed over to the community. To 'graduate', each SFACL had to have at least 400 members and have accumulated NRs. 2 million (€16,440) of member savings.A mid-term review by IFAD recognised that the 30 SFACLs managed and led by women had provided microfinance services for 10,446 rural households, and collected and mobilised NRs. 36.85 million (€319,350) of internal resources (member savings). With these positive results, IFAD recommended the establishment of 45 new SFACLs, with additional funding of US$3 million (€2.5 million).At the end of 2016, 30 SFACLs had provided financial outreach services for 14,359 households (96.5% women, 19.95% dalit [socially deprived group], 24.5% ethnic groups, 61.5% below the poverty line) in 2,403 groups, and 7,965 members had borrowed money (Figure 1). On average, each SFACL has accommodated about 480 members. Clearly, SFACLs are organising vulnerable groups of people as members of cooperatives and supporting them by providing saving and credit facilities to improve the income level of the rural population.In less than 2 years, the newly-established SFACLs collected NRs. 114 million (€936,400) of internal resources, including NRs. 27.37 million (€224,850) of share capital (mandatory deposits) and NRs. 84.64 million (€695,350) of personal savings (Figure 2). SFACLs therefore collected an average sum of NRs. 7,800 (€64) per household. In total, the mobilisation of internal resources increased by more than 94% compared to the 2015/16 financial year.There was a 93% increase in annual borrowing from the SFDB to NRs. 76.8 million (€630,900) by July 2017 (Figure 2). The aggregate lending sum was NRs. 384.3 million (€3.15 million), of which 65% was for farming activities (61.84% livestock, 4.16% seed and vegetables) and 35% for non-farm activities which helped rural women to generate self-employment at a local level and increase their family income. Interestingly, the livestock sector constituted 95% of the total agriculture lending, with SFACL members focusing on milk collection and distribution, poultry, dairy and goat production.Total assets collected during the 2015/16 financial year were NRs. 105.33 million (€865,400), which increased to NRs. 209.13 million (€1.7 million) in 2016/17 (Figure 3). This is an increase of 98%. In the 2016/17 financial year, the 30 SFACLs earned a sum of NRs. 17.83 million (€146,480) (total income) and spent NRs. 11.44 million (€94,000), resulting in a gross profit of NRs. 6.39 million (€52,500). The operational self-sufficiency (OSS) ratio was 1.55:1 in 2016/17, compared to 1.47:1 for 2015/16 -indicating that the SFACLs are performing well.Different types of saving products are offered by the SFACLs. Some are planning to offer savings products SFACLs are organising vulnerable groups of people as members of cooperatives and supporting them by providing saving and credit facilities to improve the income level of the rural population. Tulasha Upadhaya became a SFACL member in 2015 and started to save regularly. She applied for a loan and received NRs. 50,000 (€410) from SFACL to purchase milking buffalo so that she could earn enough to meet her household needs. She bought one milking buffalo and started selling 7 litres of milk per day in the local market, earning NRs. 126,000 (€1,034) in one lactation period (10 months). This income enables her to pay her children's school fees, save money and pay back the loan.Deba Subedi is a SFACL board member. After the establishment of the SFACL, she borrowed NRs. 10,000 (€820) to purchase one goat with a female kid. She has also used SFACL loans to purchase a milking buffalo. With the profits, she has been able to expand her business and enable her husband, who has been working abroad, to return home and help her to diversify her business further. Deba is currently earning about NRs. 22,000 (€180) per month from her business, which also includes poultry farming and vegetable farming, and she hopes to purchase a mini tractor to further expand her business.of the SFACL board members was democratic, and that the board was working well. A total of 137 respondents felt that records are well kept and that the board is controlled by members. More than 86% of members stated that they are highly satisfied, or satisfied with the services delivered by SFACLincluding loan approval processes and interest rates.The project found that the SFACL model is better than other microfinance institutions at increasing financial access for women because:i. the programme emphasised women participation from its inception;ii. each household in selected areas was given the opportunity of joining a group;iii. women from poor and deprived groups were given priority and provided with women social mobilisers; iv. women leadership was encouraged by motivating them to lead groups and be on the board of directors;v. credits of under NRs. 100,000 (€820) did not require collateral, the poorest members did not have time constraints to pay the loan back, and loan procedures were easy to follow; vi. SFACLs are linked with SFDB which provides wholesale credit and further strengthening of the groups;vii. SFACLs offer various saving products and the cost of the credit is relatively lower than other microfinance and banking institutions; and viii. there is high social cohesion, irrespective of caste and gender, and women leaders are deemed to be trustworthy.Among the loan borrowers sampled (138 people), 97 claimed that the SFACL loan had helped to improve their livelihood. Women who received loans were also seen as being more responsible than men, repaying their interest and loan instalments on time.Concerning empowerment, the project found that 94% of women members were involved in household level decision-making processes, including property sales. A similarly high percentage of women (95%) felt that they did not face any difficulty in going to the SFACL activities, study visits or other training/ workshop events. Women claimed that their role in the family had increased since they began to manage money and be more autonomous and economically independent. Clearly, this indicates that power dynamics are changing gradually in favour of women.In the state of Bihar, India, the Integrated Poultry Development Programme has been working to improve the livelihoods of poor and marginalised rural people. By working to strengthen the entire value chain, the project has increased the income of the most marginalised groups, improved their nutritional diversity, and provided livelihoods for input suppliers and dedicated community professionals who support farmers and facilitate market linkages.and backward linkages. Once reared, the chicks are supplied to households organised into informal producer groups, where they are reared for eggs and meat. Dedicated community professionals, known as village resource persons (VRPs), support households to ensure proper feeding and vaccination for chicks. They also facilitate linkages with the local market.The mother units are owned by cluster-level federations (federated bodies of self-help groups). Each household pays a fee of INR 3,150 (€42) to their federation over a period of 18 months, and in return receives 150 chicks (six lots of 25), subsidised housing for the chicks, and VRP support. After the first 18 months, households have to procure chicks at market cost.With facilitation from JEEViKA, the federations manage the supply chain:Production:• Mother units -are operated by an experienced local entrepreneur. They rear day-old chicks up to 4 weeks of age, complete vaccinations, and then sell them to individual households. T he Bihar Rural Livelihoods Promotion Society (BRLPS), known locally as JEEViKA, endeavours to develop and promote livelihood options to match the resource base and capacities of communities in the state of Bihar, India. To strengthen the livelihoods of rural households -especially women who are landless or have small land holdings -JEEViKA established the Integrated Poultry Development Programme in 2012, with support from the Bihar Government's Department of Animal Husbandry and Fish Resources.Rearing poultry does not require a high level of inputs or investment, so it is a popular choice with rural households, and the sector also provided an opportunity to meet a high demand for eggs and poultry meatas Bihar was largely dependent on supplies of eggs and poultry meat from other states. The National Egg Coordination Committee (NECC) reported that 2.5-3 million eggs were imported into the state each day prior to 2012. Average consumption of eggs per person in Bihar was therefore only six to eight eggs a year, compared to the national average of 45.The aim of the programme was to establish a network of 'mother units' -where one-day-old chicks are reared for 3-4 weeks -to provide a hub for forward• Extension -Extension services are provided by VRPs who are trained by JEEViKA. Women farmers are also able to raise concerns during their monthly group meetings that the VRPs can then help them with.• IT -Scaling up of the intervention led to the need of digitisation of poultry records such as vaccination, mortality, distribution of birds, income flow and its utilisation. A mobile application was designed by BRLPS to capture this data at the mother unit and household level.JEEViKA's backyard poultry intervention has had four notable achievements:(a) The scale of its operations: since 2012, the programme has expanded from one to 38 districts in the state, involving 180,000 households.(b) Incomes: Bihar's poorest and most economically vulnerable households have seen their income increased. On average, participating households have increased their monthly income by INR 3,500-4,000 1 (€46-53) from selling chicks and eggs. With the additional income from poultry, rural households have been able to invest in other areas, including education, health, and family savings. The project also helped generate employment opportunities for over 400 helps farmers to explore market opportunities to exchange their surplus produce. The female birds are kept to produce eggs for the market and household consumption, and the males are used for meat once they attain a weight of 2-2.5 kg (after about 2 months). The female birds are slaughtered and sold for meat after laying about 180 eggs.• Day-old-chicks -are sourced from private hatcheries. The hatcheries are identified by the Government of India, which then transports the chicks to its regional offices and sells them to mother units at market price.• Feed -is supplied by a number of private feed-sellers.• Vaccine/medicine -is regulated and controlled by community based organisations through community procurement from local markets, and community professionals are trained to vaccinate the birds.• Group formation -JEEViKA organises landless women into self-help groups, which are then federated into village organisations, and then cluster level federations. The self-help groups hold weekly meetings to discuss progress and emerging issues.• Training -All participants linked with the poultry intervention receive relevant training on poultry keeping.• Credit -JEEViKA and the Department of Animal Husbandry and Fisheries provide credit support at various levels, from mother units through to poultry producer households.For years, Saroj Devi hid her identity behind the four walls of her kutcha house (made from mud or thatch), where she lived with her children and husband, Dinesh Paswan. Dinesh migrated to nearby towns to earn money, but with their meagre income source the family was soon under the grip of money lenders. For their household, which includes seven people, agriculture is the primary source of income. With a landholding of just 130 m 2 , agricultural options were limited to one main crop and in some cases a small second crop. VRPs, and created a locally-based cadre of resource persons to provide veterinary services. These men and women earned about INR 2,500 (€33) per month for their services.(c) Coverage: The intervention included the most marginalised sections of rural Bihar, many who were landless and would not have benefited from agriculture-based livelihoods. Nearly 30% of the households involved in the programme were also from scheduled caste and tribe communities.(d) Improvements to household nutritional diversity: poultry farmers improved their nutritional status with the intake of meat and eggs, as required for a healthy diet. Studies on nutritional diversity by the Food and Agriculture Organization of the United Nations (FAO) and by the Government of India have shown that there is a key link between productive and income generating activities and improvements in nutritional status for landless households.In summary, three factors contributed to the success of the poultry intervention. The first one of these has been JEEViKA's approach of directly targeting and addressing the needs of landless households, and of providing households with intensive and ongoing technical support. But equally important has been the support given to the formation of producer organisations to take responsibility for bulk procurement of raw materials and aggregation.Business literacy classes are addressing the knowledge gaps between men and women in Nepal, and developing the business-related knowledge and skills of women commercial farmers. Not only has this intervention improved women's confidence when establishing agribusinesses, but their involvement in decision-making within producer organisations and households has also positively increased.P overty in Nepal is primarily a rural problem, and it is strongly associated with gender, ethnicity, caste and region. Women are among the most vulnerable in society as they are most likely to stay at home to take care of elders and children, while their husbands migrate for work. Women constitute more than 60% of the agricultural labour force but have limited access to land, production technology and training.The High Value Agriculture Project in Hill and Mountain Areas (HVAP) is a joint initiative of Nepal's Ministry of Agricultural Development and the International Fund for Agricultural Development. The aim of the project is to reduce the poverty and vulnerability of 13,500 households in the hill and mountain areas by integrating the rural poorespecially women and marginal groups -in high value agriculture value chains and markets. HVAP is a 7.5-year project and has received grants of more than US$ 18 million since its implementation started in February 2011.By July 2017, the project had supported 447 producer organisations (POs), all of which are either legally registered and function as 'farmer groups', or are not registered and are called 'cooperatives'. It had implemented more than 600 sub-projects, with committed grants of NPR 604 million (€493 million), directly benefiting more than 15,000 households. The beneficiaries of the sub-projects were women (63%) and socially-excluded groups (32%); 91% of project beneficiaries belong to poor households and 26% to extremely poor households (where households considered 'extremely poor' are those having food sufficiency lower than 3 months; moderately poor are those having food sufficiency of up to 6 months).Regarding the capacity building activities, the project has conducted 950 trainings -both social and technical -where women's participation in both was fairly high -62% and 54%, respectively. Regarding the participation of women and socially excluded groups, the project has exceeded its targets. However, there is still scope for further improvement as both demographics were slightly under-represented in the technical trainings (when compared to their membership in the producer organisations).About 49% of the women who joined these courses are holding key positions in the 447 POs, but they still lack the required level of confidence, capacities and leadership qualities to fully perform their roles and responsibilities. Besides, women's drudgery in production work is widespread in many different value chains, like goats, where it is typically women who are engaged in the different steps involved. The issue of reducing women's workload, and strengthening their Cover Manju Chaudhary on her farm voice and bargaining power within POs and households is crucial. As such, HVAP designed business literacy classes (BLCs) to address the knowledge gaps between men and women, and to develop the business-related knowledge and skills of women. Since 2013, when the BLCs were first introduced, 252 BLCs have been conducted, benefitting almost 7,000 women farmers.The level of women's meaningful participation in POs was ascertained during individual interviews conducted with 42 women participants of the BLCs, and through focus group discussions with 27 groups, with a total of 451 BLC participants. During such discussions, most women described experiences of not being able to attend meetings, trainings or workshops, and even when they did participate, they did not have the confidence/support to voice their opinions during the events. The interviewees also shared that women are frequently not considered for the key management positions within a PO, with no or very limited access to strategic discussions. When women do have a key position, they themselves expressed not being able to fully perform their roles and responsibilities effectively, and having to seek support from men for procurementrelated and record-keeping tasks.Most of those who joined the focus groups shared that, before the BLCs, they did not have adequate knowledge and skills related to commercial production management, and to the social and business aspects of a value chain, which they thought were the most important skills needed to enhance their businesses. For instance, although off-season vegetables (OSV) received the highest investment from the project, the beneficiaries -mostly women -generally lacked the technical knowledge and skills to produce them commercially. In a similar way, women farmers did not have adequate knowledge about sustainable goat management; they were reluctant to construct improved goat sheds and initiate fodder plantation.Initially, the BLC was a 6-month intervention, offering a comprehensive package of training on (i) value chain development and commercial production; (ii) gender, social inclusion and institutional development, and (iii) business and entrepreneurship development. The course focused on post-literate women farmers, and in each BLC a maximum of 27 persons were invited to participate. This ran during 48 days, with sessions taking place twice in a week for a minimum of 3 hours a day.The key strategy and intervention process considered different steps:Above BLC sessions took place twice in a week, for a maximum of 3 hours per day• In each BLC, 25-27 PO members are selected, with priority given to poor women and women from socially excluded groups or risk-averse households. However, BLC participants should be able to read and write their own names.• Financing: For the Kalikot and Jumla districts in the Karnali region -one of the poorest in Nepalthe project provided NPR 140,850 (€1,145); for the other five districts (Achham, Dailekh, Jajarkot, Salyan and Surkhet) it provided NPR 108,450 (€884) to cover all class costs, including an allowance for the BLCFs, stationary and snacks.• Follow up and monitoring: A management committee is formed by members of the same PO who have an overall responsibility to manage, and ensure that BLCs are running effectively. HVAP project staff also carry out regular monitoring of BLCs. The committee is responsible for providing documentation to the project, which they need for project payment release. Spot coaching/feedback is provided to the BLCF by social mobilisers, and the district and central level project staff.• BLC resource books were developed using in-house expertise. Volume One is about technical knowledge and skills on commercial production and management; Volume Two is on social, institutional and group strengthening; and Volume Three is on business skills, marketing and entrepreneurship development. The BLC manuals have been endorsed by Nepal's Ministry of Agricultural Development and all BLC participants receive the volumes for free.• Priority is given to women-only/women-led POs and POs with a high involvement of sociallyexcluded and risk-averse households to conduct BLCs. HVAP social mobiliser field workers are assigned to select the POs within which a BLC will be conducted.• One woman is selected to work as a BLC facilitator (BLCF); the other important criteria are that the candidate has a higher secondary level of education, gives priority to dalit and janajati women, and that is nominated by their respective PO. Each BLC has one BLCF who receives a 7-day training-of-trainers course prior to facilitating BLCs.BLCs have enhanced women's technical skills to the point where some are now working as local service providers. f. Technical services. Most importantly, BLCs have enhanced women's technical skills to the point where some are now working as local service providers such as constructing plastic houses, seed storage, and dipping tanks, on a fee basis. For instance, Goma Budha, a former BLC participant of Devasthal, Salyan, charges NPR 4-6,000 (€33-50) for teaching OSV farmers to construct plastic houses. Taking into account the prevailing average of 16,100 people per bank branch, the banks have been able to reach 12% of their client base by servicing only 1.1% of corresponding bank accounts through SHGs.SHG-bank linkages in Bihar have undergone an inspiring transformation over the last decade. Under the programme, the community institutions have leveraged credit to the tune of €427.5 million from banks, while generating a further €53.5 million in community savings. Starting from a base of less than €836,000 in 2009, the community institutions have emerged as vital stakeholders for banks, leveraging €220 million in 2016-17 alone. Significant investments made into processes of JEEViKA have enabled the programme to replicate the lessons on a larger scale.In the last 2 years, the programme has shown a 100% annual growth in credit linkage.At the same time, JEEViKA has facilitated coverage of more than 860,000 SHG members under the government-sponsored Aam Aadmi Bima Yojana, an individual insurance scheme that insures women against death and disability. Participation in the government scheme has grown significantly, and members with children studying secondary and higher","tokenCount":"18556"} \ No newline at end of file diff --git a/data/part_1/1344152365.json b/data/part_1/1344152365.json new file mode 100644 index 0000000000000000000000000000000000000000..02e2ce6b4bda9bf2ccbbc661b7ccd08f52cc5d51 --- /dev/null +++ b/data/part_1/1344152365.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0373ce00292ff995bb4a209dff51d61e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/13bb5596-626b-40fb-83e3-b70f6024b46a/retrieve","id":"1142545333"},"keywords":[],"sieverID":"96fc7688-bc1f-42f4-a5bb-f47a9cdd582e","pagecount":"66","content":"This booklet is produced by the Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA). It draws on case studies documented and described by the actors involved assisted by a professional journalist. A commonality among all case studies is the fact that all actors are members of a large community of practice (Web2forDev) dealing with Web 2.0 and social media in the context of agriculture and rural development. Interactions are also maintained with them through a variety of means.Web 2.0 and social media have become part of everyday life for most people in the developed world.But they represent a life-changing encounter for many in developing countries.''CTs -in particular Web 2.0 and social mediahave transformed the way people communicate and interact. This has helped to reduce the 'digital divide' between urban and rural areas. It has also enabled rural actors with internet access not only to offer but also to benefit from a range of services that were not previously available.Farmers are promoting their products on Facebook; extension services are using social media to reach out to their clients; and NGOs are using a range of social media tools to mount advocacy campaigns aimed at influencing policymakers. Researchers are using online collaboration tools to work on joint publications and young bloggers are using new skills to tag and disseminate online content. Young entrepreneurs are excited by opportunities to develop innovative online services and launch their own start-ups. Technical advisors feel more confident in providing adequate advice when they have better skills for conducting advanced online searches or using alert systems. Educators feel gratified when they can introduce online platforms for enhancing information exchange with their students and fellow colleagues. Various actors along the value chain are exploring new ways of buying or selling farm inputs and agricultural produce.Web 2.0 and social media have become part of everyday life for most people in the developed world. But they represent a life-changing encounter for many in developing countries. Impact assessment studies CTA conducted in 2011 and 2013 on its Web 2.0 and social media capacitybuilding activities have shown that adoption rates are very high, and that positive impact occurs at personal, institutional and ultimate beneficiary levels. The study also shows that young women are the most likely to adopt social media following a training course.In such a rapidly evolving and exciting domain, there is tremendous scope for inducing positive change and for stimulating the development of national policies that support the widespread adoption of Web 2.0 and social media within the agricultural sector. This publication documents some of the success stories in Web 2.0 and social media that CTA has supported over the years. We are committed to building the capacities of our partners to make better and greater use of ICTs to advance food security and nutrition across the developing world.18 Stories of change I t would be hard to exaggerate the speed at which technological innovation is moving. Web 2.0, social media and M-Apps for agriculture play an increasingly important role in agriculture and rural development policy processes and value chain development.Web 2.0 and social media allow development actors to link up easily with peers and other stakeholders, strengthen networks, access valuable information, produce and publish their own content and redistribute content released by others.Over the period 2010-14, in partnership with selected host institutions, CTA supported more than 120 face-to-face training events known as Web 2.0 and social media learning opportunities (LOs) in 37 African, Caribbean and Pacific (ACP) countries. Events were either funded by CTA or run in franchise mode (with CTA support and branding). Training was given to more than 3,500 individuals.CTA also partnered with the United Nations Institute for Training and Research (UNITAR) to offer distance-learning courses on social media for development to selected staff from host institutions and CTA key partner organisations. Other Web 2.0 customised training workshops were organised as part of the Agriculture, Rural Development and Youth in the Information Society (ARDYIS) project. The training of trainers approach was central to activities over the period 2012-2014, with a focus on setting up national and regional training hubs. In 2013, a new business modelEnglish-speaking traineesFrench-speaking trainees EN FR was tested, aimed at ensuring the repeated delivery of the curriculum by the host institutions in franchised mode.Regular monitoring and external impact assessments conducted in 2011 (for 2008-2010) and 2013 (2011-2012), and event-specific evaluations done for the distance-learning courses yielded extremely positive results. \"Many people have told us that the training sessions have not only changed their working behaviour, but their whole lives,\" said Giacomo Rambaldi, Senior Programme Coordinator at CTA. In 2013, the Web 2.0 and social media LOs earned the prestigious WSIS 2013 Project Prize in the e-Agriculture category.Featuring a range of examples from ACP countries, this booklet includes testimonies on how Web 2.0 and social media have contributed to policy dialogue and advocacy (Chapter 1), value chain development (Chapter 2) and provision of information services (Chapter 3).The booklet features 18 stories covering all ACP regions, documenting the transformative power of these innovative technologies.Feedback from beneficiaries, together with the results of impact assessment exercises, has guided CTA in increasing the breadth of services delivered and their geographical scope. n CHAPTER 1W hat are effective ways of stimulating policy dialogue on agricultural and rural development in ACP countries? What are the best tools for putting ARD issues in the spotlight to stimulate change? These are some of the questions explored in this chapter on policy dialogue and advocacy. It includes five testimonies on how Web 2.0 and social media can be used to encourage interaction on these key issues among as many stakeholders as possible -from farmers, researchers and young ICT innovators to extension officers and employees of ministries. In Uganda, for example, a young trainee-turnedtrainer is trying to persuade the government through social media to support the use of ICTs in agriculture and develop policies to involve the rural youth. He is also using an open-source crowdmapping platform to highlight incidences of poor service delivery in communities. The issues posted on the platform are used to generate advocacy and policy change.In another example, a social media consultant in Tanzania is providing social media consultancy services for a range of events aimed at driving policy change in favour of agriculture. One of them, the Farmers Radio Poll, is an innovative mobile phone and radio-based survey that aims to make farmers' voices reach policymakers. The poll is part of a larger campaign to encourage African leaders to invest more in agriculture.In Madagascar, ICTs are proving a powerful tool to influence policymakers. An e-discussion platform launched in 2012 has encouraged interaction on topics linked to agriculture and rural development, attracting large numbers of contributors, including researchers, extension agents, farmers' association representatives and even a number of staff from the Ministry of Agriculture, Livestock and Fisheries and Environment. Indeed, this story shows that by sharing information collected from a variety of channels, social media can really help to shape agricultural policy. nUsing social media to shape policy Throughout the world, internet has become part of everyday life.T here are changes happening in Madagascar.Agriculture and rural development, and the policies that will govern their future, are moving further into the spotlight. The shift is partly due to the introduction of new ICTs, says Andrianjafy Rasoanindrainy, widely acknowledged as the driving force behind the adoption of Web 2.0 and social media among agriculture and rural development (ARD) actors in Madagascar. These new technologies are helping to push the frontiers of communication and exchange of informationand are drawing a wider range of players into the ARD debate.Rasoanindrainy is executive director of Farming & Technology for Africa (F TA), a Madagascar-based platform for sharing ideas and opportunities in the field of agriculture and rural development, especially through ICT4D. He was lead trainer for five CTA-supported LO courses on Web 2.0 and social media held in Madagascar from 2012 to 2013. Participants included researchers, extension agents, trainers and farmer leaders. FTA has since organised separate training sessions in Web 2.0 and social media for women and farmers' organisations and it is planning to hold more training sessions for rural development actors. It teamed up with CTA again later in 2014 to hold a one-month distance-learning course, followed by a \"One day to build your website or blog\" programme.The training courses held to date have been quick to make an impact, on several levels. Most obvious has been the change for the players on the ground -the farmers and the extension agents and the researchers who serve them. New and faster methods of communication have created linkages between the various groups, bringing real benefits to the end users -small-scale farmers.Search engines have proved the most popular tool, followed by blogs and Facebook to increase visibility and share best practices. Some farmers and extension agents have started talking by Skype, especially when they live in remote areas. E ver since he took part in the CTA YoBloCo context, blogging has become a way of life for Jean Takuete. He uses his blog to share information about his work as an extension agent in Cameroon, passing on tips to farmers. He also uses the space to publicise details of job or training opportunities, and to express opinions on issues of agriculture and rural development, particularly where young people are concerned. \"These days, keeping a blog has become part of my daily routine,\" says Takuete, who attended a CTA-supported online UNITAR/FAO training course in April 2013, followed by further CTA Web 2.0 face-to-face training later in the same year. \"The skills I learned have completely changed the way I work, as well as increasing the impact of my activities.\"Part of Takuete's job involves training members of farmers' organisations in the field, teaching them how to make the most efficient use of inputs, diagnose crop disease and access markets for their products. Nowadays, he uses Web 2.0 tools to research up-to-date material and then posts them on his blog for farmers.\"First of all, Web 2.0 tools enable me to see the experiences and solutions of people in other loca-tions, by searching websites and subscribing to RSS feeds. Then I post them on my blog,\" he explains. \"That is far more effective than the traditional way of sending a report by post or as an attachment to an email. One thing that has been very striking has been the level of adoption of good practices by beneficiaries. I see this when I go out in the field.\"In a practical sense, Takuete's new knowledge has helped him to work from a distance, planning field visits -which often involve long journeys -so as to make them more effective. It has also proved invaluable in preparing the annual agriculture day for farmers in Nda'a, a rural area of western Cameroon, which he helps to promote, using Web 2.0 tools and social media. The agriculture day that Takuete helped to organise in March 2014, the second of its kind, attracted more than 420 exhibitors, nearly three times as many as the first one, a factor that he attributes to better preparation using distant working Web 2.0 tools such as Google Apps and greater awareness due to social media platforms. ICT4Ag plays a fundamental role in developing agriculture.Information is power for small-scale farmers STORY 3 An umbrella association for producers' organisations in Central Africa is mainstreaming Web 2.0 and social media to improve coordination between staff, members and partners. But at the end of the day, the real winners are the farmers.A t the Regional Platform of Central African Farmers Organisations (PROPAC), which groups together ten national producers' organisations, staff know that their ultimate responsibility is to serve small-scale farmers.\"PROPAC covers the Economic Community of Central African States (ECCAS)-Economic and Monetary Community of Central Africa (CEMAC) area, where 70% of the population practices family farming,\" says Michel Atangana, who is the manager of information and communication at the Cameroon-based organisation. \"The real beneficiaries of our activities are smallholder producers.\" With this in mind, Atangana and his team are working to ensure that information about issues affecting smallholder farmers is made available to them; whether it is innovative farm practices, market opportunities or changes in agricultural policies, farmers' views are sought and shared. Web 2.0 and social media tools are making that task easier, changing the way PROPAC staff inter act with each other and member organisations, so that information and knowledge sharing is filtered down to farmers.Crucial to the process have been the new skills learned by Atangana. In April 2012, he was introduced to Web 2.0 and social media at a LO course held by CTA. In November 2013, he honed his skills further with his participation in a CTAsupported online course run by UNITAR. \"I have learned to use RSS feeds, improve production and collaboration through Wikis, use Google Drive, Twitter, Skype, online maps, blogging tools and social media such as Facebook and LinkedIn,\" he says. Following the training, Atangana passed on some of his new skills to other staff members at PROPAC. \"That made a big difference in the way we were able to work,\" he observes. Specifically, all physical documents have been digitised and staff now share electronic documents using collaborative tools, with each other and with PROPAC member organisations, who are encouraged to take part in online communities, meaning greater knowledge sharing and more discussions.A PROPAC Facebook page enables information and updates to be shared with the organisation's communities.\"It also allows us to present a more attractive image of African agriculture, to share different opinions on agricultural policies and programmes and spread the word about innovations and practices used in other parts of the world,\" says Atangana.Twitter helps PROPAC staff to issue real-time updates on activities and the organisation's position on critical policy issues. Slideshare, a Web 2.0 tool, is used to make documents available online, Google+ to share photos and information on agricultural policy and YouTube to post interviews. A blog run by PROPAC for rural women posts regular articles on policies that may affect them and highlights achievements by women farmers. The organisation has also begun designing a regional database containing up-to-date information on prices and production quantities for various sectors in the region.\"The Web tools have enabled us to have extensive media coverage and significantly increase our visibility,\" says Atangana. \"Members of PROPAC are better informed on policies and programmes which affect them and can access techniques, practices and innovations used elsewhere. Our partners are more able to follow the programmes and activities we implement. Communities have a deeper knowledge of PROPAC and are in touch with us on a regular basis.\"As part of the new focus on information management, Atangana was closely involved in 70% of the population in Central Africa practices family farming developing a CTA-supported knowledge platform for the Pan African Farmers Organisation (PAFO), to stimulate exchanges on agricultural policy in the run-up to the African Union summit in January 2014. PAFO, whose members include farmers' organisations in five regions, used the platform to plan a continental briefing in Yaoundé, Cameroon in December 2013. The initiative made use of GroupSpaces as a discussion platform to share views on how to improve farmers' organisations and help PAFO to formulate policy ideas.Tasked with handling gender issues within PAFO, PROPAC is helping to raise awareness of the potential of social media platforms for rural women. In December 2013, it organised the African Rural Woman Forum (ARW2013), with a special session for more than a hundred women on the innovative role of social media and the opportunities they offer to producers' organisations. The forum, which will be held again in 2014, seeks to involve rural women in developing agricultural policies and strategies.Passing on ICT skills to young farmers is crucial and PROPAC is planning knowledge management, Web 2.0 and social media sessions for young people at CHASAADD-M, a centre near Yaoundé, which trains up to one hundred people in agriculture and sustainable development each year. Says Atangana: \"We are going to introduce them to tools that will give them access to information about innovative techniques and productive agricultural practices, show them how to take part in online networks and discussion forums, how to publicise their activities and J uma Ngomuo is a busy man. With CTA support, he has learned to use ICTs to promote farming as a business, and influence policy so that young people have a better chance of making a successful career in agriculture.Twenty-eight-year-old Ngomuo, who has a degree in rural development, confesses to being 'addicted to social media'. He currently runs three blogs, seven Facebook pages and a handful of Twitter accounts. He regularly posts videos on YouTube. He learned about the tools at a Web 2.0 Learning Opportunity course run by CTA in 2013.In his day job -though his work spills over into all hours -Ngomuo is Programme Support Officer for the Tanzanian Graduate Farmers' Association, a member-based organisation working to promote entrepreneurship for farmers, especially youth. Part of his work involves managing the organisation's social media accounts, to drive interest in the sector among young people and link agripreneurs with service providers and markets.He also runs several projects and pages of his own. Over the past few months, Ngomuo has provided social media consultancy services for a range of events aimed at driving policy change in favour of agriculture. Among them was the Regional Youth Green Growth Forum, held in Kenya in December 2013, which brought together African youth representatives to discuss ways of increasing sustainable opportunities for young people. Another was the Farmers Radio Poll, an innovative mobile phone and radio-based survey conducted in June 2014 to help farmers' voices reach policymakers.The poll was part of a campaign called Do Agric that was launched to encourage African leaders to invest more in agriculture. It goes without saying that Ngomuo has been active in that too, as campaign youth ambassador and social media reporter. \"I am addicted to social media,\" he says. \"We are living in a digitised world where information is power and as information is everywhere, the power is there to switch on and get updated.\"As assistant social media reporter for the Advancing Land Rights for Women-TZ campaign, Ngomuo is helping to promote land access for women, using Facebook to bring the issue to light.Committed social media consultant Juma Ngomuo strongly believes in the power of ICTs to influence agricultural policy. From better land access for women to more sustainable opportunities for youth, this young Tanzanian is working to ensure that important issues reach the ears of policymakers.following for his social media outlets. And he believes strongly in the power of web-based tools to advocate for better policies. W ith the world's second youngest population, and 83% of 15-24 years olds without jobs, Uganda urgently needs to galvanise its agriculture sector and attract young people to a career in farming. Social media trainer Moses Owiny is convinced that this is the best solution for tackling poverty and high youth unemployment.\"Agriculture development practitioners, policymakers, the private sector, government agencies and other professionals must articulate a new vision of agriculture that can be attractive to young people,\" says Owiny, who is Programme Manager for information sharing and networking for Ugandan NGO the women of Uganda Network (WOUGNET). He believes thatA young man who received CTA training in Web 2.0 and social media has gone on to become a trainer himself. Working for Ugandan NGO WOUGNET, which promotes the use of ICTs by women and women organisations, Moses Owiny is a firm believer in the power of Web 2.0 and social media for policy change.Olive Namoso, widow and mother of six, picks coffee berries from her garden.\"ICTs are essential coordinating mechanisms in the agricultural and rural development field, and hence their integration in the delivery of agricultural information, markets and all the processes across the value chain is significant.\"Owiny's involvement with CTA dates back to 2009 when he was working on a WOU GNET project helping rural women to access ICTs in northern Uganda. He was invited to attend a CTA international knowledge for development workshop in Namibia, followed by a CTA-fun ded training course for management of electronic portals developed by CTA for partners in Accra, Ghana a year later. Those courses whetted his appetite for ICT4D.\"I became fascinated by these tools and did everything I could to find out more about how to use them. My skills developed quite fast and I learned a great deal,\" he said.After He cites the use of other social media platforms, such as Facebook, to engage policy makers.\"If you set up a page, then you can share issues and experiences to make government officials be more transparent and deliver better services. I think the more we use social media to encourage engagement between the local community and service providers, then the stronger the impact will be.\" now can Web 2.0 and social media help farmers, producers, and other stakeholders strengthen their position in the agricultural value chain? Which specific tools are best suited for finding information about crops, accessing markets and sharing new technologies? The five testimonies in this chapter focus on the full range of activities required to move an agricultural product from the farm to the market and the consumer.In one case, an agronomist in Madagascar turned to Web 2.0 and social media in an attempt to save the island's bee population, which was being devastated by disease. He started writing a blog and contacted foreign beekeepers for advice; he was subsequently invited to attend training in France. Soon he was travelling throughout France and Belgium gaining more valuable knowledge, which convinced him that there was scope to develop the honey value chain in Madagascar. The agronomist has now set up a fair trade association for beekeeping and is using social media tools to promote his initiative.In Samoa, a media specialist at a womens' organisation launched a programme for village women to revive the traditional craft of weaving mats from Pandanus (screw pine). Another of the programme's aims was to teach more users about the benefits of ICTs, especially in rural areas. Training in social media such as Facebook and Twitter for marketing purposes has helped weavers reach clients in Toga, for example, which is Samoa's second biggest market for mats.In another example, a district cocoa technical officer in Ghana has been using Web 2.0 tools to promote the development of products rooted in a local geographical and cultural environment by means of a 'geographical indication'. A geographical indication is a sign used on certain products that corresponds to a specific location to certify that a product is made according to traditional methods and has a verifiable geographical origin. n \"I remember that day very clearly,\" she recalls. \"I had never even heard about the terms Web 2.0 and social media. We were using what I then called knowledge-sharing applications to implement our projects.\"Once back in Uganda, where BROSDI is using ICTs for knowledge sharing to improve rural livelihoods, Karamagi developed the NGO's use of Web 2.0 and social media applications and began training farmers and other users, as well as passing on the skills to BROSDI staff.One of them was Programme Manager Maria Nakirya. Within just one month of a short introduction from Karamagi to Web 2.0 and social media tools such as blogs, search engines, Twitter and Facebook, she had learned so much that she was designing blogs herself, teaching others to use them and putting them to work for Ugandan farmers. A number of farmers have connected to new markets. After training, one farmer in Mbarara who wanted to increase sales of apple bananas (Latundan bananas) identified a market in Europe and connected with other producers to engage in collective selling. Another, who had never used a computer in his life, has used Blogging for farmers STORY 6 In Uganda, producers and community-based organisations are discovering the benefits of Web 2.0 and social media. Local NGO BROSDI is using ICTs to support producers, processors and other actors in agricultural value chains. And it has devised an ingenious way of linking farmers who still have no access to the internet. W hen a devastating disease began spreading through beehives in Madagascar, threatening the indigenous breed Apis mellifera unicolor, Fidy Andriamamonjy knew that outside help would be needed to halt the scourge. He decided to draw attention to the plight of the island's beekeepers using social media tools he had learned at a CTA LO course in 2012.Andriamamonjy's decision to create a blog about the varroosis bee disease started a chain of events that no one could have foreseen, least of all this agronomist, who worked in communications at the Technical and Economical Information Centre (CITE) in Antananarivo, using radio to disseminate information about the agricultural sector. By 2014, the quest that started out as a mission to save the island's bee population had developed into a wide-ranging strategy to develop the country's apiculture value chain, including exports of local honey to Europe. \"At the time I didn't know much about beekeeping. And this was the first time I had ever used a blog, Facebook or any of the other tools. I had never done anything like that before,\" he recalls. \"But the disease was continuing to spread, so I started to contact foreign beekeepers who might be familiar with it, and asked their advice.\" Andriamamonjy posted photographs, videos and articles about the disease on his blog, then used Google+ and email to discuss the situation with beekeepers in France and Belgium, with whom he had been in touch through social media platforms. \"They told me about possible remedies. It was really the blog that enabled me to find and offer some solutions to the disease,\" he says. \"I wrote about some of the solutions that had been used in France.\"A French beekeeping association contacted Andriamamonjy and offered to host him for a training course on bee diseases. An exchange visit soon followed to other beekeeping associations, with Andriamamonjy travelling all over France and Belgium to learn about best practices. The experience convinced him that there was scope to develop the apiculture value chain in his home country, and he launched a Fairtrade association called Beemada -using social media tools to attract interest.An agronomist from Madagascar has used Web 2.0 and social media to develop knowledge about apiculture. International contacts forged through blogging have led to training and exchange visits in Europe. Now, a Fairtrade beekeeping association is promising to help local beekeepers to develop the honey value chain.Money was urgently needed to help local beekeepers restore their hives, so Andriamamonjy turned to crowdfunding platform Ulule to launch a save a hive campaign, posting information and videos about the challenges of beekeeping in Madagascar. The appeal raised € 2,842 more than the target figure.Spurred on by the success, the agronomist decided to develop his blog, expanding it to deal with apiculture in Madagascar in general, and adding pages with information about other aspects of beekeeping.\"The idea was to bring the people I knew who had a passion for beekeeping together,\" he explains. \"I created a Facebook page and through this I tried to develop the apiculture sector in Madagascar.\"Today, Andriamamonjy's blog offers an information service on beekeeping in Madagascar, with advice on production and on preventing disease. \"As a result I have been contacted by many people, within Madagascar and from abroad, wanting information on prices, production and training and to know more about marketing. It's really beginning to take off, thanks to the blog and Facebook,\" he reports.Andriamamonjy is confident that there is strong potential for apiculture in Madagascar. He is now planning to devote his energies fulltime to the sector. He is co-writing a book on bee disease and beekeeping in Madagascar. And he is launching a Fairtrade social enterprise called Happy Madagascar, to provide support to local beekeepers and develop the honey export market. Bringing actors in the value chain together is the key, he believes.\"The problem with the bee product value chain in Madagascar is the lack of information and links between all the various actors. There are producers who are making products, but who are not in contact with other players upstream and downstream in the value chain,\" he says. \"There are people wanting to buy honey and other products who can't do so because the market is not well developed as it is in some other countries. So Web 2.0 and social media can help create links between the different actors in the value chain, not just between the beekeepers themselves, but also those working in research. I am now in touch with them, in Madagascar and abroad.\"In 2011, Madagascar was able to lift a long-standing embargo on honey exports to Europe, its main market. In January 2014, the country exported a shipment of 1.8 tonnes of lychee honey to Europe, for a price of € 14 per kg.\"That is still a relatively small volume, but the price is good, compared with normal honey prices, because you don't find honey like that anywhere else in the world,\" says Andriamamonjy.He is convinced that local organic honey produced from eucalyptus, baobab and lychee flowers can continue to fetch premium prices.\"The plan is to work on export sales of honey from Madagascar, but we are also going to be supplying beekeeping materials to local producers,\" he adds. \"I already know how I'm going to develop all this. I will be using my social networks of course.\" n I gnatius Pumpuni, who works as a district technical officer for the Ghana Cocoa Board, believes that one good turn deserves another. So when he was invited to attend a workshop on geographical indications (GI) in June 2014, he offered to share the knowledge he had acquired about Web 2.0 with other participants. The CTAsupported training on capacity strengthening for GI products, held in Akosombo, Ghana, sought to boost interest in the potential of developing products that are rooted in local geographical and cultural environments and command a price premium as a result.Firmly convinced of the scope for a stronger value chain approach to agricultural production in Ghana, Pumpuni knew he had his own contribution to make. \"During the training, I negotiated some time to share with other participants on how to use Google Alerts and other Web 2.0 applications to get useful information on Geographical Indications,\" he said. \"They were all amazed at the things these tools could do and how these could help them with their work. Immediately after the presentation, one of the participants from Gambia had already received three alerts on topics of direct interest to him.\" At the end of the workshop, participants were divided into groups for follow-up practical work. Pumpuni's team opted to focus on identifying and promoting potential GI-linked products in Ghana. As part of the project, team members decided to design a database for possible GI products. Scattered throughout various parts of the country, they are now using Google Alerts to conduct research and Google Drive to collaborate and share their work online.Ghana has a range of agricultural products that could be developed into GIs, including: Ghana Fine Flavor Cocoa, Shama shea butter, Shama yam, Sugarloaf pineapple, Chocho tea and Zomi palm oil. Challenges include setting up institutional, legislative and organisational frameworks and mechanisms to establish, monitor and control production methods to ensure that products are GI-compliant.A district cocoa technical officer is using Web 2.0 tools to find and promote potential geographical indication (GI) projects in his native Ghana. Ignatius Pumpuni explains how his ICT training is helping him to collaborate on GIs with other colleagues -and how it helped him to identify a mysterious cocoa disease in a farmer's field.Pumpuni himself learned to use the innovative ICT applications during a Web 2.0 LO course conducted by CTA in Accra, Ghana, in 2010. \"That training was an eye-opener to me. Before, I did not know anything about LinkedIn, Blogger, RSS Feeds, Google Drive, Google Maps and Google Alerts,\" he said. \"But as soon as I learned about the tools and used them, it linked me to the international world and opened new opportunities for me.\"He started by using LinkedIn to make professional contacts and get his name and profile more widely known, before moving on to Blogger to create and share information, and search engines to help with his research work. After creating his social network account and registering on various platforms, the young cocoa extension officer invited his colleagues to follow his example and showed them how to do it. Pumpuni estimates that he has trained several hundred extension agents over the past three years, many of whom have gone on to train other people.As well as working for the Ghana Cocoa Board, Pumpuni carries out research and consultancy work in rural development in areas that include rural entrepreneurship, cocoa value chain management, geographical indications and marketing.Aminatu Kasim, a Kuapa Kokoo farmer, spreads her cocoa beans out to dry in the sun. Kuapa Kokoo is a Fairtrade-certified cocoa farmers organisation with 45,000 members spread across the forests of Kumasi, Ghana.\"Web 2.0 has facilitated the easy flow of information among all the actors in the value chain, including information generation and research work,\" said Pumpuni. \"For example, the information gap between researchers, extension agents and farmers can be bridged by the use of platforms such as LinkedIn and Google Alerts. These days, I get invitations to attend workshops via LinkedIn, RSS Feeds and Google Alerts,\" he said. \"I use Dropbox to share information at work.\"Google Alerts soon became Pumpuni's favourite tool, helping him to receive up-to-date and relevant information that would have been impossible to obtain as quickly through other channels.\"For example, when I wanted to find out about climate change, I created a tailored query on Google Alerts and every policy and other information about what was happening globally on climate change was directed to my pc,\" he said. As a direct result, after using various Web 2.0 applications to conduct desktop research and write a proposal, Pumpuni won a US$ 12,000 contract from multinational chocolate manufacturer Mars Inc. The project was to assess the perception of cocoa farmers on the impact of climate change on cocoa production in six cocoa growing regions of Ghana. \"After I wrote the report, a stakeholder forum was held to discuss the findings and it has really helped in the formulation of policies in the cocoa sector,\" said Pumpuni. \"For example, as part of the coping strategies for climate change proposed by the project, farmers have now been given free fertiliser to improve their soil fertility and most of the cocoa farms have been rehabilitated.\"Pumpuni says he sees the benefits of the ICTs in his work on an almost daily basis. He cites the example of a fellow extension agent who recently went to a field and saw a strange disease on some of the cocoa pods. The colleague forwarded the picture of the diseased pod via his mobile phone to Pumpuni, who immediately searched for answers using the Google search engine. T he social media platforms run by Kibaya are a busy mosaic of photographs, videos and articles. There are images showing rural school children taking delivery of books and other educational materials, as well as using new computers in their classrooms. Other posts show children looking after chickens as part of a commercial poultry-keeping project to help young people pay their school fees, improve their nutrition levels and increase their entrepreneurial skills. This committed rural development actor from Uganda estimates that he spends at least five hours each day contributing content to a series of e-discussion lists on Dgroups, and managing the blog, Facebook page and other platforms he uses to help keep his Kikandwa Rural Communities Development Organisation in the spotlight. \"I spend a great deal of time online because Web 2.0 and social media applications give you the chance to engage with other people on a global level and reach the resources you need,\" he says. \"At first it took longer because I was building up communities on social media platforms. It takes a great deal of time, but it's very productive.\"Over the past five years, Kibaya has benefited from a range of CTA services, including distance learning -a UNITAR/FAO Web 2.0 and social media course -a face-to-face Web 2.0 LO course and sponsorships to attend workshops and conferences. The skills he acquired have changed the way he works.\"The practical skills I developed from CTA's Web 2.0 training opportunity course have enabled me to innovatively use online networks, fund raising and blogging platforms,\" says Kibaya, who is much in demand as a trainer for other civil society organisations, teaching them how to develop social media platforms to increase their outreach. \"Transforming information into opportunities for both personal and community development is now my day-to-day business.\" Kibaya launched the NGO of which he is executive director after spotting a serious need for initiatives to drive rural development in his area. He soon became convinced that ICTs could help.\"Agricultural development or improving the lives of rural small-scale farmers is not all about providing agricultural inputs,\" he said. \"Use ofUgandan development actor Robert Kibaya, 2015 NetSquared Regional Ambassador for East Africa, spends a large chunk of his long day blogging about the activities of the rural NGO he founded and engaging with contacts worldwide. The results to date show he is making excellent use of his time.ICTs for agricultural and rural development is key for combating rural household poverty. Some 80% of the population in Uganda is engaged in agriculture, so unless you develop it, you will keep a large age of people in poverty. ICTs need to be developed, to bring agriculture to a certain level.\"Blogging is one of the most valuable tools, says Kibaya. He now writes posts on his blog to give updates on his NGO's activities instead of laboriously writing, printing and distributing quarterly reports by hand. He has designed the blog so that it is automatically linked to other social media platforms.\"My blog connects with Facebook, Twitter, LinkedIn and Google+, so when I publish, it is distributed to these networks too,\" he said. \"It helps to target a wider audience. If I want to reach 5,000 people, I can do it within a minute or so, with one single posting.\"Kibaya has found from experience that Web 2.0 and social media can be powerful tools for mobilising resources, both technical and financial.Rural school children in Uganda receive books and other educational materials. Social media platforms were used to make this donation possible.He cites the case of one of his most active donors, from Texas, USA, who spotted a post that Kibaya had made on his blog and which had then been automatically posted through LinkedIn.\" A s media specialist at Women in Business Development Inc., Faumuina F. Maria Tafuna'i was familiar with many of the Web 2.0 and social media applications. But she was keen to extend the benefits of these ICT tools to more users, especially in rural areas, where the organisation works to promote organic agricultural enterprises.Sponsored by CTA to attend a UNITAR/FAO distance-learning course in 2013, Tafuna'i says the training has helped her organisation pursue its goal of becoming a national trainer for social media.\"We wanted to show leadership in this area, so as to roll out use of these tools throughout Samoa,\" said Tafuna'i, who in 2012 won CTA's international and regional (Pacific) agricultural journalism award. \"It's important to us because Women in Business Development is a pioneering organisation and by doing the training through CTA, we now have a platform to share these tools.\"In 2014, Women in Business Development held two workshops, to train staff from agricultural and media organisations and other NGOs in using social media. Tafuna'i was one of the trainers. She also runs the organisation's website, Fa cebook page, Twitter and YouTube accounts.Women in Business Development uses social media platforms such as Facebook to tell in spiring stories about people who are carving out a sustainable livelihood from rural enterprise, even if those people do not have a Facebook page themselves -or any other social media account or presence. Access to the internet access is still expensive in Samoa, thus not widely used by the country's population of 180,000.\"One of the problems we have in Samoa is telling our story, especially our story regarding agriculture. So what we are hoping is that by spreading the use of these tools, we may encourage more people involved in naturalresource based activities to let the world know what they are doing,\" said Tafuna'i.Social media has already generated a substantial amount of e-commerce for the organisation's members, creating a window where potential buyers can connect with local products, especially traditional and indigenous ones.In the Pacific Island State of Samoa, an NGO is helping to give visibility to remote communities and value to their time-honoured rural skills. The strategy has paid off, with a Facebook and Twitter marketing campaign producing impressive results for women weavers of ceremonial mats.Master weaver Vilealava Vaipa'e helped revive fine mat weaving throughout Samoa.One example is the production of fine matsie sae -soft, finely woven, traditional Samoan mats woven from the leaves from a particular species of Pandanus. The ie sae has a special place in Samoan culture and heritage and is highly prized in Samoan and Tongan culture, used during important ceremonies and rites of passage such as weddings, funerals and the investiture of chiefly titles.After launching a programme to revive the ancient craft of weaving the mats among women in Samoan villages, Women in Business Development recently turned to social media for marketing. It has used Facebook and Twitter to target potential clients in Tonga, its second biggest market for this product, with considerable success.\"The finest mats sell for WST 7,000 (€ 2,290) each, and often initial inquiries are made through Facebook. We have been able to do quite a bit of marketing in this way,\" said Tafuna'i.In common with many ACP countries, reluctance by youth to engage in agriculture is a serious problem in Samoa, and Tafuna'i hopes that working with social media can help to address the challenge. \"If we want our young people to stay on the land and enjoy agriculture as an occupation, we need to show them that it is dynamic, fun and has great potential for innovation,\" she said. \"We can only do that by telling more of the stories. I think social media can be one of the tools that allow that to happen, because it enables less formal communication.\" n H ow can Web 2.0 and social media such as Twitter, Facebook, Wikis and RSS feeds reduce your budget by more than half and simultaneously increase efficiency? Why bring specialists together under one roof when you can do the same work online using Google Drive and Skype? The eight testimonies in this chapter on how to effectively provide information services illustrate the different ways that farmers, researchers, youth and many others in the agricultural sector in ACP countries can create and share information more easily, efficiently and at a lower cost. In Benin, for example, an agronomy student who recently trained in Web 2.0 and social media is now improving access to information for farmers in her country, through podcasts recorded in local languages. She uses Twitter, LinkedIn, Hangout and Skype to encourage interaction and cooperation between professionals online, and is involved in a web platform that provides agricultural information for young people and allows them to share and exchange resources and ideas. More than 1,000 people have signed up to the platform, and that figure is growing.In Madagascar, a development researcher trained in Web 2.0 and social media is helping to put a women's organisation -with no previous presence on the web -on the map. People are now contacting the organisation to ask about partnerships, offer their services or request information. This researcher also runs a personal blog. It provides highly specific information on aquaculture, for example, or beef and poultry farming.In Trinidad and Tobago, an agricultural blogger, journalist and social media reporter established a company that aims to empower the youth and provide better wages in the agricultural sector. Through Facebook and other social media tools, he has shared information about opportunities for young people in agriculture in the hope of persuading them to become agripreneurs. nThe impact of knowledge sharing An online presence is now crucial for organisations wanting to increase their reach and visibility. In Madagascar, ICT training is helping two NGOs to become more dynamic and enabling young people to obtain useful advice about agriculture and opportunities.STORY 11N ot so long ago, the National Council of Women in Madagascar (CNFM) -an organisation working in the gender and development sectorwas little known outside its immediate circle. It had neither a website, nor a blog, and its activities received virtually no coverage on the Web. That all changed in December 2012, when Haingo Rasolofomanana, a development researcher working as a volunteer for the organisation, took part in a CTA LO course on Web 2.0 and social media.Her first move was to set up a website and a blog for CNFM, focusing on women's empowerment. A Facebook page for the organisation soon followed, to debate gender issues and give updates on the organisation's activities. Within a matter of weeks, the blog had drawn several hundred visits. Now, less than two years later, the CNFM blog has had thousands of visits from 63 countries and its Facebook page has attracted hundreds of \"likes\". \"If you don't have a presence on the Web these days, you simply don't exist,\" says Rasolofomanana. \"CNFM has managed to increase the visibility of its activities at national and international level. A great many people involved in the gender and development sector have seen the blog and contacted the organisation to ask for partnerships, offer services and request information.\"The use of Web 2.0 tools has enabled the organisation to place useful sources of information on gender and development online, including research reports and national and international documents.As an example, Rasolofomanana cites the Baromètre Madagascar 2012, which charts gender and climate change in the country. Use of ICTs has also helped the organisation to link with others for a common cause, for example to launch a petition, raise awareness and advocate for gender and development issues.The training she received has improved her career prospects. Partly as a result of her new skills she was named as secretary general of Farming and Technology for Africa (FTA), an NGO working in Madagascar. She has since been made programme coordinator for FTA.It seems a distant memory, but Rasolofomanana can recall the days when she knew very little about Web 2.0 tools that now form part of her daily life and work.\"I already used some Web 2.0 and social media tools, but not to any great extent and I had no idea that you could, for example, create your own blog,\" she says. Today, Rasolofomanana runs an active personal blog about agriculture, and was a YoBloCo finalist in the 2014 CTA contest. The focus of her blog is attracting young people to the sector and answering their questions. Although she is only 30 years old, she is seen by many as a role model and a valuable source of information. Rasolofomanana encourages young people to share their views about agriculture, and provides information about opportunities, including the potential of certain sectors, such as aquaculture, beef or poultry farming. She uses Facebook on a daily basis to post news about agricultural techniques, practical information and openings, as well as to promote her blog.\"I have become a sort of online counsellor to the young (and not so young),\" she says. \"I am often asked for information on agriculture -things like 'where is the livestock ministry?', or 'how can I find markets for pork products?' or 'where can I find someone to supply 20 tonnes of vegetables?' I receive at least five messages about agriculture each day on my Facebook page.\"For both CNFM and FTA, the new tools have helped to improve working methods.Staff now use collaborative tools, such as Google Drive, which gives users access to cloud storage, file sharing and collaborative editing. The new methods have filtered down to a number of farmers' organisations, through training offered by FTA, sometimes with CTA support.\"The thing that changed has been the way the organisations work, and especially the way they communicate,\" says Rasolofomanana. \"For CNFM, for example, information is now published in a systematic manner. The member associations, which are mainly for rural women, have begun accessing the information we share.\"Connectivity and training remain the biggest hurdles to overcome if the ripple effect of Web 2.0 and social media is to spread more widely. Nowhere is this more challenging than in Madagascar's rural areas, especially for women. Some 80% of the country's women live in rural areas and 87% make their living from agriculture.\"We need a critical mass if Web 2.0 is to benefit everyone, and not everyone can take part at the moment, due to lack of training or access to the internet,\" says Rasolofomanana. \"Who can I share my collaborative files with if not everyone is connected? And how can we ensure that women and men living in rural areas, and not just the organisations, can take advantage of the information that we are sharing?\" n © CTA I t is 5 a.m., and Diana Adongo is up early as usual, making fruit wines at her home in Mbale town, Uganda. She painstakingly washes, cuts and dries passion fruit and pineapple sourced from local farmers, before extracting the pulp. It will be at least six months before the wine is ready to drink, but this graduate of Makerere Business School is confident she will sell every bottle, using a Facebook page, WhatsApp, Google+ and Twitter to reach her customers.Adongo learned how to use social media platforms for marketing from training conducted by Joan Apio, herself a beneficiary of the Web 2.0 training course run with CTA support by the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM).RUFORUM staff member Apio has her reasons for being enthusiastic about Web 2.0 and social media. She believes her promotion from training assistant in ICT skills to communications officer at RUFORUM was partly the result of her training in innovative web-based ICTs. She was selected to attend a CTA-run Web 2.0 LO course in 2009, followed by a UNITAR distancelearning course held with CTA support in 2012.\"I would like to think my promotion was in part due to the confidence I got with my communica-tions skills and working with the different platforms,\" said Apio, 32. She says that her knowledge has helped her to show other people, especially women, how ICTs can lead to greater opportunities.Apio describes herself as passionate about using social media for showcasing youth initiatives in Africa and building capacity for young people in using web-based platforms for collaboration, research and development.\"I realised that most youths do not under stand the real impact that social media can have when used properly,\" she said. \"When I did the training, it gave me a different understanding of social media. For me, when you can access information, and be able to communicate it to someone who needs it, and improve their livelihood, it is a big impact.\"As communications officer, Apio coordinates the RUFORUM network platforms, linking users and development partners. She uses a range of tools that include the website, social A new look for agriculture STORY 12 A passion for social media is helping a young woman to build capacity for other young people in using ICT platforms for agriculture. She describes how training in Web 2.0 and social media has opened new opportunities for herself and her family.A passion about using social media for showcasing youth initiatives in Africa and building capacity for young people in using web-based platforms for collaboration, research and development media channels such as Twitter and Facebook, a monthly newsletter and MailChimp, an online tool to manage subscribers.An active blogger, she was a finalist in the CTA 2013 YoBloCo blog contest. Apio's 'Creating impact through ICT in agriculture' blog, sets out to encourage more young people to explore agriculture's potential using ICTs. Last year, Apio was named by the CTA ARDYIS project -Agriculture, Rural Development and Youth in the Information Society -as one of the 15 most promising young women advocates of ICT and agriculture among YoBloCo Awards participants, as part of International Girls in ICT Day.By posting inspiring stories on her blog, Apio encourages youth in various communities to give agriculture a try. A case in point is the story of Martha Otieno, a savvy young Kenyan woman who persuaded local farmers to lease land to her. She used ICT tools to research soil management and crop production and now grows pepper, groundnut, watermelon and practices aquaculture, earning KES 500,000 (€ 4,160) a month.Apio has taught her brother Moses Sikhu, a young rural entrepreneur, to use Web 2.0 and social media tools on his farm. The farm's Facebook page now has more than 900 followers. Sikhu has put the farm on Google Maps so that suppliers and buyers know where to find him, and he regularly communicates using WhatsApp. The moves have led to a direct increase in business, including contracts from hotels to supply fish from the farm's ponds.In February 2013, Apio was involved in the CTA-sponsored training of 24 female RU FORUM graduates, showing them how to be productive online.\"To be able to use your online social platforms such as Facebook, Twitter and blogs to share your research interests and get free online peer reviews is very useful for these young women who may have limited resources,\" said Apio. \"They use Google Maps to contribute to content creation by adding missing locations or information. Through joining and using LinkedIn, a professional online platform, some of the graduates have joined professional groups such as AWARD to get career guidance and share ideas.\"Apio is happiest when she can help other young people to realise the benefits of using Web 2.0 and social media tools at first-hand. She is currently advising a young woman who grows pumpkins. \"At present, this woman's price is determined by market forces. I have suggested she uses social media to upload photos of her pumpkins when they are ripe and Google Maps to show where she is located, then offers to deliver them to the buyers,\" said Apio. \"That way, she creates a brand name and relations with her customers, adding value to her products that will set her apart from other suppliers.\"One thing I realised during my training was that we need to market agriculture in a much more attractive way for young people. We need to show them what it can do for them. I strongly believe that Web 2.0 and social media can help with that.\" nWe need to market agriculture in a much more attractive way for young people. We need to show them what it can do for them. I strongly believe that Web 2.0 and social media can help with that R wandan horticultural entrepreneur Ezron Ngamije used to have only the most basic knowledge about computers. Nowadays, he is often on the internet, updating the Facebook page he has created to market his products and advertise his small rural enterprise. He uses search engines to find inputs at the best price and regularly trawls the web for practices that can help him to improve his crop and business yields. He uses Google Drive to share photos and documents with other members of the horticulture cooperative he heads, and with his customers. \"With Web 2.0, it is easy now to search online for markets for my products,\" he said. \"I have also created web pages for my company at no cost.\" Small-scale poultry farmer Denise Mukamana is also making good use of her new knowledge of the internet. Before, she always had to ask telecentre staff to help her search the internet for any material she needed. Now she can easily do searches herself, quickly finding information that can help her solve production problems and increase her business. She makes regular use of Facebook for marketing and Google Alerts to track news stories about the poultry sector and monitor her competitors. She sends e-mails to potential customers, and reaches hundreds in just a few minutes.Both Ngamije and Mukamana were trained in Web 2.0 and social media as part of a joint initiative between CTA and the Rwanda Telecentre Network (RTN), a social enterprise working in the field of ICTs and the development of small and medium enterprises. After their training, they could do advanced searches and be more active in finding agricultural material, such as market or product information. I know some farmers' cooperatives that have been able to create their own Facebook pages and post information on the Web to market their products and share their activities.\"For the telecentres, it has meant more business since farmers and other users visit more regularly and spend more time using their computers and internet services.Said Barera: \"After the training, we found that the number of users has increased because people in rural communities are able to use the internet more effectively and efficiently, so they spend more time at the telecentres. They will go and search for information relating to agriculture, which increases the telecentres' revenue and therefore makes them more sustainable. Before, people would just stay for a few minutes.\"For RTN itself, the introduction of Web 2.0 and social media applications has changed the way staff work and interact. They now communicate more effectively and cheaply using Web 2.0 tools, such as Google Drive. Paid-for telephone calls are a thing of the past. These days, the Monday staff meeting between RTN head office in Kigali and telecentre managers in rural areas is conducted using a free Skype conference call.As well as making regular use of Twitter, the network uses Facebook to post news and updates and to communicate with its telecentre managers; it also has a blog to share information about its activities. New horizons for youth in agriculture STORY 14 Training in Web 2.0 and social media has led an NGO working for sustainable food security to highlight ICT4Ag as a key strategy. An online network developed by the Republic of Benin-based organisation is proving especially popular with young people.Online networks are popular among young people.Afokpe, who lives in the Republic of Benin, says that the training she received exposed her to Web 2.0 and social media tools that can be leveraged to develop agriculture. \"These applications can be used for facilitating access to information for our farmers, for example through podcasts recorded in local languages, to show them new agricultural practices,\" she said. \"They can also help to facilitate interaction, communication, cooperation and collaboration between professionals on the Web, using tools such as Facebook, Twitter, LinkedIn, Google Drive, Hangout and Skype.\" Afokpe's call for more young people to use ICTs for agricultural development was posted on AgroDev, a collaborative blog set up by Actions pour l'Environnement et le Développement Durable (ACED-BENIN), an NGO which seeks to improve sustainable food security and nutrition in Benin. The aim of the online platform, which is rapidly gaining a huge following, is to improve access to agricultural information for young people from the Republic of Benin and other francophone countries and allow them to share and exchange resources and opportunities in the agricultural sector. By mid-2014, more than 1,000 people had signed up to the platform, and that figure is growing constantly. For telecentre staff and managers, Otieno recommends Facebook and Twitter -the first for creating pages to share information and photographs from events and the latter for coverage of real-time functions. \"Most of the telecentres do not have their own websites, so social media platforms are a goodAfter passing Web 2.0 and social media skills on to telecentre staff throughout the country, Cleopa Otieno has turned his attention to introducing community radio stations to Facebook and Twitter users. Now, together with a friend, he has set up a consultancy firm to leverage social media. \"If an organisation has an event, it wants as many people as possible to know about it. And one way to do this is through social media. These tools offer a low-cost way of doing all those things,\" said Otieno. \"My ambition is to grow organisations into entities that can support communities. This is what I wake up every morning to work on.\" n \" F aster, more efficient and much, much cheaper!\" That is the verdict of Eddy Fofana on the changes brought about by the introduction of new ICTs at the agricultural consultancy firm he heads in Côte d'Ivoire. Fofana is manager of FENCO, which seeks to promote agricultural enterprise, especially for young people and women. He undertook radical overhaul of the company's information and communications methods after attending a CTA Web 2.0 LO course in October 2013.Out went long-winded and costly ways of assembling material and expensive face-toface meetings or telephone calls. In came online collaboration, Skype conferencing and Lower costs, better service STORY 16 An agricultural consultancy firm has revolutionised the way it works and delivers information to its users. The result has been dramatic cost savings for the company and a marked improvement in service delivery, especially for women and youth interested in a career in farming.Using ICTs in agriculture can result in cost savings for farmers. Staff also use social media platforms to interact with sources to request information about research, training and agricultural materials for its clients, and they relay the results to users through the same channels.Future plans include the launch of agricultural information days aimed at encouraging young people to make a career in agriculture, a market information system to help farmers sell their products and an enterprise resources centre for rural and peri-urban women. Web 2.0 and social media will play a pivotal role in managing and communicating all three initiatives. nThe most popular applications: Facebook, LinkedIn, Google Advanced Search and Google Maps K eron Bascombe was doing an MSc in agribusiness and marketing at the University of West Indies (UWI) in Trinidad and Tobago when he received an e-mail that would change the course of his working life. As the winner of the Caribbean section of the CTA YoBloCo blogging contest in 2012, he was invited to be part of the social reporting team for the second Global Conference on Agricultural Research for Development (GCARD2) conference in Punta del Este, Uruguay. Sponsored by CTA to attend the event, Bascombe was given training in social media tools, communications planning, digital communication and online advocacy.It was at that moment that Bascombe, 26 realised he wanted to be an agricultural journalist. Realising that other young people in the Caribbean also lacked direction for a dynamic future in agriculture, Bascombe joined several fellow graduates from the University of West Indies to launch a venture that would help both youngsters with their careers and local farmers who often lacked skilled labour. The result was AgriWorks4U, a partnership company set up to provide a wide range of services in the agricultural sector and match young people with decently paid jobs and other openings.By using an active Facebook page, together with various Web 2.0 tools, Bascombe's initiative has provided greater opportunities for young people in agriculture. He also set up Tech4agri, a blog that serves as a platform for ICT4Ag, flags innovative agri-information and offers support to young agripreneurs in African, Caribbean and Pacific countries.\"We are trying to be as innovative as we can and show young people that the stereotypes that agriculture faces are not always true,\" says Bascombe, who is also the Trinidad and TobagoAgricultural blogger, journalist and social media reporter Keron Bascombe is convinced he has found the right career path at last. He is now determined to help other young people to plan a future in farming.AgriWorks4U is a partnership company set up to provide a wide range of services in the agricultural sector and match young people with decently paid jobs and other openings \"Agriculture is a passion for me. I love writing about it and blogging and using social media,\" he says. \"Agriculture is extremely important, simply because we all need to eat. If I get to promote something that is as crucial as this, then I think I will have a happy life.\" n ICTs increasingly attract youth to engage in agricultural enterprises.A s an agricultural journalist, Inoussa Maiga has always been deeply interested in issues of agricultural and rural development, including food security, land access, sustainable fisheries and traditional knowledge. Increased Web 2.0 and social media skills have boosted a young journalist's professional reputation in Burkina Faso. As a result, he has been commissioned by two rural development organisations to help them with communications projects.\"As a journalist I had already been using Web 2.0 and social media to some extent for my work, but not in a very organised manner,\" he said. \"The training I received helped me to improve the way I used blogs, Facebook and Twitter and showed me how I could make greater use of them for agricultural and rural development.\" Not long afterwards, the young journalist -who worked as a freelancer, contributing to publications that included CTA's Spore magazine -received an unexpected call. He was contacted by a Canadian NGO, Farm Radio International and asked to prepare a practical guide for community radio journalists on its behalf. The eight-page publication would be designed to help radio journalists to find useful and reliable information about agriculture on the internet.Inoussa is in no doubt that his new skills played a role in helping him to get the contract.\"That commission was partly due to the training I had received,\" he said. \"It was as a result of my social network pages and my updated profile on LinkedIn that caught their attention.\"The radio guide is now ready for publication and is due to be made available online later in 2014. In the meantime, Inoussa has been commissioned by the Belgium-based Coalition for Fair Fisheries Arrangements (CFFA), a platform of NGOs that documents the development and environmental impacts of EU-ACP (European Union -African, Caribbean and Pacific) fisheries' regulations on small-scale fishing communities. This time, the request was for help in developing a communications strategy.Inoussa took up the challenge and travelled to Rome in June 2014 to present his ideas to CFFA about how to improve the organisation's visibility, using social media platforms and other channels. The following month he went to Kenya to take part in the finals of the CTA YoBloCo contest. One of 12 finalists, Inoussa won the prize for best blog on family farming.Earlier this year, Inoussa launched a small media agency called MEDIAPROD, producing agricultural news and videos, as well as social media training for clients such as rural community radio stations. He is full of plans for the future, and most of them involve harnessing ICTs to improve coverage of the issues of agricultural and rural development about which he cares so deeply.In March 2015, together with the Association of Agricultural Journalists and Communicators (which he heads) Inoussa is planning to attend the Festival of Documentary Films on Food and Agriculture. The event will be held in Ouagadougou and Inoussa is busy exploring how to use social media to attract the interest of young people.\"Mobilising youth is going to be very important for this event as they are a priority target audience,\" said Inoussa. \"I can't think of a better way of reaching them than using social media. ","tokenCount":"11264"} \ No newline at end of file diff --git a/data/part_1/1352631706.json b/data/part_1/1352631706.json new file mode 100644 index 0000000000000000000000000000000000000000..d20ac09e0324032d9bf6f091b58c3a0ee6133f11 --- /dev/null +++ b/data/part_1/1352631706.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0fa70ed35151a4b398442a1dc0d192fa","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H016400.pdf","id":"1865948919"},"keywords":[],"sieverID":"59311653-d49e-4eea-936a-f548792d5df5","pagecount":"7","content":"Como ya se anunciara en el numero anterior de este Boletin, tenemos sumo agrado en compartir con Uds. los resultados del taller celebrado en Dhaka, Bangladesh, entre los dias 18 y 21 de mayo de 1992.En este Taller de la Regi6n Sudasiatica sobre Sistemas de Riego con Aguas Subterraneas Administrados por los Agricultores y el Manejo Sustentable del Agua Subterranea participaron 57 representantes de 10 paises, incluidos 5 profesionales del IIM!. Una vez concluidas las actividades propias del taller, cinco participantes de Indonesia fueron llevados a una visita de campo de una semana de duraci6n. Las actividades del primer dia comenzaron con una sesion inaugural seguida porpresentaciones de sintesis de los trabajos 9H 1(04-° 0 quese habian preparado. Luegoseformarongrupos de discusi6n y se les asign6 la tarea de identificar temas de interes especial para tratarlos en el curso del taller. Los grupos de discusi6n se organizaron en torno a los siguientes temas: i) Los acuiferos y caracteristicas de abatimiento ii) Servidos de apoyo a los FMIS con aguas subterraneas (GWFMIS por sus inidales en ingles);iii) Sustentabilidad de los FMIS en condiciones de exceso de agua; iv) Sustentabilidad de los FMIS en condiciones de escasez de agua; y v) Sustentabilidad de los FMIS en sistemas de riego superficial.Durante el segundo y el tercer dias se realizaron visitas guiadas para observar c6mo trabajan diversos tipos de FMIS bajo diferentes condiciones de manejo en el norte de Bangladesh. El ultimo dia se volvi6 al trabajo de grupo -esta vez para formular recomendaciones sobre algunas de las areas de interes identificadas previamente. Estos tres grupos se centraron en los siguientes temas: consideraciones tecnicas, aspectos institucionales y aspectos socio-econ6micos.El primer dfa los cinco grupos de discusi6n presentaron una serie de temas de interes a ser tratados en mayor profundidad, a saber:Los acufferos y el abatimiento. Existe la necesidad urgente de reunir y difundir informaci6n tecnica sobre las caracteristicas de los acufferos, cantidad y calidad del agua subterranea y las caracteristicas de el abatimiento de los acufferosi sobre variaciones en la napa freatica provocadas por precipitaciones, recargas de agua superficial y bombeo; y sobre mapas de aguas subterraneas a nivel micro y sistemas de informaci6n sobre disponibilidad de aguas subterraneas y mecanismos de extracci6n. Asimismo son importantes los aspectos organizativos de la recolecci6n y diseminaci6n de la informaci6n sobre aguas subterraneas.La sobreexplotaci6n de las aguas subterraneas conduce a napas freaticas deprimidas, a la interacd6n entre acufferos profundos y poco profundos y a desequilibrios en las interfaces de agua dulce y agua salada. Esto provoca problemas de inequidad y falta de sustentabilidad ala vez que aumenta los costos de extracci6n del agua subterranea. Por 10 tanto, es necesario emprender un cuidadoso monitoreo de las fluctuaciones de las napas freaticas e introdudr mecanismos de regulaci6n adecuados para excavary espaciartanto pozos profundos como no profundos.A menu do la valiosa agua subterranea se usa en forma inefidente y en algunos casos se la desperdicia. Por 10 tanto, es necesario integrar un uso eficiente del agua subterranea a traves de mejores practicas junto al aprovechamiento de las precipitaciones y el uso de aguas superficiales.Es menester adecuar la selecci6n del tipo de pozo, su instalaci6n, operaci6n y manejo a las caracteristicas del acuffero y de la depresi6n.Es imperioso promulgar mecanismos adecuados para la regulaci6n de las aguas subterraneas que combinen tecnologfa y manejo en forma apropiada a fin de conservarlas en los niveles deseados e impedir el deterioro ambiental. Seria conveniente encontrar soluciones para los problemas relacionados con:.. los crecientes costos deconstrucci6n, reposici6n yO&M;.. el deterioro de la calidad del agua; y .. los efectos dfferenciales del mercado del agua en los sectores pobres de la poblaci6n.Se necesita contar con estudios sobre el impacto del retiro de la asistencia estatal a la explotaci6n de aguas subterraneas y sobre la manera de formular medidas que mejoren el desempefio de la explotaci6n de las aguas subterraneas.Los servidos de apoyo para aguas subterraneas. Existe la necesidad de brindar servicios de apoyo para los GWFMIS en las siguientes areas:.. creditos f,kilmente accesibles para la construcci6n de pozos, adquisici6n de equipos yrepuestos ypara operaci6n y mantenimiento;.. mantenimiento de precios, informaci6n sobre mercados y servicios de comercializaci6n y servicios para el aImacenamiento y transporte de sus productos; y subsidios para operaci6n, mantenimiento y reposici6n.Es necesario: i) Desarrollar un marco institucional para la formaci6n de grupos y sodedades yy un marco legal para el grupo de aguas subterraneas.ii) Proporcionar capacitaci6n en las areas de manejo, mantenimiento de registros, contabilidad y manejo en el predio.iii) Brindar servicios de apoyo tecnico referidos a informaci6n sobre el agua subterranea disponible, criterios de selecci6n, manejo del agua en el predio y mantenimiento de pozos y apoyo mecanico. iv) Proporcionar repuestos durante la vida uti! recomendada de los pozos.v) Analizar e identificar el impacto de los servicios de apoyo para aguas subterraneas en:. . el mejoramiento de las areas de influenda, la efidenda en la operadon de las bombas, la recuperacion de las tasas de agua, la recuperadon de prestamos y la rentabilidad de las inversiones;.. las politicas macro-economicas (protecdon 0 mercado libre; politicas de predos, induidos el costo de la energia y los subsidios para la explotacion de las aguas subterraneas);.. el estilo de manejo / organizadon (el tema de la propiedad -manejo individual 0 grupal, publico 0 privado); y .. la funcion del sector privado; mitigadon de la pobreza a traves del credito y los mercados de agua; la funcion de los pozos y de las bombas operadas manualmente.La sustentabilidad de GWFMIS en areas con exceso de agua. Se tiene que mejorar la efidencia econ6mica y rentabilidad del riego con agua subterranea. Por 10 tanto, es necesario: i) Introducir politicas macroeconomicas para que el riego con agua subterranea sea rentable y eficiente;ii) Proporcionar subsidios para la explotacion de las aguas subterraneas (aumentar el precio del producto, subsidios a los insumos, creditos y <> seguros); ill) Equilibrar la explotacion de aguas superficiales y subterraneas a los efectos de alcanzar su optima utilizacion; iv) Fomentar la fabricadon local de equipos para el aprovechamiento del agua subterranea; v) Asegurar el credmiento economico mediante un mejor desempefio de los mercados del agua y un mejor acceso al agua y a los creditos para los pobres;vi) Definiry demarcarobjetivos parala explotaci6n del agua subterranea en relacion con los temas de crecimiento, sustentabilidad, equidad, mitigacion de la pobreza y genero; vii) Discutir e identificar las condiciones en las cuales el abatimiento de los acuueros adquiere importancia tanto en el corto como en ellargo plazo; hay que estudiar la contaminaci6n de las aguas subterraneas por los productos agroquimicos y la degradacion del recurso.La sustentabilidad de GWFMIS en areas con escasez de agua. Es necesario:i) Reconocer que las prioridades pueden ser distintas para las tecnologias de bombeo en diferentes ambientes y condiciones soao economicas.ii) Identificar los niveles de manejo de recursos y desarrollo institucional necesarios en diferentes regiones; elaborar objetivos institucionales y orgarrizaciones de manejo pertinentes dados los intereses de los agricultores.iii) Comprender y planificar la conservadon del agua, una mejor recarga y el uso conjunto; las implicaciones sociales y economicas del agotamiento de las aguas subterraneas; nuevos mecanismos para mejorar el manejo de recursos induido el estudio de la eficacia relativa de los mercados de agua y laregulacion y los controles a llevar a cabo. iv) Desarrollar relaciones de socios-no clientesentre los agricultores y los organismos estatales; fortalecer la capacidad de las organizaciones (los agricultores, organismos estatales) para adaptarse e innovar dadas las diferentes condiciones de las aguas subternineas; capadtar a los agricultores y operadores y mejorar los servicios de extension.v) Integrar las actividades del riego con agua subterranea a nivel institucional y sectorial (agricultura, energia y transporte) para el uso sustentable del agua subterranea y de otros recursos.vi) Recolectar y organizar datos y tecnicas para el manejo de tecnologia, sobre las necesidades de los agricultores y el manejo de recursos y mejorar la accesibilidad a esta informacion.La sustentabilidad de los GWFMIS dentro de sistemas con riego superficial. Es necesario:i) Elaborar metodologias y tecnicas para un manejo eficiente de los recurs os; seleccionar una tecnologia de pozos apropiada profundos 0 no profundos-para el uso conjunto de aguas superficiales y subtemineas; integrar las actividades relativas al uso de agua subterranea con la utilizad6n de aguas superfidales; considerar al agua subterranea como un bien comun tanto en normas como en disposidones legales.ii) Comprender la interacci6n entre el agua subteminea y la recarga con agua superficial en b~rminos de extracci6n de agua subtemmea y calidad del agua; sugerir medidas para controlarlas.iii) Identificar las fuentes de contaminaci6n de las aguas superficiales y subterraneas y poner fin al deterioro de su calidad.iv) Comprender los Vlnculos que existen entre los grupos de usuarios de GWFMIS,los de FMIS que utilizan aguas superficiales y los organism os publicos y sugerir medidas para mejorar sus relaciones y desempeno.v) Desarrollar y comprobar en campo una estructura organizacional adecuada para el uso conjunto de aguas superficiales y subtemineas.vi) Estipular mecanismos de regulaci6n y control apropiados para controlar las napas freaticas y prevenir el revenimiento y la contaminaci6n.vii) Brindar capacitaci6n adecuada, tecnologia costo-efectiva, insumosapropiados y servicios de comercializaci6n y mdito.Aspectos ttknicos. Los prindpales temas tratados se agruparon de la siguiente manera: i) Evaluad6n del recurso;ii) Exploraci6n de aguas subterraneas;iii) Conservaci6n y manejo de las aguas subterraneas; y iv) Consideradones ambientales en la extracd6n de agua subteminea.Dados los aetuales metodos para la evaluad6n de aguas subterraneas y recolecd6n de datos, en la mayona de los paises los objetivos y el analisis de la evaluaci6n aSl como de la recolecci6n de datos no estan bien definidos. Ademas, casi todos los datos se recopilan a nivel macro y no pueden ser directamente aplicados a nivel micro por los agricultores, que son quienes mas los necesitan. Por 10 tanto, se recomienda 10 siguiente:Los objetivos de la recolecd6n de datos y la confecd6n de mapas de los recursos de agua subterranea al igual que los mecanismos de analisis de la informaci6n deben ser claramente definidos.No es sencillo para los agricultores a nivel de aculfero pequeno (a nivel de aldea) obtener los datos referidos a las aguas subterraneas y su evaluad6n. Se deben realizar esfuerzos para obtener datos a nivel de aculfero pequeno dentro de la unidad agro-eco16gica existente a traves de procedimientos costo-efectivos y aprovechando los conocimientos de los agricultores de la localidad. Tambien se deben establecer mecanismos para que los agricultores puedan acceder a los datos cuando los necesiten. Se debe promover la recolecci6n participativa de datos.Los datos existentes deben ser sintetizados; se debetratar de recolectar datos adidonales para llenar las brechas existentes; sedeben actuallzar la base de datos yanallzarlos para que puedan ser usados porlos agricultores, los organimsos publicos y los planificadores.Actualmente, los gobiemos de muchos paises dependen de expertos y de asistencia tecnica extranjera para desarrollar las bases de datos requeridas y evaluar sus recursos de agua subterranea. Es necesario desarrollar la capacidad local para hacerse cargo de estas tareas.Con respecto a laexplotaci6n de aguas subterraneas, se recomienda recurrir a la zonificaci6n establedendo en que areas solo se pueden hacer pozos, pocos profundos, en que areas solo se pueden permitir perforaciones de pozos profundos y en cuaIes se perrniten ambos tipos para extraer agua subterranea. En base a datosambientales pertinentes y zonas agro-ecol6gicas, se deben formular y difundir pautas apropiadas para la extracci6n de aguas subterraneas, que se adecuen a cada zona a traves de normas tecno16gicas para la extracci6n de esas aguas.Hubo una animada discusi6n respecto del uso de los dos tipos de pozos como mecanismos de extracci6n. Se expusieron razones a favor y en contra del uso de los profundos. Mientras se discutia el uso de estos, se identificaron dos temas prindpales. El primero se refiere a los existentes. Solo en Bangladesh hay mas de 30.000. Es necesario investigar el proceso y los resultados de la transferencia y del manejo a nivel local de estas perforaciones. Ademas, la mayona de dichas perforadones, por 10 general, son propiedad de unos pocos agricultores particulares quienes invariablemente gozan de una buena posici6n econ6mica. El segundo se relaciona con lainstalaci6n de nuevas perforadones. Se argument6 contra el empleo de bombas de turbina instaladas en las perforaciones. Se sostuvo tambien que, con estas I grandes perforaciones en areas con escasez de agua ---como son las areas de rocas duras---los niveles de agua subterranea estan descendiendo rapidamente, 10 que hace que innumerables propietarios de pozos poco profundos deban 0 bien profundizarlos 0 abandonarlos. Por consiguiente, es imperioso regular el uso de las perforaciones profundos en esas areas.Finalmente, se recomend6 adoptar un enfoque en tres etapas que, en primer lugar, ponga enfasis en los pozos poco profundos y en un manejo del agua subterranea destinado a estabilizar el nivel de depresion a una profundidad adecuada mediante la regulaci6n del uso de dichos pozos; segundo, preferir bombas instaladas en el fondo de los pozos poco profundos y, por ultimo, optar por perforaciones profundas en aquellos lugares donde otros metod os de extracci6n hayan fracasado 0 sean ineficientes.En 10 que respecta a conservaci6n y manejo de cuencas, se recomend6 que la unidad para la conservaci6n del agua subterranea sea el acuifero pequeno. Se sugiri6 llevar a cabo un estudio del balance hidrico del acuifero pequen6 para determinar el impacto del agua superficial en el agua subterranea y para disenar mecanismos de extracci6n adecuados.Para mejorar la eficiencia en el uso de las aguas subterraneas y manejarlas de manera sustentable, se sugiri6 10 siguiente: i) Brindar servicios adecuados;de extensi6n tecnica ti) Establecer unidades poderosas y bien organizadas para el mantenimiento de los equipos de extracci6n de aguas subterraneas;iii) Suministrar energia adecuadamente; y distribuirla iv) Diversificar cultivos para un uso eficiente del agua;v) Proporcionar facilidades de credito adecuadas;vi) Realizar un correctos; monitoreo y una evaluaci6n vii) Mejorar los sistemas de distribuci6n y el manejo del agua en el predio; y viii) Realizar investigaciones sobre la equidad de la distribuci6n.Con relaci6n a los aspectos ambientales, se recomienda que en todos los sistemas de riego, se controle la extracci6n y el uso de aguas subterraneas a fin de minimizar los problemas ambientales, tales como revenimiento y salinizaci6n, intrusi6n de agua de mar, disminuci6n de la productividad agricola, riesgos para la salud, deterioro de la calidad del agua subterranea por pesticidas y fertilizantes, hundimiento de tierras, etc. Se sugiri6, ademas, que era necesario mantener el equilibrio eco16gico para la sustentabilidad de los sistemas de riego que utilizan aguas subterraneas.Aspectos institucionales y organizacionales. Se identificaron seis temas funcionales:i) Aspectos politicos y legales;ii) Planificaci6n;iii) Participaci6n en los costos, movilizaci6n de recursos e inversiones; iv) Creaci6n de la infraestructura adecuada para la explotaci6n de aguas subterraneas;v) Manejo de la operaci6n y del mantenimiento; y vi) Producci6n y comercializaci6n agricola.Se sugirieron las siguientes estrategias para desarrollar mecanismos institucionales y organizacionales adecuados: i) Charlas sobre politicas ii) Organizaci6n de talleres iii) Pruebas piloto iv) Investigaciones Para los aspectos politicos y legales se recomend6 desarrollar las instituciones necesarias y formular politic as destinadas a: integrar el uso de aguas superficiales y subterraneas; asegurar mecanismos de regulaci6n, concediendo personeria juridica a las asociaciones de usuarios (AU), brindcindoles incentivos, haciendo participar a los agricultores sin tierras y sancionando energicas disposiciones legales que consideren al agua subterranea como un bien com un.La planificaci6n del agua subterranea requiere de una evaluaci6n de su potencial y de la demanda; de un decidido enfoque participativo que incorpore a los agricultores que se beneficien; del fortalecimiento de los organismos publicos, los ONGs Y AUs. Se sugiere hacer los arreglos necesarios para coordinar las actividades de todos ellos.Enlo que respecta al tema desuministroeinstalaci6n de equipos de extracci6n, se recomienda permitir la competencia en la adopci6n de tecnologias a fin de permitir la participaci6n deorganizaciones privadas en las actividades mencionadas precedentemente y de brindar la capacitaci6n necesaria a los AUs. Debe haber disposiciones legales que garanticen la disponibilidad de repuestos para los equipos importados.En el tema de manejo de O&M se recomienda tener en cuenta el manejo tanto del agua subteminea como de la tecnologia de extracci6n. Ademas, en aquellas areas que dispongan de agua superficial, es necesario recurrir al uso y manejo conjuntos. Si bien los beneficiarios son los responsables de la adecuada operaci6n y mantenimiento, los organismos publicos deben responsabilizarse por el adecuado suministro de energia.Conrelaci6nala producci6nagricola, se recomienda establecer instituciones adecuadas para la diversificaci6n de los cultivos y mecanismos crediticios y de comercializad6n. Es menester fomentar una estrecha colaboraci6n interministerial para tratar todo 10 referido a aguas subterraneas, agricultura y otros temas afines.Aspectos socio-econ6micos. Si la agricultura irrigada con agua subterranea ha de ser econ6micamente viable, la extracci6n y el uso de aguas subterraneas deben estar efectivamente integrados en la macroeconomia nacional. Al respecto, el grupo consider6 importantes los siguientes puntos: i) La infraestructura debe estar disponible. Algunas de las areas que debieran estar correctamente desarrolladas son: electrificaci6n rural, serVlClOS de transporte y almacenamiento, suministro de equipos y repuestos, agroindustrias, un marco legal y administrativo para el uso y manejo de las aguas subtemineas y la estabilizaci6n de las tasas de cambio.ii) La politica de precios debe actualizarse. Se recomienda brindar un subsidio selectivo para los equipos de pozos de riego, precios adecuados para aguas superficiales y subterraneas, energia, insumos y productos y formular reformas a las politicas crediticias.iii) Debe considerarse la interacci6n de aguas subtemineas y superficiales para un uso conjunto 6ptimo.IV) Equidad. Se recomienda efectuar un seguimiento de las equidades regionales, sociales, intergeneracionales y de genero y orientar hacia grupos especificoslos beneficios del riego con agua subterranea.v) Arreglos institucionales. Se recomienda promover los mercados de agua. Sin embargo, tambien es necesario crear y consoli dar instituciones para ayudar a regular las actividades de compradores y vendedores de agua. Es necesario contar con instituciones que permitan un eficiente uso y manejo conjuntos.Otras recomendaciones. Las siguientes recomendacionesseentrecruzan con los temas ya mencionados. Las mismas surgieron en la ultima sesi6n plenaria: i) El agua subterranea debe ser considerada como un bien comun. Un marco legal unificado debe integrar a las aguas superficiales ysubterraneas. Todas las perso nas, inc1uso quienes no poseen tierras, deben tener derechosinalineables alagua parabeber ycon finesreligiosos en primer lugar, seguidos por los usos agricolas e industriales, en order jerarquico. EI agua subterranea debe considerarse como un bien legalmente comercializable sujeto a regulaci6n para evitar la sobreexplotaci6n. EI uso del agua subterranea debe planificarse en forma conjunta con el del agua superficial.ii)Las perforaciones profundas son costosas y, por 10 general, son administradas por los grandes agricultores. Es necesario que existan mecanismos institucionales adecuados antes de que esta tecnologia comience a aplicarse.iii) Prohibir las perforaciones profundas no es una solud6n factible, pero su uso debe regularse a traves de disposiciones institucionales locales viables. iv) Los peones que no posean tierras deben tener prioridad para manejar pozos de manera sustentable.v) Algunos acufferos abarcan mas de un pais (por ejemplo, el acuffero del Ganges). Es necesario realizar esfuerzos a nivel regional para evaluar el potencial y la interconexi6n del agua subterranea.vi) Las politicas estatales referidas al manejo del agua subteminea deben apuntar no solo al propietario individual de una bomba sino tambien a la red de pozos que interactuen en el presente 0 en el futuro.vii) La propiedad de los pozos puede ser indi vidual, pero las comunidades de un area deben organizarse y tener el derecho de tomar decisiones sobre nuevas inversiones individuales en pozos dentro de su area . Todos los propietarios de pozos deben adoptar tecnologias de conservacion. Es necesario adquirirenforma grupal y distribuir la energia entre estos propietarios y hacer cumplir el cobro I la devolucion de los prestamos que les hayan sido acordados.viii) Las caracteristicas de los acuiferos y las velocidades de recarga varian mucho incluso dentro de areas pequenas; por 10 tanto, las politicas estatales deben disenarse\" a medica\" seglin las condiciones de cada zona ecologica (es decir, de cada region que cuente con agua subterranea). Las politicas nacionales generales 0 las politicas estatales para areas con gran heterogeneidad ecologica tienden a ser ineficientes y conducen a un derroche de capital del estado cuando existen subsidios directos.ix) Cuando el costo del bombeo exceda los limites dados a conocer y acordados localmente, se debe suspender todo otro credito oficial para inversiones extractivas: Jirofundizaci6n de pozos, electrificacion de bombas, construcci6n de nuevos pozos, etc.x) La elecci6n de tecnologia debe ser tal que se prefiera a los equipos pequenos para extracci6n de agua subterranea cuando el recurso 10 permita. Si existe agua subterranea a poca profundidad, se debe prom over el uso de pozos pocoprofundos antes que de perforaciones mayores. ","tokenCount":"3392"} \ No newline at end of file diff --git a/data/part_1/1353001378.json b/data/part_1/1353001378.json new file mode 100644 index 0000000000000000000000000000000000000000..3e5c0cedb6876c850dd3d979d137a115344073cf --- /dev/null +++ b/data/part_1/1353001378.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"3e300d6622790fa64315b4b1951e319b","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/eba5febf-cc61-4274-823b-9557a6a84036/retrieve","id":"993501195"},"keywords":["Pandemic","Conflict","Peacebuilding","Risk-adapted strategies","Cooperation"],"sieverID":"9c308873-735d-4883-995d-a86f4277b422","pagecount":"17","content":"National and international cooperation and development projects (CDP) are fundamental for peacebuilding. However, unforeseen global crises, like COVID-19, can endanger such projects, requiring rapid adaption. In Colombia, the coronavirus outbreak threatens to slow the implementation of peace-related projects, while simultaneously violence over control and ownership of land increases. Although the mid-to long-term consequences for peacebuilding are unknown, exploring riskadapted strategies of national and international CDP can help identify crucial aspects for future processes and implementations. This study explores the key challenges and coping strategies of implementing agencies and stakeholders to COVID-19, thus helping to derive and improve risk-adapted strategies. After reviewing academic and grey literature, and implementing a semi-structured survey, peacebuilding riskedadapted strategies to COVID-19 are explored with respect to conflict-affected and vulnerable areas of Colombia. Findings show that increasing complexity rooted in top down governmental measures, the rise of new local power relations (e.g. armed groups, illicit activities), and social alienation are negatively affecting peacebuildingNational and international cooperation and development projects (CDP) play a fundamental role in peacebuilding processes (Fischhendler and Tenenboim-Weinblatt 2019;Amego Korbla Penu and Wellington Essaw 2019;Lemon and Pinet 2018;Jaruma 2013). Managing CDPs, challenging under normal circumstances, requires agility and flexibility when confronting unforeseen global emergencies, like the outbreak of coronavirus . Without rapidly adapting management approaches, CDP might be endangered. UNDP (2020) notes the impact of COVID-19 is likely to be worse in conflict-affected countries, where past and present vulnerabilities in health and governance could be amplified, thus exacerbating violence.Further, seven of the ten most-vulnerable countries to pandemics are in conflict zones (Moore et al. 2017), places where cross-cutting and chronic dimensions of violence, like illicit markets, unemployment, economic disparities between regions, marginalisation, displacement, exploitation, conflicts over local issues, lack of access to public services (e.g. health, infrastructures), and corruption increase risks and the duration of conflicts (Sánchez-Zamora et al. 2017;Flores and Vargas 2018). Yet, health, humanitarian, and cooperation strategies should be stimulated simultaneously to sustain the most vulnerable during the pandemic-like displaced populations-to both the virus itself and those measures enacted to fight it (San Lau et al. 2020).The forthcoming COVID-19 depression could result in funding cuts to peace operations, endangering their ability to achieve benchmarks, while hampering critical peacebuilding actions like the protection of civilians, protection of social leaders, financial support to ex-combats, and the protection of key infrastructure (Garzón et al. 2020). Reduced funding can also affect local organizations based on projects. Furthermore, the shrinking of peace related budgets limits CDP capacity to hire highly-qualified personal if not keep pre-COVID-19 personnel employed. CDP support to governments, institutions, and conflict parties is likely to be limited in the mid-to long-term (de Coning 2020; Dorussen 2020). At the administrative level, COVID-related constraints oblige peacebuilding CDP organizations to shift to an \"essential\" frame of mind, forcing a re-examination of activities and interventions, while identifying new threats developing alongside the pandemic and evolving governmental measures. This is challenging due to the multiple and changing faces of the COVID-19 pandemic. Among other aspects, coordinating activities is difficult due to poor internet access, low penetration of mobile networks, electricity cuts, and digital illiteracy in conflict-affected rural areas. In this context, additional funds are being requested to invest in online communication and information systems (Ansorg and Strasheim 2020).In Colombia, the COVID-19 pandemic is worsening the underlying roots of conflicts, especially in rural contexts beset with unsecure land distribution, poor access to public services, and high levels of inequalities (Peace Direct 2020). In some places, physical and psychological violence is increasing, especially against social, indigenous and environmental leaders, former guerrillas and Venezuelan migrants (Sandoval et al. 2020). Besides, public health measures, including social distancing, lockdowns, and public virtual attendance, trigger delays, slowing the implementation of the 2016 peace agreement between Colombia's government and the Revolutionary Armed Forces of Colombia (FARC). Two immediate consequences exist: First, scarce human and financial governmental capacities show that they are failing to control and monitor isolated and remote regions endowed with natural resources. This not only facilitates the expansion of the drug trafficking business, but is also multiplying practices of violence such as forced recruitment, displacement, land grabbing, and deforestation (Garzón et al. 2020). Second, the COVID-19 outbreak reveals emerging obstacles to the effective implementation of governmental peacebuilding strategies, such as the Programs of Development with a Territorial Focus or Programas de Desarrollo con Enfoque Territorial (PDET) or the Municipal and Departmental Development Plans (rural roads, productive and community infrastructure, schools, health facilities, etc.). The lack of funding, the low degrees of political and policy processes at the regional and local level, methodological inconsistencies in the design of participatory approaches and the increased violence against community leaders are preventing the effective implementations of these programs and their cooperation with CDPs.Notwithstanding these developments, COVID-19 also provides opportunities to promote peace and to advance peacebuilding. Examples include the global ceasefire campaigns (United Nations Press 2020), the immediate impacts on environmental and climate change resulting from lockdowns (e.g. exceptional drops in carbon dioxide emissions) (Eufemia and Hussein 2020), community-based initiatives (e.g. indigenous COVID-19 prevention and containment, focusing on voluntary collective isolation and contact-tracing) (Kaplan et al. 2020), reorientation of ex-guerrilla combatants' productive projects (e.g., from textile production to mask manufacturing), and the use of ICT in transitional justice processes (UN 2020). Although the veracity, impact, and transferability of these advances is unclear, the visible manifestation of the COVID-19 crisis in post conflict scenarios reflect increased complexities and changes in peacebuilding scenarios that also affect the planning and functioning of CDPs.By investigating the key challenges and coping strategies of implementing agencies and stakeholders to COVID-19, the main aims of this work are to find (i) how CDPs adapt to perceived risks, central government management plans, and funding agency requirements; and (ii) which impact the pandemic has on peacebuilding and corresponding CDP responses. In the following sections, we present our methodology formed by the case study areas and the semi-structured interviews, the results visualizing the main findings, followed by the discussion that addresses key insights against the current situation of both the peacebuilding endeavour and the COVID-19 crisis. Finally, the conclusion summarizes the whole content and it offers suggestions to improved risk-adapted strategies.Since the 2016 peace agreement, Colombia's peacebuilding process has experienced numerous and complex challenges and changes of power structures regarding land use and ownership; resulting risks include the strengthening of old and new armed groups (Graser et al. 2020). For this reason, our methodological take includes territoriality, as we develop a visualization of conflict-affect areas. We investigate the impact of the COVID-19 crisis on national and international CDPs, targeting projects in some of the most conflict-affected and vulnerable areas of Colombia. Fig. 1 overlays the \"Areas Most Affected by Armed Conflict\" (ZOMAC), as listed in governmental decree n. 1650 on October 9, 2017 (Republic of Colombia 2017), with the applied 10 surveys, addressing 13 CDPs implemented across multiple regions as shown by dots (a complete list is in the Appendix), including 7 large (with a budget of over 1 million C), 3 medium (with a budget less than 1 million C and K Fig. 1 ZOMAC and applied surveys. (Source: Adapted from © ZOMAC, Sistema Informativo del Gobierno de la Republica de Colombia-SIG) implemented at a national scale), and 3 small (with a budget less than 1 million C and implemented at a local scale) projects.A list of running CDPs was obtained through internet and institutional networks. Emails and phone calls with key actors evaluated their willingness to participate. An interview protocol was developed to guide semi-structured interviews with project managers and stakeholders of Colombian CDPs. The questionnaire comprises four main blocks: (i) context: expertise (e.g. peace-related, national, and international) gender, and age; (ii) information about the reference CDP: scale (e.g. local, regional, or national), duration, approximate funding, project role, and project team; (iii) the perceived impact of COVID-19 on project implementation: immediate perception of issue extent, proximity, immediate responses, first effects, and perception regarding governmental responses at all levels (local, regional, and national), as well as of funding agencies and direct donors; and (iv) risk-adapted strategies: evaluation of existing strategies, adoption of new strategies and assets, and the future outlook on desirable risk-adapted strategies. Survey participation was voluntary and personal data kept anonymous. While using qualitative methods to categorize each block, quantitative approaches were used for descriptive statistics to present numeric values. In total, 10 interviews were conducted, addressing the work of 13 CDPs, covering most ZOMAC. The interviews were conducted in Spanish via phone or skype, each lasting between forty-five minutes and two hours. Each interview was recorded for further data analysis.Relevant findings concerning COVID-19 impacts, CDP responses, and risk-adapted strategies are collected in blocks (iii) and (iv) of the survey (see 2.2 Methods, Step 2. Survey). Tables 1 and 2 present the key interfaces and relations. Grey boxes indicate overlapping perceptions between large, medium, and small CDPs.The analysis of CDP responses and risk-adapted strategies offers critical perspectives about peacebuilding. In discussing survey results, we highlight key challenges and coping strategies of implementing agencies and stakeholders. Using peacebuilding theories, we focus on specific world experiences (e.g., COVID-19) and its aspects (Heft 1997). Sample composition-affect by finite time and financial capacity-is the main study limitation. Only a few medium and small CDPs were involved. Additionally, with the continuous development of the pandemic, perceptions are changing rapidly. Thus, the results may be biased. Another possible limitation relates to the degree to which our analysis tends to generalize. For example, most of our data regards local perspectives and sample size is small. Thus, results might not translate or be transferrable to a broader context. A larger sample size across more regions, a more heterogeneous set of stakeholders, and the inclusion of donors' perspectives could have strengthened this work.The perspectives and approaches of implementing agencies and stakeholders show similarities and differences. Our findings show universally substantial impacts of COVID-19 on CDPs. While project self-evaluation remains positive before and during the pandemic for large and medium CDPs, small CDPs are negatively affected. Further, the initial perceptions of large and medium CDPs included elements of surprise and scepticism, while small CDPs responded with immediate collective paranoia, especially with respect to the health emergency. Because COVID-19 stands out for its speed of spread, driven by today's global society, remote rural communities, where small CDPs are implemented, may feel more exposed due to its lack of health services and infrastructure. Historically, poor law-implementation, limited state presence, weak implementations of conflict-prevention measures (e.g. conflict early warning and response mechanisms), high corruption, and inequitable access to services and resources are conditions that make addressing COVID-19 even more challenging (Jayawickreme et al. 2017;Quinn 2016;Rossi et al. 2006). Ultimately, K globalization's negative consequences primarily affect the poor and marginalized in developing countries (Jenkins 2005).As a result, internal adaptation plans included both the interruption, in some cases preventatively (e.g. small CDPs), and/or the transformation of CDP. Under COVID-19, most projects shifted field activities from physical to virtual. While, some cases demonstrate how CDPs in rural areas can transform and continue, supported by governmental incentives, social cohesion and new conflicts may arise from \"digital fatigue\", electricity cuts, and the lack of internet access. Although increased misinformation sharing is a problem rooted in increased internet access, mental disorders are also caused by physical distancing and social/community isolation (Burgess and Fonseca 2020;Islam et al. 2020;Monteith et al. 2020).Informal measures are re-shaping power relations at the local level with the rise of new and old armed groups contending territorial control (e.g. access entry-exit). Paramilitary and criminal groups are expanding their influence in rural areas, further exploiting natural resources and pursuing illicit activities (e.g. drug production). With the excuse of lockdowns, the consolidation of territorial control increases the vulnerability of civil society and, in particular, those in indigenous communities (Sandoval et al. 2020). Two aspects of trust are emerging: a renewed internal trust in rural community (e.g. solidarity) and a decreasing trust toward institutions and their measures. The latter represent external adaptation components that continue to be enacted. CDPs perceive a top down, central system that delegates functions to regional and local governments, providing funding to assist the most vulnerable communities. In most cases, actions promoted by the central government are perceived negatively, increasing bureaucracy that overlaps with perceived increases in (institutional) corruption, environmental deterioration, food insecurity, human rights violations, and violence against social and environmental leaders.While large CDPs have greater financial and human capacities to meet such challenges, relocate funds, and implement biosecurity programs, especially in rural contexts, great resilience is also shown by medium and small CDPs, which find creative ways to cope with reduced field activities. Yet, government responses actually increase the complexity of the emergency situation by adding multiple challenges that directly affect the peace, thus hindering direct and indirect protection mechanisms against violence.Because of lockdown, social alienation might be the main component undermining CDP peacebuilding efforts. Empirical studies show that COVID-19 lockdown measures are affecting mental health and collective trauma (Montoya 2020;Van Bavel et al. 2020); especially problematic for existing post conflict communities. Further, COVID-19 is perceived as negatively affecting Colombian peacebuilding. These challenges and changes in power relations reflect a centralized system unable to support those who are most marginalized, threating CDPs located in rural, remote areas.Most CDPs are optimistic about the continuation of activities and funds for development and cooperation. Small CDPs are less optimistic, since they face new structural approaches for project implementation. Our findings show that, in times of emergency, learning opportunities arise. First, schemes for territorial planning to foster environmental projects need reconsideration. An increasing literature argues that sustainable development is the only way to achieve long lasting peace (Holden et al. 2017;Mansell and Tremblay 2013;Rieckmann 2017). Second, in facing the forthcoming COVID-19 depression, investments in private-public cooperation to sustain small-and medium-scale economic activities is needed, especially in rural areas. Third, strategies for preventing and controlling future pandemics are needed.Future ideas for CDP risk-adapted strategies include creating new categories of unpredictable externalities (e.g. reorganize priorities based on local needs and interests), educational and pedagogical tools, as well as specific biosecurity protocols for locals. From a local perspective, increasing investments in environmental and conservation projects (e.g. biodiversity and environmental services as prevention mechanisms to future pandemics) is perceived as a key coping strategy that encourages peacebuilding and the implementation of CDPs in times of unexpected externalities.Finally, the development of project strategies that address risks and uncertainty can be better guided by social learning processes. In this sense, social learning facilitates the integration of different kinds of knowledge (Wals 2007), especially when collectively deciding on actions to cope with crisis situations, unpredictable externalities, or future uncertainty. As proposed by Morin (2002), learning to confront uncertainty is essential knowledge for the future.This work highlights key challenges and coping strategies of implementing agencies and stakeholders during the COVID-19 pandemic. The increasing complexity caused by top down governmental measures, effective or not, along with the rise of new local level power relations (e.g. armed groups, illicit activities, environmental deterioration etc.) and social alienation are negatively affecting peacebuilding in Colombia. Remote rural communities (e.g. where small CDPs are implemented) are the most exposed due to the lack of infrastructure (e.g. health services, presence of the state, electricity etc.) and their historic vulnerability (in case they are economically autonomous). Further, the increasing erosion of trust between locals and institutions, along with food insecurity and expected unemployment scenarios due to the COVID-19 depression will not only increase the risk of violence and social unrest, but also the survival of CDPs. In the midst of a crisis, policies and economic efforts should target rural contexts, where peace is most at stake; supporting initiatives historically carried by CDPs such as ceasefires, the mutual assistance and intercommunity cooperation; thus preventing immediate violence and contributing to a construction of more lasting peace in the future. While investments in privatepublic cooperation and in environmental projects are perceived as key coping strategies against COVID-19, future implications for peace and peacebuilding remain unclear. Thus, further research and monitoring approaches are needed.ture Conservation and Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag (https://www.international-climate-initiative.com/). Funding Open Access funding enabled and organized by Projekt DEAL.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4. 0/. K","tokenCount":"2821"} \ No newline at end of file diff --git a/data/part_1/1368456253.json b/data/part_1/1368456253.json new file mode 100644 index 0000000000000000000000000000000000000000..df856dc6b08e12c2489757fbe077b407d0f4d143 --- /dev/null +++ b/data/part_1/1368456253.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c0230d0aec8c59dae30db6d939da4e2d","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/1178bcae-fdaf-406a-90c3-ea0b8e679ad3/retrieve","id":"262360681"},"keywords":["Plant descriptors 9","Abiotic stress susceptibility 10","Biotic stress susceptibility 11","Biochemical markers 12","Molecular markers 13","Cytological characters 14","Identified genes"],"sieverID":"f5bcd8e7-31b6-4821-9523-8a553e0923b5","pagecount":"66","content":"Inte rn a ti o n a l P la n t Ge netic R e s o u r c e s In s ti tu teIPGRI now uses the following definitions in genetic resources documentation:Passport descriptors: These provide the basic information used for the general management of the accession (including the registration at the genebank and other identification information) and describe parameters that should be observed when the accession is originally collected.Management descriptors: These provide the basis for the management of accessions in the genebank and assist with their multiplication and regeneration.Environment and site descriptors: These describe the environmental and site-specific parameters that are important when characterization and evaluation trials are held. They can be important for the interpretation of the results of those trials. Site descriptors for germplasm collecting are also included here.Characterization descriptors: These enable an easy and quick discrimination between phenotypes. They are generally highly heritable, can be easily seen by the eye and are equally expressed in all environments. In addition, these may include a limited number of additional traits thought desirable by a consensus of users of the particular crop.Evaluation descriptors: Many of the descriptors in this category are susceptible to environmental differences but are generally useful in crop improvement and others may involve complex biochemical or molecular characterization. They include yield, agronomic performance, stress susceptibilities and biochemical and cytological traits.Characterization will normally be the responsibility of genebank curators, while evaluation will typically be carried out elsewhere (possibly by a multidisciplinary team of scientists). The evaluation data should be fed back to the genebank which will maintain a data file.The following internationally accepted norms for the scoring, coding and recording of descriptor states should be followed:(a) the Système International d'Unités (SI system) is used;(b) the units to be applied are given in square brackets following the descriptor name;(c) standard colour charts, e.g. Royal Horticultural Society Colour Chart, Methuen Handbook of Colour, or Munsell Color Chart for Plant Tissues, are strongly recommended for all ungraded colour characters (the precise chart used should be specified in the section where it is used);(d) many quantitative characters which are continuously variable are recorded on a 1-9 scale, where:1 Very low 6 Intermediate to high 2 Very low to low 7 High 3 Low 8 High to very high 4 Low to intermediate 9 Very high 5 Intermediate is the expression of a character. The authors of this list have sometimes described only a selection of the states, e.g. 3, 5 and 7 for such descriptors. Where this has occurred, the full range of codes is available for use by extension of the codes given or by interpolation between them, e.g. in Section 10 (Biotic stress susceptibility) 1 = very low susceptibility and 10 = very high susceptibility;(e) when a descriptor is scored using a 1-9 scale, such as in (d), '0' would be scored when (i) the character is not expressed; (ii) a descriptor is inapplicable. In the following example, '0' will be recorded if an accession does not have a central leaf lobe:Shape of central leaf lobe 3 Toothed 5 Elliptic 7 Linear (f) absence/presence of characters is scored as in the following example:Absence/presence of terminal leaflet 0 Absent 1 (or +) Present (g) blanks are used for information not yet available;(h) for accessions which are not generally uniform for a descriptor (e.g. mixed collection, genetic segregation), the mean and standard deviation could be reported where the descriptor is continuous. Where the descriptor is discontinuous, several codes in the order of frequency could be recorded; or other publicized methods can be utilized, such as Rana et al. (1991) or van Hintum (1993), that clearly state a method for scoring heterogeneous accessions;(i) dates should be expressed numerically in the format YYYYMMDD, where YYYY -4 digits to represent the year MM -2 digits to represent the month DD -2 digits to represent the day.This number serves as a unique identifier for accessions and is assigned when an accession is entered into the collection. Once assigned this number should never be reassigned to another accession in the collection. Even if an accession is lost, its assigned number should never be re-used. Letters should be used before the number to identify the genebank or national system (e.g. IDG indicates an accession that comes from the genebank at Bari, Italy; CGN indicates an accession from the genebank at Wageningen, The Netherlands; PI indicates an accession within the USA system). Any additional information may be specified hereCollecting institute(s) Name and address of the institute(s) and individuals collecting/sponsoring the collection of the sample(s)Site number Number assigned to the physical site by the collectorCollecting number (1.1) Original number assigned by the collector(s) of the sample, normally composed of the name or initials of the collector(s) followed by a number. This item is essential for identifying duplicates held in different collections. It should be unique and always accompany subsamples wherever they are sent.Collecting date of original sample [YYYYMMDD] (1.3)(1.4) Name of the country in which the sample was collected. Use the three-letter abbreviations from the International Standard (ISO) Codes for the representation of names of countries, No. 3166, 4th Edition. Copies of these are available from DIN: Deutsche Institut für Normung e.V., D-10772 Berlin, Germany;Tel. 30-2601Tel. 30- -2860;;Fax 30-2601-1231, Tlx. 184 273-din-d. Province/State (1.5) Name of the primary administrative subdivision of the country in which the sample was collectedDepartment/County Name of the secondary administrative subdivision (within a Province/State) of the country in which the sample was collectedLocation of collecting site (1.6) Distance in kilometers and direction from the nearest town, village or map grid reference point (e.g. CURITIBA 7S means 7 km south of Curitiba)Latitude of collecting site (1.9) Degrees and minutes followed by N (North) or S (South) (e.g. 1030S). Missing data (minutes) should be indicated with hyphen (e.g. 10-S).(1.8) Degrees and minutes followed by E (East) or W (West) (e.g. 07625W). Missing data (minutes) should be indicated with hyphen (e.g. 076-W).(1.7) Information on associated biotic and abiotic stresses and the accession's reaction. Specify stresses in descriptor 2.27 Collector's notes.Additional information recorded by the collector or any specific information on any state in any of the above descriptors Site (research institute)Degrees and minutes followed by N (North) or S (South) (e.g. 1030S). Missing data (minutes) should be indicated with hyphen (e.g. 10-S).Degrees and minutes followed by E (East) or W (West) (e.g. 07625 W). Missing data (minutes) should be indicated with hyphen (e.g. 076-W). The landform refers to the shape of the land surface in the area in which the site is located (adapted from FAO 1990) Estimated slope of the siteThe direction that the slope on which the accession was collected faces. Describe the direction with symbols N, S, E, W (e.g. a slope that faces a southwestern direction has an aspect of SW) The following descriptors will be recorded at planting In each case, it is important to state the origin of the infestation or infection, i.e. natural, field inoculation, laboratory. Record such information in descriptor 10.4 Notes. These are coded on a susceptibility scale from 1 to 9, viz.:1 This list of multicrop passport descriptors has been developed jointly by IPGRI and FAO to provide consistent coding schemes for common passport descriptors across crops. These descriptors aim to be compatible with future IPGRI crop descriptor lists and with the descriptors to be used for the FAO World Information and Early Warning System (WIEWS) on plant genetic resources.The list should NOT be regarded as a minimum descriptor list, since many additional passport descriptors are essential for the description of crops and need to be recorded. This document lists an initial set of common passport descriptors at the multicrop level. At a later stage the list could be expanded with additional multicrop descriptors. For example, descriptors dealing with the use of germplasm are currently not included, but their suitability for inclusion at the multicrop level will be investigated. Future expansion could even result in the development of more specialized lists of common descriptors at the crop group level.Printed here is the latest version of the list (1997) which contains two sections. The latter one (FAO WIEWS DESCRIPTORS) lists a number of optional descriptors used in the FAO WIEWS. The list provides descriptions of content and coding schemes, but also provides suggested fieldnames (in parentheses) that can assist in the computerized exchange of this type of data.Institute code (INSTCODE) Code of the institute where the accession is maintained. The codes consist of the 3-letter ISO 3166 country code of the country where the institute is located plus number or an acronym as specified in the Institute database that will be made available by FAO. Preliminary codes (i.e. codes not yet incorporated in the FAO Institute database) start with an asterisk followed by a 3-letter ISO 3166 country code and an acronym.This number serves as a unique identifier for accessions and is assigned when an accession is entered into the collection. Once assigned this number should never be reassigned to another accession in the collection. Even if an accession is lost, its assigned number should never be reused. Letters should be used before the number to identify the genebank or national system (e.g. IDG indicates an accession that comes from the genebank at Bari, Italy; CGN indicates an accession from the genebank at Wageningen, The Netherlands; PI indicates an accession within the USA system).Collecting number (COLLNUMB) Original number assigned by the collector(s) of the sample, normally composed of the name or initials of the collector(s) followed by a number. This item is essential for identifying duplicates held in different collections. It should be unique and always accompany subsamples wherever they are sent.Genus (GENUS) Genus name for taxon. Initial uppercase letter required.Species (SPECIES) Specific epithet portion of the scientific name in lowercase letters plus authority 1 . Following abbreviation is allowed: \"sp.\" 6. Subtaxa (SUBTAXA) Subtaxa can be used to store any additional taxonomic identifier plus authority 1 . Following abbreviations are allowed: \"ssp.\" (for subspecies); \"var.\" (for variety); \"convar.\" (for convariety); \"f.\" (for form).Accession name (ACCNAME) Either a registered or other formal designation given to the accession. First letter uppercase. Multiple names separated with semicolon.Country of origin (ORIGCTY) Name of the country in which the sample was originally collected or derived. Use the ISO 3166 extended codes, (i.e. current and old 3 letter ISO 3166 country codes) 9.Location of collecting site (COLLSITE) Location information below the country level that describes where the accession was collected starting with the most detailed information. Might include the distance in kilometers and direction from the nearest town, village or map grid reference point, (e.g. CURITIBA 7S, PARANA means 7 km south of Curitiba in the state of Parana) 10. Latitude of collecting site (LATITUDE) Degrees and minutes followed by N (North) or S (South) (e.g. 1030S). Missing data (minutes) should be indicated with hyphen (e.g. 10-S).Location of safety duplicates (DUPLSITE) Code of the institute where a safety duplicate of the accession is maintained. The codes consist of 3-letter ISO 3166 country code of the country where the institute is located plus number or an acronym as specified in the Institute database that will be made available by FAO. Preliminary codes (i.e. codes not yet incorporated in the FAO Institute database) start with an asterisk followed by a 3-letter ISO 3166 country code and an acronym. Multiple numbers can be added and should be separated with a semicolon.Availability ","tokenCount":"1898"} \ No newline at end of file diff --git a/data/part_1/1393203056.json b/data/part_1/1393203056.json new file mode 100644 index 0000000000000000000000000000000000000000..0a5207fa3f1d9fe91fa318875b8bbe6bef0bc570 --- /dev/null +++ b/data/part_1/1393203056.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"2ef13cc7578384173147caea71d22f25","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/87a2e44c-ecbe-4f4e-b885-d460e516989b/retrieve","id":"-2036306341"},"keywords":[],"sieverID":"d4831c17-a1d5-4dcf-bdd8-f562f486b79e","pagecount":"4","content":"Rift Valley fever (RVF), a viral zoonosis found in sub-Saharan Africa, Saudi Arabia and Yemen, causes abortion and stillbirth in livestock and can cause serious conditions such as haemorrhagic fever and encephalitis in humans. ILRI's work, implemented in collaboration with multiple stakeholders, aims to identify key drivers for RVF occurrence and transmission, and develop decision support tools to guide responses at various stages of the RVF epidemic cycle. Developed following the last devastating outbreak, which occurred in Kenya in 2006-07, these research outputs are designed to enable decision-makers to take timely, evidence-based decisions to prevent and control RVF epidemics, reducing the impacts of the disease. In particular, the decision support tool has been incorporated in the Kenyan government's RVF Contingency Plan, and local governments in Kenya regularly use outputs from ILRI's work to assess their level of preparedness.Rift Valley fever (RVF) is a mosquito-borne viral disease that affects sheep, goats, cattle and camels, causing stillbirth and abortion. Humans can also become infected through direct contact with acutely infected animals or contaminated tissues, or through mosquito bites. In people, the disease manifests itself as a mild, influenza-like illness in the majority of cases (over 80%). However, it can also cause more serious conditions marked by haemorrhagic fever, encephalitis, or retinitis (Soumare et al. 2012).• Rift Valley fever, endemic to Africa, was first reported in the Arabian Peninsula in 2000.The last major RVF outbreak in 2006-7 cost the Kenyan economy around US$32 million• Sheep appear to be more susceptible than cattle or camels; over 90% of lambs infected with RVF die, whereas mortality among adult sheep can be as low as 10%.The public health burden of RVF during the 2006-7 outbreak in humans household costs was about US$120 for every human case reported.• A worldwide investment in One Health, including for RVF and also other zoonotic diseases, of US$25 billion a year for 10 years could generate benefits worth at least US$125 billion per year.RVF epidemics typically occur after a period of abovenormal, persistent rainfall, and have significant impacts on both human health and livestock production; it is estimated that the 2006-07 outbreak in Kenya led to losses valued at US$32 million (Rich and Wanyoike, 2010). However, such epidemics are also relatively uncommon, occurring on average once every ten years. This makes it difficult for governments to develop clear interventions in the face of an outbreak after a period of no visible cases (Martin et al., 2008). Between epidemics, there is usually a decline in the levels of awareness, and resources are often shifted to other more pressing challenges.For those seeking to protect animals and people from RVF, the task is complicated by the fact that the virus can be found in several host species (including livestock and wildlife) and can be transmitted by a range of mosquito species. It is also thought that the geographical range of the disease is expanding and that any future outbreaks that take place in newly affected areas are likely to have more devastating impacts, compared to those in areas that have had multiple exposures.As a zoonosis, RVF belongs to the 60% of human diseases that are also carried by animals, and are capable of being passed from animal to human. When it comes to controlling these diseases, many believe that traditional divisions between human and animal health are counterproductive, and instead advocate an approach known as 'One Health', which includes greater cooperation and sharing of services, such as laboratories and monitoring. RVF research has always used the One Health framework.In addressing a complex challenge such as RVF, research has needed to be carried out in progressive and incremental stages, each designed to address specific problems. Building on these research activities, ILRI has worked with Kenya's Department of Veterinary Services and other stakeholders to refine their national RVF Contingency Plan. Importantly, this calls for results of livestock monitoring to be provided to human health workers, and for relevant information on human health to be shared with livestock authorities. Encouragingly, the decision support tool developed by ILRI and its partners now forms a chapter of the Contingency Plan, defining activities that ought to be implemented at various stages of an RVF epidemic cycle. The tool has also been used at the regional level to inform the development of standard methods and procedures for managing RVF, under a project managed by the African Union Interafrican Bureau for Animal Resources (AU-IBAR).Recently, outputs of the mathematical model demonstrating optimal periods for vaccinating cattle and sheep were reviewed in a stakeholders' forum. The participants offered practical suggestions which are being used to develop the model into a more useful tool for assessing RVF interventions. This, and similar models, will aid decisionmaking on control strategies, helping to ensure that the disease can be effectively managed. Hazard maps produced by the ILRI research team have also been used to guide interventions such as risk-based surveillance and the placement of sentinel herds.Evidence of impact ILRI's work on RVF is designed to enable public health and animal health officials to replace the current 'all or nothing' approach to RVF monitoring and control with a risk-based approach. Given that RVF epidemics recur after a long period of time (and in fact none has occurred after the recent one in 2006-07 when RVF decision support tools were developed), it is difficult to judge the impact of this research work on disease incidence and impacts on livelihoods. However, table-top simulations of outbreaks that are periodically conducted in the region by local governments often use the outputs from ILRI research (e.g. RVF decision support tool, risk maps) to assess their levels of preparedness. The Kenya Directorate of Veterinary Services is also using ILRI's sentinel flocks for their own surveillance needs.In February 2012, ILRI hosted a multi-stakeholder workshop for eastern African partners in order to review its RVF research strategy, explore potential collaborations and discuss options for controlling the disease. The participants identified a number of research gaps, including the need for climate models and a vector profile, to enable the mapping of most affected and high risk areas and better understand how the disease interacts between livestock and wildlife. In addition, a cost-benefit analysis of vaccination, vector control, surveillance, and sanitary measures was scheduled. Results from this analysis will give much needed evidence to support the creation of policies and strategies for appropriate surveillance, prevention and control of RVF in eastern Africa.The ","tokenCount":"1063"} \ No newline at end of file diff --git a/data/part_1/1397615682.json b/data/part_1/1397615682.json new file mode 100644 index 0000000000000000000000000000000000000000..70622cc4d5908cdc00bdd3870f8a6bda58ce7b78 --- /dev/null +++ b/data/part_1/1397615682.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c842b1093af4ce0633474dec888ddbfc","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/99c3effa-8ee2-45d2-bc00-b65fc19d588f/retrieve","id":"-1539439024"},"keywords":[],"sieverID":"765bc572-ba5c-46ae-a4dd-4947a071a1fb","pagecount":"20","content":"This study was conducted in Remera cell, Boneza sector, Rutsiro District in Western Province of Rwanda. The main objective was to characterize the crop-livestock farming system using the Feed Assessment Tool (FEAST). Focus group discussions (FGD) and individual farmer interviews were conducted with the aid of semi-structured questionnaires for data collection. The FDG involved a total of 15 participants comprising eight female and seven male farmers. In Rutsiro District, animals are kept under a zero-grazing system with cut and carry feeding method. The availability of feed in Rutsiro District is limited due to poor quality feeds, poor knowledge on using locally available feeds and climate change, leading to a shortage of feed for animals during droughts. The area has challenges in low genetic merit of dairy stock, water problems in the dry season, animal diseases and low milk prices.1. MINAGRI (Ministry of Agriculture and Animal Resources). 2012. Strategy and investment plan for small animal industry in Rwanda. Kigali, Rwanda: MINAGRI.Rutsiro District is one of the seven districts located 150 km from Kigali and making up the Western Province. The altitude of the district varies between 1,400 metres at the edge of Lake Kivu and 2,600 metres beyond the top of Mount Crete at the Congo-Nile divide. It is located at -1°57'36'' latitude and 29°23'22'' longitude. This diversity offers the opportunity to grow a multitude of crops suitable for each climate zone. Farmers in Rutsiro District practice livestock farming with species such as cows and small ruminants (Table 1). Local breeds with very low productivity make up the majority of livestock kept by farmers. The International Fund for Agricultural Development (IFAD) through RDDP has the objective to improve the livestock production system in 12 districts in Rwanda, Rutsiro being among the selected districts (Figure 1). Rutsiro was chosen due to its high livestock population density and potential to produce more milk. Currently, livestock production is one of the fastest growing agricultural sub-sectors, with extensive, semi-intensive and intensive systems of livestock farming all practised within the country. However, the availability of animal feed resources in the district varies greatly throughout the year both in quantity and quality. It is also highly dependent on climatic conditions, particularly rainfall and the length of the growing season. In addition, shortage of farmland, insufficient and non-controlled commercial feeds and limited use of agroindustrial by-products in animal feeding are common constraints in livestock production (MINAGRI 2012) 1 .The study was conducted in Rutsiro District, Boneza sector, Remera cell, by the Rwanda Dairy Development Project (RDDP) in collaboration with International Fund for Agricultural Development (IFAD) to assess the challenges that livestock farmers face and opportunities they have in the crop-livestock farming system using the Feed Assessment Tool (FEAST). It is anticipated that by the end of the RDDP, farmers will better organize in cooperatives, practise proper feeding of animals and supply enough milk to cooperatives.The assessment was conducted in the Remera cell from 11-15 February 2019. Remera cell was selected with the help of a sector veterinarian and socioeconomic development officer (SEDO) of a cell in Boneza sector. The FEAST methodology developed by researchers at ILRI was used. It involved conducting focus group discussions (FGD) with 15 participants (eight female and seven male) and subsequent individual interviews with nine farmers (three farmers each from the small, medium and large landholding categories). This was done to get farmers' inputs on local conditions, animal feed-related problems and potential solutions. Both exercises were conducted with the aid of semistructured questionnaires and data was imputed into the FEAST data template and analysed. Results are presented in tables, graphs, and pie and bar charts. Farming systemIn both cells, the majority of farmers are classified as medium farmers with farm sizes ranging from 1-2 ha (74%). Large landholding farmers having more than 2 ha make up just 1% of the population while smallholder farmers with less than 1 ha make up about 20% of the population. About 5% of the population can be considered landless (Figure 3). In Rutsiro District, just like in most parts of Rwanda, there are three agricultural seasons (A, B and C) depending on rainfall patterns. The first season (A) is from September-December, the second season (B) from January-May and the third season (C) from June-mid-September. The longest season is B (5 months), followed by season A (4 months) and season C (3 months) (Table 2). The main sources of water in the district are Lake Kivu, rain and tap water. Lake water is available throughout the year while rainwater is available during the rainy seasons. Due to distance, Lake Kivu supplies only about 1% of the water needs of livestock and most farmers depend on rain and tap water to meet the water requirements of their animals. Farmers do not practise rainwater harvesting.Crops that are grown in season A include banana, coffee, maize, common beans, cassava and soybean. In season B, soybean, common beans, maize, banana, cassava and coffee are cultivated. In season C, crops grown are mainly vegetables, sweet potato and yam in marshy or riverine areas (Table 2). The five most important crops by area cultivated are common beans, maize, banana, cassava and coffee (Figure 4). The main forage crops grown in the area are Napier grass (Pennisetum purpureum) and Kikuyu grass (Pennisetum clandestenum) on an average of 0.075 ha and 0.025 ha respectively.The sources of credit are the same across all cropping seasons. The most important sources of credit in the area are saving and credit cooperatives (SACCOs) and informal groups which cover 95% of the total credit provided. Credit from formal markets accounts for just 5%. Credit is mostly sourced for agricultural activities during seasons A and B. Farmers require some form of collateral to access credits from the informal credit markets. This may include providing some form of property as collateral or another group member staking his or her savings.Farmers own various livestock species which include improved cattle (crossbreed of Friesian cows), goats and pigs (Figure 5). Animals are kept for various purposes. Cattle are primarily raised for milk, manure and cash income while goats are raised mainly for cash. In the surveyed area, most farmers in medium and large farm categories keep on The average daily labour rate ranges between FRw600-1000 2 and depends on activity, gender and season. Duties like ploughing and harvesting are shared among both genders and are paid equally. Predominant male activities include manure transportation and milking while weeding crops and cleaning of cowsheds are mainly done by females.Agriculture constitutes the major source of household income with food crops contributing the most (70%) followed by livestock (20%). Off-farm income accounts for just about 7% of the household income (Figure 6). Most households practise a semi-intensive livestock production system. Feeding troughs are constructed with wood, the floor is cemented and bedding is provided. Animals are housed together according to species, sex and type, except dairy calves which are separated from the cows. Zero-grazing is practised by most of the farmers with seasonal variation hardly influencing the feeding method. Feed particle size is reduced by manual chopping of collected fodder (Napier grass and crop residues) with traditional machetes (panga). Based on gender, farmers involved in feed processing are 60% male and 40% female. In Rutsiro, the important diseases affecting animals are East Coast fever (ECF), Dystocia and Anaplasmosis. The different types of animal health care services available to the farmers are presented in Table 3. The cost of service depends on the nature of the service provided and farmers reported using mostly (95%) natural bull services.Collected fodder accounted for the highest proportion (44-57 %) of livestock diets in Rutsiro in terms of dry matter (DM), metabolizable energy (ME) and crude protein (CP) (Figure 7). Cultivated fodder (17-20%) and purchased feed (16-28%) also contribute significantly to the dietary requirements of livestock in Rutsiro District. On average, crop residues account for less than 10% of diets for livestock while grazing is not a common feed resource. Various feed types purchased and the quantity Farmers reported purchasing mostly Kikuyu grass (Pennisetum clandestinum) and Napier grass (Pennisetum purpureum) fodder to feed their animals (Figure 8). Also, farmers in Rutsiro purchase grain residues from breweries at an average of about 16 kg per household per year. Mineral blocks are purchased in small quantities at an average of 3.6 kg per year. • Optimal use of various types of feeds and crop residues, supplementing with agroindustrial by-products, molasses and dairy concentrates to mitigate low quality and quantity of forage in the dry season. The least cost ration based on available local feeds resources should be formulated, tested, validated and promoted in the area.• Plant leguminous forage shrubs to provide browse. Also, grass splits into ridges and intercropping forages such as Lablab in mixed farming with crops for cut and carry systems, as well as the growth of annual fodder crops such as oats, vetch, maize and sorghum should be promoted through extension services to farmers.• Supplementation with energy-rich supplements, e.g. molasses and the use of protein by-products, e.g. meat, blood and bone, fish, and legume leaf meals, as well as biofuel co-products, oilseeds and poultry litter are all recommended in the area. • Backyard intensification to utilize available resources (land, water and labour) efficiently. This would include the planting of high-quality leguminous forages such as perennial crops, leguminous forage trees, hedgerows and fences.• Optimizing the use of locally available feed resources including cultivated forage, collected fodder and crop residues through optimal mixing practices and supplementary feeding of concentrates.• Establishing concentrate sales points in the area.The farming system in Rutsiro District is primarily dominated by a subsistence-based mixed farming system.• Farmers perceive that the low genetic potential of available dairy cows for milk production, low quantity and quality of feeds and lack of enough water for watering animals (especially during the dry season) are major constraints to livestock production.• Lack of enough capital to invest in water harvesting facilities, coupled with inadequate experience and skills on water harvesting, are some of the contributing factors.• Animal feed availability in both quantity and quality is one of the most important problems faced by farmers. This problem is caused by limited land to grow forage crops due to very high population density.• Low milk production and productivity of cows was attributed to poor quality and quantity feeds and low genetic merit of dairy stock kept by farmers.• Introduce appropriate water harvesting and utilization technologies for multiple purposes including water for livestock and backyard forage production.• Identify niches to integrate high-quality leguminous forages, grasses and fodder trees in the cropping system.• Design and test optimal ration options for farmers using collected fodder, cultivated fodder and crop residues.• Target farmers with large landholding to produce forages as cash crops.• Farmer cooperatives should organize and do bulk purchases of feeds and distribute to other members in the area.• Upgrade local cows with improved AI service delivery by promoting private AI practitioners so that animals respond to improved nutrition and management. ","tokenCount":"1826"} \ No newline at end of file diff --git a/data/part_1/1401480073.json b/data/part_1/1401480073.json new file mode 100644 index 0000000000000000000000000000000000000000..723920a91d8842a94c8890193cc2a57c0f35a5bd --- /dev/null +++ b/data/part_1/1401480073.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"1679273a13d7c72c5ae6e15c21152df9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/22f56932-ad07-440e-9064-5d101eb927f7/retrieve","id":"627948841"},"keywords":["Vigna sp.","Striga¸ rhizobium","biocontrol","inoculant","BNF","cowpea *","**","*** and ****: P < 0.05","P < 0.01","P < 0.001","and P < 0.0001","respectively; NS: Not significant"],"sieverID":"23e61a21-f717-42c0-8b7d-33ea55cd5c10","pagecount":"27","content":"Cowpea is a grain legume of major importance in sub-Saharan Africa where it is cultivated by smallholder farmers on poor soils and production is often constrained by the parasitic weed Striga gesnerioides. Experiments were conducted to assess the potential of rhizobium inoculation in mitigating Striga infestation and increasing cowpea productivity. We tested under basal P application and arti cial S. gesnerioides inoculation the impact of cowpea genotypes (G) (nine Striga-resistant and 11 Strigasusceptible genotypes) and bradyrhizobium inoculation (N) (two bradyrhizobium strains USDA3384 and IRJ2180A, and uninoculated control) on Striga dynamics and cowpea yield. Additional treatments included N supplied as urea (with and without), and no input (i.e., soil inherent N and P) that served as negative check. A rst experiment was carried out in potted sterile soils in the screen house excluding addition of N-fertilizers. Signi cant G x N interactions were observed in counts of nodule (P = 0.012), Striga attachment (P < 0.0001) and emergence (P = 0.005), and cowpea shoot growth (P = 0.016). Cowpea nodulated poorly across host lines, Striga counts were the lowest for resistant varieties with no emerged plants. Rhizobial inoculants depressed Striga counts with consistent differences found across cowpea genotypes. Inoculation with IRJ2180A performed the best against Striga attachment in resistant genotypes, and its emergence in susceptible genotypes. In the eld trial, nodule numbers were lowest in cowpea without inputs (P < 0.0001). The G x N interaction was signi cant in emerged Striga plants (P < 0.0001). Resistant genotypes were free of emerged Striga while for susceptible ones, Striga emergence was the highest without any input addition. Signi cant G x N interaction was observed in cowpea grain yield (P < 0.0001). Yield response to inoculation was most obvious for resistant genotypes inoculated with the strain IRJ2180A (P = 0.0043). The integrated use of Striga-resistant cowpea lines and elite bradyrhizobium inoculant under moderate application of P-based fertilizer could be a promising approach for mitigating Striga infestation and increasing productivity.Cowpea (Vigna unguiculata (L.) Walp.) is a grain legume of high agronomic, nutritional and economic importance in the semi-arid tropics where it is mainly cultivated by resource poor farmers. It constitutes a valuable source of protein in the diets of millions of people (Boukar et al., 2016). About 7.4 million metric tons of cowpea are annually produced worldwide on about 12.6 million hectares (FAOSTAT, 2017). Yet the productivity of cowpea on farmers' elds remains poor due to numerous abiotic and biotic constraints. For instance, cowpea is often infested by parasitic weeds including Striga gesnerioides, which is a major biotic constraint to crop production in the Savannah and Sahel agro-ecologies of West Africa. The degree of infestation is greatest when soil fertility is poor, sometimes causing complete loss of yield and forcing farmers to abandon their cultivated lands (Ejeta, 2007;Kamara et al., 2014). S. gesnerioides is an autogamous parasite with a life cycle typical of other agriculturally important Striga spp. (Berner and Williams, 1998). Adaptations to parasitism of Striga species include the ability to produce a large number of tiny seeds with prolonged viability and special germination requirements (Siame et al., 1993). Seeds germinate only after exposure to exogenous germination stimulants, usually strigolactones (SLs), which are derived from root exudates of host and often non-host plant species (usually referred to as trap crops) (Bouwmeester et al., 2007;Yoneyama et al., 2009;Cardoso et al., 2014).Strigolactones are plant hormones which regulate plant shoot and root architecture in response to the environment (Gomez-Roldan et al. 2008;Cardoso et al., 2014), which also function as host recognition signals for arbuscular mycorrhizal fungi (Akiyama et al., 2005) and rhizobia, and trigger seeds of parasitic weeds such as Striga spp. to germinate (Soto et al., 2010;Foo and Davies, 2011;Foo et al., 2013).Farmer practices to combat Striga weeds range from hand pulling emerged Striga plants, crop rotations / intercropping to improve soil fertility, the use of trap crops that stimulate suicidal germination of Striga seed, to the selection of resistant crop varieties. Promising methods to manage Striga arising from research include the use mineral fertilizers (Kureh et al., 2003;Jamil et al., 2011), chemicals (Kanampiu et al., 2001(Kanampiu et al., , 2003;;Kountche et al., 2019), intercropping (Rusinamhodzi et al., 2012), improved tolerant/resistant germplasm (Lane et al. 2003) and biological control (Mabrouk et al., 2007a). However, yield loss attributable to Striga is increasing because many promising Striga control methods suffer from limited adoption and utility (Ronald et al., 2017). Low uptake of agricultural technologies is driven by multiple socioeconomic constraints at the farm or higher levels, resulting from lack of/or competing use of land, labor, cash, or organic resources, and reluctance of farmers to experiment with new methods (Oswald, 2005;Giller et al., 2011;Kanampiu et al., 2018).African farming systems exhibit large variability at agroecological, socioeconomic and individual farm scales, such that there are no single solutions as silver bullets to address the numerous constraints to farm productivity (Giller et al., 2011) including the challenge imposed by Striga (Midega et al., 2014;Ronald et al., 2017). An integrated approach is required using direct and indirect measures in a concerted manner to prevent damages of parasitism, and ultimately to eradicate seed bank (Rubiales and Fernandez-Aparicio, 2012). Integrated soil fertility management (ISFM) (Vanlauwe et al., 2010), including incorporation of legumes into cropping systems (Sanginga and Woomer, 2009;Kamara et al., 2014) can contribute to reducing Striga infestation. Many leguminous crops including cowpeas can stimulate suicidal germination of seeds of Striga spp., and are used as trap crops to reduce Striga spp. in cereallegume rotation and intercropping systems. Control of Striga spp. in cereals accounts for 'non-N orother rotational effects' of legume crops as part of their bene cial impacts on soil biological, physical and chemical (except N) properties (Sanginga et al., 2002(Sanginga et al., , 2003;;Yusuf et al., 2009;Rusinamhodzi et al., 2012;Franke et al., 2018). However, major impacts of legumes result from their ability to improve N nutrition of subsequent non-legume crop, referred to as 'N effects', leading to reduced needs in N fertiliser (Giller, 2001;Franke et al., 2018).Strains of rhizobia have been identi ed with potential for controlling the parasitic weed Orobanche crenata in inoculated pea (Mabouk et al., 2007a,b). Inoculation of pea with compatible rhizobia was reported to affect O. orobanche by reducing seed germination, and decreasing root infection with limited capacity for tubercle development and necrosis of attachments (Mabouk et al., 2007a,b). Like most BNF traits of legumes (Ronner et al., 2016;Van Heerwaarden, 2018), control of S. gesnerioides can be anticipated to depend upon multiple component interactions between and among integrated technologies. Considering that the key factors determining productivity/ or performance of legume technologies range from the genotypes of both the legume (G L ) and the associated root nodule rhizobia (G R ), the test climate and soil environments (E), to the agronomic management used (M), such relationship can be expressed as -(G L × G R ) × E × M (Giller et al., 2013). For a given environment, understanding in the same way the relationship between the effectiveness of various combinations of symbiotic partners (G L × G R ) and managements options (M), and the variability in legume infestation by Striga spp. can be of major interest in view of explaining the potential of matching legume variety and inoculant strain in controlling S. gesnerioides. Striga-resistant varieties and promising lines of cowpea have already been identi ed (Lane et al., 2003;Boukar et al., 2016), which provide a key entry point for testing integrated Striga management options. In this paper, we present the results of an integrated evaluation of BNF technologies consisting of crop varieties, rhizobium inoculants, and the application of phosphorus (P) and nitrogen (N) fertilizers.The objectives of this study are (i) to evaluate under screen-house conditions the potential of rhizobia as biocontrol agents against S. gesnerioides in Striga-resistant and susceptible cowpea varieties, (ii) to assess the relative performance of rhizobial inoculants to control Striga infestation of cowpea in the eld as compared with standard mineral fertilisation, and (iii) to identify the most effective combination of rhizobia, cowpea genotype and fertilizer for optimal control of S. gesnerioides leading to increased cowpea productivity.Two sets of experiments were conducted in 2014 in Kano (Kano state, northern Nigeria) under screen house and eld conditions. A screen-house trial was carried out under arti cial irrigation during the dry season at the Kano Station of International Institute of Tropical Agriculture (IITA). A subsequent eld trial was conducted under natural rainfall during the following rainy season at the IITA research farm (12°10'42''N, 8° at 500 m above sea level), located at Minjibir village 45 km north of Kano. Both locations fall under the Sudan savanna agro-ecological zone, where climate is dry with a unimodal distribution of 690 mm annual rainfall over a short growing season (about 120 days) from July to September. The mean monthly rainfall and temperature in 2014 at Minjibir are shown in Figure 1.Soil samples were taken at random in the eld from 0-15 cm depth before land preparation. These were bulked and thoroughly mixed to provide a composite sample, and a sub-sample of this composite was analysed for physical and chemical properties according to standard procedures (IITA, 1989). The abundance of soil bradyrhizobia was determined by the plant infection technique (Vincent, 1970) (Table 1). The soil was coarse textured and texture fell within the loamy sand and sandy loam class (Table 1).Soil organic carbon (9 g kg -1 ) was relatively low and total nitrogen (0.36 g kg -1 ) in the very low N fertility class. The concentration of available Cu (1.07 mg kg −1 ) was low and there was relatively high concentration of Mn (46 mg kg −1 ) and Fe (178 mg kg −1 ) due to the slightly acidic pH (5.6) of the soil (Table 1). Available soil P in the eld (8.6 mg kg −1 ) was low, which is common in sandy Sudan savanna soils with low organic matter content (Kwari et al., 2011).Twenty cowpea genotypes (Table 2) were compared in both screen-house and eld station experiments. These lines had contrasting responses to Striga (Muranaka et al., 2011) and were obtained from the Genetic Resource Center (GRC) of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The Striga seeds were harvested in 2010 from a research farm at Malam Madori in Jigawa State, a Striga hot-spot where cowpea is widely cultivated. Striga seeds were manually threshed, cleaned to remove chaff and then were sterilized with a diluted Sodium hypochlorite (NaOHCl, 3.0%) for 3 minutes. Thereafter, the seeds were soaked in detergent for 5 min, thoroughly rinsed with tap water through a ne sieve and left to air-dry in the laboratory.Bradyrhizobium sp. strain USDA 3384 (National Rhizobium Culture Collection, Beltsville, Maryland, USA) and B. japonicum strain IRJ 2180A were obtained from the soil microbiology laboratory of IITA. These are reference broad host-range rhizobia (Foster et al., 1998;Hashem et al., 1997) and elite soybean inoculant strain (Sanginga et al., 2002;Okogun and Sanginga, 2003), respectively. Each strain was grown in yeast extract mannitol medium for ve days to reach 10 ^9 cell ml -1 , which was used as liquid inoculant in screen-house studies. Bradyrhizobial broths were used to prepare peat-based inoculants to coat seed for eld experiments. Standard peat carrier (APT, USA) was sterilized by gamma irradiation (Ghana Atomic Energy Commission, Accra, Ghana) in bags containing 50 g of peat each. Upon radiation, each bag was aseptically injected with 50 ml of the appropriate rhizobial broth, injection hole sealed, contain thoroughly mixed and then cured in the same bag at 28°C for two weeks to obtain at least 10 ^9 cell g -1 inoculant.In a rst experiment, responses of 20 cowpea genotypes to three inoculation options were assessed under screen-house conditions. Inoculation treatments comprised of the two bradyrhizobial inoculants used separately, and an uninoculated control. Sixty treatments were studied consisting of 20 × 3 factorial combinations of both factor levels. Treatments were established in three replications using a split plot arrangement where inoculation options were randomly assigned to main plots and cowpea genotypes to sub-plots as to minimize cross contamination. Cowpea plants were grown on potted-soil infested with Striga seeds using a modi ed protocol of Singh and Emechebe (1990). A mixture of top soil and river sand (2:1; v/v) was prepared and sterilized by autoclaving (120°C 1 h) prior to incorporating Striga seed.Growth units consisted of plastic pots (13 cm, height and width) containing ca. 2.5 kg pot -1 soil mixture.Four seeds of cowpea were planted and inoculated with 1 ml of bradyrhizobial broth pot -1 . The growth units were subsequently irrigated with tap water as necessary on alternate days to ensure adequate moisture and good germination. Pots were thinned to two seedlings at 2 weeks after planting then fertilized with 180 mg P as single super phosphate (SSP, 18% P 2 O 5 ). Seedling leaves were further sprayed with a combined insecticide (35 ml of Lamda cyhalothrine and 75 ml of Cypermethrin plus Dimethoate in 15 liters sprayer) to control insect pests.In a second experiment conducted in the eld, responses of the same cowpea varieties to ve N including the above inoculation treatments were monitored. The N treatmemts were urea fertiliser, the two inoculants, a control, and a negative check with no input (inherent soil fertility). Except for the negative check, all N treatments were tested under basal P application as described bellow. A total of 100 individual treatments were de ned as factorial combinations of the cowpea genotypes (20) and Nsources (5), and replicated thrice in eld-testing using a split design as previously described. Cowpea was planted on land heavily infested with Striga ( ve plants m -2 on average). The eld was mowed, the soil harrowed and the plant debris removed. The eld was then ridged at 0.75 cm apart. Cowpea seeds were pre-treated with fungicide-insecticide Apron Star (20% w/w Thiamethoxam, 20% w/w Metalaxyl-M, 2%w/w Difenoconazole) to prevent soil-borne pests attack on seeds and seedlings. Plots (6 ridges x 4 m) were planted manually at the rate of three seeds per hill with 0.2 m intra-row spacing. Immediately before planting, cowpea seed was costed with peat-based inoculants (10 g kg -1 seed) using a solution of gum Arabic (ca. 20 g l -1 ) as sticker. Pre-emergence herbicide Paraquat and Pendimethalin (3 l ha -1 ) was sprayed immediately after sowing to control weeds. Two weeks after planting, plots were thinned to two plants per hill and SSP fertilizer was applied at the rate of 30 kg P ha -1 . Lamda cyhalothrine 25 EC (0.7 l ha -1 ) and Cypermethrin, plus Dimethoate (1 l ha -1 ) was applied at owering stage to control insect pests.The eld was maintained free of weeds except Striga plants by regular manual weeding at three, six and eight weeks after planting.In the screen-house study, plants were harvested at 64 days after planting (DAP). Potted plants were cut at the soil level and pots were gently ushed with tap water to discard soil from the root systems for count assessment of nodules, Striga attached to roots and emerged Striga. All plant parts were oven-dried separately at 65°C for 48 hours for biomass. In the eld trial data were collected from the owering stage onward. Twenty plants were randomly uprooted from border rows of each plot, nodules recovered, counted and oven-dried as above for dry mass assessment. Number of emerged Striga plants was monitored three times from the two central rows of plots until 70 DAP and cumulative number calculated. At maturity, the same inner rows were harvested, shoots, pods and grains air-dried and weight recorded.Biomass data (cowpea and Striga dry weights) from the screen-house trial, and grain yield from the eld study were analysed using a linear mixed model where genotype, strain, and genotype x strain were considered as xed effects, and replicate, genotype x replicate as random effects. Count data across screen house and eld experiments (number of nodules, Striga attachments and emerged plants) were analysed using a generalized mixed model (McCullagh and Nelder, 1989) assuming a Poisson distribution. Least-squares means and the associated standard errors derived from the mixed model were computed. Custom hypothesis tests were used to perform contrast comparisons between speci c groups among cowpea genotypes and N-sources (see Table 3 and Table 5). All data were analysed using MIXED (linear mixed model) and GLIMMIX (generalized linear mixed model) procedures in SAS/STAT software, Version 9.4 of the SAS System for Windows (SAS Institute, 2019).3.1 Striga infestation, nodulation and plant growth in screen-house bioassay At harvest 64 DAP, a majority of inoculated cowpea plants poorly nodulated as it has reached physiological maturity. (Fig. 2). The occurrence of nodulation appeared to be inversely-related to infection of cowpea roots by Striga, with most plants exhibiting either nodules or Striga attachments (Fig. 3A-B). In addition, nodulation, cowpea growth and Striga infection traits showed signi cant inter-correlation (Fig. 3; Fig. 4A-D).There was a differential response of cowpea genotypes to inoculation treatments in shoot dry weight (P=0.0155, Table 3). Resistant varieties grew the best, yet were not responsive to inoculation in pots; Opposite to this, susceptible lines showed substantial responses to inoculation gaining on average up to 63% shoot growth improvement (P < 0.0001, Table 3; Fig. 5A). Similarly, there were large differences between susceptible cowpea varieties which had signi cantly larger counts of emerged Striga plants (P=0.0047) and number of Striga attachments to cowpea than resistant varieties (P < 0.0001) (Fig. 3;Table 3; Fig. 5B-C). The number of emerged Striga plants from pots was the higest (2.5 plant -1 ) for susceptible genotypes grown without inoculation (control treatment) (P=0.0168; Fig. 5B). Moreover, inoculantion with strain IRJ 2180A was the most effective totally in preventing emergence of Striga plants in the potted susceptible genotypes (P=0.0246; Fig. 5C). On average, the smallest numbers of Striga attachments to cowpea roots were observed in resistant varieties (P=0.0046), and in inoculated plants (P=0.0065, Table 3; Fig. 5D-E). When compared with the uninoculated (control) treatments, addition of rhizobial inoculants was more effective in reducing Striga attachments on resistant (90%) than susceptible (80%) varieties (P=0.0168; Fig. 5D). Resistant genotypes performed best against Striga attachment to root with strain IRJ 2180A inoculant (P =0.0246; Fig. 5E).At early owering the eld-grown cowpea genotypes had 14.9 nodules plant -1 on average with signi cant differences among varieties (P=0.0315), and between nutrient management options (P < 0.0001; Table 4; Fig. 6A-D). Nodule number was the least (5.3 nodules plant -1 ) for cowpea managed without any input (P < 0.0001; Fig. 6A). The application of P fertilizer alone improved nodulation (13.1 nodules plant -1 ), but to a lesser extent than when combined with nitrogen sources (P+N) (P < 0.0001; Fig. 6B). Addition of urea resulted in less nodules (13.3 nodules plant -1 ) than when rhizobial inoculants were applied (21.5 nodules plant -1 ) (P < 0.0001; Fig. 6C). Among the inoculant treatments, the largest number of nodules was found in the presence of the strain IRJ 2180A (29.8 nodules plant -1 ; P < 0.0001, Table 4; Fig. 6D).Overall, strong positive relationships were found between nodule number and cowpea yield and negative relationships with Striga emergence (Fig. 7). Emergence of Striga plants decreased with increasing nodule number, which led to improved cowpea yield (Fig. 7A-C). The density of Striga plants was highest for the less nodulated cowpea plants managed without any input (≤5 nodules plant -1 ) and lowest for the abundantly nodulated plants under P+ IRJ 2180A treatment (≥25 nodules plant -1 ) (Fig. 7A). Cowpea grain yield had a signi cant (negative) correlation with Striga count (Fig. 7B).Signi cant variety x management interactions were observed in the cumulative count of emerged Striga plants (P < 0.0001, Table 4). Plots with resistant cowpea varieties were remarkably free of emerged Striga almost throughout the eld experiment (Fig. 8A-D). Susceptible varieties had stronger infestation with Striga count dependent upon the management option (Fig. 8A-D). Sprouting of Striga was densest without any amendment (no input) compared with nutrient addition (P < 0.0001, Table 4; Fig. 8A). On average, managing susceptible cowpea varieties with various combinations of P and N-sources led to more than 2.6-fold reduction in the number of Striga plants relative to plots without any input (Fig. 8A). Effectiveness in the control ranged from the least with P alone to the highest for P combined with Nsources (Fig. 8B). However, emerged Striga count when fertilized with urea was comparable with that for rhizobial inoculants (Fig. 8C-D).The differential responses of the cowpea genotypes to management options resulted in large grain yield differences at harvest (P < 0.0001, Table 4). Grain yield as well as its response to input additions was consistently stronger in resistant than susceptible lines (P < 0.0001, Table 4; Fig. 9A-D). Overall, grain yield was more than doubled in response to nutrient supply compared with no input treatments, with increases being greater for resistant (128%) than susceptible (119%) lines (Fig. 9A). On average in addition, grain yield in susceptible varieties was more responsive to P alone (+16%) than P+N treatments (P < 0.01, Table 4; Fig. 9B). Under P supply however, yield response of the cowpea varieties to N was signi cantly higher (ca +10%) with inoculant than urea (P=0.0174; Fig. 9C). Overall, cowpea yielded substantially more grain (31 -34 % more) with inoculant strain IRJ 2180A than USDA 3384 (P < 0.0001; Fig. 9D). Also, resistant varieties outperformed susceptible lines in yield responses to inoculation, which was most obvious in the presence of inoculant strain IRJ 2180A (P = 0.0043; Fig. 9D).Our results demonstrate that integration of resistant varieties, fertilizer application and inoculation with Bradyrhzobium could effectively control Striga in cowpea. A potted-soil system was used rst to investigate genotypic variability in cowpea responses to co-inoculation with rhizobia and Striga in the screen-house. In the presence of viable Striga seeds, rhizobial inoculants were unable to trigger an adequate nodule formation in cowpea plants (< 1 nodule plant -1 on average), but strongly reduced plant infestation by Striga as compared to the control without inoculation. On average, the resistant cowpea varieties had the least number of attachments to root and emerged Striga shoots and dry weight. Surprisingly, resistant varieties were also found to be the most responsive to rhizobial inoculants for the control of Striga: compared with the uninoculated control plants of these varieties, there was as high as a tenfold reduction in the number of Striga attachments which resulted in cowpea plants almost clean of parasites. For the susceptible cowpea lines on the other hand, Striga infestation was best controlled by inoculation contributing to a better shoot growth.In comparison with some practices recommended against Striga such as hand or hoe-weeding and conventional biocontrol, which operate only when the parasite has already switched the crop and subsequently developed emerged shoots, eradicating the seed bank and preventing root colonization by Striga may be the ideal solution to its control (López-Ráez et al., 2008;Kountche et al., 2019). In this regard, our ndings compare well with effective control methods described for S. hermonthica management in maize, which consist of the application of herbicide chemicals (imazapir) to herbicideresistant maize hybrid (Kanampiu et al., 2001(Kanampiu et al., , 2002)). This maize technology is reported to induce death of Striga organs including attachments and germinating seeds around maize roots over several weeks after planting, therefore leading to host plants clean of Striga, depleting Striga seed bank and improving crop productivity (Kanampiu et al. 2002(Kanampiu et al. , 2003)).Cowpea lines grown in elds infested with S. gesnerioides readily formed root nodules without inoculation, demonstrating the presence of adequate native populations of compatible rhizobia. Unlike other legume crops such as soyabean which have a symbiotic requirement for speci c rhizobial strains, cowpea is a promiscuous host, able to form root nodules with a broad range of highly diverse rhizobia (Giller, 2001). On the other hand, poor soil fertility is a major constraint to the proper establishment and function of legume symbiosis in sub-Saharan Africa (Vanlauwe et al., 2019). The improved nodulation of cowpea with addition of P is indicative of inadequate soil P supply, as also reported on various legumes in sub-Saharan Africa (Ronner et al, 2016;van Heerwaarden et al., 2018;Belete et al., 2019;Rurangwa et al., 2018). It appears that cowpea generally needs fertilization with P, except in some favourable sites such as in Ghana where eld-grown cowpea genotypes nodulated well without any nutrient addition (Adjei-Nsiah et al., 2008).Cowpea nodulation was enhanced by the combined application of P and rhizobial inoculants, which gave better nodulation then when urea was, applied (Fig. 5). Combined nitrogen is often recommended for legumes as starter N at moderate rates not inhibitory for nodule formation (Streeter, 1988;Sylvester-Bradley and Cross, 1991;Thies et al., 1991;Waswa et al., 2014;Giller et al., 2016). The slight improvement in nodule number observed with N addition suggests the rate of 20 kg N ha -1 to be suitable to serve as an effective starter N. In a eld study conducted in Brazil by Freitas and Silva (2012), however, the same rate of urea was reported to have negative effects on the symbiotic performance of indigenous rhizobia in cowpea. There is little justi cation to use starter N on legumes in sub-Saharan Africa.This study reports the rst investigation of the potential bene ts that can be derived from the management of rhizobial inoculants under pressure of S. gesnerioides pest on eld-grown cowpea. As expected from previous genotypic characterization studies (Lane et al., 2003;Muranaka et al., 2011) the results revealed a consistent varietal effect on Striga infestation with a clear discrimination between resistance and susceptible lines. Striga plants were not observed in the plots planted to resistant lines and signi cant interactions between the variety and the management option were evident. Nodule abundance increased in the eld with the strain IRJ 2180A demonstrating its high competitive ability, as also reported by earlier studies conducted in the semi-arid zone of Brazil with various inoculant strains (Martins et al., 2003). Competitive Brazilian strains were observed to improve nodulation of eld-grown cowpea in Ghana (Boddey et al., 2016) and in Mozambique (Boddey et al., 2016;Kyei-Boahen et al., 2017), leading to improved productivity.Nutrient addition options, either P alone or in combination with N also supressed Striga emergence. The positive effects of both fertilizers can partly be explained by the alleviation of nutrient de ciency (N and/or P), as poor soil fertility is known to favor the spread of S. gesnerioides (Sanginga and Woomer, 2009). Jamil et al. (2011) showed that N and P de ciencies induce increased secretion of Striga spp. seed germination stimulants (SLs) by maize resulting in increased infection of the host plants, which was reduced with the application of fertilizers. In our study, emergence of Striga was best controlled with rhizobial inoculants (as bio-fertilizers), and this was clearly due to the striking performance of the strain IRJ 2180A. By contrast strain USDA 3384 performed poorly in suppressing Striga infestation, possibly because of it being a poor competitor compared with native soil rhizobia. Besides being a good competitor, the inoculant strain IRJ 2180A appears also to be highly effective in N 2 -xation, which together P fertilizer, led to a better nutrition of the host. Taken together, our ndings suggest that the improved nutritional status of cowpea, indicated by better vigour, as the most likely major mechanism through which Striga infestation was mitigated. In addition, colonization of the roots by rhizobia and nodule formation may compete with Striga for potential colonization sites as a barrier contributing to reducing the infestation by the parasite.The effective reduction in the number of Striga plants in the eld always resulted in better grain yields and differences were consistent with trends in the repression of the parasite (Figs. 6 and 7). Unless supplemented with rhizobial inoculants and P fertilizer, productivity of cowpea was generally very poor. This demonstrates that the comparative advantage of varieties bred speci cally for resistance to Striga was insu cient to ensure good yields. The increase of cowpea yield obtained here with the combined use of fertilizers, rhizobial inoculants and improved germplasm is a clear application of the concept of integrated soil fertility management (ISFM) needed for the sustainable intensi cation of African agriculture (Vanlauwe et al., 2015).We have demonstrated the potential of using bradyrhizobial inoculants as effective biocontrol agents as part of an integrated strategy against S. gesnerioides weed infestation of cowpea. Infestation of eldgrown cowpea by Striga was strongly reduced by rhizobial inoculants together with moderate P fertilization. Further, evidence of a strong genotypic host plant x rhizobia strain interaction highlights the possibility for further selection of combinations to counter Striga damage.Soil property Value pH (H 2 O) 5.6 N (g kg -1 ) 0.36 Bray P (mg kg -1 ) 8.61 C (g kg -1 ) 9Sand (g kg -1 ) 800Silt (g kg -1 ) 80Clay (g kg -1 ) 120Ca (cmol kg ","tokenCount":"4804"} \ No newline at end of file diff --git a/data/part_1/1406009554.json b/data/part_1/1406009554.json new file mode 100644 index 0000000000000000000000000000000000000000..191032caff13e4a5ce08fd3343e793163c622eb9 --- /dev/null +++ b/data/part_1/1406009554.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"86aab276160fe334cc2bacc96444966f","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/caabef37-40fd-43d5-a68d-89d0a3f58c32/retrieve","id":"908083022"},"keywords":[],"sieverID":"9fce327e-1935-4418-b56d-ad8fd28c8f93","pagecount":"37","content":"This work was carried out with support from the CGIAR Initiative on Low-Emission Food Systems. We would like to thank all funders who supported this research through their contributions to the CGIAR Trust Fund.Wetlands cover 6% of the global land surface, and they account for 12% of the global carbon pool (Erwin 2008). Various definitions of wetlands are provided in the literature. RAMSAR (2007) defines it as \"areas where water is the primary factor controlling the environment and the associated plant and animal life. They occur where the water table is at or near the surface of the land, or where the land is covered by water.\" Another definition provided by Wetlands International (Nd) states that they \"occur wherever water meets land. These unique habitats include mangroves, peatlands and marshes, rivers and lakes, deltas, floodplains and flooded forests, rice-fields, and even coral reefs.\" Total wetlands in Vietnam encompass nearly 10 M ha (Thanh and Yabar 2015). The Vietnamese Mekong Delta (VMD) is a significant wetland ecosystem that contributes to Vietnam's biological diversity and economy. There is a strong co-dependence across the delta-from the flush of sediment that moves through the system, the tidal flows, and the interconnectedness of these. Modern modifications to water movement within the system risk its functionality, and very little research has been done to understand the long-term impacts of these. Water resources in the area and the livelihoods dependent on the system are at risk due to the anticipation of climate change. Unique habitats such as mangroves, which provide valuable ecosystem services, are threatened by land use changes. However, the national food security and the national budget of the VMD benefit from the income of large industries based around fisheries and aquaculture. The present review here seeks to collate the literature around land use within the VMD and likely management scenarios, allowing us to explore the greenhouse gas (GHG) emissions potential of land use activities. The key objective of this review is to inform discussion around climate mitigation opportunities, as well as the long-term sustainability of the system. This report consists of five main sections after this introduction: Section two -Wetland characteristics in the VMD; section three -emissions from wetlands in the Mekong Delta; section four -review of models for estimating GHG emissions; section five -GHG emissions from potential land use change in the Mekong Delta, and section six -conclusions.Vietnamese Mekong DeltaThe Vietnamese Mekong Delta (VMD) wetland area covers nearly 5 M ha of land (Table 1). It consists of an ecosystem abundant with tidal floodplains, peatland marsh, coastal marsh, and estuaries within the territory. These wetlands could be split into different types based on their characteristics. Typically, the majority of VMD wetlands are freshwater wetlands, and their area is nearly 40% of the total wetlands in VMD. Saline lagoons are found least in VMD, and it is only 2521 ha as an area (Tung and Dap 2020). The following table (Table 1) illustrates the areas of typical wetland types in VMD. Source: Tung and Dap (2020) Other studies have used different names for different wetland categories and reported different numbers, e.g., Table 2 (Torell et al. 2001). Some studies further break this classification down to specific uses, such as open water, mangrove, deciduous forest, evergreen forest, mixed forest, built-up, single rice crop, double rice crop, triple rice crop, crops other than rice, barren land, aquaculture, grassland, and wetland (Mondal et al. 2022). According to the Mekong Delta Plan, the VMD is generally divided into upstream delta flood plains and downstream delta (Tran et al. 2019). The upper area of the VMD is dominated by rice cultivation. In between this area and the coast lay areas of seasonally flooded grassland (Triet nd). The lower coastal region of the delta is characterized by aquaculture and intact mangrove systems and has been broadly categorized as dense mangroves, sparse mangroves, aquaculture farms, arable land with crop cover, arable land without crop cover, settlements, and water bodies (Hong et al. 2019). Seasonal flooding ensures significant sediment deposition into the delta, which is vital for continued successful production. Dikes, sluice gates and water supply canal infrastructure were installed to prevent flooding and inundation from salt water, thus maintaining the suitability of the area for cropping (Mondal et al. 2022). Therefore, the government planning over the regulation of freshwater hydrology is one of the critical factors that have led to the successful development of the area (Mondal et al. 2022). Vietnam's fishery and aquaculture industry accounts for approximately 5% of the national Gross Domestic Product (GIZ 2021). Fisheries within the VMD are dominated by both subsistence and small-scale fisheries, with fishermen in the rivers and reservoirs or rice farmers making use of their fields and small canals for fishing (Torell et al. 2001), as well as large-scale industrial fishing and processing of products. Marine fisheries of the VMD are located within both the river estuaries and the South China Sea (Tuan et al. 1998). Alongside fisheries, other aquatic-based food is derived within the VMD-such as frogs, snails, crabs, shrimps, and insects. Aquaculture, specifically shrimp farming, has shown significant growth over the past decades (over 50% from 2010-2017), often integrated with agriculture systems in some areas within VMD (Dang 2020).The cultivation of rice in the delta plays a key role in the country's (and region's) food security (Torell et al. 2001). Rice can be grown in up to three seasons in the year-Winter-Spring, Summer-Autumn, and Autumn-Winter (Clauss et al. 2018). Within the delta, the dike management (and farmer preference) tends to figure out whether farmers grow rice either once, twice, or thrice in the year. Double rice cropping and aquaculture are the top two land use categories in the VMD (Mondal et al. 2022), although areas of triple rice have been shown to increase significantly in recent years as it replaces double rice (Vu et al. 2022). However, there are sustainability issues around the expansion of triple rice, especially in relation to climate, water, and land (Mondal et al. 2022). The construction of dikes to sustain triple rice cropping in the upper areas of the VMD appears to have a significant impact on the annual flooding regime, which could lead to disastrous effects on the broader use of the delta (Vu et al. 2022). Temperature and precipitation particularly limit the viability of triple rice going forward, as there has been a 31% reduction in rainfall in the triple rice crop area (over 2000-2018) in A Giang and Dong Thap provinces, aligned with the general precipitation decline across the delta (27% over the same time period) (Mondal et al. 2022). Some farmers have already been reported to have changed their cropping practices in 2015-2018 away from rice entirely-potentially due to drought, which affected rice productivity (Mondal et al. 2022).Drivers of change in land management across the VMD can be attributed to increased exportation of food products produced within the delta, population growth and urbanization, intensification of agriculture (increased fertilizer and pesticide use), changes in sea level and increased salinization (Drogoul et al. 2016).Installing high dikes encourages the intensification of rice production, preventing flood waters from entering fields during flood season. While this allows farmers to access a third yield and thus improve their income, there are noticeable determinantal effects from this intensification and change in hydrological management. The installation of high dikes has led to reductions in water retention capacity, increased flood risk, diminished dry season flows (exacerbating saltwater intrusion), disrupted ecosystem service flows, and prevented refreshing of fertile sediments and wild fish into rice fields (Tran et al. 2018). In addition, the productivity of triple rice farming systems has been shown to diminish over time, as farmer profits have been reported to reduce over a 15-year period (Tran et al. 2018).The costs of production, 58-91% higher in triple rice compared to in the lower dike/double rice crop areas due to the higher level of fertilizer and pesticide inputs required, increase over time as the system becomes less productive. While the profitability of the triple rice system was shown to be 57% higher initially, this was reduced to just 6% higher after 15 years (Tran et al. 2018). Tran et al. 2018 also examined the benefits of alternative farming and found that mixed farming systems (e.g., rice and vegetables or fisheries) could increase farmer income by 12-268% whilst maintaining the environmental integrity of the system.Along the coastal areas dominated by aquaculture, expansion of shrimp farming causes increased loss and degradation of mangrove systems (Hong et al. 2019). Other drivers of mangrove loss in this area are the collection of wood for fuel, cutting trees for house construction materials and rapid urbanization. The continued mismanagement of these systems has hampered the government's efforts to encourage sustainable mangrove use.We can broadly classify critical ecosystems and land management within the delta based on the dominant land use and future scenarios (Table 3). From these, seasonally flooded grassland and mangrove areas are currently under the threat of conversion to rice and shrimp aquaculture, respectively.Within each of these wetland types, a level of heterogeneity can be expected, e.g., due to different species, soils, and history of land management. Significant variability in the level of disturbance, recovery from disturbance (both natural and plantations), species and coastal versus inland environmental influences within mangrove areas can be identified from the remotely sensed data of mangrove systems (Vo and Kuenzer 2012), although this will likely still require some element of ground-truthing. The greenhouse gas emissions of the wetland types described in Table 2 can be explored in this section.Driven by national policy (Linh and Thang 2015), there has been extensive, long-term expansion of rice production within the VMD, facilitated through hydrological management of the area with dams, canals, sluice gates, saline intrusion flood gates and monitoring of water quality, sedimentation, and soils (White 2002). Recent policies, such as the \"1 Must Do and 5 Reductions' have also influenced rice management and expansion in an attempt to adjust unsustainable rice production practices such as poor water management and overuse of pesticides and fertilizers (Flor et al. 2021).Under its Nationally Determined Contributions to the United Nations Framework Convention on Climate Change, Vietnam states its efforts to reduce GHG emissions and include the withdrawal of water in the middle of cropping cycles to reduce methane (CH4) emissions, as well as improved conversion of rice land (Socialist Republic of Vietnam 2022). Measures to reduce CH4 emissions in subsectors of agriculture, especially wet rice farming, is a key focus for implementing Vietnam's stated efforts to reduce CH4 emissions by 30% of 2020 levels by 2030 over at least 1.2 M ha of land (Torbick et al. 2017;Socialist Republic of Vietnam 2022). Conversion to more diversified systems, especially higher value crops and allowing for the natural flood regime to be restored are also promoted, with examples of evidence-based suggestions for diversification including single rice with a four-season squash, double locus crop with tourism, floating rice with vegetables, or triple rice but with a fishpond or vegetables (Tran et al. 2018). Land use for rice cultivation classified into single, double, and triple rice crops in VMD mapped using Sentinel-1 and Sentinel-2 satellite data is represented in Figure 1. Substantially higher rates of agrochemical use for rice production in triple cropping rice systems have been reported, with 30% of fertilizer use higher than in low-dike farming systems, equivalent to 100-200 kg ha -1 crop -1 , and up to 90% higher in some areas [300-500 kg ha -1 crop -1 (Tran et al. 2018)]. The use of pesticides has also been reported to be higher in high dike systems, in one study rising 5% (4-12 bottles ha -1 crop -1 ) to 39% (16-25 bottles ha -1 crop -1 ) (Tran et al. 2018). The application of nitrogen (N) fertilizer in the form of N-N2O (nitrous oxide) for continuously flooded rice results in an emission factor of 0.3%, as determined by the Intergovernmental Panel (Vo et al. 2020). Consequently, it can be inferred that the elevated usage of N fertilizer is unlikely to have a substantial impact on greenhouse gas (GHG) emissions. Low or negligible N2O fluxes have been reported from multiple studies in the rice systems of the VMD (Drogoul et al. 2016;Vu et al. 2022)., including studies that captured seasonal variability in emissions (Oo et al. 2013) likely due to suppression of nitrification-denitrification processes due to anaerobic conditions.There are some key influencing features for consideration when exploring the GHG dynamics of rice in the Mekong Delta.Season-based GHG emission factors have been found to be more significant than agrozone based emission factors. This could be likely due to both land management decisions, such as the avoidance of adverse seasonal effects through adjusting cropping calendars, protection of rice-grown areas from adverse seasonal effects through improved infrastructure in canals and sluices (Vo et al. 2020), management of soils [such as incorporation of straw (Nauditt and Ribbe 2011)] as well as greater difference in seasonal environmental conditions such as temperature. Based on a study of 36 sites across the rice growing areas of Vietnam and covering 73 different cropping seasons, daily emission rates were found to be not significantly different between the edapho-hydrological zones of the Mekong Delta, with season-specific effects superseding zone-specific effects on CH4 emissions (Vo et al. 2020). The same study identified that there were significant differences between emission factors in the seasons for both the Northern and Southern regions (although not the Central region) and recommended that different emission factors should be applied for different seasons in the North and South and not needed for the Central region (Vo et al. 2020). Several studies based on the seasonality of rice crops identify the significance of applying the emission factors rather than one emission factor for the whole region.In a study in northern Vietnam across three crops in the year (rice-maize-rice), total cumulative CH4 emissions were between 2 to 2.5 times higher during the summer rice season than during the spring rice season, with no emission peaks in the initial period after transplanting in the spring season (compared to the summer season which had a pronounced peak in emissions 9 days after transplanting the rice (Vu et al. 2015). This was assumed to be due to the low air temperature during the spring season. Contrasting seasonal patterns of CH4 emission were also observed in another study in Northern Vietnam, this time in a double-cropped rice system where CH4 flux peak occurred in the initial period after planting in the summer, but the peak was not as high in the spring rice crop and was observed in the middle to later growing periods (Oo et al. 2013). This was likely due to high soil temperature and, therefore, high soil organic matter turnover due to increased microbial activities, decomposition of recent decaying plant residues from shed leaves and root turnover, and high availability of root exudates in the rhizosphere (Oo et al. 2013).CH4 emissions are significantly lower in the spring season than in the summer season, and rice yields are higher (Vu et al. 2015). It has been identified that total cumulative CH4 emissions were between 2 and 2.5 times higher in the summer rice season than in the spring rice season (Vu et al. 2015). This can give a much lower yield-scaled global warming potential (GWP) in the spring rice season than in the summer; the yield-scaled GWP for spring rice was approximately 1 kg CO2 e lower per kg of rice grain than in the summer across multiple organic amendments treatments in a northern Vietnam study (Vu et al. 2015). A study in a double rice cropped system in the Red River Delta, Vietnam, also reported CH4 emissions to be higher in the summer than in the spring but found higher N2O fluxes observed in the spring than in the summer, which generally coincided with fertilization and drainage events (Tariq et al. 2017). Tirol-Padre et al. in Nauditt and Ribbe (2011) observed seasonal variability in CH4 emissions, but also between the same seasons in consecutive years, which was attributed to farmer management through the incorporation of incompletely burnt rice straw residues prior to the summer season and then the removal of rice straw from the field the following year (Nauditt and Ribbe 2011). In addition to seasonality, other factors related to rice cultivation, like water table, soil type, etc., affect GHG emissions.The water table is a key environmental feature that significantly affects CH4 emissions due to the anaerobic digestion of organic material (Tariq et al. 2017). Hydrological management of rice paddies has the potential for significant CH4 emissions reductions. A study (Tariq et al. 2017) comparing inefficient and efficient water management in rice paddies demonstrated higher GWP (through CH4 and N2O emissions) in inefficient systems compared to efficient ones. Continuous flooding in the inefficient water management scenario resulted in the highest GWP of all other scenarios (mid-season drainage, pre-planting plus mid-season drainage and early season plus mid-season drainage). A noticeable dynamic modification of conventional water practices is essential for mitigating CH4 emissions, for example, managing water levels after incorporating rice residues, which can generate higher CH4 emissions if allowed to decompose anaerobically (Tariq et al. 2017). Other water management techniques such as Alternative Wetting and Drying have been shown to reduce CH4 emission significantly across all seasons, with one study demonstrating an average 71% reduction in emissions compared to those from continuous flooding (with no significant effect on N2O emissions, Nauditt and Ribbe 2011).Soil conditions and environmental variables can also significantly affect CH4 emissions. Oo et al. 2013 demonstrated a significant correlation between CH4 emissions and soil temperature in a study in northwestern Vietnam. They also demonstrated significantly negative correlations between CH4 emission and soil Eh in almost all treatments and a negative correlation between surface water pH and CH4 emissions (Oo et al. 2013).Studies using a model-based approach to estimate CH4 emissions likely highlight other features of significance due to the model structure and key parameters. Researchers applied the Denitrification Decomposition (DNDC) model to the Red River Delta and found that the most significant drivers of rice methane emissions in continuously flooded areas as soil texture (clay fraction), soil organic carbon, and temperature and residue fraction to a lesser extent (Torbick et al. 2017).Carbon inputs from organic amendments such as fresh manure, composted manure, digestate, biochar and composted digestate with rice straw, as well as N fertilizer, can all lead to increased CH4 emissions due to the increased C input to the soil. Vu et al. reported this influence in their 2015 study, although the specific amendments based on a combination of liquid digestate, biochar and nitrogen did not lead to as significant CH4 emissions compared to others (Vu et al. 2015).The use of daily emission factors allows accurate estimation of GHG emissions from rice cultivation, but data on cultivation periods is also required. While cultivation periods can be spatially variable (Vo et al. 2020), data on lengths of cultivation periods could be obtained from interviewing farmers or from earth observation data (Torbick et al. 2017;Vo et al. 2020). Alternatively, seasonal emission factors could be used if assessing regional emissions estimates, although this would result in less refined results (Vo et al. 2020). Land use classification and GHG emissions information derived from existing literature are presented in Table 4. Mangrove forests are specifically found along coastal areas with tree species specially adapted to their environment with substantial woody root structures supporting the tree's growth in waterlogged soils. Mangrove systems provide multiple ecosystem services, including the dissipation of ocean wave energy (particularly valuable in minimizing the impact of extreme events such as tsunamis), the build-up of sediment over time, the absorption of pollutants, and habitat for unique fauna.Specifically, within the VMD, the mangroves cover approximately 1,000 km 2 of area, with a linear coverage of 23%, or 3,612 km of the coastline (Global Mangrove Watch 2022). The extent of mangrove coverage within the VMD has decreased by 82 km 2 from 1996 to 2020.The following map shown in Figure 2 indicates the mangrove extent in VMD (Global Mangrove Watch 2022). Degradation of VMD's mangroves has been significant, with a 50% reduction in the mangrove forest area since the mid-1900s (Do and Thuy 2022). There are a few activities which impact on Vietnams mangroves, including:o Extraction of wood (for timber, charcoal, or firewood)o Seaport construction and pollution o Shrimp Farming o Salt Production Seaport construction has led to the degradation of coastal ecosystems through habitat destruction and pollution of both air and water. A recent awareness of seaport impact has led to a novel approach to \"green seaport development,\" which protects the environment while still delivering on economic development. Its development includes both the prevention of environmental damage (from pollution), as well as the conservation and enhancement of coastal ecosystems so that they can continue to provide ecosystem services and absorb and mitigate seaport impact (Tinh et al. 2022).Vietnam is one of the world's largest producers of shrimp, with farms often found in mangrove areas. Shrimp farming has been shown to impact marine-based catch, with changes to hydrological processes, soil acidification and GHG emissions, and loss of mangrove habitat (Tue et al. 2014). Integrated, climate-resilient mangrove shrimp farming in the VMD, involving the restoration of mangroves and protection of mangrove biodiversity and ecosystems, is currently being supported via donor-based project development in partnership with the Government of Vietnam (IUCN 2016; SNV 2023). Emission estimates from shrimp farming are limited in the literature and appear to vary depending on the type of shrimp farming used. Shrimp farming methods include intensive, semi-intensive, improved extensive, mixed mangrove concurrent systems. Mixed mangrove systems have the highest CH4 emission amount per volume of shrimp due to the land cover changes (up to 61% deforestation) for installation of this system (compared to the rice paddy system) (Järviö et al. 2022).Human activities also cause mangrove degradation due to deforestation. Whilst mangrove wood extraction for construction and firewood is illegal in protected areas, it is a common cause of mangrove degradation by households (Vo and Kuenzer 2012).Salt farming is concentrated in areas where seawater is most prevalent and is based on the construction of large evaporation ponds from which the salt can be collected. Installation of these ponds also results in completely removing the mangrove vegetation.While the degradation of mangroves is an issue in the VMD, restoration in some areas has taken place, restoring both damage due to the war (Nam et al. 2016) and other developments (Tinh et al. 2020). Restoration is either done through natural regeneration or planting mixed mangrove species or monoculture. A study comparing naturally regenerated versus assisted regeneration found no significant difference in vegetative carbon stocks between the two restoration approaches (Nam et al. 2016). However, impacts of restoration on soils show a variability (potentially due to higher variability in soils) with differences reported in soil carbon stocks in the soil surface in restored mangrove forest versus intact mangrove forest (driven by lower bulk density and higher carbon content reported in the intact mangrove forest) (Tinh et al. 2020).There are some key influencing features to consider when exploring the GHG dynamics of the mangroves of the Vietnamese Mekong Delta.Soil carbon stocks have been shown to vary not only between locations, ranging between 186 to 1575 t C ha -1 in Vietnam (Järviö et al. 2022) but also at depth. A study in Northern Vietnam reported a significant variability in soil carbon at depth increments down to 100 cm (Pham et al. 2020). In addition to this, the total depth of the highly organic mangrove peat soil (and thus the potential total carbon loss from land use change) also varies from location to location.Hydrology is an important feature of the mangrove system-determining the rates of sedimentation, salinity intrusion and potential exposure of soils to aerobic conditions. Hydrological impact on mangroves also influences their soil condition and movement of carbon from the system, with a 50% difference reported in mangrove soils between provinces attributed to how well protected the wetlands were from waves (Tinh et al. 2020). This is also applicable to other particulates, including trace metals, whose precipitation and movement within and from mangrove systems is influenced by tidal movement (Nho et al. 2020).A review of the current Voluntary Carbon Market Standard registries 1 returned over 50 mangrove-based carbon projects, either under development or validated by the Standards, that involve either restoration or protection of mangroves. While this demonstrates a strong potential for conservation and restoration efforts to avoid the loss of carbon volumes and sequester carbon, only limited data is available on these projects' actual carbon benefit numbers.Carbon storage in Vietnamese mangroves has been shown to range from fringe to interior forests between 719  38 into 802  12 Mg C ha -1 [in the above and below ground biomass, woody debris and soils (Tue et al. 2014)], although this sits outside the lower bounds reported by global estimates of between 437 to 2,186 Mg C ha -1 and a mean value of 1043 (Nally et al. 2010). There is variability in the carbon storage in mangrove soils, depending on soil depth and organic matter contributions and the impact of coastal processes. Carbon stocks and other physiochemical properties within the soils can vary within a single mangrove system (for example, across a forest gradient), with inner forest areas exhibiting higher contributions of mangrove-contributed soil organic matter and higher carbon stocks in plant biomass than the mudflat zone (Vinh et al. 2021). Literature on above and belowground biomass in mangroves reports considerable variability depending on location and species, while degradation of mangrove systems would result in a loss of these carbon stocks from vegetation and soils.Mangrove restoration has the potential to sequester significant carbon, more commonly measured by the change in the woody plant material (both above and belowground biomass), as soil carbon measurements are more complex. A generalized estimate for the potential for mangrove plantations in Vietnam projected sequestration rates of up to 32 t CO2e ha -1 yr -1 in the above and belowground biomass over a 30-year timeframe (Nally et al. 2010).While the existing literature would not provide a better overview of the GHG emissions from mangroves, dissolved inorganic carbon from mangrove systems should also be considered when considering fluxes from these systems. Spatial variability of these has been shown (Borges and Kone 2008), particularly correlated with salinity (influenced by rainfall dilution). More rainfall and water flushing through the system may increase benthic and water column heterotrophy, as well as dissolved CO2 originating from soil respiration, which strongly increases O2 released to the atmosphere (Borges and Kone 2008). The impacts of climate change are therefore essential to consider on these emissions sources, particularly the increased intensity of rainfall.Several models have been introduced based on different studies to determine the GHG emission amounts from different land uses. The applicability of these models must be identified before they are used in any study related to GHG emissions.Several process-based biogeochemical models exist that can be applied to waterlogged ecosystems (Mack et al. 2023). Some of the most suitable of these include MERES (Methane, Emissions from Rice Ecosystems), CERES (Crop Environment Resource Synthesis), MEM (Marsh Equilibrium Model), PEPRMT (Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport), DNDC (Denitrification-Decomposition) and DayCent. While these models typically require site-specific data (which is beyond the focus of this review), it is important to note their potential for use (Farmer et al. 2011).MERES was developed to model CH4 emissions from rice production systems with saturated soils in tropical regions (Matthews et al. 2000). It is a process-based model of CH4 production, CH4 oxidation, and fluxes of CH4 from the soil (i.e., diffusion, ebullition, plantmediated transport) and includes the effect of O2 concentration and alternative electron acceptors in the soil. Paddy water depth is simulated using inputs from irrigation, precipitation and outputs from drainage and evapotranspiration.CERES rice simulation model is used to simulate crop growth and rhizodeposition and the influence of crop management practices (Singh et al. 1993). Overall, the model has successfully predicted seasonal patterns of CH4 emissions associated with various rice crop management scenarios in Iran, China, the Philippines, India, Indonesia, and Thailand, which were also used for upscaling to the national level (Matthews et al. 2000;Mirakhori et al. 2017).The DNDC model is a process-based model for application at the field scale to model the decomposition and denitrification of soil under agricultural practices, delivering estimates of N2O, CH4 and CO2 emissions (Li et al. 1992). Wetland-DNDC is a further development of the original DNDC model-specifically to apply on wetland sites and includes additional biogeochemical processes specifically related to soil hydrology, temperature, decomposition and CH4 production (Zhang et al. 2002). The model requires relatively precise inputs to deliver precise outputs. Currently, the DNDC model is most applicable for forested and emergent systems, compared to the vegetation in the Mekong Delta.The MEM model is a mechanistic model suitable for application in salt marsh and mangrove settings and estimates aboveground biomass (AGB), belowground biomass (BGB), soil organic carbon (SOC) and surface elevation. The model was developed to describe the interactions between the physical and biological processes that govern tidal wetland response to rising sea levels and the resulting equilibrium elevation (Morris et al. 2021). The productivity outputs can then be converted to CO2. The PEPRMT model is applicable to freshwater systems and provides estimates of CO2 and CH4 emissions. The two models are currently being merged, allowing a better accounting for net sequestration, but it is only applicable in non-forested emergent wetlands (both salt and fresh), and thus it is not currently applicable to a mangrove forest (Mack et al. 2023). Model application is currently limited to applications within the United States.DAYCENT is a biogeochemical model used to estimate ecosystem responses to changes in climate and agricultural management practices in crop, grassland, forest, and savanna ecosystems on a daily time step (Mack et al. 2023). DAYCENT uses a number of sub-models for soil water content, temperature, plant production, net primary production (NPP), nutrient cycling and gaseous emissions, including adding a component for methane emissions from saturated paddy rice soils (Cheng et al. 2013). The DAYCENT model has been applied globally and across multiple ecosystems and requires daily weather data, soil data and crop management data.There are several calculator-based tools available to estimate emissions from waterlogged soils, which can run on more generalized data. These include Sector, TROPP-CAT and AFOLU CARBONThe Sector tool 2 was developed by the International Rice Research Institute and estimates field emissions under farm management based on the IPCC methodology to estimate CH4 emissions from rice cultivation. The tool can be applied from national to project level scenarios and allows comparison between different land management practices.United States Agency for International Development (USAID) and Winrock International developed the AFOLU Carbon Calculator 3 and estimated the carbon impacts of project activities based on basic information shared about the project activities-location, size, and management practices. The calculator uses the basic IPCC approach of combining activity data with emission factors.The Ex-Ante Carbon Balance Tool (EX-ACT 4 ) is based on the IPCC methodology and provides estimates of agricultural interventions on GHG emissions. It covers the full spectrum of land uses under Agriculture, Forestry and Other Land Use (AFOLU) and includes inland and coastal wetlands, fisheries, and aquaculture.The Tropical Peatland Carbon Assessment Tool (TROPP-CAT) (Farmer et al. 2013) is an Excel-based tool to estimate soil carbon loss from organic peat soils. The tool is based on a function of subsidence due to drainage impact and has been applied within an Indonesian context under oil palm and Acacia plantations. A calibration would be needed for a coastal mangrove context.Considering the desk-based nature of this review, estimates of GHG emissions from the VMD under different land use classes were conducted using the tools outlined in sections 4.2.1 to 4.2.3.Climate change predictions for some parts of the Mekong Delta indicate a 1.4 C increase by 2050 (or 0.7 C by 2030. Additionally, there will be an increasing rainfall in rainy months up to 25% but decreasing rainfall by 30-35% by the end of the century causing the climate to be more intense in each season and resulting in an average rainfall change of 1.3% by 2030 and 2.4% by 2050 (Mackay and Russell 2011). Climatic extremes of more rainfall in the wet months and extended drier periods around the dry seasons are also predicted. Sea level is predicted to rise by 15-16 cm in 2030, to 28-32 cm by 2050 and up to 63-88 cm by 2090 (Mackay and Russell 2011).Impacts of hydropower development along the Mekong River are anticipated to reduce sediment load in the lower stretches of the river system by 60-96%, and while the impact of a reduction in sediment load is poorly studied, it is anticipated that the long-term effects of this will influence river morphology, fish communities and access to nutrients for agriculture production, which will impact on land use and emissions from the delta (Baran et al. 2015).Land use change scenarios of the delta are presented in Table 5, based on the previously identified wetland and land use types. Miller et al. (1999) We used the Sector 5 model to explore management scenarios under the rice farming systems, testing differences in emissions when changing from triple to double rice crops, changes in the timing of straw incorporation, and changes to the irrigation system. Standard input variables on a per-season basis can be found in Table 6, as well as the alternative input variables used under management changes. Percentage of total straw usedEmissions results are found in the table below (Table 7), with the total emissions made up of both the CH4 and CO2 contributions. The greatest opportunity to reduce emissions was found when making changes in management practices-delayed incorporation of straw and increased drainage periods led to a more than halving of emissions in the double rice cropping system. The CH4 emissions values presented here (Table 7) are within the range presented in the table above. Using the EX-ACT carbon tool (v 9.4 6 ) it was estimated that over a 30-year period, the conversion of grassland to rice would give emissions of 214 t CO2e ha -1 , which could be mitigated by the avoidance of this conversion. This value considers both the loss of biomass and emissions associated with the change in hydrology.Global Mangrove Watch (2022) estimates the total organic carbon stored in Vietnam's wetlands at 180.13 Mt CO2e, most of which is stored belowground in the upper 1 m of soil (158.15 Mt CO2e). The potential for emissions mitigation within mangrove areas is estimated at just over 1,000 t CO2e ha -1 through reduced mangrove loss (assuming complete deforestation per hectare) and approximately 700 t CO2e ha -1 through mangrove restoration.Using the AFOLU Carbon Calculator 7 , 30-year simulations were run for both forest protection and forest restoration for the mangrove area of Ca Mau Province of Vietnam. Specific input values used in the model are presented in Table 8. All other input values were provided by the calculator in the geography. The estimated forest protection greenhouse gas benefits represent the benefits of reducing deforestation from a mangrove forest area. Forest protection activities were simulated to result in an annual average of 0.7 t CO2e ha -1 (between 0.5-0.9 t CO2e ha -1 ) and a cumulative benefit of 21.1 t CO2e ha -1 over a 30-year period for this area (Annex)-this being the gross rate of deforestation that would have been avoided. The carbon benefits can also translate into monetary benefits. Average prices for 1 t CO2e (i.e. one carbon credit) averaged USD 6.97 across the voluntary carbon market in 2023, with credits generated from land use and forestry averaging USD 11.21 in 2023 per t CO2e (Donofrio and Procton 2023).Forest restoration activities were simulated to result in an annual average of 13.7 t CO2e ha -1 (between 1.2-21.0 t CO2e ha -1 ) and a cumulative benefit of 412.3 t CO2e ha -1 over 30 years (Annex).There is no doubt that the VMD is a valuable natural resource for Vietnam and its people, with the considerable livelihood and ecosystem services provided by the region. Land use dynamics of the region are complex, with trade-offs and balance in decision-making needsto consider the sustainability of use, biological value, and economic outcomes. One example of this is from the impacts noted on the use of triple-rice cropping systems, which generate additional cash in hand for farmers but, over time, require increased inputs due to loss of environmental quality of the system, and thus become more costly. Payment for ecosystem services are one option that could be developed to support transitions to sustainable land use. Design of climate mitigation activities must view the VMD through a holistic lens, with future scenarios considering the social, carbon and biodiversity benefits of activities that support sustained use and ecological functioning.Emission scenarios vary across the delta due to differences in ecological and hydrological conditions-and this is clear from the range of rice emission values reported in Table 4. Limited data exists in the literature on the carbon storage impacts of mangrove loss or degradation and the emissions associated with conversion to aquaculture (especially shrimp farming). Further studies are required to document carbon stocks and fluxes associated with the diversity of ecosystems and land use types within the VMD-especially in the under-researched land uses such as grassland areas. A focused research strategy with coordinated research efforts can fill these gaps, and it is critical to provide decisionmakers with more insight and information. ","tokenCount":"6246"} \ No newline at end of file diff --git a/data/part_1/1432865387.json b/data/part_1/1432865387.json new file mode 100644 index 0000000000000000000000000000000000000000..a65d9c65701b301c2017a66d674d0e2d1ae8670b --- /dev/null +++ b/data/part_1/1432865387.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"31c45163f5f8aca58cd0ff660e6e2a85","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/6b6efb27-71dc-4318-bbb3-51f1b29ba765/retrieve","id":"-660394894"},"keywords":[],"sieverID":"d648187b-dbcc-408d-ab50-e1e53839d5f2","pagecount":"1","content":"We thank farmers and local partners in Africa RISING sites for their contributions to this research. We also acknowledge the support of all donors which globally support the work of the CGIAR centers and their partners through their contributions to the CGIAR systemThe integration of improved forages into smallholder crop-livestock systems aims to facilitate the intensification of mixed crop-livestock systems by providing livestock feed while mitigating climate change effects and reversing environmental degradation.High yielding improved forages produce 5 times more biomass than the natural grasses which can help alleviate persisting feed shortages in smallholder systems The intervention has proved that it is important not only to select forages based on empirical evidence of yield but also based on participatory farmer evaluations using the gender lens to ensure farmer preferences are considered in order to enhance adoption.  At least one Napier grass (Pennisetum purpereum) accession was outstanding, in terms of dry matter yield or quality attributes, in each agro ecological zone which gives farmers options to choose from.In high attitude wet areas, accessions ILRI 16837, ILRI 16835, ILRI 4984, Kakamega (KK)1, and KK2 gave yields of 12.1, 9.3, 8.5, 6.4 and 4.9 t DM ha-1 respectively. In the mid altitude wet areas, accessions KK2, ILRI 16835, KK1 and ILRI 16803 gave yields of 7.0, 6.1, 4.9 and 4.3 t DM ha-1 respectively. In lower altitude drier area, accessions KK2, ILRI 16837 and KK1 gave yields of 4.9, 3.2 and 3.1 t DM ha-1 respectively. In terms of quality, KK2, ILRI 16837 and ILRI 16803 consistently higher quality averaging 9.7, 8.7 and 9.0 CP%. While KK2 and ILRI 16837 were the most digestible with 45 and 43% OMD.  Farmers preferred accessions ILRI 16835, ILRI 16837 and KK2 in that order. These varieties were preferred due to high leaf: stem ratio (leafiness), ability to endure drought and rapid generation after cutting indicating that farmer preferences need to be accommodated.Runoff results indicated that the control had significantly higher runoff regimes (>60%) than the grass-legume combinations and the forage grasses and forage grass-legume interactions had a significant influence on water productivity. Clearly graphical trends depicted that some Napier grass accessions were superior, both with Lablab and as sole components, over the two year period. Scaling of improved forages has very huge potential across different agro ecological zones since we identified options suitable for each zone.  Planting high yielding improved forages on different farm niches such as hedges, terraces and in the landscapes may have multiple beneficial effects of reducing feed scarcity, nutrient losses and water pollution.  Improved high yielding forages have potential (i) to reduce costs of purchasing feed (ii) to shift practices towards more zero-grazing based systems and (iii) to increase milk production. ","tokenCount":"453"} \ No newline at end of file diff --git a/data/part_1/1451341407.json b/data/part_1/1451341407.json new file mode 100644 index 0000000000000000000000000000000000000000..445990fc3dae26b1741d442a2a8b949c7ae63d0b --- /dev/null +++ b/data/part_1/1451341407.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"e705adc5408079cd2ba95325e41a194f","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/e737ec98-6732-48f2-aaf7-7bd7c8aebbd5/content","id":"-1077583429"},"keywords":["pathogenomics","population genomics","Puccinia striiformis","wheat yellow rust","plant pathology"],"sieverID":"d3761d19-4837-4fc8-a557-016829ab2341","pagecount":"15","content":"Recent disease outbreaks caused by (re-)emerging plant pathogens have been associated with expansions in pathogen geographic distribution and increased virulence. For example, in the past two decades' wheat yellow (stripe) rust, Puccinia striiformis f. sp. tritici, has seen the emergence of new races that are adapted to warmer temperatures, have expanded virulence profiles, and are more aggressive than previous races, leading to wide-scale epidemics. Here, we used field-based genotyping to generate high-resolution data on P. striiformis genetics and carried out global population analysis. We also undertook comparative analysis of the 2014 and 2013 UK populations and assessed the temporal dynamics and host specificity of distinct pathogen genotypes. Our analysis revealed that P. striiformis lineages recently detected in Europe are extremely diverse and in fact similar to globally dispersed populations. In addition, we identified a considerable shift in the UK P. striiformis population structure including the first identification of one infamous race known as Kranich. Next, by establishing the genotype of both the pathogen and host within a single infected field sample, we uncovered evidence for varietal specificity for genetic groups of P. striiformis. Finally, we found potential seasonal specificity for certain genotypes of the pathogen with several lineages identified only in samples collected in late spring and into the summer, whereas one lineage was identified throughout the wheat growing season. Our discovery of which wheat varieties are susceptible to which specific P. striiformis isolates, and when those isolates are prevalent throughout the year, represents a powerful tool for disease management.Disease outbreaks caused by (re-)emerging plant pathogens have frequently been associated with expansions in pathogen geographic distribution and increased virulence of known pathogens. One example is the wheat yellow (stripe) rust pathogen, Puccinia striiformis f. sp. tritici (PST), that is present in all wheat growing areas of the world. The resulting disease can cause high yield losses, even in countries where resistant wheat varieties and/or fungicides are used (Wan et al. 2004;Wellings 2011). In the past two decades, new, more aggressive, P. striiformis races adapted to warmer temperatures and showing expanded virulence profiles have caused widespread epidemics (Milus et al. 2009). As a case in point, two highly aggressive P. striiformis strains (PstS1 and PstS2) were present at epidemic sites across five continents in 2009, reflecting the most rapid and extensive spread of any important plant pathogen to date (Hovmoller et al. 2010). The emergence of high temperature-tolerant P. striiformis races has enabled the disease to proliferate in new geographic regions. As these races continue to evolve in their new habitats, this epidemic will likely continue (Hovmoller et al. 2010).In Europe, P. striiformis has re-emerged as a major constraint on wheat production; races recently arising in Europe have overcome many of the major resistance genes in European germplasm. For instance, in 2011, two new P. striiformis races collectively known as Warrior (based on the virulence of one initial variant of this group to the wheat variety Warrior) and Kranich (based on the virulence of one variant to the wheat variety Kranich) emerged as serious threats to wheat production (Hubbard et al. 2015;Hovmoller et al. 2016). The Warrior race was identified in many countries across Europe in the first year of detection, whereas reports of the Kranich race have been largely confined to Denmark, Poland, Sweden, and Finland (Hovmoller et al. 2016). These two emergent races differ from the older European races; they produce unusually high quantities of sexual teliospores, induce more pronounced disease symptoms on wheat varieties harboring long-lasting adult plant resistance, and have higher degrees of genetic diversity (Rodriguez-Algaba et al. 2014;Hubbard et al. 2015;Hovmoller et al. 2016). The high levels of genetic diversity within these races is attributed to the fact they originated from sexually recombining populations in Asia, reaching Europe via long-distance aerial dispersal (Hovmoller et al. 2016). As is common among rust pathogens, P. striiformis is heteroecious, requiring two hosts to complete its life cycle; P. striiformis undergoes asexual reproduction on wheat and sexual reproduction on Berberis, where recombination can lead to the emergence of novel genotypes (Jin et al. 2010;Rodriguez-Algaba et al. 2014). Puccinia striiformis populations in Europe are highly clonal, with signs of sexual reproduction limited to Asia (Ali 2016). However, longdistance spore dispersal can rapidly spread novel P. striiformis genotypes generated in Asia, with the expansion of the fittest genotype driven in new territories by subsequent asexual reproduction (Brown and Hovmoller 2002). In addition, there is a strong indication that humans contribute to the dispersal of wheat yellow rust. For example, humans initially introduced this pathogen into Australia in 1979 (Wellings 2007). Such factors have escalated the frequency of long-distance transmission for P. striiformis and led to increasingly unpredictable changes in its population diversity and dynamics in recent years. However, how diverse environments in new habitats such as host genotypes and ecological conditions influence the population dynamics of P. striiformis has yet to be truly explored.Advances in sequencing technologies provide new opportunities to investigate the complexities influencing genetic variation in plant pathogen populations (Guttman et al. 2014). For instance, genome sequencing helped uncover the role of somatic hybridization and gene gain and loss in driving the emergence of host-specialized isolates of Blumeria graminis and Magnaporthe oryzae, respectively (Menardo et al. 2016;Yoshida et al. 2016). Genomic studies should be particularly valuable for analyzing rust pathogens, which are frequently obligate biotrophs that cannot be axenically cultured in the laboratory environment. Historically, most population studies of rust pathogens have used polymorphic simple sequence repeat (SSR) loci to differentiate pathogen isolates (e.g., Puccinia triticina, Kolmer and Acevedo 2016;Melampsora larici-populina, Xhaard et al. 2011;P. striiformis, Thach et al. 2016). However, the number of SSR loci required to accurately differentiate a population structure can be quite high (Garke et al. 2012). As an alternative, the genomic revolution has enabled the use of hundreds or thousands of single nucleotide polymorphism (SNP) sites, markedly improving the resolving power of population analysis (Singh et al. 2013). A recent study used SNP markers to develop a new RNA-seqbased genotyping technique termed \"field pathogenomics,\" and detected a complete shift in the UK P. striiformis population in recent years (Hubbard et al. 2015). The field pathogenomics technique is so named because it allows the analysis of pathogen population dynamics directly from the field, providing insights into pathogen biology, population structure, and pathogenesis (Derevnina and Michelmore 2015).Here, we used the field pathogenomics genotyping technique to examine the European P. striiformis population in 2014, and through comparative genomics determined the distribution of the emergent Warrior and Kranich race groups on a global scale. A unique feature of the field pathogenomics technique is the ability to investigate the genotypes of both the pathogen and host within a single P. striiformis-infected field sample. We used this feature to identify a potentially direct association between P. striiformis genotypes and the particular wheat host varieties they infect in the field. This association we uncovered is likely linked to the distinct virulence profiles of P. striiformis isolates in different genetic groups. Furthermore, we found that certain P. striiformis genotypes appeared to display seasonal specificity with a number of lineages identified only in the late spring and into the summer and one lineage being identified throughout the growing season. This new knowledge regarding potential varietal and temporal specificity for P. striiformis lineages was only possible due to recent advances in high-resolution genotyping techniques. Our discovery of wheat variety susceptibility to specific P. striiformis isolates that are prevalent at certain times of the year can have considerable impact on directing future disease management approaches.Transcriptome Sequencing of P. striiformis-infected Leaf Samples A total of 246 P. striiformis-infected wheat, triticale, and rye leaf samples were collected from December 2013 to August 2014 across 16 European countries and stored in RNAlater solution (Thermo Fisher Scientific, Paisley, United Kingdom) as described previously (Hubbard et al. 2015) (supplementary table S1, Supplementary Material online). Additional current and historical P. striiformis-infected samples from Pakistan, Ethiopia, Chile, and New Zealand were also obtained. A subset of 133 of these samples were subjected to RNA extraction using a Qiagen RNeasy Mini Kit according to the manufacturer's instructions (Qiagen, Manchester, United Kingdom). Quality and quantity of extracted RNA were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, United Kingdom) and cDNA libraries prepared using an Illumina TruSeq RNA Sample Preparation Kit (Illumina). Libraries were sequenced on the Illumina HiSeq 2500 machine at the Earlham Institute, United Kingdom. The FASTX-Toolkit (version 0.0.13.2) was used for adapter and barcode trimming and quality filtering. The 101-bp (HiSeq) pair-end reads were aligned to the PST-130 assembly as described previously (Hubbard et al. 2015). SAMtools (version 0.1.19) (Li et al. 2009) was used for P. striiformis SNP-calling, considering only sites with a minimum depth of coverage of 20Â. SNP sites with allelic frequencies ranging from 0.2 to 0.8 were classified as heterokaryotic sites, and those with other allelic frequencies were classified as homokaryotic sites. The 0.2-0.8 boundaries were selected by calculation of the MAF (Major allelic frequency) for all isolates from 2014, which indicated that the number of positions that fall within the 0.8 and 0.9 boundaries represent just 0.59% of the total number of positions considered. Read frequencies were calculated for biallelic heterokaryotic SNP sites and plotted using ggplot2 in R (Ginestet 2011). SnpEff, version 3.6 (Cingolani et al. 2012) was used to identify homokaryotic and heterokaryotic SNP sites that induced synonymous and nonsynonymous substitutions. Illumina reads from all RNA-seq runs were deposited in the European Nucleotide Archive (ENA; PRJEB15280). Genome Sequencing of the UK P. striiformis Kranich Isolate Genomic DNA was extracted from dried urediniospores of P. striiformis isolate 14/106 using the CTAB method (Chen et al. 1993). A gDNA library was prepared as described previously (Hubbard et al. 2015) and library quality confirmed before sequencing using the Agilent 2100 Bioanalyzer (Agilent Technologies). The library was sequenced on the Illumina HiSeq 2500 machine at the Earlham Institute, United Kingdom. Data filtering was carried out as described earlier and the 101-bp (HiSeq) pair-end reads aligned to the PST-130 assembly (Cantu et al. 2011) as described previously (Hubbard et al. 2015). SNP-calling and SNP analysis were performed as described earlier. The gDNA data were deposited in the European Nucleotide Archive (ENA; PRJEB15280).A maximum likelihood approach was used for all phylogenetic analyses of P. striiformis isolates. To identify and record a nucleotide residue, a minimum of 20Â depth of coverage was required for sites that differed from the PST-130 reference, with 2Â coverage if they were identical to the reference. These sites were used to generate synthetic gene sets for each isolate using the method described previously (Hubbard et al. 2015). Unrooted maximum likelihood trees were constructed using the third codon position of these genes using RaxML 8.0.20 with 100 replicates using the rapid bootstrap algorithm (Stamatakis 2006). Phylogenetic trees were visualized in MEGA6.06. The results from STRUCTURE analysis for the European population were incorporated into the phylogenetic tree using iTOL (Letunic and Bork 2007).The genetic substructuration of P. striiformis isolates was assessed using both model-based Bayesian and nonparametric multivariate clustering methods. The Python program StrAuto, version 3.1 (Chhatre and Emerson 2017) was used to execute the Bayesian model-based approach implemented in STRUCTURE, version 2.3.4 (Pritchard et al. 2000). First, sites that introduced a synonymous change in at least one isolate were listed. The nucleotide at this position was then extracted for all isolates. The \"admixture\" model was used with three to five replicates of 220,000 Markov Chain Monte Carlo generations for a range of K values, where K is the number of genetic groups. For each run, the first 110,000 generations were discarded as burn-in before collecting data. To identify K values, the average log probability (LnP(D)) of each K value was calculated. However, as STRUCTURE is sensitive to asexual reproduction (Gao et al. 2007), the subdivision of genetic groups was also analyzed with multivariate analysis using discriminant analyses of principal components (DAPC) implemented in the Adegenet package in the R environment (Jombart et al. 2010), a nonparametric approach used without any predetermined genetic model. Using the synonymous sites extracted for STRUCTURE analysis, the number of maximal genetic groups (Kmax) was assessed based on decreasing Bayesian information criterion (BIC) values, as suggested by Jombart et al. (2010).The diversity within and between all P. striiformis genetic groups was assessed by generating synthetic gene sets for each individual isolate that incorporated all heterokaryotic and homokaryotic SNPs from alignments of each isolate to the PST-130 reference. Synthetic genes were combined for all P. striiformis isolates within a genetic group, and used to calculate the degree of nucleotide diversity between isolates within a single genetic group using the EggLib software package, version 2.1.2 (De Mita and Siol 2012). The number of SNPs identified within a genetic group from this set of genes was then used to assess the number of SNPs/kb per genetic group.P. striiformis has intra individual polymorphisms due to differences between the two nuclei caused by its dikaryotic status. To assess the divergence between our genetic groups based only on inter individual polymorphisms, the genotype of each isolate was generated using an in-house Python script by merging both haplotypes into just one sequence without phasing (AA->0; AC/CA->1; AG/GA->2; AT/TA->3; CC->4; CG/GC->5; CT/TC->6; GG->7; GT/TG->8; TT->9; missing data ->X). The genotypic diversity was then calculated corresponding to the interindividual diversity within a genetic group and the genetic distance (D A and D XY ) of these genetic groups using the Egglib software.To define total genetic variance attributable to intergroup differences, a total of 36,921 synonymous SNP sites were used in Genepop, version 4.2 (Rousset 2008) to calculate the Wright's F ST statistic. This was carried out for all 2013 and 2014 European isolates combined. To further characterize the different P. striiformis genetic groups, 427 genes with at least 80% breadth of coverage for all isolates (representing 407,421 positions with an average of 1,256 polymorphic sites) were selected, and their sequences concatenated using an in-house Python script. The excess of heterozygotes (F IS ) and nucleotide diversity (P) were calculated for all genetic groups using Egglib version 2.1.2 (De Mita and Siol 2012). The number of SNPs between two genetic groups identified for this set of genes was used to compute the number of intergenetic group SNPs/kb.Primers were designed as described previously (Hubbard et al. 2015), carrying standard FAM or HEX compatible tails (FAM tail: 5 0 -GAAGGTGACCAAGTTCATGCT-3 0 ; HEX tail: 5 0 -GAAGGTCGGAGTCAACGGATT-3 0 ), with the SNP at the 3 0end. Assays were carried out as described previously (Hubbard et al. 2015) and data were analyzed manually using Klustercaller software (version 2.22.0.5, LGC).Virulence Profiling of P. striiformis Isolates Puccinia striiformis isolates were screened for compatibility across a set of wheat cultivars possessing known resistances to P. striiformis and a subset of cultivars possessing resistances that have yet to be fully described. Infection assays were undertaken with ten technical replicates on seedlings under controlled environmental conditions. Infection reactions were assessed on the first seedling leaf using a 0-4 scale with infection types 3 and 4 considered to represent a compatible interaction between the host genotype and pathogen isolate. Host resistance genes included in the differential set were Yr1, Yr2, Yr3, Yr4, Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr25, and Yr32, as well as Spaldings Prolific, Robigus, Solstice, Warrior, KWS-Sterling, Claire, Crusoe, Ambition, Vuka, Cadenza, Ambition, and Brigadier.For adult plants, five isolates were tested using an extended variety set. The varieties consisted of the current UK Agriculture and Horticulture Development Board Recommended List, representing commonly grown UK wheat varieties. Each variety was sown as a 30-cm diameter tussock in two replicates in each of five separate trials. Each trial was inoculated with one of the five selected isolates by transplanting infected seedlings into spreader plots within the trial. The spreader plots subsequently provided naturally dispersed inoculum into the variety plots. The percentage leaf area infected was assessed at weekly intervals once the value for the susceptible control (Robigus) reached 5%. An average of these assessments was then taken to represent disease progression throughout the season. The seedling tests were also extended to include the same variety set used in the adult plant tests under controlled environmental conditions. A subset of differentials from the initial pathotype screening was also included to check consistency between tests. Varieties were tested and assessed as described earlier.From the set of $90,000 SNP markers genotyped using the wheat Illumina iSelect array (Wang et al. 2014), 21,505 nonredundant SNP loci were selected, including 1,831 that could be used to differentiate wheat varieties where SNP information was available (genotype data, developed by NIAB within the \"WAGTAIL\" project, are freely available from NIAB upon request). The wheat varieties of the field samples were confirmed as previously described (Hubbard et al. 2015). First, reads were aligned to sequences flanking the 21,505 SNP markers. The SNP sites were then determined using VarScan (Koboldt et al. 2009), with a minimum base quality of 20, and homozygous SNPs reported when the allele frequency exceeded 0.80. A scoring system was used to determine the most likely wheat variety in a particular sample as described previously (Hubbard et al. 2015). In short, if a P. striiformis-infected wheat sample matched the SNP site for a particular variety, the position was scored as 1, and if the site partially matched, the score was 0.5. Otherwise, the position was scored as 0. This analysis was carried out for all SNP markers in a sample, and the cumulative score for all varieties was determined. The final score per variety represents the similarity between the P. striiformis-infected sample and a particular variety. The highest score corresponds to the most similar variety across varieties where marker data were available. S1, Supplementary Material online). We extracted total RNA from a subset of 115 European P. striiformis-infected samples and subjected it to direct RNA-seq analysis using the field pathogenomics method (Hubbard et al. 2015). This method allows the genotypic diversity of P. striiformis to be characterized directly at the field level. Samples were selected for RNA-seq analysis to maximize their temporal, varietal, and spatial distribution (supplementary table S1, Supplementary Material online). Following quality filtering, reads were aligned to the PST-130 reference genome (Cantu et al. 2011), with an average of 36.87% (19.736SD) reads aligned (supplementary table S2, Supplementary Material online). To ensure each sample comprised a single P. striiformis genotype without bias in allele-specific expression between the two haploid dikaryotic nuclei, we analyzed the distribution of read counts for biallelic single nucleotide polymorphisms (SNPs), determined from alignment against the PST-130 genome, as described previously (Hubbard et al. 2015). The P. striiformis mean of read counts at heterokaryotic positions had a single mode at 0.5 for all samples, indicating that each sample had little bias in allele expression and likely represented predominantly a single genotype (supplementary figs. S1-S3, Supplementary Material online).To determine the relationship between the European 2014 P. striiformis field isolates and the current and historical P. striiformis genetic groups, we carried out population genetic analysis. First, we performed RNA-seq analysis of additional P. striiformis-infected wheat samples that were sampled in 2014 across three additional continents to place the European population in a global context (supplementary table S3, Supplementary Material online). In addition, to determine the relationship between the 2014 P. striiformis population and older archived isolates, we included RNA-seq and genomic data sets for archived isolates from the United Kingdom and France for comparison when available (supplementary table S3, Supplementary Material online). Finally, we carried out RNA-seq analysis of four historical New Zealand P. striiformis isolates (supplementary table S3, Supplementary Material online). Following quality filtering and data trimming, high quality reads were aligned to the PST-130 reference genome (supplementary table S4, Supplementary Material online).We then carried out phylogenetic analysis of all P. striiformis isolates using the third codon position of 18,023 PST-130 gene models (5,771,054 sites) via a maximum-likelihood model (supplementary data S1 and S2, Supplementary Material online). We found that the European P. striiformis isolates were genetically related to the emergent P. striiformis populations that were previously identified in the United Kingdom in 2013 (Hubbard et al. 2015). Additionally, this emergent P. striiformis population, which until now had been described only in Europe and at its putative origin, in the center of diversity in the near-Himalayan region of Asia (Hovmoller et al. 2016), was also genetically similar to isolates identified across Australasia, South America, and Africa (fig. 1). To further investigate the genetic structuration among these isolates, we selected P. striiformis isolates representing isolates from Europe (collected in 2011-2014), Australasia (2006Australasia ( -2012)), South America (2014), and Africa (2014) that were classified as belonging to the emergent P. striiformis population based on phylogenetic analysis (fig. 1; \"Emergent PST population\"). We then generated a list of 70,712 synonymous SNP sites, 70,565 of which were biallelic, and used multivariate discriminant analysis of principal components (DAPC) to define subdivisions within the population. Analysis of the Bayesian Information Criterion (BIC) indicated eight to nine as the optimum clustering solution (supplementary figs. S4 and S5, Supplementary Material online), with isolates clearly assigned to six definable homogeneous groups of individuals (fig. 2A). These genetic groups consisted of 1) the four genetic groups that were previously identified in the United Kingdom in 2013, 2) a group containing P. striiformis isolates from the United Kingdom and France sourced in 2011 and 2012, and 3) an additional subgroup of Group 1, which gave rise to Group 5-1. We also sought to confirm the number of groups independently using the average log probability (LnP(D)) of each K value in the model-based clustering program STRUCTURE. The average log probability stabilized at K ¼ (supplementary fig. S6A, Supplementary Material online); however, no isolates were assigned to three of the genetic groups (supplementary fig. S6B, Supplementary Material online). Nonetheless, by considering P. striiformis isolates that were previously assigned to the four clearly defined genetic groups identified in 2013 and the phylogenetic analysis, we concluded that the STRUCTURE analysis supported division of the emergent P. striiformis population into four homogeneous groups of individuals (supplementary fig. S6B, Supplementary Material online). The discrepancies in the results between the two analyses are likely due to assumptions incorporated into the later model-based analysis regarding the underlying population genetics model, particularly Hardy-Weinberg equilibrium or linkage equilibrium, which are ill-suited to an asexually reproducing population (Jombart et al. 2010). Overall, these analyses indicated that the emergent P. striiformis population identified initially in Europe is in fact similar to isolates identified on a global scale (fig. 2B) and consists of a number of distinct lineages.A Shift in the Overall UK P. striiformis Population between 2013 and 2014In 2013, we identified four distinct emergent lineages within the UK population (Hubbard et al. 2015). To determine the prevalence of these lineages across Europe in 2014, we carried out a comparative analysis with the 2013 data set (Hubbard et al. 2015). First, we undertook a phylogenetic analysis of 39 P. striiformis isolates from 2013 and 115 from 2014 using the third codon position of 18,023 PST-130 gene models (4,041,039 sites) via a maximum-likelihood model (fig. 3; supplementary data S3 and S4, Supplementary Material online). Next, we generated a list of 36,921 biallelic synonymous SNP sites. We used the average log probability (LnP(D)) in the program STRUCTURE, which supported the division of the combined 2013 and 2014 P. striiformis isolates into five genetic groups (fig. 3 and supplementary fig. S7, Supplementary Material online). We confirmed the number of groups independently using DAPC analysis, which also discriminated five genetic groups (supplementary fig. S8, Supplementary Material online). One lineage was only found in the 2014 P. striiformis genetic group (Group 5-1). Pair-wise comparisons of the five genetic groups generated a range of F ST values, with Groups 3 and 1 being the most distantly related (F ST 0.65) and Groups 3 and 4 being the most closely related (F ST 0.20) (fig. 4A). To determine the level of asexuality in the various genetic groups, we calculated the level of intrapopulation differentiation using the excess of heterozygotes F IS and linkage disequilibrium of intrapopulations using rbarD. This analysis tended to confirm the asexuality in the European P. striiformis population, with Groups 1, 2, 3, and 4 having a very negative F IS (À0.65, À0.62, À0.64, and À0.67, respectively; table 1). All four genetic groups had positive rbarD values (table 1), which indicates an association between alleles, thereby confirming clonality. We then calculated the number of SNPs/kb within and between genetic groups (supplementary table S5, Supplementary Material online). As expected the average number of SNPs/kb was higher between genetic groups (3.1) than within (2.14). Interestingly, Group 5-1 had the highest F IS value (À0.44), indicating a smaller excess in heterozygosity than the other were biallelic were used to define subdivisions within the population using multivariate discriminant analysis of principal components (DAPC) of the 172 P. striiformis isolates belonging to the \"Emergent PST population.\" The optimal predicted number of population clusters K for this data set was eight to nine, giving rise to six clearly definable genetic groups that consisted of 1) the four genetic groups that were previously identified in the United Kingdom in 2013 (Groups iii, iv, v, and vi); 2) a group containing P. striiformis isolates from the United Kingdom sourced in 2011 and 2012 (Group i); and 3) an additional subgroup of Group 1, which gave rise to Group 5-1 (Group ii). Bars represent estimated membership fractions for each individual. (B) The population clusters identified in the \"Emergent PST population\" were identified across four geographic regions: Europe, Australasia, South America, and Africa. Numbers indicate total number of samples analyzed from that region. genetic groups, with the smallest number of SNPS/kb (0.79, supplementary table S5, Supplementary Material online). This group was newly identified in the United Kingdom in 2014 and together these results could indicate a bottleneck leading to a decrease of diversity following the emergence of this genetic group.Due to the recent identification of Group 5-1, we calculated the net pairwise genetic distance between genetic groups (D A distance; Nei et al. 1983) and the pairwise distance (D XY ; Nei and Kumar 2000) using the genotypes of these isolates to avoid intraindividual diversity. The largest genetic distance was identified for the pairwise comparisons between Groups 1 and 3, Groups 5-1 and 2, and Groups 5-1 and 3 (D A : 1,100.5, 1,037.8, and 1,102.5, respectively; D XY : 1,158.9, 1,132.7, and 1,149, respectively), with an average D A of 793.1 (295.06SD) and D XY of 885.3 (286.76SD) for all pairwise comparisons (fig. 4B and supplementary table S6, Supplementary Material online). The smallest genetic distance was found for the pairwise comparisons between Groups 3 and 4 (D A : 350.3; D XY 462) and between Groups 1 and 5-1 (D A : 373.6; D XY : 407.7; fig. 4B and supplementary table S6, Supplementary Material online). The particularly low D A and D XY distances displayed for Groups 5-1 and 1 and Groups 3 and 4 could indicate the recent divergence of each pair of groups from a recent common ancestor. Alternatively, diversification within one genetic group might have led to the genetic differentiation of the second group. Next, we calculated the genotypic diversity of these genetic groups (p) and compared it with the nucleotide diversity calculations (table 1). Interestingly, Group 5-1 displayed very low genotypic diversity compared with nucleotide diversity (table 1), indicating that this group might have undergone a founder event.Finally, we investigated the prevalence of these five genetic groups of P. striiformis specifically in the United Kingdom in 2014 and compared the results directly with the 2013 UKspecific data. Groups 2 and 3 were absent among the UK samples selected in 2014 (fig. 4C). However, P. striiformis isolates belonging to Group 2 were previously only identified on triticale, and no triticale samples from the United Kingdom were analyzed in 2014. Furthermore, we noted a significant enrichment (v 2 , P < 0.005) of P. striiformis isolates in Group 4 when comparing isolates between 2013 and 2014. These findings suggest that Group 3 may have (at least in part) been displaced in 2014 in the United Kingdom and that Group 4 isolates increased in prevalence (44% in 2013 vs. 84% in 2014) and diversity during this time (nucleotide diversity 1.25Â10 À3 2013, 1.39Â10 À3 2014; table 2).To determine how the observed population structure in the 2014 P. striiformis population was reflected in the phenotypic characteristics of the P. striiformis field isolates, we purified and cultured a subset of isolates for virulence profiling. Two P. striiformis isolates from Group 1, nine from Group 4, and one isolate that could not be clearly assigned to any genetic group (\"mixed\") were inoculated on a series of 46 differential wheat varieties. Disease severity was recorded in seedling tests at 16-to 20-day postinoculation (fig. 4D and supplementary table S7, Supplementary Material online). Consistent with our previous analysis (Hubbard et al. 2015), we identified a direct link between the genotype and pathotype of the genetically distinct lineages in the UK P. striiformis population. However, P. striiformis isolates belonging to Group 4 appeared to have lost virulence to Rendezvous in 2014 compared with isolates within the same genetic group from 2013. This finding suggests that Group 4 isolates may have diverged between 2013 and 2014.In addition, since we selected only a subset of the UK P. striiformis isolates that were subjected to phenotypic analysis for complementary genotypic analysis, we also explored the virulence profiles of the full set of 29 UK P. striiformis isolates from 2014 in seedling tests and investigated five of these more comprehensively using a wider set of varieties (supplementary table S7, Supplementary Material online). We identified a notable P. striiformis isolate (14/106) with virulence on a broader set of varieties at both the seedling and adult plant stages (supplementary tables S7 and S8, Supplementary Material online), which may represent the emergence of a new P. striiformis race in the United Kingdom in 2014. Subsequent independent evaluation of this isolate indicated that the virulence profile was consistent with that of the recently reported Kranich race FIG. 4.-Puccinia striiformis isolates assigned to genetic Group 4 were the most prevalent in the United Kingdom in 2014. (A) Pair-wise comparisons between the five European P. striiformis population groups indicated that Groups 3 and 4 were most closely related (F ST 0.20), while Groups 3 and 1 were the most distantly related (F ST 0.65). (B) Analysis of the genetic distance (D A ) between groups illustrated that Groups 3 and 4 and Groups 1 and 5-1 had the smallest genetic distance (350.3 and 373.6, respectively). (C) Group 4 P. striiformis isolates dominated in the United Kingdom and were widespread in 2014, while Groups 2 and 3, which were prevalent in 2013, were absent among the 2014 UK P. striiformis isolates analyzed. Pie charts indicates prevalence of P. striiformis genetic groups in each county sampled; doughnut chart shows cumulative prevalence of genetic groups for the United Kingdom per year with numbers indicating the total number of isolates analyzed per year. (D) Virulence profiles for the genetic groups were largely conserved between isolates belonging to the same group. Two P. striiformis isolates from Group 1 and nine from Group 4 were inoculated onto a series of 46 differential wheat varieties; the six discriminative results are shown: Yr7, AvocetS-Yr7 near isogenic line; Sp, Spaldings Prolific; War, Warrior; Amb, Ambition; Ren, Rendezvous; Ap, Apache. Disease severity was recorded 16-to 20-day post inoculation. Scale: 0 (green) to 4 (red), with 0-2 being resistant (R) and 3-4 being susceptible (S). (Hovmoller et al. 2016) (Hovmoller M [GRRC], personal communication), including avirulence to Yr4 and the variety Spaldings Prolific and virulence for Yr8 (supplementary table S7, Supplementary Material online). To investigate this P. striiformis isolate further and to compare it with the genetic groups we defined in the European P. striiformis population, we carried out full genome resequencing of isolate 14/106. Following alignment to the PST-130 reference genome, we performed phylogenetic analysis of P. striiformis isolate 14/ 106 and representative isolates from each of the genetic groups identified in the 2013 and 2014 data sets. We used the third codon position of 18,023 PST-130 gene models (5,636,425 sites) and a maximum-likelihood model for the phylogenetic analysis (fig. 5A).We then generated a list of 33,482 synonymous SNP sites, 33,431 of which were biallelic, and used both Bayesian clustering in the program STRUCTURE and DAPC analysis to assign the P. striiformis isolate (14/106) to a particular genetic group within the European data set. A total of 29 representative isolates from 2013 and 2014 were selected for analysis of P. striiformis 14/106, which represented an average of five isolates from each of the five genetic groups identified previously (fig. 3). Analysis using the program STRUCTURE identified only four distinct genetic groups, as indicated by the average log probability (LnP(D)) (supplementary fig. S9, Supplementary Material online). However, DAPC analysis resolved all five genetic groups (supplementary fig. S10, Supplementary Material online). The lower number of genetic groups identified using STRUCTURE was likely due to the lower sample number, which caused isolates from genetic -The UK Puccinia striiformis Kranich race isolate belongs to genetic Group 5-1. (A) The UK P. striiformis Kranich race isolate 14/106 was genetically similar to two isolates from Poland. Phylogenetic analysis was carried out with the UK P. striiformis isolate 14/106 and representative isolates from each of the genetic groups identified in the 2013 and 2014 data sets. We used the third codon position of 18,023 PST-130 gene models (5,636,425 sites) and a maximum-likelihood model for the phylogenetic analysis. Genetic groups are delimitated by dashed ovals; scale bar indicates nucleotide substitutions per site. (B) Multivariate analysis using discriminant analyses of principal components (DAPC) assigned the UK P. striiformis Kranich isolate to genetic Group 5-1. A total of 29 representative isolates were selected for analysis with isolate 14/106, which represented an average of five isolates from each of the five genetic groups. DAPC analysis was undertaken using 33,431 biallelic synonymous SNP sites. Bars represent estimated membership fractions for each individual.Pathogenomic Analysis of Wheat Yellow Rust Lineages GBE Genome Biol. Evol. 9(12):3282-3296 doi:10.1093/gbe/evx241 Advance Access publication November 21, 2017 Group 3 to be clustered with the relatively closely related Group 4 isolates (F ST 0.20; fig. 4A). However, in both instances, we showed that P. striiformis isolate 14/106 was grouped with two isolates identified in Poland belonging to genetic Group 5-1 (fig. 5). This supports the assignment of Group 5-1 as the Kranich race and is the first, to our knowledge, report of a Kranich race incursion in the United Kingdom.In the 2014 growing season, we collected P. striiformisinfected samples from December 2013 to August 2014. Isolates belonging to Groups 1, 2 and 5-1 were identified only in samples collected in May, June, and July (fig. 6A), whereas P. striiformis isolates from Group 4 were identified throughout the growing season (fig. 6A). This result was independent of the geographic locations of the samples; for instance, $50% of samples from 2014 were collected from various locations across the United Kingdom. To further investigate the apparent seasonal specificity for certain genotypes of P. striiformis and rule out yearly bias, we generated a PCR-based assay using SNPs specific to each genetic group to rapidly screen P. striiformis-infected wheat samples collected across the United Kingdom in 2015. A total of 42 samples were genotyped from December 2014 to July 2015 and as noted in the 2014 field season, P. striiformis isolates from Group 1 were only identified late in the spring and into the summer, whereas isolates from Group 4 were identified throughout the season (supplementary table S9 and fig. S11, Supplementary Material online). No isolates from Groups 5-1 and 2 were identified in the sample set from 2015. We speculate that the ability of P. striiformis isolates in Group 4 to infect wheat throughout the growing season may have (in part) led to their predominance in the United Kingdom.Next, we investigated whether particular P. striiformis genotypes showed any preference for wheat varieties that they infected in the field. Where possible, we used our data sets and a set of 1,831 differential wheat SNP markers to confirm the wheat variety in a particular P. striiformis-infected sample, as described previously (Hubbard et al. 2015). Thirty-eight P. striiformis-infected samples were collected from wheat varieties with available SNP markers and thereby could be used to confirm the wheat variety in each sample. Of the 38 P. striiformisinfected wheat samples, we could confirm the variety for 32 (84.21%), where in multiple cases the variety was distributed across different geographic regions (supplementary figs. S12-S14, Supplementary Material online). Next, we assessed all 108 P. striiformis-infected samples for which the wheat variety was reported and (where possible) confirmed. We found that 98% of the 56 wheat varieties harbored P. striiformis isolates from a single genetic group. Only the Kranich variety harbored genetically distinct P. striiformis isolates (Group 1 and 4; F ST 0.37; figs. 4 and 6B). Therefore, we detected a direct association between P. striiformis genotypes and the wheat host pedigrees they infected, which is likely linked to the distinct virulence profiles between isolates in different genetic groups.FIG. 6.-Particular Puccinia striiformis genotypes display seasonal and varietal specificity. (A) Puccinia striiformis isolates belonging to Groups 1, 2, and 5-1 were only identified in samples collected in May, June, and July. In contrast, isolates from Group 4 were identified throughout the growing season. (B) A total of 98% of the 56 wheat varieties analyzed harbored P. striiformis isolates from a single genetic group. Stars indicate wheat varieties that were confirmed using single nucleotide polymorphism marker analysis.High-Resolution Genotyping Reveals the Emergent European P. striiformis Lineages Are in Fact Part of Globally Distributed PopulationsRecent advances in genomic-based sequencing technologies have provided opportunities to explore plant pathogen populations at an unprecedented resolution. For instance, such advances in molecular epidemiology can be exploited to rapidly identify the source(s) of harmful genotypes (Lyon et al. 2016), disease reservoirs (Vanhove 2016), origin and lines of descent (McCann et al. 2013), and population structure and its relationship with the emergence of new virulent genotypes (Gladieux et al. 2015). Here, we used RNA-seq-based field pathogenomics to investigate wheat yellow rust population dynamics directly in the field, exploring the diversity of P. striiformis within Europe and beyond. This topic is of particular interest given the complete shift in the yellow rust population reported in Europe in recent years, with the emergence of a number of new lineages, including the infamous \"Warrior\" and \"Kranich\" races (Hubbard et al. 2015;Hovmoller et al. 2016). In this study, we compared these European P. striiformis lineages with isolates from Ethiopia, Chile, New Zealand, and Pakistan. These emergent European P. striiformis lineages likely originated from the potential center of diversity in the near-Himalayan region (Hovmoller et al. 2016). This finding, combined with the current data, suggest that this newly emergent P. striiformis population, which had only previously been reported at its putative origin in Asia and in Europe, is in fact similar to isolates identified on a global scale, across at least five out of seven continents (Europe, Asia, Africa, South America, and Australasia). However, a previous analysis of isolates collected pre-2008 from East Africa and South America showed that these areas harbored races that were genetically different to the European lineages at that time (Hovmoller et al. 2016). Therefore, our study indicates that the incursion of the emergent P. striiformis lineages into Ethiopia and Chile is likely relatively recent. This favors the notion that long-distance dispersal can rapidly spread novel P. striiformis genotypes into new territories on a global scale.Traditionally, the pre-2011 European yellow rust population propagated asexually, with mutation driving race variability within the confines of Europe, thereby leading to a single clonal genetic group (Hovmoller and Justesen 2007). However, one feature of the emergent P. striiformis populations in Europe is the unusual scale of inter-and intradiversity (Hubbard et al. 2015). Furthermore, our comparative analysis of the UK genetic groups between 2013 and 2014 revealed a potential shift in the genetic diversity of the P. striiformis population, with considerable diversification within one genetic group, Group 4. This could be due to 1) rapid diversification and expansion of Group 4 between 2013 and 2014 in the United Kingdom, 2) a new exotic incursion of P. striiformis isolates with a similar genetic background and/or 3) the small sample size in 2013 not being truly representative of the existing P. striiformis diversity. Regardless, such high levels of diversity within Group 4 may reflect differences in life history strategies of the new P. striiformis lineages, such as an increase in the rate of somatic hybridization, which would enhance genetic variability.For rust pathogens, intraspecific and interspecific hybridization can contribute to genetic diversity (Park and Wellings 2012). In addition, somatic hybridization is more likely to occur between allopatric pathogen lineages or species that are brought together from geographically separated epidemiological areas (Stukenbrock and McDonald 2008). The high level of genetic differentiation between the different emergent P. striiformis lineages identified in the United Kingdom (F ST range 0.20-0.65) is consistent with the notion that the P. striiformis population recently arose from multiple exotic incursions from distinct geographical sources (Hubbard et al. 2015). The loss of isolation by distance, which may have previously maintained reproductive isolation, could then lead to more frequent outcrossing between these emergent lineages (Stukenbrock and McDonald 2008). However, the role of hybridization in contributing to the unprecedented widescale diversification of certain emergent P. striiformis lineages remains to be established. In addition, the low D A and D XY distance between Groups 1 and 5-1 is consistent with the idea that either the divergence of both groups from a recent common ancestor or diversification within Group 1 led to the genetic differentiation of Group 5-1. This could indicate a potential bottleneck leading to a decrease of diversity following the emergence of this particular genetic group.High-resolution pathogen genotyping allows pathogen populations to be rapidly defined and tracked in exceptional detail. For instance, the field pathogenomics genotyping technique was recently employed in the rapid response to the first severe outbreak of wheat blast in Asia. Using this approach, the causal agent was confirmed to be a wheatinfecting lineage of Magnaporthe oryzae, and the origin was determined to be South America, within just a few weeks of sample collection in the field (Islam et al. 2016). For P. striiformis, the ability to accurately genotype both the pathogen and host directly in the field using this technique enabled us to study the coexistence of P. striiformis genetic groups and their hosts. The coexistence of distinct genetic groups of a plant pathogen on the same host is widespread (e.g., Melampsora larici-populina, Persoons et al. 2016;Botrytis cinerea, Fournier and Giraud 2007;Puccinia striiformis f. sp. tritici, Hubbard et al. 2015).The niche theory implies three methods of coexistence: 1) space partitioning, 2) time partitioning, and 3) resource partitioning (Amarasekare 2003). Of these three, time partitioning has to date been less well studied. However, evolutionary invasion analysis did reveal that divergence of plant pathogens can be due to time partitioning based on periodic host absence (Hamelin et al. 2011). Seasonality can also play an important role in the management of host-pathogen interactions based on contact rates, variation in encounters with infective stages in the environment and changes in the host immune system (Altizer 2006). In this study, we determined that P. striiformis may use both resource and time partitioning. For instance, we provide evidence that specific genetic groups of P. striiformis display a high degree of wheat varietal specificity in the agro-ecosystem, allowing the coexistence of specialized genetic groups of P. striiformis on the same host species. Furthermore, we also identified a degree of time partitioning for P. striiformis isolates in Groups 1, 2, and 5-1 that were only identified in late spring and summer compared with isolates in Group 4 that were present throughout the growing season from December through to August. This may have in part contributed to the increased prevalence of Group 4 isolates in the United Kingdom between 2013 and 2014. These observations could suggest an association between certain pathogen genotypes and warmer environmental conditions later in the season. In Southern and Northern France in the 1980s and 1990s, P. striiformis isolates were recovered that displayed clear temperature-specific adaptation (Mboup et al. 2012). Alternatively, these observations could reflect more effective resistance-mediated control of Group 4 isolates by adult plants late in the season, thereby restricting Group 4 prevalence and enabling Groups 1 and 2 isolates to thrive. These possibilities should be explored in future studies.As global trade continues to expand and people increasingly vacation in more remote locations, the spread of pathogens into new territories is inevitable. For wheat yellow rust, we have already witnessed the devastation caused by the humanassisted introduction of P. striiformis into Australia (Brown 1984). Therefore, there is an urgent need for robust, rapid, high-resolution genotyping techniques to track and define a pathogen population's structure and dispersal on a global scale. Here, we leveraged recent advances in field-based genotyping to generate high-resolution data on P. striiformis genetics. This analysis revealed that races of P. striiformis that recently emerged in Europe are in fact similar to populations identified on a global scale. Furthermore, we uncovered the possibility of seasonal and varietal specificity in genetic groups of P. striiformis. Knowing which wheat varieties are susceptible to specific P. striiformis isolates prevalent at certain times of the year could help agronomists fine-tune disease management strategies accordingly. The scale and frequency of emerging diseases will continue to increase, making the integration of high-resolution genotyping into international surveillance programs important as emergent plant pathogens become increasingly unpredictable.","tokenCount":"7588"} \ No newline at end of file diff --git a/data/part_1/1455762496.json b/data/part_1/1455762496.json new file mode 100644 index 0000000000000000000000000000000000000000..68d123e9db47cbc7e31460701160241af4fcc545 --- /dev/null +++ b/data/part_1/1455762496.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"429758ecebe8d2970130a4064e217992","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/c5132fd4-d9e6-4587-8c3d-81a5297e9f16/content","id":"-1530303285"},"keywords":["Identification","Heterodera spp.","phylogeny","phytophagous nematodes","wheat Teşhis","Heterodera spp.","filogenetik","bitki paraziti nematodlar","buğday"],"sieverID":"de3c464f-df16-4e00-a53e-f78ac52f8428","pagecount":"11","content":"This study evaluated the occurrence and incidence of phytophagous nematodes and identified the cereal cyst nematode species by morphological and molecular tools in the main cereal-growing areas in Niğde in 2018-2019. Phytophagous nematodes within twelve genera were detected in 95% of soil samples. The most common phytophagous nematodes in cereal soil were in the genera Heterodera, Ditylenchus, Merlinius, Pratylenchus, Aphelenchus, Aphelenchoides, Tylenchus, Helicotylenchus, Trophurus, Pratylenchoides, Filenchus and Xiphinema (in decreasing order of incidence). In particular, 75% of the soil samples from surveyed fields were infested with the cereal cyst nematodes (Heterodera spp.). Morphological characteristics of cysts and second-stage juveniles were calculated within the expected ranges for Heterodera filipjevi (Madzhidov, 1981) Stelter, 1984, however, two populations from Çamardı was determined as Heterodera latipons Franklin, 1969 (Tylenchida: Heteroderidae). Intraspecific variation was not observed within the populations of H. filipjevi which could be in the same genotypic group. In addition to the high incidence of these Heterodera spp., intensive cereal cropping systems with/without non-cereal rotations in wheat production areas of Niğde also resulted in high incidence of root lesion nematode, Pratylenchus species.Wheat (Triticum spp.) is the third most important crop after rice and maize in terms of global production with an average annual production of almost 772 Mt in 2017 (FAO, 2018). As the most important food crops of many countries, bread wheat [Triticum aestivum L. (Poales: Poaceae)] and durum wheat [Triticum durum Desf. (Poales: Poaceae)] provides an important nutrition to the feeding both humans and livestock, and contribute nearly one-third of the total food grain production in the world. A complex of biotic (i.e., diseases and insects) and abiotic factors (i.e., soil and climate) affects directly wheat grain yield in the important wheat-growing areas of the world. Among the biotic factors, the plant parasitic nematodes (PPNs) are a major biotic constraint to wheat production systems worldwide, especially where the plants under stress by other biotic and abiotic factors, particularly drought. PPNs cause severe annual economic losses of up to 216 billion USD worldwide when simultaneously exposed to drought (Nyaku et al., 2017). Cereal cyst nematodes (CCNs) [Heterodera avenae Wollenweber, 1924 (Tylenchida: Heteroderidae) group], among the PPNs, are most commonly found in wheat cropping areas (Rivoal & Cook, 1993;Dababat & Fourie, 2018).Heterodera avenae group occurs widely throughout the wheat-growing areas of the world (Dababat & Fourie, 2018). Cereal cyst nematodes are causing yield loss of about 3.4 million USD annually in the Pacific Northwest region of the USA (Smiley & Nicol, 2009). The main species of cyst nematode pests of cereals are H. avenae, Heterodera filipjevi (Madzhidov, 1981) Stelter, 1984and Heterodera latipons Franklin, 1969 (Tylenchida: Heteroderidae) within H. avenae group, which contains 12 nematode species (Rivoal & Cook, 1993;Nicol, 2002). Accurate identification of the species causing the loss is critical for determining the most effective method to control cyst nematodes, and requires both morphological and molecular methods. The vulval region of cysts and second-stage juveniles (J2s) are the most common features used for identification of Heterodera spp. (Handoo, 2002;Subbotin et al., 2010). However, the use of these morphological characters of Heterodera spp. is difficult and needs experienced scientists. Currently, molecular identification techniques are used overcome the taxonomic difficulties with morphological species identification (Dababat et al., 2015;Imren et al., 2020). Determination of the genetic variation in cyst nematode populations also aids the development or improvement of resistant host plants.Turkey, with an average annual production of about 20 Mt and a planted area of about 7.3 Mha, is one of the important wheat-growing countries of the world, but the average yield of around 2.7 t/ha is relatively low (FAO, 2018). The Central Anatolian Plateau (CAP) produces about 5 Mha wheat annually under rainfed conditions with only a limited area of irrigation. Located on the CAP, Niğde Province produces around 230 kt of wheat, barley and rye grain on over 125 kha (TurkStat, 2020). In Niğde, wheat crops are frequently exposed to drought stress due to insufficient annual rainfall (200-300 mm) and scarcity of supplementary irrigation. Several studies were conducted between 1974-2020 to detect the diversity in H. avenae group in the root zone of various crops in different areas of Turkey (Yüksel, 1974;Rumpenhorst et al., 1996;Abidou et al., 2005Abidou et al., , Şahin et al., 2009;;Dababat et al., 2015;Imren et al., 2018). In Turkey, cyst nematodes in the H. avenae group were first found in associated wheat in Erzurum in 1974 and since then H. avenae group nematodes have been increasingly found in the other wheat-growing areas of Turkey (Imren et al., 2012;Dababat et al., 2015). Heterodera avenae group populations from the CAP have mainly been identified based on their morphology and morphometrics; therefore, limited information is available on the variation in their morphometrics in relation to their genetic structure (Şahin et al., 2009). This research was conducted to reveal the status of phytophagous nematodes including the H. avenae group in the cereal-growing areas of Niğde by completing an intensive survey in wheat fields in Altunhisar, Bor, Central, Çamardı and Ulukışla Districts. The objectives were to (1) determine the incidence of the important species of PPNs in Niğde Province, (2) determination and evaluate both cysts and J2s of CCN populations with morphology, morphometrics and molecular assays including sequencing of the internal transcribed spacer (ITS) of ribosomal DNA fragments, and (3) investigate the phylogenetic relationships with and between populations found.The survey was conducted in 2018 between physiological maturity and harvest stage of wheat from the cereal-growing areas of Altunhisar, Bor, Central, Çamardı and Ulukışla Districts in Niğde. In total 64 cereal fields (wheat and barley) were sampled (Figure 1 & Table 1) about 10-20 km apart with soil samples were taken arbitrarily along a zigzag transect. A minimum of 10 cores was taken per sample using 2.5 cm diameter soil corer, the soil mixed and a representative subsample of 2 kg was kept for nematode extraction. Details recorded included crop, district and geographic coordinates.Migratory nematodes were extracted using a modified Baermann funnel from 100 ml of soil as described by Hooper (1986). After extraction, nematode suspensions were placed in measuring cylinders and allowed to settle for 8 h, the supernatant discarded, and the concentrated nematodes (plus debris) were transferred in 15-ml tubes. Nematode identification was made to genus under a light microscope at 100× magnification (Leica 5500, Wetzlar Germany). Cyst nematodes were extracted from 250 ml of soil using a modified decanting and sieving technique (Dababat et al., 2014). At least 20 full cysts were selected from each population, and stored at 4ºC for later morphological and molecular analysis. Cysts were morphologically identified to genus under a stereomicroscope at 20× magnification. The incidence of the nematodes was determined for each field as the quantity of the samples with nematodes as a proportion of the total number of samples.Each Heterodera population was identified based on the vulval cones structure and J2 dimensions as well as their morphological features. Vulval cone slides were used to identified cyst nematode specimens according to Hooper (1986). Vulval slit length, vulval bridge width, fenestra width and length, and underbridge width and length were measured. The presence of underbridge and bullae of the perineal area were also determined (Handoo, 2002). '31.2\" 34º69'18.7\"; 38°26'73.1\" 34º67'91.2\"; 38°27'52.7\" 34º65'80.2\"; 38°26'66.3\" 34º71'62.6\"; 38°28'54.7\" 34º72'90.6\"; 38°28'06.6\" 34º73'69.8\"; 38°27'11.2\" 34º74'23.6\"; 38°26'95.8\" 34º73'42.7\"; 38°26'71.4\" 34º73'72.5\"; 38°28'03.8\" 34º69'51.3\"; 38°27'15.4\" 34º33'20 To prepare permanent slides, 15 juveniles from the individual cysts were heated, fixed in TAF solution (7% formalin and 40% formalin) and put in glycerol (Handoo, 2002). The most important features of J2s including stylet length, length and width of body, length, width and hyaline part of tail were measured. The morphometric ratios a, b', c and c' were determined (Handoo, 2002). Heterodera spp. cyst and J2 were identified using previous studies and identification keys. (Franklin, 1969;Mulvey & Golden, 1983;Handoo, 2002). At least 15 J2s and 15 cysts from each population were examined and photographed using a Leica DFC295 optic camera installed on a DM5500 B light microscope (Leica, Wetzlar, Germany) and measured by Leica software v.4.1.0.Data were analyzed with SPSS 22.0 for Windows (IBM, Armonk, NY, USA) to determine any significant differences between the 48 populations (P≤0.05).Genomic DNA of each population were isolated from one cyst according to method in Holterman et al. (2006). The primers were used for sequencing, AB28 (5ʹ-CGTAACAAGGTAGCTGTAG-3ʹ) and TW81 (5ʹ-TCCTCCGCTAAATGATATG-3ʹ) to amplify the ITS region of nematode DNA according to protocol of Joyce et al. (1994).A total of 48 ITS sequences were identified using a BLAST in the GenBank database. After identification of CCN species in Niğde, six population from each district of Niğde were used for phylogenetic relationship DNA sequences of were aligned with Clustal X (Kimura, 1980). Phylogenetic analyses of the CCN populations and reference population available in the GenBank database were performed with MEGA v 7.0 software using ITS regions (Kumar et al., 2016). A neighbor-joining tree was constructed as Tamura & Nei (1993) using 1000 times bootstrap. Gaps were considered as missing data in the sequences. Heterodera schachtii Schmidt, 1871 (Tylenchida: Heteroderidae) was used for as an outgroup for character polarization.Only 48 samples were evaluated for PPNs because soil samples were hard and dry during harvest. Specimens of motile phytophagous nematode genera were obtained from soil from 46 (96%) of the 48 infested fields sampled (Tables 1 & 2) with an average density 840 nematodes/100 g soil. The PPNs were identified in the samples as shown in Table 2. The highest incidence was for Ditylenchus species. (25 fields) followed by species of Merlinus (21 fields) and Pratylenchus (13 fields). The least common genera were Filenchus and Xiphinema each only found in a single field. Heterodera cysts were found in all of these 48 sampled fields. The economically important PPNs found were Heterodera (CCNs) and Pratylenchus (root lesion nematode). The cyst nematodes in found in 48 of the 64 fields (Table 3). The species were determined to be H. filipjevi and H. latipons, both in the H. avenae group, based on the morphologic, morphometric and molecular analysis. The fields in which cyst nematodes were detected were mostly used for cereal monocultures without fallow or crop rotation. The highest cyst incidence was in Altunhisar and Çamardı Districts and the lowest in Ulukışla District (Table 3). The average cyst density (cysts/250 g of soil) was calculated for each district, with the highest density in Çamardı District being threefold that found in Bor and Central Districts (Table 3). The survey yielded 48 Heterodera populations, with 46 determined to be H. filipjevi and two H. latipons.Forty-six populations of H. filipjevi were detected across the five districts sampled. The morphological and morphometric characters were consistent with those reported by Handoo (2002). The CCN has lemon shaped cysts and their vulval area protruding at the posterior. Fenestral area was bifenestrate and horseshoe shaped with heavy bullae and underbridge (Figure 2). Measurements (mean and range, n = 15) for specimens from four districts (Table 4) were: body length without neck 599 μm (550-632 μm), neck length 85 μm (72-108 μm), fenestra length 50 μm (47-55 μm) and width 21.2 μm (20.4-21.8 μm). J2s head were slightly offset head and its body cylindrical with conical hyaline tail tip. The juveniles have strong stylet and moderately concave basal knobs (Figure 2). The body of H. filipjevi varied from 550 to 632 μm long and stylet from 24.2 to 25.7 μm. The body has four lateral lines but usually the two inner lines were prominent. Only two populations of H. latipons from Çamardı District were examined. The morphological and morphometric characters were consistent with those reported by Handoo (2002) (Table 4). The cyst color was light brown, lemon shaped with ridges in a zigzag pattern (Figure 3). Fenestral area was bifenestrate and strong under bridge with no bullae body 470 μm (451-532 μm) without neck, body 293 μm (250-390 μm), neck 65 μm (60-80 μm), fenestra 64 μm (47.3-66.5 μm) and width 21 μm (18-25 μm), underbridge 96 μm (85-115 μm), vulval slit 8 μm (7.4-8.5 μm), vulval bridge width 12.4 μm (9.4-13.4 μm) (Figure 3). J2s (n = 15) had cylindrical body and head with conical tail extended with short hyaline terminal compared with H. filipjevi bodies. J2 body had four lateral lines, length 470 μm (412-482 μm), width 19 μm (19-21 μm), length of stylet 24 μm (23-25 μm), tail 60.2 μm (56-63 μm) and hyaline terminal 25 μm (23-29 μm) (Table 4).The nematode ribosomal gene of ITS(ITS1-5.8S-ITS2), region of all 48 Heterodera populations were successfully amplified for sequencing using AB28, TW81 primers pair and PCR product of nematodes were about 1060 bp. Forty-six sequences were identified as H. filipjevi and two H. latipons using BLAST program in GenBank database. A phylogenetic tree was constructed with six population of Niğde from ITS region sequence of CCN populations (Figure 4). Samples from the four different locations; Altunhisar, Central, Bor and Ulukışla Districts in Niğde Province were grouped as H. filipjevi and one population from Çamardı as H. latipons and the outgroup of H. schachtii (Figure 4). Heterodera filipjevi populations was compared to international genotypes in the phylogenetic tree. Results indicated that a clear separation of the cyst nematodes, H. filipjevi and H. latipons, and confirmed the link between genotyping and phenotyping traits. Intraspecific polymorphism was not observed within H. filipjevi populations, which were in the same group within the phylogenetic tree and representative isolates from GenBank, supported by a moderate to high bootstrap value (Figure 4). This survey was completed in order to determine the incidence of PPNs in cereal fields in Niğde Province. Phytophagous nematodes were detected in 96% of soil samples, and 12 PPN genera were determined, namely Heterodera, Ditylenchus, Merlinius, Pratylenchus, Aphelenchus, Aphelenchoides, Tylenchus, Helicotylenchus, Trophurus, Pratylenchoides, Filenchus and Xiphinema (in decreasing order of incidence). Amplimerlinus, Merlinus, Paratrophurus, Pratylenchoides and the other tylenchid nematodes were the predominant genera of phytophagous nematodes including Pratylenchoides sheri Robbins, 1985 (Tylenchida: Hoplolaimidae), Merlinius brevidens (Allen, 1955) (Tylenchida: Belonolaimidae), Amplimerlinius vicia (Saltukoğlu, 1973) Siddiqi, 1976 (Tylenchida: Dolichodoridae), Paratrophurus striatus Castillo, Siddiqi & Gomez- Barcina, 1989 andParatrophurus acristylus Siddiqi &Siddigi, 1983 (Tylenchida: Belonolaimidae) previously determined in wheat-growing areas of the Southeast Anatolian Region of Turkey (Imren & Elekcioğlu, 2008). Öcal & Elekçioğlu (2015) reported that the most common phytophagous nematodes were Aphelenchus avenae Bastian, 1865 (Tylenchida: Aphelenchoididae), H. latipons, M. brevidens, Pratylenchus thornei Sher & Allen, 1953 (Tylenchida: Hoplolaimidae) and Scutylenchus quadrifer (Andrássy, 1954) (Tylenchina: Merliniidae) in the cereal cropping system of Adıyaman Province, Turkey. Consequently, the reported genera are potentially of economic importance for cereal production in Niğde Province.The high incidence of Heterodera (H. filipjevi and H. latipons) is a key finding of this study, 76% of sampled fields having cyst nematodes. The fields where cyst nematodes were not detected were generally rotated with other crops. The highest incidence (100%) was found in Altunhisar and Çamardı Districts but the lowest was still over 70% in the three other districts sampled. Sahin et al. (2009) were found CCNs (H. filipjevi and H. latipons), and root lesion nematodes [P. thornei and Pratylenchus. neglectus (Rensch, 1924) Filipjev & Schuurmans Stekhoven, 1941], were the most widely distributed species. Toktay et al. (2015) reported that 56% of wheat fields were infested with H. filipjevi in Elazig, Erzincan, Erzurum, Igdir, Kars, Malatya and Sivas Provinces in the East Anatolia Region of Turkey. Imren et al. (2016) reported that 83% of wheat fields were infested with H. filipjevi, in Bolu Province, Turkey. Therefore, cropping practice and environmental conditions in Niğde Province are particularly suited to the persistence of H. filipjevi which poses a risk to wheat production. The incidence of H. latipons was low, so it must be less competitive than H. filipjevi in this context. This study indicated that there was no polymorphism in the populations of H. filipjevi according to the morphological parameters, which confirm differences in measurements of cysts and J2 bodies.Heterodera filipjevi is similar to H. avenae with some minor differences such as less bullae and thinner underbridge in H. avenae (Handoo, 2002;Subbotin et al., 2010). However, H. latipons is quite different from H. filipjevi with a particularly prominent underbridge and no bullae in the fenestral area. Heterodera filipjevi and H. latipons can be easily separated using differences in underbridge structure and presence of bullae in the fenestral area of H. latipons (Wouts & Sturhan, 1995;Rivoal et al., 2003;Subbotin et al., 2003). Heterodera latipons J2s have a shorter tail, stylet and hyaline compared to H. filipjevi J2s. Briefly some morphometric features are easily distinguishable in these species such as cyst length, color and shape, fenestra length, J2s tail and hyaline length (Madzhidov, 1981;Valdeolivas & Romero, 1990;Wouts & Sturhan, 1995).This study confirmed the functionality of CCN cysts and J2 body dimensions, and rDNA sequences for identifying populations of H. latipons and H. filipjevi. Specimens within the H. filipjevi population can be clearly grouped by morphological and molecular data. Likewise, Bekal et al. (1997) did not found any genetic differentiation between populations of H. filipjevi and H. latipons. Similarly, Imren et al. (2015) did not found any genetic differentiation between H. filipjevi populations in the Mediterranean Region of Turkey. However, Subbotin et al. (2010) reported intraspecific polymorphism between H. filipjevi populations and Toktay et al. (2015) also found intraspecific variation between populations in H. filipjevi from the Eastern Anatolian Region of Turkey.This study determined the incidence of phytophagous nematodes in the five main cereal-growing districts, Altunhisar, Çamardı, Bor, Central and Ulukışla, of Niğde Province, particularly the high incidence and population densities of H. filipjevi. These findings indicated that detailed investigation of the pathotypes of H. filipjevi and H. latipons in comparison to other areas of Turkey would be justified. It is therefore recommended that policymakers and researchers consider diversification of wheat genotypes cultivated in Niğde, including durum wheat given its higher resistance to cyst nematodes; follow cultural practices especially crop rotation. Also, the is a need to breed wheat germplasm adapted to the areas with high levels of resistant to the cereal cyst nematodes, and to increase the awareness of advisors and growers of the potential impact of phytophagous nematodes on cereal productions in the province.","tokenCount":"2998"} \ No newline at end of file diff --git a/data/part_1/1467385433.json b/data/part_1/1467385433.json new file mode 100644 index 0000000000000000000000000000000000000000..36aa09d2868803ee90891e92985fe444891881d7 --- /dev/null +++ b/data/part_1/1467385433.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"8e984c2ce85478f0b410056def2d4381","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/43de338b-8fc9-4a2a-89c1-4626e03e2ad9/retrieve","id":"189889701"},"keywords":[],"sieverID":"787b0edb-85da-4d9f-b7b2-a9eddcee97b0","pagecount":"11","content":"Titles in this series aim to disseminate interim research on the scaling of climate services and climatesmart agriculture in Africa, in order to stimulate feedback from the scientific community.Seasonal climate forecasts play a crucial role in adapting to climate variability (Hansen et al., 2011;Guido et al., 2020;Vaughan et al., 2019), particularly in regions characterized by a strong inter-annual rainfall variability such as the Sahel (Zougmore et al., 2023). Seasonal forecasts are routinely generated at various operational weather centers worldwide, including AGRHYMET Regional Climate Centre for West Africa and the Sahel. AGRHYMET develops these forecasts through a Regional Climate Outlook Forum (RCOF), which brings together experts from National Meteorological and Hydrological Services (NMHSs) and world climate centers. Seasonal forecasts provide information on the upcoming season, with rainfall and temperature being the key parameters. Actionable recommendations associated with the seasonal forecasts for users in specific sectors such as water and agriculture are often based on expert judgment and assessment of the forecasts. This approach can be subjective and misleading, thus limiting the effectiveness of adaptation planning decisions. For instance, it is often assumed that a year with below normal rainfall will result in poor agricultural production and scarcity of surface water resources, while a year with above normal rainfall is expected to result in good agricultural production. Such interpretations tend to be biased and can lead to ineffective adaptation planning decision-making. An striking example is of such situation is the case of Niger in 2021 for which the national crop production was significantly low in 2021, despite the seasonal rainfall being well above the average.To enable effective adaptation planning decision-making, we propose that to use seasonal forecasts as inputs to sectorial biophysical and process-based models to generate actionable information that are less sensitive to expert interpretation biases. In this Info Note, we present this novel approach for translating seasonal forecasts into climate impact information for agriculture and water sectors. The approach is novel in the sense that it is the first application in the region. Integrating seasonal forecasts in biophysical and process-based models, such as crop simulation models will add value to seasonal forecasts for agriculture and increase effective use of climate information in agriculture (Hansen, 2005). The approach is illustrated with a case study application in Niger using crop and hydrological models. It concludes with some reflections and perspectives for expanding the approach in the NMHSs in West Africa and Sahel and improving RCOF outputs.In the literature, several approaches have The initial approach involves the disaggregation of West African RCOFs' seasonal rainfall forecasts (Houngnibo et al., 2023). This approach was used only for the crop model. Other parameters (temperature, radiation, etc.) are then disaggregated in accordance with rainfall, based on whether a particular day is rainy or not (Figure 1). A probabilistic seasonal crop forecast was issued, comparing the distribution of crop parameters (Table 1) obtained from the climatological period (1991-2020) with the distribution of crop parameters obtained from the disaggregated seasonal forecast.Figure 1. Flowchart for disaggregation of West African RCOFs' seasonal rainfall forecastsThe second approach entails using the daily series of seasonal forecasts obtained from Atmospheric-Ocean Global Circulation Models (AOGCMs) of global meteorological centers (ECMWF, NOAA, UKMO, etc.) and historical data (observations, satellite data, or reanalysis) to drive the biophysical models (Figure 2). Historical data is used not only to produce reference crops and hydrological parameters but also to better estimate the initial conditions required to produce a forecast. Thus, hindcasts and forecasts are produced for crops and hydrological parameters. A probabilistic crop seasonal forecast is produced, taking into account the variance (variance error) calculated as the error between crop reference parameters and hindcasts for crop parameters. Only the results associated with this second approach are presented in this info note. The Système d'Analyse Régionale des Risques Agro-climatologiques-Ocelet (SARRA-O) is an agricultural process-based model for analyzing agro-climatic risks (Baron et al., 2003) Its primary purpose is to assist decisionmakers, including farmers, agricultural extension agents, and policymakers, in making informed choices regarding crop management and risk reduction. SARRA-O also serves to provide timely alerts concerning potential crop failures and to determine the most suitable adaptation strategies for farmers. The model simulates three key processes: i) water balance, ii) carbon balance, and iii) the progression of plant (cultivar) phenological phases, encompassing photosensitivity (Figure 3). In summary, SARRA-O is an agronomic model that enables the monitoring of crop conditions throughout the growing season, making it valuable for early warning systems (Castets, 2015). SARRA-O has been assessed and validated in various West African environments through experimental trials and on-farm surveys (Dodds, 2010;Kouressy et al., 2008;Akponipke, 2008). These trials focused on the selection of varieties of crops such as millet, sorghum, or maize. They also investigated optimal sowing dates and densities.The main inputs of this crop model are climate data, soil data, mean rainfall onset and cessation grid data, and crop data to allow the activation of the correspondent crop and its fertilization option in SARRA-O.Figure 3. Crop growth stages (Baron et al., 2003) The selected outputs from the SARRA-O model are those that best estimate the water balance, biomass (carbon balance), and yield. They are summarized in Several hydrological models had been set up to simulate one or more basins in West Africa (e.g., HYPE, GeoSFM, SWAT, SOBEK, VIC, etc.). The first activity relating to hydrological modelling was to select the model(s) to be applied. Several criteria influenced our choice, including 1) model type, 2) model accessibility, 3) past achievements and regional expertise on models, 4) model performance. The hydrological model that best met the criteria is HYPE (Hydrological Prediction for Environment). HYPE is a semi-distributed hydrological physically based catchment model that simulates water flow and substances on their way from precipitation through different storage compartments and fluxes to the sea (Lindström et al., 2010). Its spatial division is related to catchments and sub-catchments, land use or land cover, soil type and elevation. Within a catchment, the model will simulate different compartments: soil including shallow groundwater, rivers, and lakes. It is a dynamical model forced with a time series of precipitation and air temperature, typically on a daily time step. The delineation of the West African version of HYPE is based on Global Width Database for Large Rivers (a digital elevation model with 3 arc-sec resolution). This delineation has been revised to match the 97 stations located within the West Africa region. Sub-basins for the islands of Cape Verde were also prepared and added to the model. The number of sub-basins in the West African HYPE model is 4581 and the average sub-basin size is 1870 km2. The outputs of the FANFAR system mainly include discharge, evapotranspiration, reservoir levels, infiltration, soil moisture. The schematic description of HYPE model is shown in Figure 4. The results of the seasonal forecast of the actual yields showed that, except for the southern part of the Dosso region, where below-average actual yields are highly probable, other locations in the agricultural belt will experience above-average actual yields (Figure 5). Comparing this result to the seasonal rainfall forecast issued by the ECMWF global center for the JAS season, it was predicted that there would be above-average seasonal rainfall over the entire agricultural belt of Niger (Figure 6). Hence, one could interpret these seasonal rainfall accumulation forecasts directly as a potentially successful agricultural season across this entire belt. However, this interpretation does not align with the results obtained throughout biophysical model in the more southern regions of the country (Figure 5). In addition to providing information on annual agricultural production, biophysical models have the propensity to inform about potential risks that the crop may face during various developmental phases. Consequently, for the year 2022, we present forecasts including optimal sowing dates (Figure 7) and satisfaction index for water requirements at different developmental stages (Figure 8). An early to normal sowing date was expected, with minimal risk of re-sowing in most locations within the agricultural belt for the 2022 season for the two cereal crops considered (Figure 7). However, crops will experience high levels of water stress in the eastern and southern regions of Niger during the vegetative phase and, to some extent, the reproductive phase (Figure 8). The main objective of this case study was to assess the ability of the HYPE hydrological model to make hydrological seasonal hindcasts and to produce hydrological seasonal forecasts for 2022. To properly characterize the initial conditions of the model, the model was run over the historical period up to the seasonal hindcast/forecast date using ERA5-Land re-analysis data. The ECMWF seasonal forecast ensemble (system 5) from 1993 to 2022 (hindcast) and 2023 (forecast), available in the Climate Data Store (CDS) catalog was used. Daily flows at the main hydrometric stations of the river basins crossing the Niger were used to evaluate the performance of the model. Figures 9 and 10 present the relative (for precipitation) and absolute (for temperature) errors between the ERA-5 data and the ECWMF climate forecasts over the period. The use of AOGCMs as input data for HYPE and SARRA-O models provides more information to end users to facilitate decision-making in water resources management and crop production. The methodology was used in Niger to develop seasonal forecasts, and the results obtained are promising. The main challenges we faced were the estimation of the initial conditions of the models and the bias correction (the reference data to consider and the appropriate method). The work is in progress and further investigations in these areas should continue with a view to improving the quality of the output.Furthermore, the method related to the disaggregation of West African RCOFs' seasonal rainfall forecasts constitutes a valuable alternative, and the results associated with it will be presented in a working paper.Next steps include expanding the capacity of NMHS on the proposed approaches and contributing to improve RCOFs.","tokenCount":"1628"} \ No newline at end of file diff --git a/data/part_1/1497011760.json b/data/part_1/1497011760.json new file mode 100644 index 0000000000000000000000000000000000000000..982264e16f8390177e8cfeb9ad25c6825d64d534 --- /dev/null +++ b/data/part_1/1497011760.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"0dc78819545c01d94e0568d9d393c684","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H047882.pdf","id":"1967290839"},"keywords":["Ecosystem services","land and water management","landscape","exclosures","nutrient loss"],"sieverID":"e01cd031-3a6a-4ceb-a01b-1b29229ff95c","pagecount":"1","content":"Human induced changes in runoff, sediment and nutrient flows is directly affecting the benefits that ecosystems can provide. This study was conducted in Gomit watershed to investigate the effectiveness of land and water management (LWM) practices in reducing runoff and soil erosion. Within the Gomit watershed, two nested watersheds located in the upstream (196 ha) and downstream areas (163 ha) were selected. In both watersheds, LWM practices were implemented to harvest water, and reduce soil erosion. Over 80% of the upstream watershed is covered with exclosures, while the downstream watershed is dominated by cultivated and grass land (57%). Leptosols and Luvisols are the dominant soil types in the upstream and downstream watersheds, respectively. Runoff, sediment yield, and sediment associated nutrient concentrations were determined during the 2015 rainy season. Considerable differences in runoff and sediment yield between the two watersheds were observed. The seasonal runoff in the upstream and downstream watersheds were 10.4(1.5% of the total rainfall) and 58.6 mm (8.8%), respectively whereas the sediment yield was 1 and 4 t ha-1.The loss of sediment associated phosphorus and nitrogen in the downstream watershed was estimated at 0.2 and 7 kg ha-1 whereas 0.1 and 1 kg ha-1 for the upstream watershed, respectively. The low runoff in both watersheds could be attributed to the implemented conservation measures, low rainfall and possible transport of water out the watersheds through fissures. The relatively larger sediment yield in the downstream watershed could be resulted from disturbance due to tillage and existence of gullies in cultivated land. Differences in the amount of loss of soil nutrients could be related to agricultural practices and differences in direct runoff of the watersheds. The results support that integrating exclosures with LWM practices is effective in reducing runoff and soil erosion and enhancing the productivity of degraded landscapes.","tokenCount":"298"} \ No newline at end of file diff --git a/data/part_1/1498633516.json b/data/part_1/1498633516.json new file mode 100644 index 0000000000000000000000000000000000000000..c7ea2ef76b6e3928928815af89cc577c82896a36 --- /dev/null +++ b/data/part_1/1498633516.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a90391a2c4f421aac896472bf04863c3","source":"gardian_index","url":"https://repository.cimmyt.org/server/api/core/bitstreams/7d204695-9376-4b9c-afd8-88e4d2bff674/content","id":"532161566"},"keywords":[],"sieverID":"6ab2ec87-0062-4578-9780-020e43320447","pagecount":"39","content":"This Wheat Special Report analyzes the effects of radiation and temperature on the date of flowering and grain yield of spring bread wheat cropped under optimum conditions. The experiments were conducted at Ludhiana, Punjab, India, over 7 years and using a range of genotypes. The optimum flowering date for maximization of wheat grain yields is confirmed to be when the ratio of radiation to temperature (PTQ) is at its maximum. The individual effects of radiation and temperature on yield and yield components at various stages of crop development are also examined.We hope that the concepts validated here will be useful elements of wheat component agronomy in the development of new spring wheat varieties and better agronomic practices for wheat grown under irrigation (Mega-environment 1). This short version (No. 23a) does not include the raw data that may be of interest to some scientists. This information (Le., correlation coefficients for the three genotypes used in the experiments, means averaged across reps, and climatic data) is provided in Appendices 2 through 5, which are included in No. 23b.Effect of genotype, planting date, and year on yield, yield components, and phenology , Effect of PTQ, temperature, and solar radiation on yield and GM2 during pre-anthesis Absolute and relative losses with delayed sowing Results and Discussion Statistical analysis , Effect of genotype, planting date, and year on yield, yield components, and phenology Effect of PTQ, temperature, and solar radiation on yield and GM2 during pre-anthesis Effect of temperature and solar radiation during post-anthesis period on grain yield and TGW Use of the PTQ for explaining year effects Absolute and relative losses with delayed sowing Conclusions References Figure 1. Yield response of three spring wheat genotypes to seven dates of planting Figure 2. Yield response over 4 years to seven dates of planting Figure 3. GM2 response of three wheat genotypes to seven dates of planting Figure 4. Changes in TGW and days to heading of three wheat genotypes over 4 years and seven dates of planting Figure 5. Changes in days to maturity and grain-filling days of three wheat genotypes over 4 years and seven dates of planting Figure 6. Relationship between grain yield and PTQ2 and grain yield and mean temperature in three wheat genotypes Figure 7. Relationship between grain yield and solar radiation and grain yield and GM2 in three wheat genotypes Figure 8. Relationship between GM2 and PTQ2 and GM2 and mean temperature (-20H to +lOH) in three wheat genotypes Figure 9. Relationship between GM2 and solar radiation and yield and PTQ (+ lOH to +40H) in three wheat genotypes Figure 10. Relationship between grain yield and mean temperature (+ lOH to +40H) and grain yield and solar radiation (+ lOH to +40H) Figure 11. Relationship between grain yield and TGW and TGW and PTQ (+ lOH to +40H) in three wheat genotypes Figure 12. Relationship between TGW and mean temperature (+ lOH to +40H) and TGW and solar radiation (+10H to +40H) in three wheat genotypes Figure 13. Relationship between TGW and mean temperature (+ lOH to +40H) over 4 years in three wheat genotypes i i Contents (continued) 28 Figure 14. Relationship between PTQ2 and yield and PTQ2 and GM2 over 4 years in three wheat genotypes 29Figure 15. Changes in relative grain yield with different dates of heading (Julian) in three wheat genotypes 30Figure 16. Changes in relative GM2 with different dates of heading (Julian) in three wheat genotypes 31 Appendix 1. Correlation coefficients for three genotypes between yield and GM2 vs four different PTQ values during 7 years at Punjab Agricultural University in Ludhiana, India Introduction Wheat is the main cereal crop of the Indian Punjab. The main objectives of the India's wheat production programs are to increase production to achieve self-sufficiency in food grains, and to step up and establish production at a higher level. During 1965-66, wheat acreage in India was 12.79 million hectares; this area increased to 24.0 million hectares during 1991-92, an 88% increase. Wheat production for this same period increased from 10.7 million tons to 54.5 million tons, 409% increase. As shown in Table 1, yield increases contributed significantly to the production increase.Similarly, in the Punjab, while the area has doubled since 1965-66, production has increased more than sixfold (Table 2). This is explained by the increase in yield from 1104 kglha in 1965-66 to 3715 kglha in 1990-91.Table 1. Area, production, and yield or wheat in India rrom 1965 to 1992.Rice-Wheat Cotton-Wheat Maize-Wheat Rice-Wheat-Sesbania (Green Manure) MaizelRice-Potato-Wheat Ground nut-Wheat Rice-Pea-Wheat Maize fodder-Brassica-Wheat Khari f Pulses-WheatDepending upon the maturity and harvesting of the previous summer crop, the time of sowing wheat is extended from the end of October to the end of December. Losses in grain yield with delayed planting have been reported in Punjab (Randhawa et al. 1981).The wheat crop is greatly influenced by temperature and radiation prevailing during the season, particularly when water and nitrogen are not limiting. Nix (1976) showed that temperature and radiation influence plant processes differently, but there combined effect can be usefully described as a photothermal quotient (PTO). PTO is defined as the ratio of daily total solar radiation in MJ/m 2 /day divided by the mean daily temperature minus 4.5 0 C (base temperature). Midmore et al. (1984) and Fischer (1985) observed that grains/m 2 (GM2) in wheat was associated with PTO over 30 days preceding anthesis.Grain yield reductions with delayed sowing under optimal conditions of water and nitrogen have been attributed to reduced GM2 caused by higher pre-anthesis temperatures (Fischer and Maurer 1976) and to reduced thousand grain weight (TGW) caused by higher post anthesis temperatures (Sofield et aJ. 1977, McDonald et aJ. 1983), even though the irradiance levels also increased in each case. The wheat crop seems to be source-limited during the pre-anthesis phase when GM2 is being determined--particularly during the phase of rapid spike growth and development, which occurs 20 to 30 days prior to anthesis.It has been demonstrated that the number of grains is determined by the carbohydrate supply to the crop during this phase. Specifically, it has been estimated that 10 mg of carbohydrates directed to the growing spike are required during rapid spike growth to keep a potential grain from aborting (Fischer 1984), for wheat crops that do not suffer from nutrient or water stress and without competition from weed, diseases, and pests. The theory behind the PTO is based on the assumption that radiation (assuming close to full light interception) and temperature are the driving forces in assimilate production and development rate, respectively, during this critical phase. High radiation values, through a larger assimilate production and low temperatures, by extending the crop duration during this critical phase. Therefore, high PTO values should result in a larger number of GM2. Fischer (1985) specifically applied the PTO concept to explain the effects of radiation and temperature on kernel number in wheat crops. He confirmed that dry matter accumulation under conditions at Ciudad Obregon, Sonora, Mexico (January to March) was linearly related to absorbed photosynthetic radiation (slope of 3 g/MJ PARA; PARA = 0.45 * incident solar radiation for full ground cover). He also inferred mainly from the literature that rate of development during the terminal spikelet to anthesis period was linear with respect to average temperature (max + minl2) minus a base temperature ofThe PrO was calculated on a daily basis with the following algorithm: The last relationship means that, for a given solar radiation, maximum PTQ is reached at T mean =10, but PTQ rapidly and linearly drops to zero at T mean =4.5.The field studies in Ludhiana were undertaken from 1985-86 to 1991-92 with three objectives:• To find the optimum planting date for wheat in the Punjab.• To find the absolute and relative losses in grain yield, GM2 and TGW, with delay in sowing from the optimum time.• Understand the first two objectives in terms of the effect of temperature and radiation combined and separately on yield, GM2, and TGW.Field experiments were conducted from 1985 through 1992 on a loamy sand soil at Punjab Agricultural University, Ludhiana. Ludhiana is situated at 30 0 54' N latitude and 75 0 48' E longitude and 247 mas!. Sixty-six genotypes having spring growth habit and ten dates of planting were studied, although not all genotypes and planting dates were studied each year. The genotypes and planting dates sown each year are given in Table 3. The plots were managed under optimal conditions of fertilizer and irrigation. Broad leaf and other grassy weeds were completely controlled by hand hoeing. The net plot area harvested for each genotype was 7.36 m 2 in each year. The seeding density used in all genotypes, planting dates, and years was 100 kglha. Heading date was defined as the date when about 75% of the spikes had fully emerged from the boot and maturity date when 100% of the spikes were without green color. GM2 was calculated from grain yield and TGW. The treatment design was a factorial combination of planting dates and genotypes arranged as a split-plot design with three replications. Main plots were planting dates and subplots were genotypes.Effect of genotype, planting date, and year on yield, yield components, and phenologyThe statistical analysis was done first by years for all the planting dates and genotypes. Then a combined analysis of an orthogonal subset of data was done for 4 years (1987-88, 1988-89, 1989-90, and 1991-92), three replications, three genotypes [PBW 34 (long season), PBW 154 (medium season) and PBW 226 (medium to short season)], and seven planting dates (Oct. 25,Nov. 5,Nov. 15,Nov. 25,Dec. 5,Dec. 15,and Dec. 25) to study the interactions of genotype x year, planting date x year and genotype x planting date x year. Replications and experiments were considered as random effects and genotype and planting dates as fixed effects.Effect of PTQ, temperature, and solar radiation on yield and GM2 during the pre-anthesis period To evaluate the effect of temperature and radiation on yield, GM2, and TGW, the complete data set (all years and dates) of the selected genotypes was used. Weather variables, such as temperature, radiation, etc., were recorded at a weather station less than 1 km from the experimental plots. The following PrQs were generated by calculating the daily PTQ and averaging them for different periods:PTQ1: -30 days to heading, PTQ2: From -20 days to heading to +10 days after heading, PTQ3: -20 days to heading, PTQ4: From -20 days to heading to +20 days after heading, PTQ TGW: From heading +10 days to heading +40 days.The PTQs were expressed as MJ/m 2 /dayf'C. The correlations between PTQs for the above periods and yield and GM2 are given in Appendix 1. Out of the four PTQs, PTQ2 calculated in the pre-heading phase was more consistent for predicting GM2 and was selected for further use. The post-anthesis photothermal quotient (PTQ TGW), calculated from heading +10 to heading +40 days period, was used with TGW.Absolute and relative losses with delayed sowing To calculate the absolute and relative losses caused by delayed planting date, only data from the optimum planting date to 25DEC were used. The optimum planting dates were 05NOV for PBW34 and NOV15 for PBW154 and PBW 226. Then absolute and relative losses were calculated from that date to 25DEC for all three genotypes. The 25DEC date was selected because there are basically no farmers planting beyond this planting date. Data from a different number of years were available for each genotype; PBW 34 (average of 6 years) PBW 154, (average of 7 years), and PBW 226 (average of 5 years).The method of analysis to estimate yield losses due to delays in planting date was done with the following regression functions:where Yi is the yield in kg/ha of planting date i, In(Y j) is the natural log of Y i' and PDi is the Julian date for the planting date i. The linear speCification (function 1) provides an estimate of the yield reduction due to delays in planting dates in absolute terms (Le., b measures kg/halday yield loss) while the logarithmic specification in function (2) gives the relative yield reduction (i.e., 100 (dq/dVi)ri =100b measures the percent per day yield loss) (Gujarati 1988). The statistical analysis of individual years for yield, GM2, and TGW revealed that sowing dates and genotypes had significant effect on yield and yield components in all the years (Table 5). However, the interaction between sowing dates and genotypes was not significant for yield in three years (1985-86, 1986-87, and 1991-92) and GM2 in 2 years (1987-88 and 1990-91).The combined analysis of the orthogonal subset of data for four years, three genotypes and seven planting dates revealed that planting date x genotype interactions were significant for yield and GM2 (Table 6). Also the year x planting date interaction was significant for grain yield. The year x planting date x genotype interaction was significant for TGW, days to heading (Days H), days to maturity (Days M), and grain-filling days (Days H-M).Effect of genotype, planting date and year on yield, yield components, and phenology Yield--As the combined analysis shows, the three-way interaction between year, planting date, and genotype was not significant. This suggests that the genotype by planting date interaction, which was significant, was independent of the year effect. The mean grain yield across years at the earliest planting date (250CI) was 4354, 4505, and 4133 kglha for PBW 34, PBW 154, and PBW 226, respectively. By delaying the planting date to 05NOV and 15NOV, the yield of all three genotypes improved except for PBW 34, which produced the highest yield on the 05NOV planting date (Figure 1). The 15NOV 1). Therefore, the genotype by planting date interaction can be explained by the earlier optimum planting date of PBW34 as well as the faster decline in yield of this genotype compared to PBW154 and PBW 226. A significant interaction for yield between years and planting date revealed that 1988-89 was the highest yield year for all genotypes at all the planting dates except 25DEC. At this planting date, 1991-92 produced 3502 kglha compared to 3351 kglha in 1988-89 (Figure 2). As mentioned before, 1988-89 had the lowest temperature and the highest radiation and PrQ in the pre-anthesis period.Yield componenls--The response of GM2 was very similar to that of yield, in contrast to TGW. The three-way interaction for GM2, between year, planting date, and genotype was not significant. However, the genotype by planting date interaction was significant.The number of GM2 for all three genotypes, averaged across the years under different planting dates, had a similar trend to that of yield, which shows the predominant role of GM2 in determining final yield (Figure 3). For TGW, the genotype by planting date interaction also interacted with year. TGW for all three genotypes decreased with any delay in planting date after 150CT in all the years (Figure 4a). However, among years, 1988-89 produced heavier grains compared to others in all genotypes at almost all planting dates. In addition, 1987-88 had a different pattern of TGW reduction with delays in planting date compared to the other years. The ranges ofTGW across years and dates were 45-56, 44-52, and 44-48g for PBW 34, PBW 154, and PBW 226, respectively.Phenology--The interaction between genotype, planting date, and year was significant for days to heading, days to maturity, and grain-filling days. The ranges of number of days to headi ng across years and dates were 99-111, 90-100, and 88-93 for PBW 34, PBW 154, and PBW 226, respectively (Figure 4b). It is also clear from the data that PBW 34 took the maximum days to heading when planted on 250cr; for the other two genotypes, the maximum was reached usually on 15NOV. The number of days to heading was reduced with further delays in sowing in all the genotypes. The number of days to maturity were drastically reduced with any delay in planting after 150cr for all three genotypes and in all four years (Figure Sa). In general, the number of grain-filling days was reduced with any delay in planting date for all genotypes, however, for PBW 34 the rate of reduction was slower than for the other two genotypes (Figure 5b). Undoubtedly, PBW34 reached heading later than the other genotypes in early plantings. The steadily increasing maximum and minimum temperatures (Table 4) during February, March, and April may have caused the late planting date to produce lower number of GM2, lower TGW, and ultimately lower yields. Radiation increases should, however, have compensated to some extent for the increase in temperature. The next section examines these relationships.Effect ofPTQ, temperature, and solar radiation on yield and GM2 during the preanthesis period Effect on grain yie/d--Grain yield across planting dates was linearly and positively correlated with the pre-anthesis photothermal quotient (-20 H to +10 H) for all three genotypes (Figure 6a). 226) where the PTO values were relatively high, but grain yield was not. It is believed that in the 15JAN planting the crops were exposed to high temperatures around meiosis and anthesis causing spike sterility, resulting in a lower number of GM2 and, in turn, yield for a given PTO value. The other possible explanation is that, in the 15JAN planting, PBW34 and PBW 154 did not reach full light interception, therefore they could not efficiently use the available radiation. Thus, although PTO values were relatively high, yield and GM2 were low. The effect of temperature during the pre-anthesis period (-20 H to +10 H) was found to be negatively correlated with yield across planting dates for all the genotypes, PBW 34 (r = -0.92), PBW 154 (r = -0.86), and PBW 226 (r = -0.86) (Figure 6b). Similarly, yield was also found to be negatively correlated with solar radiation during the pre-anthesis period for PBW 34 (r = -0.86), PBW 154 (r = -0.71), and PBW 226 (r = -0.40) (Figure 7a). PBW 34 was found to be relatively more sensitive to higher temperature and solar radiation conditions. We would expect solar radiation to be positively correlated with yield, however, due to the high autocorrelation between solar radiation and temperature, this correlation becomes negative (Table 7).Effect on GM2--For all three genotypes, GM2 was positively correlated with grain yield across planting dates. The correlation coefficients (r) were 0.97,0.97, and 0.84 for PBW 34, PBW 154, and PBW 226, respectively (Figure 7b). GM2 was positively correlated with PTO during the pre-anthesis period (-20 H to +10 H). The number of GM2 ranged from 3790 to 11,550 and PTOs from 1.08 to 1.58 MJ/m 2 /dayPC. The correlation coefficients (r) were 0.89,0.72, and 0.94 for PBW 34, PBW 154, and PBW 226, respectively (Figure 8a). GM2 increased as PTO increased, except for the 15JAN planting. See the above explanation on yield.GM2 was negatively correlated with mean temperature during the pre-anthesis period (-20 H to +10 H) for all three genotypes, PBW34 (r=-0.81), PBW154 (r=-0.73), and PBW 226 (r =-0.48) (Figure 8b).The number of grains were also negatively correlated with solar radiation during the preanthesis (-20 H to +10 H) period, for PBW 34 (r = -0.73), and PBW 154 (r =-0.55). However, in the case of PBW 226, the number of grains was not much affected by changes in solar radiation (r = 0015), so PBW 226 was found to be relatively more tolerant to the changes in temperature and solar radiation compared to PBW 154 and PBW 340 Solar radiation was expected to have a positive effect on GM20 However, due to the high correlation between temperature and radiation, i.e., 0.98, 0.94, and 0.78 for PBW 34, PBW 154, and PBW 226, respectively (temperature having a negative relationship with GM2, Table 7), there was a negative relationship between solar radiation and GM2 in two of the genotypes studied (Figure 9a).The above analysis shows that GM2 is affected by both solar radiation and temperature during the pre-anthesis period. This can be observed by the improvement in the relationship between GM2 and PTQ (which uses both solar radiation and temperature) when compared to either solar radiation or temperature alone.Effect of temperature and solar radiation during the post-anthesis period on grain yield and TGW Effect on grain yield--For all three genotypes, grain yield across planting date means was positively and linearly correlated with the combined effect of temperature and solar radiation (PTQ) during the post-anthesis period (+ 10 H to +40 H). The correlation was stronger for PBW 34 (r = 0.90) than for PBW 154 (r = 0.71) and PBW 226 (r = 0.77) (Figure 9b). Grain yields ranged from 1393 to 4356 kg/ha, 1545 to 4555 kg/ha, and 2933to 4905 kg/ha with the corresponding ranges in PTQ values from 1.08 to 1.43, 1.09 to 1.50, and 1.00 to 1.55 for PBW 34, PBW 154, and paw 226, respectively.The increasing mean temperature during the post-anthesis period had a strong effect on grain yield. The yield of all three genotypes decreased with an increase in mean temperature. However, increasing mean temperature had more a negative effect on yield Effect on TGW--Grain yield was positively correlated with TGW for all three genotypes (Figure 11a): paw 34 (r =0.94), paw 154 (r =0.92), and paw 226 (r = 0.60). In PBW 34, TGW was found to be positively correlated with the photothermal quotient during the post-anthesis period (H +10 to H +40), however, it was highly negatively correlated with the separate effect of temperature and solar radi ation; the correlation coefficient (r) values were 0.99, -0.99, and -0.97 for TGW vs PTQ, mean temperature, and mean radiation, respectively. A similar trend was observed in PBW 154 and paw 226. The correlation coefficient (r) values were 0.92, -0.95, and -0.93, for TGW vs PTQ, mean temperature, and solar radiation for paw 154 and 0.74, -0.99, and -0.88 for paw 226, respectively (Figures lib, 12&, 12b). The best correlations with TGW occurred with mean temperature, without any improvement by adding radiation alone or together with mean temperature (PTQTGW), suggesting that TGW is solely affected by temperature under Ludhiana conditions. When the relationship between TGW and mean temperature was plotted by year, we can still observe a strong relationship between these two factors (Figure 13).Use of the PTQ for explaining year effects PTQ was useful in explaining part of the year x planting date variability in yield and GM2. Although the correlations were not as high as with date of planting means, the values are significant and demonstrate how variability among years can also be explained by PTQ. This can be seen in Figures 14a and 14b where the year 1988-89 had higher PTQ values with correspondingly higher GM2 and yield values. The higher variability observed by using the yearly data could be explained by soil differences over the years.The grain yield of all three genotypes decreased with a delay in sowing. However, the optimum date varied with the genotype. Calculating for delays after the optimum date, grain yields decreased at rates of 41,35, and 36 kg/ha/day for PBW 34, PBW 154, and PBW 226, respectively; the corresponding values on a relative basis for these genotypes were 1.2,0.9, and 0.9%/ha/day. For PBW 34, TGW was reduced at a rate of 1.52 g;Oc with a corresponding increase in mean temperature from 18.70 to 24.52 0 C during the post-anthesis period (H+ 10 to H+40). For PBW 154, TGW decreased at a rate of 1.03 g;Oc with a corresponding increase in mean temperature from 18.47 to 23.68 0 C during the post-anthesis period.Similarly, for PBW 226, TGW was reduced at a rate of 1.05 gjOc with a corresponding increase in mean temperature from 17.26 to 22.23 0 C.The results of these studies suggest that time of sowing is a very important factor for determining yield. The optimum planting dates were 05NOV for PBW 34 and 15NOV for PBW154 and PBW 226. Delay in sowing beyond these dates caused severe reductions in GM2, TGW, and yield. High post-anthesis temperatures had a highly negative effect on TGW and yield on all genotypes.All three genotypes maximized their yield when the PTQ value was highest between 20 days before heading to 10 days after heading. This suggests that all genotypes should maximize their yield by flowering during the highest PTQ in the growing season. PBW 34 is a longer season genotype compared to the other two and the highest PTQ value occurs at a given time during the year. Therefore, PBW 34 will have to be planted earlier than the other two so that all three genotypes flower at about the same time to take advantage of the high PTQ values. It can be seen clearly that this was the case for PBW 34 and PBW 154 (Figure 15). However, that did not hold true for PBW 226 (shortseason genotype).If we analyze GM2, we can observe that PBW 34 and PBW 154 have a period of 10 days (between Julian dates 50 and 60--about 20 and 28 Feb.) when GM2 is maximized (Figure 16). However, for PBW 226 the optimum is around Julian date 40 (Feb. 10) and then there is a sharp drop after this date. This may be explained by a possible inability of PBW 226 to reach full light interception after Julian date 40.GM2 could be better explained by the combination of solar radiation and temperature (PTQ2) than by either of the two alone during the pre-anthesis phase, while TGW could be better explained only by temperature in the post-anthesis phase.These results suggest that it would be useful to look at long-term climatic data and calculate probabilities of when the highest PTQ occurs and use that as the target optimum flowering date from which the optimum planting date could be calculated.The PTQ2 pre-anthesis seems to be able to predict which will be high yielding years.There is a 1.2, 0.9, and 0.9%/ha/day yield loss after the optimum planting date for PBW 34 (long season), PBW 154 (medium season), and PBW 226 (short season), respectively. .O.\"\\7\"-----' , -- Planting Date \"\"'''''''''-0 ~f:.. ........ .. ----,-----,--------,.----,---- ... ","tokenCount":"4311"} \ No newline at end of file diff --git a/data/part_1/1500256176.json b/data/part_1/1500256176.json new file mode 100644 index 0000000000000000000000000000000000000000..90fc578f080d2ee943d6a346239712a97b075246 --- /dev/null +++ b/data/part_1/1500256176.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"118b7308c080534e8f4dc4bd47f9fb53","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/f2539b33-8745-467b-b48a-43832bbc0d2d/retrieve","id":"59017225"},"keywords":[],"sieverID":"f1921b95-63ba-475f-8d0a-4b4e548204b1","pagecount":"6","content":"production departments at the district level to tackle climate risk effects on food and nutrition security. This can be done through structured regular meetings between the actors.◼ Political and economic priorities tend to overshadow food and nutrition security concerns. Special care needs to be taken during planning and budgeting phases not to lose focus of value chains that promote nutrition and resilience.◼ Mbale district is experiencing a shift from coffee and banana to emerging resilient food and nutrition value chain commodities such as onions, poultry, cabbage and ground nuts. The district planning and budgeting processes should prioritize them.This info note summarizes findings of climate risk and nutrition profiling conducted by researchers from the International Institute of Tropical Agriculture (IITA) and International Center for Tropical Agriculture (CIAT) as part of a situation analysis for the second phase of the CCAFS project on Policy Action for Climate Change Adaptation (PACCA), which seeks to stimulate adoption of gender-and nutrition-sensitive climate smart agriculture by aligning the national level agenda with implementation.The findings are based on 18 key informant interviews and 14 focus group discussions, conducted between June and August 2018, with district level experts (bothpublic and private) and farmer representatives from two sub-counties in Mbale (Lukhonge and Bungokho Mutoto). The same district level experts and farmer representatives were gathered together in January 2019 at Wash and Wills Hotel for a stakeholder workshop to give feedback and validate the findings of the climate risk and nutrition profiling. During the three-day workshop, stakeholders prioritized four food and nutrition security value chain commodities, identified key risks across the value chains, and related these risks to underlying vulnerability factors of specific groups of people and adaptation options that addressed the vulnerabilities and risks.Demographic and agricultural context information was gathered to describe the socio-economic situation of the district. Mbale has a population of 492,804 of which 237,610 are male and 255,194 are female, according to the National Housing and Population Census 2014. The district has a total land area of 538 square kilometers and population density of 915 persons per square kilometer; this is much higher compared to the national average of 207 persons per square kilometer (World Bank). The main economic activity is agriculture, supported by bimodal rainfall mainly March-June and September-November, with average rainfall of 1500mm per annum. The district is divided into three agricultural zones, i.e., lowlands, midlands, and highlands. The lowland areas mainly have sand to clay loam soils that support crops such as beans, maize, rice, cassava and horticulture while the highland areas have volcanic soils that support perennial crops such as coffee and banana. The crops grown in the midland areas are similar to those of the highlands.Mapping of priority food and nutrition security value chain commodities was part of the description of the Mbale district context. Initial mapping of food and nutrition security value chain commodities such as maize, millet, beans, bananas, onions, cabbage, cassava, coffee, sweet potatoes, piggery and dairy was based on existing literature, key informant interviews and focus group discussions. During the workshop, selection of priority value chain commodities was based on climate resilience, gender, nutrition and population involved. Four priority key value chains emerged. These were: poultry, onions, cabbage and groundnuts.But the process of selection was contentious and very dynamic, with the district leaders suggesting that the crops prioritized may be resilient and contribute to income yet overall they were not key for food security in the district. A new list of priority value chain commodities was agreed upon by the stakeholders and these included bananas, onions, maize and beans. Perceptions of climate change by district level experts and farmers related to increase in temperature, changing rainfall patterns, prolonged dry spells, and delayed on-set of the rainy season.Historical precipitation and temperature changes for Mbale district from 1980 to 2015 showed that 1990 and 1987 were high precipitation years for the first and second seasons respectively while 1984 and 1992 were low precipitation years respectively for the first and second seasons.Though the first season is predominantly the rainy season of the year, there has been an increase in precipitation and extremes such as floods, reduction in crop cycle and increase in mean temperature. The uncertain second rainy season has changed slightly, with a moderate increase in precipitation and mean temperature and reduction in the crop cycle. Notable in both scenarios was the temperature increase. Following the scenarios discussion, hazards identified for the priority value chain commodities included: dry spells, drought, soil erosion, excess rain, hail storms, storms, and late start of rainy season. For banana, onion, maize and bean value chain commodities, the consequences/impacts of agro-climate indices were identified along the input supply, on-farm production, postharvest, and output markets. The types of value chain actors most impacted by these consequences were differentiated in terms of gender, age and economic status. Additional factorssuch as climatic, biophysical, social, economic, and institutionalthat make some people affected by these consequences fare worse than others were identified.On-going and potential/new adaptation options to value chain specific risks were identified. Who implements the adaption option (individual, organization, or department)? Who benefits most from the adaptation option (role of value chain on gender, age, economic status and/or education)? Adaptation options to manage climate risks and underlying vulnerabilities for banana, onion, bean and maize value chain commodities ranged from on-farm practices to government policies/strategies, as well as public/private services.Dry spells and late start of rain season were hazards mapped for the bean commodity. The consequences/ impacts of dry spells on bean commodity included: lowand poor-quality yields, inability of farmers to have steady seed supply, delayed land preparation, increased cost of land preparation, delayed planting, and delayed weeding. Hazards identified for the banana commodity were drought, storms and hailstorms. The consequences of drought on banana commodity included: poor quality of suckers because drought makes them less available and suitable for planting, organic manure becomes less available as bananas are fed to animals during the drought, land preparation is slowed down and delayed, reduced availability of nutrient to plants, the suckers die due to desiccation, drought may reduce the prices as a result of ripening that leads to short shelf life, transportation reduces the banana shelf life, and drought results in bunches getting low prices. The consequence of storms and hailstones identified for the banana commodity were soils erosion, limited availability of suckers, manure is eroded, poor banana fingers hit by hail storms reduce marketability, delayed transportation due to impassable roads, hail hit bananas fetch lower prices at the market, and delayed transportation leading to losses due to impassable roads.Banana value chain actors most affected by drought, storms and hail storms were men, women, and youth of all economic and education levels. The underlying factors contributing to severity of drought included: women are more constrained in terms of mobility while looking for suckers; sourcing for manure also becomes a problem because farmers have to travel long distances. Women are more affected because they constrained by other household multiple roles. Women are taken advantage of by middlemen hence lower value is realized. The economically poor are more vulnerable, especially in the transportation process in hard to reach areas. Underlying vulnerability factors contributing to severity of storms and hailstorms include: women are affected when it comes to sourcing for suckers during the rainy season. The less privileged financially are not able to afford manure and tissue culture plantlets. Economically the poor are vulnerable because they fail to buy manure to replace in case of erosion and they cannot afford tissue culture plantlets. When roads become impassable, it becomes difficult for women to buy transportation equipment like bicycles yet culture in the area also disagrees with a woman riding a bicycle. The poor also get handicapped for failure to afford better transportation means to the market.Women lack confidence when it comes to selling and they are limited in mobility making it hard for them to secure better prices and majority end up selling at home.On-going adaptation options to drought for banana commodity included: using tissue culture plantlets, sourcing from farmers near the streams, storing of organic manure during times of planting, slashing, application of herbicides, mulching, waiting for rain, transportation during cool hours of the day, improving shelf life by storing in cool places, sprinkling water on them, wrapping with banana leaves, and storing under shades to cool them. On-going adaptation options of banana value chain to storms and hail storms include: manure, sourcing from unaffected areas, promoting the recommended needle shaped suckers, using tissue cultured plantlets, mulching, contour farming and terracing, transporting bananas on the heads, selling at lower prices than expected, and calling middle men as a means of promotion. Mbale and the entire Elgon region is also known for coffee and banana intercropping.The bananas provide the shade and self-mulch to coffee. (van Asten et al. 2011, Jassogne et al. 2012). This address both climate adaptation and also the income generated.Most households in the highland and mid altitude own dairy which improves household nutrition.Beneficiaries of the adaptation options are women, men and youth.Potential/new adaptation options for banana commodity to drought include: using tissue culture plantlets, application of organic fertilizers and advanced storage of manure, using ox ploughs and hand tractors, mulching, use of irrigation through simple water harvesting technologies, collective transportation using cold chains to transport bananas, construction of advanced markets with cool conditions to allow prolonged shelf life of bananas, construction of cold chains to preserve bananas for longer time periods, value addition and collective marketing, establishment of community markets for bananas, collective selling to monopolize the market, and storage in a cool environment. Potential adaptation options of banana value chain to storms and hail storms include: mulching, using the small needle shaped suckers, using tissue cultured plantlets, contour farming, early cropping (planting grasses along the contours), terracing, proper storage of harvested bananas, using trucks hired through collective transportation, protecting bananas from being affected by constructing a shade, storing under shade, and collective marketing to take better advantage of the market.The hazards mapped for the maize commodity were dry spells and excessive rain. Consequences for dry spells and excessive rain identified for maize along the input supply, on-farm production, postharvest and output markets included: wrong selection of land as farmers select land near water, and land becomes expensive to hire. Farmers tend to go for inferior sends in anticipation of dry spells. Farmer demonstrations are spoilt, and training programs are changed as farmers lose morale in attending trainings.Men, women, youth, people with disabilities, and elderly are the most vulnerable maize value chain actors to dry spells and high temperatures. Underlying vulnerability factors contributing to severity of dry spells include: poverty and production land is expensive for a farmer who would like to hire such land. Access to quality seed is expensive for farmers in rural areas.On-going adaptation options to drought for maize commodity included: dissemination of extension services on radio, farmers use their knowledge, field visits, farmers use home saved seeds, farmers suspend planting seeds, and farmers eat seeds. Government, NGOs, farmers, and local leaders benefit most from the adaption options.Potential/new adaptation options to drought for maize commodity included: establishing small irrigation facilities, training on irrigation and alternative livelihood options like bee keeping, and government provision of improved seeds.Workshop participants discussing adaptation options. Photo: John Francis Okiror (IITA)Based on climate information analysis (Fig 2 ), there is a steady rise in temperatures as well much less predictability for the onset of rains. There is an increase in dry spells as well as storms. This was further corroborated by the participants of the three-day workshop. The findings also reveal a link between climate, income, food, and nutrition risk in the district.There is a clear lack of connection between the production, natural resources and health departments to be able to address the tripartite challenge of climate, income, and food and nutrition security in the district. One of the pathways that was encouraged was making sure that there is better collaboration between actors so as to learn from one another, avoid duplication and build synergies. Establishment of a forum to bring together actors for discussion, sharing and accountability is recommended.","tokenCount":"2017"} \ No newline at end of file diff --git a/data/part_1/1511251683.json b/data/part_1/1511251683.json new file mode 100644 index 0000000000000000000000000000000000000000..b5223235c2661acc5e165973e9b72bd2fee333be --- /dev/null +++ b/data/part_1/1511251683.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c9a04589e1c869dcda20af34ed4b5204","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/87eed949-e33e-434c-87f1-5901b797ffa1/retrieve","id":"126340250"},"keywords":[],"sieverID":"d4440db5-13b8-4a40-87e0-77c6d37fb959","pagecount":"88","content":"De notar: qualquer melhoramento do seu actual sistema de produção avícola implicará investimentos adicionais de tempo, equipamento e recursos financeiros, que nunca devem ser subestimados. Antes de começar, deve-se tomar o devido tempo para considerar quem fornecerá os insumos adicionais de mão-de-obra e como os melhoramentos serão financiados. Não se deve nunca actuar de improviso!Este manual trata das práticas de incubação de ovos e criação de pintos em pequena escala, com ênfase na criação bem sucedida das aves de capoeira mais comuns em quintais.Revimos, meticulosamente, as edições anteriores deste manual, produzindo uma versão completamente nova em conformidade com os conhecimentos mais recentes sobre as práticas eficientes da incubação e criação de aves domésticas ao nível da aldeia. O manual trata de incubação e criação tanto de modo natural como artificial, tendo ambas as práticas o seu valor específico consoante os objectivos do avicultor.Muita da informação e a maior parte das ilustrações são provenientes da Rede para o Desenvolvimento da Exploração Avícola em Pequena Escala (Network for Smallholder Poultry Development) e do Livro sobre Galináceos na África Austral (The Southern African Chicken Book) de Ed Wethli. Gostaríamos de expressar os nossos agradecimentos por nos ser permitido utilizá-las no presente manual.Também gostaríamos de agradecer a Farzin Wafadar, Gerd de Lange, Ineke Puls, Salimata Pousga, Janna de Feyter e Adri Vink pelo seu valioso tempo e empenho dedicados à elaboração desta versão revista.Desejamos ao leitor uma boa leitura e bons negócios.As aves de capoeira desempenham um papel importante na maioria dos países en desenvolvimento, visto que contribuem para o sustento dos pequenos produtores rurais que criam galinhas a nível da comunidade. São vários os manuais que fornecem uma informação geral sobre a criação de galinhas, tal como o Agrodok 4: Criação de galinhas em pequena escala.O presente manual concentra-se no melhoramento das práticas de incubação de ovos e criação de pintos no sistema de criação das galinhas em liberdade (ou avicultura em regime divagante) de forma a: ? Obter-se um número óptimo de galinhas ? Implementar uma substituição regular do bando avícola ? Criar, com bons resultados, os pintainhos durante as primeiras 8 semanas de vida.A incubação de ovos e criação de pintos podem ser efectuados de forma natural, por uma galinha, ou ave-mãe de subsituição (perua, pata), ou de modo artificial numa incubadora (incubação) ou criadeira de pintainhos (choco).Podem distinguir-se três sistemas de criação avícola a nível da aldeia consoante as definições da Organização das Nações Unidas para a Agricultura e Alimentação (FAO): ? Sistema tradicional de criação em áreas livres (também denominado de avicultura divagante) (1-10 aves) ? Sistema melhorado de avicultura divagante (5-50 aves) ? Avicultura de pequena escala em áreas confinadas (50-200 aves) As aves criadas a nível da comunidade (as duas primeiras categorias descritas) não recebem, praticamente, quaisquer cuidados. Isto implica que quase a metade dos pintos morrem dentro de 8 semanas após o seu nascimento. Pode-se evitar esta mortalidade elevada com simples medidas de maneio, como sejam a alimentação e o alojamento melhorados.No Capítulo 2 descrevem-se os factores que influenciam a escolha entre a incubação natural e a artificial.No Capítulo 3 fornece-se informação básica sobre os ovos em geral, o armazenamento de ovos fecundados, as práticas de manuseamento e o desenvolvimento dos pintainhos durante a incubação.Nos Capítulos 4-7 discutem-se a incubação e a criação dos pintainhos, quer seja por galinhas chocas ou com uso de incubadoras ou criadeiras. Implementando simples medidas de maneio e selecção, poder-se-á obter uma melhoria considerável dos resultados da incubação e criação para a exploração avícola familiar.No capítulo 8 apresenta-se um resumo do maneio de alimentação e cuidados de saúde, enfatizando a importância das práticas sanitárias.Para começar a incubação de ovos ou criação de pintos, é melhor utilizar as raças locais que demonstraram ser apropriadas nas condições locais. Para além disso, é imprescindível recorrer ao aconselhamento dos agentes do serviço de extensão agrícola, presentes na zona, sobre quaisquer medicamentos/vacinas contra doenças infecciosas. Informese também sobre a época mais apropriada para começar a criação de galinhas.Recomenda-se, por vezes, que as galinhas sejam substituídas cada ano. As galinhas velhas põem menos ovos, mas consomem a mesma quantidade de alimentos do que as jovens. Em geral, pode-se obter um bom preço pelas galinhas velhas, visto que os consumidores gostam do seu sabor. Contudo, algumas galinhas mostram ser mães excelentes, não sendo sensato abatê-las precocemente. Nunca se devem substituir as galinhas poedeiras antes de se dispor de galinhas poedeiras novas!A escolha entre a incubação natural (por uma galinha) ou a artificial (numa incubadora) depende, em grande medida, da estratégia de produção e da quantidade de ovos a ser incubada num certo momento.Os factores que devem ser levados em conta, ao decidir entre o emprego de uma galinha choca ou duma incubadora, são: 1 Sistema de produção e quantidade de ovos a ser incubada 2 Necessidades de mão-de-obra 3 Investimento na compra ou construção duma incubadora e a sua operação. 4 Os resultados comparados das galinhas chocas e incubadoras Figura 1: Abrigo nocturno que fornece protecção contra predadores e mau tempo Quando a galinha acaba de criar os pintainhos, começa a pôr ovos durante um período de 8-10 meses. Sob condições normais, uma galinha tem uma duração de vida de 5 anos. Para além da alimentação das galinhas, o avicultor deve protegê-las e os pintainhos contra predadores, ladrões e mau tempo.O sistema melhorado de produção avícola caseira é em maior escala do que a dos sistemas tradicionais de avicultura divagante, contando, portanto, com um bando de até 50 aves, tanto de raças locais como de raças melhoradas, uma alimentação ligeiramente melhorada, um alojamento simples e alguns cuidados médicos.A produção de ovos e de carne aumentam de igual modo, permitindo ao produtor um modesto nível de venda dos ovos e/ou das aves nos mercados locais, para além do consumo no agregado familiar.Sob estas condições pode-se utilizar as galinhas chocas para a incubação de ovos, visto que tal permite ao produtor espaçar a produção de ovos e carne, uniformemente, durante todo o ano. Avicultura de pequena escala em áreas confinadas, com uso duma incubadora artificial As explorações avícolas intensivas (com um bando de mais de 50 aves) criam raças comerciais para a produção de ovos (galinhas poedeiras) ou de carne (frangos de engorda). Ao criar muitas aves no mesmo espaço, é imprescindível que a sua habitação seja mantida limpa e que a sua dieta tenha um valor nutritivo adequado.Um bando de aves de idade homogénea facilita o maneio, isto implicando que a eclosão de todos os pintos do bando tenha lugar, aproximadamente, ao mesmo tempo. Como as galinhas não entram em choco simultaneamente, será necessário empregar a incubação artificial se se criar uma população considerável de galinhas de idade homogénea.Em algumas zonas, podem-se obter, regularmente, pintos de um dia em centros de incubação comerciais. Às vezes, os produtores avícolas que aprenderam como se opera uma incubadora, também fornecem 'serviços de incubação' a outros criadores de aves de capoeira.Uma galinha pode incubar, simultaneamente, 8-14 ovos. A produção anual de ovos por uma galinha limita-se a 30-90 ovos. Portanto, se a produção de pintos apenas se destina à substituição das galinhas velhas, o emprego de galinhas chocas será suficiente. Se o objectivo for a eclosão simultânea de uma maior quantidade de ovos, dever-se-á dispor duma incubadora, que pode ser empregue quando for necessário. Uma pequena incubadora pode conter 20-50 ovos. Para além disso, podem-se incubar dois ou três lotes de 50 ovos em alguns meses.Quando se emprega galinhas chocas, o tempo investido no cuidado destas limita-se à alimentação e à supervisão. As galinhas necessitam de um local seguro, limpo e tranquilo, dum ninho ou caixa-ninho, e de ter acesso fácil a alimentos e água. Embora possa parecer uma tarefa simples e fácil, não se deve subestimar o tempo e os cuidados requeridos para o bom maneio dum bando saudável com galinhas chocas.Figura 2: As práticas de maneio e saneamento adequados previnem o surto de doenças e levam a galinhas saudáveis O emprego duma incubadora custa mais tempo. Para além da sua aquisição ou construção, operar uma incubadora requer uma meticulosa atenção, aptidões e experiência de modo a poder levar a cabo as seguintes tarefas: ? Efectuar o controlo e ajuste da temperatura e humidade da incubadora ? Virar os ovos regularmente até ao dia 19 (preferivelmente três vezes por dia) ? Verificar, frequentemente, o funcionamento adequado de todos os aparelhos e equipamento: as lâmpadas ou o equipamento solar e acrescentar combustível ao queimador e/ou água ao reservatório ou bacias de água ? Limpar e desinfectar regular e meticulosamente a incubadora logo após cada eclosão do lote de ovos e prepará-la para o seguinte lote.Para além dos deveres ou ocupações já existentes, as tarefas supramencionadas requerem um investimento de uma ou duas horas de trabalho por dia, no mínimo, para uma pequena incubadora que contém até a 50 ovos, e também aptidões especiais e exactidão.Os custos da incubação por galinhas chocas apenas implicam as despesas de rações e vacinas e o material necessário para a construção dum abrigo e ninhos ou caixas-ninhos adequados. Em geral, o abrigo e os ninhos podem ser construídos à base de materiais locais. Portanto, as galinhas chocas são mais económicas em tempo e dinheiro do que as incubadoras artificiais, visto que para incubar, simultaneamente, 8-14 ovos apenas é necessário fornecer-lhes um abrigo seguro e limpo e rações (apropriadas) e água limpa.Os custos da posse e operação duma incubadora artificial são muito maiores e dizem respeito aos seguintes aspectos: a aquisição ou construção duma incubadora, o equipamento necessário e a sua operação.Pode-se escolher entre a compra duma incubadora ou a sua construção. Isto depende do tipo de incubadora que se queira empregar, da sua disponibilidade e das aptidões pessoais do produtor. O preço duma incubadora eléctrica simples e pequena (para 20-30 ovos) pode ser de 150 até $218. Uma incubadora solar (para 50 ovos) pode custar, aproximadamente, $500.Se decidir pela construção de uma incubadora, é necessário comprar vários materiais, como sejam madeira, rede de arame, chapa, recipientes de água e equipamento: um termómetro e um higrómetro. É possível que se possa comprar a maior parte do material nas proximidades da exploração.Figura 3: Uma incubadora de fabrico caseiro O aquecimento da incubadora requer o uso de querosene, gás ou electricidade, proveniente de lâmpadas ou dum painel solar. Portanto, antes de se decidir pelo uso duma incubadora, é preciso calcular os custos (ou os custos do investimento preliminar, caso se planifique o emprego dum painel solar)! Exemplo: a incubadora à base de querosene descrita na Secção 6.1, estudo de caso 2, gastará, aproximadamente, 0,5 litro de querosene por cada 24 horas para 40 ovos. Se 70% dos ovos eclodirem, produzir-se-ão 28 pintainhos (machos e fêmeas) dentro de 21 dias. Será preciso de 21 x 0,5 litros de querosene. Por conseguinte, pode-se concluir que cada pinto gasta, aproximadamente, meio litro de querosene.Uma galinha a chocar os ovos fornece exactamente a temperatura, humidade, ventilação e frequência de viragem apropriadas para os ovos se desenvolverem adequadamente. Os riscos que se correm pela incubação por choco são reduzidos, visto que se uma galinha choca abandonar o seu ninho perder-se-ão apenas 8-14 ovos.Uma incubadora de fabrico caseiro não cumprirá tão facilmente com as normas requeridas no que diz respeito à temperatura, humidade e ventilação. Para optimizar os resultados da incubação, é necessário ter alguma experiência para operar cuidadosamente a incubadora.Mesmo assim, os resultados podem mostrar-se inferiores aos resultados previstos. Caso o combustível se esgote ou se houver um corte de energia prolongado, perder-se-ão, pelo menos, 40 a 100 ovos, consoante a quantidade de ovos presentes na incubadora e o tamanho deste aparelho.No quadro 1 apresenta-se um resumo dos vários factores que devem ser levados em conta ao escolher o método de incubação.Quadro 1: Escolha entre incubação por choco ou por incubadora As aves de capoeira podem produzir durante a sua vida enormes quantidades de ovos. Adiante apresenta-se alguma informação elementar sobre os ovos.Estrutura dos ovos O ovo é uma estrutura complexa que é constituída por: a casca (conquilha), as membranas da casca, a clara do ovo (albúmen), dois cordões torcidos (calazas), a gema e o óvulo (gérmen). Ao óvulo não fecundado também se chama oócito ou gâmeta feminino, enquanto que o fertilizado é conhecido como blastoderma ou embrião.Podem-se distinguir os seguintes componentes: ? Casca, uma camada calcária, dura e rija que protege o interior do ovo. ? Duas membranas da casca (a membrana externa e interna); estas membranas ficam separadas na ponta mais arredondada do ovo, onde formam a câmara de ar. Como se perde humidade através de evaporação, a câmara de ar é maior nos ovos maduros. Esta é a razão por que os ovos velhos flutuam na água enquanto que os ovos frescos se afundam. A câmara de ar desempenha um papel importante durante a eclosão (ver a Secção 3.4). ? A clara do ovo (o albúmen) é uma massa gelatinosa que se torna branca quando cozida. Nos ovos velhos a clara de ovo é menos viscosa (mais fluida), de modo que ao partir um ovo velho sobre um prato, o seu conteúdo cobrirá uma superfície maior do que um ovo fresco, recém posto. ? Dois cordões torcidos (as calazas) de clara de ovo contêm a gema no centro do ovo. ? A gema é a substância amarela que é envolta pela membrana da gema. A cor da gema depende das rações consumidas pelas galinhas. ? O óvulo (oócito/gâmeta femenino) encontra-se na superfície da gema. O desenvolvimento do embrião galináceo começa quando o oócito é fecundado.A gema e a clara do ovo contêm substâncias sumamente nutritivas (proteínas e gorduras) aproveitadas pelo embrião em desenvolvimento e o pintainho recém eclodido.A produção de ovos começa quando as galinhas atingem a maturidade sexual. Para as raças poedeiras comerciais, isto sucede a uma idade de, aproximadamente, 20 semanas. No caso das raças locais é mais tarde (24-32 semanas). A galinha não precisa da presença dum galo para começar a postura, mas dos ovos apenas nascerão pintainhos se foram fecundados!Os órgãos que produzem os ovos dentro do corpo da galinha são: o ovário onde se desenvolvem muitas gemas (e óvulos), antes de sairem para o oviduto.O oviduto é um tubo onde numa extremidade entra uma gema e, depois de 24 horas, sai um ovo completo -com casca -na outra extremidade.Pouco tempo depois de o ovo ser posto, soltar-se-á uma nova gema do ovário. Portanto, uma galinha é capaz de continuar a pôr ovos durante vários dias. Uma galinha de raça local põe 8-14 ovos entrando depois disso em choco. Uma poedeira comercial põe até 30 ovos e continuará a postura de ovos depois dum só dia de pausa. Portanto, não ficará choca de nenhuma maneira.Durante o período de postura de ovos, o oviduto duma galinha é bastante comprido (de 65-70 cm). Quando uma galinha não está no período de postura, o oviduto será muito mais curto.Modo de determinar se uma galinha está em postura Um método para distinguir entre as galinhas poedeiras e as nãopoedeiras consiste na examinação do orifício da cloaca e medir a distância entre os ossos púbicos e o esterno.A galinha é provavelmente poedeira: ? se o orifício da cloaca está húmido e rosado, e ? há amplo espaço (de 4 dedos) entre a extremidade pontiaguda do esterno e os ossos púbicos e (de 2 dedos) entre os 2 ossos púbicos.A galinha não é poedeira: ? se o orifício da cloaca está seco e amarelado, e As galinhas das raças tradicionais e locais põem ovos durante 8-14 dias e, depois, sentam-se em cima deles para os incubar. Depois de 3 semanas de choco e várias semanas de cuidar dos seus pintainhos, a galinha começa a pôr, de novo, 8-14 ovos. Isto significa que a produção anual duma galinha de raça local se limita a 30-90 ovos.Se os pintainhos forem afastados da galinha antes de este período terminar, começará a pôr ovos mais rapidamente, de modo que haverá um aumento ligeiro da quantidade de ovos produzida anualmente.O choco é uma característica herdada. As galinhas poedeiras comerciais, modernas, perderam o instinto do choco por terem passado por uma criação selectiva. Isto implica que, depois de pôr um conjunto de 30 ovos ou mais, começarão a pôr ovos de novo depois de um período de descanso de, apenas, um dia. Desta forma, a produção anual das poedeiras comerciais será muito superior à das galinhas de raças tradicionais, atingindo níveis de produção de até 300 ovos por ano.O peso dos ovos depende da raça criada, variando de 35-50g para as raças locais até 50-70g para as poedeiras comerciais. No caso das galinhas novas, os ovos serão mais pequenos no início da postura comparativamente a alguns meses mais tarde. Ovos de diferentes galinhas É possível que uma galinha ponha ovos inférteis ou menos férteis do que os das outras galinhas. Portanto, ao usar uma galinha-mãe adoptiva ou uma incubadora, é recomendável empregar ovos de diferentes galinhas, de forma a reduzir-se o risco de perda.Os ovos provenientes de diferentes raças de galinha variam entre 30-70g de peso. Os melhores resultados de incubação são obtidos com ovos de tamanho normal, postos por boas poedeiras. Os ovos provenientes duma boa estirpe produzirão pintainhos de boa qualidade, visto que as boas características da galinha são herdadas pelos pintos através do seus ovos.Nunca se deve usar ovos com uma forma esquisita (demasiadamente compridos, redondos, pequenos ou malformados) para incubação, visto que é pouco provável que destes ovos saiam pintainhos.Alguns ovos contêm duas gemas (as chamadas gemas duplas). Estes ovos são maiores do que os normais e ao serem incubados deles não sairão pintainhos.Às vezes produzem-se ovos muito pequenos. Estes nunca contêm uma gema, nem um óvulo.A ocorrência de cascas deformadas ou de qualidade deficiente pode ser causada por doenças, falta de cálcio e perturbação das galinhas durante a formação da casca (em 20 horas).As cascas dos ovos não podem conter rachas, visto que se perderia uma quantidade excessiva de humidade durante a incubação, provocando a debilidade ou morte dos pintainhos. Para além disso, as rachas fornecem uma oportunidade de acesso às bactérias e outros agentes patogénicos.Deve-se reduzir o risco de contaminação por doenças usando apenas ovos limpos. Deve-se evitar o uso de ovos contaminados por dejectos, sujidade ou o conteúdo dum outro ovo partido, visto que estes podem conter patogénicos. Para além disso, a sujidade obstrui os poros da casca, restringindo assim a respiração do embrião através da casca. A casca é porosa, quer dizer que permite que o ar a penetre. A sujidade e os organismos patogénicos também são capazes de penetrar pela casca se esta estiver molhada.Nunca se deve empregar para incubação ovos que estão muito sujos. Os ovos um pouco sujos podem ser limpos com um pano seco ou uma escova. Nunca se deve lavar os ovos em água, visto que isto forneceria oportunidades aos microrganismos para penetrar a casca, provocando a morte do embrião. A humidade durante o armazenamento O nível óptimo da humidade relativa para o armazenamento de ovos para incubação é de 70-85%. Se aparecerem gotas de água ou bolores nos ovos, isto implica que a humidade é demasiadamente elevada.Nunca se deve usar ovos bolorentos ou molhados para a incubação!Todos os ovos de galináceos devem ser armazenados com o ar presente no interior do ovo (a câmara de ar) para cima. Quer dizer, deve-se colocar a ponta mais fina para baixo e a ponta mais arredondada para cima. Se se permitir, durante a estação fresca, a uma galinha choca recolher os ovos no seu ninho, dia a dia, até que ela comece a sentarse em cima deles, a galinha vai virá-los regularmente, de modo que não será necessário um armazenamento separado dos ovos.Figura 7: Ao armazenar-se os ovos, estes devem ser colocados sempre com a câmara de ar para cima (quer dizer, com a ponta mais fina para baixo e a ponta mais arredondada para cima)Caso forem empregues tabuleiros para o armazenamento dos ovos para incubação, recomenda-se utilizar, preferivelmente, tabuleiros de plástico, em vez de tabuleiros de papel. O plástico pode ser lavado, desinfectado e seco ao sol, o que reduzirá fortemente o número de germes nele presentes. Contudo, nos tabuleiros velhos de papel os germes podem desenvolver-se provenientes de todos os locais onde estes tabuleiros foram empregues e transportados (incluíndo as capoeiras), de modo que nos tabuleiros de papel existe sempre um maior risco de contaminação.É muito importante evitar as mudanças repentinas da temperatura, visto que provocarão a morte dos embriões.Portanto, os ovos que devem ser armazenados a uma temepratura abaixo de 20 °C, primeiro devem ser aquecidos a uma temperatura de 23-27 °C durante 12 horas, antes de serem mudados para a incubadora. A este método chama-se 'pré-aquecimento'. Um aquecimento gradual também reduz fortemente o risco de condensação que molharia os ovos, dando oportunidade a que bactérias penetrem a casca e a estraguem.Quando os ovos fecundados são armazenados a uma temperatura inferior a 20 °C, haverá uma estagnação do desenvolvimento embrionário. O processo de incubação começará, de novo, com uma galinha choca ou numa incubadora.Quando a incubação começa, o disco branco (óvulo fecundado) que se encontra em cima da gema começa a crescer e desenvolve-se num embrião.Formam-se o coração e as veias. As veias podem ser observadas à luz duma lanterna, depois de 7-9 dias de incubação (ver a Secção 3.5: Supervisão do desenvolvimento dos ovos).Durante a incubação, o embrião de pinto continua a crescer dentro do ovo. Consome a maior parte da clara do ovo e parte da gema. Figura 9: Tamanho da câmara de ar em relação ao número de dias de incubaçãoAlguns dias antes da eclosão, o pintainho deve usar o seu bico para perfurar a membrana debaixo da câmara de ar, de forma a começar uma respiração normal através dos pulmões (ver a Figura 8). A partir de esse momento, pode-se ouvir o pintainho piando no interior do ovo.Quando o pintainho estiver acostumado a respirar normalmente começará a fazer um pequeno orifício na casca (perfuração da casca).Se a quantidade de humidade presente nos ovos não for suficiente, os ovos secarão, mas se houver demasiada humidade a câmara de ar ficará muito reduzida assim que não conterá espaço suficiente para o pintainho poder sobreviver a incubação.Durante o processo de eclosão dos pintainhos é essencial que o ambiente contenha alguma humidade. Se o ar estiver demasiadamente seco, os pintainhos ficarão pegados no interior da casca, podendo morrer facilmente.É importante que haja uma supervisão meticulosa do desenvolvimento embrionário durante a incubação dos ovos para que se obtenham melhores resultados na incubação. Para tal deve observar-se o ovo à luz duma lanterna (iluminação), procedimento que é discutido mais adiante. Existem dois outros métodos para supervisar o desenvolvimento dos ovos: pesar os ovos e medir a câmara de ar. Estes métodos são discutidos na Secção 6.4, embora sejam usados principalmente para controlar a humidade.Podem-se detectar os ovos inférteis e os embriões mortos através da observação por iluminação, por exemplo à luz duma lanterna. Este tipo de observação é muito útil durante a incubação, visto que determina se o embrião está a desenvolver-se.Pode-se comprar um aparelho para a observação de ovos por iluminação ou pode-se empregar uma lanterna. Manter uma lanterna pequena contra o ovo num recinto escuro. Olhando através do ovo, é possível ver-se uma parte do seu interior.Figura 10: Aparelhos para observação de ovos por iluminação, de fabrico caseiro, empregando a mão ou uma caixa de madeira e uma lanterna num local escuroNum ovo branco as veias devem ser visíveis depois de 5 dias de incubação. Se a casca for castanha, é preciso esperar vários dias mais para as veias se tornarem visíveis. Se não houver nenhum desenvolvimento, ou bem o ovo é infértil ou há um problema de incubação.Recomenda-se começar as observações por iluminação no dia 9 da incubação. No dia 8 ou 9, a luz da lanterna pode assustar o pintainho, de modo que se pode observar o seu movimento. Depois de ter obtido alguma experiência pode-se começar alguns dias antes. Os ovos inférteis e os ovos rachados com embriões mortos devem ser removidos imediatamente.Pode-se efectuar uma segunda observação à luz duma lanterna depois de 14 a 18 dias de incubação. Deve-se remover, de novo, todos os embriões mortos.Depois do dia 18 já não se deve efectuar observações com lanterna, de forma a não incomodar os pintainhos em desenvolvimento. Como o processo da eclosão é muito cansativo, os pintainhos necessitam de repousar e não devem ser incomodados durante estes últimos dias. Para além disso, a abertura da incubadora durante os últimos dias da incubação provocará uma queda não desejável da humidade relativa.Na Figura 11 apresenta-se o que se pode ver durante uma observação dum ovo à luz duma lanterna, depois de 8 dias de incubação.? A -num ovo infértil pode-se distinguir apenas a sombra da gema e a câmara de ar. ? B -num ovo fértil podem-se distinguir as veias estendidas e observam-se com maior facilidade perto da câmara de ar. O embrião pode ser visto, na forma duma sombra escura. A câmara de ar é mais fácil de discernir do que num ovo infértil. ? C -num ovo que contém um embrião morto, as veias contraem-se num anel em volta do embrião, que é visível como uma sombra escura. A câmara de ar é claramente visível.Remover, imediatamente, todos os ovos inférteis e ovos que contenham embriões mortos, visto que estes decompor-se-ão, podendo partir-se e, portanto, estragar os outros ovos. Depois de se ter removido da incubadora todos os ovos frios, a sua temperatura interior será mais estável.Não só se deve remover os ovos inférteis e rachados, mas também tentar averiguar por qual razão os ovos não se desenvolveram devidamente. A melhor maneira para fazer isto é através do registo de dados.As directrizes apresentadas no Quadro 5, na Secção 6.8 e no Apêndice 3, com informação mais detalhada, podem fornecer alguns indícios a respeito.Nos sistemas de avicultura divagante tradicional ou melhorada (ver o Capítulo 2), a opção mais eficiente para se obter novos pintainhos é, geralmente, deixar a uma galinha saudável fazer a incubação de ovos e criação de pintos.Figura 12: Incubação e criação naturaisEscolha da galinha Deve-se escolher uma galinha que é evidente que ficará choca. O seu comportamento típico inclui os seguintes aspectos:? Produz sons típicos das galinhas chocas ? Ao ser aproximada, a galinha choca levantará as penas no pescoço e no dorso ? A crista fica enrugada ? A galinha choca fica no seu ninho, recusando-se a abandoná-lo Se este comportamento continuar durante dois dias, pode-se concluir que a galinha está pronta para o choco. As galinhas chocas devem ser saudáveis e não demasiadamente pequenas. Mais adiante apresentamse sugestões para melhorar as condições da incubação.Nem todas as galinhas são igualmente adequadas para o choco, mas é possível fazer com que uma galinha choca se sente nos ovos de outra. As seguintes raças e espécies avícolas produzem aves chocas e são boas mães: ? Galinha duma raça local ? Perua ? Pata * *De notar: deve-se ter cuidado para que a pata não empurre os pintainhos recém eclodidos para a água de forma a fazê-los nadar.Em geral, as poedeiras comerciais não ficam chocas.Os ovos de patas e peruas necessitam um período de incubação mais prolongado do que os ovos de galinhas. Se se quiser incubar no mesmo ninho tanto ovos de galinha como, por exemplo, ovos de perua, os ovos de galinha devem ser colocados uma semana depois dos outros ovos, de forma a sincronizar-se a incubação.Para melhorar os resultados da incubação, deve-se começar com a escolha de ovos de boa qualidade. Ver os critérios para a escolha de ovos, apresentados na Secção 3.5.Não se deve deixar os ovos postos no ninho da galinha até que fique choca e, particularmente, não se deve deixá-los num ambiente quente e sujo. Armazenar os ovos num local escuro, fresco e seco, como seja um vaso de terra cheia de areia húmida ou aparas de madeira, ou num aparelho de arrefecimento. Pôr os ovos, de novo, no ninho ou na caixa-ninho quando a galinha ficar choca.Uma alternativa é colocar, (de noite), os ovos debaixo de uma outra galinha, pata ou perua choca, para completar o seu lote de ovos (8 -14 ovos, no máximo)Quantidade de ovos O tamanho da galinha e a temperatura durante a noite determinarão a quantidade de ovos que a galinha é capaz de incubar para se obterem bons resultados. As galinhas grandes com uma plumagem adequada podem cobrir e aquecer cerca de 14 ovos, mas as galinhas locais de porte mais pequeno apenas serão capazes de cobrir, adequadamente, 8 ovos no máximo.Pulverização da galinha Deve-se pulverizar a galinha choca com um insecticida contra pulgas e piolhos. Estes produtos devem ser usados com cuidado, visto que se forem administrados em doses incorrectas serão nocivos para as aves e também para as pessoas! Se as pulgas e os piolhos continuarem a ser um problema, dever-se-á repetir o tratamento depois de 10 dias.Após a pulverização, deve-se colocar a galinha choca numa caixaninho ou ninho limpo (ver mais adiante) com os ovos escolhidos para incubação.Podem-se usar diferentes tipos de ninhos: cestos, vasos de terra, caixas de cartão, caixas de madeira, etc.Os ninhos devem ser colocados um pouco afastados entre si (a aproximadamente 1 metro de distância) para evitar que as galinhas lutem. Colocar os ninhos ou caixas-ninhos num local seguro, escuro e seco, fora do alcance de cães, ratazanas e cobras.Antes de usar uma caixa-ninho (ou vaso-ninho), deve-se limpá-lo meticulosamente e secá-lo ao sol.Cama do ninho Deve-se encher o ninho até um terço (1/3) com areia misturada com cinzas e colocar palha fresca, aparas de madeira, feno ou folhas secas em cima, mas não se deve enchê-lo para além de três quartos (¾), de forma a prevenir que os ovos rolem para fora.Uma caixa-ninho (de madeira) deve medir, aproximadamente, 35 x 35 cm 2 e 40 cm de altura.Se for possível obter folhas de tabaco, um punhado de folhas secas, esmagadas, ajudará a manter o ninho isento de parasitas (a nicotina é um insecticida!).Figura 14: Preparação dum ninho limpo e atractivo para galinhas em chocoDeve-se separar o ninho ou cesto com a galinha choca do bando para prevenir que as outras galinhas a incomodem.A galinha sai do ninho para beber, comer e defecar. No começo, quase não sai do seu ninho, mas depois de 2 semanas já sairá com mais frequência e por períodos mais prolongados.Devem-se colocar, perto do(s) ninho(s), quantidades suficientes de rações, água fresca e areia limpa (para polvilhar). Se a galinha se recusar a sair do ninho, poderá pegar nela, suavemente, e colocá-la diante das rações. A galinha não deve deixar o ninho durante mais de 15 minutos.Por instinto, a galinha levanta-se, frequentemente, para mudar e virar os ovos, visto que o melhor local, mais quente, se encontra no centro do ninho. A viragem regular dos ovos também é importante para que sejam aquecidos uniformemente (em vez de serem aquecidos num só lado), e também para que o embrião em desenvolvimento se mantenha no centro.Os ovos podem ser examinadas por iluminação no dia 9 da incubação (ver a Secção 3.5). Os ovos inférteis e os que contêm embriões mortos devem ser removidos imediatamente.Os ovos inférteis podem ser vendidos ou consumidos. Os ovos que contêm embriões mortos podem ser empregues como ingredientes das rações, contanto que previamente sejam cozidos e esmagados junto com as cascas. Constituem uma boa fonte de proteínas e cálcio para a galinha choca ou para os pintainhos novos, que crescem rapidamente.Os pintainhos saem dos ovos depois de, aproximadamente, 21 dias (no caso de ovos de galinha). Se os pintainhos tiverem dificuldades de eclodirem, é provável que a humidade seja demasiadamente baixa. Para ajudá-los a sairem dos ovos, poder-se-á humedecer, levemente, com água a cama do ninho, de modo a que haja alguma evaporação, aumentando a humidade do ambiente.Descrição dum caso da Índia em que se mostra que a produtividade da criação avícola em quintais pode ser melhorada com algumas simples intervenções de baixo custo.Observação dos ovos por iluminação, no período inicial da incubação (natural) (depois de, aproximadamente 7 dias)Podem-se remover os ovos não fecundados para vendê-los ou consumi-los: \"Os avicultores compreenderam rapidamente a tecnologia da observação de ovos por iluminação, e também reconheceram que esta medida faz com que estes ovos fiquem disponíveis para consumo sem ser deixados para se incubarem e, eventualmente, se estragarem. Alguns aldeões, que foram instruídos no uso, agora fornecem o serviço dessa observação de ovos a outros produtores, pelo qual os clientes lhes pagam em espécie, dando a metade dos ovos inférteis que foram 'salvos' através da observação dos ovos por iluminação. Recomenda-se que as pessoas envolvidas no fornecimento de aconselhamentos e formação aos avicultores estimulem, vigorosamente, a prática da observação de ovos por iluminação. Esta prática tem várias vantagens em comparação com muitas outras intervenções avícolas: ? Trata-se duma tecnologia simples e relativamente pouco dispendiosa. ? Os seus benefícios são visíveis e bastante imediatos, podendo assim contribuir significativamente para a alimentação do avicultor e da sua família.O armazenamento a frio dos ovos logo que são postos até ao momento em que se inicia a incubação pela galinha é um método para melhorar os resultados da incubação: haverá um aumento de pintainhos que saem dos ovos.Os ovos foram postos em vasos ou cestos que continham uma mistura húmida de terra/areia. Pedaços de pano/juta foram postos em cima da areia para evitar o contacto directo dos ovos com a humidade. Particularmente nos meses quentes e secos do Verão, quando a temperatura pode atingir os 40 °C, este tipo de armazenamento previne que os ovos fiquem desidratados e, posteriormente, deteriorados devido à morte destes embriões.Fonte: Agren Network paper 146 (Julho de 2005)Quando saídos dos ovos, os pintainhos devem ser criados e receber cuidados. A galinha-mãe aquece os pintainhos até eles terem penas. A galinha-mãe cuida dos pintainhos, fornecendo o abrigo e a protecção das suas asas contra o mau tempo e os predadores. A este período chama-se o período de criação.Nos climas quentes, o método mais adequado e barato para guardar os pintainhos recém eclodidos é o chamado 'sistema de cesto'. Com o sistema de cesto o avicultor pode fornecer rações aos pintainhos sem competição de outras aves e também mantê-los protegidos contra os predadores. Os resultados são o crescimento mais rápido dos pintainhos, menos despesas em rações e um maior número de pintos que sobrevivem.Devem-se manter os pintainhos, durante a noite, com a sua mãe debaixo de um \"cesto de noite\", que é uma gaiola cónica com um chão. Um \"cesto de noite\" pode ser construído de bambú ou pedaços finos de madeira. Este cesto deve ser fechado para prevenir que entrem predadores e para as aves se manterem quentes durante a noite. Para fazer uma cama de base de 5 cm pode-se usar simplesmente palha seca, cortada, cascas de arroz e aparas de madeira.De manhã, os pintainhos devem ser tirados do cesto e mudados para um \"cesto de dia\". O \"cesto de dia\" é uma gaiola cónica sem chão, ver a Figura 17. Se o solo estiver húmido ou molhado, dever-se-á colocar uma esteira seca de juta ou de palha na gaiola. A esteira deve ser limpa ou substituída cada dia. Da mesma forma, o \"cesto de dia\" deve ser mudado, diariamente, para um local limpo, de modo a prevenir a ocorrência de doenças. Os dejectos podem ser usados na horta.Figura 16: O \"cesto de noite\" deve ter um chão ou ser posto numa esteira para protegê-lo contra o frio. A esteira deve ser limpa diariamente.Podem-se distinguir quatro fases de maneio 0-1 semana depois da eclosão Manter a galinha-mãe com os pintainhos durante 4 a 7 dias depois da eclosão para protegê-los e ajudá-los a regularem a sua temperatura. Piando os pintos guiam a galinha.Mantêm-se os pintainhos, permanentemente, na gaiola, mas permitese à galinha sair para buscar alimentos durante o dia. É necessário que a galinha possa ouvir os pintainhos donde ela se encontre e entrar na gaiola quando quiser. É necessário pois que alguém vigie a situação. Devem-se manter a galinha e os pintainhos juntos durante a noite.Deve-se continuar a manter a galinha e os pintos juntos, de noite, mas deixar os pintos sair, de dia, para buscar alimentos com a sua mãe. Primeiramente durante algumas horas pela manhã e, depois, gradualmente durante mais tempo. É preciso que os pintos continuem a ter acesso fácil a água limpa e rações ricas em proteínas no cesto, e a abertura de entrada deve ser demasiadamente pequena para que as aves maiores possam entrar. O cesto e o chão devem sempre ser mantidos limpos.Figura 17: Maneio de pintos com uso do sistema de cesto Mais de 6 semanas depois da eclosão: Neste momento pode-se remover o cesto e deixar os pintos à solta para buscarem alimentos com a galinha-mãe. Devem-se fornecer rações suplementares, durante a noite, a todo o bando, consoante as suas necessidades.Deve-se fazer com que haja um acesso fácil a água limpa e rações com um teor elevado de proteínas para os pintainhos. Verificar se o chão do cesto é mantido limpo. Colocar uma folha de papel ou uma esteira tecida debaixo do cesto, de modo a que os dejectos e as rações derramadas possam ser removidos facilmente.Uma galinha pode lidar com uma quantidade dupla dos pintos que ela mesma incubou, contanto que se acrescentem os outros pintainhos com um dia (preferivelmente de noite) aos seus próprios pintos. Sob circunstâncias normais e consoante o seu tamanho, uma galinha é capaz de cuidar até 15 pintos. Também se pode comprar pintos a um avicultor que fornece serviços de incubação, ou a centros de incubação comerciais.Os centros de incubação comerciais só fornecem pintainhos em grandes quantidades (venda por atacado) e, muitas das vezes, vendem raças melhoradas (híbridas). As raças cruzadas ou híbridas são criadas quer para a produção de ovos, quer para carne. Estas raças requerem, geralmente, níveis mais elevados de alimentação e maneio (medicação) do que as raças locais, mais resistentes. Portanto, os custos adicionais da compra de pintos de alta qualidade somente se justificam caso estes requisitos possam ser cumpridos.Os pintainhos podem ser incubados tanto por uma galinha choca como numa incubadora. Uma incubadora é um espaço confinado com temperatura, humidade e ventilação controladas. Este capítulo fornece informação sobre as pequenas incubadoras, a sua montagem e operação.Há incubadoras de diferentes tipos, formas e tamanhos. As pequenas incubadoras são caixas feitas de contraplacado, fibra de vidro, plástico, etc. (com material de isolamento nas paredes), com uma porta na parte dianteira ou uma tampa na parte de cima e orifícios de ventilação para arejamento. Estas podem conter até 50 ovos. Os ovos são colocados em estantes, tabuleiros ou gavetas. Os ovos são virados à mão.As pequenas incubadoras podem ser compradas, mas também é possível empregar incubadoras de fabrico caseiro. As grandes incubadoras estão providas dum ventilador e têm a capacidade de incubar uma maior quantidade de ovos, requerendo menos atenção. Estas incubadoras ditas de arejamento forçado podem estar equipadas com viradoras automáticas.Para controlar a temperatura deve-se usar uma fonte de aquecimento.Pode ser uma lâmpada ou queimador de querosene, uma ou várias lâmpadas eléctricas ou um elemento de aquecimento eléctrico. Podese empregar um painel solar com acumulador para fornecer energia às lâmpadas ou ao elemento aquecedor.As lâmpadas Led não geram calor e, portanto, não servem para o aquecimento duma incubadora.Nas incubadoras com querosene põe-se, muitas das vezes, a lâmpada ou queimador de querosene abaixo dum recipiente ou reservatório metálico cheio de água. Depois de algumas horas o reservatório cheio de água aquecida acaba por aquecer o ambiente.A maioria das incubadoras eléctricas estão providas dum termóstato que desliga automaticamente o aquecimento quando a temperatura ultrapassa um determinado limite e volta a ligar quando a temperatura desce.As grandes incubadoras eléctricas, particularmente as que têm mais dum tabuleiro de ovos, têm orifícios de arejamento e também um ventilador no seu interior para distribuir, uniformemente, o ar quente. No caso das incubadoras de tabuleiro único, este aspecto é menos importante.A excepção da fonte de energia utilizada, há incubadoras de energia solar dos mesmos tipos das incubadoras regulares de energia eléctrica supramencionadas.Como a energia solar é facilmente disponível nas regiões tropicais, a sua aplicação constitui uma solução adequada e rentável. Embora a sua aplicação tenha começado em 2003, particularmente na África e na Índia, o custo das incubadoras de energia solar ainda é bastante elevado. No decorrer do tempo a energia solar tornar-se-á uma fonte de energia segura, limpa e barata para operar uma incubadora ou criadeira em zonas onde não há electricidade.Alguns casos de incubadoras de fabrico caseiroTrata-se duma simples incubadora aquecida por uma lâmpada de querosene e apenas há uma maneira para controlar as condições internas: um termómetro. Esta pequena incubadora pode conter 50 ovos e foi construída pelo gerente dum centro de pecuária em Mwatate, Quénia. Para a sua montagem usaram-se apenas os materiais locais mais baratos. Foram abertos três orifícios de arejamento em dois lados da incubadora.Colocou-se o reservatório cheio de água, acima da lâmpada. Para regular os níveis de humidade, pode-se encher um prato de plástico com água.Madeira: 200 cm x 5 cm x 5 cm para a armação, 100 cm x 2,5 cm x 30 cm para o suporte do reservatório de água. Painéis de isolamento: 2 m 2 para todos os lados da caixa da incubadora Painel duro: 1 m 2 para os lados da caixa da incubadora Lâmpada: lâmpada de querosene com uma capacidade de meio litro Termómetro: termómetro veterinário + postigo de observação na incubadora Reservatório de água quente: uma lata vazia de óleo alimentar de 4 litros à qual foi soldada um tubo (1,2 cm de diâmetro, 1 metro de comprimento). O tubo é transparente na extremidade, de modo a que se possa verificar o nível de água. Mangueira: 2 m Tabuleiro para ovos: rede metálica coberta com um pano de algodão Recipiente de água: prato de plástico Uma lanterna: para a observação dos ovos por iluminação Incubaram-se 20 ovos. Foram virados 3 vezes por dia até ao dia 18 da incubação. Empregou-se uma lanterna para observar o interior dos ovos. Colocou-se um termómetro ao lado dos ovos, no tabuleiro, de forma a verificar a temperatura.Os resultados: Foram postos 20 ovos na incubadora, destes eclodiram 11 embriões, 6 embriões ficaram mortos na casca, 2 ovos eram inférteis e 1 estava partido. Embora estes resultados não sejam excelentes, são suficientemente estimuladores para justificar outras tentativas. Quando se estabeleça uma rotina adequada para o uso da incubadora, é quase certo que a taxa de eclosão aumentará.A Agromisa desenhou e testou uma incubadora de fabrico caseiro, aquecida com querosene, que foi descrita detalhadamente nas edições anteriores deste Agrodok e num AgroBrief recente.A incubadora é constituída por um suporte para um reservatório de 10 litros de água quente, aquecida pela lâmpada (altura total de 55 cm, incluindo o reservatório) e uma caixa de incubação sobreposta, de madeira, de 25 cm de altura, para o tabuleiro de ovos. Um lado tem 3 entradas de arejamento na extremidade inferior, enquanto que o lado oposto está equipado com 3 saídas de arejamento, na extremidade superior. Deve haver um espaço de 10 cm debaixo do tabuleiro de ovos para permitir a colocação de recipientes de água que regulam a humidade.Os lados da caixa da incubadora devem ser construídos, preferivelmente, com paredes duplas para possibilitar o seu isolamento, que são enchidas com feno, algodão ou fibras de coco.Embora o poliestireno (proveniente, por exemplo, duma caixa frigorífica fora de uso) seja um material com excelente capacidade isoladora, nunca se deve usar perto duma lâmpada de querosene, visto que é muito inflamável.Deve-se instalar um termómetro no interior da caixa (com o bolbo ao nível da parte de cima dos ovos). Preferivelmente, instala-se uma porta de vidro que desliza para cima e para baixo, de forma a reduzir-se a perda de calor ao abri-la.O tabuleiro de ovos, feito de rede de arame, pode suportar até 30 ovos se as dimensões internas forem de 35 x 35 cm, até 50 ovos com 45 x 55 cm, e até 70 ovos com 50 x 60 cm.Quando aquecida, a água actua como armazenamento de calor, amortecendo leves variações do aquecimento (do interior) e da temperatura exterior.Como é o caso para todas as novas incubadoras, dever-se-á operá-la durante 1 semana, no mínimo, sem ovos, para se familiarizar com o seu uso e fazer as adaptações necessárias.Recomenda-se consultar o AgroBrief mencionado anteriormente para informação mais detalhada sobre a construção e operação deste tipo de incubadora (O agroboletim ' AgroBrief' pode ser encomendado na Agromisa.)A incubadora de caixa tipo Kuku (que significa galinha em swahili) é um simples desenho faça-você-mesmo, desenvolvido na Tanzânia. As instruções de montagem e operação podem ser descarregadas, gratuitamente, da Internet: http://www.the-testament-of-truth.co.uk/web/incubat2.htm A incubadora é constituída por uma caixa de 60 x 40 x 23 cm (dimensões externas) feita de madeira, madeira contraplacada, ou um painel aglomerado de fibras de média densidade (MDF) e 1 tabuleiro de ovos suportado por ripas instalado a 7 cm abaixo da parte de cima da caixa.O tabuleiro é feito duma rede de aço galvanizado, com malhas de 12,5 x 12,5 mm, com um mosquiteiro de nylon em cima. O tabuleiro tem capacidade para 30-35 ovos. A caixa pode ser isolada com 1,5 cm de espuma (de borracha) colada no seu interior, de modo que a eficiência do aquecimento aumenta, mas nesse caso poder-se-ão incubar menos ovos devido ao tamanho mais reduzido do tabuleiro.A caixa da incubadora é equipada com uma porta dianteira, com dobradiças na sua base, e uma porta na parte de cima (60 x 16 cm) com dobradiças a uns 2/3 da tampa, em cima. Os orifícios de arejamento são furados nos 2 lados. Os recipientes de água para regular a humidade do ar podem ser colocados abaixo do tabuleiro de ovos.A incubadora é aquecida por 2 duas lâmpadas de 60 watt ou um aquecedor de 100 watt instalado na parte traseira, alguns centímetros acima do fundo. No interior da incubadora instala-se um termómetro de bolbo para medir a temperatura do ar na parte de cima dos ovos. Pode-se usar um termóstato (p.ex. o tipo 'Ether Wafer'), com a sonda instalada ao nível dos ovos, para regular a temperatura. Recomenda-se manter uma temperatura dos ovos de 38-38,5 °C.(Se a temperatura do ar ambiente ultrapassar o nível de 38,5 °C o autor recomenda que se coloque a incubadora numa cave, ou num buraco escavado no chão num local sombreado, a uma profundidade mínima de 15 cm. Contudo, tudo isto não parece muito prático. Provavelmente será melhor adiar a incubação dos ovos para uma estação com temperaturas mais baixas).É possível atingir uma taxa de eclosão de mais de 60%.A incubadora deve ser colocada num local fresco, sombreado e sossegado (sem tremores provocados por camiões ou máquinas pesadas que passam na vizinhança). Portanto, a incubadora não deve ser colocada no galinheiro! O recinto deve ser arejado adequadamente mas sem correntes de ar.Antes de empregar a incubadora pela primeira vez, deve-se operá-la sem ovos lá dentro, durante uma semana, no mínimo.Os seguintes quatro factores são essenciais para a incubação de ovos: ? Temperatura ? Humidade ? Arejamento ? Viragem dos ovos A temperatura é o mais crítico destes factores. Contudo, também se tende a não levar em conta a humidade, que caso não seja controlada adequadamente pode provocar muitos problemas de incubação. Uma incubadora deve fornecer condições térmicas comparáveis com as fornecidas por uma galinha choca que mantém os ovos quentes através do seu calor corporal.Para regular a temperatura numa incubadora é necessário fazer uso dum termómetro -preferivelmente um que possa ser lido com exactidão (0,05-0,1 °C) dentro da escala de 35-40 °C. O calor no interior duma incubadora é regulado quer manualmente quer através dum termóstato.Uma incubadora bem isolada não só reduz os custos de energia mas também evita a ocorrência de flutuações de temperatura no seu interior, provocadas por mudanças da temperatura do ambiente onde a incubadora foi colocada.Não se devem incubar ovos durante as estações do ano em que a temperatura diurna normal ultrapassa os 40 °C. Em tais condições não será possível incubar, visto que o calor extremo destrói os embriões.Durante a incubação (particularmente durante a primeira semana), a temperatura reveste-se de importância primordial. Uma temperatura óptima nas duas semanas iniciais é de 38,5 °C com uma variação máxima de meio grau, quer a mais, quer a menos. As variações da temperatura que ultrapassam 0,5 °C afectam a quantidade de ovos que serão incubados com bons resultados. Uma subida da temperatura pode ter resultados desastrosos. Se a temperatura ultrapassar 40,5 °C, o efeito nos embriões será fatal. Uma descida de temperatura faz com que a incubação se atrase, mas tem efeitos menos nocivos do que uma subida de temperatura.Logo que os ovos sejam postos na incubadora, é provável que a temperatura da incubadora desça, enquanto que os ovos levam 6-8 horas para aquecerem e atingirem a temperatura de incubação. Não se deve aumentar o fornecimento de calor à incubadora durante esta fase de aquecimento.Primeiro deve-se deixar a incubadora funcionar sem ovos de forma a verificar-se a regulação óptima da temperatura.Nas incubadoras de fabrico caseiro, a temperatura variará consideravelmente entre a parte de cima e a parte de baixo dos ovos.Para se obterem leituras fiáveis, o bolbo do termómetro deve encontrar-se à mesma altura que a parte de cima dos ovos (o nível onde se desenvolvem os embriões) e afastados da fonte de calor. Deve-se veri-ficar se o bolbo do termómetro não está em contacto com os ovos ou as paredes da incubadora, visto que isto daria um valor incorrecto da temperatura do ar. Um ovo com um embrião vivo é, sempre, mais quente do que um ovo com um embrião morto.Usando dois termómetros, pode-se ter a certeza duma leitura exacta e pode-se verificar se o calor se difunde uniformemente no tabuleiro.Os ovos perdem humidade durante a incubação. A taxa da perda de humidade depende da humidade relativa mantida no interior da incubadora. Para se obterem resultados óptimos, a perda do peso depois de 18 dias de incubação deve ser 11-13 % do peso inicial do ovo. Para atingir isto, a humidade no interior da incubadora deve ser mantida entre 50 a 60% (HR) até os ovos começarem a ser perfurados.Quando os pintainhos começam a eclodir (quando 1/3 dos ovos foram furados) é importante aumentar, gradualmente, a humidade até atingir um valor de 70%. Isto sucederá, em parte, de maneira automática: logo que os pintainhos tiverem feito o primeiro furo na casca, muita humidade evaporará do interior dos ovos. Para que o vapor de água fique dentro, dever-se-á manter fechada tanto quanto possível a porta da incubadora.Figura 18: Verificando a temperatura dos ovosPara se obterem os níveis correctos da humidade colocam-se tigelas com água no interior da incubadora, abaixo do(s) tabuleiro(s) dos ovos. Pode-se empregar um higrómetro para medir a humidade relativa, mas também há outras maneiras para verificar o nível de humidade (ver mais adiante).Os níveis de humidade também são influenciados pela intensidade do arejamento e pela humidade do ar que entra.A humidade elevada é rara nas incubadoras que dependem da evaporação das panelas de água. Contudo, se houver pintainhos completamente desenvolvidos que não conseguem eclodir, devido a um excesso de água no interior das cascas ('pintainhos afogados'), isto indica que a humidade é demasiadamente elevada. Previne-se este problema mantendo uma temperatura correcta e um arejamento amplo e adequado.Uma humidade baixa provoca a ocorrência de pintainhos pegajosos durante a perfuração das cascas, originando pintainhos muito pequenos, débeis, que não são capazes de se levantar, andar ou orientar-se para atingir alimentos e água, ou a pintainhos com as articulaçãoes do quadril deslocadas.Existem vários métodos para se verificar a humidade relativa na incubadora.? Uso de um higrómetro (aplicável apenas nas incubadoras equipadas com um ventilador!) ? Uso de um jogo de um termómetro de bolbo húmido e um de bolbo seco ? Estimativa do tamanho da câmara de ar ? Pesagem dos ovos Um higrómetro é um aparelho para medir a humidade relativa (HR) do ar. Os higrómetros são instrumentos muito susceptíveis a influências externas como p.ex. a poeira, que afecta a sua exactidão.No momento da eclosão, libertar-se-á muita poeira das cascas partidas. Portanto, é muito importante verificar o funcionamento adequado do higrómetro, cobrindo-o com um pano molhado. Depois de 30 minutos, no mínimo, o valor deverá ser de 95-100%. Se não for assim, o higrómetro poderá ser regulado com uma pequena chave de parafusos.Um jogo de termómetros de bolbos húmido e seco é uma boa ferramenta para determinar a humidade relativa do ar. Quanto mais elevada a evaporação, menor será a leitura da temperatura no termómetro de bolbo húmido e maior a diferença entre as leituras do bolbo húmido e do seco.Nas incubadoras equipadas com um ventilador, o uso dum termómetro de bolbo húmido conjuntamente com um termómetro de bolbo seco é uma boa alternativa ao uso dum higrómetro dispendioso e susceptível a influências externas.Para construir um termómetro de bolbo húmido, basta embrulhar um pano de algodão ao redor da extremidade do termómetro e molhar a extremidade desta mecha de algodão na água. O algodão absorve a água. Devido à evaporação, o termómetro de bolbo húmido apresenta uma temperatura inferior à do termómetro de bolbo seco no mesmo compartimento. Para calcular a humidade relativa deve-se comparar a leitura do termómetro de bolbo húmido com a do termómetro normal de bolbo seco (ver o Quadro 3). Sempre que for possível e prático, recomenda-se usar um jogo duplo de instrumentos de bolbos húmido e seco para cada incubadora.As mechas velhas e sujas tendem a resultar em leituras superiores aos valores reais, fazendo com que se sobrestime a humidade relativa. Por conseguinte, podem-se reduzir os resultados da incubação. Deve-se mudar, regularmente, as mechas.Na Figura 20 apresenta-se o tamanho correcto da câmara de ar do ovo em relação ao tempo de incubação. A câmara de ar pode tornar-se visível com uso duma lanterna, tal como foi descrito anteriormente na Secção 3.5. Logicamente que há uma forte correlação entre o tamanho da câmara de ar, a humidade relativa (HR) e a perda de peso.Durante a incubação, um ovo perde certa quantidade do seu peso devido à evaporação de Figura 20: Desenvolvimento da câmara de ar do ovo após vários dias de incubação água do seu interior através dos poros presentes na casca. Se a humidade relativa não for a correcta (demasiadamente baixa ou elevada), os ovos perderão mais ou menos peso, respectivamente do que é devido, dificultando-se a obtenção de resultados adequados. A perda de peso depois de 18 dias de incubação deve ser de 11 a 13%. Se a perda de peso for mais elevada, dever-se-á aumentar a humidade.Pode-se obter uma humidade correcta colocando pequenos recipientes cheios de água no interior da incubadora. A humidade no interior da incubadora pode ser regulada modificando-se a superfície superior dos recipientes de água: uma maior superfície leva a um aumento da evaporação e, por conseguinte, também ao aumento da humidade relativa (HR). Para prevenir que haja uma descida de temperatura, devem-se encher os recipientes com água à temperatura do corpo em vez de água fria.Se não houver suficientes recipientes de água, deve-se colocar uma esponja molhada ou pano molhado no interior da incubadora.Os pintainhos que se desenvolvem no interior dos ovos necessitam de absorver oxigénio e libertar dióxido de carbono. Enquanto os embriões se desenvolvem, devem ser abastecidos com uma crescente quantidade de ar fresco. Portanto, é importante que haja um arejamento adequado, particularmente tendo em conta que se produziram, possivelmente, outros gases venenosos se houver ovos podres presentes na incubadora. Para se obter uma ventilação adequada deve-se equipar a incubadora com orifícios de arejamento, tanto abaixo como acima do nível dos ovos.Quanto maior for a quantidade de ovos presentes na incubadora e quanto maior a idade dos embriões, tanto maior é a quantidade de oxigénio requerida. Por conseguinte, deve-se aumentar, gradualmente, a intensidade do arejamento no decorrer do período de incubação!As incubadoras com querosene e as eléctricas de tamanho reduzido dependem do 'arejamento natural' através dos orifícios de arejamento com um diâmetro de, aproximadamente, 1 cm. Os orifícios podem ser abertos e fechados com uso de tampas.As incubadoras eléctricas encontram-se, frequentemente, equipadas com um ou mais ventiladores. De notar: um ventilador provoca uma distribuição uniforme de ar quente dentro da incubadora, mas apenas aspira ar fresco quando os orifícios de entrada e saída estão abertos! Ao aspirar o ar fresco, um ventilador pode abastecer mais ovos dentro dum espaço encerrado.É difícil de determinar o número de orifícios de arejamento que devem ser abertos. Em todo o caso, devem-se manter dois orifícios permanentemente abertos (um para a entrada do ar ao nível inferior e outro para a saída do ar ao nível superior). Cada vez que se abre a porta da incubadora, entra ar fresco. Portanto, depois de 18 dias, quando termina a viragem dos ovos, talvez se deva abrir orifícios adicionais.Ao usar um aparelho de viragem automática dos ovos, devem-se abrir mais orifícios de arejamento.Para manter centrados os embriões em desenvolvimento e prevenir que fiquem pegados às cascas, devem-se virar os ovos 3 vezes por dia, durante os primeiros 18 dias. A viragem regular do ovo mantém centrado o embrião, que está a desenvolver-se.É mais importante virarem-se os ovos a intervalos regulares do que virá-los mais de três vezes por dia. Se os ovos não forem virados, os resultados da incubação serão deficientes.Virando os ovos um número ímpar de vezes (quer dizer: 3), alterna-se o lado do ovo que fica para cima durante a noite. Isto é importante e útil, visto que o intervalo entre duas viragens é mais prolongado de noite do que é durante o dia.Ao virar os ovos, devem-se mudar para uma parte diferente do tabuleiro de forma a minimizar os efeitos de variações da temperatura dentro da incubadora.A melhor maneira é retirar todo o tabuleiro, virar os ovos 180° e, se for possível e o tamanho dos ovos o permitir, remeter o tabuleiro ao contrário. Ao virar os ovos, deve-se manter a porta da incubadora fechada.Antes de começar, deve-se verificar que se trabalha com as mãos limpas. Se sujidade e gordura ficarem a parar na casca provocarão que a casca fique fechada hermeticamente, de modo que o ar não poderá passar através da casca, provocando a morte do pintainho.Figura 21: Viragem manual dos ovosRecomenda-se usar o método de marcação `X e O´ para facilitar uma viragem apropriada. Consoante este método, deve-se marcar, com lápis, um lado de cada ovo com X (ou um número) e o outro lado com O (ou com outro número). Quando os ovos são virados 180°, as marcas devem mudar de lugar. Deve-se ter cuidado para que os ovos NÃO sejam virados sempre na mesma direcção, visto que assim se reduziriam os resultados da incubação! Virar os ovos no sentido dos ponteiros do relógio e, a seguinte vez, no sentido contrário aos ponteiros do relógio, e assim por adiante.Entre as viragens não se deve mover os ovos de nenhuma forma.A viragem termina depois de 18 dias Depois de 18 dias, já não é necessário continuar a viragem. Os ovos já não devem ser virados a partir de quatro ou três dias antes da eclosão.Os pintainhos devem posicionar-se para a perfuração das cascas e é mais fácil se ficam no mesmo lugar durante o processo. Nesta altura, o embrião é suficientemente grande e já usou a maior parte da gema, de modo que já não corre o risco de ser esmagado entre a gema e a casca.Alguns produtores abrem a incubadora, tiram um tabuleiro raso, e passam a mão nos ovos. Para eles, é o mesmo que virar os ovos. Em realidade, desta forma os ovos apenas ficam mexidos. Assim não é possível saber de certeza se os ovos foram apenas movidos para o outro lado ou se foram mudados, realmente, de posição. Deste modo, muitos ovos não são virados mas apenas mudados para outro lado. Para além disso, esta forma de viragem inadequada também pode provocar a ocorrência de cascas rachadas.Embora muitos pintainhos possam desenvolver-se em ovos com cascas rachadas (não as membranas), nestas circunstâncias poucos poderão furá-las e eclodir de forma bem sucedida, visto que o ambiente se torna pegajoso devido à desidratação. E o pintainho não terá suficiente força para furar a casca e libertar-se, por si mesmo, do ambiente pegajoso.Nas pequenas incubadoras, os ovos são colocados, geralmente, na posição horizontal ou, se for possível, com a ponta mais fina ligeiramente para baixo (que é como a galinha choca coloca os ovos no ninho). Os ovos são virados 180º segundo o eixo mais longo.Se a incubadora estiver equipada com tabuleiro(s) de ovos em que os ovos ficam erguidos, é essencial que sejam posicionados com a ponta mais arredondada para cima (que é o lado onde se encontra a câmara de ar do ovo) e a ponta mais fina para baixo. Caso assim for, os ovos devem ser virados 90º segundo o eixo curto, quer dizer, a primeira viragem deve ser de 45º para a esquerda (ou direita) e cada viragem seguinte deve ser de 90º na direcção contrária. De notar: a câmara de ar do ovo deve ficar, sempre, posicionada para cima, de modo que a ponta fina do ovo fique para baixo (ver a Secção 3.3).Os pintainhos não eclodem todos no mesmo momento. Possivelmente haverá um intervalo de 40 horas entre o primeiro e o último pintainho a eclodir! Para não se perturbarem as condições climáticas, não se deve abrir a incubadora antes de a maior parte dos pintainhos terem eclodido. Caso contrário, dificultar-se-ia a eclosão dos pintainhos mais lentos. (Os pintainhos recém eclodidos podem sobreviver durante 1-2 dias sem alimentação, embora seja melhor alimentá-los logo desde o início).Logo que a maioria dos pintainhos estiverem com a penugem seca e fofa, devem-se remover, imediatamente, todos os pintainhos da incubadora. Não se deve esperar a eclosão dos ovos restantes, mas estes devem ser removidos e depois bem cozidos, podendo ser empregues como rações para as galinhas.O registo de dados é muito importante! Pode-se usar o Quadro 4: ? Apontar a data de quando os ovos foram colocados na incubadora. ? Apontar, duas vezes por dia, a temperatura e a humidade. ? Na última coluna (Observações) deve-se apontar a observação dos ovos por iluminação (ver a Secção 3.5) e as perdas assim como as causas: ovos inférteis, embriões mortos, ou outras.Se os resultados forem deficientes no final do período de incubação, pode-se verificar, com base nos dados registados, se isto foi provocada pela temperatura ou a humidade. Em geral, a taxa de eclosão varia entre 50 a 70%: de 100 ovos eclodem apenas 50 a 70 pintainhos. Usando incubadoras de fabrico caseiro, é raro que se consiga uma taxa de eclosão de 80% ou mais.Quadro 4: Exemplo duma folha de registo Os pintainhos que eclodiram numa incubadora devem ser mantidos quentes durante as primeiras semanas da sua vida. Embora sejam capazes de deambular e aguentar uma temperatura baixa durante um período curto, é importante que possam aquecer-se quando esfriarem.O equipamento que fornece calor e abrigo chama-se uma criadeira.Os pintainhos com uma temperatura do corpo muito baixa não morrem imediatamente, mas sofrerão distúrbios digestivos (diarreia) e morrerão dentro duma semana.Podem-se empregar diferentes fontes de calor para se manter uma temperatura adequada: uma estufa de carvão, uma lâmpada infravermelha, uma simples lâmpada de 100-Watt, ou uma lâmpada de óleo ou de gás.As lâmpadas Led não geram calor e, portanto, não servem para aquecer uma criadeira ou incubadora.Figura 24: Caso não se disponha de uma fonte de calor externa, uma caixa isolada é uma boa alternativa para manter os pintainhos quentesDeve-se colocar a criadeira num ambiente em que não haja predadores. Embora, não seja uma prática aparentemente comum, a colocação da criadeira numa mesa ou banco serve para protegê-la de predadores e também facilita o seu maneio.A criadeira deve dispor dum chão circular para evitar a presença de cantos onde os pintainhos possivelmente podem ficar presos ou são pisados. As paredes podem ser construídas de cartão (ondulado) ou de rede metálica. Quando os pintainhos crescerem, dever-se-á acrescentar simplesmente pedaços adicionais de cartão para aumentar a superfície total da criadeira.Na Figura 25 apresenta-se um exemplo duma criadeira de cartão com uma lâmpada de 100-watt que serve como fonte de calor. A lâmpada pode ser coberta com uma forma cónica, dirigindo o calor para os pintainhos. A lâmpada deve ser pendurada no centro da criadeira, de modo que o calor se difunda para toda a criadeira.Áreas frescas É de igual importância que haja espaços frescos para os pintainhos. Os pintainhos devem dispor de uma fonte de calor localizada e também ter acesso a um espaço mais fresco, não aquecido. Desta forma, permite-se aos pintainhos determinarem as suas próprias necessidades de aquecimento, circulando entre os espaços aquecidos e frescos.Figura 25: Criadeira simples construída com cartão. O chão circular deve ser coberto com uma cama seca, limpa, p.ex. de cascas de arroz, capim seco ou folhas secas. Deve-se evitar o uso de papel (de jornal) ou apenas usá-lo como uma subcama e cobri-lo com um pano ou papel absorvente (lenços).O espaço da criadeira deve ser preparado, adequadamente, (quer dizer, limpo e aquecido) e pronto para receber os pintainhos recém eclodidos.Durante a primeira semana, a lâmpada deve ser pendurada a uma altura de 10 cm acima do chão. Durante os primeiros dias, deve-se manter a temperatura a 32 °C. Verificar a temperatura ao nível dos pintainhos, quer dizer, a 5 cm acima do nível do chão. No final da primeira semana, deve-se começar a baixar a temperatura 5 °F ou 2 °C por semana, até se atingir uma temperatura de 70 °F ou 20 °C, procurando-se manter este nível (ver o Quadro 6).Os próprios pintainhos funcionam como excelentes termómetros, visto que o seu comportamento indica se a temperatura deve ser regulada (Ver a Figura 25): ? Quando os pintainhos se amontoam num ponto, piando, deve-se fornecer-lhes aquecimento adicional ? Os pintainhos que se abrigam numa só direcção sofrem de correntes de ar. ? Quando os pintainhos se espalham contra a parede do espaço, piando fortemente ou arquejando com os seus bicos abertos, deve-se baixar a temperatura ? Os pintainhos espalhados, uniformemente, no espaço da criadeira, emitindo sons de contentamento, sentem-se cómodos Figura 26: Comportamento dos pintainhos em resposta à temperatura (visto de cima)Deve-se subir a lâmpada 5 cm cada semana, visto que os pintainhos necessitarão cada vez de menos calor, à medida que crescem. Quando os pintainhos ficarem melhor protegidos pelas suas novas penas, poder-se-á baixar, levemente, a temperatura. Ver o Quadro 6:Quadro 6: Temperatura recomendada numa criadeiraIdade em semanas Temperatura em °C (ao nível do pintainho) 0-1 32-30 1-2 30-28 2-3 28-25 3-4 25-22 4-5 22-20 5-6 20-18Deve-se cobrir o chão da criadeira com uma cama seca, p.ex. de capim seco ou folhas secas, aparas de madeira, serradura grossa, palha picada ou cascas de arroz.Para a cama da criadeira não se devem usar papéis de jornal, que é demasiado escorregadio para os pintainhos. Correriam o risco de obter 'spread legs' (deslocação das articulações do quadril), que é um problema de saúde fatal.Se a cama estiver húmida ou suja por água ou rações derramados ou dejectos, deve ser removida e substituída por material seco e limpo. Qualquer humidade presente na cama provoca e estimula o desenvolvimento de bolores. Se os pintainhos inalarem os bolores, morrerão da 'pneumonia de criadeira', que é incurável.Deve-se evitar o uso de serradura muito fina, visto que os pintainhos que o consomem poderão acabar sofrendo duma obstrução do tracto intestinal (tubo digestivo). Espalhar, diariamente, alguns grãos na cama da criadeira de forma a estimular os pintainhos a esgravatarem.No interior da criadeira deve haver bebedouros, comedouros e uma caixa com areia seca para os pintainhos se banharem nela. Deve-se permitir a todos os pintainhos comerem e beberem no mesmo momento. Os requisitos do espaço do comedouro variam consoante o seu tipo e a idade dos pintainhos. Provavelmente também consumirão alguma areia, mas isto não é prejudicial. Os comedouros e os bebedouros devem ser limpos e enchidos, diariamente.Todos os pintainhos devem poder beber e comer, simultaneamenteDuas semanas após a eclosão dos pintainhos, devem-se instalar poleiros no interior da criadeira. Os pintos e, particularmente, as novas poedeiras devem habituar-se a dormir nos poleiros. Se as temperaturas forem adequadas, pode-se ajudá-los a dormir nos poleiros, em vez de no chão, colocando-os nos poleiros à noite, 2 semanas após o seu nascimento.Deve-se vigiar os pintainhos para se ter a certeza de que estão cómodos ou se mostram sinais de amontoamento ao redor da fonte de calor ou se afastam dela. Caso assim seja, dever-se-á regular as condições da criadeira. Quando os pintainhos se sentem cómodos, espalham-se por todo o espaço da criadeira e emitem sons de contentamento. Após duas semanas os pintainhos devem ser capazes de sair e entrar na criadeira. Depois de 4 semanas poder-se-á desligar o aquecimento artificial, contanto que a temperatura de dia seja superior a 20 °C. Se as noites forem frias, dever-se-á manter a lâmpada acendida.Os pintainhos recém eclodidos necessitam de uma dieta equilibrada de forma a poder crescer bem. A partir do terceiro dia, deve-se começar a alimentá-los com puré mas espalhar sempre alguns grãos na cama da criadeira para mantê-los activos.Deve-se fornecer o puré em pequenas quantidades, três ou quatro vezes por dia. Desta forma, estimulam-se os pintainhos para comerem mais, levando a um crescimento mais uniforme e à redução de desperdícios. Ao final do dia, deve-se deixar alguns alimentos nos comedouros dos pintainhos.Depois de pouco tempo, os novos pintainhos começam a mover-se em busca de alimentos. Precisam de ser alimentados com rações de boa qualidade (ricas em proteínas), ainda de melhor qualidade do que as das galinhas. Se fizer bom tempo e o local for seguro no que diz respeito a predadores, como sejam ratazanas, aves grandes e cães, podese permitir aos pintainhos alimentarem-se na vegetação ou pode-se deixar algum material vegetal na criadeira como ração adicional às suas rações concentradas normais.Figura 27: Quando os pintos crescem, pode-se aumentar, facilmente, o tamanho da criadeira, acrescentando pedaços adicionais de cartão.Deve-se abastecer, continuamente, os pintos com água fresca e limpa. Como muitas aves se recusam a beber água quente, deve-se verificar se a água não se torna demasiadamente quente devido ao calor irradiado pela fonte de calor presente na criadeira.Presas potenciais para vários predadores, os pintainhos tornam-se vulneráveis quando começarem a sair da criadeira. Recomenda-se adoptar o costume de inspeccionar, frequentemente, o local da criadeira e o terreno adjacente, para se ter a certeza de que os predadores não se aproximam dos pintos.Os pintos novos devem ser vacinados a tempo contra várias doenças, pelo menos contra a chamada doença de Newcastle (ND). Portanto, deve-se manter contacto com o assessor local de avicultura sobre o programa de vacinação dos pintainhos e cumpri-lo meticulosamente.Quadro 7: Programa de vacinacão (para raças comerciais) Existem várias vacinas contra a doença de Gumboro, de muitas estirpes diferentes. Informe-se no centro veterinário sobre as estirpes recomendáveis e os dias de vacinação mais adequados.Na maioria dos casos, as vacinas são vendidas apenas em frascos em quantidades de 500 ou mais. Recomenda-se associar-se a outros produtores vizinhos que também têm pintos que devem ser vacinados e comprar conjuntamente as vacinas. De notar: as galinhas de origem local são vacinadas, geralmente, apenas contra a Doença de Newcastle (ND).Durante os primeiros dias alimentam-se os pintainhos espalhando grãos partidos no chão da criadeira. A partir do terceiro dia, começa-se a alimentar os pintainhos com puré, mas continuando também a espalhar alguns grãos na cama da criadeira, de forma a mantê-los activos.Fornecer puré em quantidades reduzidas, três ou quatro vezes por dia.Isto estimulará os pintainhos a comerem mais, levando a um crescimento mais uniforme e à redução dos desperdícios. Ao final do dia devem restar alguns alimentos nos comedouros dos pintainhos. Deve haver sempre água fresca disponível para os pintainhos. Deve-se fornecer suficientes comedouros e bebedouros para todos os pintainhos poderem comer e beber, ao mesmo tempo.Manter a criadeira e o terreno adjacente limpos. Lavar, diariamente, os comedouros e bebedouros. Deve-se prestar atenção especial à cama que se encontra perto dos bebedouros. Virar, regularmente, a cama para prevenir que fique pegada ao chão. Os bebedouros também podem ser postos sobre tijolos ou arame, de forma que a água derramada não molhe a cama. Substituir a cama molhada.Se se encontrarem piolhos, ácaros e/ou pulgas, deve-se pulverizar a criadeira vazia com um desinfectante adequado (recorrer ao aconselhamento do seu assessor local). Se os pintainhos sofrerem duma doença (p.ex. coccidiose), deve-se consultar o veterinário para obter tratamento rápido e adequado. Consultar o seu assessor local no que diz respeito ao programa de medicação/vacinação dos pintainhos.Na 2ª semana devem-se instalar poleiros e caixas de areia na criadeira.As novas poedeiras devem aprender a usar os poleiros o mais rapidamente possível.8 Cuidados geraisAs galinhas da comunidade num sistema de avicultura de criação em liberdade ou em regime divagante não necessitam de rações comerciais. Podem-se fornecer-lhes as sobras de comida e outros alimentos domésticos, materiais vegetais verdes como sejam capim, confrei ou consolda (Symphytum officinale L, da família das Boragináceas), luzerna e ervas daninhas como seja a ansarina branca, catassol ou quenopódio branco (Chenopodium album). Deve-se dar-lhes apenas um bocado durante a manhã -visto que devem ter fome durante a manhã antes de deixá-los sair para esgravatarem -e outro bocado durante a tarde. Depois, deve-se dar-lhes outra vez um bocado, de noite, de forma a atraí-los para entrarem na criadeira.Os pintainhos recém eclodidos podem sobreviver durante 1-2 dias sem alimentação. Contudo, de forma a poderem atingir o seu pleno desenvolvimento potencial, precisam de serem alimentados rapidamente.Por conseguinte, devem ser abastecidos com rações e água pouco depois da sua eclosão. Os pintainhos comprados num centro de incubação também devem ser abastecidos de rações e água, logo após a sua chegada à exploração do avicultor.Nunca se deve comprar rações baratas de má qualidade, visto que estas carecem de vitaminas, minerais e proteínas essenciais para se prevenirem doenças. Ao comprar rações comerciais de boa qualidade, deve-se ter cuidado para que não sejam velhas (quer dizer, armazenadas durante mais de 3 ou 4 semanas), ou bolorentas.Mesmo se todos os factores de incubação, como sejam a temperatura e a humidade, são apropriados, uma limpeza deficiente pode provocar maus resultados de incubação. Uma limpeza deficiente não só provoca uma eclosão deficiente mas também aumenta a mortalidade durante a criação. Reveste-se de importância primordial que se coloquem apenas ovos limpos, que foram bem cuidados, em incubadoras meticulosamente limpas.Para a limpeza necessita-se apenas de água, sabão e um esquema adequado de trabalho regular!Com uma limpeza meticulosa, pode-se remover 95-99% dos micróbios. Se se procede a uma limpeza regular, praticamente não é necessário utilizar desinfectantes adicionais (partindo do princípio que só se utilizam ovos limpos).Recomenda-se limpar sempre a(s) incubadora(s), meticulosamente com água e sabão, logo depois de os pintainhos serem removidos (dentro de 24-48 horas). Repetir antes de se colocarem novos ovos.O restante equipamento, como sejam os tabuleiros, as panelas para água e os termómetros, também tem que ser limpo e desinfectado e as mechas do(s) termómetro(s) de bolbo húmido devem ser substituídas.Devem-se raspar e remover todas as cascas e sujidade ainda presentes. Limpar, meticulosamente, as superfícies com um pano humedecido em amónio quaternário, Clorox ou outra solução desinfectante.A mesma regra aplica-se à limpeza das criadeiras. Sempre antes de chegar um novo bando de pintainhos, devem-se limpar e desinfectar, meticulosamente, os bebedouros e comedouros ou substituí-los. Isto efectua-se para além da limpeza diária de rotina.A cama deve ser removida completamente, o chão e o ambiente adjacente devem ser limpos com abundante água e sabão. Antes de chegarem os novos pintainhos, devem-se substituir as placas que protegem contra as correntes de ar por novas ou devem ser limpas e desinfectadas, meticulosamente, e postas a secar.Os desinfectantes não podem compensar uma limpeza deficiente, visto que é impossível desinfectar um ambiente sujo.Contrário à opinião da maioria das pessoas, o uso de desinfectantes só em si não efectua a limpeza. Todos os desinfectantes perdem a sua eficácia logo que se põem em contacto com matéria orgânica, quer dizer, quanto mais suja a superfície, tanto menos eficaz a aplicação do desinfectante.Se se quiser aplicar um desinfectante depois da limpeza com detergente, os compostos de amónio quaternário ('QACs') são os produtos mais adequados para isso. Os QACs constituem o desinfectante de uso mais geral para equipamento como incubadoras. Os compostos de amónio quaternário são relativamente não-irritantes, não-corrosivos, de baixa toxicidade e razoavelmente eficazes.Anexo 1: Conversão da temperatura Anexo 2: Os ovos de outros tipos de aves de capoeiraOs ovos de outras aves não são incubados da mesma maneira que os ovos de galinhas. Adiante apresenta-se uma explicação concisa da incubação dos ovos de dois tipos da pata doméstica, perua, codorniz e pintada. Quando os ovos são armazenados, devem ser colocados com a câmara de ar para cima, quer dizer que se põem com a ponta mais fina para baixo e a ponta mais arredondada para cima. Tal se passa para quase todos os tipos de aves de capoeira.Alguns dias antes de se colocarem os pintainhos, deve-se limpar a criadeira, meticulosamente, com um desinfectante adequado.Manter a criadeira seca e evitar correntes de ar durante a criação.Deve-se cobrir o chão com uma cama seca, limpa (palha finamente cortada, areia seca, etc.). Deve-se começar com uma cama de 2 cm e acrescentar-lhe, diariamente, materiais secos e limpos, gradualmente, até atingir 7 cm.Para a incubação artificial, recomenda-se manter uma temperatura de 38 °C. Durante os primeiros 24 dias da incubação de ovos de patas, a humidade relativa deve manter-se a um nível de 70% (temperatura de bolbo húmido = 31 °C). Durante a eclosão a humidade deve ser aumentada até atingir um valor de 80%. A viragem dos ovos deve ser efectuada várias vezes por dia, até o dia 26 da incubação.A maior parte dos ovos das marrecas Pequim não eclodirão antes do dia 28 e para a pata muda a incubação chega a levar 35 dias. Como os ovos de pata são mais sujos do que os de galinha, devem ser limpos o mais rapidamente possível, preferivelmente sem serem humedecidos.As condições de armazenamento dos ovos de pata são iguais às dos ovos de galinha. Uma galinha choca preparada para sentar-se sobre os ovos, pode incubar quase a mesma quantidade de ovos de pata que dos seus próprios ovos. Se a galinha não tiver acesso directo a água, os ovos da marreca Pequim devem ser borrifados, diariamente, com água morna, a partir do dia 15 até ao dia 24 e, de novo, no último dia da incubação. Os ovos da pata-muda devem ser borrifados a partir do dia 15 até o dia 32 e também no último dia da incubação.Adiante apresentam-se as condições de incubação dos ovos da marreca mandarim:Quadro 9: Condições de incubação dos ovos da marreca Pequim Criação dos pintainhos durante as primeiras semanas, quando devem ser mantidos quentes. Criadora de frangos Galinha reprodutora usada para pôr ovos para a produção de frangos de engorda ('broilers').A pequena protuberância córnea na parte superior do bico do pintainho, com a qual pode furar a casca ao eclodir do ovo. Eclosão Saída de pintainhos, dos ovos, perfurando ou rompendo a casca.Estado primitivo de desenvolvimento dum pintainho dentro do ovo.Estudo da formação e do desenvolvimento de embriões.A célula reprodutiva masculina, de tamanho microscópico: o gâmeta masculino.A união duma célula reprodutiva masculina e uma feminina.Galinha na fase entre pinta e podeira jovem, antes de começar a pôr ovos, geralmente até a 18-20 semanas de idade.Galinha criada para a produção de carne.Aves como a galinha, peru, codorniz, faisão e perdiz Galinha poedeira Galinha criada para a produção de ovos.Um galo com, geralmente, menos de 18 meses de idade ou um peru macho com menos de 12 meses de idade.Célula reprodutiva microscópica dum animal feminino; o gâmeta feminino Incubação Processo de manter os ovos à temperatura adequada para provocar a eclosão. A incubação natural é a incubação efectuada por uma galinha choca. A incubação artificial è feita com uso duma incubadora (eléctrica) Membrana da casca Os ovos têm duas membranas finas. A membrana interna envolve a clara (albúmen), e a membrana externa reveste o lado interior da casca. As duas membranas estão unidas entre si, à excepção da ponta mais arredondada do ovo, onde estão separadas, formando a câmara de ar do ovo. As membranas são permeáveis aos gases -como seja o oxigénio -, mas não aos micróbios.Fase inicial do óvulo (ver mais adiante).Orifício externo das aves de capoeira através do qual se esvaziam todos os resíduos e ovos. ","tokenCount":"13354"} \ No newline at end of file diff --git a/data/part_1/1533690410.json b/data/part_1/1533690410.json new file mode 100644 index 0000000000000000000000000000000000000000..751c22e8bab12869c2f21a41dfa75ad0e5d2ada8 --- /dev/null +++ b/data/part_1/1533690410.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"19fb00fb96f8b56833a4935c3e14758e","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ccc2faf9-e61e-4ae1-a0ff-64445f4c6685/retrieve","id":"526079234"},"keywords":[],"sieverID":"c87d7fe6-a593-4514-a3b6-df0cf38a043f","pagecount":"101","content":"The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the agreed research agenda of IPGRI is provided by the Governments of Australia,The organizers had requested the participants to prepare a country presentation where seven topics should be discussed.The overviews provided in the country reports show that Norway spruce forests are important in all countries. The natural distribution area of Norway spruce covers most European countries. In some countries, Norway spruce was planted outside its natural distribution range. The abundance and population structure of spruce forests vary considerably among countries. Large continuous populations in the Nordic countries and the scattered small populations in Central Europe require different conservation approaches.The aims and the present state of gene conservation were not expressed very clearly in all reports (which actually influenced the contents and outcome of the workshop).Information on various types of gene conservation populations shows that a lot of work has been done. Because of a lack of standardized terminology, a comparison of in situ and ex situ gene reserves in various countries is difficult to complete from the reports.The topic of threats to genetic resources is only vaguely touched on in several reports, and is missing in some others. However, the threat is very real in many Central European high-altitude populations exposed to air pollutants. Many other factors cumulatively increase the adverse effects of pollution.Research activities and needs are well introduced, and are obviously considered essential components of gene conservation.The public awareness of forest genetic resources (and concern about their future) is not mentioned in several reports. This is, however, a matter that is to be taken seriously. Public opinion is a necessary driving force. On the other hand, wrong signals to the public may cause much trouble.Finally, the information needs are not dealt with in all reports. This may reflect a low demand, or indicate that the information needs have not been assessed.In conclusion, although the importance of gene conservation has been recognized, and considerable activity has been done so far, a considerable effort will be required to properly address the needs of Norway spruce genetic resources conservation in Europe. In this context, it is felt that a harmonization of conservation methodologies is desirable.Following a discussion on the objectives of the Norway spruce Network, the meeting agreed on a main goal of the network activities:To promote the maintenance of a broad genetic variation in Norway spruce in order to ensure the necessary evolutionary adaptability to a changing environment over many generations.It was recognized that the situations vary greatly among different countries and that each country needs to develop its own conservation strategy. A number of different objectives for Norway spruce genetic resources conservation which could contribute to the overall goal were identified:-to conserve representative populations of all ecogeographical regions -to conserve marginal populations -to conserve endangered populations -to save still unknown genetic variation -to conserve characterized genetic diversity for enhanced breeding -to ensure sufficient genetic variation in the reproductive material -to conserve reference populations for future research.Individual countries will put more emphasis on some of these objectives according to their particular situation. The objective of the gene conservation activity should be stated first and an appropriate method should be selected accordingly.It was agreed that Technical Guidelines for Norway spruce genetic resources conservation will be developed by the Network. These guidelines will provide a useful input in the development of national strategies for Norway spruce conservation.The development of an international database for Norway spruce genetic resources was discussed. The objective is to develop a tool to identify gaps in the coverage of Norway spruce genetic resources conservation in Europe.Dr Skmppa presented his experience with the maintenance and use of a database with experimental data from IUFRO provenance experiments. As major benefits of the existence of a database in the conservation of genetic resources, he stressed the joint analyses of data as well as the identification of gaps in a system of conservation activi ties.It was felt that it is not useful to duplicate at the European level the national registers of basic materials, many of which cannot be considered as being part of a conservation strategy. The lack of funding is also considered to be the major constraint to the successful development of a database. Dr Nanson described an example of an internationally maintained database in Douglas-fir and its use in the conservation of genetic resources. The discussion then focused on the type of information most urgently needed for the conservation network in Norway spruce. The difficulties of including various types of material in one uniform database were mentioned by several participants.All countries were encouraged to set up national databases and take the responsibility to further maintain them. The Network will produce a minimum list of descriptors which will enable the description of all populations irrespective of national programmes in a simple and uniform way and will facilitate the exchange of data.The meeting decided to consider populations with relevance to conservation purposes as basic units of the database. To meet the different targets of different countries it was recommended that, as a first step, populations in situ actively included in national conservation programmes be basic entries in the European database.The terminology in describing passport data will be standardized. Genetic information or characterization data for each entry will be in the passport data. The meeting recommended the use of suitable commercial software and development by the Network of common formats for data exchange.The participants of the meeting presented the criteria for selection of populations used in their respective countries. The Network listed the following criteria for the selection of populations for genetic conservation:For in situ conservation -autochthonous (indigenous) populations, well-adapted introduced populations, -representativeness of selected populations for all ecological zones (Norway), or natural forest communities and altitudinal zones (Austria), or seed zones (Finland, Slovakia), -good yield, phenotypic quality and vitality of populations, -good conditions for natural regeneration, minimum size of selected populations varies in individual countries from 10 or 30 ha to 2000 ha. The size of 100-200 ha was usually given. The dynamic aspect of gene conservation in large complexes (more than 500 ha) should be considered, -good vitality in the case of endangered stands in air-polluted areas (Poland, Czech Republic, Slovakia) or marginal stands.For ex situ conservation -endangered populations of in situ conservation are to be conserved in ex situ conditions, -good yield, phenotypic quality and vitality of populations, breeding populations containing sufficient genetic diversity.In the case of ex situ conservation there is no unanimity on the minimum size of long-term breeding populations. Two hundred genotypes per unit or 500 genotypes per breeding zone are frequently used. It is also recommended that multiple populations be maintained in different sites.The discussion of this topic has reflected the research needs of individual countries and it was agreed that the necessary and urgent research tasks could be summarized as follows:-to carry out the genetic inventory using compatible morphological and adaptive traits and/or genetic markers (e.g. isozymes, DNA markers) as the basis for selection of populations (core or endangered and marginal ones) from the entire distribution range, -investigation of the relationship between the genetic diversity measures and morphological and adaptive traits, -investigation of the influence of the silvicultural practices on the changes of genetic structures of populations, -investigation of mechanisms generating the observed variability in phenotypic adaptive traits, -development of long-term storage techniques for reproductive material, cryopreservation of tissue cultures and investigation of the biological and genetic consequences of these conservation methods, -further studies of ecophysiology and ecological genetics, including provenance research, -studies of reproductive biology and dynamics of Norway spruce populations.The concrete actions of gene conservation of Norway spruce and other forest trees are undertaken by each country according to its own systems and facilities. EUFORGEN is a coordination mechanism through which advice can be given to participating countries, but the implementation of conservation activities is the responsibility of each participating country. In order to facilitate the establishment of a gene conservation network, it is necessary that in each country one person acts as a prim us motor. This person shall be the link or contact point to EUFORGEN. The contact persons can be backed by EUFORGEN in their efforts to enhance gene conservation in respective countries.It was agreed that the EUFORGEN coordinator should identify a contact person in each country of the distribution area of Picea abies. This contact person should be familiar with gene conservation issues, and in addition the ability to communicate with ministries and forestry organizations is necessary. A fair knowledge of English is desirable in order to facilitate communications.Six major tasks to be carried out during the next year were agreed upon by the Network members and a workplan identifying responsible persons and deadlines was agreed upon. Introduction It was agreed that a list of contact persons for matters relating to Norway spruce genetic resources conservation should be compiled by IPGRI for all European countries. TASK:• J. Turok should compile a list of contact persons, as complete as possible, for inclusion in the report of the meeting, by 15 June 1995.The history of the conference and the process leading to it were presented by Dr Frison. Preparation of the conference is carried out by a secretariat at FAO through a project entitled International Conference and Programme on Plant Genetic Resources (ICPPGR).The revised versions of the ICPPGR Briefing Notes No. 1 and 2 were distributed to the participants. The importance of the Global Plan of Action, which will be endorsed at a Ministerial level at the Conference in Leipzig in June 1996, was stressed. IPGRI is closely collaborating with FAO in the preparation of the Conference and an agreement defining the role of IPGRI has been signed between FAO and IPGRI. The preparation of country reports was the first step in the process and several countries have already sent draft copies of their report to IPGRI. According to this agreement, IPGRI is responsible for the contacts with individual countries to facilitate the production of the country reports.A regional meeting will be organized in Europe in October 1995 in Nitra, Slovakia at which time a synthesis of the country reports will be discussed. This meeting will also address common problems and discuss approaches to overcome them, and will identify priorities at a regional level. Regional collaboration will also be discussed at this meeting.It was recommended that EUFORGEN should play a role in the development of the Global Plan of Action and that EUFORGEN should be given sufficient visibility in the ICPPGR process and in the Global Plan of Action. It was recommended that the meeting of the steering committee of EUFORGEN, which is planned for the end of 1995, should be tjlken as an opportunity to organize a workshop addressing European forest genetic resources issues and that this should be done as an input to ICPPGR.Dr T. Skmppa presented the objectives of the workshop on Boreal Forest Genetic Resources which will be held in Toronto, Canada from 19 to 22 June 1995. A copy of the tentative agenda and additional information was distributed to the participants.This meeting, which is organized by the Canadian Forest Service, is a supporting activity and an integral component of the ICPPGR.Several European countries have already confirmed their participation (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Norway, Russia and Sweden).Dr Skmppa conveyed the wish of the organizers to also have participants from Alpine countries such as Austria and Switzerland as well as from Poland.It was agreed that a presentation describing EUFORGEN and more particularly the Norway spruce Network should be prepared by J. Turok and be presented at the meeting.The meeting unanimously elected Dr V. Koski as chairman of the Norway spruce Network.The report was discussed and amendments were incorporated. The report was then endorsed by the participants.It was agreed to hold the 2nd EUFORGEN Norway spruce Network meeting in 1996 and the participants asked IPGRI to organize that meeting in consultation with the chairman. Dr Koski thanked the local organizers and IPGRI for the nice organization of the meeting and praised the participants for the hard work which made the meeting successful.E. Frison thanked the local organizers and the participants for their contribution to this successful meeting.The Finnish Forest Research Institute, FIN-01301 Vantaa, Finland Norway spruce (Picea abies L. Karst.) is a relatively new tree species in most parts of the country. After the latest glaciation spruce returned later than birch and pine. Probably spruce occurred sporadically earlier, but no more than 5500 years ago it began to spread from the east. It took some 3000 years to reach the western and northern parts of Finland. It is also worthwhile to mention that a large proportion of the present land area has risen from the sea rather recently. Later on, some 100 to 200 years ago, human impact on forests, especially pine and spruce forests, used to be exploitive. Shifting agriculture with prescribed burning, deliberately ignited forest fires, tar burning, grazing of cattle, and merciless cuttings resulted in treeless areas, which primarily turned to broadleaved forests. Owing to early legislation, education and silviculture, forests recovered and are now a dominating component of the Finnish landscape.The total area of forest land of Finland is 20 million hectares, which is 66% of the total land area. Norway spruce is the second in abundance, after Scots pine (Table 1). In terms of growing stock the proportions of tree species in 1983-1993 were as follows (Yearbook of Forest Statistics 1994):Pinus sylvestris 45.6% Picea abies 36.8% Betula spp.14.5% Other broadleaved 3.1 %The earlier land use, mentioned above, had favoured broadleaved species. More recently spruce has reoccupied fertile sites, and even penetrated to rather poor 'pine sites'.For the time being nothing seems to threaten Norway spruce and its genetic resources. However, gene conservation is a matter for the unforeseeable future. Our tree populations are close to the northern margin -the tree line of many species goes across Finland. Thus, in respect to climatic adaptability the populations must represent extreme variants of the species in question. On the other hand, a wide genetic variation has been revealed within populations. The goal of gene conservation is to ascertain that this kind of natural resource is neither aCcidentally nor deliberately lost. The global change of environment is a potential threat to genetic resources. Cultivated forests with foreign seed sources and genetically improved material will gradually alter gene frequencies, if there are no counteractions. The need for gene conservation was recognized by forest geneticists as early as the 1970s. Consequently, the number of trees subject to breeding has been large since the beginning. The establishment of gene reserve populations did not get started until the Strasbourg Ministerial Conference and UNCED had an impetus.As the first step, establishment of a network of in situ gene reserve forests was started in 1992. By March 1995 we have registered six spruce forest areas, the total area being 886 ha (Fig. 1). The distribution and coverage of the gene reserves is not satisfactory yet. The target is to find and establish some 10 more gene reserve forests, especially in the southwestern part of the country. There are also gene reserve forests of Pinus sylvestris, Betula pendula + B. pubescens, and even of Tilia cordata. The total number over all species is 29, and their area 5188 ha (March 1995). Besides gene reserve forests, genetic diversity has been stored in clonal archives. There are altogether close to 1600 clones, both plus trees and special forms in the clonal archives. A national long-term tree breeding program of 1989 suggests establishment of longterm breeding populations for all main species by breeding zones. For P. abies six breeding zones have been delineated in Finland. The basic material of these breeding zones would be phenotypically selected plus trees. The designing of the factual populations is still underway.Finland is in the fortunate position that the genetic resources of the main forest trees, P. sylvestris, P. abies and B. pendula + B. pubescens, are not subject to direct threat. The challenge of gene conservation is how to justify necessary actions now in order to maintain the wealth even in the far future. Biodiversity and gene conservation are favourite issues, as long as your own money is requested. After a few years people may have new topics in their minds and selling the idea of gene conservation may be much harder than it is today.The main stream of gene conservation is by means of gene reserve forests. Based on the conditions of efficient pollination and the need of parcels of various age classes the minimum area of one unit ought to be 100 ha, Le. 1 km 2 • Finding this large area of naturally originated forest in public ownership is not always easy. In the southern part of Finland forests are mainly privately owned and consist of rather small holdings. Plantings with transferred, and even unknown, origins interfere with the natural population structure. The frequency of nonindigenous provenances and genetically improved stock will gradually increase in the future.Rather than giving up the purity requirement and the target area of 100 ha, we could start with smaller 'kernels' and then later on enlarge the population with plantings. Seed must, of course, originate from the nucleus. Extra costs of artificial enlargement may cause difficulties, and it requires sincere effort to carry through this kind of action. The advantage of gene reserve forests is that they are managed and merchantable timber may be harvested, as well as seed.For the time being we do not see urgent research needs in our spruce gene reserves. I consider the project a practical operation, where we must not waste any more time. Selection and documentation of the missing samples is the main goal. Characterization of populations by means of genetic markers would be desirable, but is out of the question because of economic restrictions. On the other hand, gene reserves provide excellent reference and study material for genetic studies.Public concern on nature protection and biodiversity has been efficiently promoted by the mass media. An emotional attitude readily leads to an all-or-nothing approach to conservation. The need for gene conservation is certainly well accepted and understood. Some contradiction occurs as regards the methods of conservation. Old forests and strict nature reserves appeal to laymen, whereas forest geneticists prefer actively managed genebanks.We have to keep on saying that conservation of forest genetic resources is the duty of the present generation. We still have large areas of native (spruce) forests in our country. As the first step a covering network of in situ gene reserve forests should be established. A guidebook for the handling of gene reserve forests is anticipated.The establishment of ex situ long-term breeding populations is still on the planning desk. Breeding zones have been delineated, and there are sufficient numbers of phenotypically selected plus trees in each zone. Every breeding zone will have a breeding population of its own. As the composition and the physical location of the breeding populations determine the mode of action into the far future, the planning has been thorough and time consuming. The choice between closed or open systems, large entities or substructures, basic population versus nuclei, are under discussion. Information on possible experiences on Small Multiple Population Breeding Systems or other advanced models of breeding/ conservation would be useful.To my mind, gene conservation proper and effectively functioning breeding populations do not necessarily cover each other. After a few generations of selection a broad variation in breeding populations may become a 'genetic load' instead of a 'hidden treasure'. My final statement is: Let us start with simple and inexpensive measures, such as gene reserve forests, now. If we wait for a perfect universal method, it may be developed too late.The forest is one of Latvia's major assets, its most important and valuable natural resource, covering 2.82 million hectares (i.e. 44% of the total land area). This illustrates the great importance of the forest for the economy, landscape, environment, flora and fauna of Latvia. For many, the forest also has significance for leisure activities, recreation and hunting.During the last 70 years, the forest cover area has had a stable growth trend: from 25% in 1923 to 44% in 1994. Despite that, there are significant regional variations; for example a higher forest coverage is in the central part, in the northeast as well as in the western part, where forests cover 50-60% of land area.The various forest-growing conditions in Latvia are subdivided into five edaphic types: dry mineral (58.0%), wet mineral (10.4%), wet peat (12.0%), drained mineral (9.6%) and drained peat soils (10.0%). The distribution of tree species over the edaphic rows is not homogeneous.The ecological position of Norway spruce in Latvia's flora has been stable since the postglacial era. As evidenced by pollen analyses and the data for forest resources today, the species covers about 530 000 ha or 20.6% of the total forested area. In accordance with the forestry development programme for 1992-2000 and 2030, the optimal share of Norway spruce is estimated to be about 24%. It means that the present occurrence of spruce in Latvia is close to an ecological optimum, particularly on dry mineral soils with fair productivity potential (oxalidosa site type), on wet mineral soils (myrtiloso-politrichosa site type), on drained mineral soil (myrtilosa mel) and on drained peat soil (myrtilosa turfmel site type).The share of Norway spruce in the structure of natural forests appears to reflect the selection pressure of the environment on the species. Latvia's forest resources data show the Norway spruce to predominate (33-37% of the total forest area) in the upland areas of Kurzeme (west) and Vidzeme (east-central part of Latvia). When comparing these figures with the data of K. Bambergs' paleobotanical studies, it can be shown that the pollen curves for spruce over the whole postglacial era, except for occasional fall-offs, show similar patterns. So, it appears that these areas are favourable for Norway spruce owing to the amount of precipitation and the temperature.Geographical differences within a species may be attributed to both its migration route during the postglacial era and the natural selection controlled by the environment in the course of evolution. The immigration of spruce into the Baltic area during the postglacial era is believed to have followed two alternatives: either from the central Russian plains in the east or from the north, from the Baltics. In the latter case the related pattern is likely to become complicated owing to factors such as climatic conditions and distinct origin.The conservation of forest genetic resources was initially started in 1986 by tree breeders at the Latvian Forestry Research Institute in Silava. The main aim was to conserve sufficient genetic variation for present purposes and future challenges. Among other species, two rather large (considering Latvia's forest conditions) overmature Norway spruce populations in the east and west part on 493 ha and 197 ha, respectively, were established as genetic reserves (see Table 1). The data were analyzed in 1990. Among others, the species age structure was evaluated, results from previous studies summarized and, taking into account the geographical distribution and differences, the first attempt at forest gene conservation as a separate research project was initiated.The main objective of gene conservation in Latvia is to maintain genetic variability among breeding material as well as to preserve the genetic potential of species for adaptation to future environmental conditions.As it was stated in the gene conservation project, the most important and pressing task is a purposeful conservation of the spruce stands of natural origin. Silvicultural treatment of stands began at the end of the last century. In the 1970s, large areas were reforested with Norway spruce reproductive material of unknown origin. However, natural origin populatlons for the related research and conservation of the forest tree genepool are still common among older stands (more than 50 years). The following steps are to be taken:-establishment of genetic reserves for in situ conservation of Norway spruce as a priority in Kurzeme and Vidzeme upland regions, known as the areas of optimum growing conditions for sprucei a large extent of spruce forests was destroyed by storm of 1990 and subsequent insect damage, -special attention is to be paid to the spruce from the Latgale upland area (in the southeastern part of Latvia)i the stock from these high-yield stands is noted for its high adaptability and productivity (the most significant features in future forests), -in situ conservation of populations on wet mineral and drained peat soils, -in situ regeneration, by using methods stimulating natural regeneration or by artificial methods in the overmature or endangered stands of the existing gene reserves, -in cases of ex situ conservation, the material of nonidentifiable or foreign origin must be avoided in the surroundings of plantations, -collection of material for seed bank with different aims (until now the existing Norway spruce seed bank contains 15 seed sources each representing 50 logged or still growing trees).At present, the gene conservation project is underway. In accordance with the. mentioned guidelines, significant work has been carried out during the last two years in establishing new conservation areas (see Table 2) of Norway spruce genetic resources. Without surroundings. Small conservation areas were accepted in most important regions.The previous tree-breeding activities with Norway spruce were: -292 phenotypically selected individuals (plus trees) represented in 170 ha of seed orchards, -ex situ conservation of 73 provenances in provenance field trials, -ex situ conservation of about 100 plus tree progenies in seedling progeny tests.The phenotypic composition of stands of natural origin was investigated at the Laboratory of Forest Tree Breeding during the 1960s and 1970s.The forms acuminata-europaea and europaea were identified. Types of branching largely depend on the site conditions, with pectinata branching being typical for higher productivity stands. The analysis of the related field data showed that this type of branching increased relatively in a west-east direction, but reached a higher proportion in the upland areas of Kurzeme and Vidzeme. They appear to be the most favoured regions for Norway spruce growth. Genetic differences were evaluated in progeny tests or by isozyme analyses.Suitable markers for the assessment of geographical and genetic differentiation of Norway spruce were: time of spring flushing and growth termination, ability to develop lamma shoots, juvenile growth as well as shape of branching. The geographical differences were studied following the changes in climatic factors for different regions, with the total sum of active temperatures and the amount of precipitation as principal indicators.In provenance trials in the country and abroad, Latvia's spruce is usually ranked among the provenances that are late flushing and fairly fast-growing, when tested against geographically diverse backgrounds.The local provenances are distinguished by a higher degree of survival and better stem quality. When comparing progenies set into favourable site conditions, the provenances coming from the south of Latvia fall, with a few exceptions, under the group of fast-growing ones, while those coming from the north of Latvia are distinguished by lower survival and smaller stem dimensions. If the spruce coming from the southwest of Latvia is cultivated on frost areas and unfavourable soil conditions, the provenances of this region lose their advantages. So, the Remte seed orchard progeny (southwest of Latvia), which in provenance trials under favourable site conditions outperformed Dorna Cindreni (152 and 128 m 3 /ha at the age of 17 years, respectively), nearly died away on peat soils with late frost after repeated frosts. The Ranki provenance (Ogre region) survived and showed normal performance, while progenies coming from the southeast (Daugavpils, Rezekne, Jekabpils) showed a similar reaction to adverse environments. Fast-growing spruce showing a good adaptability to varying conditions has thus been found in the southeast of Latvia. The clonal breeding, underway since the late 1970s, is based on the material of this region. The related seed reforestation is recommended for all Latvia.A pilot study on genetic structure, level of diversity and degree of differentiation at isoenzyme gene loci in five stands of Norway spruce was carried out. Eighteen enzyme systems were electrophoretically analyzed and 78 allele variants at 26 loci observed. Three rare alleles (at the gene loci controlling Aat, Lap and Dia), which had not been observed in earlier studies, were found in one of the studied populations (Ranki, central part of Latvia). It was shown that:-the genepool in analyzed stands is practically identical, genetic distance does not exceed 0.008, the differentiation is less than 1 %, -the studied stands from different regions of Latvia have a high level of variability and fairly uniform genepool observed at isoenzyme loci.On the contrary, differences of Latvia's Norway spruce populations in traits such as flushing time, juvenile growth rate or adaptability are significant and linked with geographical origin or ecological conditions.To ensure a responsible approach and to raise the public awareness of plant genetic resources conservation in Latvia, discussion of the necessity of a National Plant Gene Conservation programme was started, which would include state authorities, research and NGO representatives. It should also be noted that there is an urgent need for an internationally accepted forest gene resources database, e.g. as a contribution to EUFORGEN.The Lithuanian forests are situated throughout the territory and cover an area of 1.86 million hectares. The total wooded area of Lithuania is 30.1%, in which coniferous forests comprise 61.6%, and spruce stands 24.2% (Table 1). During the last two decades, intensive reforestation has had a tendency to increase the area of spruce stands. Mature spruce groves are the most productive (285 m 3 /ha) of all stands growing in Lithuania while they suffer the most from negative natural and anthropogenic factors such as storms, droughts, insect pests, fungus disease, frosts, animal damage and, finally, industrial pollution.In Lithuania, spruce stands are situated mostly in the western, northern and central parts of the Republic. Scots pine forests take up a large area but there are no clear big spruce forests. The forests of Rietavas-Taurage and Birzai are somewhat larger. The ckaracteristics of spruce groves are presented in Table 2. The spruce groves of Piceetum myrtillosum and Piceetum oxalidosum forest types prevail in Lithuania. Mostly, mixed spruce stands with pine, birch and aspen are noted. Mixed spruce stands with birch and aspen produce about 650 m 3 /ha of timber at the cutting age. They distinguish themselves in better stability and resistance to storms.The area of spruce stands in Lithuania has been decreasing continually (Fig. 1). True, it began to increase during the last two decades because of young stands. At present, young stands until 10 years of age make up 15.4% of the total area of spruce stands. It is known how many disasters the spruce groves suffer during their ontogenesis. Continually recurring storms (in 1967, 1982 and 1993) destroyed most spruce stands. Usually a big invasion of spruce bark beetles, which destroy what is left after windfalls in spruce groves, follows the storms. The latter process was particularly severe after the storm in 1992. One of the main measures at present being used in Lithuania for cleaning defaced and damaged spruce stands is to cut the damaged stands and remove the stem together with spruce bark beetles. It is impossible to determine the losses which we will suffer.Another significant factor destroying the spruce stands is industrial air pollutants. According to the data of our specialists who are carrying out ecological monitoring activities (Ozolincius 1994), defoliation of spruce groves continually increases. For instance, in 1989 the spruce stands damage class was 0.7 while in 1994 it was 1.1. General spruce stand defoliation level at present comes to 21.7%. .... At present the spruce stands of natural origin in Lithuania make up more than twothirds of total spruce forest area. Annual spruce cutting woodlots consist of 2000 ha on average and the stands of natural origin are cut. Therefore, the situation of the natural spruce grove genofund will change owing to the artificial reforestation. The necessity arose to conserve the valuable natural genofund of spruce as well as of other tree species.Main Norway spruce populations and their status Six natural forest regions are selected in Lithuania in which different populations of separate tree species, among them Norway spruce, have formed. The main object of forest tree selection is natural populations, because populations are a primary link of genetic information. Valuable genotypes which are adapted to the local conditions are best and genotype conglomeration forms in natural stands, while the crossing of separate individuals acts as natural selection under certain environmental conditions.Elucidation of population bounds is a long and intricate process but it is possible to choose and evaluate the populations most distant from each other and separate due to the climatic differences and origins of specific structural traits.Diversity of genofund decreases because the area of stands of artificial ongm increases, reforestation does not always use the seed of the best trees and sometimes there are separate genotypes of low value. All potential elements of a genofund participate in reproduction of new generations in naturally formed autochthonic stands.At present there are no big spruce forests in Lithuania. They are situated in the western, central and northern parts of the Republics and divided by larger or smaller deciduous stands. Larger spruce groves remain in four parts of the country and make up the following spruce accumulations: southwestern Zemaitija, northeastern Zemaitija, forest of Birzai and central southern part. However, these spruce stands are cut by woodlots and damaged by windfalls. There are some spruce stands in other parts of Lithuania as well but they do not form big forests. Mostly, they are mixed with big forests of other tree species. Therefore, it is necessary to conserve the genofund or remaining spruce groves and to utilize them rationally in reforestation (Gabrilavicius and Pliura 1993).At present, the following best Norway spruce populations are selected in Lithuania: Survilai (1st forest natural region); Rokiskis (2nd forest natural region); Ignalina (3rd forest natural region); Mociskis (4th forest natural region); Sakiai, Kazlu Ruda, Punia (5th forest natural region); Trakai (6th forest natural region). Investigated populations differ significantly in most structural traits. Height differences of separate populations make up 21.4%, and ones of crown width comprise 35.8%.It is important to ascertain the limits of population transfer, using them to establish new spruce stands. The influence of environmental conditions on trait variability must be studied, and the progenies transferred into new ecological conditions; other studies include determining the influence of genetic characteristics (Gabrilavicius 1992).Ecological adaptability of populations is the genetic result of different reactions of each population to site fertility, humidity and micro-and macroclimatic conditions so it is pOSSible to get additional selection effect by selecting specifically adapted populations.Studies have evaluated reliable growth and adaptability differences between some Lithuanian Norway spruce populations (DanuseviCius 1993;Gabrilavicius 1992). Adequa te popula tions (their progenies) are being recommended for reforestation in every forest natural region.In the winter of 1993 the storm turned a Significant part of the spruce stands upSide down. A dry summer followed and also in 1994 was an unforeseen drought. For this reason, the spruces became significantly weaker and the pest Ips typographus has spread.At present, there are 60000-70000 ha of spruce stands being damaged by the abovementioned pest; this area makes up 32-38% of middle-aged and older stands. It is planned to clear-cut an area of 35 000-40000 ha of the damaged spruce stands, which represents more than a 2-year cutting rate.Primary evaluation of forest genetic resources is carried out during forest inventory, when middle-aged and older stands are divided into three selection groups: Group I-stands of la and I bonitet, high productivity and quality, healthy, normal thickness; Group II-stands of II-Ill bonitet, average productivity and quality; Group Ill-stands of IV and lower bonitets, low productivity and quality. At the present moment, Lithuanian middle-aged, premature and mature spruce stands are of good selection value (Tables 3 and 4). Stands of the Group I cover 41 000 ha, or 22% of the area of middleaged and older spruce stands (KenstaviCius and Brukas 1993). They make up the most valuable genofund of Lithuanian spruce stands, and therefore more attention is paid to their conservation and regeneration. In Lithuania two methods of genetic resources conservation are applied:In situ -genetic reserves, when highly valuable stands are singled out and conserved up to natural maturity, allowing the removal of dying or damaged trees, to fight against pests and to protect the main species from overtopping by others; natural regeneration is used, -plus (elite) individual trees, when individual trees are supervised and kept until their death, while progenies are transferred into archives or plantations, -seed orchards, when the stand is left until maturity, and the seed crop is gathered from standing trees. Regeneration is natural.Ex situ -clone archives, when 15 ramets from each clone are grown in special sites, -seed clone orchards, -test plantations from plus (elite) tree seeds or genetic reserves and seed sites. 5 are from work carried out in the field of genetic resources conservation. In agreement with the Law of Lithuanian Forests, genetic reservations in the future will acquire the status of genetic reserves, because in the first case man's interference is prohibited. Genetic reserves comprise 0.5% of the total area of middleaged and older spruce stands (Baliuckas et al. 1994).This year additional selection is still foreseen, while damaged ones will be reassessed. Additional seed reserves also will be singled out. At present, standards for selection, management and utilization of the abovementioned conservation objects of genetic resources are being specified and therefore an international experience here would be of great help.Some plus trees are dead or damaged, and therefore in the near future their additional selection and evaluation will be carried out. Clones of most of dead plus trees are concentrated in archives, so that their genotypes are not lost. 6). More detailed studies were performed concerning phenotypic and genotypic structure of populations, selection efficiency of provenances and families in situ and ex situ, including adaptability and stability indices; investigations of genotype by environmental interaction and geographical changeability, as well as peculiarities of reproductive biology in seed orchards and interspecific as well as intraspecific hybridization.In the field of applied sciences, recommendations and standards for stand selective evaluation, for selection of plus trees, genetic and seed reserves, as well as for establishing seed orchards and clonal archives, and for increasing seed crop productivity, have been prepared.It is foreseen to continue the inventory of forest genetic resources, studies and compiling of catalogues, work on tree assessment and genotype identification, as well as to work out criteria for the selection of plants under conservation.The quality and extent of these works depends considerably upon international collaboration which is carried out by the International Plant Genetic Resources Institute, and upon our united efforts in the EUROFORGEN programme, as well as on financial support. Analysis of the phenotypical and genotypical structure of populations and provenances.Methods for selection of the plus trees and stands.Efficiency of selection of families and provenances, grown in situ and ex situ.Limits of provenance transfer.6.Methods of the early prediction and evolution of genotypes.Bioecological peculiarities of flowering and bearing in seed orchards.Creation of new hybrids.The network connected with gene conservation of forest tree species started in 1991 when the Programme of gene conservation and tree breeding for 1991-2010 was formally confirmed by Officials. This Programme was mainly prepared for conservation of genepools of the species in economical forests (State Forests). In this Programme the strategic aims of gene conservation were estimated. Conservation of the forest gene resources is necessary to sustain:-continuity of fundamental ecological processes, -maintenance of forests and utilization of ecological systems, -restitution of forests destroyed by anthropogenic factors, -preservation of biological and genetic variety for future generations, -increased natural resistance of the future forests.To the main factors causing threats to genetic variety of native populations belong:-decrease of participation of same species in next generations by their substitution by foreign provenances or species, -pollen contamination of other provenances or species, -biotic factors causing forest decline (insects, fungi, game), -abiotic factors (greenhouse effects, air pollution).Depending on the threat to the forests it is planned to use different methods of gene conservation. For these reasons the forests (areas) are classified in three groups:Areas without threat (mainly in situ preservation) -choose the stands and trees for gene conservation, -initiate natural regeneration in these stands, provide additional protection of very old stands and trees, -provide secondary protection where necessary on ex situ plots, -progeny plantations, seed orchards, -clonal archives, -seeds in genebank.In situinitiation of natural regeneration in chosen stands, choose threatened populations and trees for preservation ex situ.progeny plantations, seed orchards, seedling seed orchards, clone collections, long-term storage of seeds, pollen and parts of plants.-vegetative propagation of populations and single trees by cuttings and tissue cultures, -progeny plantations, -seed orchards from vegetatively propagated materials, -long-term storage of plant materials.Spruce exists in Poland in three subranges (or regions Giertych), separated by areas where spruce does not occur naturally. It is probably connected with glacial epoch and spruce refugial regions from which spruce migrated mainly in northerly and westerly directions. Spruce growing in northeast Poland (northeast sub range) is connected with the northern and eastern ranges of this species in Lithuania, Latvia and Byelorusia. Hercynian West Carpathian sub range is the part of natural range connected with spruce growing in Germany, Czech Republic and part of Slovakia. Spruce growing in the southeast part of Poland belongs to the southeast Carpathian subrange.On the basis of this macrodivision were delimited the areas where existing natural populations of spruce should be included in a long-term gene conservation programme. Between these populations there are also well-known and valuable Polish provenances such as: Bystrzyca, Lgdek, Istebna, Wisla, Nowy Targ, Tarnawa, Zwierzyniec, BialowieZa, Augustowo, Knyszyn and Borki.Apart from these populations, other spruce stands located in central and northwest Poland were included in the programme of long-term gene conservation of spruce. In total, 52 populations (stands) of spruce were chosen for gene conservation in Poland (Table 1). All of these stands will be managed as normal stands and at the proper time the natural regeneration for establishing in situ progeny plantations will be started.Parallel ex situ progeny plantations were established artificially from seeds collected in these stands. The size of the work connected with ex situ gene conservation of spruce in Poland is shown in Table 2. Until 1993, 623.7 ha in situ and ex situ progeny plantations had been established.Also, clones of spruce (about 500) existing in seed orchards are treated as an additional source of genes for conservation.Short-term activities in gene conservation of spruce are connected with the threat of populations growing in Sudety region.For this reason, field work was done, which let us choose natural or probably natural stands in 11 Forest Districts (about 670 ha) for ex situ gene conservation. In these stands 2 years ago was begun the first clone collection and 49 samples of seeds (1.5 kg each) were put in a genebank for long-term storage (Table 3).Additionally, a special short-term programme for gene conservation of spruce for the oldest natural stands and trees growing in our protected areas is managed by Dr A. Korczyk in northeast Poland, mainly for Bialowieza National Park.In the first phase of this work one natural stand of different ages (40-240 years) and 73 trees older than 200 years, growing in different soil conditions, were chosen for conservation of our premanagement natural population of spruce. These trees were used for establishing ex situ clone collections (4.16 ha) in two different places. At the same time as networks connected with gene conservation were started, the Gene Bank Laboratory was created in the Department of Genetics and Physiology of Woody Plants of the Forest Research Institute. This laboratory carries out the studies which are necessary for practical realization of gene conservation, including:-genetic diversity of natural populations of spruce in Poland, -influence of the anthropogenic factors on genetic structure of populations, -methods of long-term storage of seeds and pollen, -consequences of long-term storage of seeds on genetic structure of seed samples, -methods of propagation by: -cuttings, -organogenesis, -embryogenesis, -soma clonal variation of seedlings from somatic embryos, -cryopreservation of embryos, callus and 'artificial seeds', -monitoring changes in stored seed, pollen and embryo samples. In view of an uncertain climatic future, the preservation of genetic adaptability of tree populations is crucial for the long-term stability of forest ecosystems (Committee on Managing Global Genetic Resources 1991). Global conservation efforts have to lay emphasis on those forest tree species that are close to extinction. In Austria, no forest tree species is threatened to such an extent. It is not the whole species that is being driven to extinction, but diminishing local races or ecotypes are the main concerns. This also holds true for Norway spruce (Picea abies).Austria is a mountainous country influenced by different climatic regions and manifold geological conditions. Thus, because of the various environmental factors, different ecotypes can be expected within a forest tree species. However, besides these natural environmental conditions, postglacial immigration and, beginning in the early Middle Ages, indiscriminate extensive cuttings for ore and salt mines, have long-lasting effects (population fragmentation, seed transfer, species shift) on the genetic composition of today's forest tree populations. These peculiarities have to be borne in mind if the existence of certain forest tree populations is at stake and means of conservation is discussed.Austria's total wooded area amounts to 3.88 million hectares, i.e., 46.2% of the land area is covered by forests. Therefore, Austria is rich in forest resources compared with other European countries. However, governmental implementation of conservation activities is intricate. Only 30% of the forest is publically owned and a high proportion (69%) of private owners operates nonindustrial forest enterprises or owns small woodlots « 200 hectares) (Anonymous 1993).Natural range A meticulous depiction of the native range of Norway spruce was published by Tschermak in 1949. Here the range is only briefly described. In Austria, Norway spruce is widely distributed. The Alps, mountains of the Bohemian massif [Miihlviertel (Upper Austria) and Waldviertel (Lower Austria)], and higher elevations of the alpine foreland (Hausruck, Kobernauerwald) are naturally covered by Norway spruce. The Danube basin separates the Austrian range into the alpine and the range on the Bohemian massif with a sparsely covered link in the Strudengau between the cities of Grein and Ybbs. The eastern natural limits are indicated by a connection line starting from the cities of St. Pal ten over Wiener Neustadt to Graz and then south along the eastern slope of the Koralpe. Some natural stands are also found in the mountainous region called Bucklige Welt.Pure spruce stands are found in the Piceetum subalpinum. In this forest community the range varies in the Central Alps between 1400 and 2100 m and between 1100 and 1400 m in the Bohemian massif. In the northern alpine transitional zone, an elevational range of this forest community is typical at 1400-1900 m, and in the southern alpine transitional zone at 1500-2100 m. In the Piceetum montanum, Norway spruce is also the prime tree species. Elevational zones vary strongly from ecoregion to ecoregion (Central Alps 650-1700 m, northern transitional zone 500-1700 m, southern transitional zone 500-1800 m, Northern Limestone Alps 700-1600 m, Southern Limestone Alps 1000-1700 m).Together with common beech and silver fir, P. abies is found in the (Abieti)-Fagetum with varying proportion between 600 and 1700 m along the northern and southern edge of the Alps and between 600 and 1300 m in the Bohemian massif. A detailed description of the natural forest communities is found in KHian et al. (1994). Figure 1 shows the actual and the natural distribution of Norway spruce in Austria.By the end of the Middle Ages high timber demand for ore and salt mining caused extensive clear cuts in the Limestone and Central Alps. Uncontrolled natural regeneration often turned out to be extremely difficult. If regeneration did not fail, larch and spruce were favoured and caused a reduction of the natural distribution area of broadleaved species.The first, more extensive artificial sowing of Norway spruce was reported at the end of the 18th C in Upper Austria. Later, significant regenerations by planting were carried out in forestry. During the 19th C, extensive pure spruce forests were artificially established, especially in mountainous regions, e.g. south of the city of Steyr. Later, these spruce stands were devastated by heavy storms and bark beetles.After World War I, Austrian forests were intensively utilized (Tschermak 1934). Restocking of these areas and smoothing out damage due to World War Il, in total an afforestation area of 384 000 ha, favoured the artificial distribution of spruce. Today it is extremely difficult to differentiate between autochthonous and nonindigenous spruce stands. Even within the native range of this conifer, cutting and uncontrolled restocking have covered over the natural geographic differentiation. This especially holds true for lower and middle elevational ranges. In Austria, approximately 29% of the natural forest communities are pure coniferous forests. However, the actual proportion amounts to 69% of which pure spruce stands have a great share (45% of all coniferous stands) (Kilian 1985). As the Austrian spruce forests are found from lower to sub alpine regions, appropriate adaptedness of spruce populations is highly desirable for practical use. By the end of the 19th C some Norway spruce field trials had been launched. One of the more comprehensive common garden experiments comprised 80 Austrian Norway spruce populations originating from different elevations and forest communities (Cieslar 1907). Today elevational adaptedness in forest tree species is taken as a self-evident truth, but at the turn of the century, Cieslar's conclusions were striking in forest science. Later, early tests to identify spruce populations by different growth rhythms in phytotrons were developed (Holzer 1975). Like other spruce provenances originating from the alpine range, Austrian populations are not characterized by outstanding field performance in field trials established outside the natural range (e.g. Krutzsch 1974). This is in accordance with biochemical investigations in Norway spruce (Lagercrantz and Ryman 1990). Consistently, alpine populations are genetically highly adapted compared with other native populations and result in poor performance if planted outside the alpine range.Austrian provenances originating from lower elevations of the Bohemian massif (Waldviertel, Miihlviertel) have a yield performance which is typical of provenances of the Hercynic-Carparthian region (Guenzl1979).Severe forest decline in Austria made conservation efforts inevitable. In 1986, a programme for the preservation of forest genetic resources was launched at the Federal Forestry Research Centre, Vienna (Nather 1990;Litschauer 1994). Owing to Austrian peculiarities (see above), the ultimate goal was the conservation of genetic resources and in doing so restricting forestry as little as possible. For principal forest tree species, such as Norway spruce or silver fir, emphasis was laid on in situ conservation.In Austria, forests aiming at the preservation of gene resources of Norway spruce are classified as (1) gene reserves and (2) small-scale conservation units. At least 5% of the wooded area is intended for in situ conservation. Relic populations and stands close to the timber line are over-represented in the conservation programme. As these stands are declared as conservation stands on a voluntary basis, a harmonious relationship between the Federal Research Centre and the owners is mandatory. There are no official means to declare and protect gene resources without the approval of the owner. Logging in these stands is the rule rather than the exception. However, there might be certain management restrictions. For instance, it can be agreed on that exclusively natural regeneration is permitted, cutting of undesired forest tree species will be necessary, and among other restrictions, a supplemental planting with forest reproductive material originating from the in situ population is mandatory if artificial regeneration is a must. The fulfilment of these agreements and the status quo of the in situ stands is periodically revised every 5-10 years. From an owner's perspective it is not obvious at first glance that a declaration might be advantageous for his forest enterprise. However, in declaring a resource there will inevitably be close links to silvicultural experts who contribute their expertise and a declaration may open the way to applying for federal funds.Austrian gene reserves are forests that comprise an area of at least 30 ha. As pollen contamination fwm outside sources is unwanted, the core area should be framed by a 300-500 m wide buffering zone. The identification and declaration of Norway spruce gene reserves have been completed in the province of Carinthia. In the provinces of Lower Austria, Salzburg, and Tyrolia declaration has commenced (Table 1). Up to now (as of early 1995), more than 3000 ha of Norway spruce gene reserves have been declared.Exceptionally, single stands « 30 ha) were selected to preserve special populations.Approximately 1100 ha of small-scale conservation units are identified (Table 1). In Austria, ex situ measures to preserve gene resources of Norway spruce have mainly been restricted to the storage of seeds originating from different ecoregions. Seed storage is a static conservation means and does not allow a change in the genetic composition of the resource in the course of environmental changes. This means does not significantly contribute to the ultimate goal to preserve the genetic adaptability in Norway spruce. Therefore, seed storage has to be assessed as a back-up measure. However, if this measure is a supplemental part of the conservation programme, for instance to bridge periods of lacking or insufficient seed crops, it is an important means.As the conservation of high elevated spruce stands (Piceetum subalpinum) requires special attention, those seed sources are especially maintained (Table 2). Up to now, no seedling or clonal conservation orchards have been established. However, two clonal Norway spruce orchards are in preparation. One orchard will represent populations of the ecoregion 'Northern Limestone Alps' (elevational range: 1350-1750 m); 107 clones have been propagated. Norway spruce of the subalpine region of Central Alps (elevational range: 1680-2050 m) will be represented by a second conservation orchards, for which 99 clones are selected. Besides the preservation of high-elevation Norway spruce populations, the seeds originating from these orchards are intended for additional seed supply for high-elevation afforestation (avalanche and torrent control). However, it must be considered that progenies of high-altitude parents do not completely retain the annual growth rhythm of their parents when parental trees have been grown at a low-altitude site (Johnsen 1989;Skroppa 1994).An important but indirect means to preserve the adaptability of Norway spruce is the fact that meanwhile many spruce forests are regenerated naturally. For a long time restocking was predominantly performed after small clear-cuts by artificial planting.Today, approximately 53% of the final cut area is naturally regenerated. Since natural regeneration offers many genetic advantages over artificial reforestation (Geburek and Thurner 1993;Muller 1993) naturally regenerated forests are a prime choice for genetic resources. Even without identification and declaration, many naturally regenerated forests are potentially valuable gene resources.According to the Austrian Forestry Act of 1975, spruce seeds have to be harvested in selected stands. In 1995, an area of 33038 ha of spruce stands has been selected and declared as seed stands. It is clearly mentioned that these stands have been selected under criteria to improve forestry yield. Therefore, it is self-evident that the selection criteria to identify gene resources are not necessarily identical with those applicable to genetic conservation.To get a better insight into the geographical genetic variation of Norway spruce, biochemical investigations have been started. Up to now, 22 presumably autochthonous populations (100 trees per individual population) have been sampled and genetically analyzed in part. Preliminary results of the federal genetic inventory indicate that the Austrian Norway spruce populations exhibit moderate genetic variation (for instance, mean of observed heterozygosity Ho = 0.15) with very low among-population differentiation (FST = 0.01) (for more details see Geburek 1994). This genetic inventory lays emphasis on native populations; however, nonautochthonous spruce stands also will be studied in the coming years.In the long term, declaration of gene resources should be based on ecological criteria, biochemical variation (isozymes, molecular markers), and the results of stress experiments. Then a meaningful identification of populations of high adaptability could be performed, as already performed by the USDA-Forest Service (Miller and Westfall 1992).It is extremely difficult to assess the public awareness of the necessity of forest genetic resources. In Austria, no opinion polls have been held on this issue. If the recent number of reports in public media (newspaper, TV, radio) is considered to indicate the public awareness of genetic diversity in forests, Austria is probably above the European average. This might be connected with the fact that in an alpine country the protection of forests has always been important because of erosion, torrents, avalanches, etc. Most of the forest owners are aware of the urgent need to conserve gene resources and contribute on a voluntary basis to the federal conservation programme. Also indirectly, the public awareness of the importance of genetic diversity can be concluded from the following:In the draft bill of the Austrian Forest Reproductive Material Act, besides the standard EU-categories (selected and tested reproductive material), the hallmark 'high genetic diversity' is introduced.In 1988, a Swiss joint working group initiated a programme which suggested the in situ conservation of genetic variation of significant forest tree species (Anonymous 1988). Within this programme, the study of genetic structures was considered to provide necessary criteria for the declaration of genetic resources. The knowledge of the geographical differentiation of genetic structures among populations within the natural range was considered to help in the determination of the minimum number and the spatial distribution of the future gene reserves.Since a forest genetic working group had been established at the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in 1991, a monitoring programme on genetic structures of tree populations could be performed. The main focus of the first period was the characterization and quantification of levels of genetic variation within and between high elevated Norway spruce popUlation stands in Switzerland. The present paper will briefly survey material and methods and include some preliminary results.Within the natural range of Norway spruce, 20 indigenous populations were chosen from high-elevation stands located in the Swiss Alps and the Jura region. For geographical distribution of the majority of stands see Miiller-Starck (1994). For each stand, 100 adult trees were selected on an area of 10 ha.Using bud tissue, the genotype of each of 2000 trees was determined by isoenzyme gene markers at 18 polymorphic gene loci (see Miiller-Starck 1995).For each popUlation and each gene locus, allelic and genotypic structures were compiled. To compare the genetic structures, genetic parameters were calculated using the GSED programme: heterozygosity, genetic multiplicity, diversity, differentiation and genetic distance (for general concept of measuring genetic variation see Miiller-Starck and Gregorius 1986;Hattemer et al. 1993;Miiller-Starck 1993;Gillet 1994).A detailed description of all results of the investigation will be given separately (Miiller-In Table 1 the given values per population were calculated as hypothetical gametic multilocus diversities. This measure is equal to the number of genetically different gametic types which can be produced by each population at the level of the studied number of gene loci. This parameter has been accepted as an essential measure to characterize the ability of forest tree populations to adapt to changing enviromental conditions (see Gregorius et al. 1986). It is used to select populations for the conservation of genetic resources because the ability to adapt to changing enviromental conditions is expected to increase with the level of this parameter. This level depends on the diversity of alleles at each of the gene loci. Assuming equal allelic multiplicity, large diversities show that the alleles are more equally distributed than in the case of low values. A high level of hypothetical gametic multilocus diversity will reduce the risk of losses of genetic variation under different enviromental impacts. 1 indicates that population 1 (Le Brassus) can be considered as one of the most suitable populations for the in situ conservation of genetic resources. Compared with the mean of the hypothetical gametic multilocus diversities of all other populations, its level is more than double the value. This is one example for the declaration of a population as a gene reserve area of Norway spruce.Generally, the following trend is indicated: in contrast to silver fir (Abies alba Mill.), Norway spruce reveals smaller interpopulational but larger intrapopulational genetic variation (Hussendorfer and Miiller-Starck 1994;Hussendorfer 1995). For the present, a larger number of gene reserve areas appears necessary for silver fir than for Norway spruce.The analysis of the genetic structures and the quantification of the level of genetic variation revealed significant deviations among populations of Norway spruce. Genetic parameters provide essential criteria for the selection of populations to be suitable for the declaration of gene reserve areas. The hypothetical gametic multilocus diversity is regarded as an important parameter for evaluation. Other genetic parameters (e.g. occurrence of geographically unique alleles) will be taken into account in order to facilitate the declaration and conservation of genetic resources.The purpose of this paper is to present a short account of the present situation of the conservation of Norway spruce (Picea abies) in Belgium.It has to be recalled that Norway spruce is not indigenous in Belgium and that it was introduced around the middle of the last century from central Europe (Austria, Germany and possibly Poland). The precise origin of every stand is, however, almost never known.Norway spruce is planted almost exclusively in Wallonia, the southern and most forested region of Belgium (80% of total forest area), mainly in the Belgian Ardennes. This last subregion is a 'Region of Provenance' in the sense of OECD IEEC regulations. It is characterized by an elevation ranging generally from 300 to 700 m (mean around 450 m), a rather harsh climate (mean temp. -7°C; annual rainfall from 1000 to 1400 mm) and acid soils (pH -4.5).The total area of Norway spruce stands amounts to around 200 000 ha, about onethird of the total forest area of Belgium (-620000 ha).The mean annual increment amounts in average to 12 m 3 ha-l yr-l with extremes lying from under 9 m 3 ha-l yr-1 on the high boggy plateaux up to around 20 m 3 ha-1 yr-1 on the best sites.From the economic point of view, Norway spruce is the most profitable forest tree species because it is easy to plant in the open and to manage in evenly aged stands. Moreover, all products find easily a profitable output (small roundwoods-poles, excellent paper; medium woods-poles; large woods-valuable timber for sawmills and possibly veneer).It is criticized by 'Ecologists' mainly because it is not indigenous and it forms dark homogeneous stands that may degrade the soil. This last point has never been proved in spite of many studies; the 'darkness' and homogeneity of the stands are being solved by heavier thinnings than in the past.So far, no pure conservation has been practised. Genetic conservation has only been done in the frame of the present breeding programme for which it is a sort of byproduct.Therefore, the classical scheme of presentation used in forest tree breeding will be followed hereafter.Provenance experiments are indirectly a means to cons~rve many provenances outside of their range.In a number of cases, the original stands from which seed was collected have disappeared or their trace has been lost. When these provenances are outstanding, a way to try to restore the original population is to collect material from provenance experiments. For example, this has been done for the Polish provenance Zwierzyniec Lub., the original stand of which having been cut down, cuttings and grafts were sent from Belgium to Polish colleagues.For Norway spruce in Belgium, there are more than 20 provenance experiments covering more than 20 ha (Table 1) and comparing more than 600 provenances from the whole European range (a certain amount of these provenances is common to different experiments). The first experiment was planted in 1931.Among them are the three International Provenance Experiments in Norway spruce (Promoters: First: Schmidt, 1938;Second: Langlet-Krutzsch, 1964;Third: Tyszkiewicz-Kociecki, 1972). Some of them have been assessed in detail in Belgium (no1 : Delevoy 1949;Gathy 1960;Nanson 1964cNanson , 1965a;;Verstraete 1993).The transformation of some of these old provenance tests into Provenance Seedling Seed Orchards (Nanson 1972) through severe selective thinnings, leaving only the best trees of the best adapted provenances, is contemplated. This could be envisaged for replicates of experiment n02 that have a one-tree plot structure. According to definitions (e.g, OECD/EEC regulations), a 'seed stand' is a stand that is phenotypically superior for most forest characteristics and that has been officially selected and included in an official Register of Basic Materials. In Belgium, Galoux and Reginster (1953) first began this selection around 1950; Gathy continued up to around 1960 and N anson after that. At present in Belgium, 29 seed stands of Norway spruce covering a total area of 230 ha are officially registered. So far, these seed stands are not really protected against normal felling (around 60-90 years in usual practice).This should be envisaged in the future. Difficulties are, however, present due to the kind of ownership (private seed stands are almost outside any measure) and to the limited longevity of Norway spruce in Belgium (practically not more than 100-120 years).Active ex situ conservation in 'conservation plantations' is then a good opportunity but needs some supplemental financial means and human resources as well as a longterm follow-up organization.So far, 198 plus trees ('mature clones': phenotypically selected at forest stage after sexual maturity: more than 30 years), 148 'juvenile clones' (selected in early forest stage: between 5 and 30 years) and 878 'infantile clones' (selected in nursery), so a total of 1224 clones, have been selected.Mature and juvenile clones are conserved in situ but not over the normal forest exploitation term (60-90 years). The best of them are conserved ex situ in seed orchards (see below).Infantile clones are conserved in four propagation clone parks, either of ortets, or of ramets, or both. These propagation clone parks have, however, a limited lifespan (10-15 years) and should be then re-propagated.Two grafted clonal seed orchards of respectively 1.50 ha (in Halle) and 8.7 ha (in Fenffe) are settled; they now contain respectively 54 and 135 clones, so 189 clones in total. The last one is an 'evolving seed orchard' that, besides its functions of seed production and a source of 'clonal mixtures ll , is also a conservatory of one of the best clones (Nanson 1986;Nanson et al. 1992).The lifespan of such seed orchards is expected to be between 50 and 100 years. The conservation of these seed orchards and thus of component clones is dependent on their performances and their economic justification.So far, at least 20 comparative experiments are planted; they are composed mainly of genetic materials from the Ardenne Region of Provenance. They contain at least 300 genetic elements (progenies, clones, standards) and cover at least 25 ha in total. This represents a considerable source of genetic diversity of high value.The lifespan of these tests is again some 60-90 years. Their further conservation depends on the general breeding strategy but has not yet been truly envisaged from the pure conservation standpoint.A precise updated inventory of this resource would be a first step.Classical clone parks: Classical clone parks are pure collections of clones represented by 2 or 3 ramets of every clone planted at rather large spacing (4 x 4 m at least).In Belgium, there are no such parks because they are too expensive to create and maintain. They are replaced partly by evolving seed orchards which merge the functions of clone park and seed production on the same site. Note that these evolving seed orchards are conserving only the best clones. The number of these clones is a compromise between the importance of the genetic gains requested and the need of genetic diversity within the synthetic variety produced by the evolving seed orchard.Propagation clone parks: Propagation clone parks are made of ortets or ramets of infantile clones, with the main purpose of producing cuttings en masse for the vegetative propagation of clonal mixtures. At present, two propagation clone parks of ortets and two propagation clone parks of ramets are planted and hedged to produce cuttings: 878 infantile clones are thus conserved. With a present spacing of 1 x 1 m (a bit too low), they cover about 0.30 ha.The lifespan of such propagation clone parks is expected not to exceed some 15 years. Therefore, a conservation policy and actions will be soon necessary. However, this needs time, money and labour.In our Research Station, 295 scientific seed lots (provenances, progenies) with a total weight of 21.4 kg are stored in refrigerators (at +2 or -17°C). In our conditions, 1 kg of seed of Norway spruce can create around 10 to 15 ha of plantation at the standard spacing of 2 x 2 m. Therefore, this seed amount represents at least 214 ha of plantations.No pollen has yet been stored.Because of the present failure of the in vitro propagation of Norway spruce, no such conservation is envisaged.Usual forest plantations can be a source of genetic diversity within the species because every plantation can be from a different provenance (population). In Wallonia, the Forest Service is using in principle 'Recommendable Provenances' from Belgium and from some other countries (Nanson 1978). This should bring a genetic gain in total production of around 20% compared with a random use of provenances.So far, however, the identity of the provenance has not been frequently registered in the Forest Management Plan. It is hoped that this measure will be generalized by the Wallonian Forest Service and it should be the rule within a few years (see Trace keeping in forest management, below).After inputting this information to an adequate database, these data can be the basis for long-term management of Wallonian genetic resources, making the balance between genetic gains and genetic diversity.In the Belgian Ardennes, many Norway spruce stands can be regenerated by natural seeding. However, foresters are finding it simpler to use plantations.Natural regeneration can be worthwhile when the mother trees have a good phenotype and a genetic base sufficiently large to prevent further inbreeding. For more detailed aspects of natural regeneration from the genetic standpoint, see Nanson et al. (1991).Natural regeneration can be very useful to conserve exceptional seed stands, for example. However, conservation plantations with the reproductive material collected in these seed stands are another more flexible opportunity.In Belgium, Norway spruce as a forest species is not threatened 2 thanks to its profitability. However, the trace and identity of many very good seed stands (e.g., OECD/EEC blue labels or equivalent) have been lost because of the lack of active conservation measures. In fact, much seed has been collected on these 'elite seed stands' and later commercialized and this has led to numerous plantations. But we do not know where these plantations are situated. From the conservation point of view it is as if they were lost!In this way, some very good populations have been lost after the severe windfalls of January 1990!The public and even foresters are not aware of this situation. Forest Geneticists are a bit concerned but, up to now, their means were so restricted that they were directed almost exclusively toward Forest Tree Breeding in the short term.Let us hope that the evolution of ideas on gene conservation will bring them some additional means in order to preserve the future!This matter needs further consideration, deep reflection, extended exchange of ideas and a deeper literature survey (e.g., Arbez et al. 1987;Kleinschmit et al. 1989;Martin 1986;Namkoong et al. 1980;Nanson 1993Nanson , 1994;;Palmberg 1987;Steinmetz 1991).However, it seems that the follOWing tentative guidelines could be open to discussion.One of the first steps to consider is surely to do a survey and an updating of present known genetic resources and to include them in an adequate database.In this respect it should be noted that the embryo of such a database does exist. Through the FOREST EEC Research Project, Belgium, France and Germany agreed on a European common database structure for seed stands and conservation plantations with the example of Douglas-fir (Riboux 1993;Servais 1993;Servais and Riboux 1993). This database, with a decentralized structure and needing only personal computers, was tested and partly fulfilled: it is thus operational and maintained at our Station de Recherches Forestieres in Gembloux. It can be extended easily to Norway spruce.Projects are to extend this database to other objects such as plus trees, seed orchards, clone parks, family mixtures, clonal mixtures, seed and pollen collections, etc. and to other species.As mentioned earlier, the provenance (or variety) of every usual plantation in public forests will be identified and reported in the Forest Management Plan.Three levels of reliability are to be distinguished in ascending order: 1. identification through the standard EEC certificate of provenance for commercial plantations made with plants provided by private nurseries, 2. identification through a State certificate of provenance for plantations made with plants provided by State nurseries, 3. identification through the direct control of the Forest Research Station.Once reported in the Forest Management Plan, with their own level of reliability, these data can be transferred to the conservation database, at least for the most outstanding or typical provenances. There they could join data coming from breeding programmes (plus trees, seed orchards, etc.). This will be the raw material for the development of long-range management of forest genetic resources.This last should optimize the balance between genetic diversity against genetic gains in long-term plantation programmes. For example, a sufficient amount of diverse outstanding provenances and varieties for productivity, quality, resistance-adaptation, could be favoured without excluding special provenances or varieties to maintain a sufficient genetic diversity between stands.Of course, this management should ensure the long-term preservation of the chosen materials through adequate special actions programmed over a century at least. For example, present seed stands and seed orchards should be conserved through several conservation plantations (1 to 4 ha each) perfectly registered, controlled (thinnings, etc.) and renewed in due time.In Wallonia, the Forest Tree Seed Centre named 'Comptoir Wallon des Materiels Forestiers de Reproduction' will be soon established in the centre of the region, in Marche. Besides its main mission of providing Walloon nurseries with the best genetic materials, it can also play a major role by collecting adequately such basic materials and distributing them to state nurseries for conservation.All these actions should be set up with definition of priorities in a general Long-term Management of Forest Genetic Resources programme under the control of the Forest Service and prepared by forest tree breeders with the collaboration of relevant tree seed centres.In Belgium, Norway spruce is one of the most valuable and profitable forest tree species. The conservation of Norway spruce as a species is in no way endangered but some concern can appear at the level of populations. As a matter of fact, some outstanding ones have already disappeared.A very important but indirect genetic conservation has taken place in breeding programmes. Many provenance experiments,seed stands, plus trees, seed orchards, progeny and clone tests, clone parks, scientific seed collections are maintained in situ or ex situ. But because of lack of means that, of necessity, are allocated by priority to genetic improvement, no consistent and comprehensive active long-term management of forest genetic resources has been implemented yet.In order to develop such long-term management, it seems that construction and management of databases and filling them with updated genetic resources represents a prerequisite. Trace keeping in forest management of the provenance or variety used in plantations is a second one. Then should follow the development of a programme for long-term management of forest genetic resources, using accepted principles and at the level of practical implementation. At this stage, long-term management of forest genetic resources and long-term strategy of forest tree breeding should probably merge into a unified philosophy.The forest land in Slovakia is about 1.94 million hectares, out of which 90% belongs to the Carpathians. In the Polish Carpathians, the forests cover about 480 000 ha, in the Ukrainian Carpathians about 1 500 000 ha and approximately 5 500 000 ha belong to the Carpathians mountain range in Romania. This means that the Carpathian forests cover about 9 million hectares in total.The present distribution of trees in European forests has been influenced by several factors:-the natural migration of tree species in the post-glacial period (different refugia and geographical conditions -mountain ranges -influence migration), -long-lasting human activity before the period of modern forestry, -a short period of modern forestry (in Europe about 100-200 years), -the influence of human activities and human-caused processes during the period of industrialization.The forest stand area of Slovakia covers in total 1 904339 ha (Table 1). The proportion of Norway spruce is 27.5% and that of conifers is 43.1 %. The most common broadleaved species in Slovakian forests (European beech) covers in total 29.8%. The present proportion of Norway spruce is higher than the original one. It is estimated (Hancinsky 1972) that originally Norway spruce covered about 10% and during the last century it replaced the silver fir (e.g. 15% in 1920 and 5% at present). Natural distribution of the Norway spruce forests in Slovakia is in altitudes between 600 m and the upper tree limit, which is usually in the altitudes of 1400-1500 m. The upper tree limit is usually created by the mixed Norway spruce and larch stands (e.g. the southern slopes of the High Tatras or Norway spruce with the admixture of rowan or stone pine). In all mountain ranges the Norway spruce creates the upper tree limit except in the Eastern Beskydes where in the Carpathian disjunction the Norway spruce is missing and the beech reaches the highest altitudes.Indigenous occurrence of the Norway spruce populations is in all mountain ranges of central and northern Slovakia. It is missing in the Little Carpathians and Stiavnicke vrchy and in eastern Slovakia. In eastern Slovakia the Norway spruce's natural range is disrupted by the Carpathian disjunction, i.e. from Kosice toward the Ukrainian border and further into Carpatho-Ukraine a 200-km zone is without spruce. From the northern side of the Carpathians, the limit of natural occurrence of Norway spruce reaches Tarnawa, i.e. more or less the border of Slovakia.One of the classifications of forest vegetation cover was elaborated on by Prof. A. Zlatnik who, on the basis of an intensive investigation of the Carpathian forests in Slovakia and in Carpatho-Ukraine, described the natural character of forest cover in eight vegetation levels, which could be defined as the climax geobiocenoses which are conditioned by certain geography, macro-and mesoclimate in given altitudes. The forest vegetation zones are usually named according to prevailing tree species and correspond with the first five altitudinal geographic zones usually applied in geobotany (planar, colline, submontane, montane, oreal, subalpine, alpine and nival):• Oak forest vegetation zone The ecological characteristics of the forest vegetation zones are given in the paper of Vancura (this volume). The natural range of Norway spruce covers the following forest vegetation zones: beech-fir, beech-fir-spruce and spruce forest vegetation zone. In the first two forest vegetation zones, the occurrence of mixed forests is prevalent (broadleaves with spruce admixture or spruce with silver fir admixture), while in the last forest vegetation zone the pure spruce forests prevail.In Table 3 is shown the proportion of the individual stand formation of spruce forests and mixed forests with spruce: spruce-silver fir-beech and silver fir-beech according to individual forest vegetation belts. From this table it is clear that the proportion of the spruce forests within the beech-fir, beech-fir-spruce and spruce forest vegetation belts could be considered as more or less natural. The occurrence of Norway spruce in the 1st to 4th vegetation belts is not natural and partially also that within the beech-fir and beech-fir-spruce forest vegetation belts could be considered as the replacements of silver fir in the mixed stands. The first regulation aimed at the seed procurement only from approved stands originated in the territory of Slovakia in 1938 and in the Czech Republic in 1939. In the sense of this law, the seed of conifers (Norway spruce, silver fir, Scots pine and European larch) could be procured only in approved forest stands of A and B category and seed transfer was allowed only within silvicultural zones. The silvicultural zones were defined according to their geographical distribution and the length of the vegetation period:sub alpine regions with the vegetation period shorter than 100 days, mountains with cooler climate with the vegetation period 100-129 days, mountains with mild climate and vegetation period 130-165 days, lowlands and hills with plain climate and vegetation period longer than 165 days.Subsequently, this regulation was renewed in 1965 and since 1985 and 1988 there are new regulations valid for the Slovak and Czech Republics. It has to be noted that these two different regulations for both republics of former Czechoslovakia were necessary due to different ecological conditions and history of the forest stands.Following these regulations there are two different categories of approved stands, A and B, and a new term was introduced for the territory of Slovakia-'seed zone'. The seed zone is defined as the zone with similar conditions within which seed transfer is allowed. Exceptionally, seed transfer is allowed between individual zones (as stated in the regulation).For Norway spruce there are seven seed zones in Slovakia (Fig. 1), five of which are within the natural range and two are outside the natural range. Vertical transfer of seed is allowed for altitudes up to 1200 ± 200 m and over 1200 ± 100 m in the Tatra seed zone and in other zones over 1200 ± 150 m from the altitude of forest stands.It has to be noted that there are two seed zones into which it is prohibited to import seed: the Tatra seed zone (Tatra National Park) and the Beskydy-Orava seed zone which is adjacent to the Polish Beskydes (Istebna and Rycerka) and also to the Moravian Beskydes.At present there are in total 6075.25 ha of approved Norway spruce stands of the A category and 16328.81 ha of stands of the B category, selected 345 phenotypically superior plus trees (in total 3171) and established 4.50 ha of clonal seed orchards and 2 ha of seedling seed orchard (Stara Lesna) (in total 202.82 ha of seed orchards of all species). The highest proportion of the Norway spruce approved stands is in Northern Slovakia (2958 ha of A category and 7907 ha of B category) and in Central Slovakia (1668 ha or 2887, respectively), while in the Tatra National Park alone there are 722 ha of the approved 'stands of the A category and 1554 ha of stands of the B category. The gene reserves (bases) are, in the forestry practice of Slovakia, a new item aimed at genepool conservation in situ. The gene bases are in general units of the gene conservation practices established in the regions of the most valuable genepool and the size is usually several hundreds of hectares (200-2000 ha). In comparison, the size of approved stands is equal to the size of a stand as a forest management unit, which is usually a maximum of 10-15 ha. The gene bases usually include the forest stands of different age classes with the aim to maintain the dynamic aspect of genepool conservation. From the forest management point of view, the gene bases are forest stands with a special management regime, in which natural regeneration is the principal method of regeneration allowed (the artificial regeneration with plants originating from the local seed sources is allowed). At present 44 gene bases are established in Slovakia (in total 12 673 ha) of which 3154.46 ha are declared to conserve the genepool of Norway spruce. From those seed orchards should be mentioned those which are aimed at the gene conservation of Beskydy spruce (region adjacent to Polish Beskydes), those in the High Tatras and in the Low Tatras.Seed stands are special units established mainly for genepool conservation in situ or ex situ for the purposes of conservation and future procurement of seed. In general the seed stands are progenies (from natural regeneration or artificial regeneration as openpollinated progenies) of the approved stands of A category.In total 127 seed stands are established in Slovakia (not identical with seed stand according to the OECD/EEC regulations) with the area of 635.5 ha and of this number 37 seed stands of 196.5 ha are established for Norway spruce. Forty percent of Norway spruce seed stands are established ex situ and 60% in situ. From those established in situ 40% again originate from natural regeneration and the remaining 60% originate from artificial regeneration.In Slovakia there are in total seven provenance trials (12 to 49 provenances) established from the material of the IUFRO 1964/68 Norway spruce Inventory Provenance Experiment (HolubCfk 1980) and four provenance trials being part of the IUFRO 1972 provenance experiment with Polish Norway spruce provenances. There exist only single-progeny tests with 42 open-pollinated progenies of a single stand from the Tatra National Park (considered also as a seedling seed orchard).In the seed bank established in Liptovsky Hradok there are in total 75 seedlots with Norway spruce (363.5 kg). They are stored with the aim to cover the seed needs in the period of lower crops as well as for scientific and genepool conservation purposes. In Slovakia all seed used in forestry practice has to originate from approved stands only. Each seedlot has a 10-digit code which should be maintained also in the nurseries and planting stock. In the Semenoles, Liptovsky Hradok, there are at present 332 units (8996.65 kg) of Norway spruce seed from approved stands. At present, there are no pollen and tissue banks established in Slovakia.There are in Slovakia in total 292 state nature reserves and 74 protected sites with the total area of 79415 ha. The proportion of Norway spruce in the state nature reserves is 37.74% and in protected sites 20.64%; almost 48% of all state nature reserves are found in the spruce-fir-beech and spruce forest vegetation zone (Voloscuk 1993). In contrast to many neighbouring countries there are in Slovakia several remnants of spruce or mixed virgin forests with spruce occurrence. The best known of them are Pod Chlebom (222.77 ha) and Rozsutec (650 ha) in the Little Fatra, Cierny Kamen (34.40 ha) in the Great Fatra, Babia Hora (530.33 ha) and Pilsko (580 ha) in the West Beskydes and Kotlov ZIab (46.94 ha), and Podbanske (1800 ha) in the High Tatras (Korpel 1995).Several factors affect negatively the genetic resources of Norway spruce in Slovakia: air pollution, game grazing, abiotic damages (e.g. drought) and subsequent biotic damages (e.g. bark beetle), and improper forest management practices not supporting natural regeneration.High-elevation Norway spruce populations are usually damaged by air pollution. Most affected are the populations in the Beskydes and the High Tatras on the western to northern slopes facing Ostrava and Katowice industrial regions from which the long-distance transported pollutants are the main damage factor. Also other air pollution sources are negatively influencing the health state of Norway spruce populations in the Spis region and the Low Tatras. Along with the decreased vitality and damage of the assimilatory organs the air pollution affects the regeneration processes and decreases flowering intensity and seed production.Browsing by excess populations of larger ungulates (red deer) is the main factor negatively influencing natural regeneration and the healthy state of middle-aged Norway spruce stands. The worst situation is when the combination of several damage factors (air pollution, insects, deer) occurs.The negative impact of forest management practices (higher proportion of the artificial regeneration, improper seed transfer, simplification of forest management practices (e.g. replacement of mixed stands by one-species spruce stands, etc.) is also known from the territory of Slovakia and owing to these activities the high proportion of very valuable indigenous Norway spruce stands disappeared.At present there is not very much information about the genetic diversity of economically important tree species in the Carpathians. However, there are tree species in which the genetic structures and genetic diversities have been systematically investigated, also in the Carpathians, during the last decade. Among these species are the Norway spruce, silver fir (Abies alba) and European beech (Fagus sylvatica). Rather scarce information is available on the genetic structure and diversity of other economically valuable tree species (e.g. oaks, European larch, Scots pine, etc.).In the abovementioned tree species, research has been predominantly on the geographic variation of allelic frequencies in natural populations, with an aim to understanding the differences between individual regions and/or populations and to understand the migration of individual tree species from the different post-glacial refugia or selection processes. Three examples of intensive investigation of genetic diversity and differentiation in which our team has participated can be given.The first investigation of the genetic structure of Norway spruce populations from Slovakia was done by Paule et al. (1990). They investigated the genetic structure of adjacent populations and found insufficient genetic differences between adjacent populations but in some cases also between the more distant populations.The investigation of the geographic variation of Norway spruce in Eastern Europe, including the Carpathians, was done by Bergmann and Gomory (in preparation) and another investigation of the differences between the Norway spruce virgin forest and naturally and artificially regenerated Norway spruce forest stands was done by Gomory (1992). Results of this investigation give insight into the structure of the natural Norway spruce forests of Slovakia and show that naturally regenerated forest stands do not significantly deviate from the natural forest of virgin character. Significant deviations could be expected only in the case of artificially regenerated forest stands in which significant narrowing of the genetic diversity could also occur (Gomory 1992).The practical gene conservation in Slovakia is carried out in the Forest Research Institute, Zvolen, Research Station Liptovsky Hnldok, where the central register of approved stands, seed stands and gene bases is localized. Experts from this research station (Hoffmann, Piovarci and earlier also Chudik) are responsible for approval of forest stands for seed procurement and also of the approval of genebases (reserves). The coworkers of the Faculty of Forestry of the Technical University in Zvolen (Paule, Gomory) are involved mainly in basic population genetic research.The public awareness of the importance of forest genetic resources has been reflected in the updating of laws on the approval of forest stands (1985) and gene reserves (1991) as well as in the preparation of the Law on Plant Varieties which is prepared for approval in the Parliament. This is the first time in the legislation of this country that the Law on Plant Varieties (common with agricultural crops) will be a part of the legislation. It will be compatible with EC and OECD rules.The next updating of law regulations is under discussion and has considered recent ownership changes in Slovakia.Reconstruction of the forest seed bank in Liptovsky Hradok is planned for the near future. It will be aimed not only at the technical reconstruction and replacement but also the new regulation on the content (the selection of samples and their quantities) of the Seed Bank will be updated.The topics of gene conservation are permanently a part of the research programme of the Forestry Research Institute in Zvolen and their research stations in Liptovsky Hradok and Banska Stiavnica. In Liptovsky Hradok there is also a central database on gene resources (approved stands, genebases, seed stands and seed orchards). A part of this research station is Seed Control, an organ of the Ministry of Agriculture which aims to control the forest seed procurement and business in Slovakia.There are several urgent needs for the conservation of the Norway spruce genepool in Slovakia. Among them, there is the danger of air pollution in several regions with very valuable Norway spruce populations (e.g. Spis and Beskydy), the grazing by ungulates (e.g. red deer) and the simplification of forest management activities (e.g. replacement of mixed forest by Norway spruce monocultures).Last but not least there is danger from forest owners themselves. Within the reprivatization process of the Slovak forests the highest proportion of small private forest owners is in the region of the best Norway spruce populations of the Beskydy ecotype of Norway spruce, i.e. Orava and Kysuce.Ukraine is considered to be a republic with scarce woodland, the total forest area being only 14.3% of its territory. The Carpathian mountains is the most wooded region of the republic (37.5%). It occupies 7.4% of the Ukraine territory with about 21 % of the forests concentrated there. The total area of the Ukraine woodland is 6 151 000 ha. Owing to favourable forest-growing conditions, the forest productivity in the Ukraine is much higher than in many other countries of eastern Europe: the average wood stock on 1 ha is 194 m 3 , and in the Ukrainian Carpathians, 373 m 3 ; an average increment per 1 ha is, correspondingly, 3.9 and 5.1 m 3 . However, as investigations have shown, these indices cannot be considered sufficient for the Ukraine (Chernyavskij and Shvadchak 1994). At the same time, the problem of increasing forest productivity should be considered together with solving the problem of genepool conservation of forest tree species.These problems are of particular importance for spruce forests of the Ukrainian Carpathians, where excessive forest exploitation during the last one and a half centuries and the application of seed material of unknown origin during forest growing have led to decreases of many spruce stands and to considerable economic losses. A preference for spruce monocultures in the Carpathians led to an increase of 200000 ha in areas of spruce stands during the last two centuries (Golubets 1978). The situation was aggravated by the fact that in artificially created spruce stands, forms and races of different west European origin began to grow together (Bardecki 1909). It was in these stands that catastrophic wind damage and epidemics of diseases and insects periodically took place.Spruce forests in the Ukrainian Carpathians and in Polissya presently occupy an area of about 570500 ha (9.3% of the lands covered with forests). In modern forest cover of the Ukrainian Carpathians, forests formed by common spruce occupy about 533 000 ha, or a third part of the forested area of this region. Taking into consideration all the forests where spruce occurs, the total area will amount to 1 million ha. The area of flat spruce forests is about 37 000 ha.The area of natural distribution of Norway spruce in the Ukraine consists of two parts: unbroken spruce forests in the Eastern Carpathians and small island places of this species growing on the plains of the northern part of the Ukrainian Polissya.Owing to a long exploitation period of the Ukrainian Carpathians spruce forests and considerable spruce cultivation, the current limits of distribution of this species have been considerably changed. On vast areas, beech, beech-spruce, beech-fir-spruce groups of uneven age and composite structure have reformed into pure spruce cultures. That is why two categories of spruce forests-natural and artificial-are singled out in the forest cover of the Ukrainian Carpathians (Fig. 1).Natural spruce forests of the Ukrainian Carpathians are adapted to the climatic zone with the sum of active temperatures from 1000° up to 1600°, the general vegetation period duration not more than 136 days and total annual precipitation up to 1500 mm.Natural spruce forests (Piceeta abietae) occupy the highest elevation zones of the forest cover of the Gorgan, Chernogory, Chyvchyn, Marmarosh and Grynyav mountains. In the spruce forest zone two ecologically and cenotically different levels are singled out: the upper level with pure spruce forests (higher than 1200 m) and the lower level with mixed spruce forests that include fir and beech. The average value of the lower border of an unbroken spruce forests is 1030 m (minimum 700 m), and the upper value is 1470 m (Golubets 1988). Composite natural spruce forests prevail in the northeast and occur in the southwest microaspects of the Ukrainian Carpathians at elevations of 900-1200 m. It is there that a lot of research of the Carpathian forests determines optimum conditions for spruce growing (Vincent 1936;Gensiruk 1957;Tyshkiewich 1962), and conditionally the same-age spruce stands under the same conditions give over 1000-1100 m 3 /ha at the age of 100 years (Tsuryk 1981).Spruce formation in the Ukrainian Carpathians is divided into six subformations: Piceeta (130 000 ha), Cembreto-Piceeta (2000-3000 ha), Fageto-Piceeta (35 000 ha), Abieto-Fageto-Piceeta (100 000 ha) and Fageto-Abieto-Piceeta (50 000 ha) according to Golubets (1988).About 40% of the total spruce forest area in the Ukrainian Carpathians is occupied by artificially established spruce forests. Their simplified structure, one layer, lower age of natural maturity (than in natural spruce forests), low endurance to windbreakage, diseases and harmful insects are characteristic features of these forests.Reconstruction of spruce mono cultures, regeneration of mixed forests, increase of spruce forest endurance and improvement of their useful and protective functions remain actual problems of the Carpathian forestry.Reserve territories organization; selection of forest genetic reserves (representing the best populations of species), plus stands (stands with the highest productivity and qualitative characteristics) and plus trees (trees with high economical characteristics); creation of clone and archive-parent plantations (in order to preserve and space plus trees by means of vegetation); creation of forest seed plots (to provide seeds); creation of clone and family plantations (in order to obtain seeds with higher genetic-selection characteristics); creation of test cultures of plus trees; population cultures, and initial sort tests are the main methods of forest genetic conservation.There is a developed network of natural reserve fund in the Ukraine including State reserves, natural national parks, protected localities, etc. The network of especially protected territories including mainly spruce forests at present consists of 74 objects with an area of 39550 ha or 6.9% of the total area of spruce forests of the Ukraine.Natural flat spruce forests are protected in Shatsk National Park (the total area is 67000 ha) and in 14 protected localities in Polissya. The area of the latter is about 700 ha. In most cases they are mixed forests of an island type which overcame a significant anthropological influence.The biggest stands of native spruce forests in the Ukrainian Carpathians have been preserved in Grynyav, Chyvchyn and Marmarosh crystal mountain mass. Practically, all of them are now in different reserves and protected localities. About 28 230 ha of natural spruce forests have been included in Carpathian National Park (21 350 ha) and Carpathian State Reserve (6880 ha), 1610 ha of them being represented by the groups of a virgin type. In 20 protected localities representing different forest-growing conditions of the northeast and southwest microaspects of the Ukrainian Carpathians, 5126 ha and 4194 ha of natural spruce forests, respectively, are protected. The total area of spruce forests of a virgin type, according to our estimates, is about 5740 ha.The main method of improvement in forest growing of the past lies in a wider implementation in forestry practice of up-to-date achievements of seed procurement and selection.Seed application in the Ukraine is regulated by 'Instructions on Forest Seed Growing' (Molotkov et al. 1993). Seed procurement should be done in plus stands and specially accredited to seed departments. Seed collection in artificial stands or in unapproved forest seed regions or subregions is forbidden. There is the following division into districts in the Ukraine concerning common spruce:Carpathian forest seed district a) high mountain subdistrict (higher than 1250 m a.s.l. The total area of spruce seed procurement departments is 1260 ha, including 1043 ha under mountain conditions. Spruce plus stands of 221 ha European area are singled out only in the Carpathians.Creating a network of forest gene reserves in 1983-1985 became a specific method of genepool conservation of forest tree species in the Ukraine. Genetic reserves were selected in all geobotanical and forest districts, high-altitude ecological belts in the mountains and the main forest types. It should be noted that only well-preserved natural forests were taken as a basis for selecting genetic reserves. That is why in some cases genetic reserves were included in already exisiting reserves and protected localities. Therefore, there exists a double control on these objects.Any economic activity which can affect genetic structure and natural development of these reserve plantations is forbidden. Seed and vegetation material procurement in a genetic reserve is allowed only in exceptional cases (scientific research, conservation of a given population in situ or ex situ), when reliable natural regeneration is available and only in high-productive years (Shvadchak 1990).A reserve needs a protection zone not less than 100 m in width. The main task of management in a protected zone is conservation and regeneration of the native genetic reserve plantations. Complex cutting combined with intermediate fellings is allowed in this zone. If natural regeneration in the protected genetic reserve belt is bad, creation of forest cultures with the help of native material is sometimes allowed.In order to preserve and rationally use the valuable genepool of common spruce in the Ukraine, 43 genetic reserves with an area of 2773 ha amounting to 4.9% of spruce forests have been selected (see Table 1).Among other objects directed at spruce genepool conservation one can name plus trees (211 plus trees in total) and creation from their vegetative material of clone plantations and test cultures. In all, 2 ha of archive-parent plantations of spruce and 47.8 ha of clone plantations of the first order have been formed, 2.5 ha of which were planted under the flat conditions of Polissya. By means of seed material one spruce family plantation with the area of 1.8 ha has been created. One clone plantation with an area of 12.2 ha has been entered into a constant seed base where seed procurement is done in productive years.Wide experiments with geographical origin (provenance trails) with spruce in the Ukraine, despite the species' significant spreading, have not been carried out. Some investigations of five west European provenances (planted in 1963) proved unsuitable for the Ukrainian Carpathians (Golubets 1978). Also, the data about parent stands in this investigation were absent. The results of European international experiments with common spruce in 1938 and 1964-1968, including some provenances from the Ukraine, indicate the prospects of east-Carpathian ecotypes for Central Europe. Spruce provenances from Chornogirya stands should be of particular interest. Certain trends to unification of spruce population from Chornogirya stands have been noted in our investigations (Shvadchak 1989). It is interesting that the Chornogirya, according to some scientists (Srodon 1948;Kozij 1963), was one of the most important refuge locations of spruce, from which it spread after the post-glacial period. Despite the mistaken actions during forest spruce growing in the Ukrainian Carpathians, a valuable genepool of this species is still conserved having significant importance for further investigations as to European spruce improvement, not only for the Ukraine but also for many countries of central and western Europe. It is expedient to carry out an international experiment in order to study the provenances of common spruce.There is a necessity to create an all-European database of common spruce genetic resources and to develop a strategy of assessment and conservation of genetic resources of Picea abies in Europe.Norway spruce (Picea abies) is a young species in Norway. After the ice age, birch, poplar and Scots pine were the first tree species to establish. During the warm and dry period that followed, high-temperature demanding species such as lime, beech, oak, ash and hazel spread, and the timber line was 200-300 m higher than at present. It was not until approximately 2500 years ago, during a cooler and more humid period, that spruce started its introduction into the Norwegian landscape. The Nordic spruce populations have their origin in the taiga in northern Russia and Siberia. During a period of 3000 years the species spread through Finland and northern Sweden. The earliest identified establishments are from the years 500-400 BC in the border areas close to Sweden in Central Norway (Hafsten 1991(Hafsten , 1992)). The invasion of the southeastern lowland area took place during the following 1000 years, but the migration up the valleys to the species' present altitudinal boundary was not completed until the period 1000-1500 AD. The coastal spruce forest in Central Norway was established rather late (approximately 1300 AD). The species never established naturally in western Norway, except for a few scattered populations, which have a late establishment and most likely are spread from the nearest source stands east of the mountain range (Hafsten 1991).The present natural occurrence of Norway spruce is in southeastern Norway from sea level and up to 1000 m, and in Central and North Norway, north to lat. 67°N, at decreasing altitudes in the north. Outside this area the species has in this century been planted both in western Norway and north of its natural boundary in northern Norway. In both regions it has become an important timber species.The Norway spruce forests have been strongly influenced by human activities. An excessive harvest started more than 300-400 years ago and strongly depleted the forest resources in some regions. At the beginning of this century the annual harvest in Norwegian forests exceeded annual growth, while the harvest is at present only around 50% of the gross annual production.Norway spruce is the most important species in Norwegian forestry. The total forest area is 12 million hectares or 37% of the total land area. Productive forests cover 23% of the land area (7 million hectares), half of which is spruce forest. More than one-third of the forest is older than 80 years. The total annual harvest is 10 million m 3 , of which spruce amounts to 70%.Norway has no laws or regulations specifically dealing with the conservation of the forest genetic resources. The Norwegian Forestry Act, however, provides general measures for the long-term preservation and sustainable utilization of the forests, which also relate to management of the genetic resources. Special recommendations are given for forestry activities in areas which have such location, conditions or characteristics that they should be managed with particular care. Where restrictions are deemed necessary, such areas may be classified as protection forest and be subject to regulations. Protection forests comprise approximately 20% of Norway's total forest area and are in particular located at high elevations, along coasts or in the far north. The Forestry Act is administered by the Ministry of Agriculture.The maintenance of genetic diversity is one of the main motives in the regulations for the classification, trade and use of reproductive materials in forestry. Specific recommendations are given for the transfer of provenances and use of vegatatively propagated materials. Seed from native Norway spruce stands should not be transferred more than 200 km in the northern or southern direction. Vertically, transfers should be within the range of 300 m. Close to the altitudinal and boreal timber line only local provenances should be used. Seeds from Norway spruce seed orchards should be tested for growth rhythm and frost hardiness, which should determine their regional use.Two other components of Norwegian legislation, administered by the Ministry of Environment, have importance in the management of the forest genetic resources. These are the Building and Planning Act and the Nature Conservation Act. The first one provides fundamental principles for land management limiting nonforestry development and urban expansion on forest land. The Nature Conservation Act provides for the classification of specific areas which are to be protected as national parks, nature reserves, landscape protection areas and natural monuments. Opportunity is given, moreover, for combining species protection and the conservation of areas in the form of what is called habitat preservation.The Norway spruce genetic resources are not considered to be threatened in any part of its native range in Norway. Large areas of old-growth natural stands still exist, even if their abundance has been reduced, in particular in the lowlands in southeastern Norway. New forests are being established by natural regeneration over large areas and this method has gained importance during the last few years. Under certain ecological conditions, however, natural regeneration will not be sufficient for the establishment of a well-stocked Norway spruce stand, and planting is necessary.Owing to a lack of Norway spruce seeds of local origin, seedlings of Central European provenances were planted in southeastern Norway during a 20-year period starting in the mid-1950s. In one county, 0stfold, 35% of the total number of seedlings planted in the period 1960-1980 originated from provenances in Austria and in Schwarzwald, Germany. It was thought that the high altitude of the seed stands, between 800 and 1400 m, would compensate for the southern latitude. However, both practical observations and a recent survey in planted stands (Skmppa et al. 1993) have shown that these stands are not well adapted to the northern climatic conditions. While 30% of the trees in 3D-year-old planted stands of native origins were classified as having saw timber qualities, only 7% of the trees in the Central European stands obtained the same classification. These provenance transfers had a negative effect on timber quality, particuarly on sites where frosts commonly occur in late spring or early autumn. The stands established with seedlings from introduced provenances are in many cases mixed with stands of local seed origin and are often not recognizable. The seeds harvested in such areas, even in healthy stands, may be partly from local and partly from provenance hybrid crosses. Critical factors are the abundance of flowering in the stands of introduced provenances, the range of pollen migration and how fast the natural selection process proceeds.Transfers of Norway spruce provenances from southern to northern latitudes and from low to high altitudes also have been made within Norway. Such transfers have in some cases resulted in plantations that show lack of adapation to the climatic conditions. However, as these plantations in many cases have failed and are rather scattered, they will in a few cases produce pollen or seeds in large enough quantities to have a practical consequences, either for natural regeneration or for seed collections.The concept of genetic diversity of forest trees has not been an important topic in public discussions in Norway. The introduction of Central European Norway spruce provenances has been criticized, but on grounds of the reduced timber quality in the planted stands and not so much because of a possible threat to the local spruce genetic resources. The introduction of spruce and its replacement of Scots pine and deciduous tree stands in western and northern Norway outside its natural range are debated locally. The negative voices are based partly on ecological considerations from naturalist groups as well as a general reluctance to accept changes in the landscape.Public awareness of forest genetic resources and the considerations of their importance for the future forests are generally missing.The forest tree genetic resources have generally been managed through the reforestation strategies employed after harvesting. Natural regeneration is encouraged where it is a feasible and optimal regeneration method. Thirty-five years ago the annual volume of forest tree seedlings planted exceeded 100 million. This number has been drastically reduced, and in the last 10-year period 50-55 million spruce seedlings have been planted annually. During the last 5-year period there has been a reduction in the number of seedlings planted.The gene conservation activities of forest trees in Norway are accomplished in three different ways: by nature conservation areas in national parks, protected landscape areas or nature reserves; by recently established conservation areas in productive coniferous forests, and by matedals preserved in clonal archives or seed orchards as part of the tree breeding program.The conservation of forest genetic resources has not been a motive for the establishment of nature conservation areas. Most national parks and nature reserves are located far north and at high altitudes and do not sample representative areas of the Norwegian coniferous forest. In total 20 000 ha of coniferous forest are conserved in these areas. They cannot be considered to play a major role in the conservation of the Norway spruce genetic resources.Based on a national plan to conserve coniferous forest, altogether 25 000 ha of productive forest have been protected. Norway spruce is the main species in the larger part of these areas. The main intention was conservation of biological diversity in general, but conservation of the genetic resources also was a motive. These areas are distributed in different parts of the country and are stratified to be representative for all major ecological zones. The different areas vary in size, from 10 to several thousand hectares.The more active gene conservation work is performed by the establishment of clonal archives or seed orchards of grafted Norway spruce clones. Selections of plus trees have been made in natural stands covering the entire distribution throughout the country to be included in breeding populations. More than 3000 selected trees have been grafted, most of these at several localities. They were grouped in breeding populations according to the latitude and altitude of the origin of the natural stand. However, it was soon realized that progeny tests are necessary to assess the genetic value of a selected plus tree, and more than 2000 of the selected trees have been tested by family tests planted in trials at several sites. Traits that have been measured include height and diameter growth, annual growth rhythm characteristics, climatic damage and stem and branch quality. In addition, a large number of families have been tested in artificial freezing experiments.The grafted clones and their offspring in progeny tests are an important part of the gene conservation activities, as they are the only materials from which specific genetic information is available.So far, no studies of isozyme or DNA genetic markers have been performed to characterize the genetic variability of the Norwegian spruce population. The genetic information available comes from quantitative genetic studies in provenance trials and family and clonal tests. The largest efforts have been made to characterize adaptation to the climatic conditions. Therefore measurements have in particular been made of annual growth rhythm traits: the timing and duration of the annual growth period, frost hardiness development in the autumn and dehardening in the spring, and the occurrence of climatic damage under field conditions. All studies demonstrate a clinal variation in growth rhythm characteristics of natural populations from the south to the north and from low to high altitudes. The southern and low altitude populations have the longest duration of the growth season, and, as a consequence, the highest growth potential. They also have the latest development of autumn frost hardiness. The only well-known characterizations of the adaptative process of spruce populations are the responses to temperature and photoperiod.The genetic variation is large within all natural populations studied, also for traits that shown clinal variation at the provenance level. Genetic correlations between traits may change dramatically, depending on the genetic level, whether it be based on population, family or clonal means.The general intentions with the genetic research in Norway spruce are: to describe and understand the genetic variability of the species, to develop stategies for breeding for better quality in well-adapted, high-yielding plantations, and to assure that sufficient genetic variability is conserved for the future evolution of the species.At present the main research interest is focused on the genetic mechanisms behind the variability observed in phenotypic traits having importance for adaptation to the climatic conditions. Based on experimental evidence, our hypothesis is that genetic variation in such traits is not only regulated by classical (Mendelian) gene frequency differences, but also by other mechanisms (e.g. gene regulations), and that these factors are triggered by environmental influences during the generative reproductive process. If this is the case, then it will have large implications both for understanding the evolutionary process and for the conservation of the genetic resources of the species.These effects were brought into focus by the location of seed orchards in warmer climates. The seedlings produced in Norway spruce seed orchards in Norway where the par,ental clones are transferred to seed orchard sites 6-8 degrees of latitude southwards or to 500-600 m lower in altitude, do not retain the annual growth rhythm of their parents, see Johnsen (1989a,b) and Skmppa and Johnsen (1994). Progenies after controlled crosses in such orchards, as well as the open-pollinated orchard offspring, have in particular a later growth start in the spring, a delayed growth cessation and a later development of autumn frost hardiness than their sibs born in their native environment. The effects have been shown in freezing tests of 1-or 2-year-old seedlings, but are verified by growth rhythm studies in experiments with 10-year-old trees (Skmppa 1994) and after clonal propagation (Johnsen 1989a). The population mean of seed orchard offspring is changed, but the genetic variation between different families for the traits seems to be retained. The environmental influences during the reproductive process have been verified by making identical crosses in a greenhouse and in a nearby seed orchard (Johnsen et al. 1995), and early and late in the spring in a heated greenhouse and outside the greenhouse (Johnsen and Skmppa, unpublished).Results from field trials and in practical plantings indicate that the observed effects may have practical consequences under extreme climatic situations in the field (Skmppa, unpublished). The effects may either be positive or negative for the survival and quality of the plantation, depending on how the climatic extremes are related to the annual growth rhythm of the material. The situation seems to be similar to that of a provenance transfer. It will be adavantageous under certain environmental conditions, but the opposite under other conditions.Norway spruce is a young species in Norway and shows large flexibility to a wide range of environmental conditions. Its genetic resources are not considered to be threatened, both because of the existence of old-growth natural stands and the extensive use of natural regeneration. When new stands are established by planting, seeds are transferred over rather short distances or are of local origin. An extended use of seed-orchard seed in the future may change the genetic composition of the planted stands. As long as the seed orchards contain a relatively large number of parents, this should not be considered a threat to the genetic resources. However, a combined strategy for the long-term breeding and gene resource conservation should be developed. An understanding of the genetic mechanisms behind the environmental influence during reproduction on the adaptive properties of the offspring will be of fundamental importance for both the breeding and conservation activities.Forestry Research Institute of Saxony, D-01827 Graupa, GermanyIn Germany, Norway spruce is the most important timber tree and covers about 35% of the forest area and about 60% of the total fellings in 1993. Beginning in the eastern part of Germany in the 1960s and continuing in the western part of Germany in the 1980s, severe damage of Norway spruce stands caused by air pollution and forest decline could be observed. Recording of these damages started in 1984. In 1994, Norway spruce had the largest area damaged of all tree species because of its big proportion of the total forest area. The heaviest damages could be observed in the higher altitudes of the mountainous regions and the Alps which are mainly part of the natural distribution area of Norway spruce. Stands over 60 years old showed the worst damages. In 1985, the working party Conservation of Forest Gene Resources was established to coordinate the efforts of federal and state institutions concerning the conservation of forest gene resources. Among other tree species, Norway spruce has the first priority. Based on the conservation work already done by different tree-breeding institutions, the working party developed a 'Concept on the Conservation of Forest Gene Resources in the Federal Republic of Germany' in 1989. In the concept, several in situ and ex situ measures were planned which should be realized within the next decade. The conservation work done since 1989 was mainly concentrated on the in situ conservation of Norway spruce stands, the establishment of ex situ conservation stands, the collection and storage of seeds and the vegetative propagation of single trees. Finally, research needs and tasks were identified related to the conservation activities planned.After the last ice age, Norway spruce most probably remigrated into the area of today'S Germany from two refugial areas, the Balkan Peninsula and the Carpathian Mountains. One of the main migration streams led obviously from the Beskides over the Sudeten to the Ore Mountains which were reached about 6500 BC. The other mainstream started in the refugial area on the Balkan Peninsula, followed the edge of the eastern Alps, crossed the river Danube, went west and northwest and came over the Bohemian Forest to the Bavarian Forest in the southeast of Germany. Both migration streams may have met in the Fichtelgebirge, the Frankonian Forest and the Thuringian Forest. About 4000 BC, the Harz Mountains were reached. The southern part of Germany was remigrated by Norway spruce parallel to the northern edge of the Alps, coming from the eastern parts of the Alps and finally reached the Black Forest in 1500 BC (Fig. 1).In Germany, Norway spruce occurs naturally in the mountainous and subalpine regions. Its natural distribution area covers the Alps, the higher altitudes of the Black Forest and of the Middle and East German Mountains. In the natural forest societies, pure Norway spruce stands can be found on extreme sites only, e.g. at the high mountainous and subalpine level of the northern edge of the Alps, on cold, wet sites of the Black Forest and the foothills of the Alps, and at the higher altitudes of the Bavarian, Middle and East German mountainous areas. Apart from these particular sites, Norway spruce normally contributes to mixed beech, fir or pine forest societies in different percentages. In total, Norway spruce is associated on about 25% of the natural forest areas.• . . In consequence of the thorough devastation of the forests until the end of the 18th C and the enormous timber demand in early industrial times, natural forests were 2hanged to artificial forests. Because of its wide ecological range, fast growth rate and ability to cope with clear-cut conditions, pure Norway spruce stands were promoted by forestry apart from Scots pine. These led to an:-increase of Norway spruce up to 100% on sites on which Norway spruce was represented only partly, -extension of Norway spruce on sites which were not suitable for Norway spruce within the natural distribution area, and -extension on sites outside of the natural distribution area.The promotion of Norway spruce by forestry for two centuries was accompanied by the transfer of reproductive material. In many cases, the origin of this material was not known or not suitable in the long term. These facts make it difficult to identify and delimit natural autochthonous Norway spruce forests from nearly natural or artificial formations of Norway spruce forests. Apart from these, Norway spruce showed good yield and quality performance on very different site conditions which favoured the planting of this species over a long period.In 1993, about 30% of the total land area of Germany was covered by forests, i.e. the forest area added up to 10.7 million ha, and 3.8 million ha of the forest area (35%)In the past, the structures and the character of natural forests in Germany were heavily influenced by exploitation, deforestation, change of species composition, etc. Since industrialization, forest decline caused by air pollution influenced Norway spruce populations locally and regionally. In the eastern part of Germany, the damage of Norway spruce stands began in the 1960s and took dramatic dimensions, especially in the Ore Mountains. In many cases, the locally adapted populations disappeared within the shortest time. Since the beginning of the 1980s, the damages caused by forest decline also increased in western Germany. As opposed to the damages in eastern Germany, these damages could only be related in single cases to a certain emittent of air pollution.Since 1984, the damages to the forests have been ascertained and published in a yearly report in the western part of Germany and since 1990 in the whole of Germany. The results of visible damages of Norway spruce (loss of more than 25% of needles) show clear differences in the percentages and in the development of the damages in the northwest, east and south of Germany (Fig. 2). In 1994, the highest average damages could be observed in the eastern part of Germany. Norway spruce stands in the higher altitudes of the Thuringian Forests and the Ore Mountains were particularly damaged. Norway spruce stands with more than 30% of damaged trees could be found in the Alps, the Black Forest, the northwestern Hessian Mountains and the southwestern part of Schleswig-Holstein. The distribution of the damages on age classes showed a clear difference between stands over 60 years and under 60 years of age (Table 1). Mixed stands were damaged as well as pure stands.In summary, Norway spruce has the largest area damaged of all tree species because of its large proportion of the total forest area. The heaviest damages were observed in the higher altitudes of mountainous regions and the Alps, which are part of the natural distribution area of Norway spruce, where stands >60 years old had the worst damages.In future, climate changes caused by global warming could lead to a threat to Norway spruce populations. However, the consequences are very difficult to estimate. In particular, an increase in temperature connected with higher evaporation and lower precipitation could result in higher susceptibility to pests and diseases. Because of the heavy damages by air pollution in the German Democratic Republic, a special programme for the conservation of Norway spruce was established in 1985. In the Federal Republic of Germany, the working party 'Conservation of Forest Gene Resources' was established in 1985 based on a resolution of the Bundesrat (upper house of the German parliament) and an agreement among the Federal Ministry of Agriculture, Food and Forestry and the different State Ministries responsible for Forestry. The working party is composed of appointed representatives of the Federal Government and of the different state governments. The task of the working party is the development of a concept for the conservation of forest genetic resources and the coordination of gene conservation activities. The implementation and realization of gene conservation activities is the responsibility of each state and its research institutions and forest services. After the reunification of Germany, the new estabilished states joined the working party.The general objective of forest gene conservation is to conserve and save the genetic variation of tree and shrub species in the following generations. In the medium term, in situ conservation of Norway spruce stands and their natural or artificial regeneration by sowing or planting will not be possible in many regions owing to the continuing air pollution. Consequently, ex situ measures will be of great importance, e.g. the establishment of seed orchards and clone collections, the storage of seeds or parts of plants, and vegetative propagation. The following remarks are based on the concept of the working party Conservation of Forest Gene Resources which was published in 1989 before the re unification of Germany in 1990. The figures mentioned below for the planned conservation measures were extrapolated to consider also the Norway spruce forests of the five newly established states of Germany.It is planned to cover about 1 % of the Norway spruce area, i.e. about 38 000 ha, with conservation measures within the next decade beginning in 1989. From this area, 80%, i.e. 30800 ha, will be conserved in situ. It is assumed that it will not be possible to conserve the remaining 20% in situ owing to the increase of forest decline. For these 7200 ha, ex situ measures will be used. To minimize the risk of loss, it is planned to take double ex situ measures for about 3100 ha of the in situ area. Norway spruce stands which should be conserved by sowing or planting, i.e. 15 200 ha, will also be conserved by storage of seeds.In total, 30 800 ha of Norway spruce stands will be conserved in situ. The soil of 75% of these stands should be improved by application of lime. The vitality of all in situ stands should be increased by regular stand maintenance, thinning and fertilizing. The change in vitality has to be monitored by regular analysis of the soil and the needles. The results of the analysis will be used as a decision-making aid for future management.On condition of the fructification being sufficient and the soil conditions still suitable, about 300 ha/year of Norway spruce stands have to be regenerated naturally, after having reached a suitable age. The natural regeneration is promoted by specific silvicultural management, e.g. by fertilizing. Additionally, about 300 ha/year should be regenerated artificially using material from stands worth conserving.About 10 300 ha of Norway spruce stands are to be conserved by ex situ measures; 3100 ha out of these are included in double measures. This area should be conserved representatively on an area of about 1000 ha. The establishment of seed orchards will be one priority of the ex situ conservation.Especially in the higher altitudes of the mountainous and subalpine regions, various Norway spruce populations have already disappeared. Some of these populations are part of different national and international provenance trials or conserved in clone collections established for breeding purposes. This material can be used to assemble clones in collections or seed orchards.In the first decade, about 6000 trees should be selected from the 7200 ha to be conserved ex situ. These 6000 trees have to be conserved representatively on an area of 600 ha. Additionally, clone collections should be established for the conservadon of endangered relict populations and single trees which represent rare genotypes or material important for breeding. For this, 1000 clones can be estimated, thus requiring an additional area of 20 ha.It is planned to conserve about 13 200 ha of Norway spruce stands by sowing and planting in situ and ex situ. Together with the procurement of seeds for these measures, seeds for storage purposes have to be collected. In Germany, seed collection of Norway spruce is possible every 3 years on average. In the first decade, about 12 000 ha of Norway spruce stands should be collected with 4 kg seeds per stand.As an additional conservation measure, pollen of about 5000 selected breeding trees has to be collected and stored. In the first decade, the storage of plants or parts of plants is not planned for. It is much more effective to store seeds. If starting material is limited and cannot be propagated in a different way, macrovegetative propagation is used. For this purpose, about 6000 clones with an additional area of 10 ha will be needed. The microvegetative propagation using tissue culture is not developed yet. But this method is of special interest for the conservation of old trees which are difficult to propagate by cuttings or grafting.The current state of activities Among other species, the conservation of Norway spruce gene resources has the highest priority. Because of the different levels of damages, regional priorities have to be set. Generally, the conservation measures are mainly concentrated on Norway spruce stands which are approved according to the federal law on forest reproductive material. In 1993,44466.2 ha of Norway spruce stands were approved for the production of selected reproductive material. About 62% of these stands were the property of the states. The remaining stands were mainly distributed between private (19%) and corporate owners (18%). Only a marginal percentage belonged to the Federal Republic of Germany (1 %).Additionally, several in situ and ex situ measures were taken to conserve Norway spruce gene information until the end of 1993. The emphasis was laid on in situ conservation of Norway spruce stands, the establishment of ex situ conservation stands, the collection and storage of seeds and the vegetative propagation of single trees by cuttings (Tables 2, 3 and 4). Activities in 1994 and ongoing activities in 1995 will be published in the next report of the working party Conservation of Forest Gene Resources at the end of 1995. In the past, research activities in forestry were mainly concentrated on the growth and yield of forest stands, silvicultural measures and genetic characterization of populations by provenance and progeny trials. Because of the extent of the forest decline, research was started on forest ecosystems but focused mainly on biogeochemical and energy cycles. On the other hand, a certain lack of knowledge could be observed in the field of gene conservation. Normally, measures should be based on scientific results, but gene conservation measures had to be established immediately to avoid the loss of a significant amount of genetic information. In this case, research should accompany the measures of gene conservation.The research activities and needs can be divided into two categories, the research on practical gene conservation measures and the research on specific problems which are the genetic variation of Norway spruce will be influenced and possibly reduced in the medium to long term by more intensive use of genetically improved material.There is a risk that the increased use of genetically improved material will supersede land race material. This development may result in an unfortunate situation where it will be impossible to retrieve useful basic material for breeding purposes.Norway spruce genetic resources will be protected as described above. Research activities and needs relevant to the survey of genetic resources for further development of conservation strategies Research concerning forest genetic resources in Denmark has so far been focused on indigenous species. However, there is a need for research on the important exotic species, i.e. scientific verification of whether evolvement of landraces actually has taken place and how the genepool has been affected by strong selection under the environmental conditions in Denmark. Further, significant genetic variation in fertility has been observed and there is a need for information on causes as well as the long-term consequences of this phenomenon.Intensive breeding activities and provenance trials have contributed greatly to the current knowledge about Norway spruce.Finally, much research regarding forest dieback is currently being carried out in Denmark, and Norway spruce plays an important role in this research since it is one of the species that is most threatened by forest dieback.Generally the public awareness of the importance of conservation of forest ecosystems as a whole is very large and it has grown over the last few decades. The public interest in forests has led to various government initiatives, e.g. a strategy for conservation of natural forests and other forest types of high conservation value in Denmark.The overall objective of the strategy is to conserve the biodiversity of the Danish forests, including the forest genetic resources. The preparation and implementation of the strategy has been covered by the news media and followed closely by all major Danish NGOs interested in environmental issues.However, conservation of genetic resources of trees probably has lower priority among the public than conservation of forest ecosystems.As Norway spruce is not a native species in Denmark, the conservation activities in the species' natural distribution area are obviously regarded as very important.It follows from this view that information on specific conservation activities concerning Norway spruce in other European countries is very important from Denmark's perspective.Czech Republic forestry has the following problems limiting all activities and also the conservation of genetic resources:-large-scale air pollution damages and dieback of thousands of forests, not very convenient tree species composition, -too high a deer population (mainly red deer, Cervus eZaphus), -the present transformation of forestry including restitution and privatization process and changes in administration of forest management.The stability of most spruce stands has decreased to various levels because of emissions and acid rains. In total, 60% of all Czech forests are affected by air pollution at the present time (forested area was 2 641 000 ha in 1994).Forest tree species, mainly coniferous, are damaged to a catastrophical extent. Gene sources in some localities and regions-mainly in the northwest and the northern borders of Bohemia-are damaged and destroyed, industrial pollution being the main cause. The negative impact of dryness, destructive effect of abiotic agents multiplied by some insect pests and parasitic fungi and some incorrect silvicultural measures are also important causes of forest damage.The 10-year forecast predicts further dieback, mainly of spruce stands as Norway spruce represents the main timber-tree species.Spruce covers 55% of forest land (Table 1). Results of regional palynological investigations indicate that postglacial immigration of Picea abies into Czech lands occurred in the East Carpathian region. Norway spruce probably could be found only at two areas in 11 500 BC: in Eastern Bohemia (Broumov bassein) and along the north Moravian borders with Slovakia. Norway spruce probably spread in our territory in two main streams: Carpathian-Sudeten and Hercynian. The first one came from the Tatra region, Hercynian way and started probably around the Vienna Forest. The contact of both streams occurred in the Ore Mountains region about the Atlantic period and in the Subboreal the maximum extent of spruce occurred. Several regions are discerned as well as local ecotypes (Picea hercynica, -bavarica, -saxonica, -harcyniana, -corcontica, -silesiaca, P. carpatica -beschidiaca).Originally, pure stands were created mainly in higher elevations of border mountains with optimum altitude between 600 and 1000 m above sea level. Norway spruce was the most frequent companion of beech and European silver fir (so-called hercynian mixture).Secondary distribution began in the 18th C as a result of the Czech Directive for Forest and Timber (1754) which recommended cultivation of conifers mainly. Residues of natural forests were preserved only in inaccessible localities. Planting of Norway spruce monocultures outside its natural range resulted in increasing wood production, but forest calamities of various origin became more and more frequent. Unsuitable spruce ecotypes, repeated planting of the same species resulting in deprivation of forest soil, and spruce stands on labile soils affected by underground water are the main reasons for considerable problems. It is supposed that originally in the natural species composition Norway spruce covered 12-15% of the forested area. The current extent is 55%, an objective derived from management models (52%), the Comprehensive Forest Management Plan, 1991 (48%) and the supposed optimum (40%).Information about the current status of Norway spruce is presented in Table 1 and Fig. 1. Norway spruce is present in various levels in several Forest Vegetation Zones (FVZ; based on climatic characteristics, elevation above sea level, average temperature, annual precipitation and length of vegetation period), usually from FVZ 2 (beech-oak) to FVZ 8 (spruce). Conservation aims and the current state of conservation activities Application of thG principle of sustainable development in all forests (through special management and use of forests in such a way and extent that their stability, biodiversity, production and regeneration capacity fulfill useful roles in the forest) is one of the basic strategic continuous targets of the Czech forest policy. Current results of provenance research gave us information on geographical variability of qualitative and quantitative characteristics and reactions of various populations to different site conditions. These results are used in forestry practice as 'Directives for certification and ensuring of reproductive material sources and its transfer' (valid from 1988), taking into account the use of different provenances in the Czech Republic and following a definition of seedcollection regions and recommendations for the transfer of seed material within and among the regions. Slight modification of the respective rules is in preparation.The basic principle for designation of seed zones and seed material transfer is to use certificated reproductive material of local origin. Transfer of seed material, seedlings and transplants to other forest regions is realized in the same seed zone and vegetative forest type (admissible tolerance is ± one degree). Seed zones are defined for Norway spruce; the Czech Republic adopted respective regulations many years ago. There is a fear that all these principles could be neglected in the present period of transformation.The Ministries of Agriculture and Environment are responsible for conservation of genetic resources of all forest tree species. The Forestry Research Institute has a special charge by a MoA to solve tasks relevant to gene resources conservation.The concept of gene-resources preservation of existing institutions administering state forests (Forests of the Czech Republic -LCR) is based on standard approaches and longterm experience and research recommendations. Considering the economic limitations the concept is minimal; nevertheless it is the base that should be used in legislation focused on preservation and improvement of forest gene resources. Besides natural regeneration, which is preferred, there are other measures (both in situ and ex situ) for protection and reproduction of gene resources of forest-tree species which have been realized in practical forest management and investigation programmes in individual Forest Zones: Newly planted stands representing, in our view, certified stands approved for seed collection of the best A category. Their role is to save the genepool and later to be a source of seed; 2337.70 ha of such seed stands (1583.42 ha by artificial planting, 750.04 ha through natural regeneration) have been established for Norway spruce.Concerning the aim of preservation of the whole genetic spectrum, not only partial populations and important single trees are subjects of our interest. Populations from marginal areas and extreme localities also have to be preserved. Such populations and single trees can be provided by genes important for breeding (adaptability, resistance). Different experimental plots, e.g. provenance ones, are also the form of preservation of spruce gene sources.Provenance research is important from the viewpoint of the choice of suitable provenances, of their transfer and following deSignation of seed zones. FGMRI JfloviSte-Strnady takes part in the most important international Norway spruce trials (IUFRO 1938, IUFRO 1964/68) and, including bilateral collaboration in spruce provenance research, a total of 1522 populations (791 Czech ones) on more than 76 ha of plots are tested.Of course, the Nature Preserves are of great importance for the revitalization and regeneration of natural or seminatural, and thus more stable, forest communities. Improving collaboration of employees and experts on nature protection and representatives of the forests of the Czech Republic resulted, in addition to other effects, in refusing demands to prevent any intervention in National Protected Regions. Some valuable elements of the protected zones often could be barely preserved without minimal management interferences. Seed collecting, self-seedlings and advanced growth can be used in other stands, often under the special management regime as gene bases (see above).The protected areas at the present time are listed in Table 2. In two-thirds of them the Norway spruce plays an important role. The areas most affected by industrial pollution are in the northern part of the country, in the infamous Ore Mountains. As reintroduction of the Norway spruce local populations is possible only after a substantial change in the current ecological conditions, an ex situ breeding programme was started 10 years ago. Where seed collection was still possible, cultivated seedlings were used as ortet for the next cutting propagation. From so-called 'resistant trees', grafts were prepared; about 150 clones are available.Breeding programmes represent one form of genepool preservation. Their aim is preservation of autochthonous spruce populations. They are gradually prepared for individual regions.Allochthopous populations also are taken into consideration. The first programmes prepared by Sindelar for the Krkonose-Giant Mountains and the Bohemian-Moravian Uplands were based mainly on cuttings. Later the FGMRI started with complete programmes in<:luding testing of cultivated material (Ore Mountains, Jizerske hory Mountains and Sumava Forest regions).The unsuitable situation of our forests necessitates development of new methods of vegetative propagation. In vitro propagation of trees by organ cultures and somatic embryogenesis is being tested and used for rapid multiplication and production of individuals with desirable genetic traits. These biotechnological methods are also used for production of more resistant or the most threatened trees.It is supposed that cryopreservation is not the method which should be used for conservation of Norway spruce or other species genepools in the Czech Republic. Ongoing tests, e.g. with Norway spruce from Jizerske hory Mountains in 1993, seem to be too expensive. A seedbank with deep freezers is probably the best method. Before storing, the seed material is treated and then stored in vacuum polythene containers and kept at 25-35°C below zero. Experiences by others suggest that for Norway spruce the storage period should be 30-40 years. A larger number of smaller samples of regionalpopy.1ation seeds should be stored in the genebank of the Crop Production Institute.Mainly around developing industrial agglomerations the symptoms of emission impact are visible. Usually higher elevations have been damaged heavily and local spruce populations in some regions are seriously threatened.It could be stated that all high-mountain and mountain ecotypes are threatened in every forest region. Their situation is usually critical because they are the remainders of original populations and have decreased ability of fructification. (On the other hand, we can find the fructification on some exposed localities but collection is not economical.) Considering the insufficiency of spruce seeds in the highest areas, part of the planting stock is grown vegetatively, usually through cuttings. FVZ 5-6 Ecotype of mid-elevations is the best one from the productivity point of view. Original populations are also rare; many labile monocultures of unknown origin prevail here. forests in our country (small forest means less than 50 ha, but unfortunately the average area of such 'small forests' is about 2 ha).We are afraid that the public has other troubles in mind. In this situation foresters need more competent and skilled access to public education and information at all levels (from schools to MPs). It seems that in the present transformation period nobody has an interest in forests-after all, they grow by themselves and for a long time-except new owners and their lobby groups.As there are too many other money-consuming problems, forests are usually put off as in the past (GDP of forestry is less than 1%). Consequently, long-term activities, research and education are in a bad state because of drastic cuts in research budgets and huge staff reductions.Devastating anthropogenic impact on forests, in spite of the better conditions of air pollution in the last 2 years, is continuing.The transition to multiple-resource management of forests is additionally complicated in consequence of current economic reform, especially restitution of private and public ownership and changes of organizational structure in forestry management.The realization of necessary forest management practices is more expensive and budgetary problems can make difficulties during implementation of all respective needs.The most important common needs of Czech forestry are:-solving the ongoing problems mentioned above air pollution (and depositions), -unsuitable tree species composition of forests, -too many hoofed game in forest stands, -finishing the transformation processes, adopting a new Forest Act, changing the approach to the forest and forestry in general, -step-by-step solving of the problem of the relationship between foresters and environmentalists, -creation of a stable and long-lasting system of education and research activities funding.The establishment of the 'forest seed bank', prepared by the Forests of the CR Seed Enterprise in TyniSte nad Orliel, will be an important measure. Recently its status is under discussion, and collaboration with the genebank of Crop Production Research Institute (WRV Ruzyne) is expected.The preservation of gene resources and the use of proper genetically suitable seedlings by the new forest owners has to be ensured by continuing education programmes, but mainly by the new Forest Act and Directives, which should be finalized as soon as possible.An important part of current forestry is finishing the process of reprivatization and ensuring management control of all forest stands by experts. Failure to do so will have negative impact also on gene resources, bearing in mind that, in forests not professionally managed, overlogging, insufficient management of calamities, c1earcutting, neglecting the regeneration, and generally deterioration of forest state and stability can occur.The creation of a functional system of state administration that associates small owners, expert consultations and control of management, instruments for motivation and compensation of forest owners' interests will be of importance.All the abovementioned items may be considered as too general but it concerns mainly Norway spruce, which has a wide distribution and occurrence.Last but not least, moral and financial support of people dealing with the forest problems is necessary, considering that forests, in which the Norway spruce plays an important role, whatever their current state, are an important part of the state welfare.• preservation and improvement of species variability • rational use of gene resources (national system for better forest seed use, organization of forest seed supply and creation of seed inspection is recommended) • support of natural regeneration • education of foresters and the public • approaching the positions of nature protection bodies and foresters at all levels.• own forest seed material sources • selection of plus trees and populations not considering the species origin • closing of the programme of clonal archives establishing the mountain spruce.All measurements have to be based on the new legislation reflecting social and economic changes but respecting the forestry ecological approach in forest management. Following common principles, foresters must overcome the pressure of economic lobbies or / and too green ideas to be able save our forests as the most important part of the environment and a heritage for future generations.Oudara Souvannavong Forestry Resources Division, Forestry Department, FAO, Rome, ItalyAccording to its Constitution, the main functions of the Food and Agriculture Organization of the United Nations (FAO) are (i) to serve as an international forum and secretariat for food and agricultural matters (including fisheries and forestry), (ii) to provide technical assistance in its field of competence, and (iii) to promote exchange of information and know-how between nations. Assistance to member nations in the conservation and wise utilization of natural resources is clearly mentioned as being the responsibility of the Organization.Plant genetic resources have been a concern of FAO since its early years. A Panel of Experts on Plant Exploration and Introduction was established in 1962 and the Organization housed the International Board for Plant Genetic Resources (IBPGR) from its establishment in 1974 until 1994 (IBPGR is now the International Plant Genetic Resources Institute, IPGRI).This paper briefly presents FAO's activities related to forest genetic resources, with emphasis on activities related to the European Forest Genetic Resources Programme (EUFORGEN). They all have wide-ranging experience and knowledge of activities and issues related to forest genetic resources in their country, subregion or region of origin. The Panel meets every 3 or 4 years. In addition to its recommendations for action in the short, medium and long terms, the Panel draws up and regularly updates a list of priority species by region and operation (exploration, collection, evaluation, conservation, utilization). The last (8th) session of the Panel took place in June 1993; its report is available in English, French and Spanish.In essence FAO works through, or in cooperation with, the national organizations of its member countries. Although FAO is a technical assistance organization rather than a financing agency, modest Regular Programme funds are available for use as 'seed money' to support actions in response to needs identified by the Panel. In addition, externally procured funds contribute importantly to FAO activities, particularly in technical assistance projects in the developing countries. FORTIP is a good example of such projects.FAO cooperates closely and regularly with other international organizations (such as Unesco, UNEP, IPGRI and IUFRO), with regional and subregional organizations and with bilateral cooperation agencies.Technical support, especially to developing countries, for the conservation and wise use of forest genetic resources is an important task of FAO's Forestry Department. This support includes all aspects of work, from programmes for the in situ conservation of forest genetic resources to assistance for the development of sound tree improvement programmes, the establishment of seed centres, and advice on sustainable forest management, incorporating conservation concerns, and on appropriate seed sources for tree planting and reforestation projects. Assistance is provided, on .request, directly to the national organizations or via field projects.In addition to its supervision of and contacts with approximately 200 forestry field projects, the Department maintains close relations with over 60 seed centres and a similar number of research institutes and departments concerned with forest genetic resources conservation and improvement in developed as well as developing countries. The quality and wide range of contacts the Department maintains with institutions active in the field contribute to the fulfilment of its information and coordination mandate and helps it promote cooperation between developed and developing countries, as well as among developing countries.FAO has over the years prioritized the dissemination and exchange of information to avoid overlap and duplication of efforts on a global level. Coordination of activities is facilitated by the work of the FAO Panel of Experts on Forest Gene Resources, which considers reports and information on ongoing and planned activities of all relevant organizations. The FAO Forestry Department Newsletter, Forest Genetic Resources, published annually in three languages, is a valuable additional medium in this regard, and regularly includes contributions from a range of institutions active in the forest genetic resources field.Workshops and symposia are other means for information exchange, coordination and collaboration. FAO regularly organizes, cosponsors or contributes to such meetings in cooperation with other national and international institutions, including IUFRO.One of the first internationally coordinated works in the field of forest genetic resources which convincingly demonstrated the value of systematic exploration/ evaluation was the wide-ranging collections of Eucalyptus camaldulensis, carried out in the 1960s by the Forestry and Timber Bureau in Canberra, Australia, with technical and financial assistance from FAO's Forestry Department. FAO-coordinated provenance trials were subsequently established on 32 sites in 18 countries. Subsequent seed collections, followed by internationally coordinated provenance trials, include collections of pines and hardwood species in Central America and Mexico, Tectona grandis, Gmelina arborea, Acacia, Casuarina and Eucalyptus species, Azadirachta indica (neem), and moist and arid-zone hardwoods in West Africa. All these collections have systematically been made in cooperation with national institutes, and where moderate funding has been available from FAO, such funds have been channelled to permit the full and active participation of such institutes in the work.Comprehensive trials are of little value if the tested provenances have disappeared by the time the results are known. FAO has given due attention to conservation of forest genetic resources both in situ and ex situ.In collaboration with CSIRO, OFI and DANIDA, 'semi-bulk' quantities of seed of proven provenances or provenances in danger of genetic depletion have been procured for the establishment of ex situ conservation stands in interested countries, as a mediumterm conservation measure. The species concerned so far are mainly tropical pines, eucalypts and Acacia and Prosopis species.Through a recent UNEP-assisted FAO project on in situ conservation of forest genetic resources, pilot in situ conservation areas have been established in collaboration with the Governments of Cameroon, Malaysia, Peru and Yemen.Wise and appropriate use of forest genetic resources requires building up or strengthening the national expertise and facilities in developing countries, including assistance in establishing/strengthening national or regional tree seed centres and related improvement/ conservation programmes. A large proportion of FAO's field projects includes these activities within the framework of wider development programmes. Exchange of know-how, information and genetic resources, and technical collaboration between countries, are also promoted, i.e. through the establishment of regional and international networks, as well as networking of institutes working in similar ecological conditions.The European Forest Genetic Resources Programme (EUFORGEN) was established as a follow-up to resolutions of the Ministerial Conference on Forest Protection in Europe, in its meetings in Strasbourg (1991) andHelsinki (1993). FAO is participating in the management committee of EUFORGEN, chaired by IPGRI. The general link between EUFORGEN activities and follow-up to the FAO Panel of Experts on Forest Gene Resources is evident. Furthermore, the activities of species-based EUFORGEN networks (the first four networks concern black poplar, cork oak, Norway spruce and 'noble hardwoods') are undertaken in coordination with other relevant FAO programmes. For instance, the first meeting of the black poplar network took place in conjunction with a meeting of the Executive Committee of the International Poplar Commission, a Statutory Body of FAO. FAO further provides coordination with relevant activities undertaken by research networks of Silva Mediterranea, a Statutory Body of FAO, concerning species which are found on both sides of the Mediterranean Sea, such as cork oak or the Mediterranean conifers.The Fourth International Technical Conference on Plant Genetic Resources, which will be convened by FAO in Germany in June 1996, is another framework where activities of EUFORGEN should produce useful inputs. The International Conference and Programme for Plant Genetic Resources (ICPPGR) coordinates the preparation of the Conference. During the preparatory process, a costed Global Plan of Action for plant genetic resources will be developed, based on a Report on the State of the World's Plant Genetic Resources. Country Reports, requested from each country, will provide the foundation of both documents. The process is integrating Regional or Subregional meetings and scientific studies on important issues. The International Conference will formally consider the adoption of the Global Plan of Action. IPGRI is collaborating in the preparation of the Conference at the national and regionallsubregionallevels.Two workshops, taking place in June 1995, will provide inputs to the international Conference: (i) the Workshop on Genetic Resources of North American Temperate Forest Species organized by the US Forest Service, and (ii) the Workshop on Genetic Resources of Boreal Zone Forest Species, organized by the Canadian Forest Service, which is of particular interest to the EUFORGEN Norway Spruce Network. Both workshops are organized in technical collaboration with FAO. They are very timely for providing inputs to the next session of the FAO Panel of Experts on Forest Gene Resources, planned to be held in October 1995, and in the International Technical Conference on PGR. EUFORGEN would be a good framework to undertake similar regional syntheSis for European forest species.","tokenCount":"26147"} \ No newline at end of file diff --git a/data/part_1/1538059093.json b/data/part_1/1538059093.json new file mode 100644 index 0000000000000000000000000000000000000000..cf49b0678f61e26a5fed6f2cf37cf8183835ae70 --- /dev/null +++ b/data/part_1/1538059093.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"530f7ea020b09c243f0e854609e52c3a","source":"gardian_index","url":"https://publications.iwmi.org/pdf/H005540.pdf","id":"-1362353964"},"keywords":["r•?••• •••• J:",".7:","?:. ....... ~urf~~E:!~!rrigation"],"sieverID":"19cf995f-9168-45ae-b955-392eda0e60df","pagecount":"180","content":"• l':! t~IQ.f\"!d9f~ri~ntf!ti ofl . ..t..r!_tl!LChaJ'18'i!:!,g~.l!.text Th(~ irrigation employees, fanners and agricult\\lre extension people need to be exposed the process and procedures of functioning of water users association. High level government officials and policy 1TL'' 1.h:ers are interested to see the Hater Users associations be properly fonned and ma1{e them functional for hptter irrigation management. 100 ma.lte them capable of collecting information at short period of time (c) to mal{e them prepare the report on site (d) to expose the farmers on the organization and function of the irr'igation organization. This will be farmers to farmers training programme .(e) t.o malre the agriculture extension people aware on the water management under different Hater situation like water scarcity system, Hater ablmdanee system etc and show the relationship behleen the crop choice and ,.,rater availability. 1.00 5.00 6 • 00 -8. 00 11'1.R.OO PM . February, 1989 ( 1 2 Fagun, 2(H 5 ) 7.00 Nt.8.00 Nf 12.00 -1.001.00 -5.00 5.00 -7.00February, 1989 (13 Fagtm, 2015) 7.00 N1.8.00 Nt.12.00 -1.002.00 February, 1989(14 Fagun, 2045) 8.00 AH.12.00 - 1.00 Briefirut on Pithm-la by the Hembers of f'1anagement Commi ttee of Pi thtn\"a Irrigation System.N('TJ:11's i t'I'll4aLiotl s,\\'stems C11n twoadJy be categorized into tHO types hlSPc\\ upon l\"hf.~I'(~ thf' r('spOflS i hi Ii ty for management 1 ies: a~ency~manap;ed .. '~~.st.elHs and fmmer-malJllp;('(i S;\\'stPnls. In BUS, the fanners tal{e the I'psponsi hi I i I'~' for Hater' aCfllJis i I.j on, Hater allocation and distribution I and thl\" ovel'nl1 mcmagemPllt of t,he system 011 11 continuous basis. Any external rtssist::lnep tn fanner-lfk,)lla~ed syst.ems is occasional as specific needs arise. Tn agc'ney-mrlllagpd systems ,govermllf'llt. personnel are responsible for the manngem'~flt of t11f~ s:,>'stem Id til varyi ng J evels of fanner participation. Mlile t hI\" fn l'IW'1'S lila;\\' \\)(' respol)sbi 1f~ for asppets of O&'H, (as in jointly-managed sys t !,~ms ), g(W(\"l'IlOletl tass i s tarw(~ and presence is ongoing. Approximate ly :1 GO, 000 !ree L~u'ps (1m) a rp undpr ngelwy mnllngf:ment and 608,000 ha are managed [J.Ii the f:lIl1l!~rs. The i\\griC'IIILIIf'Hl DevelopTlPnt T13.nl{ of Nepal (ADB/N) has df~\\'e 1 o)Y'd a hout. lOr\" oon ha. I i\\ 1 t.houi:!h Lhen~ has not been agreement on the f\"xh\"lIt nf t hp 81'(\"n 1I11der f8l'mel'~mnnaged irrigation, it can safely be ('()I1C'IIl(k'd thnt R£1:re[ltpt' alea is nndpr far'mer management. It is estimated Iltnt npplo':imaLely 1 , iO() FNJS e~:ist in the Tarai and over 15,000 of these s\\sl('ms 81'e funel,inning ill the hills of Nppnl.Thc' 1<)1:11 cu]1 ivatr,,lated information from a detaHed inventory of one river basin in a hill district and land resource ma~ indicates there are likely over 17,000 FMIS in the hills. Inventories of all the tarai districts identified over 1,700 farmer-managed systems in that region providing some Jevel of irrigation to at least 450,000 ha.These systems and the farmer organizations which operate and maintain them are a unique national resource which must be preserved and improved. By a conservative estimate, the production from farmer-managed irrigation systems is feeding over 30 percent of Nepal's }X>pulation.Farmer-managed irrigation systems in Nepal present a wide variation in the type of organization and management style, methods for both internal and external (to the system) resource mobilization, maintenance practices, and water allocation and water distribution methods. Each FMIS has a distinct character which is determined by adaptation to the environment and needs of the people it serves. In most systems the low quality of physical structures is compensated by careful management of the available human resource.'~ile some of these systems are well managed and achieve a high level of agricultural production, many systems could benefit from assistance from the Department of Irrigation (DOL). In both the hills and Tarai farmers are facing increasing difficulty in operating their systems due to deforestation and government }X>licies protecting forests that have traditionally provided the materials necessary for maintenance.The contribution of FM1S to the basic needs of the rural }X>pulation is already high but can be increased further. The unique resource of human organization and extremely diverse physical infrastructure represented by FMIS should be preserved and assisted in developing further. In determining ways to improve the functioning of FMIS and to devise appropriate ways to assist them, the following recommendations should be considered under the master plan. :01' t:,~~I~~±;!:,:-~~:!:'J'__ Et!_':'.':9.-':?~.J\"atJJ]gJrrigatjQrL §z §tems. At present, the '~r organizations managing irrigation systems have no clear legal status. 'Ibis makes it difficult for them to mobilize resources external to their organization. For example, it is difficult for banks to give loans to a group of farmers to make improvements in their system. Frequently hundreds, even thousands of families are members of the association, with their own \"fonnal\" rules and regulations for operation and maintenance of a system. HOh'ever, these associations of farmer irrigators are informal in terms of legal rights. They should be able to register their association and receive rights over the water which they are using and be able to deal as a formal enterprise ,..,i th banks and government agencies. 2. IdentifY existi~IS in the area of each new agency--.p.rojeQ..t_BDg incorRQrate their physical and organizational structure into the new system with-mi.!!!!!l:!I!Ldi_s~ption. Whenever a new irrigation project is proposed, one ~f-the first steps should be to identify all of the existing FMIS in the projected command area. To insure this, the terms of reference (TOR) of the consultants or agency staff that does the preliminary investigation should require an inventory of the existing FMIS in the project area. For each system, they should report the name, location, water source, estimated area irrigated, cropping pattern, water rights among systems, number of farm households in the association, and method of water allocation among users for each crop.For a subsequent feasibility study the lDR should call for detailed information about the existing management, operation and maintenance procedures, and production of each system. A requirement for approval to proceed to a design study for a new system should be a clear indication that irrigation services will actually improve in the areas already served by PHIS and that incremental increase in agricu] tural production of the improved service and expanded area ,..,ill justify the cost of the project. This requires that careful consideration be given to the water rights of existing systems and discussion wi th present and potential beneficiaries to determine the level of cooperation there ,..,ill be in expanding irrigation services.The TOR for the design study should request details on how the existing systems and their organization will be incorporated into the new design. To the extent possible with the given topography, the farmers' distribution l'lystems should be kept intact to cause the least disruption to the association's organization and management capacity. One way of doing this is to augment the supply at the headworks of the existing system, and continue to use the existing distribution neb..,ork. It may be necessary to make improvements to the headworks and within the distribution system, but this should l~ done in the spirit of assisting a farmer-managed system instead of 'overlaying it with a completely new design .If the existing farmer organizations are effective, they should not be forced to adapt to some rigid standard format but should be allowed to retain their mID organizational form and management procedures. Weaker organizations should be strengthened as a part of the assistance effort. This effort should start with the experience and capacity the farmers already have and build on their existing rules and methods rather than int,roduci ng a standard water users association format which may be inconsistent with local conditions.•-~ATIONS FOR ~DING ASSISTANCE 'IO FMIS 3. Establish uniform assistance policies for each geographical r~gion of the countr~. Previously four agencies were involved in providing .~stance to farmer-managed irrigation systems. Each used different policies and strategies for implementing their programs ranging from 100 percent subsidy and little participation to significant contribution and participation by the beneficiaries. Since all irrigation development activities have come under one l~hrella, a uniform policy, at least on a regional basis, will need to be applied. This policy should be formulated only after a careful study of the experience of all of the agencies in the past has been completed. The study ., should include field investigation to determine the impact the different levels of beneficiary input under various programs have had on the operation and maintenance of systems and ultimately on agricultural production. The study should also examine the strategy each program used and recommend the most cost effective and viable implementation procedures. 4. ~ste~tically identify all FMIS in th~~9~try on a wat~~~h~ ~!s by maldl}g an inve~t:orDh1!u?tablishes_!L~tabas~_giving pertinent. g~tail.!Labout each system. Comprehensive planning for improving the performance of FMIS cannot be done without detailed information about the statUR of individual irrigation systems. An inventory should be prepared by systematic~lly investigating each watershed in a district to generate the first level of this information. Using the watershed as the basis of investigation allol4s clustering of systems that are related to each other with respect to water rights.The inventory should identify all systems in the watershed with information such as: a) the name of the system and source; b) location; c) irrjgated area; d) number of households using the system; e) extent of land and water resources utilization (How much cultivated land is unirrigated under the command of a each canal? Is there water in the source that is not utilized?); and f) problems of operating the system identified by the beneficiaries. Preparation of the inventory work should include establishment of a database for easy retrieval of information and modification and updating as assistance is given to specific systems.Es~l:!~Jsh_ crt ter_t~__f9r seJ-ect!!!g~stems for_!i~~j:. §..tance. The inventory information should be used to identify systems where assistance is most needed and will be most beneficial. The criteria for selecting systems for further investigation and ultimately to assist should include: a) potential for expanding the irrigated area; b) opportunity to intensify the cropping pattern by better water delivery; c) willingness of the \" beneficiaries to invest a specified proportion of the improvement cost and to add new members to their association in return for their assistance in mru{ing improvements and in operation and maintenance; and d) opportunity to reduce the maintenance cost of the system.Enable beneficiaries to improve the effectiveness of operation and ~ill1:.~naf!Q.!u!c-.ti vities in their system and to fuili particiI!!t.e in any -33After a system is selected for ~~-~~e, there should be an in-depth investigation to determine the management capacity of the beneficiaries. This should include the roles, methods of conflict management, and records that they keep as the extent and method of resource mobilization for routine and ~~ency maintenance. Where improvement in their management capacity is existing practices should form the foundation for expanding theirThe use of association organizers, farmer consultants with experience well-managed irrigation systems, and training programs that include visits to other systems where different practices are used would be methods that could be used to strengthen management capacity.:,',. 7. Benefj.ciaries ~h()uld be encouraged to take r~nsibility il1.assisting with selection of the design and in implementation of physical iimrnYements that are to be made to their system. The farmers themselves are ~rthe best source of information about crop preferences, soil conditions and ~~iation over the area, stream flows, and stability of land forms, and can :provide this input to the planning and design process. Where cadastral surveys have been completed farmers can assist in compiling accurate area eRtimates of the existing and potentially irrigated area to be used in designing the canal. The beneficiaries can quickly point out difficulties 'and bottlenecks in the system and priorities for necessary improvements in a 'd'wBlk-through\" of the system. The management capaci ty of the beneficiaries will be reinforced if they are encouraged and assisted to share responsibility for the planning, design, and implementation of physical improvements.8. The design process for improvements to FMIS should be si~~_8l!g field based. Where assiBtance is being given to upgrade existing structures that typically carry a discharge of less than 100 liters/second (liters/s) and seldom more than 300 liters/s the lengthy process of topographic field survey office design, and carefully inked drawings greatly delays the implementation process and is not cost effective. Procedures need to be developed (and where possible adapted from the past experience of the various agencies that had been assisting FMIS) to simplify the design process to make 1t prompt and less costly.Where rock cutting is required or simple structures are to be improved, ftCCurate sl{etches in a fieldbook and analysis of costs should be prepared on the-spot. If the beneficiaries are to be responsible to contribute to the cost of the improvements and operate and maintain them in the future they should help select among alternative designs and set the priorities for making improvements.~ATIONS FOR AIliINISTRATlVE REORIENTATION 9. Assistance toFMIS should be in the form of loans (subsidized to !he~~nt__~ecessa.rYLiBitf'!!3.&i of grants. Assi~t.a.nce to farmer-rna.na,gErl-R}\"stems should be in the form of loans, not grants. The loans could be subsidized by the government, but the principle that the farmer organization < , ..~ \": \" ~;;;;,~ significant proportion of the investment is important. If this is case, the organization will set priorities according to what will really t them in terms of improved performance and/or reduced maintenance The organization should decide how much of the cost of the project it to pay for wi th its labor and how much in materials and cash. There ~;h~uld be a means by Hhich the organization as a whole can take a loan for the cash investment if necessary. 10. ~g:iyision should be established in the 001 responsible for assis~e to FM1S. The approach and necessary manpower for assisting ~ng FMIS is sufficiently different from the design and construction of new systems that a separate division is warranted. It should be the responsibility of this division to formulate policies and procedures and to provide overall guidance in assisting FMIS. '!he division should consider the importance of both physical and \"non-physical\" assistance to FM1S and employ personnel qualified, trained, and interested in working with farmer groups.11. All levels of 001 staff dealing wi th FM1S need orien~ti_ql},,~~ traini~ to be able to i!!IP.lement a pa.rtici~tor~proach to assisting:,;l7,ml.l~ Tsering, Assist.ant En2:ineer, h'ho accompanied me on my field dp to Pllnnldm, Tldmpu, and ''''alJgdipodran,~, deserves special thanks. His 10 as itrierrn'ter Has ,'ita 1 to my ability to communicate Hith the Bhutanese Last but not. least, I Hould 1 iJie to thank the farmers of those s~'sterns I \\'i sH.E'rl during my field trip. TI1~Y Here very kind to tal{e time off (hpi t' bllsy agricultural schedules to provide information on their '::f if PART I BACKGROUND ON BHUfAN is a mountainous Idngdom cornprisinJ'! 18,000 square miles. The Gaylegphug hns the only flat t,errain. Ninety-five percent of the on is dependent on agriculture. Half of the gross domestic product fourth of the countl'Y's total export earning is derived from this HOlvever, Bhutan's population density is 25 per square kilometer and ation grm.;th rate is 2 percent annually. In fact, the small on sj7.:e and resultant labor shortage constrain the development effort . -------------------------~---------------------~---~---------------------- .Statistical Thndbooli: of Ahut: Ln. 1986. Bhutan: Central StatisticaJ Office, Planning Commission.i\\rroraing to the Sbltistical Handbool!: of J986, J.G percent of the nl]e~-s nre cuJtjyated and tJ.tI percent of the land is tmder terraced Combined, thcs(> areas represent the total of the land tmderThe [rril4ation Dhision is part of the Agriculture Department in Bhutan.Iliar<111, Prf\\ayumna P. J987. Developrnent issues in Sikkim and Bhutan.NO! m ta hl Rpsea rch and Deve I opmCn t. Un i ted Nations Un i vel'S i ty, August.Iti\\'aUon.:l):27fi..; I!.•.f \"..1Fifth Fi\",\"-Year Plan (1981/2-1986/7) of Rhutan, the Irrigation inll Ha..~ m:mdat.ed to 1) construct neH irri~ation systems; 2) to renovate ht..!! irri~atioJl systems; 3) to protect river banks from slides and i om::; nnd !~) to construct feeder roads in order to open rural farm areas input Stlppl ~7 • lInder' the current Sixth Five-Year Plan, the objectives of the Irrigation ,sion hR.,;e been modifiNi to emphasize new construction and renovation of jng irrigation systems.The approach of the Irri~ation Division in relation to assistance to farmer•-marm.ged i rrigaUon systems has changed after the introduction of a derf'ntr'aLi7:nlion poUcy beginrdng in 1981. 'This policy has emphasized c;trengLhenill/r l(}('~:ll institutions, including farmer irrigation or/ranizaUons, llntil 1981, the Hnyal Government of Bhutan Has subsidizing the irrigation s\\'stems. Enrh system rereived Ngul tTum (Nil) 2 10,000 to 20,000 per ;'t'ear. sill('!' I ~81, RS rl<'lrt of the IX)] icy to ha\\'e the beneficiaries operate and illLnin 1.h(' irri!!ntion s~rstems themselves. government has not allocated fund~ fOl' nil operation and maintenance (0&1'1) subsidy to beneficiary-m::maged irrLr;!ation systems.Thl\" Irrigation Division rame into existence in 1967 under the In the di stricts, puhl ic Horks, agriculture, education, basic health, irri/rlllion units administrnLe government funds. The d~Qtlgd.h'3., appointed tl\\(' Ninistr•:v of Home Affairs. is the head of district administration.D7.nngs, or forts, Here constructed for defense purposes in ancient imes. Thry contained motll1st.eries and srrved as the administrative center the r0gion. In those da:;:s, rx~rsons Hho resided in the dzon!!s Here . . id(>n'd Ul(\" nut-hari ties. Instead of cr(>ating a ne'\" /rovernmental l.mit in distri cLs, effor•t h'as made to moderni::>:e the trndi tional institutions in an. In 1960, dzongs \"ern converted into district administrative Each dzonglrhag irrigation unj t has l-fi sec'tioll officers, a riraftsman, and construction \" The section officers, an~ overseeJ'S appointed by the government, irrigation unit of f-l p. l'psource allocation to agriculture and irrigation from the First Ypnr Plan period to the Fifth Five-Year Plan period 0981/2 in Table 2.Resollrre allocation to at:!dcultun~ and irrigntion from Bhutan's Pl !HlS.of Total Investment (196 J-fl6)1.9 1.8 (1966-71) 21.6 10.7 (1971- [.l'lrger s~'st0ms are to be cf'lltraJly administf\"rcd. Some 1::1':(> more t0f'hnical difficultips and ne(~d c0ntra] management support.Wilh tll0 introducti0tl of th(~ decpntrali7.ation policy in 1981, a neH lj)l'ow'h W1.S ;l(lnptm hy the Trri,e;ntion Division nf the Agriculture r'tmf'lIt. '111(' Divi!=don pnllf'Y sought tn stTf'~n~then the system by proddin~ li tn 1 d0,'P 1npllK'nt flJnds for. i rd gation improvements.Ttl(' prospert in' sYBtem for imprm'emcnt is selected b~' the dzon~khal'( \\f'vf'lopment committee. This rommjttee consists of district level inlsl,'nto\"s, national representatives, and villa~e leaders. 1his iH.(\"0 is J'(~spollsihle for th0 developmf'nt of the t.:hole district. fif'lf'lries s{'ddn~ t.o be considered for aS1':;jstance by the dzorl,!~kha~ .1opmf'1lt. f'ommi UPf' fO)'\\-lnrd thei r r0quest through the villa~e leader. Once Ih!~ iJTigDLiotl system is selected for renovation and improvement, the hTigatinll Di\\'ision provides assistl1llce to design the syst.em. Since the glrhflg i n'igatioll units do not have sufficient teehnieal sltill and \" ('cntTal support is pl'ovided in survey and design of the system.~e the des i gn is approved, it is the responsibj li ty of the di.strict it'l'igatinn lmit to su~rvjsf' t,hf' construrtian \\-lorl{. Construction proceeds on f'nrr'fY.i a(~f'nlll ,I. h'.ls is. Con t rflC t s a re no t g i Hm out for the Horh:. l\\'crnm\"l1l r)l'nvid{~s thf' mntf'l'inls and technical sldlL TIle beneficiaries flre Pquit'pd In pr'ovide th0 Illbnr for the construction Hork, thereby ensurim{ Ihnil' pnrl jeipnl.ion. Alt.hnugh lahor mobilization is often a problem due to I hl' 101-1 popul nt ion densi ty, th is condi ti on j s uni form Iy enforcerl.On(,e til\", S~'s tems have heen renovat.ed [lnd improved I they are managed by Ihf' 1)(~npfif'iaJ'ies (Hith the exeeption of centraU:v artministered projects).Royal GO\\•(~t'flmt:llt of Bhutnn is (~nactin~ Ip~islation giving the 'psponsihi 1i ti0S for o&M to t.ht: h~lwfieiar.ies.The Irrigation Division is in the process of strengthening the district irrigation unit to supervise the beneficiary organization and O&M activities. The district irrigation unit makes periodic checks of the beneficiary organization and if it finds that the system is not properly ~intained, the beneficiary organization could be punished. In order to implement these provisions, the Irrigation Division is in the process of preparing an O&M manual for the beneficiaries.The O&M responsibility will belong to the beneficiaries. No grant or subsi~v will be given by the government for annual O&M activity. However, there are provisions to provide assistance in the event of damage from natural calamities. A request for such assistance would originate in the dzongkhag development committee.Irrigation systems can be classified by three management types: agency managed, joint-managed and farmer-managed. Large irrigation systems such as the Takalai and Gaylegphug Lift Irrigation Systems are agency-managed systems.The Bajo irrigation system in Wangdiphodrang is an example of a system lmere farmer and agency share in the management and maintenance.The majority of the irrigation systems in Bhutan are farmer-managed systems. Now that these systems no longer receive an annual O&M subsidy from government new legislation has been proposed to form water users associations which \",ill be responsible for the O&M.These systems would receive assistance for physical infrastructure improvement. The beneficiaries are required to contribute voluntary labor and the agency provides technical ~sistance and materials such as cement and gabion wire. Once the system is rehahili tated it would assume management responsibilities. The district irrigation tIDit \",auld provide supervision and advise but the beneficiaries I~uld have to mobilize resources from within their system.File Name: lImI . 19th and 20th centuries noted the agricultural practices. Narendra Singh the irrigated agriculture thus: \"British travelers to Bhutan in the 19th as well as visitors and experts who now visit the Himalayan Kingdom have not . . to observe the presence of Bhutanese skill in manipulating irrigation channels the natural obstacles. Both Pemberto and Rennie, the renowned British of the Bhutanese scene during the 19th century noted: 'The fields of both of the rivers were neatly fenced and water was conducted by an indigenous system channels.' Sir Claude White, the British Political Officer in Bhutan in the d~e of the present century l~ote in his memoirs: 'I have particularly noticed my travels in the country, how remarkably skilful the Bhutanese are in laying and irrigation channels, and the clever way in which they overcome what to people \",ould seem insurmountable difficulties in leading water over steep, places on bridges or masonry aqueducts, often built up at a great height.' further corroborated by Nari Rustomji, a discerning and learned observer who Bhutan in the '60s. He said, 'It was a delight to see such well terraced and irrigated fields in so many areas I visited. I do not think the Bhutanese to learn in the matter of agricultural irrigation '. \"7 ON PRESENT IRRIGATION SYSTEMS of the Systems Observed visited five irrigation systems to gain insight into the dynamics of the of the systems. Information was collected from the beneficiaries. more extensive documentation on Bhutan's irrigation systems is needed, these indicate a trend in the development and management of irrigation systems country. The following systems \",ere observed: 1) Simtokha, Thimpu district; 2)Ptmalma district; 3) Bajo, Wangdipodrang district; 4) Lapchaka, Punakha ; and 5) YUHawon (Lobesa), Thimpu district. Table 3 gives the specific of each system.Characteristi~s of the irrigation systems observed during my visit. hold land in this place as well as in Thimpu valley. Yuwawon has many absentee . .Irrigation l~ter serves several villages along the canal. Hence, water ~tion. distribution, labor mobilization, and water right practices must take into the various villages served by each system.of Management 'I11e systems visited are managed either by the farmers, by the government agency, by both farmers and agency.Farmer-managed systems. The Simtokha and Chavana systems are among the many in Bhutan that are farmer-managed. Simtokha and Chavana received assistance the government for renovation and improvement but management is the bility of the beneficiaries. Once a system has been identified for ion, the irrigation agency (dzongimag irrigation unit) negotiates with the es regarding their labor contribution. Prevalent practice in Bhutan is for to provide the technical supervision and materials and the farmers to the labor. Joint-managed systems. Among the systems observed, Bajo falls under joint t, l~ere agency and beneficiaries work together. Not all of the in this system are farmers and the water is used for various purposes. , irrigation water was used only for agricultural purposes. With the ishment of a Center for Agriculture Research and Development, water is also to this agriculture farm. Over time, the township of Wangdipodrang was and an Army barrack t~ established, creating more demand for water. A l~ter project was constructed about 20 years ago, using the water from the canal. Because of the numerous beneficiaries and mUltiple uses of the water, the 1'lmt>n+. has provided support to strengthen the canal at its weak points. The ,-'!\"\"VJlLe and fat1iers l.;rork together to maintain the canal and have received support~e Army as well. The district administration has also given attention to the enance of the system. Hence, the system is jointly managed.Agency-managed systems. The Lapchaka system seems to be dependent on agency ~nan~e and operation. One s~ction officer is assigned to this system and he is of repair, maintenance, and operation. Government has allocated Nu 100,000 lllaintenance. The person in charge of irrigation management, elected by the ' . es, is known as the~. The responsibility of yopen rotates among the lClaries and is usually an unpaid office. The canal is divided into 13 sections a yopen is placed in charge of each section. All 13 yopens in Lapchaka meet twice Any problems that the yopens cannot resolve are referred to the section , \\.;rho passes the matter to the district administration for resolution. The fine is fixed at Nu 25 per day during the paddy planting season, and Nu 35 ill out of the season. In the past there have been abuses of the rules and lill governing water distribution so that punishment and fines are imposed., lPinst transgressors.. . , In June 1988, the section officer stationed in Lapchaka reported that a separate Ii! was opened with the district administration. The beneficiaries have deposited 97,000. The interest from this account will be used for the maintenance of the , subject to the approval of the dzongkhag...The district administration is considering accumulating sufficient funds in the ~~naka account to enable the beneficiaries of the irrigation system to use the int.erest from the account for t.he O&M of the system, in lieu of a subsidy from the .-\"\"rrunent.'\" The prominent role of the section officer and the support of the dzongkhag to system give the impression that this is an agency-managed system. However, Mr. Dorje, Superintendent Engineer in the Irrigation Division, suggested that this~ not an agency-managed system in a true sense. He asserted that the beneficiaries active in maintenance and operation. The section officer assigned to Lapchaka the beneficiaries with the ultimate goal of having the system managed by the of the Systems the systems observed, annual desilting and maintenance of the canals are fanners. large systems, either the mandaI, gup, or yopen lead the annual of the system. The mandaI or gup is the head of the village elected by people for a period of three years. The mandaI or gup is assisted by the febe.febe is responsible for transmitting messages from the mandaI or gup to the The yopen is in charge of the maintenanace of the system. In small i~stems, the fanners decide Hhen and how to undertake the annual maintenance of the Simtokha. In the Simtokha system, according to the informant, the mandaI fixes date and mobilizes the beneficiaries for the desilting and repair of the canal. system serves five villages plus the government agriculture farm. The five awU.ltlges are Simtokha, Olakha, Jalu, Luthe, and Zigithana. Labor mobilization is on the number of households in each village. The command area and the number of i8D~eholds in each village are different. All the beneficiaries from all of the lages contribute labor at the time of desilting and repair, starting at the intake, tm.;ard the tail. Each vi llage contributes labor from the intake up to the The Simtokha people help to desilt the canal only from the intake to The Zigithana village, at the tailend, contributes labor to clean the length of the canal. Should breaches in the canal occur, repair is done by the in the area of the breach. Chavana. In Chavana, annual maintenance is done by the farmers. They have only ~ beneficiaries and all of them participate in the maintenance work. Because various groups use the water for different purposes, contributions desilting and maintenance of the Bajo system are more complicated. The dzongkhag the townspeople to contribute to the maintenance of the system up to the tanl{. The Anny provides manpower for maintenence up to the water tank. The for Agriculture Research and Development (CARD), established in 1982, is in Wangdipodrang. Before the establishment of this center, it was a ~v,,~~~--t agriculture farm. At present, the Center is engaged in collaborative in paddy cultivation with the International Rice Resea~h Since CARD uses water from the Bajo irrigation system it contributesmachiner:v,;.~~ cash for the maintenance of the system from intake to water tank.,:itc Until the present, the farmers have had to provide labor for maintenance work , the intake to their farms, which are situated beyond the water tank. Because so people use the l~ter from the canal, the farmers have petitioned that the Army, , and townspeople be responsible for o&M of the canal from the intake to the water The farmers would then take responsibility for o&M from the water tank to their To this date, no decision has been made regarding their petition. Lapchaka. Lapchaka has a long canal. Annual maintenance is the responsibility til; beneficiaries, who are usually supervised by the section officer assigned to system. The yopens of each section make sure that their sections are desilted. The Yuwawon system (Lobesa village) is a large system with a large number of ... landowners are required to contribute five man-days per acre to the maintenance l-lork. Each system appears to have developed a management method to accomplish annual Yopens perform important roles in mobilizing people, maintaining the supervising l~ter distribution, and resolving conflicts regarding irrigation ~ement.Labor mobi lization is compulsory in many places except in Lapchaka where fines are collected from persons who are absent from the annual maintenance work.Water allocation and distribution are two important elements in farmer-managed '.~tems lmich shape the nature and strength of the irrigation system.distribut~,on methods varied among the systems that were observed, each having ve characteristics. Water distribution in Simtokha. In the Simtokha system water is allocated to the cipant villages. Hence, each village has to contribute labor for the maintenance llie system. This labor contribution ensures the village's water right.Water distribution practices are related to the principle of water allocation. desilting the canal, the total volume of water in the canal is used by the first until planting is complete. When that village has completed planting, the volume of water is diverted to the second village. Each village receives the amolmt of available water for plantation in turn.Once the whole command area has completed plantation, the principle of water ion changes ,so that water flows continuously in the canal and all of the receive a share. Each village has its own method of water distribution. During the time of ;t.tation, each village decides the rotation system for water distribution. The said that the basis of rotation within the village during plantation and on the basis of the number of households. The mandaI supervises the The villages have practiced field-to-field irrigation and there are not many channels and control devices in the command area of the Simtokha irrigation Water distribution in Chavana. Chavana, with only eight beneficiaries and a 1 command area, has some interesting features regarding water allocation w1d ion. Water is distributed using different methods depending on its lity. This system received government assistance for canal improvement. Since water is during the early part of the season, the farmers decided to install wooden ing weirs, called g'l:!hs in the local language, across the canal at two The water share appears to be based on number of beneficiaries, not on size ldings. Water is allocated according to the number of original beneficiaries the second Heir. .,The second wooden proportioning weir is installed at a point in the canal l-1here five beneficiaries receive water, hence there are five notches of equal size cut However, the amotmt of water flowing through any one notch is not \" sufficient for agricultural purposes. Therefore, the farmers receiving water the notches in the second weir have established a rotation system whereby all ,ater is diverted through three notches for a specified time, then the other tl-lO receive all of the water for a specified time. This system has been in for two years. The Chavana system adopted the use of the wooden proportioning weir after ng about its ftmctions from one of the beneficiaries who had seen a .~~rtioning weir in the village of Dhawakha where he l-las formerly a resident.to the farmer, a High Court judge, Mr. J. Dorje, initiated this scheme to IAsolve water-related conflicts in the Dhawakha system.interesting concept related to oHnership of water share was observed in this It seems that water share is not attached to the land but considered property the individual beneficiary. One farmer in the Chavana system brought his share of from the neighboring Dha~d1a system to his fields in Chavana by digging a from the Dhawakha canal to the Chavana canal. He runs the water from Dhawakha his fields in Chavana whenever the Chavana system is not running water in its Hence, this beneficiary can use his share of water in whichever system he long as he can get his share of the water from the other canal to his Bajo system's method for distribut~~ter. Because various groups use the from the Bajo system, formal agreements regarding water allocation and ion are enforced.Water from the Bajo canal is used by the tOHnspeople, and the farmers. However, the farmers are the primary users of the A proportioning weir divides the water flow between the irrigation canal and l.,rater tank. The dzongkhag and the farmers have an agreement regarding this However, as the tmm. of Wangdipodrang has developed, its need for {-later farmers also have a written agreement, registered in the dzongkhag, Hith the ture farm and CARD that specifies that the agriculture farm receive 3x3 inches ; day and night, irrespective of season. Despite being a government farm, it enti tled to receive more than this amotmt.The Bajo system serves two Bajo Wangukha and Thango. The two villages rotate the flow of water. One l-lill receive water for 12 hours in one night; that village will take water for during the day in the next rotation. Within the village, water is distributed according to the size of landholding, .. primary \" Ii control devices to measure the water are used. The yopen and the villagers the fields and determine the amount of water to apply. ' Lapghaka ~ystem. The Lapchaka system is evolving a method for water allocation distribution through trial and error. The management of a 22-kilometer canal aloM a mountainside is a big challenge to the farmers and administrators.The yopens get together twice a month to determine the water distribution and schedules. Observation of the canal reveals many places where damage has because attempts have been made to divert all of the water through one Other damage to the canal indicates that farmers have attempted to open zed outlets. Yuwal<1at1 system. YUl...\",~ of the system. The tOlmspeople and Army also contribute manpower for the effort. External resource mobilization. All of the five systems observed had assistance the government for the renovation of physical structures. system can be a candidate for such improvement. The farmers, through the gup, In some cases, ies talres a _lllag~ head.especially plays an for renovation.tudes, red rice is grown, valleys, chili, mustard, important crop.As part of a cultivation of early paddy.l*lter conflicts. petition with the irrigation tmit of the dzongkhag. The distri~t puts the proposal before the dzongkhag developnent committee. Once ~roved by the dzongkhag developnent committee, the petition is sent for approval from the Irrigation Division, which checks the technical feasibility of the system.the irrigation unit of. the dzongkhag. ~ce approved, ~e ~Jrnag un1t 1S 1n charge of the renovabon work. In all 1mprovement proJects the .. ~~rs provide the labor for the construction work.Although very few conflicts are reported in Bhutan, mechanisms exist for the ... mlen conflict arises within the village regarding irrigation water, it is settled the gup, or the dum, who is the caretaker of royal lands. bigger dimension, it will be referred to the dzongkhag, Sometimes the case is referred to the judiciary court in order • Some form of irrigation organization exists in ~he beneficiary-managed Yopens are elected by the beneficiaries to carry out certain they are paid, but this is unusual. Each of the turn at holding the office of yopen. The gup or mandaI is the He is paid by the government but elected by the villagers. The gup important role during the time of renovation and selection of the He keeps the record of landholdings and organizes the farmers desilting and maintenance of the canal. The dum is the caretaker of the royal lands. Since he is close to the royal he is influential in resolving irrigation-related conflicts within aThe systems observed are in the valleys and terraces close to the valleys. Irrigation activities are primarily geared toward paddy cultivation. At higher and in lower altitudes white rice is cultivated. Around and wheat are grown as second crops. Wheat is not yet a Wheat straw is used as animal fodder. program to increase paddy production, experiments are going on for Depending on the availability of water in an area, Agriculture Department will designate areas where two paddy crops may be grown. irrigation systems will not be allowed to have two paddy crops because this may CARD is introducing row plantation hlith the objective of introducing roter ~o~n as part of an extension program that includes farmers in the Bajo system.are subsidized, and insecticides are free in the Thimpu, Wangdipodrang, and \"•\"\"'ll(;l. districts.In order to increase the area under paddy, government has encouraged people to hill slopes into terraces and is providing Nu 300 per acre for such terrace\"1. Some form of irrigation organization exists in all systems that were ,,~ , .The irrigation organizations perfonn the tasks of water ~isition, loI8.terand distribution, and resource mobilization, especially labor mobilization .maintenance of the irrigation systems.Annual maintenance is the responsibility of the beneficiaries of the system. the yopen or gup decides when desilting and repair of the canal is necessary. on management officials are found in the villages. The Royal Government of Bhutan provides material and technical support to the on systems designated for assistance. Usually the government provides ion materials and technical manpower but the beneficiaries contribute the for the construction activities. Labor mobilization has become a difficult task IIIfll1Y of the farmer-managed systems because canals are long and manpower is scarce. constnlction works are performed under the supervision of the irrigation Contracts for construction are not allowed when the government assists a rnment subsidies.The irrigation systems observed in Thimpu, Wangdipodrangj and Punakha have flexible systems adapted to the local topography and terrain. Hence, ~vernment regulations pertaining to the beneficiary organizations should be flexible.rules applied to all systems might render the irrigation organizations Issues on tenancy rights create problems for management of the systems. In of the villages of the Bajo system, tenancy changes each year, requiring water location and labor mobilization quotas to be readjusted according to the number of iciaries using water that year. In the Lobesa system absentee landlords are predominant. The tenants on these have no assurance from one year to the next whether they will remain on the same Where there is no sense of security, the tenants have little incentive to or improve the irrigation system beyond immediate necessity.Bhutan has a variety of irrigation systems with diverse arrangements for ning !~ter share, water allocation and distribution, and labor contributions. ,ariItAt-iOn organizations are a strategic resource enabling better management of on systems. The irrigation organizations which are presently in operation in need to be properly understood before water users associations are introduced the country. 5. In many systems, the roles of the yopen, gup, and dzongdha are spelled out These leaders presently play important roles in making the irrigation functional. The government plans to create water users associations to the O&M of the irrigation systems. Any irrigation organization which is needs to capitalize upon existing local expertise and integrate the already leaders and management practices into the new organization.Over time, the demand for water for other purposes such as new settlements, I industrial use, and for government agriculture farms will increase. Hence, ---------------------------------------------------------------------Areas Wet cultivation Dry cultivation \"iThe I{ingdom of Bhutan is a small, rather isolated state, with a total area of •500 square kilometers and a total population of 1.165 million, situated 'between the Plateau and Himalayan crestline to the north and the Brahmaputra plain to the In 1961 Bhutan launched a planned process of economic developnent. The First Year Plan (1961-66) primarily concentrated on developnent of infrastructures. Of the government departmental outlay, the construction of roads topped the priority accolmting for 66 percent of the total $10.7 million budget. Some of the funds for the construction projects went to local contractors who made rapid and formed the core of today's affluent group.Another major thrust of both the First and the Second Five-Year Plans was onIn this way the government established a number of primary and secondary and also provided scholarships for brighter children to study abroad. This the government, both at home and abroad, with educated school graduates who 1970s were able to shoulder government responsibilities. Thereafter, the sp.ctor found public popularity and created momentum to form today's the dal./tl of developnent broke the kingdom's traditional homogeneous society classes and u!=lhered the people into a new era--an era of business opportunities, free medical care, and job prospects outside the traditional sphe~e.AID SYNDRCME\" The total outlay of the Second Plan (US$ 20.2 million) was 90 percent larger than First, and the Third (US$ 47.5 million) was 139 percent larger than the Second. three Five-Year plans were developed entirely by foreign expertise; and, in fact, total outlay of the First and the Second plans came as grants from the Government I~ia.As a result the peopJe knew little about what these early developnent Hould mean to them in the future. Furthermore, the continual aid of the Government of India, the availability of the United Nations (UN) wc!Upnent assistance when Bhutan joined the UN in 1971, and the kind gestures of (such as Switzerland, Japan, and Australia) to participate in Hork escalated the confidence of the people in external aid.of the bilateral and international aid, the Government continued to add projects, rehabilitate settlements, reduce taxes, and subsidize prices on commodities, fertilizers, agricultural implements, and cement. This made D. N. S. 1987. Twenty-five years of developnent in Bhutan. In Mountain and Development, United Nations University and International Mountain Colorado. 7 ( 3 ) August. The Tramd tion Phase began once the ne'ldy ordained Planning Commission toolt '.0 ibi Hty for preparation of the Fourth Five-Year Plan 1976-81). Until then, no N?sponsible government body had existed to co-ordinate developnent plans for and planning; most tasks had been undertaken on an ad hoc basis. The Planning ~ ssion established statistical units, channelized information from audit and accotmt units to generate at least the basic data deemed necessary for ng on progress towards its goals. Having routed most information through its trative units, the Planning Commission latmched a $101.6 million fourth Five Plan in 1976.Although the format of the Fourth Plan differed little from that of earlier , emphasis this time shifted to agriculture, which was allocated 29 percent of total budget. The Government hoped to boost agricultural yields, and thereby the already staggering dependence of the people on the Government • ..w~~neously, large investments, outside the plan outlay, were made in a 336 hydroelectric project, various industries, and major irrigation works, in to estahlish the revenue generating base of increasing the internal contribution ilie Fifth Plan outlay. The capital investment came from the Government of India in grants and loans.But upon evaluating the feedback from the Fourth Plan in 1982, the Government a record food deficit of 25,000 metric tons, tmbalanced regional developnent, a huge overhead cost due to the burgeoning bureaucracy which consumed most of the from capital investment. This convinced the Government that there was a basic in t.he system, and it was decided thereafter to slowly lead the people away from \"Perpetual Aid Syndrome\" towards \"self-reliance\".The self-reliance policy of the Fifth Plan (1981-87) required a structural change the bureaucracy. As the first step, the Government decentralized the developnent tion into districts (dzongkhags). In the dzongkhags, Dzongdhas (district ) were entrusted to constitute district planning committees (Dzongkhag Tshokchtmgs) to decide upon the nature and quantity of aid required by the in each district. Every developnent proposal was to be suhnitted through the people. The ~mmpnt officials would help the people to understand the feasibility and cost of projects. Also, it t~S made mandatory for the public to contribute either cash, or materials. Only upon meeting these conditions can the Dzongdha plan proposals to the National Planning Commission for final approval. Another obligation requires that the district plan must conform with the general ines stipulated in the National Plan document. Also, once the plan has been no interim alteration is permitted without the prior approval of an authority. In addition, the progress of the plan would be periodically and evaluated by an expert team deputed by the National Planning Commission. ~ongdha is accountable for mismanagement or slow progress. This Hork format was intended to streamline responsibility and bring general' to the people of the amount of money the Government had been committing to I07.()hglthag. Also, the villagers would become cost conscious and be encouraged to free developnent support facilities in agriculture, animal husbandry,• and health. In addition, the dzongkhag's elites would become familiar \\.ith ing expenditures from t.he developnent infrastructure, and would comprehend _J>';'t:>I\"Pssi ty that someday the people should be left alone to manage their own reforms in the Fi fth Plan lolere concerned wi th reorganizing the \",\",1\"nr\"V, cutting dOlm tmnecessary staff, and commercialization of public These refonns helped the Government reduce overhead expenditure and \",,~8e lolorking efficiency, and they produced significant annual revenues. It is that the revenue generating sources, such as tourism, industry, power, and will continue to improve in efficiency and will provide a significant contribution to the budget of the Sixth Five-Year Plan . The estimates total revenue at .2 million during the Fifth Plan period.It seems that everJ~hing that could be accomplished by the bureaucrats has been But there are remaining taslrs of a scientific nature if Bhutan is to pursue a ;.lSwined, holistic approach to complex motmtain developnent. Of the many important , the follOloling require immediate attention: -To investigate scientifically whether or not a subsistence community tolith an of about one hectare of land per family can become self-sufficient wi thin a n time period.-To suggest an alternative approach to tackling the household problems of self if the present milieu inhibits the society from moving towards this goal. -To determine the present status of soil erosion, and integrate a new village soil management system based on agro-climatic data.-To assess the present status of environmental degradation from road cuttings, logging, industrial developnent, hydroelectric dams, and mining, and then establish a regular moni toring body to record the environmental changes wi thin a time period. -To create facilities for recording time-series data on rainfall, temperature, 1.ind and also on stream-flow and sediment transfer. This information is important deciding Hhether or not a cycle of catastrophic events would effect developnental capital projects in the specified time period. 'Robert Yoder and SoB, UpadhyaylThe first official rccogni tlon and estimate of the extent of farmer managed irrigation systems (FMIS) in Nepal was made oy the \\.laler and Energy SecretarIat (WEGS) ill 1981, The size of systems ranges frolll a far:mer's plot consisting of a fr\"ctlun of a hectan~ (11lI) to the federation of several organizatiolls and dIversions iutu ,I system whIch as much as 15,000 ha, However. it is tl1e sheer: mlluber of systems than their size that makes the greatest Impact 01, IIT!gated Fanners ill Nepal have been active for 11k1ny generatIons In the technology available to them to Its limit, They have tapped all easily accessible water and l\"nd reSOliL-ces to develop irrigaled agricultIlL-e, Excluding tile systems in lhe till-a!, simple eXlI:apolill iOIl uf th\" [\"stll tsIn this paper along wi tit information from the I.alld Resource f-Iapping (l986), ludicates that thc,'e lIIay hl. well OVt'r I J ,uon LUlU,,' 111:\"\",£,,,,1In the hills of NepHI.The impact of FHIS in ICIII.S of suusistell\"\" hence the national econolllY has not ueen \"\"H-L\"I Iy slllclow 1,000 meters (III) which prod\\lce three CI'OpS IH'\" rhe net allnual illcrease ill cer\"al productioll .... itll ill igatJolI UVt'L lhal of nearby ulIlrrigated land was found 10 Le well 0\",,1' 6,()()() kiloglillflS 1\"'1'(kg/ha), ,As a conservati ve estfmate olle call \"~S'IIIiC oil average in production of at least 2,000 kg/\"\" tlirotlgh I'I-IIS Using tids yield Increase and lile IJECS estimate t1wt rOllghly 390,OO() II\" al\" such systems in all of t/ep,11, olle call sl\",w til\"! the ill<:l\"\"\"L'lIlal in pruduction due to nHS Is provldillg the toull sl\\],sislc.,,'c It:vel cereal production for at least 30 percellt of Ilepal's 1'''1'\\1),,1 iOIl, lids calculation is hased Oll tile average cereal COIISlIIIII'tioli of I ()I, kg/I'U sUli/yr (I:\"adl1 illll'ro,\"\",\"('\"',, 111 th\" \"''1tf'r \"c'l\"lsltioll nnd d('llvery r;y.':I•\"1Il will 1\",1\" fI'!\" 'I,,• ':y~' \"m \"fffcl ... \"cy, Furthf'r, th.,t nffici('nt opr.Iltloll '\" \"\"{',,son, T\"\"lml\"{,,ns of1',,\" d('cl.,re such systE'ms to h,. II! In',,1 '1i<:!\",!,,,lr \"ilho\"I' fh(' \"\"r1{,l',,,\"ndillg th:ot tfll'y will b(' transform('d Illln vl,,'d .. \"'Y\"\"'III~ hv fh\" h,,!!,,(lcl.1I'I,,<: \".S \"OO\".,s wtll\"r Is \"vl1ilnhle. II! \"\"\"'\" <,;t':.\", {;l!IU\"n: \"f(' \\\"I11inr, 10 IIl\"'''s!' I1S milch :os 50 p('u;r>I1•d:oys/h\"/YN,r ill m\"illf\"lnl\"f. Ih.. lI' SV\"'''ln,'' (Y,,n, f.1r,\"(',-,,, \"r(' irtf.\"!\"\"I\",I In 1'{'(llICillg1h(' ('[fort, ,11lbor llll y tor the Opel\"iitloll alld of their I rrigatioll system, TIll s Implies mil:dlllum participation rmers in the idelltiflcation of the constL'coint!>. examination of ves, choice of the appropL'iate action, and Implemelltation of the Tioe aclioll research mode of carrying out LI,e 1010.\" allows specl fie to be addressed as they an~ idenllfled, R\"collllnended act lOllS Call lJe .lIented immediately, offerillg an opportunity to furthCl' ~tudy the illlpact activities and to 1lI.lke additional recolllluclld<.tiolls .:lIId carry th<'1lI olll ry.the Proj cc tPrimary ohjectlve of this actlon-n'seilL'c11 Ploj,:ct Is to <,xauollle ways t fanner managed systems thill wi Il iii low tlwlII to overcome the lilts limiting intensification and expansion of Irrlgilt;,d agriculture, tides testing lower-cost techniques illld technologics and maximizing rtlcipation and resource Inobilization of the t,\"\"le al>out four minutes.The error in this type of estimate is high. A mill can grind grain with 0.25 -1 kilowatt (kw) of power and power is a function of both the discharge and head (height the water is dropped) as well as the efficiency of the particular ghatta. However, it does give an idea of the relative dIscharge and of the variation over the year. Coupled with Information from the farmers about the adequacy of the wate,r supply for Irrigating different: crops and whether there was sufficient water to expand the area irrIgated, the discharge information provided insIght Into the extent that the water resource had potential for further utilization.To the extent possible the command area was also inspected. ThIs was a difficult task among the mallY ridges and valleys and not always possible in the time available. The farmers were asked to estimate the atca ill the hydraulic command of the canal, how much of that area Was actually irrigated, how much was cultivated but not irt'igated, alld the extent uf the waste at'ea.Uhll(' (,l\"\".illillr; th{> cOIJI'a11nd ilr{>a, fllrm{>rs w('re also asked about their :lr.\" I clIII'lIrill prilC t I.e\"s . !':\"tilMt\"\" of 1n (ld .1[('.1 WE!re morE' difficult for farmers to make than \"\"t'I . ..11'<>\" of W.1!'(' I' dl!lchnrr;\", The clIdnstra1 survey of this area is complete :I,,\" '1\\(lIvt(hl:1l~ hllv(' Imowl.E!dge ilbout th{>ir own holdings but not of the \"I',r.n•r.\"I\"\" tnt I .. , syst\"lJI. Th!' most common mf'lIsurE' of land area used by the f.1nn\"I\"\" fn tit!\" ,1r\"il is the volume of lleed required to plant the area. A ,\"\"\"gh \"~tlmnl\"\" for cOllv{'rsion Is 20 (J.Iltti of seed/ha (91 liters of seed/ha).I!IoI 11:(' most sy:Hf:'IJI>; >;tudt!'d ill western Nepal. few of these systems had ,,'!'IIIt! fi\"d th{' r\"soure\" mob11i%atl on or water allocation of the system on the h.,~t\" of 1.1I,t! IIr\",\"\" Th('r\"fore, farm('rs have not needed to compute the, total 1\",,,1 IIr('n or s\"\"d r(\"I\\tlred for a system alld found it difficult to do so. The 1I('{\"\"''',.y of I It(' 11II1d .11:\"''' information could be improved wi th good quality air rhotos.Slnc\" m:lr>; of .1 slIltllble sCllIE! are not available, the consultants were :I\"J:I\"<1 to milk!' II sketdl 'MP of the ar{,B showing the irrigation water source, \"OIlC\" \"II!'.\",.\"\"I (If tit\" cmllll, lind lllyout of the command area. The map fl1r1wfl\"t! tit\" \"\",.\"\" :md rd\"tiv\" loelltions of the intake, canal, and command .1' \"\" of \".,ch ~y~tNn f'\"oro thllt plIrticular water source.TIt{' r,'oj\"ct I1r,,\" covers about 200 square kilometers (km 2 ). The 'mll\".,.~\"tf Rtv\"r ... \"\"not b\" \"~,,d extensively for irrigation because it is 'f\"\"ply In('{\"NI. fili'I I\" 1 fir/';\" , wIth vioIf>nt floods, Almost all of the inlr,,,t,,,, fl\"ld\" III thl\" PI'oj\"ct I1r\"\" receive their water from the 25 trlhllL1ry \"I'r\".1\"~, IIn<;t of n.\"\"e ~tr\",1m~ lire stef>p-stoped having highly <1,,>;1 ,\",lcl \"'''. ~hflr! -rllIl:l1 Ion flood\" durlllg til{' rainy season and very little ...1t\"r III th ... dry \"'''''''''\". Til\" r\"coIIII\"I\"\"'\"IIcf'/lnv,,ntory study identified 119 irrigation systems in th\" rroJf'ct \"r,,11 with cnnals longer than 0.5 km. These systems irrigate \"hollt 2,100 hll of hlld lind loIcre foulld to benefit approximately 10,100 hml\"f'hold\".I\" \"ddltloll thf>re arf> ml1ny systems with shorter canals and small ... o!nrn:1I1d ,1r\"IIS III til\" v\"ll\"y hottoms loIhich hllve easy Rccess to the available w.11\"r T\"\"~,, \"\"1'\" IIot I\"dud\"d '\" the Inventory because they have little 1'01 f\"ltl\" , for It,t''lI':lfl ...,,tloll or ('xp\"l1sIon, Tit\" 10ll[;\"\"t \"'''1..,1 w\"s foulld to be 5.5 km from the source to the command lII'{', 1. 011 th\" flv\"rllg(' the <'I1,,\"1s Are 1.9 km long and serve 100 households.S\"v\"r,,! \"y,'t\"ms i,'rlellt\" over 100 hR, Up to 800 households own portions of latld f 11 the Inl\"e\"r sy\"tf'ms, The aVer\"ge land Rrea served by the systems in Ih\" \",r:udy I1reo1 Is 18 hll. However, the median area covered by a system is IIhout 10 hll.Of the I1rrro:dlMtd,y 3,800 ItI1 within the boundaries that can be Irrigflt\"d by grl1vlty (hyd'\"\"lIl1c or gross command areR) from the canals, 30 pl\"rr,,\"t Is too st\"\"r 01' rorky for cultivation. Of ~,e gross area, 56 percent is Irrlg:l!\"d .111<1 o1l\",,,t If. pE'rc(,IIt is cultivated but not Irrigated because of It,suffld\"nt wilt\"r In the !louree or Inl1bility to deliver the water to the I\"!l(f , Til....1r\",1 II I I r,,,t,,,' \"\"rr\",~E'lIts lIhout 11 r\"rc\"nt of the total 200 km 2 P,\"oJ\"\"!' \"1'('01 t\\lth\"tlr.h I'h\" project ,,[('a is sml1l1 and no claim can be made that it is average for the hills. this is possibly the best data presently available for estimating the area irrigated by fMIS in the hills and for estimating the total number of such systems. Extrapolation of the number of systems and percentage of area covered by fMIS in the project. to all of the hills and mountains of Nepal, yields an estimate of at least 17,000 systems covering 300,000 ha. The basis for land area in this calculation is taken from the Land Resource Happing Project (1986) and only Class I, II, and III land (land classified as supporting cultivation) from the siwallks, mid mountains, and high mountains was included.Out of the 119 systems identified. 25 have received some form of outside assistance in the past 20 years. For some the assistance was a certain tonnage of grain for working 011 the improvement or rehabilitation of an existing canal.In such cases the beneficiaries did most or all of the work themselves. Eleven systems in the study area have been built (about half are still under construction) by the Department of Irrigation, Ilydralogy, and Meteorology.A major accomplislunellt of th\" reconnaissance/inventory work is a detailed listing of the potelltial for either intensifying the cropping pattern or expanding d~ area irrigated by each system. Out of the 25 basins of the minor streams tapped for irrigation in the study area, only 11 basins with 21 different irrigation systems \\.Iere identified by the cOllsultant as having land and water resources wilh potential for expansion of the irrigated area. A more reliable water supply would allow more intensive cropping in many systems beyond these 21 physical system would assist 21 systems identi fled by the to the largest gain in food and impn,vements in both the management and in making this possible. However, assisting the reconnaissance/inventory study is likely to lead production.In addition to the physical re'soul'ces, lhe study examlnetl operallon and maintenance (O&H) activities of the irrigation systems and agdcultural practices.Even by spending very little extra lillie in caeh system the leam collected valuable information about lhe hi.slorlcal dev,,)opment of tt.\" system, the current organization for O&H. and the capability for resource mobilization. This information was considered along with information ahout the physical system in determining the pOlential for eXI'II <;ou\"trnilln; of tim\", mOllE'Y, ::md manpower, rapid appraisal is a u,,<'flll 1'001 for n!'\",\"s!'illr, ('xisting irrigAtion system!!. It can be used to 1,I(>III'/.fy k(' frnmework lind a tE'am thllt is integrated in It '\" (,Hon:. Intnllr.lvn Illt('rllctloll of thE' tl'lIm wh111\" in the field leads to rHl\",,,•,,h,,,,klllr. of \",form;,I•lon I1ml an opportunity for follow•up questions.0\"\" mU!'It r\"cof,IlI;:(' I\"nt rnpld nppraisal hns limitations. Not all '1'1(' \" t lOllS ('''II hp :11l\"w('l•nd by it. CompIE'x issues cannot be unraveled in a short tIme, SomE' rpsllits nnd concludolls will inevitably be wrong. 1/1('I'('.,s(''' ski 1 t III crns\"\"chE'cking can reduce thls problem but there is always wl'rf,,) tool!'l f<'r collecting lIccurltte informntlon and should be used 8S much m; rO!'l!'llble.Jntl'rd.ew!'l should bf' conducted wi th a checklist to ensure that thf' fmportnnt rolnts fire not missed. Open-ended discussion should bE'! f'tlcotlrngl'd hy avohllllg formnl qUE'!stionnalr!'s. Since time is a factor in rllr1d nprrnl!!.,l. choo!'le a gUide who knows the people and is familiar with the pnrt of the Syt'!t-!'m to bE'! vlsit!'d. This w111 IIssist in moving about and mpptlng kpy Informants, allowing for rapid investigation. Use maps or aerial \"hotos to l'Ipl<'ct locations and pick out key categories of information to determine which peopl.<, to visit. Key informants to interview should be l'I!'l<'cted for. thpi r specialized knowledge: irrigators (head, middle, and '•nU). women, nf';ri<-lIttllre workers, and project staff. When different ~'('rl'lloll!: of il'lsUE's arE'! given by dlfff'rent informants. they must be interpreted fr\"m the rersrective of the different interests within the community. On senllitive issues one must be careful to remain neutral.ror mnlly irrigatIon syst!'ms in \"!'pal, what one sees in the field visit will 1)(' dpp('f1(''''nt \"rnn thp timp of thl? yE'ar. Some systems are not orerating ill thp dry S('I1S011. liost systems hllve been built for irrigating monsoon rice. It would bp dell I table to visit thpm during the monsoon even though that Is thp time wl!pn I tnvpl is most difficult. If a system is visited whlle it is 1I0t orpratlng 011{' must look for cluE'!s to how the system might function. for ('''flmrle, thf' ctopping pllttf'rn and the extent and location of fallow land would If'ad to qu!'stions about water adequacy and the management of dhtdbutlon. TIll\" logic for type and location of physical structures like \"'lI1(>ducts, siphons, 'mel gntes, or lack of structures, llre easiE'r to undrrstflnd If th... systpm is seen in operation but can also be visualized by imaglnntivE\" qU\"'J=:tiollfng. rr~ara~~t~~~~~~ef~r~~id appraisal study. Gathering all nvallablp informfltlon such as maps, rrevious reports llnd air photos, is the logical wfly to h...gln any study. To become f~mlliar with the study area, there is no suhstltute for desk work. If a large area or large number of systems nre as~lgned ror study, it may be necessary to do a reconnaissance. It is not nl'cP!'lsllry thllt all team members participRte in this step. One or two pprsont'! can do the rf'connnissance. nle purpose of the reconnaissance is to h... lr in spl ...ctlng, or limiting, the type and number of systems for furth!'r r.t ...,y.It-shout.1 l'.lv... fill (lvE\"rvlpw of the situl1tIon llnd th!'! reconnl1issllnce t!'pOtt sho1lI(1 rtnvl,lr v.,ll1l1hle background mllterial for hrieHng the team. fQFmatj.Q!L2.LJ;.l!e tea!!!. For {rriglltion studies it is useful to have at l!'nst 11 mix of four discirlinary skills on the team--organizationnl, cultural/social, teclmical, /tlld agronomic. However, even more important than the discirlinl1ry mix is mutual respect /tnd an attitude and desire to learn from ench other's point of view. Three to six members on a team allow easy internction and discussion. If a portable computer is available, an expf'ri!'!nccd typist with the tellm in the Held would help reduce the drudgery of writing and speed ur the report writing.Rapid apJ?1:ahal activities. There should be an organizational meetil1g where ~nforml1tion is shared and roles for the study are established. A team lender should b!' selected to assIgn tasks: logistics. public relations, sch!'duling. All of the background materilll available should be shared among all of the team m('mbers. There should be discussion about the purpose of the study nnd the fotm.,t of the rerort. The checklist or question guide should be disCUSSE'd and I1m!'ntiE\"d by consensus. It is useful if this checklist can be arranged in thE\" dE\"\"lred outline for the Held notes. This facilitates ~ rging each individual tealn \",cmher' s not\"es into OlW cOlllplete sel 01 n ..n rehensive fIeld notes containing all observations and data collected.a set of notes can be more easily checked for corlsislellcy than each r's separate complete set of notes. A sample dwckllst that doubles as outline for merging the field notes Is Included ill Appendix I.A useful exercise for the team in the first meeting would be to discllss interaction of the various irrigation activities.This would help to rscore the need for different perspectives to eslabl ish a comprehensive rstanding of the irrigatIon systeln alld how I t operates.A matrix shO\\~illg inten-eiatlonsidp of organizational, physical and watcl-llse activities is in Appendix 2. This matrix co~ld be used to faci Iltate discllssioll.If at all possible the team should be resident In the command area while the field.There should be as much Interaction as possible wi til fanners DO an Informal basis. The team must be disciplined in not displaying lIuthoritative behavior. They should answer questions asked by faL-mers about the reason for the study as soon as they are raised wi th as Inuch detail as necessary but without giving false assurances abollt assistance.Sensitivity '\"about intruding upon the farmer's time is Imput'tallt.Foucl aud services should be pa ld for.The team should tL'avel tlll'ough the system tugether the first lime (walking, If possIble) to share ohscrvations ,HId Jointly condu\"t (nnllel: 'Interviews Theil the gl\"OUp sltou1<1 break into small el\" uni ls ot two <)l\" tltn'e -for subsequent vislts.Useful suggestions from CIIUUlilc,s <111<1 Carruthers (1986) for offsetting ft-equent appraisal biiJses wId Ie \"ilHylng Ollt field \\JOII< given III Table I.In addition to wdlillg notes I\" thc field (wlli Ie \"',,;e''.'ing the sy';lelll discussing with Ilifonnan(s). th\" t\";UII \",,,,,,ilel's sit .. ul,\\ spcnd time ,iIul,,' each day rewl\"ltillg the noll'S ilcconlillg 10 tit(' aIP-\"\".! \"1\"\"' \"\"I I ille ;il.d lIuLillg -certain the lIotes iJre cOlllpl,,«'.I[ a typisl Is pan ol Ihe li
:;s(\"ntial thdl c:ich {,,-~.JUI IjH\"W~h:l•-S lloteS Lt...' compiled Into a master not,\" [i Ie accordillg to the \"bre,'\" \"I\"''' \"oLtille _ This can be done by each tealll mC'lIIbe, or Oil\" illdi\"ld\",,1 \"\"d Is g,,,\"lly Llcilil . Th(' product of r.,plrl npp1-\"I,snl I~ .1 report which refl(\"cts a well IlIt<:>grntpd tp.,m effort.TIl(' Int(\"grntion bpglns with the organizational m\"e t I \"g wh\"n tasks amI ro I f'S are n<;s igltl'd 11l1d cont Inues in the fie ld as notes of \"1\"clI~~lons m'f> comI'11('d_ The .. ffectivpnE\"s<; of rapId appraisal Is due to thf' !\"\"m \"ffort nnd uti I izn! 1,,\" of input from all te\"m members on all issues.-28The style of the report should reflect the purpose for which the . . tion is intended to be used, If the primary purpose is identification description of systems, the report will be mostly nat'ration, 1I0wever, if ison of systems is planned, the variables to be compared should be if1ed before the report is written so that the material lo be cOlnpat'cd different reports 1s presented in an identical format aud is easi ly fOllnd each report, TIle structure of the final report should be decided uy the group and not need to follow the organization of the question guide, To ensure -Yater quality: salt, lime, etc.-Other uses of water: power, fire protection, animals, etc.-Yater constraints to expansion/intensification of irrigation.Canals: main and branch -Type of construction, materials, quality, and condition.-Seasonal and long-term changes.-Sketch or map of layout.-Distance from source to first fields_ -Length of roain canal in command area.-Design capacity of main and branch canals.-Density: including field canals (m/ha).-Condition of rock and soil along allgl~ent.-ConditIon (specify In which season). Boundaries of the irrigated area -Irrigated area for each crop. -Changes in system over time: amalgamation, expansion, Ot loss.-Limitation of expansion for each crop' ~Iyslcal, wuter rl~lts.Drai nage -In command area.-Escapes from canals.Salls.-Type: head. middle, tail.-Fertility and sultabl I i ty for Irrigated agticllllllL\"e.-31 -Committees: regular and ex officio.-Informal leaders.-Relationship of panchayat and political leadership to system.•Federat ion/unitary.-Central.-Regional/distributory.-Village/farm channe 1 (mauj a) .-Regular: time, place, who calls.-Extra.-Purpose: resource mobilization, accounts, maintenance, conflict.•Attendance: landlords, tenants, women.•Penalty for not attending.-Leadership: moderator, minute keeper, how selected.•!tow are resolutions passed? vote. consensus.•Records of meeting.Conflict and conflict managementExtern\"l -Purpo!;e.-Source: -l4ho.CI\\II~E'. nnturt>. freql1t>ncy of conflict, .Specific to cropping sea~oll? InternAl or t>xterlllli to the system . . Among systt>ms, .tJon-Wtlt!'r issHes . of rt>sOUrc<,: cM;h. inhor. in kind (rf'munprntioll. t>tc.). animal, bullock c\"rt, locnl b.owlp,Ir,(>, -Ore\",,1 z\"tloll to mmlllge -Accounts of rf'sourcf'!; dut> mId contribut£>d.-AllIlu(ll quantity of ellch typt> of resource.for not contributing. amount rt>\"lized from fin!'!;, how collected and used? is conseqll(,lIce of not p\"ying flne? are funds and in-kind resource!; held? Is there intermediate (short-tt>rm loans) use? -Discrimination agllin!;t contribution: enste, sex, age.if family does not have male m('mber? -Contractu,,! arrllllg('m£>nl's for rna intf'n,mce: m('thod, reason, -Resource generating activity: mill. over time in: rules, roles, resource mobilization, processes lecting functionaries, etc. •. '.wsnges in decision-making process. '.process of allowing new outlet from main canal .•Te[Jlls and conditions of external agency for providing aid and resolvIng conflict .•Change in involvement of panchayat or district offices .•Changes in re lationships wi th other systems: water sharing when temporary damage in canal, sharing resources for maintenance. All Irrigation systems require .1<~r.ompllshpd if the system is to function productively. ml'lII:'1f.,t'ml'llt ,act-Ivl t f ps focuses dl rectly on the :!Ilo(,: 'Itt'd, dfstrifmtE'd, nnd, if there is exces,\",. m:'ln,'gt'ment activities dt'als with the physical structures watpr, A final SE't of activitiE's focusses on 101al't'r and structures and includes decision mRking, that certain essential tasks be One set of water. \\later must be acquired, drained. A second set of for controlling the organization which manages the resource mobilization, CO,\"Immicnt ion, and conflic t management.There is internction among the activities of t:he three sets; for example, the organization must decide how to operate the structures to distribute the water. Thf! matrix shown in the figure illustrates these interRctions, Not all activities are equally important in each environment, :' 111(1 tilt' farmers' irrigation management institutions will reflect the relative Importance of activitIes in a particular location.For n rapid Rppraisal study it is instructive to use the matrix to formulate questions ahout the management of the system. Each of the 64 boxes is a potentially important interaction. For example, one might ask what dt'clsions need to be mRde about the operation of the system as it relates to watt'r nllocation, Often whole blocks of interactions \"boxes• are not Tl'lev:mt for n particular system. This mRtrix is useful for examining the :'Ir.tlvltll's IlItprnal to the irrfgation systE'm . .,The Pl'OV1SlOn of fanner-to-fanner training of Sirsiya-Dudhaura farmers thuwa brought a turning point in the activities of the tolis. The irrigation system is now largely operated and maintained by farmers..\" ~ assisted by IMP in preparing a training program for the visiting fanners. This program helped them in three ways. First, it ~ them to ask themselves, if the fanners of Pithuwa can do tilis, why we also assume more operation and maintenance responsibUi ty'! Second, them to broaden their kriowledge base about how to carry out ~8nization activities. Third, they had the opportunity to learn skills for ~rce mobilization, keeping records, for water allocation and diStribution, etc.,d Fanners in Sirsiya-Dudhaura engaged in numerous channel cieaning , of' .;iivities for the winter crop. The number of people involved, and the amount ordesilting of field channels was substantial. Along with this, there was a f~ation of rules and regulation by the tolis fo~desilting tile field dlanne1s. This represented an important step forward in the InStitutionalization of WUAs.The physical il1lpICt of this acti vi ty was an increase in the extent of IofIeat planted in Sirsiya-Dudhaura during the 1987 winter season. This was fBrtJy due to a greater water avaiJabUi ty in that season but farmers also .ttribule it to the organized efforts of the toils in desil ting field mannels. They allowed an easy flow of W'dter to fields, thus water scarcity 'minimized. Also because of the toJis~, fanners had more confidence that would be shared fairly. Fanners are 'expecting to increase the extent wheat coverage even more in the next winter season (1988).In the second year of ESI aclivities, it became relatively easy to get , input in deciding on essential iUlprovements. Negotiations took on the basis of groups along branch canals. As pat of the involvement fanners in the rehabilitation process and in preparation for tileir taking responsibility for Q&M, petty contracts for construction were awarded to 1'hrough this means they are tmdertaking a large portion of the ESI The experience gained from worldng wi th tolis in construction ties ,,,nl be a guide for plaIUling this year's ESI activities in Dudhaura and in other IMP projects.The farmers are sutrting to feel a sense of responsibility and ownership the channels. Regulations were enacted by the tolis prohibiting damage the canal bunds or outlets. Reenforcement of this sense of ownership by is important in order to promote their participation in irrigation inter-group association (Sangh) has been fonned from representatives tolL 'Ihis association will work to establish inter-group tion, to /flake inputs to decisions at the main canal level. and to suggestions for water deli very ard distribution. The conduct of monthly IIg, keeping record.q, and ma1dng inputs to the decisions of the system Cl'Oll1 this ,.ill be taken care of b,v lhe associations. Requests for water clb'livery ,.ill be made on behalf of the WUA and group interests. Group input QJ' t! group interaction are increasirl,l!l,\\' shaping the t.mter lIl8l'l8gement 8ctiv.~lies jn S-D systems.wtwn MJAs Here started ini tially t.here 'JaS a confrontational ~illt.iow;hip \",ilh lhe a~el1cy. UnRlet IIL'Loda mad demands were frequently I\\.d'isclIsscd lJy ranum's. Once thpi r inputs Here t . .a..lten into account, hmo/ever, tile confrontational 9i hmlion gradually \"chBll,l(ed. into a cooperative one bell~een t.he fanners mId agency. 'Ille follm.ing episode is an example of the ol'ganizlll i\"m:~1 maturity of the WUAs and Ule agency. In tile second year of en, it \",as decided by Ute WUA that the main canal would be closed for rehabilitation work during March. This decision conflicted with the practice of Tajpur fanners of' cuI ti va ting early paddy. These farmers went to the agency to press their demand for water release in the main canal. They were referred to lhe inter-gi:'oup WUA concerning any decision to release water. 1he WUA stood by its initial decision. This broke the tradition of water being lDonopol ized by a few head-end fanners and gave tile agency time to lRIerlake main canal repai r work.The IMP is continuing its fieldwork wi th WUAs in Sirsiya-Dudhaura in order to strengthen organizational capacities to contribute to operational Improvements in :those Rystems. An unresolved issue is Hhen and how to withdraw, or reduce, ADs without adversely affecting the perfonnance and Ilinlenance of WUAs.At the end. of the second year of irrigation Management .ProJect (IMP) 1Ip1emenlation , a secooo field si te Was selected in the hills', Handetar Irrigation Project in l..runJung District. This si te who selected to Wlderstand trooess of handing over the system for management by the beneficiaries. This I78tem already had a WUA formed by the Lamjung District Pancha,vat which had II!en active in mobilizing resources f'rOfll the government for repair. however. Irwater users are to playa fuller role in system O&M. fielded in Handetar. to colleel basic Infonnation on socio c, agricultural and coomunity aGlivities as well as on the physical itself. After information is available on the water users at the level, AOs arel helping f~rmers to form outlet-level groups. La WlJAs so they can receive fund.. .. Wld mobHi~ and manage resources within the system. WUA fonnation i.s now accepted as one of the responsibilities of' the 001 in order to promote effective and sustained fanners'participation in water numsgement.WUA fonnation is now accepted as one of the l'esponsibili ties of the 001 in order to promote effective and sustained fanner's participation in water ~n~ement.Consequently the DepartJuent. of Irrigation is in the process of l'f;'CI'uititlR AOs to initiaLe WUA activities in other projects \\4UA activit.y is accepted us an inb!ltral part of the Mahakali Irrigation Project supported by the World Blmlt. in the line of credit program of the World Bank and tile sectoral lellding program of the asian Developnent Bank use of WUAs Hill be one of the prime activities to be promoted in other to ensure farmers' participation in water management. '('.-an the WUA experience gained hy the IMP be shared with other projects? 'Ibis ,./tIS the original expectation when the IMP was planned. With two-and-a half years of accumulated experience the answer is yes. The knowledge gained lll¥J Jesser learned can be shared wi lh oLhers. so they do not have to repeat Ole slUne experimtmt.ution as IMP ha..q in t.his initial phase. Evidence that physical improvements alone do not solve all of the ;problems causing poor performance of irrigation systems has resulted in increasing farmer participation in irrigation lIJ8.l'l8gement However. it has been difficult to find ways to encourage farmer Research in Nepal in farmer-ma.naged irrigation systems has have highly developed irrigation management practices while others are very weak in their ability to manage. They have arrived at these practices through the experience gained in a long process of trial and error.valuable resource of knowledge about the process in arriving at their practices and the reasons for them.However. farmers in many systems have not been as successful in arriving at viable management practices and have not been able to exploit the full potential of their resource base. Hence. they face problems in acquiring in mobilizing resources to maintain their canal, in allocating and distributing water equitably, and in resolving conflicts. This results in less area being irrigated with a lower cropping intensity than the available land and irrigation water would support.In Nepal. as elsewhere, irrigation development by various agencies has been a construction oriented process. The view has been that if the harcbvare of the physical system is correct the system will function. '\\n important step in farmer participation is the tion ()f knmrLed.l;te and the ability to select amoM the alternatives and Ims flvni lable for the multitude of activi ties that must be preformed to T,,'o hU I. i r-ri e:ation communi ties Chherlung and Argali \",ere selected as a tr:linin~ centre because of the similarity of the physical environment of these sys t,pms. Traj neel\": !.]ere Sf\"lected by the users t.hemselves. Not all of the IllernberR of 11 poor1y mann,e:ed system can be taken on a training tour. Trainee !l~If'('tiotl is \\,('ry CT'11f'lal and the degree of success of the training largely the trnininll visits. the attitude of the trainees changed and ident.ifierl many Healm€ 'ss in their mm systems. Most became confident many of the principles t.hey had learned were suitable for their system that they could adopt thf'm. When they returned home they organized IIlI'magement, rommi ttf\"e meetings and conducted assemblies where all \\.l(>neficiaries Here requested to attend in order to convince those who were on t.he tour of t.he value of building a stronger management In one ~ase a tra inee fanner assisted three other systems to set up mnn(l,~ent('Ilt. commi ttee and to bef.{in the process of formulating rules for ClIX'rn ti n~ the s ys tems .Tahle 2 presents some prelimjnary indicators of the management changes after training. These indicators show that nelV-activities are being adopted. - --------------------.------.-•• -------.------------------------------------------.------------------------.-- ----...-----------'------.I : Irrifation lanatelllent activities executed and will continoI'.0: Rither the activity does not exist. or D!llit has been followed.,\" , Om.' IX)S!'! i bi I. i ty tha t ('ou Id be explored would be to make several of the r~i tes that have already been frequently utilized into training centers. The \"\" trainers alread;v have a great deal of experience in explaining their irrigation management practices and have only been paid on an ad hoc basis '/1 f, . The des1gned command area of the system 1s about 600 ha, but farmers have bul1t ffeld channels and branch canals to feed about ha. S'nce the canal's capacity does not allow enough water flow supply all 1300 ha, the farmers rotate the paddy biannually. With present capacity of the maln canal, the farmers can 1 rr1gate about ba of late paddy. The water ava11able in the river can supply one gatlon for the wlnter crop.Pfthuwa Irrfgatlo11 Project 11es mostly on the Kaler River lain, whIch makes the head of the system vulnerable to flooding 09 the monsoon season.OIN~ACl HUSTles NW f'[nrOI1J.tN~a: OF THE PHYSICAL SYSTEM 1 • llli1r.o.lWlY.The wattw sourco for Plthuwa Irrfgation Project Is the Kafer , which flows seasonally. lhe river dIscharges about 200 lis at intake fran June tr.' Oecoolbor. After December the rlver has a ver'Y 1 flow which 1s diff1cult to tap hecause tr,O dver 1s about 200 m There are \\:hnw fdflller-managod Irrigation sysltnlS upstream of Plthuwa intake, \"flU Illt<'lko5 for two othur farmer-managed systems close to the fntake of Pfthuwa. Onu 1ntake 1s for Bud1 Kulo. ch was dug by the Tharu ethnic group long ago, dnd the other Intake for Cha1 npur Ku 10. All f fVll of lhe~e Sy~tOO15 are 01 der than o to share water every 12 hours. the agreement is seldom followed.5 water sharing problem has forced the P1thuwa irrigation committee be strong and effect1ve.No pennanent intake structure exists at the Ka1er River. Every yea-r water 15 diverted by an approach canal wh1 ch 1 s about 75 m long from rfver to head regulator and by a boul der and sand we'r a~5S the r1ver. After every flood, the approach canal and the tanporary wet r are washed out. It takes two to three days to con struct a new approach canal and wet\". One earth mover (bulldozer) has beon prov1ded to ptthuwa by Chitwan Irr1gat10n Project to repa'r the approach canal durfng the ra1 ny season.One head regulator ex1sts at the fntake of the ma'n canal to control the water flowing fnto the main canal. The ma1n canal's about 7.5 krn long. A serv fee road runs along most of the 1ength of the ma'n canal. The main canal ts about 3.0 m wfde at the 'ntake and the IllAX'mlll1 depth of water in the canal 1s about 1.0 m. The capacf ty of the main canal at the head reach 15 about 1000 lis, but because of 5f1 t deposits (a t an average depth of 40 cm) the ca na 1 may not draw than 150 1/s.There are 19 falls tn the main canal of about 1.5 m each. The lain canal does not have any cross dra1 nage. The maf n canal and the branch canal s are earthen.There are 16 branch canal s that d1 vert water fran the ma' n The ma'n canal runs north to south and tile branch canals east or west. The average length of the branch canals is about 2.0 km. Ibst of the branch canal s f rr1 ga te a bout 30 ha. except for branch canals 1 00 hal. 2 (100 ha). and 14 (20 hal.There are no regulat1ng structures at the fntakes of the branch canals. All of the branch canc!ls receive water fran the mafn through hume pipes averag'ng 300 mm 1n diameter.Because of the large amount of 511t deposfted 1n the canal bad, the capacity of the ma'n canal 15 reduced. To get the required .ater, the fanners try to bring more water in without leaving any s~ce for free board. In several places, water sptlls over the banks.ratfng the canal this way has created a greater fall depth at the .~ -urop structures than the structures were des1 gned for, which is caus Ing erosion of the downstream canal banks and the launching apron (downstream canal bed) of the fall structure. In most places. the do\"'''''+''eam bank has been reconstructed of dry boul der masonry to its 123 1 , 1 f\"origtnal shape and size, but some of the drop structures need immediate maintenance.The recent alluvial 5011s of the area range 1n texture from 11ght to medfum and show ltttle prof11e development. Sot15 of deep sandy loam (high tn humus) were observed, and 5011 fert111ty is good.The command area of this system slopes from north to south an average of about .2 percent, and the watertable lies about 70 ft below the surface. The Ptthuwa 1rrtgatton system fs a relat1vely prosperous and progressfve settlement area. fields are rectangular and well attended. Rather than ltving 1n dtstinct vfllages, farmers dwell tn houses scettered throughout the command area. The houses are well kept, and a few are made of brfck. During the study of P1thuwa Irrigation Project, at least two women were observed w1th more modern, urban haf rstyles. Another woman tn the command area wore stylish glasses, obvfously purchased outsfde of P1thuwa. These proxy indicators led us to bel feve that the farmers at Pfthuwa are more urban-oriented and economically advantaged than farmers in some other areas in the Terai.Most farmers in Pfthuwa appear to own 1.2 to 1.8 ha of land. There were, however, dffferences 1n landholdfng size between the head and tatl. The largest landhol ders at the head owned from 3.0 to 3.6 hat At the tafl, one landowner was safd to hold 60 haJ and three or four other famers appa rently each own about 14 ha of land. larger landholdings at the tail might be related to the tatl farmers' proxi.ity to the Bharatpur-Hetauda highway.Approximately 20 percent of the farmers at PI thuwa are sharecrop~rs, 10 percent are owners-cum-sharecroppers .nd 10 percent are landless famers. The sharecroppfng arrangement fs usually done 50150, with the owner and sharecropper equ.lly sharfng the cost of all fnputs (fertIlIzer, seeds) and also the agricultural output. In many other systems we saw in Nepal, the owners did not share the cost of the fnputs.Sharecropped land was scattered throughout most of the command area except for the head, where there was more sharecropped land on the east sf de of the mafn canal than on the west. The land on the fs closer to the rlver and more susceptible to f100dfng. ndowners may prefer to rent out th1s less valuable land to others an to rent out other landhol df n9s.There are many absentee landlords at Pfthuwai some of than resIde as far away as Kathmandu. Very large landowners often rent thefr land on contract. sometimes on a three-tiered arrangement. For fnstance, one landowner at Pfthuwa leases h1s land to another farmer for Rs. I,SOalb1ghA (I bfgha = 0.66 hal and Rs. 30,000/20 bighas. The ~'contracting farmer then does what he wishes wfth the land. In this 'case, the contracting farmer divides the 20 pfghas into smaller par cels and sharecrops the land wfth several other farmers. As with other sharecropping arrangements, the cost of all inputs. Ind the yfe1d, are dfvlded 50:50.~A!l~_.uuJ Ethnic GroupsSeveral df fferent castes and ethnic groups farm I n the Pf thuwa Irrigation Project --Brahmfns, Chettrfs, Magars, Gurungs, and Newars. nle castes and groups seam equally scattered throughout the command area, though some people estimated that 75 percent of the tall farmers were Brahmfns or a.ettrfs. At the head, Brahmfns, Chettris, Magars and Gurungs were encountered along branch canals 2 and 4.There appears to be a great deal of interactfon and coopera tfon among the different castes and ethnic groups. At the head of the system, Chettris and Gurungs were observed socfalfzfng together, and Brahmfns and Magar. were freely enter1ng each others' houses to dis cuss Irrigation.A f811al e Brahmin far'mer whose husband works f n Kathmandu stated that she felt no dlscrfminatfon In water dfstrlbutfon, even though she lived only with her children. She did say, however, that she waul d not go out alone at nf ght to I rri ga te her crops, and she was reluctant to ask her nefghbor to help her wtth nfght irrigations. She said that her crops suffered as a result.As tn other locations fn Nepal, large landholdfngs were fden tiffed as a prfmary sourco of power. Farmers at Pfthuwa stressed, however, that educatfon and OOfng ftconvfnc1ng\" also added to an indfvfdual's power. Ono Chottrt farmer declared that power at Ptthuwa could be gafned through communfty fnvolvement and honesty and applfed these terms to an fmportant 1 rrf gl1 tfon commfttee m811ber.At llnother househol d, two farmers sta led that the three most Powerful peoplo at P1 thuW4 lIore the 1argest landhol dor f n the area, the JU'4dhdO PdnctJ, and a wallen who' 5 the Ch1twan Of strict reprosentative to the Nepal Women's Organization. The Inclualon of a woman on this list was unexpected and an interesting feature of the P1thuwa irrigation system.Except for the small vIllage at Khalrate, the rest of the command area was forested untIl 25 years ago. The forest land was dfstrlbuted to the h1ll people under the Rapti Zone Development ProJect. These settlers from the h11ls of Nepal had to clear the forest. Most of the settlers fn thfs area are from the hfll dfstrfcts of Dhadf ng, Gorkha and LamJ ung.Khirate vfllage was on the route to Thor1 from Kurlnghat of Gorkha. In those days, the people of Gorkha and Dhadlng took tM s route to Thorl to buy salt for domestic consumption. At that tfme, the Chltnn dfstrict headquarters was located at Upaidang Gadf, whfch was on the route between Gorkha and Thori. The dIstrict headquarters of Chitwan was shIfted In 1961 to Bharatpur, which was a newly deforested area wIth few physIcal facIlitIes.The early settlers In P1thuwa had d1fffculty gettfng drinkIng water. At that tfme, the only Irrfgatfon system was farmer-managed and was known as Khafrate 1rr1gat10n system. It commanded about 40 ha outside Khalrate vfllago. The water supply for thfs system was used for drfnkfng water until recently. Comparfng the accounts of the early settlers and the observatfons of the current agrfculture and growth of the v 1114ges around Ptthuwa f rrl ga t10n system, one wftnesses a large transformatfon that occurred wfthfn only the last 25 years.Prfor to 1913, the lack of water wfthin the current command area of Pithuwa allowed farmers to grow only maize. In 1970, farmers were gfven Rs. 15,000 under the Minor Irrlgatfon Development Program to construct an frr1gatlon system tn Plthuwa. UsIng voluntary labor and this fund, the mafn canal was dug. However, the canal did not functIon properly and the people again approached the government. Finally, DIHM undertook the construction of Pithuwa Irrfgatfon Project 1n 1973.After DIHM completed the main canal, frrigatlon water was released. At fIrst, water dlstributfon was lalssez-fafre. \"Might 15 rfght-prevailed fn the system resultfng fn conflfcts and feuds over water share.Then, one promfnent farmer took the Inltfatlve to organfze the other farmers on Branch 14 Into a commIttee, whtch formulated rules for water allocation and dfstrfbutfon along Branch 14. WIth farmer partlctpatton fn commIttee activtties, conflicts over water sharing approv lug or dt sapprov tng the accounts of the system presented by the secretary d) decIdIng the outcome of outstandfng conflicts wfthln the systom e) reviewIng whether the decisions made during the previous assembly meeting were duly undertaken or not.The matn commIttee has 18 members. OrigInally, the chairman was elected f,'an among the assembly membersJ today, the pradhan JUUJ.s:l:l of Pithuwa v111age pandlayat is the Qx-o{flctg chairman of the ~mlttoe.The secretary of the matn committee Is stfll elected by the assanbly durIng the annual meetIng. The other sIxteen manbers are the chal mon of the branch committees.from late June until late October the commIttee Is active and holds at least one meeting each month, dependIng on the Issues that have to be decfded. The major functions of the committee are to Implement the ded slons of the assanbly and superv.se the overall operatloR of thematn canal. The specific responslbllltles of the matn canal ccmml ttee are: a) to supervise and malntatn the maIn canal. b) to allocate approxtmately Rs. 18,000 for the fuel and operatton costs of the bulldozer that Is used for mel t n tenallce.H\";:!.I~ 1 c,ppro'i.:ll i fG\\I:,J..... ':\"l . ... ,.. ,. , ,~ c) to communfcate the dectstons of the maIn committee to the branch canal and determine the water al10catfon for the branch canals.d) to contract wtth and establ1sh relattons with external agenctes (e.g., the government or other IrrigatIon systems upstream of the fntake).e) to allocate the area fn the maIn canal that must be destl ted by the branch canal farmers and to mobf Hze 1 abor as needed to otherwise clean the main canal.f) to keep proper accounts of fncome and expendftures.g) to resolve conflicts over water a110catfon among the branch canals.araocb Caoa] CommIttee AOd farmers' Assembly Inftially. there were IS branch canals. but one more was added later to expand the irrfgatfon command area at the tatl of the system. The raptd apprafsal team fntervfewed the secretarfes of branch canals 1, 2, 3. and 16. All of these branch committees have wrttten rules, account books, and minutes of the meetings.There are two organlzatfonal units tn each branch: the branch canal farmers' assembly and the branch canal commfttee.aranch Canal fArmer,' 6~semb]x: Once a year, usually fn June or July, all the farmers along a branch meet to dfscuss: settling the annual account of the branch; and g) the water allocation for wfnter crops • aranch Committee. The branch commfttee consists of a chaf rman, a secretary and representatfve members from the branch. These members are elected for one year durfng the branch farmers' assembly. Once a member Is elected, he can contfnue tn that posftton several years as long as he receives annual approval from the 5embly each year. The number of members on the committee varies om branch to branch, but averages five or six members per branch.nle branch chairman presides at the assembly meeting and the branch committee meet1ngs, represents the branch committee, and com _unlcates the decisions of the main committee to the branch committee ~, and the farmers of the branch.The secretary keeps records and Implements the decisions of ~ ;!;: the branch canmlttee. The secretary supervises the water rotation :' schedule and 15 expected to prevent damage to the branch canal bunds \" durtng rotations. The secretary of the branch canal seems to be the _ost wanted person fran late June to late October. He has to be present in the system dt\\y and night to monitor the rotatfon and prevent c.unflfct. One secretary's wife complained that his office has taken so much of hi s tIme tha t hi s own farming operations have 1)suffered. The secretary receives no renumeration for the job he performs for the conmunfty. In the four branch canal s we looked at closely, the socretarles have six to seven years of work experfence and the farmers want th(lIn to continue as secretaries.E1De Itll~os 1tI 00TIle farmor' who breaks the rotatfon schedule 15 ffned Rs. 25 the first time. If he dIsobeys the rules a second tIme, he fs ffned Rs. 50 and hf s tur'n for water 15 cancel 1ed. For a th1 rd offense, he Is not allocated any water at all. These rules are strIctly followed, ind few problems tn water distributIon and water allocation are reported.In general, commIttee system seems qufte effectfve in Pfthuwa. Wfth tho introduction of fndf.\".Idual branch commfttees, the system is more flexfble for meeting fanners needs. Also, effective rules are formulated and enforced. D. a~N\\ACrERISTICS NlO PERfOHMNHl: OF SYSTEM OPERATION, MAINTENAN(£:, HID WATER DEL IVERYThe Department of Irrf ga tfoo, Hydrology, and Meteorology bunt the approach and mat n canal s at Pfthuwa Irrfgation ProJect. After the water poasses the headworks, tho fanners are raspensf bl e for allocatlon. local OIUM offictals compared the allocation and dls trf butlon system at Pf thuwa with nearby Panch Kanya, and all off1cl4l s stated that the Ptthuwd syst6TI has a better source and there are fewer confl f cts wfth farmers. ,arranges\" rota tlon system. They then allocate water to the tan to?.. outlets first for a set nunber of days, and then to the head outlets.: I• Fanners al so plant thefr crops on dffferent dates, whfch means that Irrlgatton water h requt red at dffferent tfmes. A kfnd of rotation system ts fnstftuted to take advantage. of ~aryfng plantfng dates.Fanners regtster for water for pad~ transplantation during the general assembly. At thIs tfme, water ts allocated accordfng to the ~regfstratton 11st --no consideratIon 15 ghen for the location (head or tatl) of the fIelds fn the system.Along the branch canals, water fs allocated to fann outlets by the branch canal comtfttee. Fanners request water fran the branch canal secretary .. and they are ghen a token that guarantees them a t water turn. The token I s returned to the secretary when the I rrf ga l' tion fs complete.,r fttne allocations dtffer fran branch to branch. In branches 1,~( and 2, four hours of water per..b. 1.u.bl (0.66 hal are allocated,. whereas l fn branches 3 and 16, two hours per ~are allocated. The tIme for t allocatfon 15 based on the nature of the sofl, the sIze of the fIelds, the voluqe of water avaIlable, and the frequency of watering requfred for the crop. On some branches, daytime water Is allocated for ptransplantatlon, and nIghttIme water Is allocated for ftelds that are ,transplanted. Each canmfttee has a~frr1gatfon system appears to have had a profound fnfluence on agrfcul ~tural activities. Multlpl. cropping. the development of a more re11 able cropping pattern, and the gradual adoptation of improved tech nologies has resulted not only in hfgher yield/unit of land, but also higher total yf el ds annually. In the winter, farmers grow mustard on IIIOre than 90 percent o( the command area and grow wheat on more than 5 percent of the cOMIand area.Intensfve cultivation practices have allowed little time between crops for land preparation and sowing. As a result, farmers Use tractors, especially for mustard cultivation, and draft animals . for maize and pad~ cUltivatfon. Most farmers broadcast mustard and corn seeds. Pulverised or wet seed beds are used for pad~, and early Varfeties are preferred. Mixed cropping and green manure practices have been Introduced recently. Buffalo are invariably rafsed by every household for additfonal fncome. At the head of the system, some farmers reported reduced tn the spring, and they all reported some matze production Water supply limited cropping to 61 percent of the farms studied. Tall farmers also reported spring Instead of early paddy. The cropped area was 67 farms studied.In the monsoon paddy season. cropping was reported on 81 head farms studied. At the tall, all 20 farmers summer monsoon paddy, with 67 percent of the area In the winter season, most head farmers produced wheat andThe cropped area In winter was 79 percent of the total area for the 20 farms studied. All tall farmers reported growing mustard, but very 1t ttl e wheat. The wi nter cropping area at the ta 11 was 94 percent of the farm studt ed. More than 90 peroent of the total cropped area (except for that in mustard) grows improved varieties. Farmers prefer early maturing varieties to fit the cropping patterns. Fine padqy Is liked It commands I good price.Farmers use fertilizers on most crops, except for maize, In the followtng rattor ,jThe services of a Junior technical assistant and cropping f;personnel stationed at the town of Tadl are avallable, and the f r thf.llllsel ves appear to be agr 1cul turally advanced. Farmers get through the Tadi cooperative and private dealers. The service. Ided by the local cooperative Is poor.Production credit is available from the Tadf market and the I!j IThe cooperative in the command area is non-functional because s were not repaid satIsfactorily. Ilgl.d5 The average yield as reported by the farmers is presented 1n following table. Fanntlrs said tJlat mar'ket1ng through mfddlOOlen and low prices for produce are growing probl€ fRs. f. SlRErlllHS.hND WEAKNESSES 1. Strengtb!j a) P1thuwa irrfgatlon system has a strong, disciplined farmer organizatfon which the farmers consider the1r own. The rules and regulatfons of the organ1zation are effective, and farmers' participation seems quite hfgh.b) The farmers' organfzation has effective control and dis~ trfbutlon of water and, if necessary, enforces water ratfoning and budgeting. The overall management of the system is very effectfve.c) There is little conflfct among the different castes and ethnic groups, or between head and tafl farmers. Most of the farmers have harmonious relationships with other farmers in the system. d) Though the system was deSigned to serve 600 ha and it is officially referred to as a 600-hectare system, farmers have desfgned management procedure. and channels to increase the command area to over 1,000 ha. We estimate that 1,300 ha receives some irrlgatfon water.e) The mafn canal and ffeld channels seem to be functionfng quite well.f) Most of the command araa has a high croppfng Intensity, sometimes as high as 250 percent.g) The cropping pattern Is well adapted to the water supply.Water is usually ava1lable throughout the system. b) The sol1 s at the head of the systOO1 are sandy and not 1deally sut ted for I rrfgated agl'tcul ture.c) There are no drafnage outlets at the tan.d) The mai n canal bela. the drop structures f s badly eroded.e) As there are frrfgation systems upstream from the Pfthuwa frrfgatfon system, conflict exists between the upstream farmers and the PI thuwa farmers.f) Large, absentee landlords control much of the land In the system, particularly at the tail.g) Fanners depend on a shrfnkl ng maf ntenance budget from DUm. Much of th1s budget must be used for bull dozer operatf on.h) There is no clear responsibility bet~een OIHM and the fanmers concernfng the maintenance of the main canal and the structures.And Conc]usigns ..Pfthuwa Irrfgation Project was constructed by OIHM, but is ted by a-fanmerts committee. The 9.5 km mafn canal has 16 branch r;, 5 and irrfgates about 475 ha of paddy and supplies one irrigation the winter crop. Fanmers have developed enough branch and field ls to supply about 1300 ha. However, the current canal capacity provide water for more than about 475 ha for late paddy. The under paddy could be increased by tmproving the canal sections structures.A serfous problem on Plthuwa fs not having a penmanent fntake ure. During monsoon the system may suffer havfng fts temporary version washed away by flood at any time.Sfnce there is no silt control at the intake, frequent silt al from the canal bed fs needed. S1lt depos1ts reduce the cfty of the mafn canal.Pithuwa irrfgation systom is functIon1ng well, and many thfngs can be learned from H. The vol ume of water at the fntake has forced ~ithuwa to operate effectively to make agriculture profitable. ~thuwa is a ~brid system. neither completely DIHM-operated nor •~i:ompletely fanmor-managed, al though farmers have taken more respon .sibf1ity for operating the system. P1thuwa irrigation system could be a model for many medhll'l-s'zed OIHM-operated irrigation systems.Additionally, despite the disparity in landholdfng sfze, farmers of all castes and ethnic groups seem to cooperate on irrfga tfon tasks. Few serf ous confl f cts were noted. and most features of .the sochl system fndicated that ft was relatively egalitarian and harmonious.The agr1cultural undertak1ngs of the P1thuwa 1rrigat1on system appear to be satisfactory. When compared with the nearby DIH ' .....operated Panch Kanya 1rriglltf on system, Pi thuwa has a more rel1 able water supply, more effect1ve farmer participation, better adop tIon and intensificat10n of improved agriculture practices and land use patterns. S1I growing literature which examines farmer-managed irrigation systems 2 in a number of countries lind a recolosical environments. Studies from the Philippines (Lewis, 1971;Siy, 1982), Indonesia (Geertz. 1980\" fill (983), .Sri Lanka (Leach. 1961). andPeru (Mitchell, 1976) have described a variety of systems which are managed by farmer groups. This article describes and analyzes the institutiollS by rarmers ror abe manaaement or ,ravity irrigation systems in tbe hill n:sinn or western NCfllll. be. It must be used when it is availab~e or it is lost. Farmers generally canllot transl':llt \\',,11\\:, over great dislances, and the locations to which it can be conveyed are limited by the lovography. IliIlmplication of these characteristics is that institutions are needed for the development and operation of il:iga. \" 16i' 1fscems. The form and function of these institutions vary depending on the physical, social, and ccoll~mic have been defined as \"complexes of norms and behaviors that persist over time by serving collectively purposes (Uphoff, 1984).\" Institutions regulate individuals' actions and consist of significant practices and lfaIionships within a society_ In some cases, institutions may be formalized in organizations like cooperatives, local _rnents, or banks. Examples of institutions which are not organizations are land tenure systems and customary exchange relationships.!;UtiollS of both kinds contribute to production and development processes in several ways. They racilitate the or resources beyond an individual's capacity and the application of resources to the solution of problelns benelit or many. They reduce uncertainty by the predictability of behavior that they encourage and enforce spheres including the distribution of benefits rrom coUective investments.Iatbis paper we eonline institutions that have evolved to enable the collective management of water for agricul• production. One institution is the Carmer organization itself, an organization which has been VC'ltoo with by the local community.4 Another important institution is the convention or property rights in water. and ooneeplS presenkd here were discussed with him 00 many occasions. They are also grateful ror the I/Serul critical oommentsofDolI{:las lnd Mark Svendsen. Both Authors with 10 express their appreciation 10 the editorial and production SIafJ of 11M!.PII1er-Qllnaged irrigation systems are operated and maintained oollectively by groups or ranners. Managemellt of the wholt system from 0( \",aler 10 Ihe fields where il is used is Ibe responsibility of tbe rarmers. Irrigation systems of this type are often ,derr~.' 10 as unitY'manamtsystems (Coward, 1980). The Iemt \"wmer•managed\" is used 10 avoid the ambiguities inherent in Ihe term •oommUtlity.\" iIIese characteristics do not apply 10 Ihe case of inigalion rrom ground waler sources, bul ground water is not an importanl source of in hill environtnellls.of formal lqitimation by civa authorities varies among countries.-I ~1Jt\"Slnk:lurl\",\\ om\" :lbl' he,: dl•;<.Il!flt.. 'J and (On...llth h:J, hUl ~'1(1i\"\" or the rhy,id SI'\\lflur.-, ,.:rlaiuly haH' \"\"l'li,:.\",,\", 1,,( II,,' 1lI'''''I~CIII''OI ~cs aI<' \"''''ihl< \"ilh eVl'r~ o ... IIIat ecn:lin C5.'lCntial tasks be accollIplishl'u ir the system is to function productively. One sct of manag<:ml'lIl uircrlly Oil thc Imla. Waler IIIl1st be IIH/llin 'tl. (li/oalll'li. di.llrihuled -all\"calioo« allo -.h,lril\",l;o,,-,II\" ollm II'\"' II ;IIkrdulI/!1 \"hi. IlIlhe lidd\"\",J mayor may \"olc\"\"I\".\", 10 Ih,' '\\;lIn alloca!;,,\".Iht'~l' aH~ nol t ....uaU)• nUI\",idl'H.'J 1o h.: manal!l:fHl'nt adi\\ it;..\". Tht: dt\"'gu and ..r a 'l,I.'m, h\"\"e,<:( Nol all In\"\" 01 n'an,,~,'m~ll( ..,igll. alld holh Ihe tk.,i~\" \"\",I 'I\"\"I'IY \"I II,.. \"'''''\\rU, tio\" til,,) limillh,' .-Ikeli,,• \"1i\"la~\"\"'''1II ..ra ',y'I.'m.:.;j, ~ \" '\" './ . .Argall lllCIC alt: IOUI IIlIgalloll ~y~lC(II~, CilUI U.JIIbl~tulg 01 all IlIUU\\C Oil UIC hUIUlIg hllUia ~~UCiUIl) auo a G'.Hill conveys water to a command area on the Arg:lli river terrace. The four systems range in area irrigated dming ...nn<:non season from about II to 47 hectares and in membership from 28 to 159 households. Since there is in the four organi7.ations, we will limit the discussion to the largest system; the RajKul~' (Roy,,1 systems irrigate the land in Chherluflg. The smallest system serves less than 10 hectares and is supplied water by a spring near the command area. Little labor is required to operate this system, and it Itas an inr ;~mal It . .. other two systems have intakes on the Brangdhi Khola, They are called the Thulo Kulo (large canal) and Kulo (lower canal) systems and irrigate 35 and 17 hectares of rice, respectively, in Chheriung. The Thulo ulo has 105 members and the Tallo Kulo, 60 members. They employ a principle of water allocation which is Co 5,tinctively different from that used in Argali. Because the Thulo and Tallo Kulo organizations and their historical .&velopment are similar, we will focus on the Thulo Kulo system a~compare it with the Raj Kulo of Argali.both sites the soils are well-drained with high percolation rates. Measurement of the rate of water subsidcntc in rice paddies yielded estimates of the seepage and percolation (S&P) rate which increased over the ~{,:l ..about 10 to 80 millimeters/day in fields which were continuously saturated and from 10 to 160 millimeters/ in fields which cracked due to drying during rotational water distribution (Yoder, 1986).10 Consequently, water rates for rice cultivation are extremely high. The average over the monsoon season when rice was '.ittltivate.d ~ Ji farm sizes are small in both villages. The average size of irrigated landholding (khel)12 per bou~ehold in buth mtems is about 0.3 hectares. Agriculture is extremely intensive in both locations, which is made possible by l~.'ive irrigation systems. Farmers in both systems have developed the same cropping pattern on their irrigated . Most farmers grow three crops: monsoon rice, winter wheat, and pre-monsoon maize. Several farmers in 1 igali planted rice on some of their land in the' pre-monsoon season. In Chherlung, however, tile water supply is so ited in the pre-monsoon season Ihat ir rice were grown, only one-third of the area could be cultivated, leaving l!.e remainder fallow. In order to provide equitahle irrigation benefits among the members in Chherlung, wa,er is IIIocated on a priority hasis for maize. Since maize is a less water-intensive crop than rice, all or the hydraulic Cnmand area can grow irrigated maize. Total grain production per year from a hectare of land in each sysl(m heraged approximately 8 tons. Table I presents the results of crop cuts that were taken in the two systems.[Figure 3 shows the crop calendar that was observed in Argali in 1982183. The calendar for Chherlung was irtually identical to that of Argali. Whereas during the monsoon season all of the khet is used for growing rice~ in die winter season some farmers grow potatoes, cabbage, or other vegetables in place of wheat on some of the area. \"the pre-monsoon season maize is grown on most of the khet with a lentil crop, usually cowpeas, intercropped lith the maize as a vegetable, fodder, or green nlllnure. 1 J A few farmers with larger holdings leave part of their khet Wlow in the winter and plant a longer-season, higher-yielding maize variety before the time of w\"eat harvest. • No crop cuts taken.! figure 3. The Argali i982183 crop calendar. MallY of the farmers also have sOllie upland fiekL~ (hllri). Thesc mayor Illay not be irrigated d.dng the wheat maize seasons depending on their location relative to the canal. If the bari is irrigated. farmers usuallJ plant wheat followed b)' a long-season mnize va,.iety which is not harvest~ until near the end of the mOllSCi-:'ll in ,.,&ptcmber. Most households plant potatOt.'S and vegetables for household consumption on part of their irrigated Inri .,during the winter wheat season. A legume is intercropped with the maize and harvested for household consumption ;.lId animal fodder. After the maize is harvested, mustard may be planted, but this is not irrigated. A long-season \"variety of maize is the comlfllm crop planted 011 unirrigated bari in both villages.Oral tradition in Argali st:lles that the Raj Kltlo was iaitiated by Mani Makunda Sen, the first Sen rajah of PI1:pa. This would make it over 300 yellrs old. It was originally construeted to irrigate land to support a temple which he lIad built .on the batik of the Kali Galldaki River at Ridi. Part of the production from a small section of the present command area is still given 10 the lemple. Since the original construction took place so long ago, nothing is known or how r(~()urc..'eS were mobili7cd and Wll. k can it'd out.Much more is known about the history of the 'I hulo Kulo ill Chherlung because construction began in 1928.Men who worked on it ill thdr youth arc ~tilll;tl mi.lg land which it irrigates and remember some of the details of the original construction. Two individuals, a Brahmin and a Chhetri l4 , are crc..-dited with initiating and organizing the collstruction and contributing 'he bulk of the initial resources uc:edcd to dig the canal. An additional 25 households provided some support, bUI olher families in the community doubted the feasibility of delivering waler rrom all intake more th,m six kilomelers away hy mcans of a canal which had 10 be cut through dense jungle, hard rock, and along the face of sheer cliffs.. To build the canal a contract of Rs. 5,000 alltl len I/W(lIo mil'; (ahoul O. J2 hectares) of potential khet land was ~ven to four Agris from the village of Damuk Khanec in Gul.ni District l5 . These four skilled canal builders hired laborers, including people from Chherlullg. alld each supervised 25-30 workers. Construction was begun it. 1928 and continued for 10 months cach YCharcs in the syslem frolll 50 10 60. lb. 28,000 ren:i\"ed by the organization fmm the sail' was then invested in improvements in thediversion a,ld main canal to sUIXcssfully expand the irrigated alca by more than 25 percent in olle year.,0!2anization for Irrigation Management I.kmocrship in the irrigatioll organi/atiolls in bOlh Algali and Chhl'rlII1I3 is hydraulically determined. [\\\"ell in both locations there is more than one canal rrom the same soulee serving a contiguous command area, Ulnal has a separate organiza:ion for its operation. In Argali, the membership of the Raj Kulo irngatioll tioll mnsists only of thll,C farmers operating land that receives a water allocation from Ihe Raj Kulo hlf rke. All farmers ill Chhcrlulig owning shares or a fraction of a share in the Thulo Kulo s],,;telll ar' of the organization.Ik~h mganiz.ations have a lIlukhiJa (lc. 1.dcr) and a secretary \"I,,) ale ekncd hy the members. The current oflic{'rs scrvL-d for a lIumber of years but cuuld be rcplaled if lIIcmbers were di')SlItislied with their performance. an irrigalion sy~I('1II has an abundant supply 01 water allowing all fields to be adequately i1.ig:lted witll'.)ut for insuring that di~tlibution of water is consisknl with the 1Il1ocation. some method of rationing the watel to each farmer's allocation is rcqUJIed. III Argali and Chherludg till~ is accomplished through the use of and rotational distribution. farmers in Argali ani Chherlur.g irrigate rice by continuous-flow distrilmtion \"~Jenev('r the supply is sullicicnt. Water flows conlilluousl~ in :til dlannels of the system, and farmers apply water iht'ir fields at any time they want. With the exception 01 the days when they weed the field and apply fertilizer, 'mlers preft.:r sl:lOding water in their fields until near the cnt! of the season when tht.:y dry the fields for harvest.t:4'Saachos arc used to distlibule water by continllous nt'W in accordancc with the pattern of waler allocation. A ~kho is a wcir that Ihe farmcrs install ill the callal with two or more lectaHgular openings for the water 10 flow Uuough. Uy having Ih,.: il<,ttoJn of each opening lit Ihe ~:lIne ltevaliGlI, tl.e now in Ihe canal can be divided inlo parts 1I11t equal the ratio of the width of each optning to the IOUtI width of all the openings. Because of its notched shape, !he proportioning weir is caHed a saacho (key) in the A\\:\"li and ChberlulIg systems. figure 4 In both systems, when the supply is insufficient to provide conlinuous now to the entire area at once, a till!ed IQIalioo system of distribution is initiated. In the 1982 rice season, rotational distribution was not required in the Kulo system in Argali. Italfway through the sallie season in Chherlung, however. the water supply had dimin 10 the extent that continuous-now distribution to all of the fields was no longer possible. It was possible to continuous now through the sa:lchos into all of the secondary canals, but farmers within each secondary rotational units and decided independently when they wanted to initiate rotational water distribution among ficltls served by their secondary.For water distribution within the secondary, Ihe number of minutes per share was computed by dividing the total of shares served by the secondary into the number or minutes in the rotation cycle. Each farmer would then .•iJ,f,;.I«tive water for the time period represented by the number or shares he had allocated to his field served by that rcolldllry. A typical rotation cycle was 36 hours. By selling the length of the rotation cycle at 36 hours, the turn for each farmer alternated from day to nighl. Although irrigating at night has always been an practice in Chberlung. it is both more dillicult (disrupting sleep) and expensive (requiring the purchase or for a torchlight).Waler distlibution in Argali during the wheat and maize seasons is less precise and formal because the water is sufficient to irrigate more than the comllland area. Water is applied seveml days before land preparation to it suitable for plowing and planting. Wheat is then irrigated two or three more times during the season. Maize be irrigated only at planting for quick germination. At the most it is given only one or two additional .i!atiolls, depending on the rainfall. Wheat and maize irrigation is done turn-by-turn with the farmers informally upon the order. From long tradition, farmels wanting water on a particular day will meet at the main at the head of the system at \\0:00 a.m. to decide the order of irrigation and to do any minor repairs to deliver the desired amount of water.In Chherillng, the most demanding irrigation period c once had tf; use a rl.'lation of distribution and go out to irrigate at night. sometimes sleeping in the lidd to guard their water. n::w the flows continuously to alllieids. It is recognil.ed that there is plenty of water to irrigate additional laIlJ,:''i hut lJlembcr.; have no incentive to alloolte water to lields owned by nonmembers. Tu maintain their yield$. Ihey have to work harder to manage a smaller amount of water more efficiently. i.e., change to a rotation system rillSlribution, and would receive not~ing in return. the other hand. allocation hy purchased shares in Chherlung provides both the individual incentives for water management and a mechanism for expanding the irrigated area. As the system improved. the amount delivered and, consequently, the amount of water per share increased considerably. Shareholders can whether to keep all their shares and reduce their management input or to sell part of the additional water.:5:a U :iC the individual can sell part of his water, he is. aware of the opportunity cost of his use of water, and there is 'Jinancial incentive to manage his water efficiently. In addition, if an individual sells part of his allocation, the of labor that he must contribute to maintaining the system is reduced. Since the Thulo Kulo requires a large of labor each year for maintenance. this provides another' incentive to reduce the number of shares one and to use the water more efficiently.comparison of the seasonal relative water supply for the two systems gives an illlJication of the efficiency of use. The relative water supply is estimated by dividing the total waler supply by the total demand for water the sea ..c;on. 27 Seepage and percolation in both systems was measured to he approximalely the same. with the average over the rice season being approximately 35 millimeters. Computation using data collected twice daily III'CI the rice season gives a seasonal relative water supply of approximately 1.0 in the Chherlung Thulo Kulo sJSicm and 1.3 in the Argali Raj Kulo system. In neither system was there any indication of moisture stress, but the 11Iul0 Kulo farmers had to practice rotational distribution while Raj Kulo farmers were able to distribute watcr Iiiotinuously. The relative water supply calculation suggests that water was managed more efficiently in Chherlung 6aP in Argali, lendin~ support to the hypothesis that allocation of waler by the S!lle of shares results in more management of water than allocation in proportion to area irrigated.sale of shares, either by individuals or from Ihe systclII at large, proviues a mechanism for expanding the \"rea Water is not tied to a specific land area but is distributed to wherever, within the area commanded, those ~hares want it. In Chherlung the system has expanded through the sale of water shares to the point where it irrigates 85 percent of the potentially irrigable area. The chairman of the Thull! Kulo organization estimated the area that is irrigated during the monsoon season doubled between 1967 and 1982 as a result of continual i.orovements to the system and subsequent sales of shares. In comparison, only 45 percent of the Raj Kulo's inigable area receives irrigation for the monsoon season iice crop..latercstingly, the Raj Kulo organi7.ation has recognized that the sale of water shares would be an effective means ~Qpanding the area served. Most members accept that there is surplus water in the system, and that the work. the ~lment of Irrigation, Hydrology and Meteorology did in 198~ 'has made the supply more reliable, i.e., less to major interruptions by landslides. In 1983. it appeared that the government was going to reduce by.!talC Icnntribution to the local school's budget. precipitating a financial cri~is for the school. A dt,\"Cision was made, after debate within the Raj Kulo organization. that the Raj Kulo organiMtion would sell 200 muri of water (about percent of the supply) and give the money to the school as J permanent endowment. Requcsts for the water CUsI or mainlrnancc wa~ also reduced, bUI Ihe data in Table J do not .how this. COII\"ructi.,n (If a mad above and p;lfall eJ 10 Ihe Raj i s largely the ,ause or Ihe higher maintenance labor between 1979 and 198.1 RuckI and mud excavated by the contractU! during \"ere dumped down the hillside inlo thc <.:anal. Sin,c Ihe cuI for th\" ioad \\\\ as made. thc hilbidc is Itoss \"able r~ulling in more The Rs. 400,000 (llSS 30,300) invcsted by DIIIM \"\", u'-Cd maiuly 10 inslall hum.; pipe through this ,\"ulncrable a,,::!. farmers rcpmlcd Ihal ir Ih,'y owned all or the pOlenlially irrigable land, Ihey \"ould iorifate the entire area by mtational distribution, thus area of irrigakd ri~ land. While some meml>crs did nOl agree Ihal all or the polenl;,,1 area ,ouM be iHigalcd, all accepted thai some area could be served wilh Ih,' present supply without any wluction in yidds ..... 01 ~upr!y are irrigali(>n and rainfall while demand consi'!5 \"f evapotran'pi.atilln .Ind \"'''P''fC and percolation. the price or conditions of payment could be rcnegotiated, the gtvernmenl restored its contributiol,l to the budget to the original amount, and members of the Raj Kulo organization losl interest in the sale of water.allocation principle also has equity implic1tions. In Argali the only way thllt a person can irrigate rice is for household to have inherited khl'l land \\~ith a water allocation or to buy some irrigated land. II is, thus, nearly 'ble for the poor and low C:ISle people to acquire access to irrigation for the important monsoon rice season. past, no low caste households h:Id lan4 wilh Ull allocation of water. One Damai 28 has been able to buy a parcel of khet with earnings from work in India. Ill' is the only low c1sie person in all of Argali with land Ihat a water allocation for monsoon rice. Irrigated land is extremely expensive (Rs. 400,000 (USS27, SOO, per in 1983), and (he poor have little possibility of buying any. .In Chherlung 20 percent of the members of the Thulo Kulo organization are low caste households, am! gaining to irrigation is much more feasible. A (It'rson with utlirrigated land in the hydraulic command area has only . . purchase a fraclion of a share of water in the system and through hard work gradually convert his bari ~() khet realize more production on it. He docs nOl need to buy expensive, already irrigated land to acquire access to the of irrigation as he would in Algali. Most of the low Cllste members' fields arc in the area to which irrigation lirst supplit'd after the number of shares in the sYS(Cl't was incrensed by the sale of 10 additional shnres in 1978. this paper we have described and analyzed the institutions utilized for irrigation management ill a number of irrigation systems in the hills of Nepal. rarmer control of the entire irrigation system and the need Or farmers to rely on themselves for (he operation and maintenance has resulted in the development of sophisticated 'ifnstitutions fm management of the water resour(•e. These institutions have enabled effective use of irrigation, making utremely intensive agricultural produelion possible with three crops cultivated per year in many systems.'ii:~The institutions examined included both the organization which manages the irrigation systems and the tradi• \"Iional convention of property rights in water. 110th types of institutions ilre essential for the effective operation of ~tion systems. Irrigation institutions are designed to enahl\\'.! the accomplishment of certain activities related to I) die water, 2) the physical structures for control of the water, and 3) the organization of farmers which manage the irigation system. In the hill environment of Nepal, the activity of resource mobilization for maintenance of the I)'SIem for acquisition of water was found to be the most critical activity which innuences the structure of an irigation organil.3tion. The principle of water allocation was found 10 have extremely significant implications for die efficiency and equity of utilil.3tion of irrigation resources.Two specific systems, the Raj Kulo of Argal; and tll(~ Thulo Kulo of Chherlung, were described in detail. These IWo systems exhibit many of the institutional characteristics common to a number of irrigation sy.~tems which were observed in Wesl Nepal during the 20-montfI periOll of field research in 1982-83. The structure of th farmer organization in both systems is similar. Membership is limited 10 lhose households with a righl to usc water during die monsoon rice season, officers arc elec:ted by the members, regular and special meetings of the members are COnvened, resources are mobilized according to members' water allocation, sanctions are applied for failing to provide Ihe re4uired amount of labor for maintenancc, and wrillen records of attendance at work. accounts, lllembcrs' water allocation, and minutes of meetings are mainlained by the secretary. Both systems require a large lrIIount of labor to maintain int:Ikes, which arc orten damaged by floods, and the main canal which must traverse iletp, landslide-prone hillsides. Between 1,500 and 2,500 man-days of labor are mobilized annually in each system .. routine and emergency maintenance.lln. e Oamaj are an untullchahle casee who lfatlilionally work ns l:lil(lr~.~ \\\\alcr allocation of cach mcmber is precisely defined in both systeJll~,1 he Raj Kulo OIganizatioll allocates each lIIember for monsooll rice ill proportion 10 the area of irrigated h .. ud owned. To acquire water rights , 1I0llSOOU season, households must buy land which already has water allocated to it. In Chherluog, Ihe Thulo ganization allocah.'S water by the 5,11e of shares, and plOperty rights in water are, thus, separate from ~ of land, Most transactions 'of water shares take place belween indivi:.IU.:ls, but on one occasion, the '-tOlzauun sold shares, increasing the total number of sJlares in Ihe sysle~: 'comparison of Ihe Raj Kulo and Thllio Kulo systems demonstrates Ihe importance of lhe principle of water for efficient and equitable development of irrigation resources. If water is to be ut.ilized efficiently and area increased, there must be incentives for elTicicnt waler management and mechanisms for expanding '10 Ihe water. Waler allocation by purchased shares, as practiced in Chherlung, provides the individual e and an organizational mechanism which enable the elTicielit dev,eloplllent or resources, while allocalion in 10 area irrigatcd docs not. In contrast 10 the Raj Kulo system, Ihe lllUlo Kulo system has I) expanded irrigaled during the monsoon season 10 a grcaler exlent, 2) achievcd more eUicielll water utilizatioll thwugh intensive managemenl or the distribution, and 3) rt '.a1izcd greater equity in access to the irrigation ;esou~ce. In order to irrigate expanded area, they have enlarged the main a.nd also extended it up to market area of Pithmva. To improve the tern, they constructed the head regulator, branch canals and field With these improvements, the command area was increased from 600 HOHever, due to high flood level, their intake gets destroyed So they have not constructed permanent structure at intake. contribute labor for repairing the intalre eyery year and also get grant from government either in cash or kind (like bulldozer).system is Hell functioning, and managed by the farmers. distributed to all 16 branch canals in the 8ffiOlU1t that each branch Allocated. The method of distribution is based on hume pipe outlet. .system) . Sometimes, they also followed the time rotation system.As a result of committee and regulations, conflict among the farmers was l'wU\\Ct:~u. and farmers could transplant their paddy in time. By seeing No.8, the branch no.9 and 10 also fonning commi ttees. In couple of years all 15 branch canals fonned (:ommi ttee. After havinl'! formed all hranch committees, they felt ' \"1.0 form central commi ttee.main committee has 18 members. Originally, the chairman was elected among the assembly members. At present, the pradhan panch of Pi thw-nl lage panchayat is the ex-office chairman of the committee. The secretary the main commi ttee is still elected by the assembly during annual meeting. To resol ve conflicts over the water distribution in the branch canals.To rna] ntain link ,....,i t.h the government and other a.s;encies.To Iteep touch t-li t,h the branch canal over the equitable water distribution to every outlet.Previously they have only 15 branch canals, but at present, they have 'one more canal at the t.ail point t-lhich is branch no. 16.Once in a calendar year (June or July) each branch canal committee meeti ng ,....,i th their respective beneficiaries. They all meet once to the fo1101\"j ng: :'JThe branch chairman presides at the assembly meeting and the branch commi ttef' chairman repr~sents the branch committee at the main .' /1 oThe popu I a t ion of the Pi thm7a vi llas:te panchayat as a tmole is estimated to be 10, 000 HUh a literacy percentage of about 40%. Most of the beneficiariPH hH\\'f~ ellough forxi from their respective farms and they also use to sell the product.s in TacH Ba~ar.The In courses of time, the length of this branch canal was a reI\" hundred meters to the tail reach of the command. There is no regulator in this branch-canal and no siphons Here used for to;construction. There is no drop structure along the tmole alignment.There is one branch-canal committee for the operation and maintenance.members, including one chairman, one secretary and 5During our field visit, He got chance to meet the chairman, the and some beneficiaries of this branch-canal. The main problem of sil tation . Every beneficiary has to contribute labor-for lUng Hhich is on the basis of the size of landholdings and they also to contril~lte Jabor for desilting of the main canal (parts of the main upRtream of the inlet of branch-canal). There is no regular system of contrjbution.At the time of toater scarcity if some farmers steal the Hater, they he penaU zed up to an amount of 50 rupees and this money will be used operation and maintenance of the canal. But there is no such cases last fel\" years. Contribution from the beneficiaries will be made r necessary.' I\" Beneficiaries get Hater two hours a day in a rotational order. 1heis enough for irrigation at the intake and middle portions of the Rut the farmers at the tail never have enough water for cultivation.the crops would have been increased by three times, if t.hey enoll,gh l-later. Near the tail, branch-canal No.9 comes to meet with 3.nt the tai I said that there is a possibility of getting g prevalent in Pithmm.. We interviel..ed four farmers in the field. They that there has not bPen problem in the system. They have some of penalty t.o the beneficiaries. Those l.Jho violate the rules and by t.he organi zation, they l-lill be punished. Some of the and regulations are ;Tf some one utilizes the water in other's turn, he will be fined Rs.50 on the spot.(bl If some one damages the bund of main branch canal for crossing of tractor or for some domestic purposes and does not repair during i cultivation and does not. respond the organization, in this case his membership Hill be discharged from the Hst and get no water for his 1and.(e) If some one misses the turn and ask the organizer for other turns then he is not aUOHed to use Hater at this time but got to wait tUl next turn.hlhi Ie mmrjng along the alignment, the team observed the channel being sands, gravel etc.To overcome this, they use to contribute after the decision of the chaired by the branch committee. The desil ting work is give on basis to some other individuals who are expert in clearing the they find to be quite a typical job. For this, they don't have prohl(~m in r~ontributing E'sT~cially for maintenance of canal purpose. Although no one guides them in the managerial aspects from the t or by the outsider, it is quite interesting to note that in two in no 42, they have the system made by the farmer that Hooden Oll1y nt the tail points, the system is not in a position to supply sufficient Hater for the field. A farmer stated that his land could be irri gated only half hecause of insufficient l.Jater floH in the system. Instead of p<\"lddy, he cuI ti vateR mal ze. ~1ustard and sesame are grown as second crop.Even t.hen he has fu1 I satisfac1 lon about the system management.This proves that they have got a very strong unity among themselves.Seeing their managr:rial activities, it is interesting to ImoH that without anybody guidance and thiR Rystr:m has been run very smoothly and we Here very liIuch i mprC's!-lpd by i f .• mpmbers of the committee.During the ~'/O['ldng period, if there occurs death in a family of any benefjciary, the family members will be exempted from works for 13 days. Besides, one assistance Hill be provided for this family and thi s f1ssistance wj 11 a1 so be exempted from ,,,orlts.Secretary has t,o keep the records of all beneficiaries, records of income and expenditure. Secretary can keep up to 500 rupees for f~mergency casps.Spcrf>Lary and cha irman Hi II be exempted tHO labors Horks (80 ~1ato !'furi ) .One Hater-supervisor can also be employed by the committee to check t,he canal s~istem (to make sure if there is continuous Hater flOH on the canal, leakage, to see if the concerned people has gone to the intake for its daily maintenance and repair). Two watch men (one each for 10l\"er and upper ends of the canal) can be appointed during monsoon.At lhe time of water scarcity, if one steals the water, he ,,,ill be penalized up to 100 rupees at first. And if the same beneficiary onee ugain steals the water, he will be punished more (up to 500 rupees). In case of third time, he Hill be kicked out from the beneficiaries' organi:mtion. Such case has not happened yet in t.hat system. At the time of Hater scarcity (usually in winter), olle can use the water. For this he has to go to the main canal illiakr, repair it and then gain water.Tr t.he chai rmfm lmd the secretary and even the members of the commi ttee do not perform their duties properly, they can be dismissed from the committee at any time on the approval of 2/3 of the \"hole beneficiaries.. I:::","tokenCount":"37012"} \ No newline at end of file diff --git a/data/part_1/1545600388.json b/data/part_1/1545600388.json new file mode 100644 index 0000000000000000000000000000000000000000..541d1d00cadf5b6123485160bdadcb0e6b298001 --- /dev/null +++ b/data/part_1/1545600388.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"7a506fa69b5e753f4ff44f4d9fcb6c21","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/8cde2662-0d8a-44ba-96e8-92b0e508e9e6/retrieve","id":"-133813379"},"keywords":[],"sieverID":"e5edc52e-4a18-47b8-9a60-bcbb65e0bcf9","pagecount":"12","content":"La creación de incentivos para promover las acciones de conservación y uso sostenible de la agrobiodiversidad y los recursos fi togenéticos para la alimentación y la agricultura empieza a formar parte de una agenda política nacional. A nivel del discurso, las políticas, proyectos y medidas diversas, así como varias normas legales, se busca generar incentivos para motivar al pequeño agricultor y campesino a mantener y continuar desarrollando cultivos, muchas veces sub-utilizados, pero crecientemente importantes para garantizar la seguridad alimentaria. Todo esto ocurre en un contexto en el que, en paralelo, se producen también políticas e iniciativas que tienen como resultado afectar negativamente estos esfuerzos de conservación. Dada la importancia global y nacional de la agrobiodiversidad y los recursos fi togenéticos para la alimentación y la agricultura, se ha desarrollado un documento que explica de forma sencilla cómo funcionan en el Perú los incentivos para promover la agrobiodiversidad y los recursos fi togenéticos para la alimentación y la agricultura, especialmente en el contexto de los pequeños agricultores y campesinos andinos.El proceso de conservación in situ de recursos fitogenéticos para la alimentación y la agricultura (RFAA) que realizan pequeños agricultores y campesinos en el Perú, organizados generalmente como comunidades campesinas o nativas, no deja de sorprender. Pese a condiciones de vida históricamente adversas, estas comunidades han logrado continuar conservando y desarrollando sus RFAA a lo largo del tiempo, con benefi cios locales, nacionales y globales ampliamente reconocidos. 1El creciente interés en los RFAA ha llevado a la búsqueda de mecanismos e incentivos que promuevan su conservación y utilización sostenible, especialmente en el ámbito de los pequeños agricultores y campesinos. En los últimos años, se han desarrollado en el país una serie de normas e instrumentos de planifi cación que incorporan mandatos y obligaciones relacionadas 1 Solamente por mencionar dos: seguridad alimentaria y el mantenimiento de un stock genético saludable y vigoroso para la investigación y desarrollo de nuevos cultivos (I+D). Se puede válidamente argumentar, por ejemplo, que los Centros Internacionales de Investigación Agrícola (CIIA) y el Centro Internacional de la Papa en particular en el Perú, existen gracias al trabajo milenario de conservación y desarrollo de estos agricultores. Los aportes de los CIIA y el CIP son, a su vez, inconmensurables. Ver, Graves, C. (2005) En ese sentido, el presente documento, identifica y sintetiza algunos los diferentes incentivos que actualmente existen en el país para fi nes de conservación y uso sostenible de los RFAA. Se centra principalmente en incentivos establecidos en leyes y normas diversas.El documento se ha dividido en cinco secciones. La primera sección describe el escenario actual en relación a la riqueza de agrobiodiversidad en el país y lo que esto implica desde la situación de la pequeña agricultura familiar. La sección segunda, plantea el marco conceptual bajo el cual se desarrolla esta investigación y lo que se entiende por \"incentivos\" en el contexto de la conservación de la agrobiodiversidad, los RFAA y cómo operan estos incentivos en la práctica. La sección tercera, revisa las diferentes maneras en la que, en la normativa nacional, se manifiestan y proponen incentivos para la conservación, de los RFAA en particular. Esta sección incluye alguna referencia a la jurisprudencia existente en relación a incentivos fi scales y parafi scales. La sección cuarta plantea algunos de los retos que la conservación de los RFAA enfrenta en esta parte del nuevo siglo y cómo los incentivos pueden jugar un papel catalizador de procesos y acciones orientadas a la conservación de los mismos. Finalmente, se ofrecen algunas sugerencias y recomendaciones para consolidar un régimen dinámico y coherente de incentivos. 3 La idea de este documento no es ofrecer una mirada exhaustiva de todos y cada uno de los incentivos y medidas que pueden actuar como incentivos para la conservación de los RFAA sino de aquellos que resultan más saltantes y que permiten entender la varias formas en las cuales estos incentivos se pueden materializar.El Perú es un país megadiverso, especialmente rico en diversidad cultural, agrobiodiversidad y RFAA. 4 Una ancestral tradición agrícola que se remonta a etapas pre-Inca tiene su refl ejo actual en una pequeña agricultura familiar, especialmente andina, que mantiene potentes rasgos culturales y prácticas que, a lo largo de los siglos los agricultores y campesinos han implementado e ido adaptando ante las circunstancias ambientales y socioeconómicas complicadas.Con el paso del tiempo, se han ido desarrollando en el Perú diversas agriculturas que coexisten, enfrentando mayores o menores difi cultades dependiendo de una multiplicidad de circunstancias.No hay una tipología ofi cial de los tipos de agriculturas, pero se podrían dividir en pequeña agricultura familiar (en costa, sierra y selva), pequeña agricultura familiar ancestral (especialmente andina y en algunos casos amazónica), 5 mediana agricultura (organizada en cooperativas y asociaciones que producen para el mercado nacional y en algunos casos internacional), y una agricultura industrial e intensiva orientada a la exportación. Dentro de estas categorías, hay a su vez diferentes formas de organización, niveles de efi ciencia, ubicación geográfi ca, relacionamiento con la extensión y tecnologías, entre otros.2 El Perú, en cumplimiento del Convenio sobre la Diversidad Biológica (CDB) (1992), tiene la obligación de \"en la medida de lo posible y según proceda, adoptar(á) medidas económicas y socialmente idóneas que actúen como incentivos para la conservación y la utilización sostenible de la diversidad biológica\". (Artículo 11. Incentivo). Estos podrían materializarse como apoyos e incentivos fi nancieros para alcanzar los objetivos del CDB, que incluyen, entre otros, la conservación de la biodiversidad y sus componentes (p.ej. RFAA).3 El Programme on Incentives for Ecosystem Services from Agriculture de la FAO trabaja para estos fi nes. Para mayor información ver, http://www.fao.org/in-action/incentives-for-ecosystem-services/collaborators/en/ 4 Borrador de Tercer Informe Nacional sobre el Estado de los Recursos Fitogenéticos para la Alimentación y la Agricultura.5 La pequeña agricultura familiar ancestral es aquella que realizan agricultores y campesinos especialmente andinos, donde la cultura, tradición y prácticas (p.ej. culto a la tierra, implementos de cultivo, prácticas de conservación, etc.) se basan en un muy fuerte apego a lo ancestral. Por lo general, se trata de los agricultores y campesinos más aislados y marginados, casi desconectados de los circuitos comerciales, viviendo en condiciones de pobreza y pobreza extrema, pero contando con una enorme riqueza en cuanto a su agrobiodiversidad y diversidad de RFAA. En la zona andina son parte y descendientes directos de los pueblos aymara, quechuas o keros. Sin embargo, esta situación, ha ido cambiado lentamente en las últimas dos décadas con un paulatino proceso de reconocimiento de la importancia de la pequeña agricultura familiar y de la agrobiodiversidad y los RFAA. A través del \"boom\" gastronómico, de la creación de un registro de cultivos nativos, el reconocimiento de semillas \"no certificadas\" como posible de ser comercializadas sin sanción, el interés de los medios en el tema, y el efecto del debate sobre el cambio climático y la adaptación, han impulsado una creciente discusión y visibilización de estos temas en diferentes niveles. 13 Por otro lado, la declaratoria del Año de la Agricultura Familiar (2014), el desarrollo por primera vez de una estrategia de agricultura familiar (2015) 14 y las recientes declaraciones del gobierno de turno en el sentido que su apuesta es por la pequeña agricultura, especialmente andina, ofrecen alguna indicación de cambio, al menos en lo formal.Los incentivos son, en términos generales, medidas de diferente tipo que inducen a las personas o instituciones a actuar de tal o cual manera, a partir de recompensas/ retribuciones o el temor a castigos o penalidades. El análisis de los incentivos contribuye a predecir comportamientos en todos los ámbitos del quehacer humano y, en ese sentido, ayuda a entender los posibles impactos y efectos que pueden tener políticas públicas, leyes, regulaciones y otras medidas. En el caso de la conservación y uso sostenible de la agrobiodiversidad, y de los recursos RFAA en particular, los incentivos están dirigidos a motivar al agricultor o campesino (p.ej. a través de un premio o una compensación económica inmediata o condicionada, la promesa de compra de sus cultivos nativos u otras) a que realice acciones que efectivamente conserven esta agrobiodiversidad y RFAA. En algunos casos, las normas o políticas son per se un incentivo y en otros, contienen elementos que actúan a modo de incentivos. Un ejemplo de las primeras sería el reglamento que regula cómo se crean y establecen zonas de agrobiodiversidad, mientras que ejemplos de las segundas serían la ley de biodiversidad o la ley de retribución por servicios ecosistémicos, que más bien, contienen algunas disposiciones que debieran incentivar la conservación y uso sostenible de los RFAA. Aunque no hay defi niciones universalmente aceptadas sobre lo que son incentivos o desincentivos, hay algunas definiciones \"oficiales\" que ayudan a entender sus alcances.En el ámbito del CDB, \"un incentivo positivo es una medida económica, jurídica o institucional diseñada para fomentar actividades benefi ciosas.\" Ver, https://www.cbd.int/incentives/positive.shtml Por su parte, los así denominados incentivos \"perversos,\" … \"surgen de políticas o prácticas que inducen comportamientos perjudiciales para la diversidad biológica, frecuentemente como efectos adicionales no previstos de políticas diseñadas para lograr otros objetivos.\" https://www.cbd.int/incentives/perverse. shtmlPor su parte, la OECD señala que los incentivos pueden definirse, en general, como incluyendo \"aquellas medidas que usan el sistema de precios y las fuerzas del mercado para alcanzar sus objetivos. Al trabajar a través del sistema de precios, las medidas de incentivos mejoran la toma de decisiones sobre la biodiversidad al reducir las diferencias entre el valor de la biodiversidad para los individuos y para la sociedad en su conjunto. Las medidas de incentivos aumentan los retornos a actividades que conservan o restauran ecosistemas valiosos e incrementan los costos o reducen los retornos para actividades que dañan el ecosistema.\" https://1drv.ms/b/s!ApMK-qPglelvyy5cqlEKlcZEVpU7La manera más obvia de promover la conservación y uso sostenible in situ de la agrobiodiversidad y de los RFAA, es respondiendo a los intereses y necesidades de los agricultores y campesinos, y asegurando que esas respuestas sean por factores culturales, sociales y de mercado, sostenibles en el tiempo. Es decir, que puedan reproducirse y mantenerse en el tiempo. Esto que parece bastante sencillo, no lo es tanto, y en el pensamiento económico implica la necesidad de hacer converger lo que conviene al público y conjunto general (\"el bien público\"), con lo que interesa y benefi cia específi camente al individuo (o colectivo, si se toma en cuenta a la organización comunal o campesina como ente individual con intereses comunes). Es decir, se requiere contar con incentivos adecuadamente alineados para que los agricultores y campesinos consoliden sus esfuerzos y actividades de conservación y aprovechamiento sostenible particulares como acción que los beneficia directamente y adicionalmente, contribuye al bien común.¿Qué significa esto en la práctica? Básicamente que los agricultores y campesinos cuenten con formas de compensación (ej. acceso adecuado a mercados y precios justos, esquemas de pagos por servicios ecosistémicos), reconocimiento (ej. premios o reconocimiento social), apoyo (ej. extensión culturalmente sensible, capacitación, campañas de promoción, etc.), o condiciones habilitantes (p.ej. contar con las semillas e insumos disponibles), que los estimulen a continuar haciendo y profundizar lo que históricamente han hecho en términos del manejo y gestión, conservación y aprovechamiento de su diversidad de semillas y cultivos, con mejoras resultantes en sus niveles de vida y desarrollo. 15 Hay una extensiva literatura relacionada con los incentivos para la conservación y uso sostenible de la biodiversidad en general, y crecientes artículos y experiencias focalizadas en los incentivos relacionados a la agrobiodiversidad y los RFAA. Hay cierto consenso en el sentido que los incentivos para la conservación son en esencia directos o indirectos. Los directos incluyen compras de tierras para conservación de ecosistemas, deducción de impuestos, subsidios, o pagos por servicios ecosistémicos, mientras que los indirectos se centran en el apoyo a iniciativas de manejo y gestión del ecosistema, y la provisión de bienes y servicios que estimulen acciones de conservación. 16 Específi camente en el caso de la agrobiodiversidad y los RFAA, los incentivos directos son aquellos que inciden de forma inmediata sobre las acciones y actividades in situ de agricultores y campesinos. Por ejemplo, un pago o subsidio regular estatal condicionado a una meta de conservación de ciertos RFAA o agroecosistemas, o un esquema de pago por servicios de la agrobiodiversidad que benefi cie directamente al campesino que mantiene una determinada cantidad de RFAA o conserva ciertas \"chacras\" o campos particularmente ricos en RFAA, o un pago \"extra\" por la producción de cultivos nativos como parte de una cadena de valor dirigido a un sector de consumidores, entre otros, son formas de incentivos directos, orientados específi camente por el mercado y el pago en concreto. Los incentivos indirectos por su lado pueden también tener un efecto sobre las actividades de los agricultores y campesinos, pero de manera mediatizada, muchas veces a través de la propia acción de terceros y actores que intervienen (ej. a través de investigación, o proyectos de desarrollo/conservación, o premios y reconocimiento social, etc.) y que contribuyen a la conservación de la agrobiodiversidad y los RFAA.Dependiendo del objetivo que se persigue (p.ej. mantener la chacra, mantener un cierto tipo de cultivo, mantener la comunidad como productora de agrobiodiversidad, etc.) se diseña el incentivo correspondiente y que responda a las particularidades sociales, económicas y culturales específi cas.A continuación, se presentan algunos ejemplos de incentivos desarrollados en diferentes normas nacionales, alguna experiencia piloto e interesante precedentes del Tribunal Constitucional, legitimando el eventual desarrollo de tributos e incentivos tributarios para fi nes ambientales, cuestión que durante los años noventa y parte de la década del 2000 era un asunto absolutamente tabú y proscrito como opción de promoción de la conservación y protección ambiental en general. Esta lista de \"tipos\" de incentivos responde a la naturaleza esencial de las medidas y no tanto a una clasifi cación o taxonomía rigurosa. Por ejemplo, los incentivos tributarios/fi scales son ciertamente de naturaleza económica, sin embargo, los distinguimos por la fi nalidad que persiguen y el ámbito (o sector) fi scal o tributario en el que se promueven.Desde hace mucho tiempo, la doctrina internacional 1715 En una conversación personal con Miguel Holle, reconocido experto en cultivos andinos y con décadas de trabajo con comunidades andinas en toda la región, a propósito del tema de los incentivos, nos manifestó que \"nadie tiene claro por qué lo agricultores [especialmente ancestrales] mantienen y preservan sus semillas tradicionales … es un poco un misterio … hay al parecer un factor cultural extremadamente potente que condiciona a los agricultores a conservar, mucho más allá de la economía y las reglas del mercado.\" (Conversación personal, ofi cinas del CIP, Lima, agosto de 2007).16 Ferraro y Kiss muestran que los incentivos directos -incluyendo pagos directos a pequeños agricultores -tienden a tener un impacto mayor en la conservación, aunque sus observaciones se centran en experiencias en países desarrollados. Su aplicación en los países en desarrollo enfrenta retos considerables a nivel de institucionalidad, aplicación de la ley, etc. Agregaríamos que, en el caso de pequeños agricultores y campesinos andinos, el factor cultural podría igualmente tener un efecto no predecible. Si bien es posible concebir programas orientados a la conservación de los RFAA a través de la entrega de dinero, algunas experiencias en materia de retribución por servicios de conservación de la agrobiodiversidad (ReSCA) lideradas por Bioversity International en comunidades de Puno, 21 advierten sobre la necesidad de considerar cuidadosamente los efectos de este tipo aproximación, en la medida que se desplacen motivaciones morales e intrínsecas de los agricultores u campesinos -que históricamente y culturalmente los han motivo -para realizar las acciones de conservación que regularmente efectúan. 22La ley que declara de necesidad y utilidad pública la promoción, producción, transformación, comercialización y consumo de productos alimentarios agrarios nativos de origen andino de 1986, 23 incluye taxativamente cultivos como maíz, oca, olluco, quinua, tarwi, kañiwa, arracacha, mashua, papa, entre otros cultivos nativos y que le dan la característica de megadiverso al Perú.Esta norma establece que todas las entidades estatales, incluyendo centros de readaptación social, comedores populares, colegios, y todas las organizaciones de prestación social (p.ej. programas sociales), consumirán \"de preferencia, productos alimenticios agrarios nativos al estado natural o transformado que se ofrezcan en el mercado interno y cuya adquisición se hará, en lo posible, en forma directa de las unidades de producción agraria organizadas\". Finalmente, la norma establece que las universidades y centros educativos deben dictar cursos orientados a promover el consumo de alimentos y cultivos nativos, y además realizar investigación sobre sus ventajas nutricionales y formas de mejor aprovechamiento. Se alienta además su consumo en todos los organismos públicos.Aunque no se han traducido a nivel de medidas de incentivos específi cos necesariamente, muchas normas imponen obligaciones al Estado la obligación de promover la conservación de la biodiversidad y de sus 18 Sentencia del Tribunal Constitucional, recaída en el Expediente No. 00031-2010-AI/TC.19 No se entrará al detalle conceptual de esto principios: pero se pueden resumir básicamente en el sentido que similares situaciones económicas deben tratarse de manera igual y situaciones diferentes, requieren tratamientos diferenciados; por otro lado, en el caso de la solidaridad, se alude a una serie de deberes de los integrantes de una sociedad para alcanzar un fi n común y de sus líderes de distribuir adecuadamente los diferentes benefi cios aportados por sus integrantes. En primer lugar, la ley y el reglamento de biodiversidad, 24 hacen referencia específi ca a la noción de \"incentivos\" para la conservación y uso sostenible de la biodiversidad y sus componentes. 25 Pero también se refiere a incentivos perversos -aquellos que contribuyen a la pérdida de la biodiversidad -y su eliminación. El reglamento estable que las autoridades sectoriales (p.ej. INIA, MINAM, otras) deberán diseñar un programa nacional para la determinación e implementación de incentivos para promover la conservación y el uso sostenible de la diversidad biológica. Para ello, se insta a la participación e involucramiento directo del Ministerio de Economía y Finanzas y el sector privado. Aún se encuentra pendiente el desarrollo de un programa comprehensivo de incentivos que trascienda del sector ambiental propiamente.En segundo lugar, la ley que declara como patrimonio nacional una serie de cultivos y crianzas nativas, 26 plantea que el Ministerio de Agricultura, en coordinación con los Gobiernos Regionales y Gobiernos Locales y otras entidades públicas y privadas, tienen la responsabilidad del registro, la difusión, conservación y promoción del material genético, el fomento de las actividades de producción, industrialización, comercialización y consumo interno y externo de los cultivos, crianzas nativas y especies silvestres usufructuadas detalladas en un Anexo a la ley. 27 La idea es que a partir de estas acciones estatales se incentiven acciones de parte de agricultores y campesinos que conlleven a un proceso de afianzamiento de la conservación in situ de los RFAA. Esta norma complementa positivamente el espíritu y la letra de la ley que promociona el consumo de alimentos andinos.Un tercer ejemplo de norma promotora de la conservación in situ de RFAA lo constituye la ley de la pequeña agricultura familiar. 28 Esta ley busca la promoción de la agricultura familiar, partiendo del reconocimiento de la agricultura familiar y su importancia en cuanto a la seguridad alimentaria, la conservación de la agrobiodiversidad (incluyendo los RFAA), el uso sostenible de los recursos naturales, la dinamización de las economías locales, entre otros. Esta ley también propone lineamientos generalesen realidad son medidas que debieran actuar como incentivos-incluyendo la titulación de tierras y predios, acceso de los pequeños agricultores a los programas de mejoramiento de capacidades técnicas y uso de tecnología, el uso efi ciente y racional de los recursos hídricos, así como al fomento de la asociatividad, acceso a mercados y créditos. Se espera que estas medidas impulsen mejoras en las condiciones de vida cotidiana de estos pequeños agricultores y campesinos.Finalmente, la norma que crea el registro nacional de papa nativa, 29 plantea una posibilidad para revalorar la papa nativa -el cultivo andino (RFAA) más importante en términos de seguridad alimentaria local y nacional. Esta revaloración implica, por ejemplo, que los agricultores y campesinos tengan una motivación particular -un incentivo-para conservar y mantener determinados RFAA que, por razones varias (p.ej. cultura, reconocimiento social, economía local, investigación), resultan importantes.La ley de semillas y su reglamento alientan y regulan la producción y comercialización de semilla certifi cada, pero han abierto la posibilidad para que semilla no certificada (p.ej. semillas de cultivos nativos, que forman parte del intercambio \"informal\" entre la mayoría de agricultores y campesinos) puedan ingresar Luego de varios años de incesante trabajo de incidencia de varias instituciones nacionales, se aprobó el reglamento que regula la manera en la cual se reconocen las zonas de agrobiodiversidad. 32 Esta noción proviene de una idea establecida originalmente en el reglamento de la ley de biodiversidad del 2001, en el cual se determina que se trata de zonas establecidas para la conservación de los RFAA (p.ej. cultivos nativos) y su utilización sostenible .33 30 Esto es irónico en tanto, en la práctica, menos del 10% de la semilla comercializada en el Perú es certifi cada. En algunos casos como la papa, el porcentaje es mucho menor. Ver, Lapeña, I. La Nueva Legislación de Semillas y sus Implicancias para para la Pequeña Agricultura Familiar en el Perú. Serie de Política y Derecho Ambiental. No. 26, octubre de 2012, Lima, Perú. Disponible en https:// www.spda.org.pe/?wpfb_dl=227 31 Lapeña, ob. cit. p. 18 32 Decreto Supremo 0020-2016-MINAGRI, Reglamento que Aprueba el Reglamento sobre Formalización de del Reconocimiento de Zonas de Agrobiodiversidad Orientadas a la Conservación y Uso Sostenible de Especies Nativas Cultivadas por Pueblos Indígenas, del 13 de diciembre de 2016.33 El reglamento de la ley de biodiversidad precisa que las zonas de agrobiodiversidad están \"orientadas a la conservación y uso sostenible de especies nativas cultivadas por parte de pueblos indígenas no podrán destinarse para fi nes distintos a los de conservación de dichas especies y el mantenimiento de las culturas indígenas. Podrán destinarse a actividades turísticas orientadas a conocer y promover la agrobiodiversidad nativa y las prácticas y costumbres tradicionales de los pueblos indígenas, tales como ferias de semillas y otros mecanismos. Corresponde al Ministerio de Agricultura formalizar el reconocimiento de dichas zonas.\" (Artículo 38 del reglamento).Tabla No. 2 Zonas de agrobiodiversidad en proceso de reconocimiento y adecuación al reglamentoRegión Cajamarca (Zona de Sorochuco, Huasmín y Celendín)Expediente técnico en etapa fi nal de la elaboración. El Gobierno Regional se encuentra elaborando una Ordenanza Regional de reconocimiento.Conservar variedades locales de papa y tubérculos andinos.Ordenanza Municipal 043-2006-MPSMque declara la necesidad de crear una zona de concentración de agrobiodiversidad.Conservar variedades de cultivos nativos de agricultores conservacionistas.Región Junín (Zona de Pariahuanca) Extensión del área que se va a reconocer: 617 km2Expediente técnico concluido (por el INIA) con una propuesta de Ordenanza Regional (de reconocimiento) en elaboración.Valores ecológicos; valores fl orísticos; valores ambientales y ecológicos; valores científi cos; valores turísticos; Región Huancavelica (zona de la Laria Y Conayca) (Microcuenca de Pachachaca y Alauna) Extensión de la zona que se quiere proteger: 10302 has.Región Cusco Ordenanza Regional 010-2007-CR/GRC. CUSCO que regula la condición de centro de origen de agrobiodiversidad y domesticación de variedades de cultivos y que prohíbe la introducción de organismos genéticamente modifi cados (GORE Cusco).Protección de especies cultivadas nativa por el posible fl ujo génico producido por OGMs.Región Cusco Parque de la Papa, en Pisac, Cusco -creado por comunidades de Paru Paru, Sacaca, Chawaytire, Pampallacta, Amaru y la Asociación Andes en 2006.Diversidad de papas nativas (500 variedades); tecnologías agrícolas tradicionales; artesanía; ferias de semillas y multiplicidad de platos típicos; paisaje y restos arqueológicos.Región Huánuco Ordenanza Regional 097-2014-CR-GRH por la que el Gobierno Regional crea y reconoce la Zona de Agrobiodiversidad de Quisqui.Conservar variedades de cultivos nativos de agricultores conservacionistas. Revalorización de Festival Muru Raymi, gran feria de cultivos nativos en Quisqui.Región Puno (Distrito de Cuyocuyo, al norte del Lago Titicaca)Expediente técnico para reconocer los Andenes de Cuyocuyo como una zona de agrobiodiversidad.Conservación de cultivos andinos en aproximadamente 7,000 ha, de extensión, incluyendo algunos de los sistemas de andenería más importantes de la región andina.El reciente reglamento de zonas de agrobiodiversidad tiene por objetivos -entre otros-promover la conservación de la agrobiodiversidad nativa, incluyendo los RFAA, conservados y gestionados por los pueblos indígenas en particular. El reglamento establece además una serie de medidas de incentivos para la conservación de la agrobiodiversidad, incluyendo: la declaración de Persona Meritoria de la Cultura por parte del Ministerio de Cultura (MINCU); 34 reconocimiento formal de la diversidad genética de cultivos nativos por la autoridad competente (p.ej. MINAGRI e INIA); promoción de marcas colectivas; promoción de productos en ferias gastronómicas y otros; promoción de Mecanismos de Retribución de Servicios Ecosistémicos; entre otros.Este reglamento es un instrumento que ofrece un incentivo concreto para propiciar, a través de un reconocimiento legal a un espacio o sitio, acciones para la conservación in situ de los RFAA, tanto a partir de la intervención de actores internos como mediante la acción directa de los agricultores y campesinos, particularmente aquellos ancestrales, descendientes de pueblos indígena andinos y amazónicos. Las prohibiciones o actividades incompatibles con estas zonas están referidas principalmente al uso de organismos modifi cados genéticamente, la realización de actividad minera, o actividades que sean notoriamente incompatibles con las características y valores sociales, históricos y culturales de estos sitios.La ley y reglamento sobre mecanismos de retribución por servicios ecosistémicos (MRSE), plantean un mecanismo novedoso para compensar por la conservación de la biodiversidad en general. 35 Estos instrumentos legales, han abierto la posibilidad para diseñar mecanismos de retribución por la conservación de los RFAA en particular. Comunidades, sitios, espacios o agricultores o campesinos podrían verse compensados por mantener y conservar RFAA. Esto podría hacerse a través de fondos comunales, asignaciones directas, proyectos o programas de desarrollo local u otros.Como parte del listado de los servicios ecosistémicos que pueden formar parte de un MRSE se encuentran: la regulación hídrica; el mantenimiento de la biodiversidad; el secuestro y almacenamiento de carbono; la belleza paisajística; el control de la erosión de suelos; la provisión de recursos genéticos (p.ej. RFAA); la regulación de la calidad del aire; la regulación del clima; la polinización; la regulación de riesgos naturales; la recreación y ecoturismo; el ciclo de nutrientes; y la formación de suelos. En buena medida, se trata de elementos de servicios o provisiones que la propia agrobiodiversidad puede proporcionar.El reconocimiento de un derecho determinado puede, en ciertos contextos, empoderar y generar incentivos para actuar de una u otra manera. En el caso de los RFAA, el Tratado internacional de la FAO sobre los Recursos Fitogenéticos para la Alimentación y la Agricultura (TIRFAA) 36 contiene disposiciones para el reconocimiento de los Derechos del Agricultor. Estos derechos se pueden viabilizar de diferentes maneras en el ámbito nacional, incluyendo mediante: la protección de los conocimientos tradicionales relacionados con Fuente: Adaptado de Ruiz, 2009 los RFAA; la participación justa y equitativa de los pequeños agricultores y campesinos en los benefi cios derivados del uso de los RFAA; la participación de estos agricultores y campesinos en los procesos donde se toman decisiones sobre la conservación y usos sostenible de los RFAA; y mediante el respeto al derecho de ellos a resembrar, reutilizar e intercambiar RFAA (de conformidad con la legislación nacional). 37 Este reconocimiento de los Derechos del Agricultor en sus diferentes dimensiones, no constituye un incentivo per se, pero sí una base a partir de la cual, mediante su materialización e implementación, se pueden generar incentivos para que los agricultores y campesinos conserven sus RFAA.Los incentivos pueden diseñarse para, entre otros muchos fi nes, promover la conservación y uso sostenible in situ de la diversidad de recursos fi togenéticos, como valor en sí, apuntando a la acción específi ca de los agricultores y campesinos. La agrobiodiversidad y los RFAA se ven continuamente amenazados por diversas fuerzas. Patrones de consumos, pérdida de saberes ancestrales, abandono del campo, proyectos de infraestructura y extractivos que impactan en los agroecosistemas, liberación de organismos vivos modifi cados (OVMs), y el propio cambio climático, tienen efectos muchas veces negativos, en las actividades y vidas cotidianas de los pequeños agricultores y campesinos. 38 Afortunadamente, en las últimas dos décadas se ha producido un paulatino proceso de mejor comprensión, revaloración y posicionamiento de la biodiversidad, 39 agrobiodiversidad (incluyendo los RFAA) y el rol de los pequeños agricultores y campesinos en la conservación, como parte de la en la agenda social y económica del país. El conjunto de la arquitectura política, legal e institucional es un ejemplo evidente de ello. La conservación in situ de los RFAA genera importantes benefi cios que podrían escalarse en el ámbito nacional. Desde la dimensión social (p.ej. el reconocimiento y aprecio por los pequeños agricultores y campesinos), pasando por los potenciales benefi cios económicos que pueden generarse por los RFAA (p.ej. a través de adecuadas estrategias de incorporación a cadenas de valor en el ámbito local, regional o nacional), o las posibilidades de desarrollar una agricultura efi ciente y altamente diversifi cada en pequeña escala (p.ej. mediante extensión focalizada, apoyo económico, etc.), la conservación in situ de los RFAA hace sentido en múltiples dimensiones.1. Es necesario consolidar la incidencia política y propuestas desde la sociedad civil en favor de la conservación in situ de RFAA, aprovechando los avances en políticas y normas ya existentes, y las propias declaraciones de altos funcionarios del gobierno en el sentido que se va a prestar especial atención a la pequeña agricultura familiar, incluyendo la ancestral, para viabilizar opciones de desarrollo local compatibles con la cultura, organización y expectativas económicas de los pequeños agricultores y campesinos. 2. Se hace igualmente necesario mejorar los niveles de aplicación e implementación de muchas de las normas y medidas descritas a lo largo de esta investigación. Para ello, se requiere especialmente, inversión pública y el involucramiento de los Gobiernos Regionales y Locales como instancias inmediatamente cercanas a los pequeños agricultores y campesinos y con posibilidades de articulación mayores. En ese sentido, los programas sociales, alimentarios y las acciones de compras públicas, podrían tener un efecto positivo importante en la promoción de la agrobiodiversidad y los propios RFAA, en la medida que la variable \"diversidad\" sea parte de las condiciones de compra. Esto exige igualmente niveles considerables de organización entre los agricultores y campesinos. 3. Es necesario mejorar sustantivamente los niveles de coordinación entre diferentes entidades que impulsan medidas e incentivos, especialmente en relación a arreglos por la provisión de servicios ambientales y ecosistémicos. La experiencia de Bioversity International en Puno solamente, identifi có entre 2012-2015 hasta 28 proyectos e iniciativas entre las cuales no hay mayor coordinación y sobre las cuales casi no es posible encontrar información centralizada para su análisis. La fragmentación de las intervenciones debe dar lugar a una aproximación más integral y comprehensiva. 4. Para un buen funcionamiento de iniciativas de ReCSA se requiere facilitar y habilitar mecanismos de fi nanciamiento que permitan a las autoridades nacionales (MINAM, Gobiernos Regionales y Locales) transferir recursos públicos u otros directamente a los agricultores y campesinos como parte de los mecanismos contractuales y condiciones establecidas para este tipo de arreglo. 5. La medición y monitoreo de los efectos de las normas y efectividad de los incentivos establecidos es una tarea pendiente que debe realizarse para entender mejor sus impactos cualitativos y cuantitativos en el pequeño agricultor y campesino. Esto presupone un proceso de mapeo comprehensivo de los diferentes incentivos y medidas que actúan como tales en el ámbito nacional. Para ello, se podría proponer desarrollar una suerte de programa específi co de medición y monitoreo del impacto de los diferentes tipos de incentivos existentes para propiciar conservación in situ de los RFAA por los agricultores y campesinos. 6. La nueva iniciativa y propuesta de proyecto GEF de conservación in situ que está siendo elaborada por el MINAM (en su etapa de PIF), debe considerar acciones en el campo de los incentivos y medidas específi cas tendentes a propiciar, reforzar o consolidar la acción directa de conservación de los RFAA por parte de los agricultores y campesinos. La magnitud de esta propuesta que bordea los US $ 60 millones de inversión, ofrece una oportunidad para explorar formas creativas para implementar los incentivos ya existentes en el país en sus diferentes modalidades. 7. Sin embargo, es claro que no hay un adecuado fi nanciamiento desde el sector público para promover las distintas intervenciones necesarias para garantizar niveles óptimos de conservación de la agrobiodiversidad y los RFAA; promover un mercado de escala, diferenciado, que permita viabilizar la economía de pequeños agricultores y comunidades, dedicadas a la agrobiodiversidad; y transverzalizar la agrobiodiversidad en otros sectores. Si se compara la inversión pública para estos sectores frente a la inversión hecha para favorecer la agricultura de gran escala (p.ej. subsidios a través de obras de irrigación, venta de terrenos, acceso al crédito, etc.), la magnitud de las limitaciones se hace evidente. 8. Desterrar la idea errada desde el Estado de que una única opción política o normativa solucionará los problemas de la agricultura en el país es una lucha constante. Históricamente, la mega obra y subsidio a la agricultura industrial de la costa, debe dar paso a una mirada más comprehensiva de las diferentes agriculturas y sus problemas específi cos. Esto implica llamar la atención específi camente a los incentivos perversos que, más discretamente, pero de manera continua afectan acciones e iniciativas tendentes a la conservación y uso sostenible de la agrobiodiversidad y los RFAA. En ese sentido, la incidencia y sensibilización del sector público y, especialmente de los decisores de políticas funcionarios del MEF es fundamental para el desarrollo de normas y políticas habilitadoras de incentivos y de medidas que actúen como incentivos. ","tokenCount":"5546"} \ No newline at end of file diff --git a/data/part_1/1555527148.json b/data/part_1/1555527148.json new file mode 100644 index 0000000000000000000000000000000000000000..31a1ca6eb796e9e327a22ba0f05f31ea934540b6 --- /dev/null +++ b/data/part_1/1555527148.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"a6f2c47e5a00eafa188be307714dc6c2","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/0d90cd5a-1aea-4f86-a1d9-81bbb8e81f30/retrieve","id":"1120896052"},"keywords":[],"sieverID":"8a35d153-20a1-48fe-89b6-8be7c1f1892f","pagecount":"65","content":"is due to the Rese.ren and Training Network of the Agricultural Development Council (AOC/RTN) and CIAT for cesponsoring and financing the worksnop. Special tnanks are due to Dr. Abranom Weisblat and Dr. Vernon Rullan for thelr continuous support of tne workshop. The principal contributlon to tne succes. of tne workshop wa. provided by the workshop participants tnrough their preparation of papers and entnusiastic participation in worksnop discusslons. In particular, tnanks are due lO the discussion openers Lucio Raea, Hernán Chaverra and Helio Tollini and the moderators David Franklin and Barry Nestel for their elfective discussion guidanca.The critical role of agricultural researen in expending food produetion and aeeeleraling agrieul'tural end economic development is now widely reeognlzed.In view of the vast range of goals to whieh developing countries aspire and the magnitude of researehable problems in agrieu:ture, how does Ihe agricultural researeh manager establish priorilie. and alloeale I imited human, financial and physkal resOurces among researen programs and projects lo assure the greatest beneflts from research investmerlts? Thls real and persistent challenge to coneerned indlvlduals in bolh the developlng and developed world led the Centro Internacional de Agricultura Tropical (CIAT) and the Researeh and Trainlng Network of the Agrlcultural Development Council (RTN/ADC) in November, 1974 to eo-sponsor a workshop aimed at 'Ihe eonsideration of this issue.Participating in the workshop were sorne 35 agricultural research managers, agricultural scientlsts, donor ageney representativas, national planners, systems angineers and economists.The workshop explored current decision-making proeesses for resource allocalions in applied agricul~ural researeh in Latin Amerie •. Then, the workshop participanls were asked lo assess the needs for activities aimed at assisling In establishing priorities and a!locating resourees within agricultural raseareh programs in Latin Americe. Finally, the workshop eonsidered aetivities ;xpected to be most effective and the possible role of nalional and interoationel entilies in earrying them out.The purpose of this publication is lO m.ke .vaílable a summary of the workshop papers and diseussions, to highlight workshop findings and conclusions, and to sugges't posslble follow-up aetivltles. While ¡his publleation previdas short summaries of the principal papers presen'ted, texls of Ihe papers in their original language may be obtaíned free as long a,s available from CIAT, Economics Unit, Apartado Aéreo 6713, Cal!, Colombia, South Americe.P. Pinstrup-Arnkrsen F. C. BymesA summary of the workshop diseussions is presented in the following sec'tion; hence this discussion is limited to a brief presenlation 01 sorne of the conc:usions that were r\"ached.Workshop presentations on methods currently used to establish priorities and ellocate research resources in four national and international research organizatlons dearly demonstrated a desire for more information on Ihe relative expected pay.off from alternative research stretegies. The scarcity of information on Ihe relative importance of existing researchable problems at Ihe farm level and the techno:ogy characteris~ics preferred by the farmer was obvious. Furthermore, information seamed almost completely lacking on the expected contribution of alternative Jines of researcn to accomplish socioeconomlc goals.Workshop discussions indicated that in sorne cases, national research agencies had ce~aln potentiallv useful data at their disposal, whieh could net be used beca use ne effectíve framework existed for analvsis. In otner cases, attempls were made lo develop sucn frameworks without the most essential data beíng available.Participan'ts clearlv expressed not only the need for more and beller informallon, bul also tne desirability and expecled high pay-off of activ!ties providing such information. Tney cauIloned, however, tha! graat caTe must be taken in selecUng the acUvitíe., Iheir eonten'!, and the method of putling them into eHect in arder lo as.ure Ine developmenl of useful Information . with direc:1 applieation to the al local ion of resource. for agricultural research.Discussions indiea'led Ihal a few national research institutions are attemptíng to develop method. for improved researen resouree elloeation. These attempls .&em lo soffer from elther excessively bureaueralic procedures for projecl selection or analytical framework 100 general to provide useful information. In both cases, it appeared Ih.t relevant basic data are éX'tremely scarce. Haw to avoid tnese problems in order 10 a.sure that effective agricultural researeh i. facilitated rather than hampered remains a vivid ehallenge.Tha workshop eonsidered a number 01 othar methodological frames 01 reference for assisling the researeh manager in establishing priori'ties. Some are still eilher too preliminary to evaluate or too general lor direct utility; others seem to olfer great promisa on specific issues, depending upon the avai:abllity 01 data.Participant. agreed thal additional work is needed to adapt availab:e methods to the spaciflc need. 01 research managers and to develop certain methodological components that are 5till mlssing. Elforts are needed to intagrate relevant socioeconomic and agrobiological issues into a viable methodology; and interactien among researcn managers, agricultural scientists and economists is essential. Such work would inelude the intagration of the \"macro\" and \"micro\" approaches so that priorities among (1) commodities and (2) discipllnary input. within commodities eould be established simultaneously.The work is expected to facilitate effective decision-making. Participants warned that no attempt should be made to develop a eomprehansive model to raplace the decision-maker but rather to develop one deslgner to imprové nis effactlveness tnroogh more and belter information on the cost-benefit ratios of alternative researeh actlvities.In addition to tha foregoing, a number of otner issues were introdueed. A discussion group On research responsibilities between national and international institu1ions eoneluded that this issue should reeaive additional attention to ensure that internationa! eenter objectives witn respeet to specific eommodities correspond to national goals. On the question as to whether international centers compete with national programs for researeh funds, eomments indlcated that a relatively small amount of the \"intemational community\" funds currently allocated to the international centers would have gone to national institutions in the absence of tha former. Diseus.ants agreed, nowever, that more analysis is needed te estima te the optimum distribution of external funds between the two types of institutions, taking into accoun! their interdependence. Sueh analysio would need lo conoider ,ha influenea that researeh ¡nvestmants meda by intemational centers for specifie eommodities have on the amount of natlonal funds a country decides to inves! in researeh in these same eotnmodities.The question as to who actually sets researeh prioritie. in national instl'tutions arose frequently; it appears that external donor agencies and lnternational centers play a significant role through earmarked and/or commodity-specifiC funds and technical assis'tance. This situation places greal responsibility on thase external agencies to ensure that their priorities do I~ fael eorrespond 10 national needs and thal external and related national resourees are Invested eorrectly.Where external lunds are not obtained, il appears that lew deeisions are aetually made on realloeation of research resources. Budget flexiblllly tends to be low and the total budget lor one year and its allocation tend to be determinad by multíplying the previous year's budget by some eonstant, with little consld.ration 01 changing technlcal and socioeconomic factors. One specific eonclusion was that many national institutions do not appear to have efleetive mecnanisms for decidlng when to stop a certain program or project.Tlle lack of adequete delivery sys'tems, supporUng insUtutions and public poliey .re generally eonsidered the principal limitations to Ihe adoPllon of new teehnology. Bul discusslons on means of acce~erating the rate 01 adoption ':>f new teehnology suggested the possibility that the inadequacy 01 technology to solve farm-Ievel problems in a way aeceptable to the farmer might well be tne mos! importan! limitation to .doption. This limitation might be reduced or eliminated through efforts to provide the researen manager with more and belter Information on actual larm-Ievel problems and technology preferenees,The workshop suggested that agricultural and social scientists work togetner to help assure that (1) rasearen is relevant to the farm-Ievel prob!ems and farmer preferencas and (2) adequate teehnology is adoptad rapidly and ex'tensively. It was also recommended that measures be taken to ensure that fesearch and public policíes reinforee one another in an eflort to maximize Ihe eontribution to the achiavernant 01 development goal5.Whlle eflort. to improve researeh resource alloeation in national inslitutions are national responsibilities to be resolved within natlonal contexts, the workshop elearly pointad out the need and desirability for eertain intemalional activities which migh! inelude 10 l. Facilltatlng effeetlve interaclion among individuals and instilutions (within and outside Latin America) currently working on research resource alloeation methodology or capable of and interested In doing so in order to (a) integrate the work, (b) reduce duplication, (e) promote additional work and (d) enhanee Ihe effactiveness of the total eflort 2, Carrying out eertaln parts of the researen aimed al developing methodological frames of reference Providing assistanee to national institutions in earrying out data eollection and ana/y.i.Beeause the suecess of international researeh and researeh support depend to a great exlent on effective national researeh programs and sinee \"strenglhen/ng natianal institulions\" is an objeetive eommon to many international agendes, \"the above acUvities dear:y fal! within the mandate of sueh agencies and could greatly enhanee the eontribution of the oversll ' internatlona/ researeh and training efforts. Furthermore, the aforementioned Betivities and the resulting information wou/d be usefu! to eaeh individual international agency in alloeating its own resources.Frequent/y, internatlonal support to national re.eareh is commodity-oriented. Funding agencies, nationa/ government and international researeh eenter • • rrive al deeision. to carry out (through contractual projeets) research, training, and other development activities a.soeiated with one or more commodl'ties. Work.hop partidpants .tressed the need to eon.ider carefully the possible problem. thal funding agencies and center. may create for national governments if appropriate a!tenUon is not finl direcled to how the national authorit;\". determine their priori'ties and make their decisions to support a specific effort in the long runo I! is possible far external agencies lo usurp the priority-setting funetion. This can happen when external agencies mount majar international projects and draw scaree researeh talent away from problem. of more current importanee in thase particular eounlrles than those externally se!eeted.The national research director is faoed with the problem of interaeting with externa/ funding agencie. and enthusiastie commodrty teams from various internatlonal research centar., while dealíng with the pressures generated by within-country production, eonsumption or marketing groups. He must pick and ehoose before finally designing a national agricultural researen program. Up to now, external agencies may have eontrlbuted lo the decision-making problems rather than helping to solve them.Many of the issues most importan! Initiall, for inleraction bet_n eOuntries and international agencies are not ~moclity specific although they are usually commodity releted and may involve commodities of no concern lO the international raseareh centers. Thi. suggests that international agencies migot seek ways to help natione.1 agencies esteblish new or revised mechinery for researeh resource allocation, evaluate presenl crileria and develop new ones, collee! and analyze data, and provide experience and guidance in lhese new approaehes. TOe immediate goal. would be the development and strengthening of researeh managers' decision-making proeesses.Country representatives reminded the workshop that it is important thal these actions be taken on an individual-country bas!s because the effective solutions of many development problems depend upcn their congruence w:+h the economic, social, political and cultural environment in which they an' introduced.The summary of our dlseusslons over the last three and a half days Is presented within the framework of the workshop objectlves as speclfled In the program documento The flrst of these four objectlves sla'tes that we mellO exp.lore how declsions are presently made on Ihe allocation of resources In appJied agricultural researeh in Lalin America. Emphas!s was to be p.laeed on who made the declsions, what criteria were used, whether pressute groups inflvenced researeh demands, .nd finally what quantity and quality of information were avai.lable and/or utlllzed for decision.maklng. Secondly, we were asked to as_ess the efficlency of 'Ihe present decislon•making framework and the availabllity of relevant information to maxlmize the contrib)Jtion of agricultural researeh to the achievemenl of development goals. The thind objective of the work_hop was to consider whether there was a need for improved decision-making tools and/or more and belter Informatlon. The final goal of the workshop was to sugge.t ways to assist the decision•makers in appliecl agricultural researeh in improving researeh resourCe aUoeation. influenced researeh demanc:ls, and fina(,ly what quantlly and quallty of provic:ling more -and better information aod/or analytleal lools for the decislonmaker. Finally we were asked to diseuss poten!ial benefils from collaboralive lnlendisciplinary researeh, training and olher possible aelioo, and the role of CIAT in sueh action.In hi. welcome address Nickel suggesled Ihal in order to have a more produelíve researeh approach, Ihere was a need for a more effec!ive use of resour-ces in terms of orienlalíon, organizalion and efficiency.In terms of orlentatlon, lhe eonventional dichotomy between basic and applied researen was unforlunate and cou:d be regarded as a conslraint. Nlckel SuggeSled thal in place of the term \"basle,\" ellher \"opportunity\" or \"inlerest-orienled\" researeh would be preferable; and \"mission\" or \"problem-solving\" would be preferable to the lerm \"applied.\" In ¡he latter case, there was a need for more emphasis on aetion by inlerdisciplinary teams of biologisls and social ,cientists rather than on descrlptive raseareh alone.In the organizational field, Nickel decried the tradltional division between researen and exlension wilh Ihe low prestige tradltlenally afforded lO tn. latter aetivlty. He stressed the naed for a strongar two-way flow between researen and extenslon and the naed for a dynamie approach lo rasearch wlth recurrent program revlews and mulual reports of outeomes.In daating witn efficlency, Nickel stressed tne sta'tic nature of many oHiclal and university researeh insti'lulions that were often well endowed with bot\" finaneial and human resources which were underutilized. Frequently, the besl tralned human resources in a developing eountry were found in Lts universitles, but there was often no meehanlsm for channaling the researeh earried out by these people Into natlonal development programs. Indeed, In many cases university researeh did not relate to national problems, even in countries where universities eonstltuted practlcal:y Ihe sole eenler of agrieultural research activitles.Flshel polnted oU'! that the decislon-making proeess Invalvas three dlstinet levels: the national plannlng or policymaklng level, Ihe sectorial or \"secloral\" level: and the aetivity or operalional level. In discussing the decision-making process, it seems that we have focused fa¡rly heaviJy on decislon-making at the \"sectoral\" level; that Is lO say, we have not talked very much about \"policy\" declsion-making in terms of the Intersectorial cholces thal confront 10p policymakers at tne Cabinet or National Planning Office level. With the exceplion of the contribution of Andersen et al. and Brady we have not talked very muen .bou! decision-maklng at Ihe level of the actual research leader or direetor-be he national or international-although this observation Is perhaps less valid in the case of the private sector where Grobman's presentation did deal with the decision-making proeess .. 1 the operational leveL It is nol surpri,lng that we did not discuss decision-making at the hlghest levels sinee we are a group of seetorially oriented people. However, a number of speakers appeared 10 have been surprised and perhaps di.appointed thal there was some reluctance lo enter into detailed discussions of decision-maklng at the operatlonal level involvlng people who would aetually.have to implement the decisions. We ,hall return to thls later, but essentially il seems that we may ndt yet• have suflicient background to discuss thi. theme adequately.Many of our discussions en the decision-making proees. appeared to be focused on Fishel's \"sectoral\" level, allocating priorltles between eommodltles.• Th& word US\"Ktot'al\" was usBd by the auth(u: In, ptéf.r.n~ to \"sectorial\" or \"secular\" beeause he felt lt w.$ mor. In acc:ordlnca wIth economic terminofogy (Editor'$; not.) , ¡ 'H did seem Irom the diseussions that tnis was Ihe level al which commodily prlorities generally tended 10 be a!located, and a number of speakers ,ecognized Ihal at thi. level the decision-makers had a duly lo develop priorities wi'lhin Ihe broad framework laid down by the Nalional Planning Offic •.Allhough most eounlries have pianning agencies and prepare seclorial plans, it was pointed out Ihal .TI too Irequently Ihere was little or no eorrelation between agrieultural researeh acUvitie. and nalional deve:opmenl plans, and il appears Iha! a greal deal 01 past agrieultural researeh has hael a very limited socioeconomic impacto Guerra was particulariy critical 01 university researeh and cited a study 01 peslgraduste theses which indicated thal a very high percenlage bore no relationship to the realities of agricultural problems In lhe region.It was pointed out lorcibiy by Brady 'Ihat the scientilic administralor had a role to play in attempting lo leed information nol only inlo Ihe secloral level bul olso inlo the highest politieal level, regarding both the developmental petential of researeh programs and the fe.sibility 01 their goals. In more basic langu.ge we might express this by saving that it seemed that the scientists in many agricu:tural researeh institulions play, or feel thal they play, only a llmited role in the orientation of ~hat institution's researeh program although a strong suggestion has been made by both Brady and Sleppler Ihat scientists snould adopt a more aelive role in this process. As far as decision-maklng al the oper.tional level was concerned, we did not really discuss thls ful:y.The discussions on the ICA and INIAP presen~ations indieated that budget allocations for Ihe previous year were a very strong determinant In the budget alloca'tion for the next yaar. This may be a symptom Ihat nol enough conslderation is being given to a review of raseareh alternatives. This le.ds to a discusslon of the second point of 'the first maio objective of tnis meeting; name:y, the eriteria used In decision-making. Here again we looked at two levelo, the \"sectoral\" and lhe \"operational,\" the diseusslon focusing mainly on the former. There was a general consensus that agricultural researeh could nol be eonsidered separate!y from naticnal 9O.:s and that it was impertant that national leaders and decision-makers should provide the basis for determinlng the direction 01 researeh programs and for identifying priorities wlthin these. Brady and Andersen él al. both stressed the importance of identifying constraiots through the use of an interdisciplinary team includíng both biological and social sclentists.Brady highlighted lour issues reJating to the removal of constraints: (1) the relative significan ce of dillerent eonstrainls in order to identify those whose• removal eou:q be most meaningful, (2) Ihe feasibility of eonstrain't removal (or the ehances of sucees.), (3) the COSI of eonstraint remov~1 and ils eomparative advantage in relatíon to other strategies, and (4) the probability that oihers might do the researeh and the need to avoid duplieatíon or operating in a vacuum. This last point was taken up by a number of speaker., and full diseussion was given to Ihe relative roles of national and international institutes and toe prívate sector.The importance of Ihe profil motive in private sector objectivas was brought out by Grobman, and there seamed to be a consensus of opinion that international institutes were better equipped than national ones to undertake longer term rasearen with a higher element of risk than many natienal Institlltes Were prepared to take. It was also suggested that in high risk or speeulative researeh 'the decision to go ahead was often based on the human rescurees availab:e as muen as on the potential value of the project or ils chances of suecess.Schuh and others indieated that tnere might be some element of competition for funding between national and international institutes because of Ihe finite amount of resources avallable. It seemed to be genera:ly fel! tha! Ihese activitias eould and snould be complementary and that the whole justification fer the exilltence of intero.tional institutes was to provlda a strong backstopping service to national institutes. There seemed to be a consensus Ihat through outreacn programs there should be a strong feedback from national to internatlonal Institutes which would ensure that the latter were responsiva to national program needs.It was also indlca'ted that in discusslng resource alloeation between different types of inslilutes, Ihe prlvate sector could play on important role, particularly in those eountries where Ihe markets were large enough and sufflciently well developed for It to be able 10 ma~ket Its produels effectlvely. [n Brazil the new national research institute EMBRAPA is strudured as a private company and plans to operate very mueh along the lines of an inlernatlonal instilute. In additlon, II will subcon!rae! work to universilias and prlvate institutes. In this way, it Is endeavoring to combine Ihe comparativa advanlages of all three Iypes of institutes into one organlzation.Both Valdarrama and Dow presented preliminary work on researen resource alloeation at the operational level In their Institutes and endeavored to indude equlty as well as productivity goals in their devalopment of decision-making indexes. Tne state of the art in tnis field Is obvlously at a very early phase; and even In the Uniled States, whieh probably has the world's largest pub:ie agricultural research service, the development of effectlve eriterla for defining nalional researen goals Is stlll at s very early slage. Fishel presented lhe approacn belng adoptad in the United Sta te •. Thls approacn is a fairly simple one and Invalves a grest deal of subjecllve ¡udgment. Páez destrlbed a more complex model being developed in collaboration wítn nis colleagues for the allocatlon of I'\\I$OUrces. The model is basad en Ihe premise that research funds are flrs! assigned lO a preselectad group of commodities and then assigned to problem areas within each commodity. Thís model is slill in the testing phase.Earlier reference has been mede lo the specifícity 01 Ihe objoctives 01 the private sector's decision-making process. In elaborating on ~his, Grobman placad particular stress on the imporlanee 01 rnarket rasearch and consumer aeceptabilily in Influencing the decision-rnaking process. He pointad out Ihal al various stages 01 Ihe raseareh and developrnent aetivi'ty these marketing inflvences eould lead lo the eaneellation 01 a project. At many points in the discussion on public sector researen, the fleor cornmants focusad on the problems 01 low adoption rate and the weakness 01 the \"extension\" process.To sorne degree ft was possible to draw a close analogy belween exlension and adoplion on the one hand and market research and consumér aeceplability on the olher; and il would seem that there may be an evident weakness in a grest desl 01 public sector researeh which separa tes the carrying out of the researcn from its aclual delivery 10 the farmer. Indeed this may highlight 8 fundamental weakness in the crlteria for defining researeh príorities In many institutions where all the emphasis is glven to carrying out researen on objectives defined by people at a nigh level who may be oblívlous of ¡he consumer's n..oo., particularly when tnat consumer is a smal! farmer. This subjecl was covered in ~he spacifically producer-orientad model by Andersen el al., wnicn had a strong feedback to aequaint the researcher. wilh farmers' prelerences.1I would seem tnat tnere is • (acuna In the Ihinking of many public sector research lnstltutions in Ihat tneir seledlon crileria at the projecl level do not take adequate eognis.nce 01 wnat the cónsumer wants. Thls does not mean thal Ihe researcn consumer O. s., Ihe farmer) does nOI want a crop variety Ihel will triple his yield; but if this involves a four-or fivelold rlse in the cash cosl 01 produetlon, he may rejeet It in favor of a variety whlcn gives hlm only 8 50 pereenl rlse in produclion but involvas a eash outlay only 20 pereent more than his Iraditional'costs because casn is often his mast limillng (escurce.Thls observation appears to be particularly relevan! In the light of Rullan'. commen! on ehanging lertilizer/erop price relatlonships, since the fertllízer applicatíon has played a very signiflcant role in the transfer 01 agricultural tecnnology in developing eountries durlng the lasl decade. let us move on now lO sOrne eomments on the third factor in this list of initla' objectlves; namely, tne influenee 01 prassure groups In lnlluencing the decision-making proces •.We really did not have much in the way of hard data to discuss on this theme. It was $uggestad thal donors may represent a prassure group; on the l7 mher hand, nobody discússee! donar motivation and whether or not donan, were more effieienl Ihan researeh Inslltules In defining how resources mlghl be allacated. An interesting. observation was made that 'Ihe disclplinary Iralnlng of nalional planners and agricultural planners in particular mlght Introduce a strong bias inlo the decision-making process. There may be some validl'ly In Inls remark even al Ihe e experimental station level slnce In mas! developlng counlrles the flrst agriculturallsls to be sent overseas for doctoral studles are usually cereal breeders and lI 15 much more common to find people with thls background direcUng boto na'tlonal and International cenlers Ihan it is lo flnd, for example, an agricultural economist. A number 01 speakers stressad Ihe need for a betler dialogue belween biological and social scientisls in arder lo achleve more effeclive resource alloeation.In his presentallon on CIAT. Alvarez-Luna lookad a't Ihe questlon of pressure groups from a somewhal dlfferenl angle. In Ihe two programs tha! he specilicaUy described-namely, beans and cassava-CIAT has endeavored lo deliberately develop pressure groups at Ihe operalional level, wilh different disciplinary and geographical orientallons, which feed in information and advice lo ils program committee and direclor general who are then ab!e to utilize a wide range of differenl experlise lo make ¡heir operationa! decisions, In many inSlilutions Ihe mosl important pressure influencing Ihe decislonmaking process may be Ihe effecl of an existing, fnequent!y long.standing budgelary slructllre and the difficulty in making majar short-term changes in the use of financia! resources. This problem seemad lo exist in al1 Ihe organizations discussad allhough in the long run Ihere did appear lo be a great des I of flexibility in both national and ¡nternationel canlers' budgets. The problem of pruning or even ampurating long-standing programs that appeared lo serve Iit'tle objeclive purpose was one Ihal seemad lo confronl most agenci .... Fin~lIy, al Inis s'lage of Ihe program, we came lo the queslion of lhe quality and quantily of informal ion which is availab:e bUI which is often nol utilized for declsion-making. Here again, Ruttan pinpoinled the Issue when he relalad to Ihe specification of the informalion base on whlch lo identify lhe naeds for shlfls in researeh programs. In particular he raisad the qllestion of how the teehniques usee! for coneeptualization 01 the measuremenl 01 pasl benafils from research mlghl be utilizad for the analysls of benefits from fulure resesrch. This lalter issue was lakan up by Hertford in his paper describing Ihe ulility of ex post methodology for ex ante analysis.These presentalions, togelher with the data presen'tad by lhe national and international ¡nstilulas representad al Ihe meeting, did Indicate Ihal en absence of adequale analylical data was a major conotraint on ,the decislon-making :>rocess. From the presentallons given. il appearad that we are .Iil! quile a long way from knowing wnat dala we naed, lel alone knowing how to handle il; In trying lO lnlerprel lhe discunion on our lirsl objective, we have really covered many of the point. also diseussed ln the second and third objeclives, which de.lt with. assessing lhe efficíency of the decision-making framework presently usad and approaches of Dow and Valderrama, to Ihe l6$s complex type of analytieal tool. presentad by Anderoen e! al. and Senuh, lO the totally unquantitative approaen of Brady.We had an inleresting sehernalíe presentation from Guerra rogardlng the type of information one needed to be able to make better judgments. This subjeel was also referred to in the paper. by Valderrama and Ardila, Dow and Ampuero, Páez, Hertford, Ramalho de Castro and Fishel. However, we did not really get into a discussion on Ihe potenti.1 benefits and costs of providing a better informatien base, and there are some doubts as to whether we are equipped to do ,nis .. The paper by Ramalho de Castro and Senuh was particularly interesting In the way that it hlghlighted the relationship between different goal. of agricultural re.earch and commodity and equity policy. Aithough il wu suggested that the Ramalho/Schuh model waS of particular relevan ce to SrazU, tnis poin! was dispuled; and the approach would .eem to warr.nl further exploratlon. Il wovld .150 be inleresling to relate some of lhe analysis in Inis model to the data from lhe.x post-.x ante comperison presented by Herlford since it appears that at the present time _ know how to be wise after the event bul not before.The final paper by Andersen et al. proposed a model for improvlng the informatíon base for research resource allocalion based on agro-economic surveys. Again we had an extremely interesling paper deseribing work in progre •• but as yet untested. Certainly the paper seemed a fitting concJusion to the earlier series and indicated some concrete proposals for answering the questions posed at thls worksnop. It .150 indicated that for thls type of work, this approach could be used effectlvely by an lnternational agricultural center in -.cUng as the fecal polnt for coordinating tnis type of activity on a regional basls, particularly through 'he physical and financial resources that an institution sueh as CIAT possessed, whlch gave lt a eonslderab:e eomparative advantage from the standpolnl of the trainlng 01 personnel.In the final discusslon sesslon, the participan!s concluded Ihat the workshop had presented a useful exchange of experlences. The dialogue suggested that thls was a lield that warran!ed more earelul study and that perlodlc exchanges 01 tllis nature would be useful. II was recommended that future workshops should have narrower objectlves and shou!d focus on Ihe decislon-makíng precess al a very .pecífle level. CIAT's tralning and conferenee rasourees lent themselves well lo hos'tlng this type of meeting, and íl was raeommended Ihal CIAT should lake the ¡nillative in follow-up acUvitles. Presenl requiremenls for increased foed produclion are sych Ihal lhe agricultural researcn services of m'any of Ihe deve:oping nalions mus! slep up performance. There are many reasons lO believe Ihal Ihese agencies can improve lheir effactivoness and ralher rapidly. The environmenl for improvemenl is betler Ihan in Ihe past. Some of Iheir needs are more dearly evidenl Ihan Ihey havo been previous:y, and steps can be idenlifíed whereby olhers may help Ihem.These slalemenls oUli;n. Ihe conclusions reached at the Bellagio VI conference. At Bellagio V (May, 1972) atlention was given to Ihe need to prolect Ihe unique character of Ihe inlemational cenlers, their f!exibility, and Iheir freedom from political conslraints. linkages between Ihe cenlers and national groups and gaps in the woridw;de nelwork were also subjects of :oncern.When Bellagio VI was being planned, a summary of the deveJoping nelwork showed that Ihe CG* system was becoming increasingly effactive in dealing with researeh gaps and in marshal,ling support for agricullura; research and development al Ihe international level. The greatesl need seemed to lié in Ihe area of slrengthening national agencies.The eommon thread runníng Ihrough Ihe BelJagio VI discussion. was the nead for vast!y improved technologíes. Three aspects of the current siluation received attention: (a) world food supply, (b) interaClions be'tween inlemational and national agricultural researeh organizations, and (e) Ihe stalus of national agencies. Th. consensus al Bella9io VI was thal the currenl food problem wi 11 cause new rescurees lO be brought into use and Ihal this time some mOre lastíng gains can be expected io terms of conlinued supporl for the deve:opmenl and applieatioo 01 new lechoology. While the intemational centers are a source of great satisfaelion lO lheir founders and sponsors and a basis of hope and reassuranee for many otners, several eencarn. have besn expressed, chiefly conceming the ¡nteraetions between the centers and the national agencies. There is some feeling that the centers' rescurces are being sprsad too thin. They are being asked to take on too many respansibilities or projects where their particular organizational advantages do nol come into play.The sharp focus 01 a mullidisdplinary te8m on a e:early defined range of problems is recognizad as one of Ihe reasons for the centers' success. !ns'titution-buílding projects, whelher Ihey are carried out as outreaeh or cooperativ!' efforts, must be selectad wlth care so thal thay wili nol lead the center away from this sharp focus.Another problem may be ¡he overlapping of several cenlers' outreach programs. For example, some of the small teehnieal groups in Southeast Asian countries have reeeived enthusiastic overture. from intematienal center representativas interested in deep-water rice, corn, cassava, potatees and vegetables. The propasa:s haya besn aeeeptad with appreciatíon but also with SOme perplexity. Tllese smal! countries, often with eomplex agricultural patterns, are precisely the ones that must rely most heavily on the centers for mueh 01 'their new teehnology; but thay may need help in puttlng togather a míx 01 teehnieal assistance whleh meets thair needs and is withín the reaeh of their resourcas. Also, they may urgently need he:p with cotton or jute or some otner crop that has no advocate from en international eenter. lt seems dese that the centers wlll be funded generously so long as thay produce resulls. The national researeh agencies are not mere:y 90lng to be fundad more edequately; they are 90lng to be requlred by thelr counlr!es to make unprecedented conlributions in the years aheed.Tr.inecl scientifi~ m.npow .... Is still in short supply in most countries. Evan those that have unemp:oyad seienllsts are not overslaflad so mueh as thay are underflnancad. As Ihe organizalíons expand, the shallowness of tIle manpower supply becomes evident.Crop and animal production speciaUsts, who can do Ihe integrated type of researen needed lo increase produetion, are ín sllor'! supply ín essentlal:y all the developing eountrles. Thís is a type of traíníng thal mosl graduate programs do nol empllasíze and that many organizational eharts fail even to identify.Intermedlate and top-level managément penonnel, who can analyze problems, plan and implement programs, are badly needed in 811 developing countries.Funding of national programs Is obviously well below the optimum. Tne real question is not how muen snould be spent by the developing countries under optimal condítions but rather what rate of ¡ncreesed expenditures can be afficiently utilized, given the manpower restrictions end olher cons'tralnts of a spacifico siluation.Eaeh counlry should examine i'ts agricultural researeh services and make Ihe indicated adjustments. We might add that the surp!us producers among the developed n.tions are not ¡mmune 10 this naed.The developing eountry that wishes lO upgrade ilS researeh system must \"be prepared at the top leYel to make e long-Ierm, suslained commilment to the jobo In making some of these determinations, nationa: agencies may wish to seek assistance from outside. Technical and financlal assislance from muitinational end bilateral sources should be utilized when rsquired.Careful planning will help to make effective use of current budge'ts end of new funds whlch wlll likely become availab!e. Sueh planning might inelude the following steps, among others: The individual nations must consider resource allocation lor every crop or commodity that Ihe nation produces. They must de.1 with the whole ranga 01 social, economic and political problems faeing agricultura in their particular situation.F<>Od production, and not research for its own saka, musl be the aim of the national agricultural agencies 01 the developing countries. Too otten the researchers have tended to be out 01 toueh with the ¡armer and even with researchers in related lields.It is incre.singly clear that the researeh structure must deal with more than the various disciplines _nd individual eommodíties. It mus! deal with integrated larming systems. The deyeloping countri .. are lacad not merely with achieving production increases on a nationwide basis, but with achieving Increased incomes far large numbers of smal! farmers.Farmer. cannot use new technology wi'lhoul Ihe necessary inputs and credit. They must also have reasonable market facilities and prices that offer a reasonable return on their investment in new technology. AII of Ihese factors require decisions and aelions by a number of agencies, both public and priva te. In additlon to a brief mention of the impact of agricu:tural researeo and public poliey in the United States, the paper foeuses on four issues: (1) tne importanee of dealing as explicitly and as operationally as possible with goals. We nave to ask and answer the question of \"researen for what,\" (2) possible goals that might be considered, (3) the role sodal scientists and particularly eeonomists can play in identifying these goals, (4) the need for eeonomic policy and teconologlcal changa to eomplement eaeh otoer.New technology Is ereated as an input In toe development process and not as an end in itself. Moreover, technology has an Instrumental role in at'tainlng a larger set of goals and objectives; ils maln goal is not to entertaln the researehers.Once the idea that knowledge oas tnis instrumental role in goal attalnment i. recognized, the specification of these goals becomes important. In toe case of agricultural researeh, this would require a specification of the goals sociéty or the government would have wi'th respeet to the agricultural sector.In order to obtain any degree of préCision in researeh priorities, it is importan! fer broad social goals to be transhlted ioto a more operational and objective set of goals in term. of which individual researen prejects can be evaluated. If tnis can be done, more foeus will be provided for the researcn program, a mOre efficient researeh effort will result, and there will be a more objective means of evaluating tne researen in an ex post sense. Tha problem is to arrive at tnis more operational set of objectlves.One way to proceed is to take the three fundamental goa:. specified for the lowa State program and see what can be made of them. In addition, I would lik to add a fourto goal-nutrition. Therefore, we have as possible goa/s (1) growth or developmen't, (2) equity, (3) security and (4) nutrition .On the basis of a discussion of researeh goals, three propositions are identified. First, the nature of the objectives for the research program wil! be determinad in part by the stage 01 economie development. Second, the objectives of the researeh program should be relaled to the particular development model the government is implementíng and the specific economie polieies it uses to implement Ihis modeL Third, with an adaquele understanding 01 the development precess and the set of policies being pursued by the government, the goal. and objectives of the researen program t can be specified at a quile operational leveL , I E.ch of these threa proposition. providas sn important analytical ro!e for the economist in determining researeh prioritias. His contribution is partly • to identify goals and objectives in the light of tha general policy malrix. IfIhis is done at en operational level, there should be sn inerease in the efficiency with which research resources are usad since they will be focused more directly on policy objectives. In addition, a sounder basis will be laid for evaluating the rasearch program in en ex post contextoThe aquity issue is one that has long been neglected by both economists and prodvction scientists. Economists have neglected it because of the difficulty in stating categorically whether one distribution of income is belter than enother. Production scientists have neglected it because of a hilure to recognize that (a) much of their production technology was not uniformly adopted by different sized farms, (b) the benefits of production technology could accrue uniquely to one or another ealegory of resouree owners, and (e) that the ultimate beneficiary of teehnieal change could be the consumer ralher than the farmer.Four aspects of the aquity or income distribution Issue are Importan'!. Tha first is the distribution of the benefits of technical change between the produeer and the consumer. The second is the functional distribution of the benefits among the various resource Owners. Third is the distribution of the benefits among the various sizes of farms. Fourth is the impact on regional income 1istribution within !he country.On !he distribution of benefits between the consumer and the producer, two sllt. of eonsiderations are important: (1) Ihe relative conditions of supply and demand and (2) economic policy. If agricultural researehers want to benefit producers, the presumption is tha! they should concentrate on products tha! have a high priee elasticity of demando Examples of these are export produc!s. If !hey wan'! to benefit consumers, they should concentrate on producto that have a low priee elasticity of demando Typically these will be food staples or necesslties I ika rice, edible beans, wheat, etc.On the distribulion of benefits between Ihe land owner and the laborers, it Is assumed that in mos! cases il ls the land cwners who will beneflt at the expense of the laborers. This is not a straightlorward case, however, and mueh depends on the relative elaslicity of the supply and demand lar the factors and Ihe elasticity of substitutions among the produclion faelor •.Regarding the distrlbution of benefils among dlfferent sizes of larms, the lssues have lO do wilh Ihe extent to whleh Ihe new produclion tochnology is adapted to the resource endowmenls and other eondltlons 01 the various slza groups and the efficiency 01 the various eeonomic instltulions serving these groups. 'The paper concludes by stressing three point •. Flrst, deve:opment needs are not Ihe same for eaeh country or aven lar diHerent regions within the same country. Moreover, these naeds will generally changa ove~ a period 01 time; therefore, Ihe problem 01 analysis lo determine what researeh prioritles .... oughl lo be is almost never ending. For Ihe same reasons il is dlfficull lo \"generalize among eounlrle •. The analysis does have lo be large:y loeation speciflc. Because of Ihls, there is an importanl need for strengthening natlonal researeh eapabiUlies.Second, researeh priorities naed to be defined in lerms of lhe particular deve'opment model Ihal a country is using as a basis for policy and in terms of !he particular measures used lo implemenl il. To fail to do Ihis is to run the risk of having economlc pollcy negote the results of the researeh efforl ond/or to forago a potential eonlribution that the research eHorl cou:d have made.Goals may well be in confllel; for example, the attempl to 'atlain a higher rate of groW'th in the aggregate may well aggravale the equily problem. It is wor'lh noling that had plan! scientis!s and social scienlis!s worked closely al ¡he beginning lo think abou! what Ihe goals ought lo have been, what weigh'ts lo atlaeh to tham, and how Ihe goal$ might have been attalned, Ihe counterproductlve controversy over the Green Revolution might never have happened. Biological and social scientisls do have a responsibility lo atlempt lo understand eaeh other and lo work towards the commOn goal of improving the well-being of !he large fraetion of the world's popu:ation Ihat is disadvantaged.During Ihe pas! decade we have witnessed the development of a 'two-pronged approach to agricultura, researen aimed at solving food production problems in the developing world. One approaeh is that of the network of intemational agricultural researeh can'ters; the seccnd i. that of the national researeh organizations in developing eoonlries.The lotal need for new knowledge to he:p farmer. produce more foad dwarfs the resources available lO support and carry out the researen needed. Priority selling beccmes paramount. There is mueh to be deslred In agricultural researen priority setting, especially Ihat of national researen organizations. The imitation of researchers In Ih. more developed counlries ls evlden!.Research at unlversltles and researeh Instltlltes eomplemants applied researeh trlals earded out at .mal! outlying stations. Charaeteristieally, these stations are poorly staffed and equipped. Some regional researeh stalions may have smal! plant braeding programs, but their efforts are nol usual:y coordinaled In a national erop improvement programo There are some notable exceptlons. In these cases, ther. Is goad natlonal research coordination. Eftec!lve long.range plans have been developed and are being implemented. Trained re.earcher. are effective!y utilized and are tralning olMe.s to lake thei. places.If overall national policíes do nO! g!ve higher priorlty to agricu:tural researcn, the .etting of researeh prioritles may be meanlngless, Agrlcul!ura1 .eseareh eanoot be eonsidered apar! from the basie human naeds of society and, perhaps more important, from Ine pereeptlon of those nseds by national leade.s. Natlonal social goals as percelved by national leader. 1lInc1 dec:1.¡0mmaurs must provide a bas!s for determ!ning the direction of resea.ch program5 and of lhe spedfic prloritles withln these programs.Researeh administrators have a responsibility to help decision-makers identify national goals relating to agricu!ture and, more specifically, those relating to agricultura! raseareh. One 01 'Ihe most significant ehallenges is to force national leaders to think in terms 01 the fulure. Preoceupation witn eurrenl problems lorees tnem to think only of tnose researen inputs which promise immediate results. They Inerefore bypass or eliminate long-range researeh planning and eoneomitantly the set'ting 01 meaningful researeh prioritie •.An important task of researen administrators and olner decision-makers is to identify clearly the extent to which agricultura! researeh can contribute to the atlainment of a nation'. or region' •• ocial goal •.The desire for national self-sufficiency, e.pecially with respeet lO lood eraps, sometimes lead. lo Ihe eSlabllsnment 01 unreaHstic and economically unsound produetion goals. Economists, as well as biological scientist., can he:p identily agricultural areas in whicn a given eountry has a campara'tive advantage.To idenlily means 01 meeting social goals, agricultural researcn administrators must know the limitations society imposes on the agriéullural industry.The generalizad procedure for determining appropriale resouree allocation for agricultoral research assumes thal overal! social goal. will inelude goal. Ihat can be met only through Ihe agricultural sector. In lurn, agriculture's goal5 will require input. from agricultural research, as well as dther components 01 thi. industry.Using tnis genaral eriteria, it is possible to select a series 01 researeh alternatives and to assign tnem different. levels of priority. Wilhin eaeh alternativa, specific researeh projects can then be prepared and pe'rtinent researen metnodo!ogias developed. Thase beco me the resesreh instruments to which funds and human resourees are alloca'ted.Four major eriteria are important in setting researeh priorities and in ascertaining projects to be ¡nitiated.Relativa signlf'¡cance of dlfferent constr.ints. The extent to which the removal of a given constrainl would eontribute to the aehievement of importan! agricultural and, in turn, social goals is pernaps the most significant long-range criterion. Tha relative socioeeonomic signifieance of lhe constraint is of paramount importanee.More specific factors that must be considered are the size of populatións and of crop and land areas and the number of in5titutions potentially affected by the proposed research. Also, effects on income distribution, effective land utilization and other socially worthwhile goals should receive a!tentioo.Feasibility of constrainl removal. The feasibility of removing, through research, different constrain'ts on agricultural produc!ion, processing and marketing is an ímportan! criterion. Determination of tnis feasibilíty will depend upon a number of factors íncluding the nature of the constrain! to be removed, the availability of seienti.ts sufficiently well trained to carry out the researeh, and progress already made in related researen areas. Limitatíons in finances and their rate of delivery can adverse:y affeet a scientist's ability to perform, as can an ineffident procurement system.Cost of rethrc:h lO remove !he constrain!. The required inputs in terms of financial and numan resources and of time needed to aecomplish the researeh are important criteria. The financial eost-benefit ratio has been used eommonly. Unforlunately, benefits from agricu:tural researeh eannol always be quantified in economie lerms.Aside from tne eost-benefil analyses, researeh cosls alone are important eriteria. Even with high probable ultima!e returns on researeh inveslment, poor eountries may nol be ab!e to afford large inputs for agrieultural researeh.The time requirement for researen accomplishment Is signifieanl. Researeh administrators mus! insist Iha! some funds and manpower be ellocated lo proje<.:ts tha! have high, long-term potential even though the immediate returo probabilities may be low.Probability !hat other. wlll do ¡he research. Eseh researeh organ izatioo lends nol lo lake into consideration the researeh eapabilities 01 others. Developing country organizations musl eonsider the researeh which is being done and whieh can be done elsewhere. Regional eooperation permits ¡nlerchange 01 elop and animal strains, as well as of published researeh results.There are a number of olher practical criteria; for example, the urgency 01 the researeh. Administrators must prevent \"urgent\" problem-solving projeets from dominating researeh programs.II is no! difficult to identify th. general procedures by which eriteria and, ín turn, prioritias can be determined. TIJe difficulty arises in implementing the procedures.The setling of bread social goals Is generally Ihe function 01 soclety and Is usuaJly aceomplished by political leader. and national planners. Scientisls and scienee administrator. should provide background information for Ihese decision-makers, not oniy to dEitermine the soeial bUI agricultural goal. as well.Agricultural scientists and researcn admlnistrator. should be intimately involved in .etting agricultural researeh goals with prime responsibility for identifying agricultural constraints, tne role of researen in removing Ihese eonstrainl., and Ihe specific criteria to be used in deve:oping priorities. likewise, they should nave major responsibillties for developing prlorities and in deciding resource alloeation lo implement tne priority research programs.In most instances, rasearen admlnistrators use tneir own judgment in sEilting criteria and researen prioTillas; In Olner\" pane:, advi,e the administrator. In stil! olhers, panel s of experts decide on the criterla lo be used and Identify the priorilles.Despite the weaknesses of criteria and priorlly-setting procedures involving scienlists, the advanlages oulweign the disadvanlages. Wnile il may be inappropriate lo give the scientisls the sole responsibility for criteria and priorily setting, Ihair know:edge of the pOlenlial. of sdence for problem soiving musl be fully exploited. The syslem whereby resources are allocated for agricultural researehln Colombia Is par! of a natíonal plann!ng process, whose line of authorlty ¡neludes the National Council of Socioeconomk Policíes (CONPES), the Planning Office of Ihe Agricultural Sector (OPSA), and the Colombian Institu!e of Agriculture (ICA) ¡!salt. The infermation related to thís systern is íncluded in 'he annual budget proposals and in the tour-vear investment plans of the aforementioned institutions.Competitlon for researeh resourees beglns al the Intersectorlal and sectorial k>vels (heal'th, public works, agrio ... llure, etc.) and al lhe level of entllles (INCORA! IDEMA! ICA, etc.). Nevertheless, a't the level of entitíes, researeh resourees must also compete wíth resources for other programs tha! ICA carríes out (such as Ihe adoptien of technology and edue.tion) in addilíon• lO operatlng expenses.In the area of researcn alone, resources compele among dlfferent projects (rice, beef caftle, etc.); and within these projects, the same Occurs at the aclivity level (breading, crop practices, etc. l.At the ¡ntersectorial leVél (agriculture, publíc works, etc. l and al the sectorial level (IDEMA, ICA, etc.), the criteria for a!loeallons are primarlly assoelatad wlth (1) the relative yield of ¡nvestments In the socloeconomic sectors, (2) the availability of resources, (3) allocations made in previous year., and (4) Gov .... nment ob¡i!Ctives and goals as expressed In development plans.Al the program level (raseareh, adopllon of technology, etc.) and at the project level (rice, cotton, etc.), the eriterl. are prescrlbed by sectorial ( policies and Government goals, prlmarily In rel.tion to 'n Increase in productive employment and\" inceme, the equitable dlstribution of the same, improvement in productivlty and lOn increase in the productlon of agricultural commodities, improvement of commodity marketing, inerease and diversification of exports, trainlng of smal! farmer. and the promotion of Iheir organization, and the adequate development and censervation of natural resources. Tne aforementioned criteria are complemented by specific commodity-oriented studies and aspeCts related 10 o!loc.tions made In prevlous years and resulls obtained In researeh programs.At the level of activllies and regions, the eriterla refer 10 (1) the degr .. of p a refined modal for eomparing alternatives and detarmlnlng priorities in rasearcn resource allocation 2, Make tnis general modal adaptable for differenl cases according to the availabllity of Information; Ihat is, it should not be a rlgld model.3, Explore new criteria to be used In determlning priorilies 4, Explore alternate crlteria, wniéh althougn orlented towards fulfilling the same goals, may have belter eharacterislics of objectMty or measurablllty 5. Develop eriteria permltting belter assignment of relativa weights for Ihe differen't alternatlves wilhin eaeh criterion, as well as for eseh eriterion 6. Discuss possible wsys of quan'tifylng (wlthln the framework of the crlterla) the Importance of the different \"support programs\" that play sueh an importanl role In agricultural researeh. For obvious reasons, II Is more difficult to inelude these programs as measurable alternatives lo be eompared with produclion programs. Their priority Is, in many instances, condltloned lo prlorillas of o'!her programs, where they recelve different emphasls. For this reasoo, 'prioritlas for support programo are determined after priorities for production programs have been defined, 7. Highlight the need for finding better ways of measuring the raturn to research in such a way that eost-benefil eriteri. can be used more frequently to evaluate different alternativas, lt would be useful to develop the lools fer determining the function of the benefits of researeh in dlfferent cases.Tne Brazilian Agricultural Researen Company (EMBRAPA) is the Mlnistry of Agriculture's tool for promoting the coordinatlon of all applied researeh in Brazil..At present, Inis is a historie moment in whieh bolh institutional and operatlve transformations are radical and profound. Tnese transformations are being earried out Ihroughoul Ihe exisling structure at lhe national level, at Ihe same time as a new approaeh was being adoPled in agrieultural researeh. Nevertheless, EMBRAPA's managers are Irying lO minimiza rlsks and disseminale, as far as possible, new ideas that are being introduced.In addition lo nol hindering the continuity of on9Oing researeh, it was considered essential Ihat the company implanl two point.: the effectiveness of the operative system and the definition of a policy in regaro to human resources.Tne operative system is supporled by two olhers: Ihe institutional 'ystem and the planning syslem, whích were already intreduced at ,Ihe nalional level and together form the new approach of applied agricultural research systams in Brazi!. These two sys'tems are explained in detall In the papér presented during the workshop.In addltion to thls, Ihe original paper presents a historie synlhesls of the evolution of Brazilian agricultural researeh and the bases for the ereation of EMBRAPA.It should be mentloned thal EMBRAPA was inslitu'ted on Mareh 28, 1973, and ls therefore a very young enlerprise. As far as decision-making ls concerned, the following basie policy tools orlenting national agriculture stand out: (1) The National Plan for Socloeconomie De_elopment and (2) The Basic Plan for Scientifie and Technological Development.On the basis of these two plans, EMBRAPA defines its course 01 aetion and priorities at the national, regional, state and local or institutional level. EMBRAPA's plan of work and its budget are analyzed and approved by the National Agricultural Researen, Teehnical Assistance and Rural Extension Commission (COMPATER). As regards mechanism~ for resource alloeation at the level of EMBRAPA, the documen't altempts to define the Indicativa Plan 01 Agricultural Researcn and the National Program 01 Agricultural Reseoreh.During the workshop, it was put on record Ihat EMBRAPA has limited experience as regards mechanisms for resouree alloeation. In the interim, they are in the process of defining parameters and methods on a scientifie basis in order to carry ou't this allocation.As far as defining researeh priorilies is con cerned, Ihree basic and closely related factors are taken into consideration: growth, equity and reduction of risk. In addition to Ihese, fourteen addilional critefia were considered importan! in the definition 01 priori'ties and resouree allocation for researeh. These were ¡he importance 01 the eommodity, its ro!e in nutrilion, price elastieity of demand, its ro:e in the balance of payments, the possibility 01 en immediate response (margin of return l, the industrial demand, price movement, aveilebllfty and use of rescurces, possible beneficiaries, regional equity, risks and uncertainties, the technology empioyed (known and potential l, the competitive capacity in the produetion of teehnology, and the possibility of importing and adapting technology.At presen!, EMBRAPA is attempting to obtain the data necessary to be able !O utilize all the aforementioned criteria, as we:! as lO define aclaquate methodology lor the evaluation and control 01 researeh activit!es carried out in Brazil.Tne prlvate flrm In Ine agribusiness sector undertakes researen far the express purpose of developlng marketable produets, which eontrlbute to Its growth through addad revenues.Competition creates the need for Innovation and researeh, but the seareh for new produets transcends 'this simple explanation. This continued quest in research in the modern firm is par! of its very reaSOn for existence nowadays, as research has beeome en integral part of ¡he operational structure of the firm and one of the foundations of its profit expeclations, which should be considerad as society's payment for the firm's service in carrying it out. New product development 15 not a simple proposition; it entails risks. Management is aware of il and tries to evaluate the nature and magnitude of the risk. After quantifying il and eomparing il 10 profit opportunities, management makes the decision on en acceptable level of eommltment of the firm's resourees In researeh and development leading lo the production of neW praducts and proeesses.Products or processes are objectives of private researeh; but as opposed to resulls of publie or institutional researeh, the requirement of selabillty of the produet or process is essentiaJ.The product ha. alife cycle eharaeterized by v.rious phases or stages-sueh aS (a) In!roduetion, (b) growth, (e) ma'turity, (d) saturation, and (e) decllne--ld ;nelode (1) goal$ of rasearcn, (2) Natíonal Program logic, (3) delínaalion of researeh areas, (4) background enelysis, (5) researcn program analysis, and (6) summary and anelysis.While en approaen to ereating nalíonal programo is suggested, Ihe principal guide must be one of flexibility. A strong central control of the proc:_ is recommended, bul identificalian af rasearen needs and Ihe data for analysis must be supplied en'tirely by the experls.,1l. Ardila, R. Hertford, A. Rocha and C. Trujülo This paper presants resvlt. of ovr studies of tha economie ralvrns to varietal improvement of rice, cotton, wheat and soybeso. io Colombia. Following recerrt aoalyses which indicated that social rates of returo to public iovestmeot io agricultural researeh have been exceediogly high in the Uoited States, as well as in Brazil and Mexico, the maio hypothesis tested was that retvrns to the four Colombian programs had been eqval to at leasl 50 percant. Rates of tnis magnitvde, of eourse, wovld point to significant vnderinvestment in agricvltural researeh sinee the opportvnily cost of public funds in Colombiareally the rate of return the Government eovld anticipate earning on additional pvblic investment in the average, already active projeel-has been estimated to eqval 10 percant.The methodology vsed to tesl lhe hYPolhesis of high returns was developed by aconom!st. a ,long time ogo and was used in 011 previous studies of returns to agricullural researeh. 1I associated the benefits of a researcn program wilh a .hift io product supply or a dacrease in the eosls of producing a given output as a result of farmers adopting higher yielding, improved seeds geoerated through a program of varlelal improvement. Total benefits inelude galns to eonsumers resuJting from Ihe commodity's lower priee, as well as gains to producers <$ssociated witn lower production eosts. For porposes of exposition, tnase tolal benefits for any year can be approximated by the term kV, where k is the supply .hift parameter or the percentage change in average, on-farm prodvetion cosls due to researen and V is eonstant priee measure of the total value of produetion of the commodity under examinaUon. This measure of benefits is reduced eaen year by the price-adjusted cests of the r_reh program (C), and a rale of interest is then found which makes discounled net beneflls (kVe) zero valued over lhe relevanl time perlod. That rate is Ihen taken to be Ihe net internal rate of return to the researenThe supply shift p.rameter, k, was estimated as the product of two separate ' \\ variables: a difference in yields, termed lhe yield advantage, betweén Iwo \\ farm plots (one belng planted enlirely with Ihe impreved ,eeds and the other with the unimproved varieties) and the percentege of cropland planted wlth improved varletie •• The yie:d advantage was actually estimated from ragressions of yields (from on-farm trials edministered by the research progrem staff) On a series of key independent variables, including the variety of seed planted. ln this way the yield effects of different seed types were not mistaken for effect. of other production factors. The second variab:e, the parcentage of cropland planted wlth improved varieties, was calculated as a function ef available data on annual sales of certifjed seads.Given this estimatlon procedure, larger yleld advantages and/or higher parcen'tages of cropland p:anted with improved varíetie. are obvlously associated with larger values of k, as well as larger net benefits and higher rates of retum. Thus, differences in rates of return among programs can be a!tributed directly to differences in yield advantages of improved varieties and observad levels of usa or adoption of the new seeds. The yield advantage, of course, is technically and biologícally determined, while socioeconomlc factors and the structure and organization of produclion are usually primary determinants of the amount of cropland planted with improved seeds.Within this framework, two other variables also assist I~ explaining differenees in ea!eulated rates 01 nlturn to individual research programs. These are revealed by rewriting the simple definition of net benefits as V(k -C/V). It Is seen that an agricultural research program whích is costly -in relation to the value of the fina' output of the eommodity worked on will be associated wi'h lower net benefits and a lower rate of raturn, other conditions being equal. Similarly, the less important the commodity in terms 01 its domestic value of produelion, the lower is its rate of return.The main results of the paper are summarized in Tab:e 1. Aithough rates 01 return calculated for the rice and soybean researeh programs were found to have exceeded the 50 parcent level by a wide margin, it is sean that returns to wheat improvement turned out to be rather modest and that those for cotton research were negligible.The high returns to soybean researeh were attributed prineipaliy to the rapid and hlgh levels of adoption of 1he Improved vaÑetles. Thls striking adoption pattern was, in turn, attributed to a strong demand for the product, the geographie eoncentratíon of producers whích facilitated rapid diffusion of information about the new seeds, and the fae'!: that soybean farmers are among Colombia's most progressive.Although the high returns to varietal improvement in rice were partly explalned by the yield advantage of the new varle'tles, their levels of adoption and the overal! Imporlance of rice production. 'they were mostly credited .0wer returns 10 wheal researeh dld not rellect obvious technlcal lallures in plant breedlng. On Ihe contrar\\!, the estimated yleld advantage of lhe improved wheat variet;es was the highest among lhe programs analyzed. However, adoption of the new varietles was laggard; from the lime thay were flrsl sold commercially in 1953 unlil they were plantad on 25 percenl of all whealland, fully 12 vean elapsed. Furlhermore, rates of adoption peaked al 50 pereenl in 1968 and then began a downward trend. Thls slow uptake 01 lhe new saeds, thelr currently low levels of use, and the dlstressing downward trend In reeent adoptlon paltern. were attributed to certaln socioeconomic conslraints on wheat production, nOI Ihe least 01 which were large and suslained Imparts 01 wheat under P. L. 480, which depressed the domestic market. The higo relative costs of the program In Its later life, the 10w value 01 wheat production in Colombia, and a long \"dry perlod\" of pub:ic Investments in research before new var'ieties were released also foreed down Ihe estimated rate of return.Colton was a spacial case. On-farm ylelds inereased sharply, partly as a resull 01 the rapid adoption of Improved U. S. varletle •. Ye'!, it was eoncluded that the natlonal researen program should not ba credited with these galns, essentlally beca use of the nature of Its actlvities and objectives. It was deslgned only to impart, tastlocallv and distribute to Colomblan farme,. the hlghest yieldlng U. S.' vadetles. The premisa was tha! yie:ds 01 U. S. colton grown in Colombia would vary by type or varlety; thus, a payoff was anticipated Irom an effort which Identlfled Ihose variatie. yielding best under local conditions. However, careful examlnation of over 500 cornmercial field trials performed in Colombia dld no! uncover significan! differences in yields of the improved U. S. varietles. Therefore, it was concluded that the main activity of Ihe researeh program was unneeessary. U. S. va,ielles could jusI as well have been selected at random lor dislribution to local farmers.The ba.ic ana!ytical modal i. bullt up within a framework that considers lhe dis'tribution of the benefits from tedmical change between producer. and consumers and their distribution among the faetors of productlon, given Ihe producers' share of beneflls. The direction of research is postulated as a funetion of relalive factor prices. A two-sector general equílibrium model is used to analyze the adjustmsnt problem among sectors as technical change proceeds,• Allocation decisions with raspeet to agricultural researeh are generally made on a crap basls, taking into aecaunl whether and in what proportions resourees should be allocated to speeific erops, The analysis of the present $!udy i$ designed in par! to previde information which will help in declsionmaking based On the assumption that the 10lal flow of benefils expected from a given technological change is importanl and tha! policymakers or research managers have some nolion of the exlent thay desire 'to benefit producer. and consumero.The principal conclusions of the analysis are 1. The choice of products which should have priority in the researeh effort will depend upon government goals: a, If the goal is to increase income in Ihe agrieultural sector, the products to be .elected are Ihose w;,h a high price elasticity of demand, An important group of 5uch products are those with a comparative advantage in world markets, 5uch as cOlton and sugar eane.b, II the goal is to inerease the income and employment 01 farm labor, the choice would be the same product •.e, I f Ihe goal is to increase COnSUmlír welfare, the producls to be considerad must be those witn a low price elasticity 01 demand, such as eorn, rice, edible beans and cassava, d, If the goal is lo enlarge agrículture's eontribution lO general' economic development, Ihe choice will depend upon the prevailing eonslraint al the particular time. 11, for example, the constraint is capital, the producl' to be selected ara those which give the greater Ilow of gros. benefit.; namely, coro and rice, On the .other hand, jf the constraiot is foreign exhange earning., cotton and sugar cane would be higher on Ihe priorily list, 2, The resull. $uggeot thal the bulk 01 researen should 90 lO increase land produetivity, However, there is room for research on 'the subfunetion of labor if the researeh is dlrecled 'to aetivities which are not strongly labor displadng (for example, researeh wilh traetors to improve land preparation l.3. The resvlts obtained In estimatlng the parameters of the produetion funetion with time series dala svggest a ba.lc changa look place in production tecnnology In the early 1960's. Modern inpul. sveh a. fertilizar and machlnery have suootituted Ine primary Inputs whien they prevlously complementad.4. Finally, the problem of adíustment In the labor market between the agricultural and nonagricultural sectors Is expectad to be sizable if researeh Is directed to the erap. with • low priee e:astícity of demand, sueh as eorn, rice, adible beans and cassava, even If the researen is basically designad to improve land produclivi'ty. On the olher hand, il researeh is diredad to expon-oriented erops, such as cotton and sugar cane, the demand for labor wlll be expactad to inerease even if the researeh is focusad on land subfunction. It could also increase the demand for labor If focusad on the labor subfunction as well, as long as the technic.1 changa tha! resulls Is nol strongly labor displacing.Attempts are made to describe certaln key aspects of tne structure, performance and results of tne production prOCess, the farmer's objectives, and ¡he inleraclion among tnese faclors. Emphasis is plaeed upon identifying the principal factors limi'ting production and produetivity and estimating the implications of ehanging these factors.A small specialized team of agronomists and e<:onomists oblsin primary data f, om a panel of farms expected lO be representative of the farms for which agrobiologieal researen is ¡n tended. The field team makes periodie visits (normally :J..4) lO eaeh farm throughout a complete erop cyele. About half of ¡he time on the farm is spenl in the freid, eollecling dala on agroblological issues (by direct observation), wnile tne otner naif is used 10 inlerview-\\he farmer.Direct participation of a highly qualified muJlidisciplinary research team in the training and field execution phases is essential to the suecass of the survey. The field teams working on the on90in9 CIAT agro-economic surveys have reeaived three to four montns of presurvey training in direct contael with the sdentists from the relevanl disciplines.The agro-eeonomic survey provldes an estimate of the area affected by each of the problems iden'tlfied. Furthermore, it gives an indicalion of the yield depressing affect. However, il Is frequently difficult to estimate the yleld impact from survey data wlth a grea! deal of aceuracy; henee conlrolled experiments are earrled out 'to help quantify the yield Impact of the problems.In addi'tion to aggregaling the data for the purpose of presenting a de.criplion of the process, emphasis ;s plaeed on estimating the eeonomic ,Ioss caused by eaeh of ¡he agrobiological and ecological factors, sueh as disease, inseets, weeds, soi! deficiencies and adversa rainfall eonditions, and the implicatlons of changing these factors. Furthermore, eslimatlon Is made of (1) production coslS and labor absorption by production aetivi'ty, (2) net returns to the process for each of the principal cropping systems, (3) the contributlon of each of Ihe principal resourees to nel returns and (4) the faetors influencing the fermer's decision-making in referenee lo 'Ihe adoptíon of new technology and the choice of eropping \"ystem.Projects are eurrenlly under way in Co:ombla to field tesl the above methodology for malze, cassava and beans. Allhough Ihe information obtalned from these empirical slUdies is expected to be us&ful to Co!ombian nalienal \" inslitutions and CIAT, the primary purpose of Ihe work Is to develop and test a simple methodology for usa by nalional researeh agencies in Latín America a~ eloewhere. The paper presento a few preliminary results of this work to illústrate 'the kind of information provided by Ihe agro-economic survey.In addition lo the expeeted utility of the information made avaHable by the 8gro-economic analyses, the work provides a valuable training opporlvnily fur young agronomisls and economisls inlerested in produclion.No claims are made Ihal the agr<:>-economic survey is a new ¡nvention. However, cerlain aspects of the work discussed aboye tend to distingvísh il from tradilional farm surveys and hopefully make il more useful for establishing priorities In applied agriculturai research. These aspeels are (1) A considerable proportion of 'he data are obtained from direct field observalions made by agronomists pnevlou~ly traíned for tnls ¡ob; (2) each farm ls vlslled perlodically during a complete growing seasotí; (3) the work Is mvltldisclplinary in nature and involves direct participatlon by professlonals from all the relevant disciplines; (4) the work Is .pacifically fucused on provlding information needed lO eslablish researeh prioritles. Although the information may be useful for olher purposes, such utility is considered secondary.","tokenCount":"16512"} \ No newline at end of file diff --git a/data/part_1/1565435081.json b/data/part_1/1565435081.json new file mode 100644 index 0000000000000000000000000000000000000000..e033823259597864331a36d1cda47f0fd786422d --- /dev/null +++ b/data/part_1/1565435081.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"c617204d3c1c5853089a53a97d8c1d58","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/60c412c7-8bda-4e6b-a274-44df7ecbdffb/retrieve","id":"1749773386"},"keywords":[],"sieverID":"1b88f158-c604-4441-bd1d-ce5019ce17de","pagecount":"4","content":"En 1970, 24 % de la population mondiale souffrait de faim chronique en raison d'insuffisances en apports caloriques. Ce chiffre est aujourd'hui passé à 13 %. Cela étant, 925 millions de personnes souffraient toujours de la faim en 2010. Beaucoup d'autres s'alimentent presque exclusivement de glucides et de féculents et manquent de nutriments essentiels.La malnutrition toucherait 186 millions d'enfants de moins de cinq ans dans le monde. N o 3 : juillet 2011 CTA Note politique NOURRIR LA PLANÈTE : UN COMBAT INACHEVÉ Améliorer la nutrition dans les pays ACP -le rôle de l'agriculture OPTIONs POLITIqUEs Tirer les enseignements des expériences menées dans les pays qui sont parvenus à réduire la malnutrition Renforcer la collaboration entre les secteurs de l'agriculture, de la santé et de la nutrition Investir dans des mesures qui permettent d'améliorer la qualité nutritionnelle des aliments, y compris la biofortification Stimuler la production agricole à petite échelle grâce à des actions ciblées, comme les programmes alimentaires en milieu scolaire, qui augmentent aussitôt la demande localeCes enfants ont une taille insuffisante pour leur âge et présentent un retard de croissance qui entrave leur développement mental et leurs capacités intellectuelles. Les carences en vitamine A causent chaque année la mort d'un million d'enfants dans les pays en développement. L'anémie provoque le décès de 50 000 femmes enceintes ou en couche chaque année dans le monde.Si la faim demeure un problème majeur en Afrique subsaharienne, les habitants des régions des Caraïbes et du Pacifique souffrent d'un apport excessif de calories. Les maladies chroniques non transmissibles, souvent dues La mise au point de variétés culturales riches en micronutriments et en vitamines constitue une solution technologique importante. Ce procédé, dénommé « biofortification », exige un investissement de départ considérable mais peut s'avérer plus rentable que de fournir des compléments nutritifs aux groupes vulnérables. En Ouganda et au Mozambique, la culture de la patate douce à chair orange, riche en vitamine A, connaît d'ores et déjà un énorme succès.Au Brésil, la campagne « Faim zéro » (Fome Zero) a permis de réduire considérablement la malnutrition infantile. Entre 2003 et 2008, le nombre d'enfants de moins de cinq ans affectés a chuté de 12,5 % à 4,8 %. Ce succès repose sur un engagement politique fort : faire de l'éradication de la faim l'élément central de la politique nationale ; promouvoir une protection sociale des familles via les femmes ; et stimuler la production des petites exploitations agricoles par la mise en place de programmes alimentaires, en milieu scolaire par exemple. L'agriculture peut fortement concourir à éradiquer la faim et la malnutrition. Pour nourrir une population mondiale qui devrait passer de 7 à 9 milliards d'individus d'ici 2050, il sera nécessaire d'augmenter la production des denrées alimentaires. La sécurité alimentaire, toutefois, ne consiste pas seulement à fournir davantage de calories, mais aussi à produire des aliments possédant de réelles qualités nutritionnelles, comme à s'assurer qu'ils sont accessibles à tous à prix abordables. Il convient, à cet effet, de modifier radicalement les politiques et pratiques agricoles.Pour produire des aliments de haute valeur nutritive, un certain nombre d'interventions Traditionnellement, les secteurs de l'agriculture, de la santé et de la nutrition fonction-Robert Mwadime, FANTA-2, Ouganda \" nent séparément. Pourtant, les programmes agricoles auraient de bien meilleures chances d'atteindre leurs objectifs sanitaires et nutritionnels si les trois secteurs travaillaient ensemble à leur conception, mise en oeuvre et évaluation.Il convient aussi d'encourager les professionnels des secteurs de l'agriculture, de la nutrition et de la santé à collaborer avec la société civile, les agriculteurs, les associations de consommateurs et l'ensemble du secteur privé pour formuler des politiques appropriées. Les pays africains, tels que le Malawi et le Rwanda, où la malnutrition est reconnue comme un frein au développement, plutôt qu'un simple problème de santé publique, ont été les premiers à adopter une approche multisectorielle.Les femmes contribuent fortement à la production alimentaire et à la nutrition familiale. Les politiques qui consistent à renforcer le contrôle des femmes sur la terre et les actifs financiers, mais aussi à améliorer leur accès aux services de vulgarisation et d'information, concourent à l'accroissement de la productivité agricole, à l'amélioration de la santé infantile et la situation nutritionnelle de toute la famille.Nous avons encore beaucoup à apprendre sur la façon dont les différents systèmes agricoles affectent la nutrition et la santé, et en conséquence sur la manière d'orienter nos investissements. Quelles mesures incitatives faut-il prendre pour s'assurer que l'augmentation des revenus agricoles se traduit par l'amélioration de la santé ? Quel type de croissance agricole améliore la diversité des régimes alimentaires ? Les réponses à ces questions, et à bien d'autres, pourront guider les politiques agricoles et alimentaires. Il faut donc investir davantage dans la recherche et mieux comprendre les liens entre agriculture et nutrition.Source : UNSCN Tél. : +31 (0) 317 467 100 -E-mail : cta@cta.int -www.cta.int S'intéresser aux chaînes de valeur alimentaire, où toutes les étapes de la production, de la transformation et de la distribution d'un produit ont des implications en terme de nutrition, est aussi un exercice riche d'enseignements pour les décideurs politiques. Dans de nombreux pays ACP, le manque de spécialistes de la nutrition, surtout dans les zones rurales, est à prendre en considération. L'objectif visant à éradiquer la faim et la malnutrition ne peut être atteint faute de personnel suffisamment qualifié à tous les niveaux.Les politiques suggérées dans cette note pourraient contribuer à réduire considérablement la malnutrition dans les pays ACP. En","tokenCount":"902"} \ No newline at end of file diff --git a/data/part_1/1595175543.json b/data/part_1/1595175543.json new file mode 100644 index 0000000000000000000000000000000000000000..4f40ef19eaee7e6545473ea733748e4ccb3fc2e1 --- /dev/null +++ b/data/part_1/1595175543.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"057b378af044bae1be175bb3b267e413","source":"gardian_index","url":"https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistentId=doi:10.7910/DVN/ID0MPE/3GV4QI","id":"482225945"},"keywords":[],"sieverID":"f9487b16-ebb8-4286-a580-9ef376615eba","pagecount":"29","content":"Only use in Research purpose No Question Respond Code C7. Aside from your work as an AWW, are you presently engaged in any other work for which you receive compensation? 1. Yes 0. No C8. What was your primary reason for becoming an AWW? 1. Income generation 2. Want to be involved in the community/help or serve others 3. Bored/ have unoccupied time 4. Only opportunity available 95. Other (specify) C9. How long have you been working as AWW in this community? Years Month C10. Prior to becoming an AWW, what was your occupation? 1. Housewife 2. Teacher 3. Agricultural labourer 4. Private sector job 5. No prior occupation 6. Anganwadi helper 95.Other (specify) C11. Do you live in the village where the Anganwadi Center is located? 1. Yes 0. No C12. How far away do you stay/live from the AWC village where you work? Km C13. Do you have a job description or manual that describes your AWW work responsibilities?K26. The people in the community value my efforts to improve their lives. K27. I am contributing to improving the conditions of the communities I am working in. K28. I have a lot of pressure as an AWW. K29. It really seems like the workload keeps increasing K30. I find my work as an AWW to be motivating, and I like to do it. K31. I feel confident that I am performing very well as an AWW.","tokenCount":"237"} \ No newline at end of file diff --git a/data/part_1/1596661511.json b/data/part_1/1596661511.json new file mode 100644 index 0000000000000000000000000000000000000000..4a332b2004b88c3380970fe24e1a509b89b30d33 --- /dev/null +++ b/data/part_1/1596661511.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"19cdfbf1de35d59957ad144b24287742","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/de276055-78bb-485d-87bc-12674716aee7/retrieve","id":"755553741"},"keywords":["El Gataa, Z.","Samir, K.","Tadesse, W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide wheat","drought stress","GWAS","MTA"],"sieverID":"c5bd7b6e-5fe5-4882-8972-fdf1dceda057","pagecount":"19","content":"Drought is one of the most important yield-limiting factors in Morocco. Identification and deployment of drought-tolerant wheat varieties are important to cope with the challenge of terminal moisture stress and increase wheat productivity. A panel composed of 200 elite spring bread wheat genotypes was phenotyped for yield and agronomic traits for 2 years (2020 and 2021) in Morocco under rainfed and irrigated environments. The panel was genotyped using 20K SNPs and, after filtration, a total of 15,735 SNP markers were used for a genome-wide association study (GWAS) using a mixed linear model (MLM) to identify marker-trait associations (MTA) and putative genes associated with grain yield and yield-related traits under rainfed and irrigated conditions. Significant differences were observed among the elite genotypes for grain yield and yield-related traits. Grain yield performance ranged from 0.97 to 6.16 t/ha under rainfed conditions at Sidi Al-Aidi station and from 3.31 to 9.38 t/h under irrigated conditions at Sidi Al-Aidi station, while Grain yield at Merchouch station ranged from 2.32 to 6.16 t/h under rainfed condition. A total of 159 MTAs (p < 0.001) and 46 genes were discovered, with 67 MTAs recorded under rainfed conditions and 37 MTAs recorded under irrigated conditions at the Sidi Al-Aidi station, while 55 MTAs were recorded under rainfed conditions at Merchouch station. The marker 'BobWhite_c2988_493' on chromosome 2B was significantly correlated with grain yield under rainfed conditions. Under irrigated conditions, the marker 'AX-94653560' on chromosome 2D was significantly correlated with grain yield at Sidi Al-Aidi station. The maker 'RAC875_c17918_321' located on chromosome 4A, associated with grain yield was linked with the gene TraesCS4A02G322700, which encodes for F-box domain-containing protein. The markers and candidate genes discovered in this study should be further validated for their potential use in marker-assisted selection to generate high-yielding wheat genotypes with drought tolerance.Drought is the most significant abiotic factor impacting wheat yield and production, particularly in West and South Asia, North Africa, and Sub-Saharan Africa [1]. Climate change reduces precipitation, worsens drought stress, and has a significant influence on wheat production. Drought stress affects wheat grain production and quality at all phases of development and reduces wheat grain yield by around 30% [2,3]. Understanding drought-tolerance processes and identifying loci relevant to drought tolerance are essential for developing breeding tactics that promote drought tolerance [4]. In season 2022/2021, Morocco harvested 5.06 million tons of bread wheat on 3.2 million hectares, with an average of 1.5 tons per hectare.Using molecular markers such as single nucleotide polymorphism (SNP) and diversity array technologies (DArT), marker-assisted selection (MAS) has become an essential strategy in wheat breeding for the development of novel adapted lines to biotic and abiotic stresses. Based on linkage disequilibrium (LD), a genome-wide association study (GWAS) is a strong method for identifying marker-trait associations (MTA) and quantitative trait loci (QTL) associated with the trait of interest [5]. GWAS employed a variety of statistical models, although the Mixed Linear Model (MLM) and the General Linear Model (GLM) were the most often used. Several studies use MLM as an appropriate model because of including kinship (K) among individuals and population structure (Q) [5].The primary goal of plant genetics and breeding research is to improve agricultural productivity and stability in order to provide food security for the world's rapidly rising population. Plant breeding methodologies, genetic designs, genomics, statistics, and bioinformatics must all be combined to adjust adaptive, agronomic, and economic qualities to meet this challenge. Gene identification and complex trait dissection are two linked components of this effort. Complex trait dissection emphasizes genetic contribution and modes of action from numerous loci, which contributes to phenotypic variance, whereas gene identification focuses on individual genes. The two common goals of any QTL mapping in plants are: (1) to increase our biological knowledge of the inheritance and genetic architecture of quantitative traits, both within a species and across related species, and (2) to detect markers that can be used as indirect selection tools in breeding programs [6].In recent years, significant efforts have been made to complement traditional plant breeding methods based on a phenotypic pedigree with molecular genetic techniques for the discovery and application of QTLs for marker-assisted breeding and genomic selection (GS). Linkage mapping (also known as genetic mapping) and association mapping (linkage disequilibrium (LD) mapping) are the most commonly used approaches in dissecting complex traits and identifying genes underlying trait variation in plants, animals, and humans [7].Recently, research on association mapping in several agricultural plants has been conducted to address the constraints identified in linkage-based QTL mapping. Fast improvement in genotyping methods, such as genome sequencing and high-density single nucleotide polymorphism, allowed for the creation of association mapping, the mapping of complex characteristics, and the discovery of contributing genes [8,9]. In this study, we carried out GWAS on 200 spring bread wheat genotypes that were phenotyped for grain yield and yield-related traits and genotyped with SNP markers to identify markers as well as to identify putative genes associated with grain yield and yield-related traits under drought and irrigated conditions.Figure 1 shows scatter plots of grain yield under rainfed and irrigated conditions at Sidi Al-Aidi station of 200 bread wheat genotypes grown during two seasons (2020 and 2021). The statistical analysis of 200 bread wheat genotypes for grain yield and yield-related traits is presented in Table 1. Grain yield ranged from 3.31 to 9.38 t/h with a mean of 5.93 t/h and the heritability value of 0.45 for irrigated conditions at Sidi Al-Aidi station and grain yield for a rainfed experiment at Sidi Al-Aidi station ranged from 0.97 to 6.16 t/h with a mean of 4.19 t/h and the heritability value of 0.32. While grain yield at Merchouch station ranged from 2.32 to 6.85 t/h with a mean of 4.09 and a heritability value of 0.42. Irrigated conditions at Sidi Al-Aidi station recorded the highest value of grain yield followed by rainfed conditions at Merchouch and Sidi Al-Aidi stations, respectively. All traits showed significant results, wherein the irrigated conditions at Sidi Al-Aidi the NTP value had the highest coefficient of variance (CV) with a value of 23.28% followed by biomass and NSS with a value of 22.68 and 20.59%, respectively. While days to maturity (DMA) recorded the lowest value of CV (2.41%). In the rainfed experiment at Sidi Al-Aidi station, the number of seeds per spike (NSS) had the highest CV with a value of 22.85% followed by biomass and grain yield (GY) with a value of 20.39 and 15.04%, respectively. While canopy temperature (CT) recorded the lowest value of CV (3.57%). In the rainfed experiment at Merchouch station, the GY had the highest CV with a value of 18.29% followed by biomass and number of plants in m 2 (NP/m 2 ) with a value of 16.85 and 14.39%, respectively. While DMA recorded the lowest value of CV (2.97%). Traits in irrigated conditions recorded a higher heritability than in rainfed conditions. Under irrigated conditions at Sidi Al-Aidi station, NSS recorded the highest value of heritability with 0.80 followed by biomass and plant height (PLH) with 0.77 and 0.72, respectively. While GY traits showed the lowest value of heritability. Under rainfed conditions at Sidi Al-Aidi station, PLH recorded the highest value of heritability with 0.65 followed by NSS and days to heading (DHE) with 0.63 and 0.62, respectively. While the GY trait showed the lowest value of heritability. Under rainfed conditions at Merchouch station, Biomass recorded the highest value of heritability with 0.70 followed by PLH and DHE with 0.67 and 0.64, respectively. While the GY trait showed the lowest value of heritability. The top 10 elite genotypes for grain yield are indicated in Supplementary Table S1. The genotypes G-146 (SUDAN#3/SHUHA-6/4/BOW/PRL//BUC/3/WH576) and G-145 (STAR *3/LO-TUS 5//TNMU/MILAN/3/QAMAR-2) were recorded the highest grain yield under the rainfed condition with a value of 6.16 and 5.75t/h, respectively. Principal component bi-plot analyses show the association between grain yield and yield-related traits (Figure 2). Under the rainfed regime at Sidi Al-Aidi station, the two principal components explained 20.5% and 13% of the total variation for grain yield and yield-related traits. Under the irrigated regime at Sidi Al-Aidi station, the two principal components explained 17% and 15.5% of the total variation for grain yield and yield-related traits. Under the rainfed regime at Merchouch station, the two principal components explained 22.3% and 15.8% of the total variation for grain yield and yield-related traits. Figure 3 shows four groups under rainfed and irrigated regimes at both stations. Figure 4 shows the correlation between agronomic traits under rainfed and irrigated regimes at both stations. Under the rainfed regime at Sidi Al-Aidi station, DHE was positively correlated with days to maturity with a value of 0.53 and biomass was positive with PLH and biomass with a value of 0.31. Whereas, canopy temperature showed a significant negative correlation with grain yield and biomass with values of −0.21 and −0.20, respectively. Under the irrigated regime at Sidi Al-Aidi station, days to heading and days to maturity were correlated with a value of 0.65, grain yield is correlated with biomass with a value of 0.49; also, grain yield was positively correlated with plant height with a value of 0.32. Whereas canopy temperature was negatively correlated with NPM and NSS with a value of −0.18 and −0.15, respectively, and also, grain yield was negatively correlated with days to heading with a value of −0.18. Figure 5 shows the LD decay of A, B, and D genomes. Genome B had the highest linkage disequilibrium, with an average r 2 value of 0.18, followed by genomes A and D with r 2 = 0.17 and r 2 = 0.15, respectively. Figure 6 shows the density of markers over 21 chromosomes of 200 bread wheat genotypes. For all traits under the rainfed regime at Sidi Al-Aidi station, a total of 67 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 2), the A sub-genome has the most MTAs (28), followed by the B and D sub-genomes, which had 26 and 13 MTAs, respectively. For all traits under the irrigated regime at Sidi Al-Aidi station, a total of 37 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 3), the A sub-genome has the most MTAs ( 16), followed by the D and B sub-genomes, which had 12 and 9 MTAs. For all traits under the rainfed conditions at Merchouch station, a total of 55 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 3), the B sub-genome has the most MTAs (21), followed by the A and B sub-genomes, which had 20 and 13 MTAs. The GWAS results is the mean of two years (2020/2021). Figure 5 shows the LD decay of A, B, and D genomes. Genome B had the highest linkage disequilibrium, with an average r 2 value of 0.18, followed by genomes A and D with r 2 = 0.17 and r 2 = 0.15, respectively. Figure 6 shows the density of markers over 21 chromosomes of 200 bread wheat genotypes. For all traits under the rainfed regime at Sidi Al-Aidi station, a total of 67 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 2), the A sub-genome has the most MTAs (28), followed by the B and D sub-genomes, which had 26 and 13 MTAs, respectively. For all traits under the irrigated regime at Sidi Al-Aidi station, a total of 37 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 3), the A sub-genome has the most MTAs (16), followed by the D and B sub-genomes, which had 12 and 9 MTAs. For all traits under the rainfed conditions at Merchouch station, a total of 55 significant marker-trait associations (MTAs) with p < 0.001 were found (Table 3), the B sub-genome has the most MTAs ( 21), followed by the A and B sub-genomes, which had 20 and 13 MTAs. The GWAS results is the mean of two years (2020/2021). The results of significant marker-trait associations for grain yield and yield-related traits under rainfed and irrigated conditions at Sidi Al-Aidi and Merchouch stations are shown in Tables 2-4, and Figure 7 as well as Supplementary Figures S1-S3. For rainfed conditions at Sidi Al-Aidi station, seventy-four MTAs were recorded (Table 2), where 11 MTAs were recorded for biomass, these markers are located on chromosomes 2B, 2D, 3A, 3B, 5D, and 6D, on the same trait the markers \"BobWhite_c2988_493\" and \"Ex_c14755_1362\" located on chromosomes 2B and 2D, respectively, with a value of −Log10(p) = 4.17. Twelve markers were significantly associated with canopy temperature located on chromosomes 1B, 2B, 3D, 5B, 6A, 6B, 6D, and 7A, where the marker \"AX-94463982\" recorded the highest −Log10(p) = 7.03 located on chromosome 7A, whereas the marker \"Bob-White_rep_c64068_241\" recorded the lowest −Log10(p) = 3.09 located on chromosome 2B. Chlorophyll content recorded three significant markers located on chromosomes 3A, 5A, and 1B. Days to heading recorded two significant markers located on chromosomes 1B and 2B. Days to maturity recorded two significant markers located on chromosomes 5B and 7D. Grain yield recorded three significant markers located on chromosomes 4A, 2B, and 2D. Fifteen MTAs were recorded for NPM, which are located on chromosomes 1A, 1D, 3A, 3D, and 4A, where the marker \"Ra_c29200_300\" recorded the highest −Log10(p) = 3.63 located on chromosome 1A. For the NSS trait, 11 MTAs were recorded located on chromosomes 1A, 1B, 1D, 5B, 6B, and 7D. The marker \"Excalibur_c5329_1335\" had the highest −Log10(p) = 4.85. The number of tillers per plant (NTP) trait recorded one significant marker located on chromosome 3B. Seven MTAs were recorded for plant height located on chromosomes 1B, 3B, 4A, 5A, 5B, 5D, and 6A. The marker \"RAC875_c41731_321\" located on chromosome 2A was recorded for canopy temperature and chlorophyll content. For irrigated conditions at Sidi Al-Aidi station, forty-eight MTAs (Table 3) were recorded, where 5 MTAs were recorded for biomass, these markers are located on chromosomes 5B and 7A. Chlorophyll content recorded seven MTAs located on chromosomes 1D, 2A, 3A, 3B, 5B, and 7A, where the marker \"IAAV5819\" recorded the highest −Log10(p) = 3.95 located on chromosome 3B. Seven significant markers were associated with canopy temperature, where the markers were located on chromosomes 1D, 2A, 3A, 3B, 5B, and 7A. DHE recorded one significant marker located on chromosome 1D with −Log10(p) = 3.81. DMA recorded 3 MTAs located on chromosomes 2A and 2D. Six significant MTAs were recorded for NPM located on chromosomes 2A, 2D, 5A, 5B, and 6A, where the marker \"Excalibur_rep_c69730_391\" had the highest −Log10(p) = 4.87 located on chromosome 5B. NSS trait recorded 5 MTAs located on chromosomes 4A and 5D. NTP trait recorded two significant markers located on chromosome 1B. Plant height recorded one MTA located on chromosome 7A with −Log10(p) = 3.07. The marker \"AX-94513795\" located on chromosome 3A was recorded for chlorophyll content and biomass.For rainfed conditions at Merchouch station, fifty-five MTAs were recorded (Table 4), where 3 MTAs were recorded for biomass, these markers are located on chromosomes 6A, 6B, and 6D. Chlorophyll content recorded 12 MTAs located on chromosomes 1A, 1B, 2D, 3B, 3D, 6A, 6D, and 7A, where the marker \"AX-94419426\" recorded the highest −Log10(p) = 4.34 located on chromosome 1B. Eleven significant markers were associated with canopy temperature, where the markers were located on chromosomes 1A, 1B, 2D, 3A, 3B, 3D, 6A, and 7A. DHE recorded 14 significant markers, the marker \"IAAV2346\" For irrigated conditions at Sidi Al-Aidi station, forty-eight MTAs (Table 3) were recorded, where 5 MTAs were recorded for biomass, these markers are located on chromosomes 5B and 7A. Chlorophyll content recorded seven MTAs located on chromosomes 1D, 2A, 3A, 3B, 5B, and 7A, where the marker \"IAAV5819\" recorded the highest −Log10(p) = 3.95 located on chromosome 3B. Seven significant markers were associated with canopy temperature, where the markers were located on chromosomes 1D, 2A, 3A, 3B, 5B, and 7A. DHE recorded one significant marker located on chromosome 1D with −Log10(p) = 3.81. DMA recorded 3 MTAs located on chromosomes 2A and 2D. Six significant MTAs were recorded for NPM located on chromosomes 2A, 2D, 5A, 5B, and 6A, where the marker \"Excalibur_rep_c69730_391\" had the highest −Log10(p) = 4.87 located on chromosome 5B. NSS trait recorded 5 MTAs located on chromosomes 4A and 5D. NTP trait recorded two significant markers located on chromosome 1B. Plant height recorded one MTA located on chromosome 7A with −Log10(p) = 3.07. The marker \"AX-94513795\" located on chromosome 3A was recorded for chlorophyll content and biomass.For rainfed conditions at Merchouch station, fifty-five MTAs were recorded (Table 4), where 3 MTAs were recorded for biomass, these markers are located on chromosomes 6A, 6B, and 6D. Chlorophyll content recorded 12 MTAs located on chromosomes 1A, 1B, 2D, 3B, 3D, 6A, 6D, and 7A, where the marker \"AX-94419426\" recorded the highest −Log10(p) = 4.34 located on chromosome 1B. Eleven significant markers were associated with canopy temperature, where the markers were located on chromosomes 1A, 1B, 2D, 3A, 3B, 3D, 6A, and 7A. DHE recorded 14 significant markers, the marker \"IAAV2346\"Plants 2022, 11, 2705 13 of 19 recorded the highest −Log10(p) = 3.63 located on chromosome 5B. DMA recorded 6 MTAs located on chromosomes 2B, 4B, 4D, 5A, and 5B. Six significant MTAs were recorded for NPM located on chromosomes 3D, 5B, and 7D, where the marker \"IACX11794\" had the highest −Log10(p) = 4.04 located on chromosome 7D. Thousand kernel weight (TKW) trait recorded 2 MTAs located on chromosomes 2B and 5A. The marker \"BS00003816_51\" located on chromosome 3A was recorded for canopy temperature and chlorophyll content.Under rainfed conditions at Sidi Al-Aidi station, out of the two highest significant MTAs found for grain yield, BobWhite_c2988_493 and Ex_c14755_1362 located on chromosomes 2B and 2D, respectively, (Figure 8) expressed the highest frequency of favorable alleles for grain yield in the population. The results showed that wheat genotypes carrying the cytosine and guanine bases at the BobWhite_c2988_493 and Ex_c14755_1362 markers combination, respectively, significantly out-yielded the other base combinations. The combination of the cytosine and thymine bases is shown to have low-yield performance and that is linked to the low cumulative number of favorable alleles of the two significant markers. Under irrigated conditions at Sidi Al-Aidi station, two of the highest significant MTAs found for grain yield, AX-94653560 and wsnp_Ex_c6748_11659366 located on chromosomes 2D and 2B, respectively, (Figure 8) expressed the highest frequency of favorable alleles for grain yield in the population. The results showed that wheat genotypes carrying the cytosine and thymine bases at the AX-94653560 and wsnp_Ex_c6748_11659366 markers combination, respectively, significantly out-yielded the other base combinations. The combination of the thymine and cytosine bases has low-yield performance, which is linked to the low-cumulative number of favorable alleles of the two significant markers. Under rainfed conditions at Sidi Al-Aidi station, out of the two highest significant MTAs found for grain yield, BobWhite_c2988_493 and Ex_c14755_1362 located on chromosomes 2B and 2D, respectively, (Figure 8) expressed the highest frequency of favorable alleles for grain yield in the population. The results showed that wheat genotypes carrying the cytosine and guanine bases at the BobWhite_c2988_493 and Ex_c14755_1362 markers combination, respectively, significantly out-yielded the other base combinations. The combination of the cytosine and thymine bases is shown to have low-yield performance and that is linked to the low cumulative number of favorable alleles of the two significant markers. Under irrigated conditions at Sidi Al-Aidi station, two of the highest significant MTAs found for grain yield, AX-94653560 and wsnp_Ex_c6748_11659366 located on chromosomes 2D and 2B, respectively, (Figure 8) expressed the highest frequency of favorable alleles for grain yield in the population. The results showed that wheat genotypes carrying the cytosine and thymine bases at the AX-94653560 and wsnp_Ex_c6748_11659366 markers combination, respectively, significantly out-yielded the other base combinations. The combination of the thymine and cytosine bases has low-yield performance, which is linked to the low-cumulative number of favorable alleles of the two significant markers. Forty-six putative candidate genes were discovered for all significant markers related to the grain yield and yield-related traits (Supplementary Table S2), where 34 candidate genes were recorded for rainfed conditions and 12 genes were recorded for irrigated conditions. In rainfed conditions, for biomass, the highest significant marker on chromosome 2D, 'Ex_c14755_1362' was linked to the TraesCS2D02G053300 gene, which encodes the Receptorlike serine/threonine-protein kinase protein involved in serine/threonine/tyrosine kinase activity. Seven genes were identified for canopy temperature, where the highest significant marker 'AX-94463982' on chromosome 7A was linked to the TraesCS7A02G088800 gene, which encodes Pre-mRNA-splicing factor 38 involved in the mRNA splicing, via spliceosome. In irrigated conditions, the gene TraesCS5B02G032700 was linked to the marker 'AX-94826800' located on chromosome 5B which is associated with chlorophyll content, the gene encodes for Kinesin-like protein involved in microtubule binding. The gene TraesCS5B02G300100 was linked to the marker 'wsnp_Ex_c6748_11659366' located on chromosome 5B which is associated with biomass the gene encodes for Trigger_N domain-containing protein involved in peptidyl-prolyl cis-trans isomerase activity.Bread wheat is a major crop in many parts of the world, particularly in Central and West Asia and North Africa (CWANA) as well as in Sub-Saharan Africa (SSA). In the CWANA region, water shortage is becoming a severe challenge for wheat production. The creation of novel drought-tolerant bread wheat genotypes might be a long-term solution for increasing wheat yield in challenged regions. ICARDA's bread wheat breeding program targets generating genotypes that are abiotic and biotic stress-resistant and have acceptable end-use quality. Grain yield is a complicated property governed by numerous genes, the expression of which is controlled by environmental conditions. Therefore, this study was carried out to evaluate the drought-tolerance capacity of 200 bread wheat genotypes and to discover markers that are strongly related to grain yield and yield-related traits. Phenotype observations showed that wheat in rainfed conditions had lower GY and fewer DHE than wheat in irrigated conditions. The days to heading and maturity exhibited greater heritability than grain yield at all conditions, as previously reported [35,36]. As a result, grain yield heritability is often lower than that of other characteristics [37]. The correlation between days to heading and maturity was strongly positively correlated in both conditions which were consistent with previous research [38]. Biomass was positively correlated with grain yield in both conditions, but the correlation in irrigated conditions was upper than in rainfed conditions, this result is due to the ample irrigation and optimum conditions.GWAS has been used in several studies on bread wheat to uncover novel MTAs and QTLs linked with distinct traits in different conditions. We found a total of 104 significant markers under rainfed and irrigated conditions associated with agronomic traits across chromosomes in this study, where 44 MTAs found on the A genome, followed by the B and D genomes with 35 and 25, respectively, similar to another study that found the majority of MTAs for grain yield and yield-related traits on the A and B genomes, followed by the D genome [39]. Drought-stressed environments often have more major MTAs than non-stressed environments, which explains why drought tolerance is highly influenced by genotype by environmental factors [38]. Sixty-seven and thirty-seven MTAs at p < 0.001 were found associated with grain yield and agronomic traits under rainfed and irrigated conditions, respectively.The highly significant marker for grain yield in rainfed conditions was identified on chromosome 2B with −Log10(p) = 3.81 at position 338 Mbp. We identified two other significant markers on chromosomes 2D and 4A. Several studies detected many MTAs/QTLs for grain yield in the same chromosomes [5,35]. In this study, we identified five MTAs for biomass in irrigated conditions, which are located on chromosomes 7A and 5B where the highest marker was 'BS00022169_51' located on chromosome 7A with −Log10(p) = 4.14 at position 691 Mbp, a previous study found the same marker on chromosome 7A [40]. On chromosome 5B, a highly significant marker associated with a number of seeds per spike under rainfed conditions was discovered with −Log10(p) = 4.85. Several MTAs/QTLs on chro-mosome 5B have been linked to NSS in dry conditions, according to a previous study [41]. Five MTAs were found under irrigated conditions located on chromosomes 4A and 5D for grain number per spike. Using 192 bread wheat genotypes planted at the same study site in Morocco, Alemu et al. [42] discovered that the marker 'wsnp_Ex_c20386_29451037' was linked to grain number per spike on chromosome 4A. Twelve MTAs regulating canopy temperature traits under rainfed conditions were found on chromosomes 1B, 2B, 3D, 5B, 6A, 6B, 6D, and 7A. MTAs for canopy temperature on chromosomes 7A and 2B were previously reported using different wheat panels cultivated in various settings [43]. Utilizing a population of 287 advanced elite lines of spring wheat, Sukumaran et al. [44] discovered the QTL RAC875_rep_c114561_587 associated with canopy temperature on chromosome 6A. The investigation was conducted using 90,000 wheat SNP created by Infinium iSelect SNP assays. The marker 'BS00037225_51' was associated with plant height on chromosome 3B with −Log10(p) = 7.1 at position 590 Mbp. Previously, numerous MTAs/QTLs associated with plant height were discovered on the same chromosome that we discovered [5]. The important markers were mapped to the bread wheat genome reference database at Ensemble Plant and UniProt in order to discover the probable genes linked with the many assessed features previously published. The findings indicated 46 genes involved in ATP binding, mRNA binding, protein serine kinase activity, protein heterodimerization activity, defense response, and oxidoreductase activity, among other biosynthetic pathways [45][46][47].This study employed a population of 200 bread wheat genotypes from the International Center for Agricultural Research in Dry Areas (ICARDA) (Supplementary Table S3). The field experiment was conducted at ICARDA's experimental stations in Sidi El-Aidi, Morocco (33 • 07 27.6 N 7 • 37 43.8 W, 406 m a.s.l.) and Marchouch, Morocco (33 • 36 26.8 N 6 • 42 43.9 W) during the 2019-2020 and 2020-2021 cropping seasons. The genotypes were grown in a 3 m 2 plot following an alpha lattice design with two replications. In Sidi EL-Aidi station the experiments were carried out in two different water regimes, rainfed and irrigated. For Marchouch station, the experiment was carried out under rainfed conditions. During the growth cycle in the irrigated experiment, the plots were watered by drip irrigation with three irrigations each week. The Sidi El-Aidi station is characterized by vertisol soil type with annual precipitation of about 300 mm over the two years. The Marchouch station is characterized by cambisol soil type with annual precipitation of about 400 mm over the two years. The stations are characterized by moderate humidity with an annual temperature ranging between 10 and 40 • C. The panel was seeded at a rate of 100 kg ha −1 during the first week of December.The GWAS panel was phenotyped for 11 traits: grain yield (GY), days to heading (DHE), days to maturity (DMA), plant height (PLH), number of tillers per plant (NTP), number of plants in m 2 (NPM), number of seeds per spike (NSS), biomass, chlorophyll content (CC), canopy temperature (CT), and thousand kernel weight (TKW). After threshing each plot, GY was measured in kg/plot and then converted to t/ha. When 50% and 90% of the plants reached the heading and maturity phases, respectively, DHE and DMA were recorded for each plot. When the plants reached maturity, the PLH in centimeters was recorded in each plot by measuring the distance from the soil surface to the top of the spike, without measuring the length of the awns. The biomass was measured for all plots in kilograms. The leaf chlorophyll content was measured on the flag leaf using a SPAD-502Plus chlorophyll meter at the heading stage on a clear day between 9:00 and 12:00. Canopy temperature was measured at the booting stage using a thermometer. TKW was calculated in grams using a grain counter. The \"RcmdrMisc\" package in R was used to determine the means, maximum, minimum, and standard deviation, as well as the coefficient of variance.","tokenCount":"4617"} \ No newline at end of file diff --git a/data/part_1/1599365609.json b/data/part_1/1599365609.json new file mode 100644 index 0000000000000000000000000000000000000000..c3c75aa9af2017f3f39807c1da83afe3bf4a2126 --- /dev/null +++ b/data/part_1/1599365609.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"96a7f6351171adf57c014b9ffb8ccbaa","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/ceb280d5-65b4-4b4e-a745-de93f0f71e97/retrieve","id":"2014251877"},"keywords":[],"sieverID":"8343964e-c4f7-412f-8406-01307e29af0a","pagecount":"8","content":"El sector agropecuario en Guatemala es uno de los más vulnerables al cambio climático en el país. Se prevén cambios importantes en los patrones de lluvia y temperatura al 2030, los cuales tendrán un efecto negativo en los cultivos de maíz y frijol, los cuales son los de mayor importancia para la seguridad alimentaria de la mayoría de la población del país (CCAFS, 2014;Bouroncle et al., 2014).Actualmente, entre 40-70% de las pérdidas del producto interno bruto (PIB) agrícola asociadas con la variación y cambios en el clima se relacionan con la infraestructura productiva nacional, especialmente con los sistemas de granos básicos (maíz y frijol).La zona más afectada por la variabilidad climática, particularmente por sequías, es el Corredor Seco, en donde el MAGA ha identificado que alrededor de 300.000 familias rurales no poseen la capacidad productiva suficiente para subsistir por un tiempo prolongado frente a un evento climático extremo.El interés y compromiso del Gobierno de Guatemala de abordar el tema de desarrollo agropecuario desde el punto de vista del cambio climático ha sido evidenciado por su participación en varias iniciativas internacionales y nacionales, que a su vez permiten potenciar discusiones sobre ASAC en el país. A nivel internacional, Guatemala ratificó la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC) en 1995, y el Protocolo de Kioto en 1999, además es un actor importante dentro de los Convenios Centroamericanos sobre cambio climático (1993, 1996) y la Declaración deLa seguridad alimentaria en Guatemala cada vez se ve más afectada por eventos climáticos extremos como sequías prolongadas, precipitaciones intensas e irregulares, heladas entre otros. En este contexto, el Ministerio de Agricultura, Ganadería y Alimentación de Guatemala (MAGA) ha contemplado en sus políticas y estrategias de trabajo el vínculo entre la agricultura y el cambio climático, buscando fomentar la resiliencia de los productores frente a los desafíos climáticos. Estas acciones han coincidido con debates mundiales sobre el concepto de Agricultura Sostenible Adaptada al Clima (ASAC), que hace énfasis en el incremento sostenible de la productividad, mientras que se aumenta la capacidad adaptativa de los agricultores y se disminuyen las emisiones de gases de efecto invernadero (GEI) del sector. Con el fin de apoyar el proceso de priorización de inversiones en ASAC en el país, el programa de investigación del CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria (CCAFS, por sus siglas en inglés), el Centro Internacional de Agricultura Tropical (CIAT) y MAGA han establecido una alianza estratégica que permite potencializar las capacidades institucionales y el desarrollo de programas y proyectos sistémicos en temas ASAC. El presente documento hace referencia al estado actual y el pilotaje del proceso de priorización de inversiones en ASAC iniciado por CCAFS y CIAT en Guatemala.Al nivel nacional, en el marco de la propuesta del Plan Estratégico del Cambio Climático, el MAGA ha canalizado esfuerzos en tres ejes estratégicos de trabajo directamente relacionados con la ASAC: la adaptación, la mitigación y el fortalecimiento institucional. A partir de la entrada en vigencia de la Ley Marco para Regular la Reducción de la Vulnerabilidad, la Adaptación Obligatoria ante los efectos del Cambio Climático y la Mitigación de Gases de Efecto Invernadero (LMCC) (2013) se ha establecido el Consejo Nacional de Cambio Climático (CNCC), que regula, supervisa y da seguimiento a la ejecución de acciones concretas como la Política Nacional de Cambio Climático y el Fondo de Cambio Climático. Además, el Consejo genera el entorno propicio para el desarrollo y apropiación por parte del gobierno nacional de herramientas de apoyo a la toma de decisiones tales como el marco de priorización de inversiones en ASAC (Gobierno de Guatemala, 2013).Para impulsar el debate sobre disyuntivas y sinergias entre sectores y objetivos de desarrollo (desarrollo económico, aumento de la productividad agrícola y la sostenibilidad ambiental), se han venido desarrollando conceptos y procesos que abordan la sostenibilidad agrícola desde un punto de vista social, económico y ambiental. Por lo tanto, el concepto de Agricultura Sostenible Adaptada al Clima (ASAC) se formuló como una respuesta a estos desafíos globales entrelazados. ASAC se define entonces como \"la agricultura sostenible que aumenta la productividad, mejora la resiliencia, reduce/ elimina las emisiones de gases de efecto invernadero (GEI) y permite el logro de la seguridad alimentaria y de los objetivos de desarrollo nacionales\" (FAO 2010).Las prácticas ASAC pueden facilitar la creación de paisajes sostenibles e impulsar la productividad, la adaptación al cambio climático y la mitigación de GEI. Una práctica puede generar impactos diferentes dependiendo del sistema de producción, así como la combinación ideal de acciones ASAC puede variar de un lugar a otro. Por lo tanto, los tomadores de decisiones necesitan herramientas y procesos que permitan la identificación de las intervenciones más adecuadas para cada contexto agroecológico y socioeconómico. Éstas deben guiar la inversión agrícola hacia soluciones a largo plazo, con el fin de reducir la vulnerabilidad de los pequeños agricultores.CCAFS y el CIAT están trabajando de forma conjunta en un marco de vanguardia para la priorización de inversiones en ASAC. Este marco hace énfasis en las sinergias y las disyuntivas entre la consecución de los tres pilares de la ASAC: la seguridad alimentaria, la mitigación y la adaptación. Este proceso está constituido por cuatro fases que se adaptan a las necesidades y contextos nacionales y locales de países.En el caso de Guatemala, este marco de priorización ha sido apropiado por el MAGA siendo adaptado a sus necesidades particulares, y cuyo proceso de involucramiento puede servir como ejemplo para otros países de la región interesados en abordar aspectos de la ASAC.El MAGA ha sido muy receptivo frente a la discusión sobre ASAC, y aunque cuenta con planes y estrategias nacionales y regionales para enfrentar los desafíos climáticos, es necesario fortalecer el acompañamiento y articulación con otras instituciones en temas de recursos financieros y humanos, que permitan concretizar de manera oportuna acciones y protocolos de respuesta ante estas amenazas. Con este fin, la cooperación CCAFS/CIAT-MAGA busca constituir, con el apoyo científico, alianzas estratégicas que permitan potencializar las capacidades institucionales para el desarrollo de programas y proyectos en la temática de cambio climático, implementados a través de iniciativas como el Programa de Agricultura Familiar En el marco del proceso de priorización de inversiones en ASAC, se establecieron varios objetivos: Identificar sistemas productivos claves para la seguridad alimentaria del país y localizados en áreas geográficas vulnerables, relevantes para acciones futuras; Recopilar información local sobre prácticas ASAC en sistemas productivos y regiones claves seleccionadas, para luego identificar y priorizar prácticas ASAC basadas en la evaluación de los costos y beneficios económicos, sociales y ambientales que brindan estas prácticas; Generar resultados que puedan apoyar a los procesos de planeación participativos al nivel nacional y regional, y a procesos de monitoreo y evaluación en el futuro; Apoyar a la canalización de fondos en ASAC, de manera más eficiente y eficaz, a través del fortalecimiento de relaciones existentes con los donantes y de la facilitación de nuevos marcos de trabajo con agencias de cooperación externa; Desarrollar y compartir conocimiento en aspectos técnicos de prácticas ASAC en la región y en los trópicos.El marco de priorización co-diseñado por CCAFS/CIAT y MAGA constituye una respuesta a la necesidad de respaldo y orientación de la política pública en temas de agricultura y cambio climático en zonas afectadas por sequía, vulnerabilidad socioeconómica e inseguridad alimentaria, como lo es el Corredor Seco.Los beneficiarios directos de este proceso de priorización son segmentos de usuarios que desarrollan programas y proyectos vinculados al tema en los territorios priorizados y conformados por el sector público, el sector académico, el sector nogubernamental (organizaciones sociales y ONGs), el sector privado y agencias de cooperación externa. Dentro del proceso, cada uno de estos grupos de actores tiene el doble papel de informante y beneficiario de la información, puesto que la investigación busca co-crear conocimiento relacionado con la ASAC y a la vez socializarla para su uso en campo (por parte de productores y técnicos en las zonas de estudio), en la política pública (MAGA) y en la financiación o apoyo a la implementación de éstas prácticas (FAO, CATIE, Oxfam, etc.). A su vez, existen beneficiarios indirectos que vienen de otros sectores de trabajo, quienes pueden usar este proceso y herramientas como puntos de referencia para la priorización de sus actividades relacionadas con la ASAC.El acuerdo y respaldo político e institucional del MAGA hacia el trabajo desarrollado por la unidad de Cambio Climático (UCC) y CCAFS/CIAT en el marco de este proyecto, como legitimación de la iniciativa con autoridades nacionales.El involucramiento y participación activa de los actores y sectores productivos representativos para el tema ASAC dentro del proyecto, a través de encuestas, entrevistas y de un taller consultivo sobre la identificación y la priorización de prácticas ASAC.La identificación, junto con el MAGA, de resultados esperados de interés e indicadores para la evaluación de impactos.El desarrollo de un listado corto de prácticas priorizadas, a través de la evaluación de impactos en la productividad, adaptación y mitigación y a partir de una línea base de 29 prácticas establecidas previamente.El desarrollo de una metodología para el análisis de costos y beneficios de las prácticas ASAC identificadas, alineada a las prioridades y políticas nacionales y que permite su uso en otras regiones y sistemas productivos en el país. Figura 3. El gráfico muestra el desempeño de las prácticas ASAC en Guatemala, en relación con los indicadores de productividad, adaptación y mitigación validados por los participantes en el primer taller. La gráfica de barras muestra el valor promedio del desempeño de las prácticas en cada grupo de indicadores (productividad, adaptación y mitigación). El número situado en cada triangulo indica el promedio de la inteligencia climática de cada práctica ASAC, con base en el desempeño de la práctica en los tres grupos de indicadores. En el eje X, las prácticas están ordenadas según la priorización de los participantes (las prioridades más altas se encuentran a la izquierda). Se puede observar que en general las prioridades de los participantes no coinciden con los valores de la inteligencia climática de las prácticas. Esto demuestra que los criterios adicionales para la priorización de las prácticas, como el conocimiento existente sobre barreras a la adopción, iniciativas en curso, etc., destacado a través del taller participativo, debe ser incluido en el análisis y priorización de las prácticas ASAC, para garantizar relevancia y transparencia del proceso.La creación de una base de datos cuantitativos y cualitativos relacionados con temas de ASAC en el Corredor Seco, para servir al análisis costo-beneficio, a la evaluación de los impactos de las prácticas en los pilares ASAC y a otras iniciativas futuras de MAGA en la región.La articulación institucional CCAFS/CIAT-MAGA para el aprovechamiento de la información generada en el proceso de priorización para fortalecer programas existentes, tales como el PAFFEC, el Programa \"Triángulo de la dignidad\", el Programa \"Corredor de Oportunidades\", etc., que pueda servir como punto de referencia para los países interesadas en la promoción de ASAC .Un mejor entendimiento del tema ASAC adquirido por los participantes en el proceso, que puede fomentar acciones y estrategias relacionadas con ASAC en el futuro.* Basado en los datos de la encuesta sobre prácticas ASAC en el Corredor Seco (n=200). CCAFS/CIAT, 2014 ** Nivel de inteligencia climática con base en la evaluación cualitativa (0-5) de los expertos sobre impactos esperados de las prácticas ASAC Nivel de inteligencia climática de la práctica (0-5) ** Figura 4. Asociación de maíz-frijol en Guatemala. Foto: Andreea Nowak (CIAT)La mayoría de los productores en el Corredor Seco (75%*) implementan sistemas productivos maíz-frijol, lo que indica que la planeación de ASAC debe tener en cuenta, en la medida de lo posible, conjuntos de prácticas, para aprovechar co-beneficios.•El análisis costo-beneficio de las prácticas priorizadas en el primer taller, destacando beneficios económicos de la productividad y co-beneficios para la adaptación y mitigación.•La socialización de los resultados del análisis costo-beneficio con actores nacionales y locales en un segundo taller participativo.•La discusión de las disyuntivas, beneficios para los tres pilares de ASAC, sinergias entre prácticas y barreras a la adopción, que busca informar sobre iniciativas existentes y potenciales tanto en la región del Corredor Seco, como en otros sitios de interés en el país.•La retroalimentación sobre la priorización de las prácticas seleccionadas, a partir del análisis costo-beneficio y de la evaluación de los impactos en indicadores de interés.•La creación de fichas técnicas de prácticas ASAC basadas en la información recopilada en todas las fases del proyecto, y adaptadas a varios usuarios: productores y redes de productores (e.g. Centros de Aprendizaje para el Desarrollo Rural -CADER), servicios de extensión en el campo, gobierno y donantes. Estas fichas serán útiles para las acciones e inversiones de estos actores en la promoción de ASAC.¿Qué sigue en el proceso de priorización?Alrededor del 64%* de los agricultores del Corredor Seco que implementan prácticas ASAC disponen de algún esquema de incentivos institucionales, principalmente capacitación técnica y asignación de recursos económicos representados en insumos, alimentos y pago de mano de obra como estímulo a la implementación de prácticas ASAC. Instituciones y organizaciones que proveen estos incentivos son MAGA, FAO, Copanch'orti' y CATIE, entre otras, construyendo las bases para la generación de capacidad de adaptación y fortalecimiento de seguridad alimentaria en la región.* Basado en los datos de la encuesta sobre prácticas ASAC en el Corredor Seco (n=200). CCAFS/CIAT, 2014 Actualmente el 91%* de los agricultores en el Corredor Seco implementan más de una práctica ASAC (figura 6.), siendo la agricultura de conservación (cobertura del suelo con rastrojo), sistemas agroforestales (barreras vivas), rotación de cultivos, zanjas en contorno y barreras muertas las de mayor frecuencia. Estas intervenciones se alinean con la política pública de MAGA y pueden servir de referencia para posibilitar su réplica en otras regiones vulnerables del país. Hasta el momento se pueden destacar algunos aspectos relevantes del proceso de priorización de ASAC en Guatemala, experiencias que pueden servir como puntos de partida para la implementación de ASAC en otros contextos o a otras escalas.El acoplamiento de metodologías científicas a la metodología muestral nacional es necesario para poder garantizar la extrapolación de la información y el uso de herramientas y resultados científicos en la construcción de estadísticas nacionales, como el censo nacional agropecuario.En muchos casos, las prácticas ASAC han sido implementadas desde hace mucho tiempo por parte de los productores. Por esta razón, es importante identificar las iniciativas que ya existen, analizando las oportunidades e incentivos asociadas, para poder replicar estos casos exitosos en otros contextos similares.Los procesos de priorización en ASAC tal como este, requieren un entendimiento mutuo de los objetivos y relaciones de cooperación estrechas entre los socios.Para que los aportes de la cooperación sean relevantes deben estar enmarcados en necesidades sentidas principalmente de los gobiernos locales; La apropiación del proceso para su sostenimiento en el tiempo debe ser promovida a través de la creación de espacios para el co-diseño del proceso desde el principio, incluyendo a las partes interesadas en la determinación del alcance, objetivos, usos del proceso y beneficiarios.La experiencia del pilotaje del marco de priorización de ASAC en Guatemala, a través de la colaboración entre CCAFS/CIAT y MAGA, demuestra que este es un proceso útil para orientar a los actores interesados en análisis complejos que son necesarios para comprender disyuntivas entre las prácticas de ASAC como también para priorizarlas a partir de su relevancia e importancia al nivel nacional y local.Implementación del procesoCCAFS. (2014). Estado del arte en Cambio Climático, Agricultura y Seguridad Alimentaria en Guatemala.Copenhague, Dinamarca: Programa de Investigación de CGIAR en Cambio Climático, Agricultura y Seguridad Alimentaria.","tokenCount":"2561"} \ No newline at end of file diff --git a/data/part_1/1606245462.json b/data/part_1/1606245462.json new file mode 100644 index 0000000000000000000000000000000000000000..119b9d7597770e3aa168715ced66cccdde676cc1 --- /dev/null +++ b/data/part_1/1606245462.json @@ -0,0 +1 @@ +{"metadata":{"gardian_id":"779895d5fe9c614b8b79e2e5b5e3b2a9","source":"gardian_index","url":"https://cgspace.cgiar.org/rest/bitstreams/981ab7f3-71d3-4c47-a556-2d66a02b040f/retrieve","id":"995682383"},"keywords":[],"sieverID":"63a70c9f-4e50-4cfa-bfb8-9e31396ebfc5","pagecount":"40","content":"Empresa Bno:;1lf'11a d( r'\\.-;.1 f~'nfl1 11\\n• 1 e fxten 10 Fh•r.JI V nculncdO recebendo um ma1or apoto e est3o se cr1ando novos ptogrdmas nac1ona1s 1 2 1 A 1ndGstr1a pr1vada e os bancos 1od1cam que ex1ste um crescente 1n teresse na produ~ao, processamento e exporta~io de mand1oca po1s ela i cons1derada um 1nvest1mento rentivel e 1lguns governos es tao comP~ando a tomJr conc1~nc1a de seu potrnc1al para promover o desenvolv1mento agr1cola t obter d1v1>as 1 3 1T~do parecr 1nd1car que nos fttluro haveri urna grande demanda de mand1oca srca para a allmLttla~io nos pa1se> produtorcs romo nos nao produtore,1 4 1 do yado,tanlo Por um sa demanda i o resultado do aumento dos pre~os dos grio~ lado,e~ usados para a al1menta~ao an1mal e, por out1o da Pf1c1inc1a da mand1oca na produ~io de catbO-hldratos No entretanto, para sa t 1 sfa1er a dema'lda poter•qal, dcve aumentar-se a sua produl1V1dade, que i a meta da ma1or1a das pesqu1sa~ sobre produ~io desta planta estas pesqu1sas drvem en focar problemas a ntvel dr un1dade de ptodu~5o Al~m do ma1s,po~ co se >abr sobre o processo de produ~~o de Mand1oca e a 1mporta~ c1a relat1va do~ fatores 111111 tantes <.la produ~ao l' produ11v1daae' dev1do a pouca infase que se deu a esse cult1vo ati agora Ass1m sendo, os economtstas do Programa de Hand1oca do l!AT tcm concen trados os seus esfor~os nert1 pesqul~d Anal1sP empregadd nestc(2) --~ Alem de receber fundos publ1cos dos pa1sP~ produtores, a pP>-quJ>a sobre mand1oca a nivel nac1onal e 1nternac1onal, i pa troc1nada por v~r1as 1genc1as, entJP outras o Centro Interna= cJona1s de lnvestJga~ocs pata o Desenvolvlttrento (IDRC) do C1 nada e a OversLas Developmrnt Adm1n1strat1on (ODA) da Ingla = terra 1 3 1Em pa1ses como a Indonis1a e Malas1a, estio se desenvolvcndo' esquemas para aumentar a produ~ao de mand1oca para exportacio e al1mentacio de gado dentro de cada pa1s 1 4 >um e>tudo rerente fe1to Trumn Ph1lllps, 1nd1ca r¡uc haveri urna r¡rande de manda de mand1oca seca na Europa (\"Cassava Ut111zat1on and Potent1al T 11ar~ets\", Internat10nal Researrh Centre Otta1va, Carnda, 1974) O Japao e outro mercado que oferece potenc1al para o futuro AJemalS, na ma1ona dos paises produtores de mand1oca, ha uma demanda crescente de ahmento para o gado trabalho descreve brevunLnte os s1stcmas rll produr:;d\"o, o uso de recurso~ e custos para os produtore~ de H1nd1oca na Lolomb1a Fs te i um 1nforme prel1m1n1r, mas atualmentP ~e est~ preparando um estudo ma1s amplo e completo sobre e proLesso de produ~io e J 1m portanc1a relat1va dos fatores que l1m1tanr a produ~io e produt1-v1dadeDepo1s deu~a breve expllc,~io da metodolog1a, e fe1ta urna descr1r:;io da aMo~tra lngo ~e apresPntlm o~ yesultados e o 1nforme ternnna com ••m brPve 1 esumo u111 aniil1se das lmpllcar:;6es que podem haver na ppsqu1sa e polft1c1 governamental no fu tu ro No CIAT pode obter-se um g1 1po de qtndros 4ue resumP os dados obt1dos nas entrev1stas 11ETODOI Ot.III E lli:.S~RICJ(O 01 Ar!OSTRA COLFT,, 01:. DADOS Baseando-so um dados secund~r1os d1sponfve1s, se recolheu 1nformar:;oes sobre os agr1cultores de 18 departamentos 1 da Colomb1a (f1gura 1) As entrev1stas se efetuaram durante 19/1 Alnda que os dados secundarlOS dP p~odur:;io (! area plantada de mand1oca nao seJam prec1osos, parere que os departamentos sele -Clonados representam aprox1madamente 92 por cento da produ~io na c1onal e 80 por cento da iirPa total (1969) Como nio ex1ste 1nforma~io q11e pe1m1te 1dent1f1car todos os produtores de mand1oca no pais ou nos departamentos selec1onados, nio fo1 possivel fazer urna amonstra ao acaso Com base na 1nforma~io fornec1da pelos extPnSlOnlstas e agentes de crid1to da local 1dade e por dtacad1stas e vareJlStas, se prep~ rou urna l1sta parc1al das reg1oes produtoras e dos produtoresque nelas trabalham Dessa l1sta, se selec1onou urna amostra de 300 produtes e se obtevP 1 nfonnat;1o PntrPVl st 1nrln 1 r,Hh 1gnru 1 tnr 1Como os dados sio prel1m1nares, a anil1se se l1 mltOU aO Calculo de m~d1as SlmplLS e pondetadas de d1str1bU1~io' total e percentual Pela dnil1se dos dados, as un1dades de ptodu~io da amostr1 se dov1daram em tr~s grupos segundo a topograf1a, da manPlta segu1nteI Produtores de Mand1oca em terreno plano (fora da Rcg1io da Costa Notte) Zona II Produtores de MandloLa em encostas Zona III Produtores de ~and1oca na Reg1io da Costa NortP Dentro de cada zona se estrat1f1caram as um1dades de produ~io da 1mostra sLgundo o tamanho da irea cult1vada EstraLo 1 wenos de 2 hectares Estrato ?2,0 -3,99 hectares Estaato 3 4,0-9,99 heLtares Estrato 4 10,0 ou ma1s ltectares t1nalmLnte, em algumas sec~~es de anil1ses, as un1dades de ptoducio da amostra se d1V1d1ram em do1s grupos em um se 1ncluira•• aquPlas em que a prepata~io do solo i fe1ta ma nualmente e em outro, as que executam tal prepara~io mecan1camen te DESCRI~KO DA AMOSTRA 421 das un1dadPs de pr~du~io estio local1zados' na Reg1io da Costa Norte, 30% em terrenos em decliVP e 28% cm ateas planas AprOXlmadamente 401 das Unidades de produ~io tem menos de do1s hectares de mand1oca e 151 possu1 10 ou ma1s Por razoes ev1dcnte, a ma1or1a dos agr1cultores que cult1vam arcas ' decl1vosas, preparam o terreno manualmente Resulta menos ev1de! te que so urna t~r~a para dos agr1cultores de mand1oca local1Ladus ,.cm irca~ planas t ncnos da mctade dos agr1cultorcs da Rcg1~o da Costa Norte uscm maqu1ndr1a para a preparacSo do terreno, pritlca que e mu1tocomum em un1dades de produ~io de grande extensao O tamanho m~d1o das un1dadcs de produGio da amo~ tra i de 5 hectares na 7ona I e o tamanho m~d1o da unrdade de produGio e o 9 hectares na zona 11 e de 3,5 hcctares na lll,apr! X1madamente ~o redor de 20/ dos mand1ocultores entrev1stado~ plantam mand1oca em tPrrenos de sua propr1edade Quasr do1s ter ~os sao parce1ros e os restantes paga arrendamento em d1nhe1roSISTFIIfiS DE ClJI TIVO flprox1madamentP um ter~o do~ 1nand1ocullores rn trPVl~laclos lm cada urna das zonas plantam mand1oc1 cm consorc1o com ou tros cult1vos O m1lho i o cult1vo que ma1~ frequentemente se rn contra 1ntercalado com mand1oca, segundo em 1mportanc1a por bana na, cati 1nhame e felJio (f1gura 2)Com frequenc1a, a preparaGaO manual do terreno i trad1c1onal e sr l1m1ta a l1mpeza e a cap1na do mesmo Cerca de St dos cult1vadores na zona 1 planta mand1ora em camalhaes, ao passo que essa prit1ca i mu1to excassa em outras zonas Aprox1m! damente urna tPr~a parte dos cult1vadores plantam as man1vas hor! zontamente, pril1cas que i comum fora da Rcg1io da Costa Norte 1 /1 den~idadP mrdlu e dP 8 000 planta~ por hectarP mas o nGmero var1a ~ons1deravelmente entre as un1dades de produ r;ao (quadro 1) 0 espat;amento mJlS COmum e de l metro X 1 mPtro, segu1do de 1,2 metro x 1,2 metto A ma1otia dos cultivadores en trPVlstados planta urna s6 estara em cada lugar (83X)ao pas~o quP 17% coloca no soto du1s man1va~ JUntas Esta Glt1ma pr3ticas i ma1s frequente na Lona I (35% dos agr1~ultores) menos ltnportante na Zona I I (25t) e 1 nex 1st< nte na Lona I I I, aondp nenhun dos agr1cultores entrev1stados planta duas estac1s Juntas Aptoxlmadamente 27% dos cult1vadores dP todas as zonas fazem replant10 e nenhum trata as man1vas contra doenr;as Cerca de um terr;o dos mand1ocultorP~ entrevistados plantam do1s ou ma1s Lultl/OS de mand1ora SL1 usar rotar;Ko Os dema1s prat1cam a rotar;io o~ cult1vam a mand1oca em tctrLnos aonde Pla nunca hav1a s1do plantada 51 dos ~gr1cultorcs cult1vam a var1edadP \"LlanP r1'' Os dema1s plantaM var1e~1de que se 1dent1f1cam com 56 nomes loca1s .--A colhe1ta se efetua totalmente da for,a manual A duta~ao do periodo VPgetat1vo depende das condlc;5es ecol6g1ca~ varledade, dlsponlbllldade de mao-de-obra para a colhelta,prec;os da mand1oca e outros fatores A ma1or1a dos dgr1cultores das zo nas 1 e Il colheu mand1oca com urna 1dade de 12 a 14 meses mu1 to embora 13% a colha entre 10 e ¡¿meses e outros 13% entre 14 e 16 meses Na Reg1io da Costa Norte, urna terc;a parte dos produtores col he aos 6-8 meses cnquanto o rest<~ntt o faz entre 8 e 14 meses (f1gura 4) A 1dade med1a de colhe1ta P de 12,7,12,5 e 9,1 meses nas zonas !, II, Ill, respPct1vamenteO nivel de mrcan1za~lO na prndu~~o dP mand1oca 1 na Colomb1a e ba1YO e esli l1m1t1do a prepara~io do trrreno cm urna pequena propor~ao da• un1dades prorlutnra• de mand1oca Ade -ma1s, como sera v1sto ad1antr, o uso da tecnolog1a qulm1ca tal como herb1c1das, pAra Pconom1zar mio-se-ob11 ~ quase nula E1s o porque da produ~io de mand1oc1 reguera urna quant1dadP cons¡der~ vel de mio-se-obra Os quadros ? e 3 mostram a m~o-de-obra usa da em cada at1v1dade de produ~io, por zona, lomanho de un1dade 1 de produ~io e método de prPpara~ao do terreno O uso total de m~o-de-obra se e~t1mou em 88 homens d1as por hectares quando pr! paro do terreno fo1 mecin1to e Pm 110 homens dlas/hettares quando se fez manuJlm2nte A rap1na 1ue utll17J aproA1madamente 40• da necess1dade total de m~o-de-obra i a at1v1d1de coma ma1or percentagem neste 1nsumo (f1gura 5) Segue a colhe1ta e a ~mbala gem com um pouro menos dP 301 da mio-de-obra, a prepara~io do terreno (22) e o plant1o (10) O uso da miio-de-obr a por 111 e 1 are, aumPnta a mPd~ da que cresce a area plantada com mandioca Este e, pnnc¡paliiP.!!_ te, o resultado do aumento no uso da m~o-de-obra para trabalho~1 de caplna a medida que a irea e ampliada As ma1ores necess1dades de mio-de-obra por hect! re na produ~io de mand1oca se apresentam nas ireas em decl1VP P aonde a prepar1~io da terra se faz manualmentr (119 homtns d1a/ hectare) A menor necess1dade de mio-de-obr1 se reg1stra na re g1ao da Costa Norte, aonde o preparo do solo se faz mecanlcamen-tP (67 homens d1a/ha) Cre-se que as razoes pr1nc1pa1s dessa grande dlferen~a sao 1-os d1versos m~todos de ptLpara~do do solo, l-um periodo vegetal1vo ma1s curto na RP91io da Costa Norte, 3-Cond1~ors ma1s d1fice1~ de trabalho nas arcas em dccl1ve, , 4-um solo ma1s favorivel na R• g1io da Costa Nor te lis neccss 1 da des de miío-de-obt a na Costa Norte sao nenores que em lcrtenos planos dev1ao ao m~lndo de prPpara~io do solo e pt1nc1palmerte a d1feren~a nos cuslos dr colheltd Encontrou-se urna var1a~ao cons1deravel na neces-Sldade de mio-de-obra entrt> d1versas at1v1dades em cada zona Apr~ Xlmaddmente 38% dos cult1vadores empregam 10 a 20 homens d1as por hectare para o preparo do terreno, 61 usa n1enos, 301 ut1l1za 20 -30 homPns d1as/hectarc e aprox1madamente 25% usa ma1s Todos os mand1ocultotes cntrev1stados na Reg1ao da losta Norte empregam entre 10 e 30 homens d1as/ha Aprox1mad1mcntP a mrtade dos agr1cultores empreya 5-10 homens d1as/ha para o plant10, 161 usa menos e 341 ma1s Somente 71 emprega menos de ¿o homen• d1as/h~ para as cap1nas, 39~ d~ 20 d 40 nomens d1as por hectare e um ma1s aa metade dos mand1ocultores emprega ma1s de 40 homens d1a~ ha A ma1or1a dos plantadores de mand1oca na zona 1 e 11 empoega 20 d 40 homens d1as/ha pata trabalhos de colhn¡ta e embalagcmmas a ma1or1a dos mandJocu1tores da Zona IIIusamcnosde20homens/d¡as'h¡¡, A preparo mccaolCO da terra rrquer aproxlmadame! te 8 homens d1as para produz1r urna tonelada de mand1oca enqu1nto a manual necess1La 10 homens d1as pata a mesma opera~io A necPs s1dade de mio-de-obra por tonelada de mand1oca vat1a cons1deravelmenle segundo o tamanho da un1dade de produ~io (quadro 4) Es ta var1a~io e causada em parte pela d1ferenya em quant1dade de mio-de-obra pot hectare e em parte por var1a~~es no rend1mento En':lalagenPl n 10 ~Jl1carJo de rert lZilntes 1 2 Enprego de mio de-obra na produ~io de mandioca (hornens-d1a/h•) ~ed1a por tamanho de A est1mat1va de cu-;tos var1avr1s de produ~ao aparecr nos quddros 5,6,7,8 e 9 Part1u-se da >upors1~io que a d1ir1a era de 20 pesos Colomb1anos em todas as 7ona> Desse mo do se calcular1m os cu>tos de mio-de-obra m1rlt1pl1c1ndo por 20 a d1ir1a do empregado Os custos dos 1nsumos foram obt1dos du rante as entrevistas Ao custos de mio-de ohta representam x1madamente 60% do total dos custos var1iVLlS nas un1dades apr~ de 1 produ~~o cm quP se cmplega maqu1rJr1a par~ a prepara~ao do terreno e 90 a 95 1 aonde tal preparar,ilo e fc1ta manualmente As Jnvers5es em fertlllZJntcs e 1nset1C1das se fa zem ma1orcs 1 med1da que aumenta o tamanho da un1dade de prod! r,ao Isto refletP um md1or ntvel de tecnolog1a nas un1dades de produr,io de ma1or extensio e serve de expl 1car,ilo parc1al aos melhores rend1mcntos em un1dadcs de produr,io malares, como ~era v1sto a segu1r O total de custos var1ivcl~ ~ ma1or nas un1dades de produ~ao aonde a terta ~ prepdrada mecanJcamellte Isto se deve em patte, aos ma1ores custos dL prcparar,io mecan1ca do terteno, e tambem a m1101es nlvc1s de emprego de 1nsumos Os custos var1ive1s na Reg1io da Costa Norte silo mu1to ma1s ba1xos que Pm outras regJ5es Calcula-se que o custo var1ivel m~d1a nas unldadPs dP produr,ilo e de 2400 pesos Colombianos/ha Para calcular o total dos custos de produr,io pa~ t1u-~e da SUplSlr,io qtiC O VH10• mediO da terra e de 15000 peSOS Colomblanos/IIJ e que o aluquel anual da me~ma e de 12, Ao Pm pregar O valor med10 do terreno em lugar do valor rral de Clda un1dade de produr,io ~o obtcm um valor alto e d1storc1do de (US tos de produr,i1 nas rBgl5es aonde a terra custa pouco, e u1n valor ba1xo em rcgl5es com alto custo de terras No entretanlo nio fo1 posslvel obte1 d1dos conf1ive1s sobre o valor da terra em un1dades de produr.io da amostra Ass1m senda, os custos to ta1s foram est1mados como mPdla de todas as un1dades de produ -~ao Os cus tos de transporte foram obt1dos nas entrev1stas e as taxa~ de Jllros do cap1tal de opera~5es foram est1madas em 24% ao ano Finalmente se ad1c1onou urna quant1dade 1gual a ?0% dos custos tota1s est1mados para cobr1r os custos nao Jncluldos prcv1amente, ta1s como, adm,n1strar,io, proter,io contra roubos ' da colhe1ta, etc L a:J oo 3 , 7 6 00 1 8 320 00 13 1 ¿o oc 5 le. . ( -) 2 oo8 1 7 100 21520 00 20136 00 5'1 OSo 00 41 153 6 00 1 212 278,00 1 964 00 1 1 4, _f~ E R_C 1}_ D--=0--\"-E ----' P-' R.;_;:I:. <.:_O S Pot1co ma1s da metadc dos m1nd1ocultorrs vendcu a mand1oca na un1dade de p1 odu~ao ao pouco q•ll o restante levou a produto ao mercado Sete mand1orultores ILndcram mand1oca P! ra processamcnto e o rcsL1nte vendLU d1retamrnte ao consumo hu mano S~ tr~s mantllocultorr~ (da lona I) vcndrram a m111d1ora an tes de colh~-la ~esse caso o comprador se LJIC1rregou da colhe1 ta rom frequcnc1a 1 manPII ca o tdnanho da carga no transporte e outras at1~1dade~ de mercado Adema1s, e possivel que as pequenas un1dades de ptodu~io tPndam a encontrar-se' local1zadas a m11or d1stanc1as das estrados e dos centros de consumo que as un1dadcs de produ~ao ma1ore~. detetm1nartlc altos • -----------9SS,07 7b9 3( -------------------------------------------------Tendo-se em conta a dados obt1dos, a ampla v1r1a.;ao dos tos entre as d1fetentes un1dade~ de natu1e1a prel1m1nar dos custos, pre~os e rend1mPn -ptodu~ao e a fdltd de c51 culos prec1sos sobre o valor da terra, qualquer calculo que se f1zesse das ut1l1dades lfqu1das para o mand1ocultot ser1a ~u perf1c1al Adema1s, tantos os pre~os como rr1stos aumentaram cons1deravelmente depo1s do levantamento ter sido conclufdo flo entretanto, pa1ece que os pre~os da mandioca aumentaram ma1s que os custos de produ~ao Oessa mane11a, os lucro~ liqu1dos aqu1 est1mados podem ser menores que as rea1s no momento em que este 1nforme esta sendo red1g1do Este 1nforme de~crPVP o proc ~so dP produ~io de mandiOCa na Colombia A dL~Crl~io e breve e a lnforna~io i dP cariter prcl1m1na1 Fo1 dadJ enf1sc a rlcscr1~io das prat1cas de produ~ao e ao uso e custos de 1nsumos Os resultados dessc cstu do derdm subsld1o~ p1ra rcal1zar urna an~l1sc ma1s ampld e compl! ta dos fatores que l1m1tam a produ~ao e pro• 1 ut1v1dade da mand1o ca, 1 qual esta senda plPsentemente real1z1da Os dados Pmpregados para esta analiSe forar1 obt1dos em 300 un1dades de produ~io de 17 departamentos Colom -b1anosAs prat1cas de cult1vo na ,,,,,or1a das un1dades de produ~io da amost1a consrstem cm 1) preparo do solo, em mu1 tos casos de forma l u d1mentar, 2) plant1o, 3) caplnds, 4) colhe1ta 1 \"dema1s, se faz 1eplant1o e se aplFdlll 111~el1cl das e fert1l1zantes em algtJma~ un1dades de ¡Jtodu~ao \"mandlOLa é produz1da como cultl•/o Intercalar com m1ll.o, banan1, 1nhame ou felJaO numa tet~a parte da un1dadc de ptodu~ao amostra cd fe da \" nTvel de tecnoloy1a para a produ~ao de mand1~ ca foi aba1xo Vcr1f1cou-~c que o preparo do 'erreno se faz tiiL can1camente cm r• duz1do numet o de un t