mixed_multilingual_commonvoice_all_languages_100k / mixed_languages_commonvoice.py
BrunoHays's picture
add scripts used to curate
9bf7aea verified
import random
import re
from pathlib import Path
from typing import Dict, Iterator, List, Optional, Union
import numpy as np
from datasets import Dataset, load_dataset, Audio, load_from_disk, DatasetDict
from datasets import concatenate_datasets
from pydantic import BaseModel, ConfigDict
from tqdm import tqdm
from multilingual_dataset.commonvoice_stats import STATS
# import logging
#
# logging.basicConfig(
# level="DEBUG"
# )
FOREIGN_TOKEN = "<|muted|>"
def replace_consecutive_muted(text):
# Regular expression to match one or more consecutive <|muted|> tokens
pattern = fr'(\s*{re.escape(FOREIGN_TOKEN)}\s*)+'
# Replace consecutive tokens with just one <|muted|>
cleaned_text = re.sub(pattern, FOREIGN_TOKEN, text)
return cleaned_text
class AudioSample(BaseModel):
model_config = ConfigDict(
arbitrary_types_allowed=True
)
path: Optional[str]
array: np.ndarray
sampling_rate: int
class CommonVoiceSample(BaseModel):
audio: AudioSample
sentence: str
locale: str
class MultilingualDatasetSampler:
def __init__(self, split: str):
self.split = split
self.country_codes = list(STATS["locales"].keys())
self.datasets = {
code: self.prepare_dataset(
load_dataset("mozilla-foundation/common_voice_13_0", code, split=split, streaming=True))
for code in self.country_codes}
@staticmethod
def prepare_dataset(dataset: Dataset) -> Iterator[Dict]:
dataset = dataset.remove_columns(list(set(dataset.column_names) - {"sentence", "audio", "locale"}))
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
return dataset.iter(1)
def get_sample(self, is_french: bool) -> CommonVoiceSample:
while True:
if is_french:
code = "fr"
else:
code = random.choice(self.country_codes)
try:
item = next(self.datasets[code])
item = {k: v[0] for k, v in item.items()}
return CommonVoiceSample.model_validate(item)
except StopIteration:
continue
def merge_samples(samples: List[CommonVoiceSample]) -> CommonVoiceSample:
sentences = []
for sample in samples:
if sample.locale == "fr":
sentences.append(sample.sentence.strip())
else:
sentences.append(FOREIGN_TOKEN)
return CommonVoiceSample(
audio=AudioSample(
path="",
sampling_rate=16000,
array=np.concat([sample.audio.array for sample in samples], axis=0)),
locale="fr",
sentence=replace_consecutive_muted(" ".join(sentences))
)
def build_small_multilingual_dataset(sampler: MultilingualDatasetSampler, french_prob: float = 0.3,
dataset_size: int = 10000) -> Iterator[Dict]:
max_audio_length = 16000 * 30
for _ in range(dataset_size):
sample_len = 0
samples = []
while True:
is_french = random.random() <= french_prob
sample = sampler.get_sample(is_french)
sample_len += sample.audio.array.shape[0]
if sample_len > max_audio_length:
if samples:
yield merge_samples(samples).dict()
break
samples.append(sample)
def load_splitted_local_ds(folder: Path):
datasets = []
for dataset_path in folder.iterdir():
datasets.append(load_from_disk(dataset_path))
dataset = concatenate_datasets(datasets)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
return dataset
def save_and_split_dataset(dataset_size: int, split: str, save_folder: Union[str, Path]):
split_size = 1000
i = 0
sampler = MultilingualDatasetSampler(split=split)
dataset_items = []
save_folder = Path(save_folder)
def save():
dataset = Dataset.from_list(dataset_items)
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
dataset.save_to_disk(save_folder / str(i))
for item in tqdm(build_small_multilingual_dataset(sampler=sampler, dataset_size=dataset_size), total=dataset_size,
desc="building dataset"):
dataset_items.append(item)
if len(dataset_items) == split_size:
save()
i += 1
dataset_items = []
if dataset_items:
save()
if __name__ == "__main__":
save_and_split_dataset(100000, "train", "dataset_splits_train")
save_and_split_dataset(1000, "test", "dataset_splits_test")
train_dataset = load_splitted_local_ds(Path("dataset_splits_train"))
test_dataset = load_splitted_local_ds(Path("dataset_splits_test"))
dataset = DatasetDict(
train=train_dataset,
test=test_dataset
)
dataset.push_to_hub("mixed_multilingual_commonvoice_all_languages_100k")
# dataset.save_to_disk("mixed_multilingual_commonvoice")