|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect
|
|
import math
|
|
import os
|
|
import time
|
|
import typing
|
|
import warnings
|
|
from contextlib import nullcontext
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from accelerate import Accelerator
|
|
from accelerate.utils import ProjectConfiguration, gather_object, is_deepspeed_available
|
|
from datasets import Dataset
|
|
from huggingface_hub import whoami
|
|
from packaging import version
|
|
from torch.optim import Adam
|
|
from transformers import (
|
|
DataCollatorForLanguageModeling,
|
|
PreTrainedTokenizer,
|
|
PreTrainedTokenizerBase,
|
|
PreTrainedTokenizerFast,
|
|
)
|
|
|
|
from ..core import (
|
|
WANDB_PADDING,
|
|
PPODecorators,
|
|
clip_by_value,
|
|
convert_to_scalar,
|
|
entropy_from_logits,
|
|
flatten_dict,
|
|
logprobs_from_logits,
|
|
masked_mean,
|
|
masked_var,
|
|
masked_whiten,
|
|
set_seed,
|
|
stack_dicts,
|
|
stats_to_np,
|
|
)
|
|
from ..import_utils import is_npu_available, is_torch_greater_2_0, is_xpu_available
|
|
from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper, create_reference_model
|
|
from . import AdaptiveKLController, BaseTrainer, FixedKLController, PPOConfig, RunningMoments
|
|
|
|
|
|
if is_deepspeed_available():
|
|
import deepspeed
|
|
|
|
MODEL_CARD_TEMPLATE = """---
|
|
license: apache-2.0
|
|
tags:
|
|
- trl
|
|
- ppo
|
|
- transformers
|
|
- reinforcement-learning
|
|
---
|
|
|
|
# {model_name}
|
|
|
|
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
|
|
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
|
|
|
|
## Usage
|
|
|
|
To use this model for inference, first install the TRL library:
|
|
|
|
```bash
|
|
python -m pip install trl
|
|
```
|
|
|
|
You can then generate text as follows:
|
|
|
|
```python
|
|
from transformers import pipeline
|
|
|
|
generator = pipeline("text-generation", model="{model_id}")
|
|
outputs = generator("Hello, my llama is cute")
|
|
```
|
|
|
|
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
|
|
|
|
```python
|
|
from transformers import AutoTokenizer
|
|
from trl import AutoModelForCausalLMWithValueHead
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("{model_id}")
|
|
model = AutoModelForCausalLMWithValueHead.from_pretrained("{model_id}")
|
|
|
|
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
|
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
```
|
|
"""
|
|
|
|
|
|
class PPOTrainer(BaseTrainer):
|
|
"""
|
|
The PPOTrainer uses Proximal Policy Optimization to optimise language models.
|
|
Note, this trainer is heavily inspired by the original OpenAI learning to summarize work here:
|
|
https://github.com/openai/summarize-from-feedback
|
|
|
|
Attributes:
|
|
**config** (`PPOConfig`) -- Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more
|
|
details.
|
|
**model** (`PreTrainedModelWrapper`) -- Model to be optimized, Hugging Face transformer model with a value head.
|
|
Check the documentation of `PreTrainedModelWrapper` for more details.
|
|
**ref_model** (`PreTrainedModelWrapper`, *optional*) -- Reference model to be used for KL penalty, Hugging Face
|
|
transformer model with a casual language modelling head. Check the documentation of `PreTrainedModelWrapper`
|
|
for more details. If no reference model is provided, the trainer will create a reference model with the same
|
|
architecture as the model to be optimized with shared layers.
|
|
**tokenizer** (`PreTrainedTokenizerBase`) -- Tokenizer to be used for encoding the
|
|
data. Check the documentation of `transformers.PreTrainedTokenizer` and
|
|
`transformers.PreTrainedTokenizerFast` for more details.
|
|
**dataset** (Union[`torch.utils.data.Dataset`, `datasets.Dataset`], *optional*) -- PyTorch dataset or Hugging
|
|
Face dataset. This is used to create a PyTorch dataloader. If no dataset is provided, the dataloader must be
|
|
created outside the trainer users needs to design their own dataloader and make sure the batch
|
|
size that is used is the same as the one specified in the configuration object.
|
|
**optimizer** (`torch.optim.Optimizer`, *optional*) -- Optimizer to be used for training. If no optimizer is
|
|
provided, the trainer will create an Adam optimizer with the learning rate specified in the configuration
|
|
object.
|
|
**data_collator** (DataCollatorForLanguageModeling, *optional*) -- Data collator to be used for training and
|
|
passed along the dataloader
|
|
**num_shared_layers** (int, *optional*) -- Number of layers to be shared between the model and the reference
|
|
model, if no reference model is passed. If no number is provided, all the layers will be shared.
|
|
**lr_scheduler** (`torch.optim.lr_scheduler`, *optional*) -- Learning rate scheduler to be used for training.
|
|
"""
|
|
|
|
_tag_names = ["trl", "ppo"]
|
|
|
|
def __init__(
|
|
self,
|
|
config: PPOConfig = None,
|
|
model: PreTrainedModelWrapper = None,
|
|
ref_model: Optional[PreTrainedModelWrapper] = None,
|
|
tokenizer: PreTrainedTokenizerBase = None,
|
|
dataset: Optional[Union[torch.utils.data.Dataset, Dataset]] = None,
|
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
|
data_collator: Optional[typing.Callable] = None,
|
|
num_shared_layers: Optional[int] = None,
|
|
lr_scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
|
):
|
|
"""
|
|
Initialize PPOTrainer.
|
|
|
|
Args:
|
|
config (`PPOConfig`):
|
|
Configuration object for PPOTrainer. Check the documentation of `PPOConfig` for more details.
|
|
model (`PreTrainedModelWrapper`):
|
|
Hugging Face transformer model with a value head.
|
|
ref_model (`PreTrainedModelWrapper`):
|
|
Hugging Face transformer model with a casual language modelling head. Used for KL penalty
|
|
tokenizer (`transformers.PreTrainedTokenizerBase`):
|
|
Hugging Face tokenizer
|
|
dataset (Optional[Union[`torch.utils.data.Dataset`, `datasets.Dataset`]]):
|
|
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
|
|
will be preprocessed by removing the columns that are not used by the model. If none is passed,
|
|
a warning will be raised in a multi-GPU setting.
|
|
optimizer (Optional[`torch.optim.Optimizer`]):
|
|
Optimizer used for training. If `None`, the `Adam` is used as default.
|
|
data_collator (Optional[function]):
|
|
Data collator function.
|
|
num_shared_layers (Optional[int]):
|
|
Number of shared layers between the model and the reference model. If `None`, all layers are shared.
|
|
used only if `ref_model` is `None`.
|
|
lr_scheduler (Optional[`torch.optim.lr_scheduler`]):
|
|
Learning rate scheduler used for training.
|
|
"""
|
|
super().__init__(config)
|
|
|
|
|
|
set_seed(config.seed)
|
|
|
|
|
|
if not isinstance(config, PPOConfig):
|
|
raise ValueError(f"config must be a PPOConfig, got {type(config)}")
|
|
if not isinstance(tokenizer, (PreTrainedTokenizerBase)):
|
|
raise ValueError(f"tokenizer must be a PreTrainedTokenizerBase like a PreTrainedTokenizer or a PreTrainedTokenizerFast, got {type(tokenizer)}")
|
|
if not isinstance(model, (SUPPORTED_ARCHITECTURES)):
|
|
raise ValueError(f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}")
|
|
|
|
self.accelerator = Accelerator(
|
|
log_with=config.log_with,
|
|
gradient_accumulation_steps=config.gradient_accumulation_steps,
|
|
project_config=ProjectConfiguration(**config.project_kwargs),
|
|
**config.accelerator_kwargs,
|
|
)
|
|
|
|
|
|
config.world_size = self.accelerator.num_processes
|
|
config.global_backward_batch_size = config.backward_batch_size * config.world_size
|
|
config.global_batch_size = config.batch_size * config.world_size
|
|
|
|
self.model = model
|
|
self.model_params = filter(lambda p: p.requires_grad, self.model.parameters())
|
|
self.is_encoder_decoder = hasattr(self.model, "is_encoder_decoder")
|
|
self.is_peft_model = getattr(self.model, "is_peft_model", False)
|
|
config.is_encoder_decoder = self.is_encoder_decoder
|
|
config.is_peft_model = self.is_peft_model
|
|
|
|
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
|
|
self.accelerator.init_trackers(
|
|
config.tracker_project_name,
|
|
config=dict(trl_ppo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
|
|
init_kwargs=config.tracker_kwargs,
|
|
)
|
|
self.is_using_text_environment = getattr(config, "use_text_environment", False)
|
|
|
|
if isinstance(ref_model, SUPPORTED_ARCHITECTURES):
|
|
self.ref_model = ref_model
|
|
if num_shared_layers is not None:
|
|
warnings.warn(
|
|
"num_shared_layers is ignored when ref_model is provided. Two different models are used for the " "model and the reference model and no layers are shared.",
|
|
UserWarning,
|
|
)
|
|
elif ref_model is None and not self.is_peft_model:
|
|
self.ref_model = create_reference_model(self.model, num_shared_layers=num_shared_layers)
|
|
elif self.is_peft_model:
|
|
self.ref_model = None
|
|
else:
|
|
raise ValueError(f"ref_model must be a PreTrainedModelWrapper or `None`, got {type(ref_model)} - supported " f"architectures are: {SUPPORTED_ARCHITECTURES} ")
|
|
self.optional_peft_ctx = self.accelerator.unwrap_model(self.model).pretrained_model.disable_adapter if self.is_peft_model else nullcontext
|
|
|
|
if not (isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast)):
|
|
raise ValueError("tokenizer must be a transformers.PreTrainedTokenizer or transformers.PreTrainedTokenizerFast")
|
|
self.tokenizer = tokenizer
|
|
|
|
if dataset is not None and not (isinstance(dataset, torch.utils.data.Dataset) or isinstance(dataset, Dataset)):
|
|
raise ValueError("dataset must be a torch.utils.data.Dataset or datasets.Dataset")
|
|
elif dataset is None:
|
|
warnings.warn(
|
|
"No dataset is provided. Make sure to set config.batch_size to the correct value before training.",
|
|
UserWarning,
|
|
)
|
|
self.dataset = dataset
|
|
self._signature_columns = None
|
|
if self.dataset is not None:
|
|
self.dataloader = self.prepare_dataloader(self.dataset, data_collator)
|
|
elif self.dataset is None and self.accelerator.num_processes > 1:
|
|
warnings.warn(
|
|
"No dataset is provided. In a multi-GPU setting, this will lead to an error. You should"
|
|
" prepare your dataloader yourself with `dataloader = ppo_trainer.accelerator.prepare(dataloader)`"
|
|
" and using `torch.utils.data.DataLoader`, or pass a dataset to the `PPOTrainer`. Please "
|
|
" refer to the documentation for more details.",
|
|
UserWarning,
|
|
)
|
|
self.dataloader = None
|
|
else:
|
|
self.dataloader = None
|
|
|
|
|
|
self.data_collator = DataCollatorForLanguageModeling(self.tokenizer, mlm=False)
|
|
if optimizer is None:
|
|
self.optimizer = Adam(
|
|
filter(lambda p: p.requires_grad, self.model.parameters()),
|
|
lr=self.config.learning_rate,
|
|
)
|
|
else:
|
|
self.optimizer = optimizer
|
|
|
|
self.lr_scheduler = lr_scheduler
|
|
if self.lr_scheduler is not None:
|
|
lr_scheduler_class = torch.optim.lr_scheduler._LRScheduler if not is_torch_greater_2_0() else torch.optim.lr_scheduler.LRScheduler
|
|
|
|
if not isinstance(self.lr_scheduler, lr_scheduler_class):
|
|
raise ValueError("lr_scheduler must be a torch.optim.lr_scheduler._LRScheduler or torch.optim.lr_scheduler.LRScheduler (for torch >= 2.0)")
|
|
|
|
if self.config.adap_kl_ctrl:
|
|
self.kl_ctl = AdaptiveKLController(self.config.init_kl_coef, self.config.target, self.config.horizon)
|
|
else:
|
|
self.kl_ctl = FixedKLController(self.config.init_kl_coef)
|
|
|
|
|
|
is_deepspeed_used = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(self.accelerator.state, "deepspeed_plugin")
|
|
|
|
(
|
|
self.model,
|
|
self.optimizer,
|
|
self.data_collator,
|
|
self.dataloader,
|
|
self.lr_scheduler,
|
|
) = self.accelerator.prepare(
|
|
self.model,
|
|
self.optimizer,
|
|
self.data_collator,
|
|
self.dataloader,
|
|
self.lr_scheduler,
|
|
)
|
|
if is_deepspeed_used:
|
|
|
|
if not self.is_peft_model and not (getattr(self.ref_model.pretrained_model, "is_loaded_in_8bit", False) or getattr(self.ref_model.pretrained_model, "is_loaded_in_4bit", False)):
|
|
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
|
else:
|
|
self.ref_model = self.accelerator.prepare(self.ref_model)
|
|
|
|
|
|
|
|
|
|
self.is_distributed = self.accelerator.num_processes > 1
|
|
|
|
|
|
self.current_step = 0
|
|
|
|
|
|
if config.push_to_hub_if_best_kwargs:
|
|
if "repo_id" not in config.push_to_hub_if_best_kwargs:
|
|
raise ValueError("You have to specify repo_id in order to push the model to the hub!")
|
|
self.push_to_hub_kwargs = config.push_to_hub_if_best_kwargs
|
|
self.compare_step = 0
|
|
self.highest_reward = torch.tensor(-float("inf"))
|
|
|
|
|
|
if not getattr(self.model, "is_sequential_parallel", False):
|
|
self.current_device = self.accelerator.device
|
|
else:
|
|
if is_xpu_available():
|
|
self.current_device = torch.device("xpu:0")
|
|
elif is_npu_available():
|
|
self.current_device = torch.device("npu:0")
|
|
else:
|
|
self.current_device = torch.device("cuda:0")
|
|
|
|
PPODecorators.optimize_device_cache = self.config.optimize_device_cache
|
|
|
|
self.running = RunningMoments(self.accelerator)
|
|
|
|
def _filter_kwargs(self, kwargs, target_func):
|
|
"""
|
|
filter the keyword arguments that are supported by the target function.
|
|
|
|
Args:
|
|
kwargs (dict):
|
|
Keyword arguments
|
|
target_func (function):
|
|
Target function
|
|
"""
|
|
return {k: v for k, v in kwargs.items() if k in inspect.signature(target_func).parameters.keys()}
|
|
|
|
def prepare_dataloader(self, dataset: Union[torch.utils.data.Dataset, Dataset], data_collator=None):
|
|
"""
|
|
Prepare the dataloader for training.
|
|
|
|
Args:
|
|
dataset (Union[`torch.utils.data.Dataset`, `datasets.Dataset`]):
|
|
PyTorch dataset or Hugging Face dataset. If a Hugging Face dataset is passed, the dataset
|
|
will be preprocessed by removing the columns that are not used by the model.
|
|
data_collator (Optional[function]):
|
|
Data collator function.
|
|
|
|
Returns:
|
|
`torch.utils.data.DataLoader`: PyTorch dataloader
|
|
"""
|
|
if isinstance(dataset, Dataset):
|
|
dataset = self._remove_unused_columns(dataset)
|
|
dataloader = torch.utils.data.DataLoader(
|
|
dataset,
|
|
batch_size=self.config.batch_size,
|
|
collate_fn=data_collator,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
)
|
|
return dataloader
|
|
|
|
|
|
def _set_signature_columns_if_needed(self):
|
|
if self._signature_columns is None:
|
|
|
|
signature = inspect.signature(self.model.forward)
|
|
self._signature_columns = list(signature.parameters.keys())
|
|
|
|
self._signature_columns += ["label", "query", "response"]
|
|
|
|
|
|
def _remove_unused_columns(self, dataset: "Dataset"):
|
|
if not self.config.remove_unused_columns:
|
|
return dataset
|
|
self._set_signature_columns_if_needed()
|
|
signature_columns = self._signature_columns
|
|
|
|
ignored_columns = list(set(dataset.column_names) - set(signature_columns))
|
|
|
|
columns = [k for k in signature_columns if k in dataset.column_names]
|
|
|
|
if version.parse(datasets.__version__) < version.parse("1.4.0"):
|
|
dataset.set_format(
|
|
type=dataset.format["type"],
|
|
columns=columns,
|
|
format_kwargs=dataset.format["format_kwargs"],
|
|
)
|
|
return dataset
|
|
else:
|
|
return dataset.remove_columns(ignored_columns)
|
|
|
|
def generate(
|
|
self,
|
|
query_tensor: Union[torch.Tensor, List[torch.Tensor]],
|
|
length_sampler: Callable = None,
|
|
batch_size: int = 4,
|
|
return_prompt: bool = True,
|
|
generate_ref_response: bool = False,
|
|
**generation_kwargs,
|
|
):
|
|
"""
|
|
Generate response with the model given the query tensor.
|
|
call the `generate` method of the model.
|
|
|
|
Args:
|
|
query_tensor (`torch.LongTensor`):
|
|
A tensor of shape (`seq_len`) containing query tokens or a list of tensors of shape (`seq_len`).
|
|
length_sampler (`Callable`, *optional*):
|
|
Callable that returns the number of newly generated tokens.
|
|
batch_size (`int`, *optional):
|
|
Batch size used for generation, defaults to `4`.
|
|
return_prompt (`bool`, *optional*):
|
|
If set to `False` the prompt is not returned but only the newly generated tokens, defaults to `True`.
|
|
generate_ref_response (`bool`, *optional*):
|
|
If set to `True` the reference response is also generated, defaults to `False`.
|
|
generation_kwargs (dict[str, Any]):
|
|
Keyword arguments for generation.
|
|
|
|
Returns:
|
|
`torch.LongTensor`: A tensor of shape (`batch_size`, `gen_len`) containing response tokens.
|
|
"""
|
|
if generate_ref_response:
|
|
ref_model = self.model if self.is_peft_model else self.ref_model
|
|
if isinstance(query_tensor, List):
|
|
response = self._generate_batched(
|
|
self.model,
|
|
query_tensor,
|
|
length_sampler=length_sampler,
|
|
batch_size=batch_size,
|
|
return_prompt=return_prompt,
|
|
**generation_kwargs,
|
|
)
|
|
if generate_ref_response:
|
|
with self.optional_peft_ctx():
|
|
ref_response = self._generate_batched(
|
|
ref_model,
|
|
query_tensor,
|
|
length_sampler=length_sampler,
|
|
batch_size=batch_size,
|
|
return_prompt=return_prompt,
|
|
**generation_kwargs,
|
|
)
|
|
|
|
else:
|
|
if len(query_tensor.shape) == 2:
|
|
raise ValueError("query_tensor must be a tensor of shape (`seq_len`) or a list of tensors of shape (`seq_len`)")
|
|
|
|
if length_sampler is not None:
|
|
generation_kwargs["max_new_tokens"] = length_sampler()
|
|
response = self.accelerator.unwrap_model(self.model).generate(input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs)
|
|
if generate_ref_response:
|
|
with self.optional_peft_ctx():
|
|
ref_response = ref_model.generate(input_ids=query_tensor.unsqueeze(dim=0), **generation_kwargs)
|
|
|
|
if not return_prompt and not self.is_encoder_decoder:
|
|
response = response[:, query_tensor.shape[0] :]
|
|
if generate_ref_response:
|
|
ref_response = ref_response[:, query_tensor.shape[0] :]
|
|
|
|
if generate_ref_response:
|
|
return response, ref_response
|
|
return response
|
|
|
|
def _generate_batched(
|
|
self,
|
|
model: PreTrainedModelWrapper,
|
|
query_tensors: List[torch.Tensor],
|
|
length_sampler: Callable = None,
|
|
batch_size: int = 4,
|
|
return_prompt: bool = True,
|
|
pad_to_multiple_of: int = None,
|
|
remove_padding: bool = True,
|
|
**generation_kwargs,
|
|
):
|
|
outputs = []
|
|
|
|
padding_side_default = self.tokenizer.padding_side
|
|
if not self.is_encoder_decoder:
|
|
self.tokenizer.padding_side = "left"
|
|
|
|
|
|
batch_size = min(len(query_tensors), batch_size)
|
|
|
|
for i in range(0, len(query_tensors), batch_size):
|
|
if length_sampler is not None:
|
|
generation_kwargs["max_new_tokens"] = length_sampler()
|
|
|
|
|
|
end_index = min(len(query_tensors), i + batch_size)
|
|
|
|
batch = query_tensors[i:end_index]
|
|
batch_mask = [torch.ones_like(element) for element in batch]
|
|
inputs = {"input_ids": batch, "attention_mask": batch_mask}
|
|
|
|
padded_inputs = self.tokenizer.pad(
|
|
inputs,
|
|
padding=True,
|
|
max_length=None,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
).to(self.current_device)
|
|
|
|
generations = self.accelerator.unwrap_model(model).generate(**padded_inputs, **generation_kwargs)
|
|
|
|
for generation, mask in zip(generations, padded_inputs["attention_mask"]):
|
|
if not self.is_encoder_decoder:
|
|
output = generation[(1 - mask).sum() :]
|
|
else:
|
|
output = generation
|
|
|
|
if not return_prompt and not self.is_encoder_decoder:
|
|
output = output[(mask).sum() :]
|
|
|
|
if remove_padding and self.tokenizer.eos_token_id in output:
|
|
pad_mask = output == self.tokenizer.eos_token_id
|
|
pad_start = torch.nonzero(pad_mask, as_tuple=False)[0, 0].item()
|
|
output = output[: pad_start + 1]
|
|
|
|
outputs.append(output)
|
|
|
|
self.tokenizer.padding_side = padding_side_default
|
|
return outputs
|
|
|
|
def _step_safety_checker(
|
|
self,
|
|
batch_size: int,
|
|
queries: List[torch.LongTensor],
|
|
responses: List[torch.LongTensor],
|
|
scores: List[torch.FloatTensor],
|
|
masks: Optional[List[torch.LongTensor]] = None,
|
|
):
|
|
"""
|
|
Check if the input data is valid for training.
|
|
|
|
Args:
|
|
batch_size (int):
|
|
Batch size from the config file.
|
|
queries (List[`torch.LongTensor`]):
|
|
List of tensors containing the encoded queries of shape (`query_length`)
|
|
responses (List[`torch.LongTensor`]):
|
|
List of tensors containing the encoded responses of shape (`response_length`)
|
|
scores (List[`torch.FloatTensor`]):
|
|
List of tensors containing the scores.
|
|
masks (List[`torch.LongTensor`], *optional*):
|
|
list of optional tensors containing the masks of shape (`query_length` + `response_length`)
|
|
Returns:
|
|
`tuple`: The input processed data.
|
|
"""
|
|
for name, tensor_list in zip(["queries", "responses", "scores"], [queries, responses, scores]):
|
|
if not isinstance(tensor_list, list):
|
|
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
|
|
if not isinstance(tensor_list[0], torch.Tensor):
|
|
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
|
|
if batch_size is not None and len(tensor_list) != batch_size:
|
|
raise ValueError(f"Batch size ({batch_size}) does not match number of examples - but got {len(tensor_list)} for: {name}")
|
|
|
|
|
|
queries = [tensor.to(self.current_device) for tensor in queries]
|
|
responses = [tensor.to(self.current_device) for tensor in responses]
|
|
scores = [tensor.to(self.current_device) for tensor in scores]
|
|
masks = [tensor.to(self.current_device) for tensor in masks] if masks is not None else None
|
|
|
|
|
|
for i, score in enumerate(scores):
|
|
if score.dim() > 1:
|
|
raise ValueError(f"Scores must be 1-dimensional - got {score.dim()} for {score}")
|
|
elif score.dim() == 1:
|
|
scores[i] = score.squeeze()
|
|
|
|
return queries, responses, scores, masks
|
|
|
|
@PPODecorators.empty_device_cache()
|
|
def step(
|
|
self,
|
|
queries: List[torch.LongTensor],
|
|
responses: List[torch.LongTensor],
|
|
scores: List[torch.FloatTensor],
|
|
response_masks: Optional[List[torch.LongTensor]] = None,
|
|
):
|
|
"""
|
|
Run a PPO optimisation step given a list of queries, model responses, and rewards.
|
|
|
|
Args:
|
|
queries (List[`torch.LongTensor`]):
|
|
List of tensors containing the encoded queries of shape (`query_length`)
|
|
responses (List[`torch.LongTensor`]):
|
|
List of tensors containing the encoded responses of shape (`response_length`)
|
|
scores (List[`torch.FloatTensor`]):
|
|
List of tensors containing the scores.
|
|
response_masks (List[`torch.FloatTensor`], *optional*)):
|
|
List of tensors containing masks of the response tokens.
|
|
|
|
Returns:
|
|
`dict[str, Any]`: A summary of the training statistics
|
|
"""
|
|
bs = self.config.batch_size
|
|
|
|
queries, responses, scores, response_masks = self._step_safety_checker(bs, queries, responses, scores, response_masks)
|
|
scores = torch.tensor(scores, device=self.current_device)
|
|
if self.config.use_score_scaling:
|
|
|
|
scores_mean, scores_std = self.running.update(scores)
|
|
tensor_to_kwargs = dict(dtype=scores.dtype, device=scores.device)
|
|
score_scaling_factor = self.running.std.to(**tensor_to_kwargs) + torch.finfo(scores.dtype).eps
|
|
if self.config.use_score_norm:
|
|
scores = (scores - self.running.mean.to(**tensor_to_kwargs)) / score_scaling_factor
|
|
else:
|
|
scores /= score_scaling_factor
|
|
|
|
if self.config.score_clip is not None:
|
|
|
|
scores_dtype = scores.dtype
|
|
scores = torch.clip(scores.float(), -self.config.score_clip, self.config.score_clip).to(dtype=scores_dtype)
|
|
|
|
|
|
if hasattr(self, "highest_reward"):
|
|
if self.compare_step % self.config.compare_steps == 0:
|
|
curr_mean_reward = scores.mean()
|
|
|
|
if curr_mean_reward > self.highest_reward:
|
|
self.highest_reward = curr_mean_reward
|
|
|
|
self.push_to_hub(**self.push_to_hub_kwargs)
|
|
self.compare_step += 1
|
|
|
|
timing = dict()
|
|
t0 = time.time()
|
|
|
|
t = time.time()
|
|
|
|
model_inputs = self.prepare_model_inputs(queries, responses)
|
|
|
|
if self.is_distributed:
|
|
pad_first = self.tokenizer.padding_side == "left"
|
|
|
|
model_inputs["input_ids"] = self.accelerator.pad_across_processes(
|
|
model_inputs["input_ids"],
|
|
dim=1,
|
|
pad_index=self.tokenizer.pad_token_id,
|
|
pad_first=pad_first,
|
|
)
|
|
model_inputs["attention_mask"] = self.accelerator.pad_across_processes(model_inputs["attention_mask"], dim=1, pad_index=0, pad_first=pad_first)
|
|
if self.is_encoder_decoder:
|
|
model_inputs["decoder_input_ids"] = self.accelerator.pad_across_processes(
|
|
model_inputs["decoder_input_ids"],
|
|
dim=1,
|
|
pad_index=self.tokenizer.pad_token_id,
|
|
pad_first=pad_first,
|
|
)
|
|
model_inputs["decoder_attention_mask"] = self.accelerator.pad_across_processes(
|
|
model_inputs["decoder_attention_mask"],
|
|
dim=1,
|
|
pad_index=0,
|
|
pad_first=pad_first,
|
|
)
|
|
|
|
model_inputs_names = list(model_inputs.keys())
|
|
|
|
full_kl_penalty = self.config.kl_penalty == "full"
|
|
|
|
with torch.no_grad():
|
|
all_logprobs, logits_or_none, values, masks = self.batched_forward_pass(
|
|
self.model,
|
|
queries,
|
|
responses,
|
|
model_inputs,
|
|
response_masks=response_masks,
|
|
return_logits=full_kl_penalty,
|
|
)
|
|
with self.optional_peft_ctx():
|
|
ref_logprobs, ref_logits_or_none, _, _ = self.batched_forward_pass(
|
|
self.model if self.is_peft_model else self.ref_model,
|
|
queries,
|
|
responses,
|
|
model_inputs,
|
|
return_logits=full_kl_penalty,
|
|
)
|
|
|
|
timing["time/ppo/forward_pass"] = time.time() - t
|
|
|
|
with torch.no_grad():
|
|
t = time.time()
|
|
if full_kl_penalty:
|
|
active_full_logprobs = logprobs_from_logits(logits_or_none, None, gather=False)
|
|
ref_full_logprobs = logprobs_from_logits(ref_logits_or_none, None, gather=False)
|
|
|
|
rewards, non_score_reward, kls = self.compute_rewards(scores, active_full_logprobs, ref_full_logprobs, masks)
|
|
else:
|
|
rewards, non_score_reward, kls = self.compute_rewards(scores, all_logprobs, ref_logprobs, masks)
|
|
timing["time/ppo/compute_rewards"] = time.time() - t
|
|
|
|
t = time.time()
|
|
values, advantages, returns = self.compute_advantages(values, rewards, masks)
|
|
timing["time/ppo/compute_advantages"] = time.time() - t
|
|
|
|
|
|
batch_dict = {
|
|
"queries": queries,
|
|
"responses": responses,
|
|
"logprobs": all_logprobs.to(torch.float32),
|
|
"values": values.to(torch.float32),
|
|
"masks": masks,
|
|
"advantages": advantages,
|
|
"returns": returns,
|
|
}
|
|
batch_dict.update(model_inputs)
|
|
|
|
t = time.time()
|
|
all_stats = []
|
|
early_stop = False
|
|
for _ in range(self.config.ppo_epochs):
|
|
if early_stop:
|
|
break
|
|
b_inds = np.random.permutation(bs)
|
|
for backward_batch_start in range(0, bs, self.config.backward_batch_size):
|
|
backward_batch_end = backward_batch_start + self.config.backward_batch_size
|
|
backward_batch_inds = b_inds[backward_batch_start:backward_batch_end]
|
|
|
|
for mini_batch_start in range(0, self.config.backward_batch_size, self.config.mini_batch_size):
|
|
mini_batch_end = mini_batch_start + self.config.mini_batch_size
|
|
mini_batch_inds = backward_batch_inds[mini_batch_start:mini_batch_end]
|
|
mini_batch_dict = {
|
|
"logprobs": batch_dict["logprobs"][mini_batch_inds],
|
|
"values": batch_dict["values"][mini_batch_inds],
|
|
"masks": batch_dict["masks"][mini_batch_inds],
|
|
|
|
"queries": [batch_dict["queries"][i] for i in mini_batch_inds],
|
|
"responses": [batch_dict["responses"][i] for i in mini_batch_inds],
|
|
"advantages": batch_dict["advantages"][mini_batch_inds],
|
|
"returns": batch_dict["returns"][mini_batch_inds],
|
|
}
|
|
for k in model_inputs_names:
|
|
mini_batch_dict[k] = batch_dict[k][mini_batch_inds]
|
|
with self.accelerator.accumulate(self.model):
|
|
model_inputs = {k: mini_batch_dict[k] for k in model_inputs_names}
|
|
|
|
logprobs, logits, vpreds, _ = self.batched_forward_pass(
|
|
self.model,
|
|
mini_batch_dict["queries"],
|
|
mini_batch_dict["responses"],
|
|
model_inputs,
|
|
return_logits=True,
|
|
)
|
|
train_stats = self.train_minibatch(
|
|
mini_batch_dict["logprobs"],
|
|
mini_batch_dict["values"],
|
|
logprobs,
|
|
logits,
|
|
vpreds,
|
|
mini_batch_dict["masks"],
|
|
mini_batch_dict["advantages"],
|
|
mini_batch_dict["returns"],
|
|
)
|
|
all_stats.append(train_stats)
|
|
|
|
|
|
if self.config.early_stopping:
|
|
policykl = train_stats["policy/policykl"]
|
|
early_stop = self._early_stop(policykl)
|
|
if early_stop:
|
|
break
|
|
|
|
timing["time/ppo/optimize_step"] = time.time() - t
|
|
|
|
t = time.time()
|
|
train_stats = stack_dicts(all_stats)
|
|
|
|
|
|
train_stats["policy/advantages"] = torch.flatten(train_stats["policy/advantages"]).unsqueeze(0)
|
|
train_stats["policy/advantages"] = torch.nan_to_num(train_stats["policy/advantages"], WANDB_PADDING)
|
|
train_stats["policy/ratio"] = torch.flatten(train_stats["policy/ratio"]).unsqueeze(0)
|
|
|
|
stats = self.record_step_stats(
|
|
scores=scores,
|
|
logprobs=all_logprobs,
|
|
ref_logprobs=ref_logprobs,
|
|
non_score_reward=non_score_reward,
|
|
train_stats=train_stats,
|
|
kl_coef=self.kl_ctl.value,
|
|
masks=masks,
|
|
queries=queries,
|
|
responses=responses,
|
|
kls=kls,
|
|
)
|
|
|
|
if self.is_distributed:
|
|
stats = self.gather_stats(stats)
|
|
stats = stats_to_np(stats)
|
|
timing["time/ppo/calc_stats"] = time.time() - t
|
|
stats["ppo/learning_rate"] = self.optimizer.param_groups[0]["lr"]
|
|
|
|
|
|
self.kl_ctl.update(
|
|
stats["objective/kl"],
|
|
self.config.batch_size * self.accelerator.num_processes,
|
|
)
|
|
|
|
|
|
timing["time/ppo/total"] = time.time() - t0
|
|
stats.update(timing)
|
|
|
|
|
|
if self.config.log_with != "wandb":
|
|
stats = convert_to_scalar(stats)
|
|
|
|
if self.lr_scheduler is not None:
|
|
self.lr_scheduler.step()
|
|
|
|
return stats
|
|
|
|
def _early_stop(self, policykl):
|
|
r"""
|
|
Handles the early stopping logic. If the policy KL is greater than the target KL, then the gradient is zeroed and
|
|
the optimization step is skipped.
|
|
This also handles the multi-gpu case where the policy KL is averaged across all processes.
|
|
|
|
Args:
|
|
policy_kl (torch.Tensor):
|
|
the policy KL
|
|
|
|
Returns:
|
|
`bool`: whether to early stop or not
|
|
"""
|
|
early_stop = False
|
|
if not self.config.early_stopping:
|
|
return early_stop
|
|
|
|
if not self.is_distributed and policykl > 1.5 * self.config.target_kl:
|
|
self.optimizer.zero_grad()
|
|
early_stop = True
|
|
elif self.is_distributed:
|
|
import torch.distributed as dist
|
|
|
|
|
|
dist.barrier()
|
|
|
|
|
|
dist.all_reduce(policykl, dist.ReduceOp.SUM)
|
|
policykl /= self.accelerator.num_processes
|
|
|
|
if policykl > 1.5 * self.config.target_kl:
|
|
self.optimizer.zero_grad()
|
|
early_stop = True
|
|
return early_stop
|
|
|
|
def gather_stats(self, stats):
|
|
"""
|
|
Gather stats from all processes. Useful in the context of distributed training.
|
|
|
|
Args:
|
|
stats (dict[str, Any]):
|
|
a dictionary of stats to be gathered. The stats should contain torch tensors.
|
|
|
|
Returns:
|
|
`dict[str, Any]`: A dictionary of stats with the tensors gathered.
|
|
"""
|
|
import torch.distributed as dist
|
|
|
|
|
|
dist.barrier()
|
|
|
|
for k, v in stats.items():
|
|
if isinstance(v, torch.Tensor):
|
|
dist.all_reduce(v.to(self.accelerator.device), dist.ReduceOp.SUM)
|
|
v /= self.accelerator.num_processes
|
|
stats[k] = v
|
|
return stats
|
|
|
|
def prepare_model_inputs(self, queries: torch.Tensor, responses: torch.Tensor):
|
|
if self.is_encoder_decoder:
|
|
input_data = self.data_collator([{"input_ids": q, "attention_mask": torch.ones_like(q)} for q in queries]).to(self.current_device)
|
|
|
|
decoder_inputs = self.data_collator([{"input_ids": r, "attention_mask": torch.ones_like(r)} for r in responses]).to(self.current_device)
|
|
|
|
input_data["decoder_input_ids"] = decoder_inputs["input_ids"]
|
|
input_data["decoder_attention_mask"] = decoder_inputs["attention_mask"]
|
|
else:
|
|
input_ids = [torch.cat([q, r]) for q, r in zip(queries, responses)]
|
|
input_data = self.data_collator([{"input_ids": ids, "attention_mask": torch.ones_like(ids)} for ids in input_ids]).to(self.current_device)
|
|
|
|
input_data.pop("labels", None)
|
|
return input_data
|
|
|
|
@PPODecorators.empty_device_cache()
|
|
def batched_forward_pass(
|
|
self,
|
|
model: PreTrainedModelWrapper,
|
|
queries: torch.Tensor,
|
|
responses: torch.Tensor,
|
|
model_inputs: dict,
|
|
return_logits: bool = False,
|
|
response_masks: Optional[torch.Tensor] = None,
|
|
):
|
|
"""
|
|
Calculate model outputs in multiple batches.
|
|
|
|
Args:
|
|
queries (`torch.LongTensor`):
|
|
List of tensors containing the encoded queries, shape (`batch_size`, `query_length`)
|
|
responses (`torch.LongTensor`):
|
|
List of tensors containing the encoded responses, shape (`batch_size`, `response_length`)
|
|
return_logits (`bool`, *optional*, defaults to `False`):
|
|
Whether to return all_logits. Set to `False` if logits are not needed to reduce memory consumption.
|
|
Returns:
|
|
(tuple):
|
|
- all_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
|
|
shape (`batch_size`, `response_length`)
|
|
- all_ref_logprobs (`torch.FloatTensor`): Log probabilities of the responses,
|
|
shape (`batch_size`, `response_length`)
|
|
- all_values (`torch.FloatTensor`): Values of the responses, shape (`batch_size`, `response_length`)
|
|
"""
|
|
bs = len(queries)
|
|
fbs = self.config.mini_batch_size
|
|
all_logprobs = []
|
|
all_logits = []
|
|
all_masks = []
|
|
all_values = []
|
|
|
|
model.eval()
|
|
|
|
for i in range(math.ceil(bs / fbs)):
|
|
input_kwargs = {key: value[i * fbs : (i + 1) * fbs] for key, value in model_inputs.items()}
|
|
query_batch = queries[i * fbs : (i + 1) * fbs]
|
|
response_batch = responses[i * fbs : (i + 1) * fbs]
|
|
if response_masks is not None:
|
|
response_masks_batch = response_masks[i * fbs : (i + 1) * fbs]
|
|
logits, _, values = model(**input_kwargs)
|
|
|
|
if self.is_encoder_decoder:
|
|
input_ids = input_kwargs["decoder_input_ids"]
|
|
attention_mask = input_kwargs["decoder_attention_mask"]
|
|
else:
|
|
input_ids = input_kwargs["input_ids"]
|
|
attention_mask = input_kwargs["attention_mask"]
|
|
|
|
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
|
|
masks = torch.zeros_like(attention_mask)
|
|
masks[:, :-1] = attention_mask[:, 1:]
|
|
|
|
for j in range(len(query_batch)):
|
|
if self.is_encoder_decoder:
|
|
|
|
start = 1
|
|
end = attention_mask[j, :].sum() - 1
|
|
else:
|
|
start = len(query_batch[j]) - 1
|
|
if attention_mask[j, 0] == 0:
|
|
start += attention_mask[j, :].nonzero()[0]
|
|
end = start + len(response_batch[j])
|
|
if response_masks is not None:
|
|
response_masks_batch[j] = torch.cat((torch.zeros_like(query_batch[j]), response_masks_batch[j]))[1:]
|
|
|
|
masks[j, :start] = 0
|
|
masks[j, end:] = 0
|
|
if response_masks is not None:
|
|
masks[j, start:end] = masks[j, start:end] * response_masks_batch[j][start:end]
|
|
|
|
if return_logits:
|
|
all_logits.append(logits)
|
|
else:
|
|
del logits
|
|
all_values.append(values)
|
|
all_logprobs.append(logprobs)
|
|
all_masks.append(masks)
|
|
|
|
return (
|
|
torch.cat(all_logprobs),
|
|
torch.cat(all_logits)[:, :-1] if return_logits else None,
|
|
torch.cat(all_values)[:, :-1],
|
|
torch.cat(all_masks)[:, :-1],
|
|
)
|
|
|
|
@PPODecorators.empty_device_cache()
|
|
def train_minibatch(
|
|
self,
|
|
old_logprobs: torch.FloatTensor,
|
|
values: torch.FloatTensor,
|
|
logprobs: torch.FloatTensor,
|
|
logits: torch.FloatTensor,
|
|
vpreds: torch.FloatTensor,
|
|
mask: torch.LongTensor,
|
|
advantages: torch.FloatTensor,
|
|
returns: torch.FloatTensor,
|
|
):
|
|
"""
|
|
Train one PPO minibatch
|
|
|
|
Args:
|
|
logprobs (`torch.FloatTensor`):
|
|
Log probabilities of the model, shape [mini_batch_size, response_length]
|
|
values (`torch.FloatTensor`):
|
|
Values of the value head, shape [mini_batch_size, response_length]
|
|
query (`torch.LongTensor`):
|
|
Encoded queries, shape [mini_batch_size, query_length]
|
|
response (`torch.LongTensor`):
|
|
Encoded responses, shape [mini_batch_size, response_length]
|
|
model_input (`torch.LongTensor`):
|
|
Concatenated queries and responses, shape [mini_batch_size, query_length+response_length]
|
|
|
|
Returns:
|
|
train_stats (dict[str, `torch.Tensor`]):
|
|
Dictionary of training statistics
|
|
"""
|
|
self.model.train()
|
|
loss_p, loss_v, train_stats = self.loss(old_logprobs, values, logits, vpreds, logprobs, mask, advantages, returns)
|
|
loss = loss_p + loss_v
|
|
self.accelerator.backward(loss)
|
|
if self.config.max_grad_norm is not None:
|
|
if self.accelerator.sync_gradients:
|
|
self.accelerator.clip_grad_norm_(self.model_params, self.config.max_grad_norm)
|
|
self.optimizer.step()
|
|
|
|
|
|
self.optimizer.zero_grad()
|
|
return train_stats
|
|
|
|
def compute_rewards(
|
|
self,
|
|
scores: torch.FloatTensor,
|
|
logprobs: torch.FloatTensor,
|
|
ref_logprobs: torch.FloatTensor,
|
|
masks: torch.LongTensor,
|
|
):
|
|
"""
|
|
Compute per token rewards from scores and KL-penalty.
|
|
|
|
Args:
|
|
scores (`torch.FloatTensor`):
|
|
Scores from the reward model, shape (`batch_size`)
|
|
logprobs (`torch.FloatTensor`):
|
|
Log probabilities of the model, shape (`batch_size`, `response_length`)
|
|
ref_logprobs (`torch.FloatTensor`):
|
|
Log probabilities of the reference model, shape (`batch_size`, `response_length`)
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: Per token rewards, shape (`batch_size`, `response_length`)
|
|
`torch.FloatTensor`: Non score rewards, shape (`batch_size`, `response_length`)
|
|
`torch.FloatTensor`: KL penalty, shape (`batch_size`, `response_length`)
|
|
"""
|
|
rewards, non_score_rewards, kls = [], [], []
|
|
for score, logprob, ref_logprob, mask in zip(scores, logprobs, ref_logprobs, masks):
|
|
|
|
kl = self._kl_penalty(logprob, ref_logprob)
|
|
kls.append(kl)
|
|
non_score_reward = -self.kl_ctl.value * kl
|
|
non_score_rewards.append(non_score_reward)
|
|
reward = non_score_reward.clone()
|
|
last_non_masked_index = mask.nonzero()[-1]
|
|
|
|
|
|
reward[last_non_masked_index] += score
|
|
rewards.append(reward)
|
|
return torch.stack(rewards), torch.stack(non_score_rewards), torch.stack(kls)
|
|
|
|
def _kl_penalty(self, logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor) -> torch.FloatTensor:
|
|
if self.config.kl_penalty == "kl":
|
|
return logprob - ref_logprob
|
|
|
|
if self.config.kl_penalty == "abs":
|
|
return (logprob - ref_logprob).abs()
|
|
|
|
if self.config.kl_penalty == "mse":
|
|
return 0.5 * (logprob - ref_logprob).square()
|
|
|
|
if self.config.kl_penalty == "full":
|
|
|
|
return F.kl_div(ref_logprob, logprob, log_target=True, reduction="none").sum(-1)
|
|
|
|
raise NotImplementedError
|
|
|
|
def compute_advantages(
|
|
self,
|
|
values: torch.FloatTensor,
|
|
rewards: torch.FloatTensor,
|
|
mask: torch.FloatTensor,
|
|
):
|
|
lastgaelam = 0
|
|
advantages_reversed = []
|
|
gen_len = rewards.shape[-1]
|
|
|
|
values = values * mask
|
|
rewards = rewards * mask
|
|
|
|
if self.config.whiten_rewards:
|
|
rewards = masked_whiten(rewards, mask, shift_mean=False)
|
|
|
|
for t in reversed(range(gen_len)):
|
|
nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0
|
|
delta = rewards[:, t] + self.config.gamma * nextvalues - values[:, t]
|
|
lastgaelam = delta + self.config.gamma * self.config.lam * lastgaelam
|
|
advantages_reversed.append(lastgaelam)
|
|
advantages = torch.stack(advantages_reversed[::-1]).transpose(0, 1)
|
|
|
|
returns = advantages + values
|
|
advantages = masked_whiten(advantages, mask)
|
|
advantages = advantages.detach()
|
|
return values, advantages, returns
|
|
|
|
def loss(
|
|
self,
|
|
old_logprobs: torch.FloatTensor,
|
|
values: torch.FloatTensor,
|
|
logits: torch.FloatTensor,
|
|
vpreds: torch.FloatTensor,
|
|
logprobs: torch.FloatTensor,
|
|
mask: torch.LongTensor,
|
|
advantages: torch.FloatTensor,
|
|
returns: torch.FloatTensor,
|
|
):
|
|
"""
|
|
Calculate policy and value losses.
|
|
|
|
Args:
|
|
old_logprobs (`torch.FloatTensor`):
|
|
Log probabilities of the model, shape (`batch_size`, `response_length`)
|
|
values (`torch.FloatTensor`):
|
|
Values of the value head, shape (`batch_size`, `response_length`)
|
|
rewards (`torch.FloatTensor`):
|
|
Rewards from the reward model, shape (`batch_size`, `response_length`)
|
|
logits (`torch.FloatTensor`):
|
|
Logits of the model, shape (`batch_size`, `response_length`, `vocab_size`)
|
|
v_pred (`torch.FloatTensor`):
|
|
Values of the value head, shape (`batch_size`, `response_length`)
|
|
logprobs (`torch.FloatTensor`):
|
|
Log probabilities of the model, shape (`batch_size`, `response_length`)
|
|
"""
|
|
|
|
vpredclipped = clip_by_value(
|
|
vpreds,
|
|
values - self.config.cliprange_value,
|
|
values + self.config.cliprange_value,
|
|
)
|
|
|
|
vf_losses1 = (vpreds - returns) ** 2
|
|
vf_losses2 = (vpredclipped - returns) ** 2
|
|
vf_loss = 0.5 * masked_mean(torch.max(vf_losses1, vf_losses2), mask)
|
|
vf_clipfrac = masked_mean(torch.gt(vf_losses2, vf_losses1).float(), mask)
|
|
|
|
ratio = torch.exp(logprobs - old_logprobs)
|
|
|
|
pg_losses = -advantages * ratio
|
|
pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - self.config.cliprange, 1.0 + self.config.cliprange)
|
|
|
|
pg_loss = masked_mean(torch.max(pg_losses, pg_losses2), mask)
|
|
pg_clipfrac = masked_mean(torch.gt(pg_losses2, pg_losses).float(), mask)
|
|
|
|
loss = pg_loss + self.config.vf_coef * vf_loss
|
|
|
|
avg_ratio = masked_mean(ratio, mask).item()
|
|
if avg_ratio > self.config.ratio_threshold:
|
|
warnings.warn(f"The average ratio of batch ({avg_ratio:.2f}) exceeds threshold {self.config.ratio_threshold:.2f}. Skipping batch.")
|
|
pg_loss = pg_loss * 0.0
|
|
vf_loss = vf_loss * 0.0
|
|
loss = loss * 0.0
|
|
|
|
entropy = masked_mean(entropy_from_logits(logits), mask)
|
|
|
|
approxkl = 0.5 * masked_mean((logprobs - old_logprobs) ** 2, mask)
|
|
policykl = masked_mean(old_logprobs - logprobs, mask)
|
|
|
|
return_mean, return_var = masked_mean(returns, mask), masked_var(returns, mask)
|
|
value_mean, value_var = masked_mean(values, mask), masked_var(values, mask)
|
|
|
|
stats = dict(
|
|
loss=dict(policy=pg_loss.detach(), value=vf_loss.detach(), total=loss.detach()),
|
|
policy=dict(
|
|
entropy=entropy.detach(),
|
|
approxkl=approxkl.detach(),
|
|
policykl=policykl.detach(),
|
|
clipfrac=pg_clipfrac.detach(),
|
|
advantages=advantages.detach(),
|
|
advantages_mean=masked_mean(advantages, mask).detach(),
|
|
ratio=ratio.detach(),
|
|
),
|
|
returns=dict(mean=return_mean.detach(), var=return_var.detach()),
|
|
val=dict(
|
|
vpred=masked_mean(vpreds, mask).detach(),
|
|
error=masked_mean((vpreds - returns) ** 2, mask).detach(),
|
|
clipfrac=vf_clipfrac.detach(),
|
|
mean=value_mean.detach(),
|
|
var=value_var.detach(),
|
|
),
|
|
)
|
|
return pg_loss, self.config.vf_coef * vf_loss, flatten_dict(stats)
|
|
|
|
def record_step_stats(self, kl_coef: float, **data):
|
|
"""
|
|
Record training step statistics.
|
|
|
|
|
|
Args:
|
|
kl_coef (`float`):
|
|
KL coefficient
|
|
data (`dict`):
|
|
Dictionary of training step data
|
|
|
|
Returns:
|
|
stats (`dict`):
|
|
Dictionary of training step statistics
|
|
"""
|
|
mask = data.pop("masks")
|
|
|
|
kls = data.pop("kls")
|
|
kl_list = ((kls) * mask).sum(axis=-1)
|
|
mean_kl = kl_list.mean()
|
|
mean_entropy = (-data["logprobs"] * mask).sum(axis=-1).mean()
|
|
|
|
mean_non_score_reward = masked_mean(data["non_score_reward"], mask)
|
|
mean_scores = data["scores"].mean()
|
|
std_scores = data["scores"].std()
|
|
|
|
if mean_kl.item() < -1.0:
|
|
|
|
warnings.warn(
|
|
f"KL divergence is starting to become negative: {mean_kl.item():.2f} - this might be a precursor for failed training."
|
|
" sometimes this happens because the generation kwargs are not correctly set. Please make sure"
|
|
" that the generation kwargs are set correctly, or review your training hyperparameters."
|
|
)
|
|
|
|
stats = {
|
|
"objective/kl": mean_kl,
|
|
"objective/kl_dist": kl_list,
|
|
"objective/logprobs": data["logprobs"],
|
|
"objective/ref_logprobs": data["ref_logprobs"],
|
|
"objective/kl_coef": kl_coef,
|
|
"objective/entropy": mean_entropy,
|
|
"ppo/mean_non_score_reward": mean_non_score_reward,
|
|
"ppo/mean_scores": mean_scores,
|
|
"ppo/std_scores": std_scores,
|
|
}
|
|
|
|
|
|
query_lens = torch.tensor([len(query) for query in data["queries"]], dtype=torch.float)
|
|
response_lens = torch.tensor([len(response) for response in data["responses"]], dtype=torch.float)
|
|
|
|
stats["tokens/queries_len_mean"] = torch.mean(query_lens).cpu().numpy().item()
|
|
stats["tokens/queries_len_std"] = torch.std(query_lens).cpu().numpy().item()
|
|
stats["tokens/queries_dist"] = query_lens.cpu().numpy()
|
|
stats["tokens/responses_len_mean"] = torch.mean(response_lens).cpu().numpy().item()
|
|
stats["tokens/responses_len_std"] = torch.std(response_lens).cpu().numpy().item()
|
|
stats["tokens/responses_dist"] = response_lens.cpu().numpy()
|
|
|
|
for k, v in data["train_stats"].items():
|
|
stats[f"ppo/{k}"] = torch.mean(v, axis=0)
|
|
stats["ppo/val/var_explained"] = 1 - stats["ppo/val/error"] / stats["ppo/returns/var"]
|
|
return stats
|
|
|
|
def log_stats(
|
|
self,
|
|
stats: dict,
|
|
batch: dict,
|
|
rewards: List[torch.FloatTensor],
|
|
columns_to_log: List[str] = ["query", "response"],
|
|
):
|
|
"""
|
|
A function that logs all the training stats. Call it at the end of each epoch.
|
|
|
|
Args:
|
|
stats (dict[str, Any]):
|
|
A dictionary of training stats.
|
|
batch (dict[str, Any]):
|
|
A dictionary of batch data, this contains the queries and responses.
|
|
rewards (`List[torch.FloatTensor]`):
|
|
A tensor of rewards.
|
|
"""
|
|
|
|
|
|
if not isinstance(rewards, torch.Tensor):
|
|
rewards = torch.tensor(rewards).to(self.current_device)
|
|
rewards = self.accelerator.gather(rewards).flatten()
|
|
|
|
if self.config.log_with == "wandb":
|
|
import wandb
|
|
|
|
if any([column_to_log not in batch.keys() for column_to_log in columns_to_log]):
|
|
raise ValueError(f"Columns to log {columns_to_log} are not present in the batch {batch.keys()}.")
|
|
|
|
batch_list = [batch[column_to_log] for column_to_log in columns_to_log]
|
|
if self.is_distributed:
|
|
gathered_batch_list = []
|
|
for b in batch_list:
|
|
flattened = gather_object(b)
|
|
gathered_batch_list.append(flattened)
|
|
batch_list = gathered_batch_list
|
|
|
|
|
|
if self.accelerator.is_main_process:
|
|
logs = {}
|
|
|
|
|
|
if "query" not in batch.keys() and "response" not in batch.keys():
|
|
|
|
warnings.warn("The game logs will not be logged because the batch does not contain the keys 'query' and " "'response'. ")
|
|
elif self.config.log_with == "wandb":
|
|
table_rows = [list(r) for r in zip(*batch_list, rewards.cpu().tolist())]
|
|
logs.update({"game_log": wandb.Table(columns=[*columns_to_log, "reward"], rows=table_rows)})
|
|
|
|
logs.update(stats)
|
|
|
|
|
|
for k, v in logs.items():
|
|
if isinstance(v, torch.Tensor) and v.dtype == torch.bfloat16:
|
|
logs[k] = v.float()
|
|
|
|
logs["env/reward_mean"] = torch.mean(rewards).cpu().numpy().item()
|
|
logs["env/reward_std"] = torch.std(rewards).cpu().numpy().item()
|
|
logs["env/reward_dist"] = rewards.cpu().numpy()
|
|
|
|
if self.config.log_with == "tensorboard":
|
|
|
|
self.current_step += 1
|
|
|
|
self.accelerator.log(
|
|
logs,
|
|
step=self.current_step if self.config.log_with == "tensorboard" else None,
|
|
)
|
|
|
|
def create_model_card(self, path: str, model_name: Optional[str] = "TRL Model") -> None:
|
|
"""Creates and saves a model card for a TRL model.
|
|
|
|
Args:
|
|
path (`str`): The path to save the model card to.
|
|
model_name (`str`, *optional*): The name of the model, defaults to `TRL Model`.
|
|
"""
|
|
try:
|
|
user = whoami()["name"]
|
|
|
|
except:
|
|
warnings.warn("Cannot retrieve user information assuming you are running in offline mode.")
|
|
return
|
|
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
|
|
model_card_content = MODEL_CARD_TEMPLATE.format(model_name=model_name, model_id=f"{user}/{path}")
|
|
with open(os.path.join(path, "README.md"), "w", encoding="utf-8") as f:
|
|
f.write(model_card_content)
|
|
|
|
def _save_pretrained(self, save_directory: str) -> None:
|
|
self.accelerator.unwrap_model(self.model).save_pretrained(save_directory)
|
|
self.tokenizer.save_pretrained(save_directory)
|
|
self.create_model_card(save_directory)
|
|
|
|
def _show_tokens(self, tokens, masks):
|
|
from rich import print
|
|
from rich.text import Text
|
|
|
|
text = Text()
|
|
|
|
for i, (token, mask) in enumerate(zip(tokens, masks)):
|
|
if mask == 1:
|
|
text.append(self.tokenizer.decode(token.item()), style="black on deep_sky_blue1")
|
|
text.append(" ")
|
|
else:
|
|
text.append(self.tokenizer.decode(token.item()), style="black on cyan3")
|
|
text.append(" ")
|
|
print(text)
|
|
|
|
def _prepare_deepspeed(self, model: PreTrainedModelWrapper):
|
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin
|
|
config_kwargs = deepspeed_plugin.deepspeed_config
|
|
if model is not None:
|
|
if hasattr(model, "config"):
|
|
hidden_size = max(model.config.hidden_sizes) if getattr(model.config, "hidden_sizes", None) else getattr(model.config, "hidden_size", None)
|
|
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
|
|
|
|
|
|
config_kwargs.update(
|
|
{
|
|
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
|
|
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
|
|
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
|
|
}
|
|
)
|
|
|
|
|
|
|
|
if config_kwargs["zero_optimization"]["stage"] != 3:
|
|
config_kwargs["zero_optimization"]["stage"] = 0
|
|
model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
|
|
model.eval()
|
|
return model
|
|
|