|
import torch
|
|
import torch.nn as nn
|
|
import math
|
|
|
|
|
|
class SpatialPool(nn.Module):
|
|
def __init__(self, model_args, vision_tower):
|
|
super().__init__()
|
|
|
|
self.mode = model_args.mm_spatial_pool_mode
|
|
self.stride = model_args.mm_spatial_pool_stride
|
|
self.out_channels = getattr(model_args, "mm_spatial_pool_out_channels", vision_tower.hidden_size)
|
|
|
|
if self.mode == "average":
|
|
self.pool = nn.AvgPool2d(kernel_size=self.stride, stride=self.stride)
|
|
elif self.mode == "max":
|
|
self.pool = nn.MaxPool2d(kernel_size=self.stride, stride=self.stride)
|
|
elif self.mode == "conv":
|
|
self.pool = nn.Conv2d(in_channels=vision_tower.hidden_size, out_channels=self.out_channels, kernel_size=self.stride, stride=self.stride)
|
|
else:
|
|
raise ValueError(f"Unknown pooling mode: {self.pool}.")
|
|
|
|
def forward(self, image_features, images, *args, **kwargs):
|
|
ori_W = int(math.sqrt(image_features.shape[1] * images.shape[3] // images.shape[2]))
|
|
ori_H = int(ori_W * images.shape[2] // images.shape[3])
|
|
|
|
B, _, F = image_features.shape
|
|
|
|
image_features_spatial = image_features.view(B, ori_H, ori_H, F).permute(0, 3, 1, 2)
|
|
image_features_spatial_pool = self.pool(image_features_spatial)
|
|
|
|
return image_features_spatial_pool.flatten(2).transpose(1, 2).contiguous()
|
|
|
|
@property
|
|
def config(self):
|
|
return {
|
|
"mm_resampler_type": "spatial_pool",
|
|
"mm_spatial_pool_stride": self.stride,
|
|
"mm_spatial_pool_mode": self.mode,
|
|
"mm_spatial_pool_out_channels": self.out_channels,
|
|
}
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.out_channels
|
|
|