|
import torch
|
|
|
|
from .masked_drop import MaskedDrop
|
|
from .spatial_pool import SpatialPool
|
|
from .perceiver import PerceiverResampler
|
|
from .qformer import Qformer
|
|
|
|
|
|
class IdentityMap(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
@property
|
|
def config(self):
|
|
return {"mm_resampler_type": None}
|
|
|
|
|
|
def build_vision_resampler(model_args, delay_load=False, **kwargs):
|
|
resampler_type = getattr(model_args, "mm_resampler_type", None)
|
|
if resampler_type == "masked_drop":
|
|
return MaskedDrop(model_args)
|
|
elif resampler_type == "spatial_pool":
|
|
return SpatialPool(model_args, **kwargs)
|
|
elif resampler_type == "perceiver":
|
|
return PerceiverResampler(model_args, **kwargs)
|
|
elif resampler_type == "qformer":
|
|
return Qformer(model_args, **kwargs)
|
|
elif resampler_type is None:
|
|
return IdentityMap()
|
|
|
|
raise ValueError(f"Unknown resampler type: {resampler_type}")
|
|
|