|
"""
|
|
# Adapted from https://huggingface.co/MILVLG/imp-v1-3b/blob/main/vision_encoder.py
|
|
"""
|
|
|
|
from typing import Optional, Tuple, Union, Dict
|
|
from dataclasses import dataclass
|
|
from functools import partial, reduce
|
|
from PIL import Image
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
import os
|
|
from transformers.image_processing_utils import BatchFeature, get_size_dict
|
|
from transformers.image_transforms import (
|
|
convert_to_rgb,
|
|
normalize,
|
|
rescale,
|
|
resize,
|
|
to_channel_dimension_format,
|
|
)
|
|
from transformers.image_utils import (
|
|
ChannelDimension,
|
|
PILImageResampling,
|
|
to_numpy_array,
|
|
)
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers import PretrainedConfig
|
|
from transformers.utils import ModelOutput
|
|
from llava.utils import rank0_print
|
|
|
|
|
|
class SigLipImageProcessor:
|
|
def __init__(self, image_mean=(0.5, 0.5, 0.5), image_std=(0.5, 0.5, 0.5), size=(384, 384), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
|
|
crop_size = crop_size if crop_size is not None else {"height": 384, "width": 384}
|
|
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
|
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.size = size
|
|
self.resample = resample
|
|
self.rescale_factor = rescale_factor
|
|
self.data_format = data_format
|
|
self.crop_size = crop_size
|
|
|
|
def preprocess(self, images, return_tensors):
|
|
if isinstance(images, Image.Image):
|
|
images = [images]
|
|
else:
|
|
|
|
images = [to_numpy_array(image) for image in images]
|
|
assert isinstance(images, list)
|
|
|
|
transforms = [
|
|
convert_to_rgb,
|
|
to_numpy_array,
|
|
partial(resize, size=self.size, resample=self.resample, data_format=self.data_format),
|
|
partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
|
|
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
|
|
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
|
|
]
|
|
|
|
images = reduce(lambda x, f: [*map(f, x)], transforms, images)
|
|
data = {"pixel_values": images}
|
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
|
|
|
|
class SigLipVisionConfig(PretrainedConfig):
|
|
model_type = "siglip_vision_model"
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size=1152,
|
|
image_mean=(0.5, 0.5, 0.5),
|
|
intermediate_size=4304,
|
|
num_hidden_layers=27,
|
|
num_attention_heads=16,
|
|
num_channels=3,
|
|
image_size=384,
|
|
patch_size=14,
|
|
hidden_act="gelu_pytorch_tanh",
|
|
layer_norm_eps=1e-6,
|
|
attention_dropout=0.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_channels = num_channels
|
|
self.patch_size = patch_size
|
|
self.image_size = image_size
|
|
self.attention_dropout = attention_dropout
|
|
self.layer_norm_eps = layer_norm_eps
|
|
self.hidden_act = hidden_act
|
|
self.image_mean = image_mean
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
|
cls._set_token_in_kwargs(kwargs)
|
|
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
|
|
|
|
|
if config_dict.get("model_type") == "siglip":
|
|
config_dict = config_dict["vision_config"]
|
|
|
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
|
print(f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors.")
|
|
|
|
return cls.from_dict(config_dict, **kwargs)
|
|
|
|
|
|
@dataclass
|
|
|
|
class SigLipVisionModelOutput(ModelOutput):
|
|
"""
|
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
|
|
|
Args:
|
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
sequence_length)`.
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
heads.
|
|
"""
|
|
|
|
image_embeds: Optional[torch.FloatTensor] = None
|
|
last_hidden_state: torch.FloatTensor = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
|
|
|
class SigLipVisionEmbeddings(nn.Module):
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
padding="valid",
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches
|
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
|
patch_embeds = self.patch_embedding(pixel_values)
|
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
class SigLipAttention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads}).")
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
batch_size, q_len, _ = hidden_states.size()
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
|
|
k_v_seq_len = key_states.shape[-2]
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
|
|
|
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
|
raise ValueError(f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" f" {attn_weights.size()}")
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
|
raise ValueError(f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}")
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}")
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
return attn_output, attn_weights
|
|
|
|
|
|
|
|
class SigLipMLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
|
|
class SigLipEncoderLayer(nn.Module):
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.self_attn = SigLipAttention(config)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = SigLipMLP(config)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
output_attentions: Optional[bool] = False,
|
|
) -> Tuple[torch.FloatTensor]:
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`):
|
|
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
|
attention_mask (`torch.FloatTensor`):
|
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
|
output_attentions (`bool`, *optional*, defaults to `False`):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, attn_weights = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class SigLipPreTrainedModel(PreTrainedModel):
|
|
"""
|
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
models.
|
|
"""
|
|
|
|
config_class = SigLipVisionConfig
|
|
base_model_prefix = "siglip"
|
|
supports_gradient_checkpointing = True
|
|
|
|
def _init_weights(self, module):
|
|
"""Initialize the weights"""
|
|
pass
|
|
|
|
|
|
|
|
class SigLipEncoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
|
[`SigLipEncoderLayer`].
|
|
|
|
Args:
|
|
config: SigLipVisionConfig
|
|
"""
|
|
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList([SigLipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
r"""
|
|
Args:
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
than the model's internal embedding lookup matrix.
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
|
for more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
hidden_states = inputs_embeds
|
|
for encoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
|
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions)
|
|
|
|
|
|
class SigLipVisionTransformer(nn.Module):
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = SigLipVisionEmbeddings(config)
|
|
self.encoder = SigLipEncoder(config)
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
self.head = SigLipMultiheadAttentionPoolingHead(config)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
r"""
|
|
Returns:
|
|
|
|
"""
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
hidden_states = self.embeddings(pixel_values)
|
|
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
last_hidden_state = encoder_outputs[0]
|
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
|
|
|
pooled_output = self.head(last_hidden_state)
|
|
|
|
if not return_dict:
|
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutputWithPooling(
|
|
last_hidden_state=last_hidden_state,
|
|
pooler_output=pooled_output,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
class SigLipMultiheadAttentionPoolingHead(nn.Module):
|
|
"""Multihead Attention Pooling."""
|
|
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__()
|
|
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
|
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.mlp = SigLipMLP(config)
|
|
|
|
def forward(self, hidden_state):
|
|
batch_size = hidden_state.shape[0]
|
|
probe = self.probe.repeat(batch_size, 1, 1)
|
|
|
|
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
|
|
|
residual = hidden_state
|
|
hidden_state = self.layernorm(hidden_state)
|
|
hidden_state = residual + self.mlp(hidden_state)
|
|
|
|
return hidden_state[:, 0]
|
|
|
|
|
|
class SigLipVisionModel(SigLipPreTrainedModel):
|
|
config_class = SigLipVisionConfig
|
|
main_input_name = "pixel_values"
|
|
_no_split_modules = ["SigLipEncoderLayer"]
|
|
|
|
def __init__(self, config: SigLipVisionConfig):
|
|
super().__init__(config)
|
|
|
|
self.vision_model = SigLipVisionTransformer(config)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.vision_model.embeddings.patch_embedding
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
|
r"""
|
|
Returns:
|
|
|
|
Examples:
|
|
|
|
```python
|
|
>>> from PIL import Image
|
|
>>> import requests
|
|
>>> from transformers import AutoProcessor, SigLipVisionModel
|
|
|
|
>>> model = SigLipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
|
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
>>> inputs = processor(images=image, return_tensors="pt")
|
|
|
|
>>> outputs = model(**inputs)
|
|
>>> last_hidden_state = outputs.last_hidden_state
|
|
>>> pooled_output = outputs.pooler_output # pooled features
|
|
```"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
|
|
class SigLipVisionTower(nn.Module):
|
|
def __init__(self, vision_tower, vision_tower_cfg, delay_load=False):
|
|
super().__init__()
|
|
|
|
self.is_loaded = False
|
|
|
|
self.config = SigLipVisionConfig()
|
|
|
|
self.vision_tower_name = vision_tower
|
|
|
|
self.image_processor = SigLipImageProcessor()
|
|
|
|
if not delay_load:
|
|
rank0_print(f"Loading vision tower: {vision_tower}")
|
|
self.load_model()
|
|
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
|
|
|
|
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
|
|
self.load_model()
|
|
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
|
|
rank0_print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
|
|
self.load_model()
|
|
else:
|
|
self.cfg_only = self.config
|
|
|
|
def load_model(self, device_map=None):
|
|
if self.is_loaded:
|
|
rank0_print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
|
|
return
|
|
|
|
self.vision_tower = SigLipVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
|
|
|
del self.vision_tower.vision_model.encoder.layers[-1:]
|
|
self.vision_tower.vision_model.head = nn.Identity()
|
|
self.vision_tower.requires_grad_(False)
|
|
|
|
self.is_loaded = True
|
|
|
|
def forward(self, images):
|
|
if type(images) is list:
|
|
image_features = []
|
|
for image in images:
|
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
|
image_feature = image_forward_out.hidden_states[-1].to(image.dtype)
|
|
assert image_features.shape[-2] == 729
|
|
image_features.append(image_feature)
|
|
else:
|
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
|
image_features = image_forward_outs.hidden_states[-1].to(images.dtype)
|
|
assert image_features.shape[-2] == 729
|
|
|
|
return image_features
|
|
|
|
@property
|
|
def dummy_feature(self):
|
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
|
|
|
@property
|
|
def dtype(self):
|
|
for p in self.vision_tower.parameters():
|
|
return p.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
for p in self.vision_tower.parameters():
|
|
return p.device
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.config.hidden_size
|
|
|
|
@property
|
|
def num_patches(self):
|
|
return (self.config.image_size // self.config.patch_size) ** 2
|
|
|
|
@property
|
|
def num_patches_per_side(self):
|
|
return self.config.image_size // self.config.patch_size
|
|
|
|
|
|
@property
|
|
def image_size(self):
|
|
return self.config.image_size
|
|
|