|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import CrossEntropyLoss
|
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, GemmaConfig, GemmaModel, GemmaForCausalLM
|
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
from transformers.generation.utils import GenerateOutput
|
|
|
|
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
|
|
|
|
|
class LlavaGemmaConfig(GemmaConfig):
|
|
model_type = "llava_gemma"
|
|
|
|
|
|
class LlavaGemmaModel(LlavaMetaModel, GemmaModel):
|
|
config_class = LlavaGemmaConfig
|
|
|
|
def __init__(self, config: GemmaConfig):
|
|
super(LlavaGemmaModel, self).__init__(config)
|
|
|
|
|
|
class LlavaGemmaForCausalLM(GemmaForCausalLM, LlavaMetaForCausalLM):
|
|
config_class = LlavaGemmaConfig
|
|
|
|
def __init__(self, config):
|
|
super(GemmaForCausalLM, self).__init__(config)
|
|
self.model = LlavaGemmaModel(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_model(self):
|
|
return self.model
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
images: Optional[torch.FloatTensor] = None,
|
|
image_sizes: Optional[List[List[int]]] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
|
|
if inputs_embeds is None:
|
|
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes)
|
|
|
|
return super().forward(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
inputs: Optional[torch.Tensor] = None,
|
|
images: Optional[torch.Tensor] = None,
|
|
image_sizes: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> Union[GenerateOutput, torch.LongTensor]:
|
|
position_ids = kwargs.pop("position_ids", None)
|
|
attention_mask = kwargs.pop("attention_mask", None)
|
|
if "inputs_embeds" in kwargs:
|
|
raise NotImplementedError("`inputs_embeds` is not supported")
|
|
|
|
if images is not None:
|
|
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, image_sizes=image_sizes)
|
|
else:
|
|
inputs_embeds = self.get_model().embed_tokens(inputs)
|
|
|
|
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
|
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
|
images = kwargs.pop("images", None)
|
|
image_sizes = kwargs.pop("image_sizes", None)
|
|
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
|
|
if images is not None:
|
|
inputs["images"] = images
|
|
if image_sizes is not None:
|
|
inputs["image_sizes"] = image_sizes
|
|
return inputs
|
|
|
|
|
|
AutoConfig.register("llava_gemma", LlavaGemmaConfig)
|
|
AutoModelForCausalLM.register(LlavaGemmaConfig, LlavaGemmaForCausalLM)
|
|
|