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Abstract 

Although GWAS have been successful in identifying some osteoporosis associated loci, the 

findings explain only a small fraction of the total genetic variance. In this study we use a recently 

developed novel pleiotropic conditional false discovery rate (cFDR) method to identify novel 

genetic loci associated with two risk traits for osteoporotic fracture (the clinical outcome and end 

result of osteoporosis), Height (HT) and Femoral Neck (FNK) BMD. The cFDR method allows 

us to improve the detection of associated variants by incorporating any potentially shared genetic 

mechanisms between the two associated traits. We analyzed the summary statistics from two 

GWAS meta-analyses for single nucleotide polymorphisms (SNPs) that are associated with HT 

and FNK BMD. Using the cFDR method, we show enrichment in the identification of SNPs 

associated with each trait conditioned on their strength of association with the second trait. The 

findings revealed 18 SNPs that are associated with both HT and FNK BMD, 4 of which had not 

previously been reported to play a role in bone health. The novel SNPs located at KIF1B and the 

intergenic region between FERD3L and TWISTNB are noteworthy as these genes may be 

associated with processes that are functionally important in bone metabolism.  By leveraging 

GWAS results from related phenotypes we identified several novel loci that may contribute to 

the proportion of variability explained for each trait, although we cannot speculate about these 

potential contributions to heritability based on this analysis alone.  

 

Keywords: Osteoporosis, Association, Bone Mineral Density, Human Genetics 
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Introduction 

Incidence of osteoporosis is a common occurrence among older adults that is characterized 

by reduced bone mineral density (BMD), deficiencies in the structure of bone tissue, as well 

as an increased susceptibility to low trauma fractures.  According to the Centers for Disease 

Control (CDC), it is estimated that at least 16% of US adults above the age of 65 exhibit 

clinical symptoms of osteoporosis at either the lumbar spine or femoral neck [1]. BMD is a 

highly heritable trait as the effect of genetics is estimated to account for as much as 75% of 

the variance in BMD at the site of the femoral neck [2].  Despite the fact that previous 

genome-wide association studies (GWAS) have identified more than 60 genetic loci associated 

with BMD [3, 4], these loci in total explain <10% of BMD heritability [5]. The large proportion 

of unexplained heritability suggests that further endeavors and innovative approaches are needed 

to identify novel genes/variants important for osteoporosis risk.  

 

There is ample evidence to show that many complex phenotypes, including BMD, are likely to 

be influenced by numerous loci with small to modest effect sizes, and that even with the meta-

analysis approach the traditional GWAS may still lack the sufficient power to detect the majority 

of these associations [6]. The main limitation of the standard GWAS is that they generally test 

for association among a large number of variants using a relatively small number of subjects. 

While it may be true that GWAS typically explore the association with common SNPs and that 

part of the missing heritability may be attributed to those variants that are rare, most of this 

unexplained variability is still due to low power resulting from a lack of adequate sample size in 

combination with small effect sizes [6]. To explain a greater proportion of the phenotypic 
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heritability we must adopt novel statistical methods that can increase the effective sample size by 

using more information embedded in the existing data sets and samples.  

 

Previous studies have suggested that many genetic loci contain variants that influence several 

different traits [7] – a situation referred to as pleiotropy. Although the true extent of pleiotropy in 

the human genome remains unknown it is currently estimated that at least 5% of SNPs and 17% 

of genes are involved in pleiotropic effects [7]. The presence of pleiotropy in the genome implies 

that traits correlated with one another may also have overlapping genetic determinants. We 

hypothesized that by incorporating the pleiotropic effects among related disease risk factors, we 

could identify novel genetic loci that are associated with the risk of osteoporotic fracture. This is 

because we can greatly enlarge the sample sizes for detecting pleiotropic loci by effectively and 

efficiently combining existing samples dedicated to the studies of individual traits. 

 

Recently, Andreassen et al [8] proposed a novel genetic pleiotropy-informed conditional false 

discovery rate (cFDR) method for GWAS analysis. This method can incorporate the summary 

statistics from GWAS studies for two related traits to test variants for association with one 

phenotype conditional on different strengths of association with the second. A major advantage 

of the cFDR method is that it allows us to focus specifically on the subset of variants with a 

given strength of association in the conditional phenotype. Therefore, this method can greatly 

lessen the burden of multiple testing and subsequently improve the detection of trait-associated 

variants. Andreassen et al innovatively applied this method and successfully discovered novel 

loci that are associated with two genetically similar mental health diseases, Schizophrenia and 
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Bipolar Disorder. Since it was originally developed, the cFDR method has become a commonly 

used approach to identify pleiotropic variants associated with correlated traits [9-11].  

 

In this study, we applied the cFDR method on GWAS summary statistics data from two large 

meta-analysis studies [12, 13] with an aim to identify novel variants having pleiotropic effects on 

two correlated traits related to risk of osteoporotic fracture namely, height (HT) and femoral 

neck (FNK) BMD [14, 15]. It was previously believed that bone density did not influence height 

and could only decrease height through bone deformities, however current studies have 

suggested otherwise. Studies have found that maximal height tends to occur around the age of 

30-35, which coincides with the time of peak bone mass [16]. Additionally, lower bone mineral 

density has a greater influence on height loss in the femur than the lumbar spine [16]. Based on 

intuition, it seems reasonable to expect lumbar density to have the greater influence since a weak 

spine would lead to poor posture and in turn result in reduced height. Therefore, these findings 

suggest that bone mineral density may influence height beyond the impact of bone strength on 

posture and that BMD may affect the length of the bones as well. 

 

While the majority of studies have looked at the association of BMD with change in height or 

with BMI (a function of height), there are few studies that have looked at correlation between 

BMD and height directly. The phenotypic correlation between BMD and height in adults is 

estimated to be around 0.2-0.3 [17]. Although the correlation between BMD and height may be 

only moderate, this relationship suggests the possibility of pleiotropic effects through 

overlapping genetic mechanisms. We believe that taken together these findings justify the 

hypothesis that there may be pleiotropic SNPs exerting an effect on both traits. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 6 

Recent findings have determined the number of gene regions associated with HT to be in excess 

of 400 [18], while other GWAS studies have identified dozens of loci that are both associated 

with FNK BMD and thought to be involved in bone health [3, 4]. Despite these discoveries, to 

date researchers have only been able to explain a small proportion of the heritability in both HT 

and FNK BMD. The objective of this study is to better characterize the genetic mechanisms that 

underlie these traits, and to better understand how they impact overall bone health and 

development. 

 

Materials and Methods 

GWAS Datasets 

The dataset containing the results for association with HT was taken from a GWAS meta-

analysis of 253,288 subjects performed by the Genetic Investigation of Anthropometric Traits 

(GIANT) Consortium [12]. This was a meta-analysis to determine the strength of association 

between HT and more than 2 million genotyped or imputed SNPs. The data contained summary 

statistics, providing the p-values for association and direction of effect for each variant after 

controlling for genomic inflation at both the individual study level and again following the meta-

analysis. 

 

The dataset containing the results for association with FNK BMD was from a GWAS meta-

analysis involving 53,236 subjects performed by the Genetic Factors for Osteoporosis (GEFOS) 

Consortium [13]. This meta-analysis used whole genome sequencing, whole exome sequencing 

and deep imputation of genotype data to identify variants associated with three BMD traits; FNK 

BMD, Lumbar Spine BMD, and Forearm BMD. This data also contained summary statistics, 
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showing the associations between the three traits and more than 10 million SNPs. To our 

knowledge, this meta-analysis is the largest currently published in the field of bone health. 

 

Although the FNK BMD data contains approximately five times the number of SNPs as the HT 

data, there is no evidence to suggest a sample size bias in the applied methods. Additionally, it is 

often necessary to adjust GWAS results using genomic control to ensure that the variance 

estimates for each SNP are not inflated due to population structure. However, for each of the two 

original datasets the authors had previously applied genomic control and therefore it was not 

necessary to re-apply the adjustment in this analysis.   

 

Data Preparation 

We began by first annotating and mapping SNPs to genes for the two GWAS studies and then 

combining the summary statistics for the 984,907 SNPs that were common. This was followed 

by a linkage disequilibrium (LD) based pruning method to remove large correlations between 

pairs of variants. The pruning algorithm begins with a window of 50 SNPs where LD is 

calculated between each pair of SNPs, and if pairs have an R
2
 value greater than 0.2 then one of 

that pair is removed. The LD threshold of 0.2 used in this pruning method is the standard cutoff 

value used in other applications of the cFDR method throughout the literature. We used a minor 

allele frequency (MAF) pruning strategy where for pairs with R
2
>0.2 the SNP with the smaller 

MAF was removed. Following this initial removal of SNPs, the window slides 5 SNPs forward 

and the process repeats until there are no pairs of SNPs that are in high LD. The dataset was 

pruned using the HapMap 3 genotypes. At the end of the pruning process, there were 119,950 

variants remaining to be used in the analysis. 
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Statistical Analysis 

We first define some basic terminology that is necessary to understand the applied statistical 

methods. In the cFDR analysis, “principal trait” refers to the phenotype for which the association 

is being tested and “conditional trait” denotes the second phenotype. The term “pleiotropic 

enrichment” refers to an increase in the number of loci associated with the principal trait when 

restricting the analysis to include only the SNPs with stronger levels of association in the 

conditional trait. We further detail the assessment of pleiotropic enrichment and calculation of 

the cFDR statistic below. 

 

Stratified Plots for Pleiotropic Enrichment 

We present conditional Q-Q plots based on varying levels of significance in the conditional trait 

to compare the observed distribution of the p-values in the principal trait to the uniform [0,1] 

distribution of p-values expected when there is no significant enrichment. We plot the Q-Q curve 

for the quantiles of nominal –log10(p) values for association of the subset of variants that are 

below each significance threshold in the conditional trait. The nominal –log10(p) values are 

plotted on the y-axis and the quantiles of the nominal p-values are plotted on the x-axis. 

Pleiotropic enrichment is assessed by the degree of leftward shift from the expected distribution 

of p-values under no enrichment (diagonal line) that is observed when restricting the analysis to 

include SNPs with a greater strength of association in the conditional trait. The degree of spacing 

between conditional Q-Q plots contains important information about the extent of pleiotropy 

between the two traits. Larger spacing between conditional Q-Q plots indicates a greater extent 

of pleiotropic genes shared between traits. 
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The presence of pleiotropic effects suggests that the proportion of SNPs associated with the 

principal trait at any given significance level varies based on the level of association in the 

conditional trait. We present fold-enrichment plots of –log10(p) values to compare the proportion 

of SNPs reaching each level of association for the conditional subsets versus the group including 

all SNPs. We are most interested in the fold-enrichment for SNPs reaching the level of genome-

wide significance, denoted as –log10(p) > 7.3. The existence of pleiotropy is observed as an 

upward shift in the level of fold-enrichment when restricting the subset to SNPs with stronger 

levels of association in the conditional trait.    

 

Additionally, the subsets of SNPs with the strongest level of enrichment are more likely to be 

associated with the principal trait. Therefore, the change in enrichment level across the different 

cutoff groups is associated with an increase in the True Discovery Rate (1 - FDR). The TDR is 

estimated as 1 – (p/q), where p is a given p-value of association and q is the quantile calculated 

as the number of SNPs with p-values less than or equal to p divided by the total number of SNPs 

in the group. For each ordering (FNK|HT and HT|FNK) we present stratified TDR plots of –

log10(p) values to compare the TDR for the conditional subsets versus the group including all 

SNPs. 

 

Calculation of Conditional FDR 

The calculation of the cFDR extends from the single phenotype case, where the unconditional 

false discovery rate for a set of variants is characterized as the probability of a false positive 

association. The cFDR expands this idea to the two phenotype case and is defined as the 

probability that a SNP has a false positive association with the principal trait given that the p-
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values for association with both the principal and conditional phenotypes are at least as small as 

the observed p-values.  

                 
                                  

The cFDR is expressed as cFDR(pi|pj) where pi represents the observed strength of association 

for a particular variant with the principal phenotype and pj represents the observed significance 

level for that same SNP with the conditional phenotype. The term   
   

 represents the null 

hypothesis that there is no association between a particular SNP and the principal trait. 

 

Using the summary statistics from the pruned dataset, the conditional false discovery rates for 

each variant were computed following the steps outlined by Andreassen et al [8]. We computed 

the cFDR for each variant in the case where HT is the principal phenotype conditioned on 

strength of association with FNK BMD (HT|FNK BMD) as well as the reverse (FNK BMD|HT). 

In order to determine if the cFDR method results in the enrichment of associated SNPs, we 

successively restricted the subset of SNPs being tested based on the level of significance for the 

association of each variant with the conditional trait using the following criteria for Pj < pj; Pj < 1 

(all SNPs), Pj < 0.1, Pj  < 0.01, Pj  < 0.001, Pj  < 0.0001. SNPs were determined to be significantly 

associated with the principal phenotype when the cFDR was computed to be smaller than 0.05. 

 

After computing the cFDR for each variant with both orderings of the two traits, we computed 

the conjunction cFDR (ccFDR) value to identify loci that are associated with both traits. The 

ccFDR is defined as the probability that a given SNP has a false positive association with both 

traits and was calculated as the maximum cFDR value between the two orderings of the traits. 
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All SNPs with a ccFDR value smaller than 0.05 were considered to be significantly associated 

with both traits, and we present a conjunction Manhattan plot to illustrate the locations of 

pleiotropic genetic variants.   

 

Functional Term Enrichment Analysis 

In order to evaluate the potential functions of the trait associated loci identified by cFDR, we 

used a hypergeometric test to perform functional term enrichment analyses with the GO terms 

database provided by the Gene Ontology Consortium. The program GOEAST was used to 

determine the GO terms that are enriched among the genes mapped to SNPs with significant 

cFDR values. Using the GO term enrichment analysis we characterize trait-associated loci based 

on their known biological processes and molecular functions. This analysis allows us to validate 

our findings by determining gene sets that are significantly associated with bone metabolic 

processes. The functional term enrichment analysis was performed for the set of SNPs with 

cFDR smaller than 0.05 for FNK BMD as well as for the set of SNPs with cFDR smaller than 

0.01 for HT. The differing significance thresholds for inclusion of SNPs in the functional term 

enrichment analysis are tailored to the empirical findings for each trait. There are many more 

genetic loci that influence HT than other complex traits, and therefore we chose to use a more 

stringent selection criteria to limit the analysis to a smaller subset of SNPs with higher 

significance levels. 
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Results 

Assessment of Pleiotropic Enrichment 

The conditional Q-Q plot for FNK BMD given nominal p-values of association with HT (Fig 1) 

shows some enrichment across varying significance thresholds for HT. The presence of leftward 

shift when restricting the analysis to include the SNPs that have more significant associations 

with HT indicates an increase in the number of true associations for a given HT p-value. Based 

on the fold-enrichment plot (Fig 1) we observe an 8-fold increase in the proportion of SNPs 

reaching the genome wide significance level when comparing the subset with the most stringent 

conditional association to the group with all SNPs. 

 

Enrichment is also observed for HT given FNK BMD (Fig 1) though clearly there are many 

more genetic factors contributing to the heritability of HT compared to FNK BMD, as evidenced 

by the earlier departure from the null line at all conditional thresholds. These earlier deflections 

indicate a greater proportion of true associations for any given FNK BMD nominal p-value. The 

fold-enrichment plot (Fig 1) shows approximately a 7-fold increase in the proportion of SNPs 

associated with the principal trait at the genome wide significance level between the group of 

SNPs with strongest association in the conditional trait and the group with all SNPs. 

 

The increase in pleiotropic enrichment across subsets of SNPs is associated with an increase in 

conditional TDR, which is defined as one minus conditional FDR [8]. The increase in TDR 

across groups is shown for FNK BMD conditioned on HT as well as HT conditioned on FNK 

BMD (Fig 1). The TDR plots indicate that there is a much larger fold-increase across pleiotropic 
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groups for FNK BMD conditional on HT than HT conditional on FNK BMD, as evidenced by a 

larger degree of spacing between the different groups.  

 

FNK BMD loci identified with cFDR 

Conditional on their association with HT, we identified a total of 46 significant SNPs (cFDR < 

0.05) for FNK BMD variation (Supplementary Table 1), which were mapped to 16 different 

chromosomes. In the original meta-analysis for FNK BMD [13], 27 of these 46 SNPs had p-

values smaller than 1x10
-5

 while 9 SNPs reached genome-wide significance at 5x10
-8

. The 46 

SNPs identified to be associated with FNK BMD are enriched in the intergenic (43.5%) and intronic 

(54.3%) genomic regions. Furthermore, 11 of these variants are enriched in the gene ontology 

(GO) term “skeletal system development”, although no other GO terms are highly enriched for 

the FNK BMD associated loci (Table 1). 

 

HT gene loci identified with cFDR 

We identified a total of 4,599 SNPs significantly (cFDR < 0.05) associated with HT given their 

association with FNK BMD, which were located on all the 22 chromosomes. Of these 4,599 

SNPs, 1,439 had p-values smaller than 1x10
-5

 while 750 reached genome-wide significance at 

5x10
-8 

in the original meta-analysis for HT [12]. Of the SNPs identified by the cFDR analysis, 

four were located at HMGA2, one at QSOX2, eight at CYP19A1, and four at ZBTB38. All these 

four genetic loci have been shown to be associated with the HT trait in previous GWAS height 

studies [18-22]. Similar to the FNK BMD trait, most of the identified SNPs reside in the intronic 

(41.1%) and intergenic (54.9%) regions while a small proportion are located in the untranslated regions 

(1.61%) or nearby transcription start sites (2.11%).  
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When performing the functional term enrichment analysis of these results we included 2,570 SNPs that 

were retained after LD pruning and had cFDR < 0.01 (Supplementary Table 2). This analysis indicated a 

large number of HT loci were enriched in several skeletal metabolism related functional terms (Table 1), 

such as “skeletal system development”, “ossification”, “bone development”, “osteoblast differentiation”, 

and “cartilage development”. 

 

Pleiotropic gene loci for both FNK BMD and HT 

To identify genetic loci that are associated with both HT and FNK BMD, we computed the 

conjunction cFDR (ccFDR) value, which is defined as the probability that a given SNP has a 

false positive association with both the principal and conditional traits. The ccFDR analysis 

identified 18 independent pleiotropic loci that were significantly (ccFDR < 0.05) associated with 

both traits (Fig 2 and Table 2). Of the 18 identified pleiotropic variants, 4 of these were novel 

findings, as they are not previously mentioned in any BMD or HT related research. All of these 4 

novel SNPs, rs17400878 (KIF1B), rs10950710 (FERD3L and TWISTNB), rs10510109 (BTBD16 

and PLEKHA1), and rs7193150 (GPR139 and GP2) had p-values larger than 1x10
-5

 and thus 

may be easily missed/ignored in individual GWAS analysis, but ccFDR values smaller than 0.05 

due to the presence of pleiotropic effects (Table 2).  

 

On the other hand, 8 of these 18 variants, rs6494633 (SMAD3), rs2289263 (SMAD3), rs3759579 

(MARK3), rs12050772 (CYP19A1), rs6040061 (JAG1), rs13137552 (DMP1 and IBSP), 

rs9905128 (PRKAR1A), and rs10793939 (FUBP3) were reported in previous association studies 

for BMD [3, 23-27] and additional 6 SNPs, rs17277372 (DNM3), rs2741856 (MEOX1 and SOST), 

rs6715538 (SPTBN1), rs11952384 (MEF2C-AS1), rs10474292 (MEF2C-AS1 and MIR3660), and 
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rs10280461 (EPDR and STARD3NL) were not identified by previous research but are located at 

or near the genes that are associated with osteoporosis and other bone related traits [24, 26]. 

 

Discussion 

In this analysis we combined the summary statistics from two GWAS meta-analyses to exploit 

the pleiotropic effects of variants that are associated with HT and FNK BMD. Compared to a 

standard single phenotype analysis, simultaneously analyzing multiple related traits allows for 

the increased discovery of trait-associated variants without requiring additional and larger 

datasets for individual traits [8]. Additionally, it allows us to further explore the common genetic 

mechanisms between related phenotypes. The detection of novel susceptibility loci with 

pleiotropic effects may lead to a better understanding of disease origin/mechanisms and have a 

critical impact on the clinical treatment and prevention of related complex phenotypes 

simultaneously. 

 

We applied a recently developed cFDR approach to the pleiotropic analysis. This method 

exploits the idea that a variant with significant effects in two associated traits is more likely to be 

a true effect, and therefore has a higher probability of being detected in multiple independent 

studies. This technique allows for an increase in effective sample size and therefore a subsequent 

increase in power to detect true associations for more variants with small to intermediate effect 

sizes. In the original implementation of the cFDR method, the authors used a model-based 

approach to show that when pleiotropic effects exist between correlated traits, a large proportion 

of variants that are significant for one trait are also significant for the second trait leading to an 

increase in detection power [8]. Through simulation, the authors showed that compared with the 
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unconditional FDR for a single trait analysis, using the cFDR method resulted in an increase of 

15-20 times the number of non-null SNPs discovered for a local FDR smaller than 0.05 [8].  

 

It is important to note that the cFDR method has an underlying assumption that the study 

samples for both traits are independent. In this analysis, the study samples are not completely 

independent as some cohorts were included in the meta-analysis for both traits. After comparing 

the sample sizes for the shared cohorts we found that approximately 7% of the HT study 

individuals were included in the FNK BMD meta-analysis and 34% of the FNK BMD 

subjects were included in the HT study sample. When there are overlapping samples the 

increase in effective sample size is not as great as what would be expected when the 

studies are independent. Although there is a well outlined procedure for calculating the 

effective sample size for a case/control extension of cFDR when control subjects are shared 

between studies, it is unclear how this method can be generalized to determine the 

effective sample size for quantitative traits with overlapping samples [28]. While the 

overall gain in power may be reduced due to the shared samples, there is still an 

improvement in terms of significant novel SNPs compared to single trait analysis.  

 

Based on the fundamental idea of cFDR that variants having significant effects in both traits are 

more likely to have a true effect, an alternative approach to detecting novel pleiotropic loci is to 

perform a meta-analysis of FNK BMD and HT. While the traditional meta-analysis approach can 

also provide an increase in statistical power, there are clear advantages to using the cFDR 

method when the traits of interest are correlated. In comparison to the meta-analysis approach, 
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which only allows for detection of loci with the same direction of allelic effects in both traits, the 

cFDR method allows for the detection of loci regardless of their effect directions [6].  

 

In the current study, we identified 18 pleiotropic SNPs that are associated with both HT and 

FNK BMD. Eight of these SNPs were previously identified to be associated with BMD and are 

also located at genes known to play important roles in influencing bone health. The two 

pleiotropic SNPs (rs6494633 and rs2289263) located at SMAD3, an osteoporosis candidate gene 

[29], are known to be associated with BMI, Osteoarthritis, and rheumatoid arthritis [23]. There 

was one pleiotropic SNP (rs13137552) located at DMP1 that is known to be associated with 

osteoporosis [3], and the DMP1 gene plays a key role in the regulation of mineralization in the 

bone as well as osteogenic gene expression [26]. The two SNPs rs3759579 and rs12050772 are 

also known to be associated with BMD and are located at MARK3 and CYP19A1 respectively, 

two additional genes that are linked to bone health [3, 24, 26, 27]. In addition, the SNP located at 

the JAG1 locus (rs6040061) is associated with BMD in three independent cohorts of European 

descent [25]. Finally, the two SNPs rs9905128 (PRKAR1A) and rs10793939 (FUBP3) were 

previously identified to be associated with bone health in the GEFOS2 cohort [4].  

 

The identified SNPs located at loci 1q24.3 (DNM3) [30], 2p16.2 (SPTBN1) [3, 4, 31, 32], 5q14.3 

(MEF2C) [33], 7p14.1 (EPDR1 and STARD3NL) [3, 34], and 17q21.31 (MEOX1 and SOST) [35] 

are not mentioned in previous bone GWAS studies, but they are located at or near genes that are 

associated with BMD. This subset of variants accounts for 33% of all associated pleiotropic 

variants identified in this analysis. The 14 pleiotropic SNPs that were either identified in 

previous studies or located near genes known to play a role in bone health may furnish empirical 

partial validation for the cFDR method to successfully identify disease associated genetic loci.  
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More importantly, we identified 4 novel BMD-HT associated loci that have not been reported in 

previous BMD or height related GWAS. The SNPs located at loci 1p36.22 (KIF1B), 7p21.1 

(FERD3L and TWISTNB), 10q26.13 (BTBD16 and PLEKHA1), and 16p12.3 (GPR139 and GP2) 

along with the genes they are located at or near have not been discussed in other bone research. 

The subset of SNPs located at these loci account for 22% of all associated pleiotropic variants 

identified in the analysis. The novel loci on 1p36.22 (KIF1B) and 7p21.1 (FERD3L and 

TWISTNB) are particularly interesting.  

 

The SNP rs17400878 (1p36.22) is located in the intronic region of the KIF1B gene, which 

encodes proteins that transport mitochondria and synaptic vesicle precursors [36]. Based on a 

mouse model, impaired transport of synaptic vesicle precursors and muscle weakness could be 

caused by heterozygosity of the KIF1B gene [36]. In a separate study, silencing the KIF1B gene 

inhibited expression of membranal MT1-MMP (membrane type 1-matrix metalloproteinase) 

[37]. MMPs play a functional role in the initiation of bone resorption [38] as well as osteoclast 

recruitment and differentiation [39]. MT1-MMP activates latent TGF-beta, a protein believed to 

prolong the life span of osteoblasts by delaying the transformation from osteoblasts into 

osteocytes [40]. Therefore, the MT1-MMP preserves osteoblasts by activating TGF-beta. Taken 

together, all the evidence suggests that the genetic variants in KIF1B gene may contribute to the 

variation in BMD via influencing expression of MT1-MMP and TGF-beta. 

 

The SNP rs10950710 (7p21.1) is an intergenic variant located close to the FERD3L (Fer3-like 

bHLH transcription factor) and TWISTNB (TWIST Neighbor) genes. FERD3L and TWISTNB are 

associated with craniosynostoses [41, 42]. Craniosynostosis is a genetic disease that causes 
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premature closure of the cranial sutures in an infant’s skull, resulting in changes in the growth 

pattern of the bone. Recently, a 9.0 Mb deletion in 7p21.1-p21.3 (chr7:10,661,799–19,661,326, 

hg19) which encompasses rs10950710 was detected in a case of Craniosynostosis using a 

microarray-based comparative genomic hybridization (array-CGH) [42]. Additionally, in an 

earlier study a 2.5 Mb deletion in 7p21 was detected in patients with a Craniosynostosis related 

phenotype, Saethre-Chotzen syndrome, by in silico analysis [41]. To our knowledge there have 

not been any animal models or functional validation experiments for this signal.  

 

Despite these novel findings, there are several important limitations of the applied method due to 

the cross sectional design of the study. Firstly, we cannot use GWAS summary statistics data to 

estimate the contribution of the novel findings to the proportion of variability explained in the 

traits of interest. In order to determine how much the novel SNPs add to either trait’s 

variance we would need to analyze the raw genotype data for both traits, which is 

unavailable. Additionally, we cannot differentiate between the two pleiotropic cases where 

either a single locus directly affects both traits, or the locus affects only one trait and the 

change in one phenotype in turn impacts the second trait. However, given longitudinal data 

this question could be addressed using the cross-lagged panel model or other causal 

modeling approaches [43]. A third limitation is that when using GWAS summary statistics 

data there is no way to decompose the apparent association to determine which trait 

contributes more influence to each pleiotropic signal. 

 

We also acknowledge that the cFDR approach cannot be used for the definitive identification of 

causal variants. The purpose of this type of association analysis is to address the missing 
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heritability problem that persists in genetic association studies by identifying some novel SNPs 

that add to the total proportion of variability explained. We aim to introduce some novel findings 

without being overly speculative about their importance and functional roles. The goal of this 

specific study was to identify potential novel loci (and substantiate some earlier-identified 

genes) to stimulate further functional validation studies. Those novel and shared common 

pleiotropic genes identified in this analysis should be followed up in future fine mapping 

studies and functional mechanistic experiments of the GWAS associated regions to determine 

their clinical significance.  

 

In summary, by incorporating pleiotropic effects into a conditional analysis we showed there is 

significant pleiotropy between BMD and HT, two traits closely related to risk of osteoporotic 

fracture. We detected several novel pleiotropic loci for BMD and HT and our results provide 

insight into the shared genetic influences of height and BMD as well as the ways in which the 

trait-associated loci impact bone health. 

 

Funding 

This work was benefited by grants from the National Institutes of Health [P50AR055081, R01AG026564, 

R01AR050496, R01AR057049], and Edward G. Schlieder Endowment fund from Tulane University.  

 

Contributions 

J.G. and K.W. worked together to perform data analysis and write the manuscript. L.Z. provided some 

results and interpretation for data from gene expression analysis. H.S. and J.Z. provided advice and 

suggestions for manuscript revision. H.W.D conceived and initiated this project, provided advice on 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 21 

experimental design, oversaw the implementation of the statistical method, and contributed suggestions 

for manuscript revision.    

 
 
 
 
 
References 
[1] A. Looker, S. Frenk, Percentage of Adults Aged 65 and Over With Osteoporosis or Low 
Bone Mass at the Femur Neck or Lumbar Spine: United States, 2005–2010, Division of 
Health and Nutrition Examination Surveys  (2015). 
[2] R. Recker, H.-W. Deng, Role of Genetics in Osteoporosis, Enodcrine 17(1) (2002) 55-66. 
[3] F. Rivadeneira, U. Styrkársdottir, K. Estrada, B.V. Halldórsson, Y.-H. Hsu, J.B. Richards, 
M.C. Zillikens, F.K. Kavvoura, N. Amin, Y.S. Aulchenko, L.A. Cupples, P. Deloukas, S. Demissie, 
E. Grundberg, A. Hofman, A. Kong, D. Karasik, J.B.v. Meurs, B. Oostra, T. Pastinen, H.A.P. Pols, 
G. Sigurdsson, N. Soranzo, G. Thorleifsson, U. Thorsteinsdottir, F.M.K. Williams, S.G. Wilson, 
Y. Zhou, S.H. Ralston, C.M.v. Duijn, T. Spector, D.P. Kiel, K. Stefansson, J.P.A. Ioannidis, 
A.G.U.f.t.G.F.f.O.G. Consortium, Twenty bone-mineral-density loci identified by large-scale 
meta-analysis of genome-wide association studies, Nature Genetics 41(11) (2009) 1199-
1206. 
[4] K. Estrada, U. Styrkarsdottir, E. Evangelou, Y.-H. Hsu, E.L. Duncan, E.E. Ntzani, L. Oei, 
O.M.E. Albagha, N. Amin, J.P. Kemp, D.L. Koller, G. Li, C.-T. Liu, R.L. Minster, Genome-wide 
meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with 
risk of fracture, Nature Genetics 44(5) (2012) 491-501. 
[5] J.B. Richards, H.-F. Zheng, T.D. Spector, Genetics of Osteoporosis from genome-wide 
association studies: advances and challenges, Nature Review Genetics 13(8) (2012) 576-
588. 
[6] Y.-F. Pei, L. Zhang, C. Papasian, Y.-P. Wang, H.-W. Deng, On individual genome-wide 
association studies and their meta-analysis, Human Genetics 133(3) (2014) 265-279. 
[7] S. Sivakumaran, F. Agakov, E. Theodoratou, J.G. Prendergast, L. Zgaga, T. Manolio, I. 
Rudan, P. McKeigue, J.F. Wilson, H. Campbell, Abundant Pleiotropy in Human Complex 
Diseases and Traits, American Journal of Human Genetics 89(5) (2011) 607-618. 
[8] O.A. Andreassen, W.K. Thompson, A.J. Schork, S. Ripke, M. Mattingsdal, J.R. Kelsoe, K.S. 
Kendler, M.C. O’Donovan, D. Rujescu, T. Werge, P. Sklar, T.P.G.C.P.B.D.a.S.W. Groups, J.C. 
Roddey, C.-H. Chen, L. McEvoy, R.S. Desikan, S. Djurovic, A.M. Dale, Improved Detection of 
Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-
Informed Conditional False Discovery Rate, PLOS Genetics 9(4) (2013). 
[9] O.A. Andreassen, H. Harbo, Y. Wang, W. Thompson, A. Schork, M. Mattingsdal, V. Zuber, 
F. Bettella, S. Ripke, J. Kelsoe, K. Kendler, Genetic pleiotropy between multiple sclerosis and 
schizophrenia but not bipolar disorder: differential involvement of immune-related gene 
loci, Molecular Psychiatry 20 (2015) 207-214. 
[10] R.S. Desikan, A.J. Schork, Y. Wang, W.K. Thompson, A. Dehghan, P.M. Ridker, D.I. 
Chasman, L.K. McEvoy, D. Holland, C.-H. Chen, D.S. Karow, J.B. Brewer, C.P. Hess, Polygenic 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 22 

Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease, Circulation 
131(23) (2015) 2061-2069. 
[11] S. Reppe, Y. Wang, W.K. Thompson, L.K. McEvoy, A.J. Schork, V. Zuber, M. LeBlanc, F. 
Bettella, I.G. Mills, R.S. Desikan, S. Djurovic, K.M. Gautvik, A.M. Dale, O.A. Andreassen, G. 
Consortium, Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes 
Reveals Novel Bone Mineral Density Loci, PLoS One 10(12) (2015). 
[12] H.L. Allen, K. Estrada, G. Lettre, S.I. Berndt, M.N. Weedon, F. Rivadeneira, C.J. Willer, 
A.U. Jackson, S. Vedantam, S. Raychaudhuri, T. Ferreira, A.R. Wood, R.J. Weyant, A.V. Segrè, 
E.K. Speliotes, E. Wheeler, N. Soranzo, J.-H. Park, J. Yang, D. Gudbjartsson, Hundreds of 
variants clustered in genomic loci and biological pathways affect human height, Nature 
Genetics 467(7317) (2010) 832-838. 
[13] H.-F. Zheng, V. Forgetta, Y.-H. Hsu, K. Estrada, A. Rosello-Diez, P.J. Leo, C.L. Dahia, K.H. 
Park-Min, J.H. Tobias, C. Kooperberg, A. Kleinman, U. Styrkarsdottir, Whole‐genome 
sequencing identifies EN1 as a determinant of bone density and fracture, Nature Genetics 
526 (2015) 112-117. 
[14] M.E. Armstrong, O. Kirichek, B.J. Cairns, J. Green, G.K. Reeves, V.B.f.t.M.W.S. 
Collaborators, Relationship of Height to Site-Specific Fracture Risk in 
PostmenopausalWomen., Journal of Bone and Mineral Research 31(4) (2015) 725-731. 
[15] S. Khosla, E. Atkinson, L. Riggs, L.J.M. III, Relationship between body composition and 
bone mass in women, Journal of Bone and Mineral Research 11(6) (1996) 857-863. 
[16] S.G. Yeoum, J.H. Lee, Usefulness of Estimated Height Loss for Detection of Osteoporosis 
in Women, Journal of Korean Academy of Nurses 41(6) (2011) 758-767. 
[17] I.H. Thomas, J.E. Donohue, K.K. Ness, D.R. Dengel, K.S. Baker, J.G. Gurney, Bone Mineral 
Density in Young Adult Survivors of Acute Lymphoblastic Leukemia, Cancer 113(11) 
(2008) 3248-3256. 
[18] A.R. Wood, T. Esko, J. Yang, S. Vedantam, T.H. Pers, S. Gustafsson, A.Y. Chu, K. Estrada, 
J.A. Luan, Z. Kutalik, N. Amin, M.L. Buchkovich, D.C. Croteau-Chonka, F.R. Day, Defining the 
role of common variation in the genomic and biological architecture of adult human height, 
Nature Genetics 46 (2014) 1173-1186. 
[19] A.E.J. Hendriks, M.R. Brown, A.M. Boot, B.A. Oostra, S.L.S. Drop, J.S. Parks, Genetic 
variation in candidate genes like the HMGA2 gene in the extremely tall, Hormond Research 
in Pediatrics 76(5) (2011) 307-313. 
[20] J. Fujiharaa, H. Takeshitaa, K. Kimura-Kataokaa, I. Yuasab, R. Iidac, M. Uekid, M. 
Nagaoe, Y. Kominatof, T. Yasudad, Replication study of the association of SNPs in the LHX3-
QSOX2 and IGF1 loci with adult height in the Japanese population; wide-ranging 
comparison of each SNP genotype distribution, Legal Medicine 14(4) (2012) 205-208. 
[21] T.-L. Yang, D.-H. Xiong, Y. Guo, R.R. Recker, H.-W. Deng, Association analyses of CYP19 
gene polymorphisms with height variation in a large sample of Caucasian nuclear families, 
Human Genetics 120(1) (2006) 119-125. 
[22] Y. Wang, Z.-m. Wang, Y.-c. Teng, J.-x. Shi, H.-f. Wang, W.-t. Yuan, X. Chu, D.-f. Wang, W. 
Wang, W. Huang, An SNP of the ZBTB38 gene is associated with idiopathic short stature in 
the Chinese Han population, Clinical Endocrinology 79(3) (2013) 402-408. 
[23] B. Kang, F. Zhao, X. Zhang, X. Deng, X. He, Association between the interaction of 
SMAD3 polymorphisms with body mass index and osteoarthritis susceptibility, 
International Journal of Clinical and Experimental Pathology 8(6) (2015) 7364-7370. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 23 

[24] U. Styrkarsdottir, B.V. Halldorsson, S. Gretarsdottir, D.F. Gudbjartsson, G.B. Walters, T. 
Ingvarsson, T. Jonsdottir, J. Saemundsdottir, S. Snorradóttir, J.R. Center, T.V. Nguyen, P. 
Alexandersen, J.R. Gulcher, J.A. Eisman, C. Christiansen, G. Sigurdsson, A. Kong, U. 
Thorsteinsdottir, K. Stefansson, New sequence variants associated with bone mineral 
density, Nature Genetics 41(1) (2009). 
[25] A.W.C. Kung, S.-M. Xiao, S. Cherny, G.H.Y. Li, Y. Gao, G. Tso, K.S. Lau, K.D.K. Luk, J.-m. Liu, 
B. Cui, M.-J. Zhang, Z.-l. Zhang, J.-w. He, H. Yue, W.-b. Xia, Association of JAG1 with bone 
mineral density and osteoporotic fractures: a genome-wide association study and follow-
up replication studies, American Journal of Human Genetics 86(2) (2010) 229-239. 
[26] L. Paternoster, C. Ohlsson, A. Sayers, L. Vandenput, M. Lorentzon, D. Evans, J. Tobias, 
OPG and RANK polymorphisms are both associated with cortical bone mineral density: 
findings from a metaanalysis of the Avon longitudinal study of parents and children and 
gothenburg osteoporosis and obesity determinants cohorts, Journal of clinical 
endocrinology and metabolism 95(8) (2010) 3940-8. 
[27] S.-M. Xiao, A. Kung, P. Sham, K. Tan, Genetic analysis of recently identified osteoporosis 
susceptibility genes in southern Chinese, Journal of clinical endocrinology and metabolism 
98(11) (2013) 1827-1834. 
[28] J. Liley, C. Wallace, C. Cotsapas, A Pleiotropy-Informed Bayesian False Discovery Rate 
Adapted to a Shared Control Design Finds New Disease Associations From GWAS Summary 
Statistics (Co-analysis of GWAS with Shared Controls), PLOS Genetics 11(2) (2015). 
[29] T. Mizuguchi, I. Furuta, Y. Watanabe, K. Tsukamoto, H. Tomita, M. Tsujihata, T. Ohta, T. 
Kishino, N. Matsumoto, H. Minakami, N. Niikawa, K.-i. Yoshiura, LRP5, low-density-
lipoprotein-receptor-related protein 5, is a determinant for bone mineral density, Journal 
of Human Genetics 49(2) (2004) 80-86. 
[30] D.A.F. Loebel, B. Tsoi, N. Wong, P.P.L. Tam, A conserved noncoding intronic transcript 
at the mouse Dnm3 locus, Genomics 85(6) (2005) 782-789. 
[31] Y.-H. Deng, L. Zhao, M.-J. Zhang, C.-M. Pan, S.-X. Zhao, H.-Y. Zhao, L.-H. Sun, B. Tao, H.-D. 
Song, W.-Q. Wang, G. Ning, J.-M. Liu, The influence of the genetic and non-genetic factors on 
bone mineral density and osteoporotic fractures in Chinese women, Endocrine 43(1) 
(2012) 127-135. 
[32] J.-M. Liu, M.-j. Zhang, L. Zhao, B. Cui, B.-Z. Li, H.-Y. Zhao, L.-H. Sun, B. Tao, M. Li, G. Ning, 
Analysis of recently identified osteoporosis susceptibility genes in Han Chinese women, 
Journal of clinical endocrinology and metabolism 95(9) (2010) 112-120. 
[33] L. Zhang, H.J. Choi, K. Estrada, P.J. Leo, J. Li, Y.-F. Pei, Y. Zhang, Y. Lin, H. Shen, Y.-Z. Liu, 
Y. Liu, Y. Zhao, J.-G. Zhang, Q. Tian, Multistage genome-wide association meta-analyses 
identified two new loci for bone mineral density, Human Molecular Genetics 23(7) (2014) 
1923-1933. 
[34] U. Styrkarsdottir, B.V. Halldorsson, D.F. Gudbjartsson, N.L.S. Tang, J.-M. Koh, S.-m. Xiao, 
T.C.Y. Kwok, G.S. Kim, J.C.N. Chan, S. Cherny, S.H. Lee, A. Kwok, S. Ho, European bone 
mineral density loci are also associated with BMD in East-Asian populations, Plos One 
5(10) (2010). 
[35] Y.-H. Hsu, D. Kiel, Clinical review: Genome-wide association studies of skeletal 
phenotypes: what we have learned and where we are headed, Journal of clinical 
endocrinology and metabolism 97(10) (2012) 1958-1977. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 24 

[36] M. Nangaku, R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, N. 
Hirokawa, KIF1B, a novel microtubule plus end-directed monomeric motor protein for 
transport of mitochondria, Cell 79(7) (1994) 1209-1220. 
[37] S. Chen, M. Han, W. Chen, Y. He, B. Huang, P. Zhao, Q. Huang, L. Gao, X. Qu, X. Li, KIF1B 
promotes glioma migration and invasion via cell surface localization of MT1-MMP, 
Oncology reports 35(2) (2016) 971-977. 
[38] L. Holliday, H. Welgus, C. Fliszar, G. Veith, J. Jeffrey, S. Gluck, Initiation of osteoclast 
bone resorption by interstitial collagenase, Journal of Biological Chemistry 272(35) (1997) 
22053-22058. 
[39] M.T. Engsig, Q.-J. Chen, T.H. Vu, A.-C. Pedersen, B. Therkidsen, L.R. Lund, K. Henriksen, 
T. Lenhard, N.T. Foged, Z. Werb, J.-M. Delaissé, Matrix Metalloproteinase 9 and Vascular 
Endothelial Growth Factor Are Essential for Osteoclast Recruitment into Developing Long 
Bones, Journal of Cell Biology 151(4) (2000) 879-890. 
[40] G. Jordan, N. Loveridge, J. Power, M. Clarke, M. Parker, J. Reeve, The ratio of osteocytic 
incorporation to bone matrix formation in femoral neck cancellous bone: an enhanced 
osteoblast work rate in the vicinity of hip osteoarthritis, Calcified tissue international 72(3) 
(2003) 190-196. 
[41] C. Kosan, J. Kunz, Identification and characterisation of the gene TWIST NEIGHBOR 
(TWISTNB) located in the microdeletion syndrome 7p21 region, Cytogenic and Genome 
Research 97(3) (2002). 
[42] F.d. Rocco, A. Benoit, J. Vigneron, P.B. Segura, O. Klein, C. Collet, E. Arnaud, Y-
craniosynostosis by premature fusion of the metopic and coronal sutures: A new 
nosological entity or a variety of Saethre-Chotzen syndrome?, Clinical and Molecular 
Teratology 103(4) (2015) 306-310. 
[43] D. Rogosa, A Critique of Cross-Lagged Correlation, Psychological Bulletin 88(2) (1980) 
245-258. 
 

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 25 

Figure 1 

 
  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 26 

Figure 2 
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Table 1 – Functional Term Enrichment Analysis 

GO Term Gene Count P-value FDR 

FNK BMD loci    

Skeletal System 

Development 

6 2.5x10
-5

 0.03542 

HT loci    

Skeletal System 

Development 

67 3.8x10
-11

 6.7x10
-8

 

Ossification 31 4.2x10
-8

 7.8x10
-5

 

Bone Development 32 6.0x10
-8

 1.1x10
-4

 

Osteoblast 

Differentiation 

17 2.3x10
-7

 4.2x10
-4

 

Cartilage 

Development 

25 9.6x10
-9

 1.8x10
-5
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Table 2: Conjunction cFDR: Pleiotropic Loci in FNK BMD and HT 

Note:  
a
This SNP or other SNPs in LD was/were previously reported to be associated with bone 

development 
b
This gene is previously reported to be associated with bone development but the SNP is not 

c
This SNP and gene have neither been reported to be associated with bone development, FNK 

BMD, HT, or other related traits  

 

 
  

SNP Role Chr Neighbor Gene       Raw P-Value             cFDR ccFDR 

    FNK HT  FNK|HT HT|FNK   

rs6494633
a intronic 15q22.33 SMAD3

 

7.59E-06 1.40E-04  2.12E-03 4.80E-04  2.12E-03 

 

rs2289263
a
 

 

intronic 

 

15q22.33 

 

SMAD3
 

3.79E-04 1.30E-07 

 

2.84E-02 2.23E-06 

 

2.84E-02 

 

rs3759579
a
 

 

upstream 

 

14q32.32 

 

MARK3 3.31E-05 2.60E-07 

 

3.56E-03 1.73E-06 

 

3.56E-03 

 

rs12050772
a
 

 

intronic 

 

15q21.2 

 

CYP19A1
 

1.29E-04 6.60E-09 

 

1.09E-02 1.04E-07 

 

1.09E-02 

 

rs6040061
a
 

 

intronic 

 

20p12.2 

 

JAG1 9.52E-05 3.20E-03 

 

4.22E-02 1.95E-02 

 

4.22E-02 

 

rs13137552
a
 

 

intergenic 

 

4q22.1 

DMP1 

IBSP 6.36E-05 1.00E-03 

 

2.09E-02 6.00E-03 

 

2.09E-02 

 

rs9905128
a 

 

intergenic 

 

17q24.3 

 

PRKAR1A 4.33E-06 9.90E-05 

 

1.28E-03 3.63E-04 

 

1.28E-03 

 

rs10793939
a 

 

intergenic 

 

9q34.11 

 

FUBP3 6.14E-05 7.20E-10 

 

6.98E-03 1.42E-08 

 

6.98E-03 

 

rs17277372
b
 

 

intronic 

 

1q24.3 

 

DNM3 7.80E-07 9.20E-25 

 

3.74E-05 1.38E-23 

 

3.74E-05 

 

rs2741856
b
 

 

intergenic 

 

17q21.31 

MEOX1 

SOST 1.34E-09 1.50E-08 

 

6.32E-07 1.05E-07 

 

6.32E-07 

 

rs6715538
b
 

 

intronic 

 

2p16.2 

 

SPTBN1 1.06E-04 5.20E-04 

 

2.88E-02 3.69E-03 

 

2.88E-02 

 

rs11952384
b
 

 

intronic 

 

5q14.3 

 

MEF2C-AS1 3.82E-07 3.10E-10 

 

1.21E-04 4.03E-09 

 

1.21E-04 

 

rs10474292
b
 

 

intergenic 

 

5q14.3 

MEF2C-AS1 

MIR3660 3.14E-08 2.80E-09 

 

1.22E-05 2.24E-08 

 

1.22E-05 

 

rs10280461
b
 

 

intergenic 

 

7p14.1 

EPDR 

STARD3NL 1.28E-06 1.10E-08 

 

1.44E-04 4.68E-08 

 

1.44E-04 

 

rs17400878
c
 

 

intronic 

 

1p36.22 

 

KIF1B 3.19E-04 3.60E-07 

 

2.41E-02 4.96E-06 

 

2.41E-02 

 

rs10950710
c
 

 

intergenic 

 

7p21.1 

FERD3L 

TWISTNB 2.54E-04 5.10E-05 

 

4.32E-02 6.18E-04 

 

4.32E-02 

 

rs10510109
c 

 

intergenic 

 

10q26.13 

BTBD16 

PLEKHA1 2.64E-05 7.50E-03 

 

2.22E-02 3.28E-02 

 

3.28E-02 

 

rs7193150
c 

 

intergenic 

 

16p12.3 

GPR139 

GP2 5.54E-05 6.80E-03 

 

4.00E-02 4.31E-02 

 

4.31E-02 
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Highlights for “Increased Detection of Genetic Loci Associated With Risk Predictors of 

Osteoporotic Fracture Using a Pleiotropic cFDR Method” 

 

 Used pleiotropic cFDR method to detect novel loci associated with two risk predictors for 

osteoporotic fracture, Height and Femoral BMD  

 Showed enrichment of SNPs associated with the first trait conditional on their strength of 

association with the second trait 

 Simultaneously analyzed GWAS summary statistics from single trait GWAS analysis for 

both phenotypes 

 Identified several novel potential pleiotropic loci that may be involved in bone processes 
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