--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 923371 num_examples: 11492 - name: validation num_bytes: 162616 num_examples: 2031 - name: test num_bytes: 235839 num_examples: 2968 download_size: 564588 dataset_size: 1321826 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 2187 num_examples: 58 download_size: 3921 dataset_size: 2187 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - ru --- # Russian massive This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset massive_ru = Dataset.from_datasets("AutoIntent/massive_ru") ``` ## Source This dataset is taken from `mteb/amazon_massive_intent` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from datasets import Dataset as HFDataset from datasets import load_dataset from autointent import Dataset from autointent.schemas import Intent, Sample def extract_intents_info(split: HFDataset) -> tuple[list[Intent], dict[str, int]]: """Extract metadata.""" intent_names = sorted(split.unique("label")) intent_names.remove("cooking_query") intent_names.remove("audio_volume_other") n_classes = len(intent_names) name_to_id = dict(zip(intent_names, range(n_classes), strict=False)) intents_data = [Intent(id=i, name=intent_names[i]) for i in range(n_classes)] return intents_data, name_to_id def convert_massive(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]: """Extract utterances and labels.""" return [Sample(utterance=s["text"], label=name_to_id[s["label"]]) for s in split if s["label"] in name_to_id] if __name__ == "__main__": massive = load_dataset("mteb/amazon_massive_intent", "ru") intents, name_to_id = extract_intents_info(massive["train"]) train_samples = convert_massive(massive["train"], name_to_id) test_samples = convert_massive(massive["test"], name_to_id) validation_samples = convert_massive(massive["validation"], name_to_id) dataset = Dataset.from_dict( {"intents": intents, "train": train_samples, "test": test_samples, "validation": validation_samples} ) ```