voorhs commited on
Commit
ac750cb
·
verified ·
1 Parent(s): 354dfe8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -24
README.md CHANGED
@@ -78,32 +78,37 @@ massive_ru = Dataset.from_datasets("AutoIntent/massive_ru")
78
  This dataset is taken from `mteb/amazon_massive_intent` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
79
 
80
  ```python
 
81
  from datasets import load_dataset
82
 
83
- def convert_massive(massive_train):
84
- intent_names = sorted(massive_train.unique("label"))
85
- name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
 
 
 
 
 
 
86
  n_classes = len(intent_names)
 
 
 
 
 
 
 
 
 
87
 
88
- classwise_utterance_records = [[] for _ in range(n_classes)]
89
- intents = [
90
- {
91
- "id": i,
92
- "name": name,
93
-
94
- }
95
- for i, name in enumerate(intent_names)
96
- ]
97
-
98
- for batch in massive_train.iter(batch_size=16, drop_last_batch=False):
99
- for txt, name in zip(batch["text"], batch["label"], strict=False):
100
- intent_id = name_to_id[name]
101
- target_list = classwise_utterance_records[intent_id]
102
- target_list.append({"utterance": txt, "label": intent_id})
103
-
104
- utterances = [rec for lst in classwise_utterance_records for rec in lst]
105
- return Dataset.from_dict({"intents": intents, "train": utterances})
106
-
107
- massive = load_dataset("mteb/amazon_massive_intent", "ru")
108
- massive_converted = convert_massive(massive["train"])
109
  ```
 
78
  This dataset is taken from `mteb/amazon_massive_intent` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
79
 
80
  ```python
81
+ from datasets import Dataset as HFDataset
82
  from datasets import load_dataset
83
 
84
+ from autointent import Dataset
85
+ from autointent.schemas import Intent, Sample
86
+
87
+
88
+ def extract_intents_info(split: HFDataset) -> tuple[list[Intent], dict[str, int]]:
89
+ """Extract metadata."""
90
+ intent_names = sorted(split.unique("label"))
91
+ intent_names.remove("cooking_query")
92
+ intent_names.remove("audio_volume_other")
93
  n_classes = len(intent_names)
94
+ name_to_id = dict(zip(intent_names, range(n_classes), strict=False))
95
+ intents_data = [Intent(id=i, name=intent_names[i]) for i in range(n_classes)]
96
+ return intents_data, name_to_id
97
+
98
+
99
+ def convert_massive(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
100
+ """Extract utterances and labels."""
101
+ return [Sample(utterance=s["text"], label=name_to_id[s["label"]]) for s in split if s["label"] in name_to_id]
102
+
103
 
104
+ if __name__ == "__main__":
105
+ massive = load_dataset("mteb/amazon_massive_intent", "ru")
106
+ intents, name_to_id = extract_intents_info(massive["train"])
107
+ train_samples = convert_massive(massive["train"], name_to_id)
108
+ test_samples = convert_massive(massive["test"], name_to_id)
109
+ validation_samples = convert_massive(massive["validation"], name_to_id)
110
+ dataset = Dataset.from_dict(
111
+ {"intents": intents, "train": train_samples, "test": test_samples, "validation": validation_samples}
112
+ )
113
+ dataset.to_json("data/massive_ru.json")
 
 
 
 
 
 
 
 
 
 
 
114
  ```