Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 923371
num_examples: 11492
- name: validation
num_bytes: 162616
num_examples: 2031
- name: test
num_bytes: 235839
num_examples: 2968
download_size: 564588
dataset_size: 1321826
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 2187
num_examples: 58
download_size: 3921
dataset_size: 2187
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- ru
Russian massive
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
massive_ru = Dataset.from_datasets("AutoIntent/massive_ru")
Source
This dataset is taken from mteb/amazon_massive_intent
and formatted with our AutoIntent Library:
from datasets import Dataset as HFDataset
from datasets import load_dataset
from autointent import Dataset
from autointent.schemas import Intent, Sample
def extract_intents_info(split: HFDataset) -> tuple[list[Intent], dict[str, int]]:
"""Extract metadata."""
intent_names = sorted(split.unique("label"))
intent_names.remove("cooking_query")
intent_names.remove("audio_volume_other")
n_classes = len(intent_names)
name_to_id = dict(zip(intent_names, range(n_classes), strict=False))
intents_data = [Intent(id=i, name=intent_names[i]) for i in range(n_classes)]
return intents_data, name_to_id
def convert_massive(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
"""Extract utterances and labels."""
return [Sample(utterance=s["text"], label=name_to_id[s["label"]]) for s in split if s["label"] in name_to_id]
if __name__ == "__main__":
massive = load_dataset("mteb/amazon_massive_intent", "ru")
intents, name_to_id = extract_intents_info(massive["train"])
train_samples = convert_massive(massive["train"], name_to_id)
test_samples = convert_massive(massive["test"], name_to_id)
validation_samples = convert_massive(massive["validation"], name_to_id)
dataset = Dataset.from_dict(
{"intents": intents, "train": train_samples, "test": test_samples, "validation": validation_samples}
)