Added script to preprocess data
Browse files- AstroM3Dataset.py +0 -1
- preprocess.py +244 -0
AstroM3Dataset.py
CHANGED
@@ -99,7 +99,6 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
99 |
|
100 |
def _get_photometry(self, file_name):
|
101 |
"""Loads photometric light curve data from a compressed file."""
|
102 |
-
|
103 |
csv = BytesIO()
|
104 |
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
|
105 |
data_path = f'vardb_files/{file_name}.dat'
|
|
|
99 |
|
100 |
def _get_photometry(self, file_name):
|
101 |
"""Loads photometric light curve data from a compressed file."""
|
|
|
102 |
csv = BytesIO()
|
103 |
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
|
104 |
data_path = f'vardb_files/{file_name}.dat'
|
preprocess.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from datasets import load_dataset
|
5 |
+
import numpy as np
|
6 |
+
from scipy import stats
|
7 |
+
|
8 |
+
METADATA_FUNC = {
|
9 |
+
"abs": [
|
10 |
+
"mean_vmag",
|
11 |
+
"phot_g_mean_mag",
|
12 |
+
"phot_bp_mean_mag",
|
13 |
+
"phot_rp_mean_mag",
|
14 |
+
"j_mag",
|
15 |
+
"h_mag",
|
16 |
+
"k_mag",
|
17 |
+
"w1_mag",
|
18 |
+
"w2_mag",
|
19 |
+
"w3_mag",
|
20 |
+
"w4_mag",
|
21 |
+
],
|
22 |
+
"cos": ["l"],
|
23 |
+
"sin": ["b"],
|
24 |
+
"log": ["period"]
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
def preprocess_spectra(example):
|
29 |
+
"""
|
30 |
+
Preprocess spectral data. Steps:
|
31 |
+
- Interpolate flux and flux error to a fixed wavelength grid (3850 to 9000 Å).
|
32 |
+
- Normalize flux using mean and median absolute deviation (MAD).
|
33 |
+
- Append MAD as an auxiliary feature.
|
34 |
+
"""
|
35 |
+
spectra = example['spectra']
|
36 |
+
wavelengths = spectra[:, 0]
|
37 |
+
flux = spectra[:, 1]
|
38 |
+
flux_err = spectra[:, 2]
|
39 |
+
|
40 |
+
# Interpolate flux and flux error onto a fixed grid
|
41 |
+
new_wavelengths = np.arange(3850, 9000, 2)
|
42 |
+
flux = np.interp(new_wavelengths, wavelengths, flux)
|
43 |
+
flux_err = np.interp(new_wavelengths, wavelengths, flux_err)
|
44 |
+
|
45 |
+
# Normalize flux and flux error
|
46 |
+
mean = np.mean(flux)
|
47 |
+
mad = stats.median_abs_deviation(flux[flux != 0])
|
48 |
+
|
49 |
+
flux = (flux - mean) / mad
|
50 |
+
flux_err = flux_err / mad
|
51 |
+
aux_values = np.full_like(flux, np.log10(mad)) # Store MAD as an auxiliary feature
|
52 |
+
|
53 |
+
# Stack processed data into a single array
|
54 |
+
spectra = np.vstack([flux, flux_err, aux_values])
|
55 |
+
example['spectra'] = spectra
|
56 |
+
|
57 |
+
return example
|
58 |
+
|
59 |
+
|
60 |
+
def preprocess_lc(example):
|
61 |
+
"""
|
62 |
+
Preprocess photometry (light curve) data. Steps:
|
63 |
+
- Remove duplicate time entries.
|
64 |
+
- Sort by Heliocentric Julian Date (HJD).
|
65 |
+
- Normalize flux and flux error using mean and median absolute deviation (MAD).
|
66 |
+
- Scale time values between 0 and 1.
|
67 |
+
- Append auxiliary features (log MAD and time span delta_t).
|
68 |
+
"""
|
69 |
+
X = example['photometry']
|
70 |
+
aux_values = np.stack(list(example['metadata']['photo_cols'].values()))
|
71 |
+
|
72 |
+
# Remove duplicate entries
|
73 |
+
X = np.unique(X, axis=0)
|
74 |
+
|
75 |
+
# Sort based on HJD
|
76 |
+
sorted_indices = np.argsort(X[:, 0])
|
77 |
+
X = X[sorted_indices]
|
78 |
+
|
79 |
+
# Normalize flux and flux error
|
80 |
+
mean = X[:, 1].mean()
|
81 |
+
mad = stats.median_abs_deviation(X[:, 1])
|
82 |
+
X[:, 1] = (X[:, 1] - mean) / mad
|
83 |
+
X[:, 2] = X[:, 2] / mad
|
84 |
+
|
85 |
+
# Compute delta_t (time span of the light curve in years)
|
86 |
+
delta_t = (X[:, 0].max() - X[:, 0].min()) / 365
|
87 |
+
|
88 |
+
# Scale time from 0 to 1
|
89 |
+
X[:, 0] = (X[:, 0] - X[:, 0].min()) / (X[:, 0].max() - X[:, 0].min())
|
90 |
+
|
91 |
+
# Add MAD and delta_t to auxiliary metadata features
|
92 |
+
aux_values = np.concatenate((aux_values, [np.log10(mad), delta_t]))
|
93 |
+
|
94 |
+
# Add auxiliary features to the sequence
|
95 |
+
aux_values = np.tile(aux_values, (X.shape[0], 1))
|
96 |
+
X = np.concatenate((X, aux_values), axis=-1)
|
97 |
+
|
98 |
+
example['photometry'] = X
|
99 |
+
return example
|
100 |
+
|
101 |
+
|
102 |
+
def transform_metadata(example):
|
103 |
+
"""
|
104 |
+
Transforms the metadata of an example based on METADATA_FUNC.
|
105 |
+
"""
|
106 |
+
metadata = example["metadata"]
|
107 |
+
|
108 |
+
# Process 'abs' transformation on meta_cols:
|
109 |
+
# Note: This transformation uses 'parallax' from meta_cols.
|
110 |
+
for col in METADATA_FUNC["abs"]:
|
111 |
+
if col in metadata["meta_cols"]:
|
112 |
+
# Use np.where to avoid issues when parallax is non-positive.
|
113 |
+
metadata["meta_cols"][col] = (
|
114 |
+
metadata["meta_cols"][col]
|
115 |
+
- 10
|
116 |
+
+ 5 * np.log10(np.where(metadata["meta_cols"]["parallax"] <= 0, 1, metadata["meta_cols"]["parallax"]))
|
117 |
+
)
|
118 |
+
|
119 |
+
# Process 'cos' transformation on meta_cols:
|
120 |
+
for col in METADATA_FUNC["cos"]:
|
121 |
+
if col in metadata["meta_cols"]:
|
122 |
+
metadata["meta_cols"][col] = np.cos(np.radians(metadata["meta_cols"][col]))
|
123 |
+
|
124 |
+
# Process 'sin' transformation on meta_cols:
|
125 |
+
for col in METADATA_FUNC["sin"]:
|
126 |
+
if col in metadata["meta_cols"]:
|
127 |
+
metadata["meta_cols"][col] = np.sin(np.radians(metadata["meta_cols"][col]))
|
128 |
+
|
129 |
+
# Process 'log' transformation on photo_cols:
|
130 |
+
for col in METADATA_FUNC["log"]:
|
131 |
+
if col in metadata["photo_cols"]:
|
132 |
+
metadata["photo_cols"][col] = np.log10(metadata["photo_cols"][col])
|
133 |
+
|
134 |
+
# Update the example with the transformed metadata.
|
135 |
+
example["metadata"] = metadata
|
136 |
+
return example
|
137 |
+
|
138 |
+
|
139 |
+
def compute_metadata_stats(ds):
|
140 |
+
"""
|
141 |
+
Compute the mean and standard deviation for each column in meta_cols and photo_cols.
|
142 |
+
"""
|
143 |
+
meta_vals = defaultdict(list)
|
144 |
+
photo_vals = defaultdict(list)
|
145 |
+
|
146 |
+
# Accumulate values for each column
|
147 |
+
for example in ds:
|
148 |
+
meta = example["metadata"]["meta_cols"]
|
149 |
+
photo = example["metadata"]["photo_cols"]
|
150 |
+
for col, value in meta.items():
|
151 |
+
meta_vals[col].append(value)
|
152 |
+
for col, value in photo.items():
|
153 |
+
photo_vals[col].append(value)
|
154 |
+
|
155 |
+
# Compute mean and standard deviation for each column
|
156 |
+
stats = {"meta_cols": {}, "photo_cols": {}}
|
157 |
+
for col, values in meta_vals.items():
|
158 |
+
arr = np.stack(values)
|
159 |
+
stats["meta_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
|
160 |
+
for col, values in photo_vals.items():
|
161 |
+
arr = np.stack(values)
|
162 |
+
stats["photo_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
|
163 |
+
|
164 |
+
return stats
|
165 |
+
|
166 |
+
|
167 |
+
def normalize_metadata(example, info):
|
168 |
+
"""
|
169 |
+
Normalize metadata values using z-score normalization:
|
170 |
+
(value - mean) / std.
|
171 |
+
|
172 |
+
The 'stats' parameter should be a dictionary with computed means and stds for both meta_cols and photo_cols.
|
173 |
+
"""
|
174 |
+
metadata = example["metadata"]
|
175 |
+
|
176 |
+
# Normalize meta_cols
|
177 |
+
for col, value in metadata["meta_cols"].items():
|
178 |
+
mean = info["meta_cols"][col]["mean"]
|
179 |
+
std = info["meta_cols"][col]["std"]
|
180 |
+
metadata["meta_cols"][col] = (metadata["meta_cols"][col] - mean) / std
|
181 |
+
|
182 |
+
# Normalize photo_cols
|
183 |
+
for col, value in metadata["photo_cols"].items():
|
184 |
+
mean = info["photo_cols"][col]["mean"]
|
185 |
+
std = info["photo_cols"][col]["std"]
|
186 |
+
metadata["photo_cols"][col] = (metadata["photo_cols"][col] - mean) / std
|
187 |
+
|
188 |
+
example["metadata"] = metadata
|
189 |
+
return example
|
190 |
+
|
191 |
+
|
192 |
+
def preprocess_metadata(example):
|
193 |
+
"""
|
194 |
+
Extract the values from 'meta_cols' and stack them into a numpy array.
|
195 |
+
"""
|
196 |
+
example["metadata"] = np.stack(list(example["metadata"]["meta_cols"].values()))
|
197 |
+
return example
|
198 |
+
|
199 |
+
|
200 |
+
def main():
|
201 |
+
"""
|
202 |
+
Main function for processing and uploading datasets.
|
203 |
+
|
204 |
+
- Loads each dataset based on subset and random seed.
|
205 |
+
- Applies preprocessing for spectra, photometry, and metadata.
|
206 |
+
- Casts columns to appropriate feature types.
|
207 |
+
- Pushes the processed dataset to Hugging Face Hub.
|
208 |
+
"""
|
209 |
+
for sub in ["sub10", "sub25", "sub50", "full"]:
|
210 |
+
for seed in [42, 66, 0, 12, 123]:
|
211 |
+
name = f"{sub}_{seed}"
|
212 |
+
print(f"Processing: {name}")
|
213 |
+
|
214 |
+
# Load dataset from Hugging Face Hub
|
215 |
+
ds = load_dataset('MeriDK/AstroM3Dataset', name=name, trust_remote_code=True, num_proc=16)
|
216 |
+
ds = ds.with_format('numpy')
|
217 |
+
|
218 |
+
# Transform and normalize metadata
|
219 |
+
ds = ds.map(transform_metadata, num_proc=16)
|
220 |
+
info = compute_metadata_stats(ds['train'])
|
221 |
+
ds = ds.map(lambda example: normalize_metadata(example, info))
|
222 |
+
|
223 |
+
# Transform spectra
|
224 |
+
ds = ds.map(preprocess_spectra, num_proc=16)
|
225 |
+
ds = ds.cast_column('spectra', datasets.Array2D(shape=(3, 2575), dtype='float32'))
|
226 |
+
|
227 |
+
# Transform photometry
|
228 |
+
ds = ds.map(preprocess_lc, num_proc=16)
|
229 |
+
ds = ds.cast_column('photometry', datasets.Array2D(shape=(None, 9), dtype='float32'))
|
230 |
+
|
231 |
+
# Stack metadata into one numpy array
|
232 |
+
ds = ds.map(preprocess_metadata, num_proc=16)
|
233 |
+
ds = ds.cast_column('metadata', datasets.Sequence(feature=datasets.Value('float32'), length=34))
|
234 |
+
|
235 |
+
# Change label type
|
236 |
+
ds = ds.cast_column('label', datasets.ClassLabel(
|
237 |
+
names=['DSCT', 'EA', 'EB', 'EW', 'HADS', 'M', 'ROT', 'RRAB', 'RRC', 'SR']))
|
238 |
+
|
239 |
+
# Upload processed dataset to Hugging Face Hub
|
240 |
+
ds.push_to_hub('MeriDK/AstroM3Processed', config_name=name)
|
241 |
+
|
242 |
+
|
243 |
+
if __name__ == '__main__':
|
244 |
+
main()
|