Merge remote-tracking branch 'origin/main'
Browse files- AstroM3Dataset.py +7 -47
- spectra.zip +3 -0
AstroM3Dataset.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from io import BytesIO
|
2 |
import datasets
|
3 |
import pandas as pd
|
@@ -5,7 +6,8 @@ import numpy as np
|
|
5 |
import json
|
6 |
from astropy.io import fits
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
_DESCRIPTION = (
|
11 |
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
|
@@ -48,8 +50,8 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
48 |
description=_DESCRIPTION,
|
49 |
features=datasets.Features(
|
50 |
{
|
51 |
-
"photometry": datasets.
|
52 |
-
"spectra": datasets.
|
53 |
"metadata": datasets.Sequence(datasets.Value("float32"), length=38),
|
54 |
"label": datasets.Value("string"),
|
55 |
}
|
@@ -99,29 +101,6 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
99 |
|
100 |
return np.vstack((wavelength, specflux, ivar)).T
|
101 |
|
102 |
-
@staticmethod
|
103 |
-
def _transform_metadata(row, info):
|
104 |
-
row_copy = row.copy(deep=True)
|
105 |
-
|
106 |
-
for transformation_type, value in info["metadata_func"].items():
|
107 |
-
if transformation_type == "abs":
|
108 |
-
for col in value:
|
109 |
-
row_copy[col] = (
|
110 |
-
row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
|
111 |
-
)
|
112 |
-
elif transformation_type == "cos":
|
113 |
-
for col in value:
|
114 |
-
row_copy[col] = np.cos(np.radians(row_copy[col]))
|
115 |
-
elif transformation_type == "sin":
|
116 |
-
for col in value:
|
117 |
-
row_copy[col] = np.sin(np.radians(row_copy[col]))
|
118 |
-
elif transformation_type == "log":
|
119 |
-
for col in value:
|
120 |
-
row_copy[col] = np.log10(row_copy[col])
|
121 |
-
|
122 |
-
row_copy = (row_copy - info["mean"]) / info["std"]
|
123 |
-
return row_copy
|
124 |
-
|
125 |
def _split_generators(self, dl_manager):
|
126 |
"""Returns SplitGenerators for train, val, and test."""
|
127 |
|
@@ -150,7 +129,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
150 |
|
151 |
# Load photometry and init reader
|
152 |
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
|
153 |
-
self.reader_v =
|
154 |
|
155 |
return [
|
156 |
datasets.SplitGenerator(
|
@@ -181,29 +160,10 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
181 |
with open(info_path) as f:
|
182 |
info = json.loads(f.read())
|
183 |
|
184 |
-
for
|
185 |
photometry = self._get_photometry(row["name"])
|
186 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
187 |
|
188 |
-
metadata = row[info["all_cols"]]
|
189 |
-
# metadata_norm = self._transform_metadata(metadata, info)
|
190 |
-
|
191 |
-
# yield idx, {
|
192 |
-
# "photometry": photometry,
|
193 |
-
# "spectra": spectra,
|
194 |
-
# "metadata": {
|
195 |
-
# "original": {
|
196 |
-
# "photometry": metadata[info["photo_cols"]].to_dict(),
|
197 |
-
# "metadata": metadata[info["meta_cols"]].to_dict()
|
198 |
-
# },
|
199 |
-
# "transformed": {
|
200 |
-
# "photometry": metadata_norm[info["photo_cols"]].to_dict(),
|
201 |
-
# "metadata": metadata_norm[info["meta_cols"]].to_dict()
|
202 |
-
# }
|
203 |
-
# },
|
204 |
-
# "label": row["target"],
|
205 |
-
# }
|
206 |
-
|
207 |
yield idx, {
|
208 |
"photometry": photometry,
|
209 |
"spectra": spectra,
|
|
|
1 |
+
import os
|
2 |
from io import BytesIO
|
3 |
import datasets
|
4 |
import pandas as pd
|
|
|
6 |
import json
|
7 |
from astropy.io import fits
|
8 |
|
9 |
+
print('what what')
|
10 |
+
from .utils.parallelzipfile import ParallelZipFile as ZipFile
|
11 |
|
12 |
_DESCRIPTION = (
|
13 |
"AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
|
|
|
50 |
description=_DESCRIPTION,
|
51 |
features=datasets.Features(
|
52 |
{
|
53 |
+
"photometry": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
|
54 |
+
"spectra": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
|
55 |
"metadata": datasets.Sequence(datasets.Value("float32"), length=38),
|
56 |
"label": datasets.Value("string"),
|
57 |
}
|
|
|
101 |
|
102 |
return np.vstack((wavelength, specflux, ivar)).T
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def _split_generators(self, dl_manager):
|
105 |
"""Returns SplitGenerators for train, val, and test."""
|
106 |
|
|
|
129 |
|
130 |
# Load photometry and init reader
|
131 |
photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
|
132 |
+
self.reader_v = ZipFile(photometry_path)
|
133 |
|
134 |
return [
|
135 |
datasets.SplitGenerator(
|
|
|
160 |
with open(info_path) as f:
|
161 |
info = json.loads(f.read())
|
162 |
|
163 |
+
for idx, row in df.iterrows():
|
164 |
photometry = self._get_photometry(row["name"])
|
165 |
spectra = self._get_spectra(spectra_files[row["spec_filename"]])
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
yield idx, {
|
168 |
"photometry": photometry,
|
169 |
"spectra": spectra,
|
spectra.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82314a30eea81ca561ba69873140cb19c6484fc4433e610029de9b6419e4ec68
|
3 |
+
size 1152905965
|