MeriDK commited on
Commit
13c5985
·
2 Parent(s): 352a93a 84f4265

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (2) hide show
  1. AstroM3Dataset.py +7 -47
  2. spectra.zip +3 -0
AstroM3Dataset.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from io import BytesIO
2
  import datasets
3
  import pandas as pd
@@ -5,7 +6,8 @@ import numpy as np
5
  import json
6
  from astropy.io import fits
7
 
8
- from utils import ParallelZipFile
 
9
 
10
  _DESCRIPTION = (
11
  "AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
@@ -48,8 +50,8 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
48
  description=_DESCRIPTION,
49
  features=datasets.Features(
50
  {
51
- "photometry": datasets.Array2D(shape=(None, 3), dtype="float32"),
52
- "spectra": datasets.Array2D(shape=(None, 3), dtype="float32"),
53
  "metadata": datasets.Sequence(datasets.Value("float32"), length=38),
54
  "label": datasets.Value("string"),
55
  }
@@ -99,29 +101,6 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
99
 
100
  return np.vstack((wavelength, specflux, ivar)).T
101
 
102
- @staticmethod
103
- def _transform_metadata(row, info):
104
- row_copy = row.copy(deep=True)
105
-
106
- for transformation_type, value in info["metadata_func"].items():
107
- if transformation_type == "abs":
108
- for col in value:
109
- row_copy[col] = (
110
- row_copy[col] - 10 + 5 * np.log10(np.where(row_copy["parallax"] <= 0, 1, row_copy["parallax"]))
111
- )
112
- elif transformation_type == "cos":
113
- for col in value:
114
- row_copy[col] = np.cos(np.radians(row_copy[col]))
115
- elif transformation_type == "sin":
116
- for col in value:
117
- row_copy[col] = np.sin(np.radians(row_copy[col]))
118
- elif transformation_type == "log":
119
- for col in value:
120
- row_copy[col] = np.log10(row_copy[col])
121
-
122
- row_copy = (row_copy - info["mean"]) / info["std"]
123
- return row_copy
124
-
125
  def _split_generators(self, dl_manager):
126
  """Returns SplitGenerators for train, val, and test."""
127
 
@@ -150,7 +129,7 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
150
 
151
  # Load photometry and init reader
152
  photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
153
- self.reader_v = ParallelZipFile(photometry_path)
154
 
155
  return [
156
  datasets.SplitGenerator(
@@ -181,29 +160,10 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
181
  with open(info_path) as f:
182
  info = json.loads(f.read())
183
 
184
- for i, (idx, row) in enumerate(df.iterrows()):
185
  photometry = self._get_photometry(row["name"])
186
  spectra = self._get_spectra(spectra_files[row["spec_filename"]])
187
 
188
- metadata = row[info["all_cols"]]
189
- # metadata_norm = self._transform_metadata(metadata, info)
190
-
191
- # yield idx, {
192
- # "photometry": photometry,
193
- # "spectra": spectra,
194
- # "metadata": {
195
- # "original": {
196
- # "photometry": metadata[info["photo_cols"]].to_dict(),
197
- # "metadata": metadata[info["meta_cols"]].to_dict()
198
- # },
199
- # "transformed": {
200
- # "photometry": metadata_norm[info["photo_cols"]].to_dict(),
201
- # "metadata": metadata_norm[info["meta_cols"]].to_dict()
202
- # }
203
- # },
204
- # "label": row["target"],
205
- # }
206
-
207
  yield idx, {
208
  "photometry": photometry,
209
  "spectra": spectra,
 
1
+ import os
2
  from io import BytesIO
3
  import datasets
4
  import pandas as pd
 
6
  import json
7
  from astropy.io import fits
8
 
9
+ print('what what')
10
+ from .utils.parallelzipfile import ParallelZipFile as ZipFile
11
 
12
  _DESCRIPTION = (
13
  "AstroM3 is a time-series astronomy dataset containing photometry, spectra, "
 
50
  description=_DESCRIPTION,
51
  features=datasets.Features(
52
  {
53
+ "photometry": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
54
+ "spectra": datasets.Sequence(datasets.Sequence(datasets.Value("float32"), length=3)),
55
  "metadata": datasets.Sequence(datasets.Value("float32"), length=38),
56
  "label": datasets.Value("string"),
57
  }
 
101
 
102
  return np.vstack((wavelength, specflux, ivar)).T
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  def _split_generators(self, dl_manager):
105
  """Returns SplitGenerators for train, val, and test."""
106
 
 
129
 
130
  # Load photometry and init reader
131
  photometry_path = dl_manager.download(f"{_URL}/photometry.zip")
132
+ self.reader_v = ZipFile(photometry_path)
133
 
134
  return [
135
  datasets.SplitGenerator(
 
160
  with open(info_path) as f:
161
  info = json.loads(f.read())
162
 
163
+ for idx, row in df.iterrows():
164
  photometry = self._get_photometry(row["name"])
165
  spectra = self._get_spectra(spectra_files[row["spec_filename"]])
166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  yield idx, {
168
  "photometry": photometry,
169
  "spectra": spectra,
spectra.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82314a30eea81ca561ba69873140cb19c6484fc4433e610029de9b6419e4ec68
3
+ size 1152905965