jobtitles / dataset_creation.py
ArielUW's picture
Add jobtitles dataset.
4e78b8f verified
import os
import pandas as pd
from huggingface_hub import HfApi, Repository
import shutil
def merge_and_sort(tables, output_files, output_folder, columns):
frames = []
for table in tables:
try:
frames.append(pd.read_csv(table, sep=";"))
print(f"File '{table}' successfully prepared for merging.")
except:
try:
frames.append(pd.read_csv(table, sep=","))
print(f"File '{table}' successfully prepared for merging.")
except:
try:
frames.append(pd.read_csv(table, sep="\t"))
print(f"File '{table}' successfully prepared for merging.")
except Exception as e:
print(f"Unable to merge file '{table}': {e}")
full_df = pd.concat(frames).filter(items=columns,axis=1)
zero = full_df.loc[(full_df['type'] == 0)]
zero = zero.sample(frac = 1) # shuffling examples
zero.to_csv(f"{output_folder}/{output_files[0]}", index=False)
one = full_df.loc[(full_df['type'] == 1)]
one = one.sample(frac = 1) # shuffling examples
one.to_csv(f"{output_folder}/{output_files[1]}", index=False)
def validate_csv(file_path: str, columns):
"""
Validates the structure of the CSV file to ensure it contains valid columns.
"""
df = pd.read_csv(file_path, sep=',')
required_columns = set(columns)
if not required_columns.issubset(df.columns):
raise ValueError(f"The TSV file must contain the following columns: {required_columns}")
print(f"CSV file '{file_path}' is valid with {len(df)} rows.")
def create_splits(output_folder, output_files, dataset_name, dataset_structure):
zero = pd.read_csv(f"{output_folder}/{output_files[0]}")
one = pd.read_csv(f"{output_folder}/{output_files[1]}")
for split, structure in dataset_structure.items():
try:
for key, value in structure.items():
if key=="zero":
rows_zero = zero.iloc[:value]
zero.drop(rows_zero.index, inplace=True)
elif key=="one":
rows_one = one.iloc[:value]
one.drop(rows_one.index, inplace=True)
else:
print(f"Invalid key in dataset structure: {key} in f{split} part.")
df = pd.concat([rows_zero, rows_one])
df = df.sample(frac = 1) # shuffling examples
print(df)
df.to_csv(f"{output_folder}/{dataset_name}/{split}.csv", index=False)
print(f"Created {split} split.")
except Exception as e:
print(f"Failure while creating the {split} splt: {e}")
def push_dataset_to_HF(folder, dataset_name, user):
try:
# Initialize Hugging Face Hub API
api = HfApi()
repo_id = f"{user}/{dataset_name}"
# Specify repo_type="dataset" here
api.create_repo(
repo_id=repo_id,
exist_ok=True,
repo_type="dataset"
)
# Push files to Hub
api.upload_folder(
folder_path=folder,
repo_id=repo_id,
repo_type="dataset",
commit_message=f"Add {dataset_name} dataset."
)
print(f"Dataset '{folder}/{dataset_name}' has been uploaded to {user}'s HuggingFace repo")
except Exception as e:
print(f"Error occurred during upload: {str(e)}")
raise
if __name__=="__main__":
os.chdir="/Users/arieldrozd/Downloads/IMLLA-FinalProject"
tables = ["./examples_monika/final_table_together.csv", "./cleaned_examples_ariel/nkjp_ariel.csv", "./cleaned_examples_ariel/wikipedia.csv", "cleaned_examples_ariel/nowela.csv"]
output_folder = "./dataset"
output_files = ["zero.csv", "one.csv"]
dataset_name = "jobtitles"
columns=['type', 'source_sentence', 'target_sentence']
merge_and_sort(tables, output_files, output_folder, columns)
for file in output_files:
validate_csv(f"{output_folder}/{file}", columns)
#test split -> zero: 250, one: 250
#validation split -> zero: 500, one: 50
#training split -> zero: 4221, one: 610 -> actually: all that is left
dataset_structure = {"test":{"zero":250,"one":250}, "validation":{"zero":500,"one":50}, "train":{"zero":4221,"one":610}}
final_dataset = create_splits(output_folder, output_files, dataset_name, dataset_structure)
user = "ArielUW"
push_dataset_to_HF(output_folder, dataset_name, user)