Datasets:
Mintaka first upload
Browse files- mintaka.py +178 -0
- test_mintaka.py +16 -0
mintaka.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
|
| 3 |
+
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import datasets
|
| 7 |
+
|
| 8 |
+
logger = datasets.logging.get_logger(__name__)
|
| 9 |
+
|
| 10 |
+
_DESCRIPTION = """\
|
| 11 |
+
Mintaka is a complex, natural, and multilingual dataset designed for experimenting with end-to-end
|
| 12 |
+
question-answering models. Mintaka is composed of 20,000 question-answer pairs collected in English,
|
| 13 |
+
annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian,
|
| 14 |
+
Japanese, Portuguese, and Spanish for a total of 180,000 samples.
|
| 15 |
+
Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions,
|
| 16 |
+
which were naturally elicited from crowd workers.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_CITATION = """\
|
| 20 |
+
@inproceedings{sen-etal-2022-mintaka,
|
| 21 |
+
title = "Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
|
| 22 |
+
author = "Sen, Priyanka and
|
| 23 |
+
Aji, Alham Fikri and
|
| 24 |
+
Saffari, Amir",
|
| 25 |
+
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
|
| 26 |
+
month = oct,
|
| 27 |
+
year = "2022",
|
| 28 |
+
address = "Gyeongju, Republic of Korea",
|
| 29 |
+
publisher = "International Committee on Computational Linguistics",
|
| 30 |
+
url = "https://aclanthology.org/2022.coling-1.138",
|
| 31 |
+
pages = "1604--1619"
|
| 32 |
+
}
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_LICENSE = """\
|
| 36 |
+
Copyright Amazon.com Inc. or its affiliates.
|
| 37 |
+
Attribution 4.0 International
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
_TRAIN_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_train.json"
|
| 41 |
+
_DEV_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_dev.json"
|
| 42 |
+
_TEST_URL = "https://raw.githubusercontent.com/amazon-science/mintaka/main/data/mintaka_test.json"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
_LANGUAGES = ['en', 'ar', 'de', 'ja', 'hi', 'pt', 'es', 'it', 'fr']
|
| 46 |
+
|
| 47 |
+
_ALL = "all"
|
| 48 |
+
|
| 49 |
+
class Mintaka(datasets.GeneratorBasedBuilder):
|
| 50 |
+
"""Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering"""
|
| 51 |
+
|
| 52 |
+
BUILDER_CONFIGS = [
|
| 53 |
+
datasets.BuilderConfig(
|
| 54 |
+
name = name,
|
| 55 |
+
version = datasets.Version("1.0.0"),
|
| 56 |
+
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering for {name}",
|
| 57 |
+
) for name in _LANGUAGES
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
BUILDER_CONFIGS.append(datasets.BuilderConfig(
|
| 61 |
+
name = _ALL,
|
| 62 |
+
version = datasets.Version("1.0.0"),
|
| 63 |
+
description = f"Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering",
|
| 64 |
+
))
|
| 65 |
+
|
| 66 |
+
DEFAULT_CONFIG_NAME = 'en'
|
| 67 |
+
|
| 68 |
+
def _info(self):
|
| 69 |
+
return datasets.DatasetInfo(
|
| 70 |
+
description=_DESCRIPTION,
|
| 71 |
+
features=datasets.Features(
|
| 72 |
+
{
|
| 73 |
+
"id": datasets.Value("string"),
|
| 74 |
+
"lang": datasets.Value("string"),
|
| 75 |
+
"question": datasets.Value("string"),
|
| 76 |
+
"answerText": datasets.Value("string"),
|
| 77 |
+
"category": datasets.Value("string"),
|
| 78 |
+
"complexityType": datasets.Value("string"),
|
| 79 |
+
"questionEntity": [{
|
| 80 |
+
"name": datasets.Value("string"),
|
| 81 |
+
"entityType": datasets.Value("string"),
|
| 82 |
+
"label": datasets.Value("string"),
|
| 83 |
+
"mention": datasets.Value("string"),
|
| 84 |
+
"span": [datasets.Value("int32")],
|
| 85 |
+
}],
|
| 86 |
+
"answerEntity": [{
|
| 87 |
+
"name": datasets.Value("string"),
|
| 88 |
+
"label": datasets.Value("string"),
|
| 89 |
+
}]
|
| 90 |
+
},
|
| 91 |
+
),
|
| 92 |
+
supervised_keys=None,
|
| 93 |
+
citation=_CITATION,
|
| 94 |
+
license=_LICENSE,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def _split_generators(self, dl_manager):
|
| 98 |
+
return [
|
| 99 |
+
datasets.SplitGenerator(
|
| 100 |
+
name=datasets.Split.TRAIN,
|
| 101 |
+
gen_kwargs={
|
| 102 |
+
"file": dl_manager.download_and_extract(_TRAIN_URL),
|
| 103 |
+
"lang": self.config.name,
|
| 104 |
+
}
|
| 105 |
+
),
|
| 106 |
+
datasets.SplitGenerator(
|
| 107 |
+
name=datasets.Split.VALIDATION,
|
| 108 |
+
gen_kwargs={
|
| 109 |
+
"file": dl_manager.download_and_extract(_DEV_URL),
|
| 110 |
+
"lang": self.config.name,
|
| 111 |
+
}
|
| 112 |
+
),
|
| 113 |
+
datasets.SplitGenerator(
|
| 114 |
+
name=datasets.Split.TEST,
|
| 115 |
+
gen_kwargs={
|
| 116 |
+
"file": dl_manager.download_and_extract(_TEST_URL),
|
| 117 |
+
"lang": self.config.name,
|
| 118 |
+
}
|
| 119 |
+
),
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
def _generate_examples(self, file, lang):
|
| 123 |
+
if lang == _ALL:
|
| 124 |
+
langs = _LANGUAGES
|
| 125 |
+
else:
|
| 126 |
+
langs = [lang]
|
| 127 |
+
|
| 128 |
+
key_ = 0
|
| 129 |
+
|
| 130 |
+
logger.info("⏳ Generating examples from = %s", ", ".join(lang))
|
| 131 |
+
|
| 132 |
+
with open(file, encoding='utf-8') as json_file:
|
| 133 |
+
data = json.load(json_file)
|
| 134 |
+
for sample in data:
|
| 135 |
+
for lang in langs:
|
| 136 |
+
questionEntity = [
|
| 137 |
+
{
|
| 138 |
+
"name": str(qe["name"]),
|
| 139 |
+
"entityType": qe["entityType"],
|
| 140 |
+
"label": qe["label"] if "label" in qe else "",
|
| 141 |
+
"mention": qe["mention"],
|
| 142 |
+
"span": qe["span"],
|
| 143 |
+
} for qe in sample["questionEntity"]
|
| 144 |
+
]
|
| 145 |
+
|
| 146 |
+
answers = []
|
| 147 |
+
if sample['answer']["answerType"] == "entity" and sample['answer']['answer'] is not None:
|
| 148 |
+
answers = sample['answer']['answer']
|
| 149 |
+
elif sample['answer']["answerType"] == "numerical" and "supportingEnt" in sample["answer"]:
|
| 150 |
+
answers = sample['answer']['supportingEnt']
|
| 151 |
+
|
| 152 |
+
def get_label(labels, lang):
|
| 153 |
+
if lang in labels:
|
| 154 |
+
return labels[lang]
|
| 155 |
+
if 'en' in labels:
|
| 156 |
+
return labels['en']
|
| 157 |
+
return ""
|
| 158 |
+
|
| 159 |
+
answerEntity = [
|
| 160 |
+
{
|
| 161 |
+
"name": str(ae["name"]),
|
| 162 |
+
"label": get_label(ae["label"], lang),
|
| 163 |
+
} for ae in answers
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
yield key_, {
|
| 167 |
+
"id": sample["id"],
|
| 168 |
+
"lang": lang,
|
| 169 |
+
"question": sample["question"] if lang == 'en' else sample['translations'][lang],
|
| 170 |
+
"answerText": sample["answer"]["mention"],
|
| 171 |
+
"category": sample["category"],
|
| 172 |
+
"complexityType": sample["complexityType"],
|
| 173 |
+
"questionEntity": questionEntity,
|
| 174 |
+
"answerEntity": answerEntity,
|
| 175 |
+
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
key_ += 1
|
test_mintaka.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
|
| 3 |
+
source = "AmazonScience/mintaka"
|
| 4 |
+
|
| 5 |
+
#dataset = load_dataset(source, "all", download_mode="force_redownload")
|
| 6 |
+
dataset = load_dataset(source, "all")
|
| 7 |
+
|
| 8 |
+
print(dataset)
|
| 9 |
+
print(dataset["train"][0])
|
| 10 |
+
print(dataset["train"][0:10]['question'])
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
dataset = load_dataset(source, "en")
|
| 14 |
+
dataset = load_dataset(source, "ar")
|
| 15 |
+
|
| 16 |
+
|