Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -11,7 +11,8 @@ pretty_name: 'RobustAD: A Realworld Anomaly Detection Dataset for Robustness '
|
|
| 11 |
size_categories:
|
| 12 |
- 1K<n<10K
|
| 13 |
---
|
| 14 |
-
#
|
|
|
|
| 15 |
|
| 16 |
RobustAD, specifically designed to evaluate the robustness of anomaly detection models in real-world scenarios. RobustAD features a curated dataset of defect detection images with meticulously controlled distribution shifts across multiple dimensions relevant to practical applications and more closely mirrors real-world deployment scenarios.
|
| 17 |
RobustAD is designed to cover inspection challenges across multiple industries to ensure the diversity of use cases and
|
|
@@ -31,25 +32,47 @@ localization and classification tasks where as piled packets subset is only defi
|
|
| 31 |
|
| 32 |
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
For more details, refer to this paper: COMING SOON!
|
| 37 |
-
The three sub-datasets and the defects covered in each sub-dataset are listed below
|
| 38 |
|
| 39 |
|
| 40 |
|
| 41 |
-
#How to Use
|
| 42 |
-
TBD
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
The RobustAD dataset is released under the Creative Commons license cc-by-4.0.
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
COMING SOON!
|
| 51 |
|
| 52 |
|
| 53 |
-
|
| 54 |
|
| 55 |
[email protected] (Latha Pemula) | [email protected] (Dongqing Zhang) | [email protected] (Onkar Dabeer)
|
|
|
|
| 11 |
size_categories:
|
| 12 |
- 1K<n<10K
|
| 13 |
---
|
| 14 |
+
# RobustAD Dataset
|
| 15 |
+
## About the Dataset
|
| 16 |
|
| 17 |
RobustAD, specifically designed to evaluate the robustness of anomaly detection models in real-world scenarios. RobustAD features a curated dataset of defect detection images with meticulously controlled distribution shifts across multiple dimensions relevant to practical applications and more closely mirrors real-world deployment scenarios.
|
| 18 |
RobustAD is designed to cover inspection challenges across multiple industries to ensure the diversity of use cases and
|
|
|
|
| 32 |
|
| 33 |
|
| 34 |
|
| 35 |
+
## Dataset Card for RobustAD
|
| 36 |
|
| 37 |
For more details, refer to this paper: COMING SOON!
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
## How to Use
|
| 43 |
+
|
| 44 |
+
To load the dataset,
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
from datasets import load_dataset
|
| 48 |
+
from datasets import Image
|
| 49 |
+
|
| 50 |
+
#For piled bags dataset (Classification only)
|
| 51 |
+
piled_bags_dataset = load_dataset("imagefolder", data_files={"train": 'PiledBags/piled_bags_data_dir_train/*', "test0": 'PiledBags/piled_bags_data_dir_test0/*' , "test1": 'PiledBags/piled_bags_data_dir_test1/*' , "test2": 'PiledBags/piled_bags_data_dir_test2/*' , "test3": 'PiledBags/piled_bags_data_dir_test3/*' ,"test4": 'PiledBags/piled_bags_data_dir_test4/*', "test5": 'PiledBags/piled_bags_data_dir_test5/*'})
|
| 52 |
+
|
| 53 |
+
#For PCB dataset
|
| 54 |
+
pcb_dataset = load_dataset("imagefolder", data_files={"train": 'PCB/pcb_data_dir_train/*', "test0": 'PCB/pcb_data_dir_test0/*', "test1": 'PCB/pcb_data_dir_test1/*' , "test2": 'PCB/pcb_data_dir_test2/*' , "test3": 'PCB/pcb_data_dir_test3/*' ,"test4": 'PCB/pcb_data_dir_test4/*', "test5": 'PCB/pcb_data_dir_test5/*'}).cast_column("mask", Image(decode=True))
|
| 55 |
+
|
| 56 |
+
#For Metal Parts dataset
|
| 57 |
+
metal_parts_dataset = load_dataset("imagefolder", data_files={"train": 'MetalParts/metal_parts_data_dir_train/*', "test0": 'MetalParts/metal_parts_data_dir_test0/*' , "test1": 'MetalParts/metal_parts_data_dir_test1/*' , "test2": 'MetalParts/metal_parts_data_dir_test2/*' , "test3": 'MetalParts/metal_parts_data_dir_test3/*' ,"test4": 'MetalParts/metal_parts_data_dir_test4/*', "test5": 'MetalParts/metal_parts_data_dir_test5/*', "test6": 'MetalParts/metal_parts_data_dir_test6/*'}).cast_column("mask", Image(decode=True))
|
| 58 |
+
|
| 59 |
+
#metal_parts_dataset['train'][0] - Normal sample does not have a mask
|
| 60 |
+
#{'image': <PIL.Image.Image image mode=RGB size=2681x1500 at 0x7F66A1BE46D0>, 'label': 0, 'mask': None}
|
| 61 |
+
|
| 62 |
+
#metal_parts_dataset['train'][0] - Anomaly samples have a mask
|
| 63 |
+
{'image': <PIL.Image.Image image mode=RGB size=2681x1500 at 0x7F66A1B1EBC0>, 'label': 1, 'mask': <PIL.PngImagePlugin.PngImageFile image mode=L size=2681x1500 at 0x7F66A1BE7040>}
|
| 64 |
+
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## License Information
|
| 68 |
|
| 69 |
The RobustAD dataset is released under the Creative Commons license cc-by-4.0.
|
| 70 |
|
| 71 |
+
## Citation Information
|
| 72 |
|
| 73 |
COMING SOON!
|
| 74 |
|
| 75 |
|
| 76 |
+
## Contact
|
| 77 |
|
| 78 |
[email protected] (Latha Pemula) | [email protected] (Dongqing Zhang) | [email protected] (Onkar Dabeer)
|