|
|
|
|
|
|
|
import random |
|
import sys, os, pdb |
|
import json, math |
|
import datasets |
|
from datasets import load_dataset |
|
import csv |
|
|
|
random.seed(42) |
|
|
|
DATASETS = { |
|
"natural_language_understanding": [ |
|
"ATIS", "ATIS-NER", "BANKING77", "BANKING77-OOS", "CLINC-Single-Domain-OOS-banking", |
|
"CLINC-Single-Domain-OOS-credit_cards", "CLINC150", "DSTC8-SGD", "HWU64", "MIT-Movie", |
|
"MIT-Restaurant", "RESTAURANTS8K", "SNIPS", "SNIPS-NER", "TOP", "TOP-NER" |
|
], |
|
"task_oriented": [ |
|
"ABCD", "AirDialogue", "BiTOD", "CaSiNo", "CraigslistBargains", |
|
"Disambiguation", "DSTC2-Clean", "FRAMES", "GECOR", "HDSA-Dialog", |
|
"KETOD", "KVRET", "MetaLWOZ", "MS-DC", "MuDoCo", |
|
"MulDoGO", "MultiWOZ_2.1", "MULTIWOZ2_2", "SGD", "SimJointGEN", |
|
"SimJointMovie", "SimJointRestaurant", "STAR", "Taskmaster1", "Taskmaster2", |
|
"Taskmaster3", "WOZ2_0" |
|
], |
|
"dialogue_summarization": [ |
|
"AMI", "CRD3", "DialogSum", "ECTSum", "ICSI", |
|
"MediaSum", "QMSum", "SAMSum", "TweetSumm", "ConvoSumm", |
|
"SummScreen_ForeverDreaming", "SummScreen_TVMegaSite" |
|
], |
|
"conversational_recommendation": [ |
|
"Redial", "DuRecDial-2.0", "OpenDialKG", "SalesBot", |
|
], |
|
"open_domain": [ |
|
"chitchat-dataset", "ConvAI2", "AntiScam", "Empathetic", "HH-RLHF", |
|
"PLACES3.5", "Prosocial", "SODA" |
|
], |
|
"knowledge_grounded": [ |
|
"CompWebQ", "CoQA", "CoSQL", "DART", "FeTaQA", |
|
"GrailQA", "HybridQA", "MTOP", "MultiModalQA", "SParC", |
|
"Spider", "SQA", "ToTTo", "WebQSP", "WikiSQL", |
|
"WikiTQ", "wizard_of_internet", "wizard_of_wikipedia" |
|
], |
|
} |
|
|
|
class Test(object): |
|
def __init__(self): |
|
pass |
|
|
|
def test_single_dataset(self, data_name): |
|
|
|
dataset = load_dataset("Salesforce/dialogstudio", data_name, revision="download") |
|
dataset_size = { |
|
"train":0, |
|
"validation": 0, |
|
"test": 0, |
|
} |
|
for split in dataset: |
|
dataset_size[split] = len(dataset[split]) |
|
print(dataset_size) |
|
|
|
return dataset_size |
|
|
|
def test_all(self): |
|
with open("dataset_stats.csv", "w", newline="") as tf: |
|
writer = csv.writer(tf) |
|
writer.writerow(["Category", "Data_name", "train", "val", "test"]) |
|
for cat, dataset_list in DATASETS.items(): |
|
for data_name in dataset_list: |
|
dataset_size = self.test_single_dataset(data_name=data_name) |
|
writer.writerow([cat, data_name] + list(dataset_size.values())) |
|
|
|
|
|
def main(): |
|
test = Test() |
|
|
|
|
|
|
|
|
|
test.test_single_dataset("Taskmaster2") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|