AdaptLLM commited on
Commit
b608256
·
verified ·
1 Parent(s): 834d840

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ configs:
3
+ - config_name: RCT
4
+ data_files:
5
+ - split: train
6
+ path: train.jsonl
7
+ - split: validation
8
+ path: dev.jsonl
9
+ - split: test
10
+ path: test.jsonl
11
+ task_categories:
12
+ - text-classification
13
+ - question-answering
14
+ - zero-shot-classification
15
+ language:
16
+ - en
17
+ tags:
18
+ - medical
19
+ - chemistry
20
+ - biology
21
+ ---
22
+
23
+ # Domain Adaptation of Large Language Models
24
+ This repo contains the **RCT dataset** used in our **ICLR 2024** paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co/papers/2309.09530).
25
+
26
+ We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
27
+
28
+ ### 🤗 We are currently working hard on developing models across different domains, scales and architectures! Please stay tuned! 🤗
29
+
30
+ **************************** **Updates** ****************************
31
+ * 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
32
+ * 2024/1/16: 🎉 Our [research paper](https://huggingface.co/papers/2309.09530) has been accepted by ICLR 2024!!!🎉
33
+ * 2023/12/19: Released our [13B base models](https://huggingface.co/AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B.
34
+ * 2023/12/8: Released our [chat models](https://huggingface.co/AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B.
35
+ * 2023/9/18: Released our [paper](https://huggingface.co/papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co/datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co/AdaptLLM/law-LLM) developed from LLaMA-1-7B.
36
+
37
+
38
+ ## Domain-Specific LLaMA-1
39
+ ### LLaMA-1-7B
40
+ In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co/AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co/AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co/AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:
41
+
42
+ <p align='center'>
43
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
44
+ </p>
45
+
46
+ ### LLaMA-1-13B
47
+ Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co/AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co/AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co/AdaptLLM/law-LLM-13B).
48
+
49
+ ## Domain-Specific LLaMA-2-Chat
50
+ Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co/blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co/AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co/AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co/AdaptLLM/law-chat)
51
+
52
+ ## Domain-Specific Tasks
53
+
54
+ ### Pre-templatized/Formatted Testing Splits
55
+ To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co/datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co/datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co/datasets/AdaptLLM/law-tasks).
56
+
57
+ **Note:** those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
58
+
59
+ ### Raw Datasets
60
+ We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages:
61
+ - [ChemProt](https://huggingface.co/datasets/AdaptLLM/ChemProt)
62
+ - [RCT](https://huggingface.co/datasets/AdaptLLM/RCT)
63
+ - [ConvFinQA](https://huggingface.co/datasets/AdaptLLM/ConvFinQA)
64
+ - [FiQA_SA](https://huggingface.co/datasets/AdaptLLM/FiQA_SA)
65
+ - [Headline](https://huggingface.co/datasets/AdaptLLM/Headline)
66
+ - [NER](https://huggingface.co/datasets/AdaptLLM/NER)
67
+
68
+ The other datasets used in our paper have already been available in huggingface, so you can directly load them with the following code
69
+ ```python
70
+ from datasets import load_dataset
71
+
72
+ # MQP:
73
+ dataset = load_dataset('medical_questions_pairs')
74
+
75
+ # PubmedQA:
76
+ dataset = load_dataset('bigbio/pubmed_qa')
77
+
78
+ # SCOTUS
79
+ dataset = load_dataset("lex_glue", 'scotus')
80
+
81
+ # CaseHOLD
82
+ dataset = load_dataset("lex_glue", 'case_hold')
83
+
84
+ # UNFAIR-ToS
85
+ dataset = load_dataset("lex_glue", 'unfair_tos')
86
+ ```
87
+
88
+ ## Citation
89
+ If you find our work helpful, please cite us:
90
+ ```bibtex
91
+ @inproceedings{
92
+ cheng2024adapting,
93
+ title={Adapting Large Language Models via Reading Comprehension},
94
+ author={Daixuan Cheng and Shaohan Huang and Furu Wei},
95
+ booktitle={The Twelfth International Conference on Learning Representations},
96
+ year={2024},
97
+ url={https://openreview.net/forum?id=y886UXPEZ0}
98
+ }
99
+ ```
100
+
101
+ and the original dataset:
102
+ ```bibtex
103
+ @inproceedings{RCT,
104
+ author = {Franck Dernoncourt and
105
+ Ji Young Lee},
106
+ title = {PubMed 200k {RCT:} a Dataset for Sequential Sentence Classification
107
+ in Medical Abstracts},
108
+ booktitle = {{IJCNLP}},
109
+ pages = {308--313},
110
+ publisher = {Asian Federation of Natural Language Processing},
111
+ year = {2017}
112
+ }
113
+ ```