diff --git "a/pre_tokenized/pre-tokenize.ipynb" "b/pre_tokenized/pre-tokenize.ipynb" --- "a/pre_tokenized/pre-tokenize.ipynb" +++ "b/pre_tokenized/pre-tokenize.ipynb" @@ -1 +1 @@ -{"cells":[{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":1365,"status":"ok","timestamp":1731500607553,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"hDoDQOpWUu_8","outputId":"f132b64d-da0a-464b-816a-75a484d46541"},"outputs":[{"output_type":"stream","name":"stdout","text":["/content/drive/MyDrive/Research/datasets/hf_datasets\n"]}],"source":["%cd /content/drive/MyDrive/Research/datasets/hf_datasets/"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vfKgZNKh0bcw","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1731373007922,"user_tz":-345,"elapsed":17273,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"4f4e86be-f12a-476c-af3d-f0619689ea14"},"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/480.6 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m \u001b[32m471.0/480.6 kB\u001b[0m \u001b[31m16.1 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/116.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[0m"]}],"source":["!pip install datasets --quiet"]},{"cell_type":"markdown","metadata":{"id":"kEPBGuHzEkJV"},"source":["## Load dataset"]},{"cell_type":"code","source":["# it loads entire dataset first\n","from datasets import load_dataset\n","from google.colab import userdata\n","token=userdata.get('HUGGING_FACE_BEARER')\n","\n","# Load nepberta configuration\n","nepberta_data = load_dataset(\"Aananda-giri/nepali_llm_datasets\", name=\"nepberta\", token=token)"],"metadata":{"id":"0TNAwL6ofKP0"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"Jgu2vyEmEh7J"},"source":["## Tokenize"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"_qvWzkow3MuH","outputId":"8e6b9932-9b71-4ef0-c890-eb86657b10b2","executionInfo":{"status":"ok","timestamp":1731394491039,"user_tz":-345,"elapsed":2070680,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}}},"outputs":[{"output_type":"stream","name":"stdout","text":["185... tokenized... df created:...saved!\n","186... tokenized... df created:...saved!\n","187... tokenized... df created:...saved!\n","188... tokenized... df created:...saved!\n","189... tokenized... df created:...saved!\n","190... tokenized... df created:...saved!\n","191... tokenized... df created:...saved!\n","192... tokenized... df created:...saved!\n","193... tokenized... df created:...saved!\n","194... tokenized... df created:...saved!\n","195... tokenized... df created:...saved!\n","196... tokenized... df created:...saved!\n","197... tokenized... df created:...saved!\n","198... tokenized... df created:...saved!\n","199... tokenized... df created:...saved!\n","200... tokenized... df created:...saved!\n","201... tokenized... df created:...saved!\n","202... tokenized... df created:...saved!\n","203... tokenized... df created:...saved!\n","204... tokenized... df created:...saved!\n","205... tokenized... df created:...saved!\n","206... tokenized... df created:...saved!\n","207... tokenized... df created:...saved!\n","208... tokenized... df created:...saved!\n","209... tokenized... df created:...saved!\n","210... tokenized... df created:...saved!\n","211... tokenized... df created:...saved!\n","212... tokenized... df created:...saved!\n","213... tokenized... df created:...saved!\n","214... tokenized... df created:...saved!\n","215... tokenized... df created:...saved!\n","216... tokenized... df created:...saved!\n","217... tokenized... df created:...saved!\n","218... tokenized... df created:...saved!\n","219... tokenized... df created:...saved!\n","220... tokenized... df created:...saved!\n","221... tokenized... df created:...saved!\n","222... tokenized... df created:...saved!\n","223... tokenized... df created:...saved!\n","224... tokenized... df created:...saved!\n","225... tokenized... df created:...saved!\n","226... tokenized... df created:...saved!\n","227... tokenized... df created:...saved!\n","228... tokenized... df created:...saved!\n","229... tokenized... df created:...saved!\n","230... tokenized... df created:...saved!\n"]}],"source":["import pandas as pd\n","import pyarrow as pa\n","from transformers import PreTrainedTokenizerFast\n","\n","# Load the tokenizer\n","tokenizer = PreTrainedTokenizerFast.from_pretrained(\"Aananda-giri/NepaliBPE\")\n","\n","train_data = nepberta_data['train']\n","test_data = nepberta_data['test']\n","\n","# Initialize lists to collect input_ids and target_ids\n","input_ids_list = []\n","target_ids_list = []\n","\n","import pyarrow.parquet as pq\n","import pandas as pd\n","\n","\n","import pyarrow.parquet as pq\n","import pandas as pd\n","import pyarrow as pa\n","\n","def prepare_dataset(txt, tokenizer, max_length, stride, index):\n"," input_ids = []\n"," target_ids = []\n"," save_file = f\"pre_tokenized/nepberta_data_{index}.parquet\"\n"," token_ids = tokenizer.encode(txt)\n","\n"," for i in range(0, len(token_ids) - max_length, stride):\n"," input_chunk = token_ids[i:i + max_length]\n"," target_chunk = token_ids[i + 1: i + max_length + 1]\n","\n"," input_ids.append(input_chunk)\n"," target_ids.append(target_chunk)\n","\n"," print('... tokenized', end='')\n"," df = pd.DataFrame({\n"," \"input_ids\": input_ids,\n"," \"target_ids\": target_ids\n"," })\n"," print('... df created', end='')\n","\n"," # Convert DataFrame to pyarrow Table\n"," table = pa.Table.from_pandas(df)\n","\n"," # # Try to read existing Parquet file\n"," # try:\n"," # existing_table = pq.read_table(save_file)\n"," # # Concatenate existing table with new table\n"," # table = pa.concat_tables([existing_table, table])\n"," # except FileNotFoundError:\n"," # print('file not found') # File does not exist, so just write the new table\n","\n"," # Write table to Parquet file\n"," pq.write_table(table, save_file, compression='snappy')\n"," print(':...saved!')\n","\n","# Writing each batch to the Parquet file\n","# i=0\n","# for data in train_data:\n","# # combine two chunks\n","# i+=1;print(i, end='')\n","# prepare_dataset(data['text'], tokenizer, max_length=1024, stride=1024, index=i)\n","i=len(train_data)\n","for data in test_data:\n"," # combine two chunks\n"," i+=1;print(i, end='')\n"," prepare_dataset(data['text'], tokenizer, max_length=1024, stride=1024, index=i)"]},{"cell_type":"code","source":["len(train_data) + len(test_data)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"xJVZWDjXB2sF","executionInfo":{"status":"ok","timestamp":1731395569536,"user_tz":-345,"elapsed":396,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"d9dbd062-b168-45ff-c969-9b0c120ab562"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["230"]},"metadata":{},"execution_count":10}]},{"cell_type":"code","source":["# Merge the .parquet files generated\n","import pyarrow.parquet as pq\n","import glob\n","import pyarrow as pa\n","\n","# Specify the input folder and output file\n","input_folder = 'pre_tokenized'\n","output_file = 'nepberta.parquet'\n","\n","# Get a list of all Parquet files in the input folder\n","parquet_files = glob.glob(f'{input_folder}/*.parquet')\n","print(len(parquet_files))\n","\n","# Write each file to the output file one at a time\n","writer = None\n","i=0\n","for file in parquet_files:\n"," i+=1;print(i)\n"," table = pq.read_table(file)\n"," if writer is None:\n"," # Initialize the writer with the schema of the first file\n"," writer = pq.ParquetWriter(output_file, table.schema)\n"," writer.write_table(table)\n","\n","# Close the writer\n","if writer:\n"," writer.close()\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"WMsVPT7uQECp","outputId":"e06b6eed-dd01-413b-bccc-fed9856ddc09"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["1\n","1\n"]}]},{"cell_type":"code","source":["# Delete the original files (after merging)\n","import os\n","for file in parquet_files:\n"," try:\n"," os.remove(file)\n"," print(f\"Deleted file: {file}\")\n"," except OSError as e:\n"," print(f\"Error deleting file: {file} - {e.strerror}\")"],"metadata":{"id":"cL6mGBtuXrY4"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["## load dataset"],"metadata":{"id":"8IIceh5Xju38"}},{"cell_type":"code","source":["!ls pre_tokenized"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"KjoHP0J-isVA","executionInfo":{"status":"ok","timestamp":1731401019250,"user_tz":-345,"elapsed":430,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"c0a215ed-e592-4e93-fed7-60af75afc866"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["nepberta.parquet pre-tokenize.ipynb\n"]}]},{"cell_type":"markdown","source":["### problem\n","this code works but uploading same file to huggingface and loading using below code is giving error: UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe0 in position 7: invalid continuation byte\n","\n","```\n","%cd /content/drive/MyDrive/Research/datasets/hf_datasets/\n","!pip install datasets --quiet\n","\n","from datasets import load_dataset\n","ds = load_dataset('parquet', data_files = 'nepberta.parquet')\n","```\n","\n","### Solution1 (works): Save this dataset to huggingface and try loading that instead"],"metadata":{"id":"W_iPD0fSJWia"}},{"cell_type":"code","execution_count":16,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":99,"referenced_widgets":["9d705e140065412b8d9da4e750d97f8b","8bc1e2ec69a24281addf3ca221ff7229","193f1640551b45888fa01b883ebd6e9c","09a766b09f044741b0bc46d0da218665","d8efd4a11f98451388b23e298f001870","c5256180f643417aa7a621e702c94137","67de913d72774f558fd19487902ba9f6","f8420f2f8db241829817de89aee57afc","5bdf42e14e444a7a83f8ef74bd475691","4edae436e8f040f4af19c3feb8bbba52","d08373b220a44d8abc68e5ceae532923","fdf78e573ca142ce82c9d8073a737b03","618dda0f436348fbba7218d23239471c","8e038037bed1435eb029d1bce9b7c071","8faae7e60ea14bfb935c1704053ee3e6","f327c08699084bd487eccf12bce9daf4","daf58dde6d2f48d4b8caa2d642733f4b","9ca3c27caf4c4a828d48244642885aa8","57c3445330634a37b77494d37ad86f79","cdb4397ce5e247d19c5ff735201ea662","c427a893a4ae4d6da1c173d49f642bc8","712034cd45e7411e80278ac399a300c0"]},"executionInfo":{"elapsed":152215,"status":"ok","timestamp":1731501587646,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"KijVIkUcBVmv","outputId":"6988a81e-fac2-4156-e770-f52f9e3500fc"},"outputs":[{"output_type":"stream","name":"stdout","text":["/content/drive/MyDrive/Research/datasets/hf_datasets\n"]},{"output_type":"display_data","data":{"text/plain":["Generating train split: 0 examples [00:00, ? examples/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"9d705e140065412b8d9da4e750d97f8b"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Loading dataset shards: 0%| | 0/26 [00:00 1854\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgenerator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1855\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmax_shard_size\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_bytes\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mmax_shard_size\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/text/text.py\u001b[0m in \u001b[0;36m_generate_tables\u001b[0;34m(self, files)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 73\u001b[0;31m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/lib/python3.10/codecs.py\u001b[0m in \u001b[0;36mdecode\u001b[0;34m(self, input, final)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuffer\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 322\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconsumed\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_buffer_decode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfinal\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 323\u001b[0m \u001b[0;31m# keep undecoded input until the next call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0x90 in position 7: invalid start byte","\nThe above exception was the direct cause of the following exception:\n","\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Load dataset with the configuration name and data_files specified in README.md\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"aananda-giri/nepali_llm_datasets\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pre_tokenized\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtoken\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtoken\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# # Split the dataset (80% train, 20% test)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2153\u001b[0m \u001b[0;31m# Download and prepare data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2154\u001b[0;31m builder_instance.download_and_prepare(\n\u001b[0m\u001b[1;32m 2155\u001b[0m \u001b[0mdownload_config\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_config\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mdownload_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36mdownload_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 922\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnum_proc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 923\u001b[0m \u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"num_proc\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnum_proc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 924\u001b[0;31m self._download_and_prepare(\n\u001b[0m\u001b[1;32m 925\u001b[0m \u001b[0mdl_manager\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdl_manager\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 926\u001b[0m \u001b[0mverification_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverification_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 999\u001b[0m \u001b[0;31m# Prepare split will record examples associated to the split\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1000\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_prepare_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplit_generator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1001\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1002\u001b[0m raise OSError(\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split\u001b[0;34m(self, split_generator, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m 1739\u001b[0m \u001b[0mjob_id\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1740\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1741\u001b[0;31m for job_id, done, content in self._prepare_split_single(\n\u001b[0m\u001b[1;32m 1742\u001b[0m \u001b[0mgen_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgen_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0m_prepare_split_args\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1743\u001b[0m ):\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)\u001b[0m\n\u001b[1;32m 1895\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1896\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1897\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"An error occurred while generating the dataset\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1898\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1899\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtotal_num_examples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtotal_num_bytes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_shards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_lengths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"]}]},{"cell_type":"code","source":["from datasets import get_dataset_config_names\n","\n","configs = get_dataset_config_names(\"aananda-giri/nepali_llm_datasets\")\n","print(configs)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":99,"referenced_widgets":["90254f0577f848fc966c911d0d779ac5","13e632f8ce87454582906ceeb38501e8","fd8b67762692424580a27469017e7a80","55ad6a5211a04c85b08793ed7ab7c4c6","6bed2afdbe1a425190e62d78229e1482","f4e61e9b753443bea821fddf73262943","2ab8491afcf7463c896cd3c5a345f4f7","3a5a1ffb4b1940fdb0f98b42491a7e78","234bf24920fe4fb687f2d3e294de09a7","a382602b27b14ff6b233f3746e998ed7","2f792e6d76c146cbb153c65e65e59bdc","5ee4e9fca5ec404a9fd9475c1df373e5","7551ebd603094f119ba9292456006755","4996f66ed61341d8b85e36efa4042c54","60d719b65e7741d68268b5cbf11cc2d5","3c0edd3c6dcf42ba9c69147ea69f9ab4","19fbf459c2814e269be66c6fb9658c74","bad9171f9d26424990b046c84b5c4976","d360aa81ab4149d8ae1cbb308270d96c","13d56acbbee640f0936eac43bb6ee2c7","3b819652ed644641b1ebc005fbf8031b","39af5e733d784c1cb55428a60c21d619"]},"id":"u6IZNZnkaxid","executionInfo":{"status":"ok","timestamp":1731398951474,"user_tz":-345,"elapsed":1091,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"fcad237b-5755-4cca-dca8-7bd49dd11094"},"execution_count":null,"outputs":[{"output_type":"display_data","data":{"text/plain":["Resolving data files: 0%| | 0/184 [00:00\n"," * index: is chunk index, useful for naming the output file\n"," '''\n"," input_ids = []\n"," target_ids = []\n"," os.makedirs('temp/', exist_ok=True)\n"," save_file = f\"temp/nepberta_{max_length}_{index}.parquet\"\n"," token_ids = tokenizer.encode(txt)\n","\n"," for i in range(0, len(token_ids) - max_length, stride):\n"," input_chunk = token_ids[i:i + max_length]\n"," target_chunk = token_ids[i + 1: i + max_length + 1]\n","\n"," input_ids.append(np.array(input_chunk))\n"," target_ids.append(np.array(target_chunk))\n","\n"," print('... tokenized', end='')\n"," df = pd.DataFrame({\n"," \"input_ids\": input_ids,\n"," \"target_ids\": target_ids\n"," })\n"," print('... df created', end='')\n","\n"," # Convert DataFrame to pyarrow Table\n"," table = pa.Table.from_pandas(df)\n","\n"," # # Try to read existing Parquet file\n"," # this overloads the ram and notebook crashes so saving as individual chunks as below and well merge later\n"," # try:\n"," # existing_table = pq.read_table(save_file)\n"," # # Concatenate existing table with new table\n"," # table = pa.concat_tables([existing_table, table])\n"," # except FileNotFoundError:\n"," # print('file not found') # File does not exist, so just write the new table\n","\n"," # Write table to Parquet file\n"," pq.write_table(table, save_file, compression='snappy')\n"," print(':...saved!')\n","\n","# Writing each batch to the Parquet file\n","# context_length=512 # model performance is not that good\n","context_length=512\n","\n","i=0\n","for data in train_data:\n"," # combine two chunks\n"," i+=1;print(i, end='')\n"," prepare_dataset(data['text'], tokenizer, max_length=context_length, stride=context_length, index=i)\n","\n","# now, iterating over test data\n","i=len(train_data)\n","for data in test_data:\n"," # combine two chunks\n"," i+=1;print(i, end='')\n"," prepare_dataset(data['text'], tokenizer, max_length=context_length, stride=context_length, index=i)"]},{"cell_type":"code","execution_count":11,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"xJVZWDjXB2sF","executionInfo":{"status":"ok","timestamp":1732361502596,"user_tz":-345,"elapsed":450,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"a8947f9d-cd41-46a9-f574-62fbdbd60999"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["230"]},"metadata":{},"execution_count":11}],"source":["len(train_data) + len(test_data)"]},{"cell_type":"code","source":["!ls temp"],"metadata":{"id":"ZY6AU8zqysBy","executionInfo":{"status":"ok","timestamp":1732361537826,"user_tz":-345,"elapsed":3172,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}}},"execution_count":14,"outputs":[]},{"cell_type":"code","source":["!ls pre_tokenized"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tiLWuFvjyz-R","executionInfo":{"status":"ok","timestamp":1732361548897,"user_tz":-345,"elapsed":18,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"a467ae19-0a93-4513-f6ae-c413ad19af11"},"execution_count":15,"outputs":[{"output_type":"stream","name":"stdout","text":["nepberta_1024.parquet nepberta_test_1024.parquet pre-tokenize.ipynb\n","nepberta_512_.parquet nepberta_train_1024.parquet\n"]}]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true},"id":"kmlbO9A7UkgX"},"outputs":[],"source":["# Merge the .parquet files generated\n","import pyarrow.parquet as pq\n","import glob\n","import pyarrow as pa\n","\n","# Specify the input folder and output file\n","input_folder = 'temp'\n","output_file = 'pre_tokenized/nepberta_' + str(context_length) + '.parquet'\n","\n","# Get a list of all Parquet files in the input folder\n","parquet_files = glob.glob(f'{input_folder}/*.parquet')\n","print(len(parquet_files))\n","\n","# Write each file to the output file one at a time\n","writer = None\n","i=0\n","for file in parquet_files:\n"," i+=1;print(i)\n"," table = pq.read_table(file)\n"," if writer is None:\n"," # Initialize the writer with the schema of the first file\n"," writer = pq.ParquetWriter(output_file, table.schema)\n"," writer.write_table(table)\n","\n","# Close the writer\n","if writer:\n"," writer.close()\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true},"id":"58xyYKAMUnVC"},"outputs":[],"source":["# Delete the original files (after merging)\n","import os\n","for file in parquet_files:\n"," try:\n"," os.remove(file)\n"," print(f\"Deleted file: {file}\")\n"," except OSError as e:\n"," print(f\"Error deleting file: {file} - {e.strerror}\")"]},{"cell_type":"markdown","metadata":{"id":"3hvwCDeE5TpE"},"source":["## upload to huggingface"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true},"id":"wAEa3ux5Up4W"},"outputs":[],"source":["from huggingface_hub import HfApi\n","api = HfApi()\n","\n","from google.colab import userdata\n","\n","\n","# Upload all the content from the local folder to your remote Space.\n","# By default, files are uploaded at the root of the repo\n","api.upload_folder(\n"," folder_path=\"./pre_tokenized\",\n"," path_in_repo=\"pre_tokenized\", # Upload to a specific folder\n"," repo_id=\"Aananda-giri/nepali_llm_datasets\",\n"," repo_type=\"dataset\",\n"," token=userdata.get('HF_TOKEN')\n",")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"li535Z3XUsyI"},"outputs":[],"source":["!huggingface-cli login"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":2129,"status":"ok","timestamp":1731429963124,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"HKIpjHBlWOrV","outputId":"f0c2e042-1d8d-44bc-c834-835de850883a"},"outputs":[{"name":"stdout","output_type":"stream","text":["Files correctly deleted from repo. Commit: https://huggingface.co/datasets/Aananda-giri/nepali_llm_datasets/commit/224c8917e09f74fb37fa4f953ab344c30fcf3e0d.\n"]}],"source":["# Delete files uploaded at ~/ location in huggingface\n","# !huggingface-cli repo-files Aananda-giri/nepali_llm_datasets delete pre-tokenize.ipynb --repo-type dataset\n","# !huggingface-cli repo-files Aananda-giri/nepali_llm_datasets delete pre_tokenized/nepberta.parquet --repo-type dataset"]},{"cell_type":"code","source":["print('hi')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"AcNEz_yGyeN-","executionInfo":{"status":"ok","timestamp":1732361453683,"user_tz":-345,"elapsed":682,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"}},"outputId":"ae4b6b28-e3c8-4d28-d699-a94524a5038f"},"execution_count":10,"outputs":[{"output_type":"stream","name":"stdout","text":["hi\n"]}]},{"cell_type":"markdown","metadata":{"id":"0zV7WbWKSwk9"},"source":["## update README.md"]},{"cell_type":"markdown","metadata":{"id":"ycpuLC5KZDbS"},"source":["refer to [../preprocess.ipynb](../preprocess.ipynb) to update README.md\n"]},{"cell_type":"markdown","metadata":{"id":"8IIceh5Xju38"},"source":["## load dataset from huggingface (problem/solution)"]},{"cell_type":"markdown","metadata":{"id":"MEpVX_UxwRSg"},"source":["#### solution3 (working)\n","* load parquet files remotely as mentioned [here](https://huggingface.co/datasets/Aananda-giri/nepali_llm_datasets/resolve/main/pre_tokenized/nepberta.parquet)\n","\n","* need to set environment variable: HF_TOKEN as:\n","\n","`os.environ['HF_TOKEN']`"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":303},"executionInfo":{"elapsed":594,"status":"ok","timestamp":1731510875369,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"_6rSNHtZwVgB","outputId":"b092e39a-6013-405a-9d92-c96b5c0f1c31"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"fd7dcd3bea4b481db3e018096959fdb7","version_major":2,"version_minor":0},"text/plain":["Loading dataset shards: 0%| | 0/26 [00:00 1854\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgenerator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1855\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmax_shard_size\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_num_bytes\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mmax_shard_size\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/text/text.py\u001b[0m in \u001b[0;36m_generate_tables\u001b[0;34m(self, files)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 73\u001b[0;31m \u001b[0mbatch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 74\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mbatch\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/lib/python3.10/codecs.py\u001b[0m in \u001b[0;36mdecode\u001b[0;34m(self, input, final)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuffer\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 322\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconsumed\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_buffer_decode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfinal\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 323\u001b[0m \u001b[0;31m# keep undecoded input until the next call\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0x90 in position 7: invalid start byte","\nThe above exception was the direct cause of the following exception:\n","\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdataset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_dataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"aananda-giri/nepali_llm_datasets\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"pre_tokenized\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtoken\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtoken\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/load.py\u001b[0m in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2153\u001b[0m \u001b[0;31m# Download and prepare data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2154\u001b[0;31m builder_instance.download_and_prepare(\n\u001b[0m\u001b[1;32m 2155\u001b[0m \u001b[0mdownload_config\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_config\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2156\u001b[0m \u001b[0mdownload_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdownload_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36mdownload_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, dl_manager, base_path, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 922\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnum_proc\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 923\u001b[0m \u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"num_proc\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnum_proc\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 924\u001b[0;31m self._download_and_prepare(\n\u001b[0m\u001b[1;32m 925\u001b[0m \u001b[0mdl_manager\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdl_manager\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 926\u001b[0m \u001b[0mverification_mode\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mverification_mode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 999\u001b[0m \u001b[0;31m# Prepare split will record examples associated to the split\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1000\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_prepare_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msplit_generator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mprepare_split_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1001\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mOSError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1002\u001b[0m raise OSError(\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split\u001b[0;34m(self, split_generator, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m 1739\u001b[0m \u001b[0mjob_id\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1740\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1741\u001b[0;31m for job_id, done, content in self._prepare_split_single(\n\u001b[0m\u001b[1;32m 1742\u001b[0m \u001b[0mgen_kwargs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgen_kwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0m_prepare_split_args\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1743\u001b[0m ):\n","\u001b[0;32m/usr/local/lib/python3.10/dist-packages/datasets/builder.py\u001b[0m in \u001b[0;36m_prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)\u001b[0m\n\u001b[1;32m 1895\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1896\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1897\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mDatasetGenerationError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"An error occurred while generating the dataset\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1898\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1899\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mtotal_num_examples\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtotal_num_bytes\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwriter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_features\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum_shards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshard_lengths\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"]}],"source":["dataset = load_dataset(\"aananda-giri/nepali_llm_datasets\", name=\"pre_tokenized\", token=token)\n","dataset"]},{"cell_type":"markdown","metadata":{"id":"49MkphA_u_bz"},"source":["#### Solution1 (not working): Save this dataset to huggingface and try loading that instead"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":99},"executionInfo":{"elapsed":152215,"status":"ok","timestamp":1731501587646,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"KijVIkUcBVmv","outputId":"6988a81e-fac2-4156-e770-f52f9e3500fc"},"outputs":[{"name":"stdout","output_type":"stream","text":["/content/drive/MyDrive/Research/datasets/hf_datasets\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"9d705e140065412b8d9da4e750d97f8b","version_major":2,"version_minor":0},"text/plain":["Generating train split: 0 examples [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"fdf78e573ca142ce82c9d8073a737b03","version_major":2,"version_minor":0},"text/plain":["Loading dataset shards: 0%| | 0/26 [00:00"]},"execution_count":116,"metadata":{},"output_type":"execute_result"}],"source":["from torch.utils.data import DataLoader\n","from datasets import load_dataset\n","import torch\n","\n","\n","def create_dataloader_v2(batch_size=4, shuffle=True, drop_last=True, num_workers=0, train_ratio=.9):\n"," '''\n"," modified.\n"," * dont need text data as input\n"," * dont need max_length and stride as input : they were set during preparing tokenized_datasets\n"," '''\n"," # Download the whole dataset\n"," base_url = \"https://huggingface.co/datasets/Aananda-giri/nepali_llm_datasets/resolve/main/pre_tokenized/\"\n"," data_files = {\"train\": base_url + \"nepberta.parquet\"}\n"," dataset = load_dataset(\"parquet\", data_files=data_files, split=\"train\")\n","\n"," print(dataset)\n","\n"," # and split it later\n"," dataset = dataset.train_test_split(train_size=train_ratio, seed=42)\n"," # Convert Hugging Face Dataset to PyTorch tensors (we can directly use the dataset as it is already in the correct format)\n"," dataset.set_format(type=\"torch\", columns=[\"input_ids\", \"target_ids\"]) # Directly set columns to torch tensors\n","\n","\n","\n"," # Define the custom collate_fn function\n"," def collate_fn(batch):\n"," # Extract the 'input_ids' and 'target_ids' from the batch and return them as a list of tensors\n"," input_ids = [item['input_ids'] for item in batch]\n"," target_ids = [item['target_ids'] for item in batch]\n","\n"," # Convert to tensors (if not already)\n"," input_ids_tensor = torch.stack(input_ids)\n"," target_ids_tensor = torch.stack(target_ids)\n","\n"," return [input_ids_tensor, target_ids_tensor]\n","\n","\n","\n"," # Creating the DataLoader for the 'train' split of the dataset with the custom collate_fn\n"," train_loader = DataLoader(\n"," dataset['train'],\n"," batch_size=batch_size,\n"," shuffle=shuffle,\n"," drop_last=drop_last,\n"," num_workers=num_workers,\n"," collate_fn=collate_fn\n"," )\n","\n"," test_loader = DataLoader(\n"," dataset['test'],\n"," batch_size=batch_size,\n"," shuffle=shuffle,\n"," drop_last=drop_last,\n"," num_workers=num_workers,\n"," collate_fn=collate_fn\n"," )\n","\n"," return train_loader, test_loader\n","\n","train_loader, test_loader = create_dataloader_v2(\n"," batch_size=4,\n"," shuffle=True,\n"," drop_last=True,\n"," num_workers=0,\n"," train_ratio=.9\n",")\n","train_loader"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":444,"status":"ok","timestamp":1731510944694,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"lYMzN8ny0OKl","outputId":"48c7bb7d-a6a9-4633-f140-6f49410db231"},"outputs":[{"name":"stdout","output_type":"stream","text":["175178\n","len(input_batch):4\n","len(input_batch[0]):1024\n","input_batch.numel(): 4096\n","type(input_batch): \n","\n","len(target_batch): 4\n","len(input_batch[0]):1024\n","target_batch.numel(): 4096\n","type(target_batch): \n"]}],"source":["print(len(train_loader))\n","\n","for input_batch, target_batch in train_loader:\n"," print(f\"len(input_batch):{len(input_batch)}\")\n"," print(f\"len(input_batch[0]):{len(input_batch[0])}\")\n"," print(f\"input_batch.numel(): {input_batch.numel()}\")\n"," print(f\"type(input_batch): {type(input_batch)}\", end='\\n\\n')\n","\n"," print(f\"len(target_batch): {len(target_batch)}\")\n"," print(f\"len(input_batch[0]):{len(target_batch[0])}\")\n"," print(f\"target_batch.numel(): {target_batch.numel()}\")\n"," print(f\"type(target_batch): {type(target_batch)}\")\n"," break\n"]},{"cell_type":"markdown","metadata":{"id":"5HwG5COk5Gxm"},"source":["### comparision with original dataloader by sebastian"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":219},"executionInfo":{"elapsed":47958,"status":"ok","timestamp":1731507176909,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"HJMOnCGC1S6Z","outputId":"033c2409-4b03-4170-9dc2-23b3cba324ca"},"outputs":[{"name":"stderr","output_type":"stream","text":["The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a one-time only operation. You can interrupt this and resume the migration later on by calling `transformers.utils.move_cache()`.\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"e6662b00edc847d8bae6da0d65634798","version_major":2,"version_minor":0},"text/plain":["0it [00:00, ?it/s]"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["text_chunk length: 19626198\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"57ad1e06ebf54f8eb8591fcdc23db5b0","version_major":2,"version_minor":0},"text/plain":["tokenizer_config.json: 0%| | 0.00/1.20k [00:00"]},"execution_count":56,"metadata":{},"output_type":"execute_result"}],"source":["from torch.utils.data import Dataset, DataLoader\n","from transformers import PreTrainedTokenizerFast\n","\n","# use streaming=True to avoid downloading entire dataset\n","nepberta_train = load_dataset(\"Aananda-giri/nepali_llm_datasets\", name=\"nepberta\", streaming=True)['train']\n","text_data = next(iter(nepberta_train))['text']\n","print(f\"text_chunk length: {len(text_data)}\")\n","\n","class GPTDatasetV1(Dataset):\n"," def __init__(self, txt, tokenizer, max_length, stride):\n"," self.input_ids = []\n"," self.target_ids = []\n","\n"," # modified.\n"," # token_ids = tokenizer.encode(txt, allowed_special={'<|endoftext|>'})\n"," token_ids = tokenizer.encode(txt)\n","\n"," for i in range(0, len(token_ids) - max_length, stride):\n"," input_chunk = token_ids[i:i + max_length]\n"," target_chunk = token_ids[i + 1: i + max_length + 1]\n"," self.input_ids.append(torch.tensor(input_chunk))\n"," self.target_ids.append(torch.tensor(target_chunk))\n","\n"," def __len__(self):\n"," return len(self.input_ids)\n","\n"," def __getitem__(self, idx):\n"," return self.input_ids[idx], self.target_ids[idx]\n","\n","\n","def create_dataloader_v1(txt, batch_size=4, max_length=256,\n"," stride=128, shuffle=True, drop_last=True, num_workers=0):\n"," # -------------------------------\n"," # Modofy tokenizer\n"," # -------------------------------\n"," # modified. tokenizer initialization\n"," # tokenizer = tiktoken.get_encoding(\"gpt2\")\n"," # Load the tokenizer\n"," tokenizer = PreTrainedTokenizerFast.from_pretrained(\"Aananda-giri/NepaliBPE\")\n"," dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)\n"," dataloader = DataLoader(\n"," dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)\n","\n"," return dataloader\n","\n","train_ratio = 0.9\n","split_idx = int(train_ratio * len(text_data))\n","train_loader = create_dataloader_v1(\n"," text_data[:split_idx],\n"," batch_size=4,\n"," max_length=1024,\n"," stride=1024,\n"," drop_last=True,\n"," shuffle=True,\n"," num_workers=0\n"," )\n","train_loader"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":570,"status":"ok","timestamp":1731507477429,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"chjo7caA3viA","outputId":"5e62e390-2f15-47e9-cc6e-737cec14a581"},"outputs":[{"name":"stdout","output_type":"stream","text":["771\n","len(input_batch):4\n","len(input_batch[0]):1024\n","input_batch.numel(): 4096\n","type(input_batch): \n","\n","len(target_batch): 4\n","len(input_batch[0]):1024\n","target_batch.numel(): 4096\n","type(target_batch): \n"]}],"source":["print(len(train_loader))\n","\n","for input_batch, target_batch in train_loader:\n"," print(f\"len(input_batch):{len(input_batch)}\")\n"," print(f\"len(input_batch[0]):{len(input_batch[0])}\")\n"," print(f\"input_batch.numel(): {input_batch.numel()}\")\n"," print(f\"type(input_batch): {type(input_batch)}\", end='\\n\\n')\n","\n"," print(f\"len(target_batch): {len(target_batch)}\")\n"," print(f\"len(input_batch[0]):{len(target_batch[0])}\")\n"," print(f\"target_batch.numel(): {target_batch.numel()}\")\n"," print(f\"type(target_batch): {type(target_batch)}\")\n"," break\n"]},{"cell_type":"markdown","metadata":{"id":"PIk-PWudd0RI"},"source":["* using pre-tokenized, we got the similar result as given by sebastian original dataloader"]},{"cell_type":"markdown","metadata":{"id":"WVMm7whpGVH2"},"source":["# also replace `create_dataloaders` function from pretraining_bells_n_whistles file"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SoMKU-XrGWOv"},"outputs":[],"source":["def create_dataloaders(train_ratio, batch_size, num_workers=0):\n"," '''\n"," we dont need\n"," text_data\n"," max_length, stride\n","\n"," '''\n"," train_loader, val_loader = create_dataloader_v2(\n"," batch_size=batch_size,\n"," shuffle=True,\n"," drop_last=True,\n"," num_workers=num_workers,\n"," train_ratio=train_ratio\n"," )\n"," return train_loader, val_loader"]},{"cell_type":"markdown","metadata":{"id":"WUtyTCCIOw1y"},"source":["# Example: append to parquet"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"x_QmHyzZOhlr"},"outputs":[],"source":["import pyarrow as pa\n","import pyarrow.parquet as pq\n","\n","# Sample data loader simulation\n","# Let's create a list of dictionaries to simulate batches of data with text to be tokenized\n","# In practice, each `data` entry could represent a batch, for simplicity here, we'll use one item per batch\n","\n","data_loader = [\n"," {'text': \"The quick brown fox\"},\n"," {'text': \"jumps over the lazy dog\"},\n"," {'text': \"and runs away quickly\"},\n"," {'text': \"The sun sets behind the mountains\"},\n"," {'text': \"A quick brown dog jumps over the lazy fox\"},\n","]\n","\n","# Define a simple tokenization function for demonstration\n","def get_tokenized(text):\n"," # Simulating tokenization to input_ids and target_ids (just for example)\n"," input_ids = [ord(char) for char in text] # Convert each character to ASCII value\n"," target_ids = [ord(char) + 1 for char in text] # Shift ASCII values by 1\n"," return input_ids, target_ids\n","\n","# Define the schema based on `input_ids` and `target_ids` being lists of integers\n","schema = pa.schema([\n"," ('input_ids', pa.list_(pa.int64())),\n"," ('target_ids', pa.list_(pa.int64()))\n","])\n","\n","# Path for the Parquet file\n","parquet_file_path = \"nepberta_data.parquet\"\n","\n","# Writing each batch to the Parquet file\n","with pq.ParquetWriter(parquet_file_path, schema) as writer:\n"," for data in data_loader:\n"," # Tokenize the text to get input_ids and target_ids\n"," input_ids, target_ids = get_tokenized(data['text'])\n","\n"," # because dataloader seeks same sized data in a batch\n"," input_ids = input_ids[:18]\n"," target_ids = target_ids[:18]\n","\n"," # Create a record batch for the current data\n"," batch = pa.RecordBatch.from_arrays([pa.array([input_ids]), pa.array([target_ids])], schema=schema)\n","\n"," # Write batch to Parquet file\n"," writer.write_table(pa.Table.from_batches([batch]))\n","\n","parquet_file_path\n"]},{"cell_type":"markdown","metadata":{"id":"SZMpCwMiEefH"},"source":["## upload to huggingface"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k16WfpRRDy8B"},"outputs":[],"source":["%cd /content/drive/MyDrive/Research/datasets/hf_datasets"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ruCVcH8WDknh"},"outputs":[],"source":["from huggingface_hub import HfApi, Repository\n","import os\n","import shutil\n","\n","# Set your dataset repo name and Hugging Face username\n","username = \"Aananda-giri\" # Replace with your Hugging Face username\n","repo_name = \"nepali_llm_datasets\" # Name for the new dataset repository\n","repo_id = f\"{username}/{repo_name}\" # Full repository ID\n","\n","# Authenticate\n","api = HfApi()\n","# token = \"token\" # Replace with your Hugging Face token\n","\n","# Local dataset directory\n","local_dir = \"./\" # Adjust to the path of the dataset folder\n","\n","# Create the repository if it does not exist\n","api.create_repo(repo_id, token=token, repo_type=\"dataset\", exist_ok=True)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FDsSoN5dEdlK"},"outputs":[],"source":["# Local dataset directory\n","local_dir = \"./\" # Path to your dataset folder\n","\n","# Upload all files and folders recursively\n","for root, dirs, files in os.walk(local_dir):\n"," for file in files:\n"," file_path = os.path.join(root, file)\n"," # Upload file to the specified repo with the same directory structure\n"," repo_file_path = os.path.relpath(file_path, local_dir)\n"," api.upload_file(\n"," path_or_fileobj=file_path,\n"," path_in_repo=repo_file_path,\n"," repo_id=repo_id,\n"," repo_type=\"dataset\",\n"," token=token\n"," )\n","\n","print(f\"Dataset uploaded to https://huggingface.co/datasets/{repo_id}\")"]},{"cell_type":"markdown","metadata":{"id":"53UCcTChEFLK"},"source":["# Example: upload to huggingface"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":292},"executionInfo":{"elapsed":5873,"status":"ok","timestamp":1731311746054,"user":{"displayName":"Aananda Giri","userId":"10248715758347187876"},"user_tz":-345},"id":"u36PC3MdDT5D","outputId":"5c704375-d58b-4350-c76d-1162471acf01"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"26432447ae53469895afc04ffd009346","version_major":2,"version_minor":0},"text/plain":["Generating train split: 0 examples [00:00, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"36b9df2f161c41a3926d2389a8a17ae8","version_major":2,"version_minor":0},"text/plain":["Uploading the dataset shards: 0%| | 0/1 [00:00