repo_name
stringlengths
6
79
path
stringlengths
5
236
copies
stringclasses
54 values
size
stringlengths
1
8
content
stringlengths
0
1.04M
license
stringclasses
15 values
cfangmeier/VFPIX-telescope-Code
DAQ_Firmware/src/ram/ram_controller_phy_alt_mem_phy_seq.vhd
1
648425
-- -- ----------------------------------------------------------------------------- -- Abstract : constants package for the non-levelling AFI PHY sequencer -- The constant package (alt_mem_phy_constants_pkg) contains global -- 'constants' which are fixed thoughout the sequencer and will not -- change (for constants which may change between sequencer -- instances generics are used) -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ram_controller_phy_alt_mem_phy_constants_pkg is -- ------------------------------- -- Register number definitions -- ------------------------------- constant c_max_mode_reg_index : natural := 13; -- number of MR bits.. -- Top bit of vector (i.e. width -1) used for address decoding : constant c_debug_reg_addr_top : natural := 3; constant c_mmi_access_codeword : std_logic_vector(31 downto 0) := X"00D0_0DEB"; -- to check for legal Avalon interface accesses -- Register addresses. constant c_regofst_cal_status : natural := 0; constant c_regofst_debug_access : natural := 1; constant c_regofst_hl_css : natural := 2; constant c_regofst_mr_register_a : natural := 5; constant c_regofst_mr_register_b : natural := 6; constant c_regofst_codvw_status : natural := 12; constant c_regofst_if_param : natural := 13; constant c_regofst_if_test : natural := 14; -- pll_phs_shft, ac_1t, extra stuff constant c_regofst_test_status : natural := 15; constant c_hl_css_reg_cal_dis_bit : natural := 0; constant c_hl_css_reg_phy_initialise_dis_bit : natural := 1; constant c_hl_css_reg_init_dram_dis_bit : natural := 2; constant c_hl_css_reg_write_ihi_dis_bit : natural := 3; constant c_hl_css_reg_write_btp_dis_bit : natural := 4; constant c_hl_css_reg_write_mtp_dis_bit : natural := 5; constant c_hl_css_reg_read_mtp_dis_bit : natural := 6; constant c_hl_css_reg_rrp_reset_dis_bit : natural := 7; constant c_hl_css_reg_rrp_sweep_dis_bit : natural := 8; constant c_hl_css_reg_rrp_seek_dis_bit : natural := 9; constant c_hl_css_reg_rdv_dis_bit : natural := 10; constant c_hl_css_reg_poa_dis_bit : natural := 11; constant c_hl_css_reg_was_dis_bit : natural := 12; constant c_hl_css_reg_adv_rd_lat_dis_bit : natural := 13; constant c_hl_css_reg_adv_wr_lat_dis_bit : natural := 14; constant c_hl_css_reg_prep_customer_mr_setup_dis_bit : natural := 15; constant c_hl_css_reg_tracking_dis_bit : natural := 16; constant c_hl_ccs_num_stages : natural := 17; -- ----------------------------------------------------- -- Constants for DRAM addresses used during calibration: -- ----------------------------------------------------- -- the mtp training pattern is x30F5 -- 1. write 0011 0000 and 1100 0000 such that one location will contains 0011 0000 -- 2. write in 1111 0101 -- also require locations containing all ones and all zeros -- default choice of calibration burst length (overriden to 8 for reads for DDR3 devices) constant c_cal_burst_len : natural := 4; constant c_cal_ofs_step_size : natural := 8; constant c_cal_ofs_zeros : natural := 0 * c_cal_ofs_step_size; constant c_cal_ofs_ones : natural := 1 * c_cal_ofs_step_size; constant c_cal_ofs_x30_almt_0 : natural := 2 * c_cal_ofs_step_size; constant c_cal_ofs_x30_almt_1 : natural := 3 * c_cal_ofs_step_size; constant c_cal_ofs_xF5 : natural := 5 * c_cal_ofs_step_size; constant c_cal_ofs_wd_lat : natural := 6 * c_cal_ofs_step_size; constant c_cal_data_len : natural := c_cal_ofs_wd_lat + c_cal_ofs_step_size; constant c_cal_ofs_mtp : natural := 6*c_cal_ofs_step_size; constant c_cal_ofs_mtp_len : natural := 4*4; constant c_cal_ofs_01_pairs : natural := 2 * c_cal_burst_len; constant c_cal_ofs_10_pairs : natural := 3 * c_cal_burst_len; constant c_cal_ofs_1100_step : natural := 4 * c_cal_burst_len; constant c_cal_ofs_0011_step : natural := 5 * c_cal_burst_len; -- ----------------------------------------------------- -- Reset values. - These are chosen as default values for one PHY variation -- with DDR2 memory and CAS latency 6, however in each calibration -- mode these values will be set for a given PHY configuration. -- ----------------------------------------------------- constant c_default_rd_lat : natural := 20; constant c_default_wr_lat : natural := 5; -- ----------------------------------------------------- -- Errorcodes -- ----------------------------------------------------- -- implemented constant C_SUCCESS : natural := 0; constant C_ERR_RESYNC_NO_VALID_PHASES : natural := 5; -- No valid data-valid windows found constant C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS : natural := 6; -- Multiple equally-sized data valid windows constant C_ERR_RESYNC_NO_INVALID_PHASES : natural := 7; -- No invalid data-valid windows found. Training patterns are designed so that there should always be at least one invalid phase. constant C_ERR_CRITICAL : natural := 15; -- A condition that can't happen just happened. constant C_ERR_READ_MTP_NO_VALID_ALMT : natural := 23; constant C_ERR_READ_MTP_BOTH_ALMT_PASS : natural := 24; constant C_ERR_WD_LAT_DISAGREEMENT : natural := 22; -- MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS copies of write-latency are written to memory. If all of these are not the same this error is generated. constant C_ERR_MAX_RD_LAT_EXCEEDED : natural := 25; constant C_ERR_MAX_TRK_SHFT_EXCEEDED : natural := 26; -- not implemented yet constant c_err_ac_lat_some_beats_are_different : natural := 1; -- implies DQ_1T setup failure or earlier. constant c_err_could_not_find_read_lat : natural := 2; -- dodgy RDP setup constant c_err_could_not_find_write_lat : natural := 3; -- dodgy WDP setup constant c_err_clock_cycle_iteration_timeout : natural := 8; -- depends on srate calling error -- GENERIC constant c_err_clock_cycle_it_timeout_rdp : natural := 9; constant c_err_clock_cycle_it_timeout_rdv : natural := 10; constant c_err_clock_cycle_it_timeout_poa : natural := 11; constant c_err_pll_ack_timeout : natural := 13; constant c_err_WindowProc_multiple_rsc_windows : natural := 16; constant c_err_WindowProc_window_det_no_ones : natural := 17; constant c_err_WindowProc_window_det_no_zeros : natural := 18; constant c_err_WindowProc_undefined : natural := 19; -- catch all constant c_err_tracked_mmc_offset_overflow : natural := 20; constant c_err_no_mimic_feedback : natural := 21; constant c_err_ctrl_ack_timeout : natural := 32; constant c_err_ctrl_done_timeout : natural := 33; -- ----------------------------------------------------- -- PLL phase locations per device family -- (unused but a limited set is maintained here for reference) -- ----------------------------------------------------- constant c_pll_resync_phs_select_ciii : natural := 5; constant c_pll_mimic_phs_select_ciii : natural := 4; constant c_pll_resync_phs_select_siii : natural := 5; constant c_pll_mimic_phs_select_siii : natural := 7; -- ----------------------------------------------------- -- Maximum sizing constraints -- ----------------------------------------------------- constant C_MAX_NUM_PLL_RSC_PHASES : natural := 32; -- ----------------------------------------------------- -- IO control Params -- ----------------------------------------------------- constant c_set_oct_to_rs : std_logic := '0'; constant c_set_oct_to_rt : std_logic := '1'; constant c_set_odt_rt : std_logic := '1'; constant c_set_odt_off : std_logic := '0'; -- end ram_controller_phy_alt_mem_phy_constants_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : record package for the non-levelling AFI sequencer -- The record package (alt_mem_phy_record_pkg) is used to combine -- command and status signals (into records) to be passed between -- sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ram_controller_phy_alt_mem_phy_record_pkg is -- set some maximum constraints to bound natural numbers below constant c_max_num_dqs_groups : natural := 24; constant c_max_num_pins : natural := 8; constant c_max_ranks : natural := 16; constant c_max_pll_steps : natural := 80; -- a prefix for all report signals to identify phy and sequencer block -- constant record_report_prefix : string := "ram_controller_phy_alt_mem_phy_record_pkg : "; type t_family is ( cyclone3, stratix2, stratix3 ); -- ----------------------------------------------------------------------- -- the following are required for the non-levelling AFI PHY sequencer block interfaces -- ----------------------------------------------------------------------- -- admin mode register settings (from mmi block) type t_admin_ctrl is record mr0 : std_logic_vector(12 downto 0); mr1 : std_logic_vector(12 downto 0); mr2 : std_logic_vector(12 downto 0); mr3 : std_logic_vector(12 downto 0); end record; function defaults return t_admin_ctrl; -- current admin status type t_admin_stat is record mr0 : std_logic_vector(12 downto 0); mr1 : std_logic_vector(12 downto 0); mr2 : std_logic_vector(12 downto 0); mr3 : std_logic_vector(12 downto 0); init_done : std_logic; end record; function defaults return t_admin_stat; -- mmi to iram ctrl signals type t_iram_ctrl is record addr : natural range 0 to 1023; wdata : std_logic_vector(31 downto 0); write : std_logic; read : std_logic; end record; function defaults return t_iram_ctrl; -- broadcast iram status to mmi and dgrb type t_iram_stat is record rdata : std_logic_vector(31 downto 0); done : std_logic; err : std_logic; err_code : std_logic_vector(3 downto 0); init_done : std_logic; out_of_mem : std_logic; contested_access : std_logic; end record; function defaults return t_iram_stat; -- codvw status signals from dgrb to mmi block type t_dgrb_mmi is record cal_codvw_phase : std_logic_vector(7 downto 0); cal_codvw_size : std_logic_vector(7 downto 0); codvw_trk_shift : std_logic_vector(11 downto 0); codvw_grt_one_dvw : std_logic; end record; function defaults return t_dgrb_mmi; -- signal to id which block is active type t_ctrl_active_block is ( idle, admin, dgwb, dgrb, proc, -- unused in non-levelling AFI sequencer setup, -- unused in non-levelling AFI sequencer iram ); function ret_proc return t_ctrl_active_block; function ret_dgrb return t_ctrl_active_block; -- control record for dgwb, dgrb, iram and admin blocks: -- the possible commands type t_ctrl_cmd_id is ( cmd_idle, -- initialisation stages cmd_phy_initialise, cmd_init_dram, cmd_prog_cal_mr, cmd_write_ihi, -- calibration stages cmd_write_btp, cmd_write_mtp, cmd_read_mtp, cmd_rrp_reset, cmd_rrp_sweep, cmd_rrp_seek, cmd_rdv, cmd_poa, cmd_was, -- advertise controller settings and re-configure for customer operation mode. cmd_prep_adv_rd_lat, cmd_prep_adv_wr_lat, cmd_prep_customer_mr_setup, cmd_tr_due ); -- which block should execute each command function curr_active_block ( ctrl_cmd_id : t_ctrl_cmd_id ) return t_ctrl_active_block; -- specify command operands as a record type t_command_op is record current_cs : natural range 0 to c_max_ranks-1; -- which chip select is being calibrated single_bit : std_logic; -- current operation should be single bit mtp_almt : natural range 0 to 1; -- signals mtp alignment to be used for operation end record; function defaults return t_command_op; -- command request record (sent to each block) type t_ctrl_command is record command : t_ctrl_cmd_id; command_op : t_command_op; command_req : std_logic; end record; function defaults return t_ctrl_command; -- a generic status record for each block type t_ctrl_stat is record command_ack : std_logic; command_done : std_logic; command_result : std_logic_vector(7 downto 0 ); command_err : std_logic; end record; function defaults return t_ctrl_stat; -- push interface for dgwb / dgrb blocks (only the dgrb uses this interface at present) type t_iram_push is record iram_done : std_logic; iram_write : std_logic; iram_wordnum : natural range 0 to 511; -- acts as an offset to current location (max = 80 pll steps *2 sweeps and 80 pins) iram_bitnum : natural range 0 to 31; -- for bitwise packing modes iram_pushdata : std_logic_vector(31 downto 0); -- only bit zero used for bitwise packing_mode end record; function defaults return t_iram_push; -- control block "master" state machine type t_master_sm_state is ( s_reset, s_phy_initialise, -- wait for dll lock and init done flag from iram s_init_dram, -- dram initialisation - reset sequence s_prog_cal_mr, -- dram initialisation - programming mode registers (once per chip select) s_write_ihi, -- write header information in iRAM s_cal, -- check if calibration to be executed s_write_btp, -- write burst training pattern s_write_mtp, -- write more training pattern s_read_mtp, -- read training patterns to find correct alignment for 1100 burst -- (this is a special case of s_rrp_seek with no resych phase setting) s_rrp_reset, -- read resync phase setup - reset initial conditions s_rrp_sweep, -- read resync phase setup - sweep phases per chip select s_rrp_seek, -- read resync phase setup - seek correct phase s_rdv, -- read data valid setup s_was, -- write datapath setup (ac to write data timing) s_adv_rd_lat, -- advertise read latency s_adv_wr_lat, -- advertise write latency s_poa, -- calibrate the postamble (dqs based capture only) s_tracking_setup, -- perform tracking (1st pass to setup mimic window) s_prep_customer_mr_setup, -- apply user mode register settings (in admin block) s_tracking, -- perform tracking (subsequent passes in user mode) s_operational, -- calibration successful and in user mode s_non_operational -- calibration unsuccessful and in user mode ); -- record (set in mmi block) to disable calibration states type t_hl_css_reg is record phy_initialise_dis : std_logic; init_dram_dis : std_logic; write_ihi_dis : std_logic; cal_dis : std_logic; write_btp_dis : std_logic; write_mtp_dis : std_logic; read_mtp_dis : std_logic; rrp_reset_dis : std_logic; rrp_sweep_dis : std_logic; rrp_seek_dis : std_logic; rdv_dis : std_logic; poa_dis : std_logic; was_dis : std_logic; adv_rd_lat_dis : std_logic; adv_wr_lat_dis : std_logic; prep_customer_mr_setup_dis : std_logic; tracking_dis : std_logic; end record; function defaults return t_hl_css_reg; -- record (set in ctrl block) to identify when a command has been acknowledged type t_cal_stage_ack_seen is record cal : std_logic; phy_initialise : std_logic; init_dram : std_logic; write_ihi : std_logic; write_btp : std_logic; write_mtp : std_logic; read_mtp : std_logic; rrp_reset : std_logic; rrp_sweep : std_logic; rrp_seek : std_logic; rdv : std_logic; poa : std_logic; was : std_logic; adv_rd_lat : std_logic; adv_wr_lat : std_logic; prep_customer_mr_setup : std_logic; tracking_setup : std_logic; end record; function defaults return t_cal_stage_ack_seen; -- ctrl to mmi block interface (calibration status) type t_ctrl_mmi is record master_state_r : t_master_sm_state; ctrl_calibration_success : std_logic; ctrl_calibration_fail : std_logic; ctrl_current_stage_done : std_logic; ctrl_current_stage : t_ctrl_cmd_id; ctrl_current_active_block : t_ctrl_active_block; ctrl_cal_stage_ack_seen : t_cal_stage_ack_seen; ctrl_err_code : std_logic_vector(7 downto 0); end record; function defaults return t_ctrl_mmi; -- mmi to ctrl block interface (calibration control signals) type t_mmi_ctrl is record hl_css : t_hl_css_reg; calibration_start : std_logic; tracking_period_ms : natural range 0 to 255; tracking_orvd_to_10ms : std_logic; end record; function defaults return t_mmi_ctrl; -- algorithm parameterisation (generated in mmi block) type t_algm_paramaterisation is record num_phases_per_tck_pll : natural range 1 to c_max_pll_steps; nominal_dqs_delay : natural range 0 to 4; pll_360_sweeps : natural range 0 to 15; nominal_poa_phase_lead : natural range 0 to 7; maximum_poa_delay : natural range 0 to 15; odt_enabled : boolean; extend_octrt_by : natural range 0 to 15; delay_octrt_by : natural range 0 to 15; tracking_period_ms : natural range 0 to 255; end record; -- interface between mmi and pll to control phase shifting type t_mmi_pll_reconfig is record pll_phs_shft_phase_sel : natural range 0 to 15; pll_phs_shft_up_wc : std_logic; pll_phs_shft_dn_wc : std_logic; end record; type t_pll_mmi is record pll_busy : std_logic; err : std_logic_vector(1 downto 0); end record; -- specify the iram configuration this is default -- currently always dq_bitwise packing and a write mode of overwrite_ram type t_iram_packing_mode is ( dq_bitwise, dq_wordwise ); type t_iram_write_mode is ( overwrite_ram, or_into_ram, and_into_ram ); type t_ctrl_iram is record packing_mode : t_iram_packing_mode; write_mode : t_iram_write_mode; active_block : t_ctrl_active_block; end record; function defaults return t_ctrl_iram; -- ----------------------------------------------------------------------- -- the following are required for compliance to levelling AFI PHY interface but -- are non-functional for non-levelling AFI PHY sequencer -- ----------------------------------------------------------------------- type t_sc_ctrl_if is record read : std_logic; write : std_logic; dqs_group_sel : std_logic_vector( 4 downto 0); sc_in_group_sel : std_logic_vector( 5 downto 0); wdata : std_logic_vector(45 downto 0); op_type : std_logic_vector( 1 downto 0); end record; function defaults return t_sc_ctrl_if; type t_sc_stat is record rdata : std_logic_vector(45 downto 0); busy : std_logic; error_det : std_logic; err_code : std_logic_vector(1 downto 0); sc_cap : std_logic_vector(7 downto 0); end record; function defaults return t_sc_stat; type t_element_to_reconfigure is ( pp_t9, pp_t10, pp_t1, dqslb_rsc_phs, dqslb_poa_phs_ofst, dqslb_dqs_phs, dqslb_dq_phs_ofst, dqslb_dq_1t, dqslb_dqs_1t, dqslb_rsc_1t, dqslb_div2_phs, dqslb_oct_t9, dqslb_oct_t10, dqslb_poa_t7, dqslb_poa_t11, dqslb_dqs_dly, dqslb_lvlng_byps ); type t_sc_type is ( DQS_LB, DQS_DQ_DM_PINS, DQ_DM_PINS, dqs_dqsn_pins, dq_pin, dqs_pin, dm_pin, dq_pins ); type t_sc_int_ctrl is record group_num : natural range 0 to c_max_num_dqs_groups; group_type : t_sc_type; pin_num : natural range 0 to c_max_num_pins; sc_element : t_element_to_reconfigure; prog_val : std_logic_vector(3 downto 0); ram_set : std_logic; sc_update : std_logic; end record; function defaults return t_sc_int_ctrl; -- ----------------------------------------------------------------------- -- record and functions for instant on mode -- ----------------------------------------------------------------------- -- ranges on the below are not important because this logic is not synthesised type t_preset_cal is record codvw_phase : natural range 0 to 2*c_max_pll_steps;-- rsc phase codvw_size : natural range 0 to c_max_pll_steps; -- rsc size (unused but reported) rlat : natural; -- advertised read latency ctl_rlat (in phy clock cycles) rdv_lat : natural; -- read data valid latency decrements needed (in memory clock cycles) wlat : natural; -- advertised write latency ctl_wlat (in phy clock cycles) ac_1t : std_logic; -- address / command 1t delay setting (HR only) poa_lat : natural; -- poa latency decrements needed (in memory clock cycles) end record; -- the below are hardcoded (do not change) constant c_ddr_default_cl : natural := 3; constant c_ddr2_default_cl : natural := 6; constant c_ddr3_default_cl : natural := 6; constant c_ddr2_default_cwl : natural := 5; constant c_ddr3_default_cwl : natural := 5; constant c_ddr2_default_al : natural := 0; constant c_ddr3_default_al : natural := 0; constant c_ddr_default_rl : integer := c_ddr_default_cl; constant c_ddr2_default_rl : integer := c_ddr2_default_cl + c_ddr2_default_al; constant c_ddr3_default_rl : integer := c_ddr3_default_cl + c_ddr3_default_al; constant c_ddr_default_wl : integer := 1; constant c_ddr2_default_wl : integer := c_ddr2_default_cwl + c_ddr2_default_al; constant c_ddr3_default_wl : integer := c_ddr3_default_cwl + c_ddr3_default_al; function defaults return t_preset_cal; function setup_instant_on (sim_time_red : natural; family_id : natural; memory_type : string; dwidth_ratio : natural; pll_steps : natural; mr0 : std_logic_vector(15 downto 0); mr1 : std_logic_vector(15 downto 0); mr2 : std_logic_vector(15 downto 0)) return t_preset_cal; -- end ram_controller_phy_alt_mem_phy_record_pkg; -- package body ram_controller_phy_alt_mem_phy_record_pkg IS -- ----------------------------------------------------------------------- -- function implementations for the above declarations -- these are mainly default conditions for records -- ----------------------------------------------------------------------- function defaults return t_admin_ctrl is variable output : t_admin_ctrl; begin output.mr0 := (others => '0'); output.mr1 := (others => '0'); output.mr2 := (others => '0'); output.mr3 := (others => '0'); return output; end function; function defaults return t_admin_stat is variable output : t_admin_stat; begin output.mr0 := (others => '0'); output.mr1 := (others => '0'); output.mr2 := (others => '0'); output.mr3 := (others => '0'); return output; end function; function defaults return t_iram_ctrl is variable output : t_iram_ctrl; begin output.addr := 0; output.wdata := (others => '0'); output.write := '0'; output.read := '0'; return output; end function; function defaults return t_iram_stat is variable output : t_iram_stat; begin output.rdata := (others => '0'); output.done := '0'; output.err := '0'; output.err_code := (others => '0'); output.init_done := '0'; output.out_of_mem := '0'; output.contested_access := '0'; return output; end function; function defaults return t_dgrb_mmi is variable output : t_dgrb_mmi; begin output.cal_codvw_phase := (others => '0'); output.cal_codvw_size := (others => '0'); output.codvw_trk_shift := (others => '0'); output.codvw_grt_one_dvw := '0'; return output; end function; function ret_proc return t_ctrl_active_block is variable output : t_ctrl_active_block; begin output := proc; return output; end function; function ret_dgrb return t_ctrl_active_block is variable output : t_ctrl_active_block; begin output := dgrb; return output; end function; function defaults return t_ctrl_iram is variable output : t_ctrl_iram; begin output.packing_mode := dq_bitwise; output.write_mode := overwrite_ram; output.active_block := idle; return output; end function; function defaults return t_command_op is variable output : t_command_op; begin output.current_cs := 0; output.single_bit := '0'; output.mtp_almt := 0; return output; end function; function defaults return t_ctrl_command is variable output : t_ctrl_command; begin output.command := cmd_idle; output.command_req := '0'; output.command_op := defaults; return output; end function; -- decode which block is associated with which command function curr_active_block ( ctrl_cmd_id : t_ctrl_cmd_id ) return t_ctrl_active_block is begin case ctrl_cmd_id is when cmd_idle => return idle; when cmd_phy_initialise => return idle; when cmd_init_dram => return admin; when cmd_prog_cal_mr => return admin; when cmd_write_ihi => return iram; when cmd_write_btp => return dgwb; when cmd_write_mtp => return dgwb; when cmd_read_mtp => return dgrb; when cmd_rrp_reset => return dgrb; when cmd_rrp_sweep => return dgrb; when cmd_rrp_seek => return dgrb; when cmd_rdv => return dgrb; when cmd_poa => return dgrb; when cmd_was => return dgwb; when cmd_prep_adv_rd_lat => return dgrb; when cmd_prep_adv_wr_lat => return dgrb; when cmd_prep_customer_mr_setup => return admin; when cmd_tr_due => return dgrb; when others => return idle; end case; end function; function defaults return t_ctrl_stat is variable output : t_ctrl_stat; begin output.command_ack := '0'; output.command_done := '0'; output.command_err := '0'; output.command_result := (others => '0'); return output; end function; function defaults return t_iram_push is variable output : t_iram_push; begin output.iram_done := '0'; output.iram_write := '0'; output.iram_wordnum := 0; output.iram_bitnum := 0; output.iram_pushdata := (others => '0'); return output; end function; function defaults return t_hl_css_reg is variable output : t_hl_css_reg; begin output.phy_initialise_dis := '0'; output.init_dram_dis := '0'; output.write_ihi_dis := '0'; output.cal_dis := '0'; output.write_btp_dis := '0'; output.write_mtp_dis := '0'; output.read_mtp_dis := '0'; output.rrp_reset_dis := '0'; output.rrp_sweep_dis := '0'; output.rrp_seek_dis := '0'; output.rdv_dis := '0'; output.poa_dis := '0'; output.was_dis := '0'; output.adv_rd_lat_dis := '0'; output.adv_wr_lat_dis := '0'; output.prep_customer_mr_setup_dis := '0'; output.tracking_dis := '0'; return output; end function; function defaults return t_cal_stage_ack_seen is variable output : t_cal_stage_ack_seen; begin output.cal := '0'; output.phy_initialise := '0'; output.init_dram := '0'; output.write_ihi := '0'; output.write_btp := '0'; output.write_mtp := '0'; output.read_mtp := '0'; output.rrp_reset := '0'; output.rrp_sweep := '0'; output.rrp_seek := '0'; output.rdv := '0'; output.poa := '0'; output.was := '0'; output.adv_rd_lat := '0'; output.adv_wr_lat := '0'; output.prep_customer_mr_setup := '0'; output.tracking_setup := '0'; return output; end function; function defaults return t_mmi_ctrl is variable output : t_mmi_ctrl; begin output.hl_css := defaults; output.calibration_start := '0'; output.tracking_period_ms := 0; output.tracking_orvd_to_10ms := '0'; return output; end function; function defaults return t_ctrl_mmi is variable output : t_ctrl_mmi; begin output.master_state_r := s_reset; output.ctrl_calibration_success := '0'; output.ctrl_calibration_fail := '0'; output.ctrl_current_stage_done := '0'; output.ctrl_current_stage := cmd_idle; output.ctrl_current_active_block := idle; output.ctrl_cal_stage_ack_seen := defaults; output.ctrl_err_code := (others => '0'); return output; end function; ------------------------------------------------------------------------- -- the following are required for compliance to levelling AFI PHY interface but -- are non-functional for non-levelling AFi PHY sequencer ------------------------------------------------------------------------- function defaults return t_sc_ctrl_if is variable output : t_sc_ctrl_if; begin output.read := '0'; output.write := '0'; output.dqs_group_sel := (others => '0'); output.sc_in_group_sel := (others => '0'); output.wdata := (others => '0'); output.op_type := (others => '0'); return output; end function; function defaults return t_sc_stat is variable output : t_sc_stat; begin output.rdata := (others => '0'); output.busy := '0'; output.error_det := '0'; output.err_code := (others => '0'); output.sc_cap := (others => '0'); return output; end function; function defaults return t_sc_int_ctrl is variable output : t_sc_int_ctrl; begin output.group_num := 0; output.group_type := DQ_PIN; output.pin_num := 0; output.sc_element := pp_t9; output.prog_val := (others => '0'); output.ram_set := '0'; output.sc_update := '0'; return output; end function; -- ----------------------------------------------------------------------- -- functions for instant on mode -- -- -- Guide on how to use: -- -- The following factors effect the setup of the PHY: -- - AC Phase - phase at which address/command signals launched wrt PHY clock -- - this effects the read/write latency -- - MR settings - CL, CWL, AL -- - Data rate - HR or FR (DDR/DDR2 only) -- - Family - datapaths are subtly different for each -- - Memory type - DDR/DDR2/DDR3 (different latency behaviour - see specs) -- -- Instant on mode is designed to work for the following subset of the -- above factors: -- - AC Phase - out of the box defaults, which is 240 degrees for SIII type -- families (includes SIV, HCIII, HCIV), else 90 degrees -- - MR Settings - DDR - CL 3 only -- - DDR2 - CL 3,4,5,6, AL 0 -- - DDR3 - CL 5,6 CWL 5, AL 0 -- - Data rate - All -- - Families - All -- - Memory type - All -- -- Hints on bespoke setup for parameters outside the above or if the -- datapath is modified (only for VHDL sim mode): -- -- Step 1 - Run simulation with REDUCE_SIM_TIME mode 2 (FAST) -- -- Step 2 - From the output log find the following text: -- # ----------------------------------------------------------------------- -- **** ALTMEMPHY CALIBRATION has completed **** -- Status: -- calibration has : PASSED -- PHY read latency (ctl_rlat) is : 14 -- address/command to PHY write latency (ctl_wlat) is : 2 -- read resynch phase calibration report: -- calibrated centre of data valid window phase : 32 -- calibrated centre of data valid window size : 24 -- chosen address and command 1T delay: no 1T delay -- poa 'dec' adjustments = 27 -- rdv 'dec' adjustments = 25 -- # ----------------------------------------------------------------------- -- -- Step 3 - Convert the text to bespoke instant on settings at the end of the -- setup_instant_on function using the -- override_instant_on function, note type is t_preset_cal -- -- The mapping is as follows: -- -- PHY read latency (ctl_rlat) is : 14 => rlat := 14 -- address/command to PHY write latency (ctl_wlat) is : 2 => wlat := 2 -- read resynch phase calibration report: -- calibrated centre of data valid window phase : 32 => codvw_phase := 32 -- calibrated centre of data valid window size : 24 => codvw_size := 24 -- chosen address and command 1T delay: no 1T delay => ac_1t := '0' -- poa 'dec' adjustments = 27 => poa_lat := 27 -- rdv 'dec' adjustments = 25 => rdv_lat := 25 -- -- Step 4 - Try running in REDUCE_SIM_TIME mode 1 (SUPERFAST mode) -- -- Step 5 - If still fails observe the behaviour of the controller, for the -- following symptoms: -- - If first 2 beats of read data lost (POA enable too late) - inc poa_lat by 1 (poa_lat is number of POA decrements not actual latency) -- - If last 2 beats of read data lost (POA enable too early) - dec poa_lat by 1 -- - If ctl_rdata_valid misaligned to ctl_rdata then alter number of RDV adjustments (rdv_lat) -- - If write data is not 4-beat aligned (when written into memory) toggle ac_1t (HR only) -- - If read data is not 4-beat aligned (but write data is) add 360 degrees to phase (PLL_STEPS_PER_CYCLE) mod 2*PLL_STEPS_PER_CYCLE (HR only) -- -- Step 6 - If the above fails revert to REDUCE_SIM_TIME = 2 (FAST) mode -- -- -------------------------------------------------------------------------- -- defaults function defaults return t_preset_cal is variable output : t_preset_cal; begin output.codvw_phase := 0; output.codvw_size := 0; output.wlat := 0; output.rlat := 0; output.rdv_lat := 0; output.ac_1t := '1'; -- default on for FR output.poa_lat := 0; return output; end function; -- Functions to extract values from MR -- return cl (for DDR memory 2*cl because of 1/2 cycle latencies) procedure mr0_to_cl (memory_type : string; mr0 : std_logic_vector(15 downto 0); cl : out natural; half_cl : out std_logic) is variable v_cl : natural; begin half_cl := '0'; if memory_type = "DDR" then -- DDR memories -- returns cl*2 because of 1/2 latencies v_cl := to_integer(unsigned(mr0(5 downto 4))); -- integer values of cl if mr0(6) = '0' then assert v_cl > 1 report record_report_prefix & "invalid cas latency for DDR memory, should be in range 1.5-3" severity failure; end if; if mr0(6) = '1' then assert (v_cl = 1 or v_cl = 2) report record_report_prefix & "invalid cas latency for DDR memory, should be in range 1.5-3" severity failure; half_cl := '1'; end if; elsif memory_type = "DDR2" then -- DDR2 memories v_cl := to_integer(unsigned(mr0(6 downto 4))); -- sanity checks assert (v_cl > 1 and v_cl < 7) report record_report_prefix & "invalid cas latency for DDR2 memory, should be in range 2-6 but equals " & integer'image(v_cl) severity failure; elsif memory_type = "DDR3" then -- DDR3 memories v_cl := to_integer(unsigned(mr0(6 downto 4)))+4; --sanity checks assert mr0(2) = '0' report record_report_prefix & "invalid cas latency for DDR3 memory, bit a2 in mr0 is set" severity failure; assert v_cl /= 4 report record_report_prefix & "invalid cas latency for DDR3 memory, bits a6:4 set to zero" severity failure; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; cl := v_cl; end procedure; function mr1_to_al (memory_type : string; mr1 : std_logic_vector(15 downto 0); cl : natural) return natural is variable al : natural; begin if memory_type = "DDR" then -- DDR memories -- unsupported so return zero al := 0; elsif memory_type = "DDR2" then -- DDR2 memories al := to_integer(unsigned(mr1(5 downto 3))); assert al < 6 report record_report_prefix & "invalid additive latency for DDR2 memory, should be in range 0-5 but equals " & integer'image(al) severity failure; elsif memory_type = "DDR3" then -- DDR3 memories al := to_integer(unsigned(mr1(4 downto 3))); assert al /= 3 report record_report_prefix & "invalid additive latency for DDR2 memory, should be in range 0-5 but equals " & integer'image(al) severity failure; if al /= 0 then -- CL-1 or CL-2 al := cl - al; end if; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; return al; end function; -- return cwl function mr2_to_cwl (memory_type : string; mr2 : std_logic_vector(15 downto 0); cl : natural) return natural is variable cwl : natural; begin if memory_type = "DDR" then -- DDR memories cwl := 1; elsif memory_type = "DDR2" then -- DDR2 memories cwl := cl - 1; elsif memory_type = "DDR3" then -- DDR3 memories cwl := to_integer(unsigned(mr2(5 downto 3))) + 5; --sanity checks assert cwl < 9 report record_report_prefix & "invalid cas write latency for DDR3 memory, should be in range 5-8 but equals " & integer'image(cwl) severity failure; else report record_report_prefix & "Undefined memory type " & memory_type severity failure; end if; return cwl; end function; -- ----------------------------------- -- Functions to determine which family group -- Include any family alias here -- ----------------------------------- function is_siii(family_id : natural) return boolean is begin if family_id = 3 or family_id = 5 then return true; else return false; end if; end function; function is_ciii(family_id : natural) return boolean is begin if family_id = 2 then return true; else return false; end if; end function; function is_aii(family_id : natural) return boolean is begin if family_id = 4 then return true; else return false; end if; end function; function is_sii(family_id : natural) return boolean is begin if family_id = 1 then return true; else return false; end if; end function; -- ----------------------------------- -- Functions to lookup hardcoded values -- on per family basis -- DDR: CL = 3 -- DDR2: CL = 6, CWL = 5, AL = 0 -- DDR3: CL = 6, CWL = 5, AL = 0 -- ----------------------------------- -- default ac phase = 240 function siii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural ) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 11; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 23; v_output.ac_1t := '0'; v_output.poa_lat := 24; end if; elsif memory_type = "DDR2" then -- CAS = 6 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 16; v_output.rdv_lat := 10; v_output.poa_lat := 8; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 3; v_output.rlat := 16; v_output.rdv_lat := 21; v_output.ac_1t := '0'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR3" then -- HR only, CAS = 6 v_output.codvw_phase := pll_steps/4; v_output.wlat := 2; v_output.rlat := 15; v_output.rdv_lat := 23; v_output.ac_1t := '0'; v_output.poa_lat := 24; end if; -- adapt settings for ac_phase (default 240 degrees so leave commented) -- if dwidth_ratio = 2 then -- v_output.wlat := v_output.wlat - 1; -- v_output.rlat := v_output.rlat - 1; -- v_output.rdv_lat := v_output.rdv_lat + 1; -- v_output.poa_lat := v_output.poa_lat + 1; -- else -- v_output.ac_1t := not v_output.ac_1t; -- end if; v_output.codvw_size := pll_steps; return v_output; end function; -- default ac phase = 90 function ciii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 11; --unused else v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 27; --unused end if; elsif memory_type = "DDR2" then -- CAS = 6 if dwidth_ratio = 2 then v_output.codvw_phase := 3*pll_steps/4; v_output.wlat := 5; v_output.rlat := 18; v_output.rdv_lat := 8; v_output.poa_lat := 8; --unused else v_output.codvw_phase := pll_steps + 3*pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 25; --unused end if; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps/2; return v_output; end function; -- default ac phase = 90 function sii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 15; v_output.rdv_lat := 11; v_output.poa_lat := 13; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR2" then if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 18; v_output.rdv_lat := 8; v_output.poa_lat := 10; else v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 20; end if; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps; return v_output; end function; -- default ac phase = 90 function aii_family_settings (dwidth_ratio : integer; memory_type : string; pll_steps : natural) return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; if memory_type = "DDR" then -- CAS = 3 if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 16; v_output.rdv_lat := 10; v_output.poa_lat := 15; else v_output.codvw_phase := pll_steps/4; v_output.wlat := 1; v_output.rlat := 13; v_output.rdv_lat := 27; v_output.ac_1t := '1'; v_output.poa_lat := 24; end if; elsif memory_type = "DDR2" then if dwidth_ratio = 2 then v_output.codvw_phase := pll_steps/4; v_output.wlat := 5; v_output.rlat := 19; v_output.rdv_lat := 9; v_output.poa_lat := 12; else v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; elsif memory_type = "DDR3" then -- HR only, CAS = 6 v_output.codvw_phase := pll_steps + pll_steps/4; v_output.wlat := 3; v_output.rlat := 14; v_output.rdv_lat := 25; v_output.ac_1t := '1'; v_output.poa_lat := 22; end if; -- adapt settings for ac_phase (hardcode for 90 degrees) if dwidth_ratio = 2 then v_output.wlat := v_output.wlat + 1; v_output.rlat := v_output.rlat + 1; v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.ac_1t := not v_output.ac_1t; end if; v_output.codvw_size := pll_steps; return v_output; end function; function is_odd(num : integer) return boolean is variable v_num : integer; begin v_num := num; if v_num - (v_num/2)*2 = 0 then return false; else return true; end if; end function; ------------------------------------------------ -- top level function to setup instant on mode ------------------------------------------------ function override_instant_on return t_preset_cal is variable v_output : t_preset_cal; begin v_output := defaults; -- add in overrides here return v_output; end function; function setup_instant_on (sim_time_red : natural; family_id : natural; memory_type : string; dwidth_ratio : natural; pll_steps : natural; mr0 : std_logic_vector(15 downto 0); mr1 : std_logic_vector(15 downto 0); mr2 : std_logic_vector(15 downto 0)) return t_preset_cal is variable v_output : t_preset_cal; variable v_cl : natural; -- cas latency variable v_half_cl : std_logic; -- + 0.5 cycles (DDR only) variable v_al : natural; -- additive latency (ddr2/ddr3 only) variable v_cwl : natural; -- cas write latency (ddr3 only) variable v_rl : integer range 0 to 15; variable v_wl : integer; variable v_delta_rl : integer range -10 to 10; -- from given defaults variable v_delta_wl : integer; -- from given defaults variable v_debug : boolean; begin v_debug := true; v_output := defaults; if sim_time_red = 1 then -- only set if STR equals 1 -- ---------------------------------------- -- extract required parameters from MRs -- ---------------------------------------- mr0_to_cl(memory_type, mr0, v_cl, v_half_cl); v_al := mr1_to_al(memory_type, mr1, v_cl); v_cwl := mr2_to_cwl(memory_type, mr2, v_cl); v_rl := v_cl + v_al; v_wl := v_cwl + v_al; if v_debug then report record_report_prefix & "Extracted MR parameters" & LF & "CAS = " & integer'image(v_cl) & LF & "CWL = " & integer'image(v_cwl) & LF & "AL = " & integer'image(v_al) & LF; end if; -- ---------------------------------------- -- apply per family, memory type and dwidth_ratio static setup -- ---------------------------------------- if is_siii(family_id) then v_output := siii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_ciii(family_id) then v_output := ciii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_aii(family_id) then v_output := aii_family_settings(dwidth_ratio, memory_type, pll_steps); elsif is_sii(family_id) then v_output := sii_family_settings(dwidth_ratio, memory_type, pll_steps); end if; -- ---------------------------------------- -- correct for different cwl, cl and al settings -- ---------------------------------------- if memory_type = "DDR" then v_delta_rl := v_rl - c_ddr_default_rl; v_delta_wl := v_wl - c_ddr_default_wl; elsif memory_type = "DDR2" then v_delta_rl := v_rl - c_ddr2_default_rl; v_delta_wl := v_wl - c_ddr2_default_wl; else -- DDR3 v_delta_rl := v_rl - c_ddr3_default_rl; v_delta_wl := v_wl - c_ddr3_default_wl; end if; if v_debug then report record_report_prefix & "Extracted memory latency (and delta from default)" & LF & "RL = " & integer'image(v_rl) & LF & "WL = " & integer'image(v_wl) & LF & "delta RL = " & integer'image(v_delta_rl) & LF & "delta WL = " & integer'image(v_delta_wl) & LF; end if; if dwidth_ratio = 2 then -- adjust rdp settings v_output.rlat := v_output.rlat + v_delta_rl; v_output.rdv_lat := v_output.rdv_lat - v_delta_rl; v_output.poa_lat := v_output.poa_lat - v_delta_rl; -- adjust wdp settings v_output.wlat := v_output.wlat + v_delta_wl; elsif dwidth_ratio = 4 then -- adjust wdp settings v_output.wlat := v_output.wlat + v_delta_wl/2; if is_odd(v_delta_wl) then -- add / sub 1t write latency -- toggle ac_1t in all cases v_output.ac_1t := not v_output.ac_1t; if v_delta_wl < 0 then -- sub 1 from latency if v_output.ac_1t = '0' then -- phy_clk cc boundary v_output.wlat := v_output.wlat - 1; end if; else -- add 1 to latency if v_output.ac_1t = '1' then -- phy_clk cc boundary v_output.wlat := v_output.wlat + 1; end if; end if; -- update read latency if v_output.ac_1t = '1' then -- added 1t to address/command so inc read_lat v_delta_rl := v_delta_rl + 1; else -- subtracted 1t from address/command so dec read_lat v_delta_rl := v_delta_rl - 1; end if; end if; -- adjust rdp settings v_output.rlat := v_output.rlat + v_delta_rl/2; v_output.rdv_lat := v_output.rdv_lat - v_delta_rl; v_output.poa_lat := v_output.poa_lat - v_delta_rl; if memory_type = "DDR3" then if is_odd(v_delta_rl) xor is_odd(v_delta_wl) then if is_aii(family_id) then v_output.rdv_lat := v_output.rdv_lat - 1; v_output.poa_lat := v_output.poa_lat - 1; else v_output.rdv_lat := v_output.rdv_lat + 1; v_output.poa_lat := v_output.poa_lat + 1; end if; end if; end if; if is_odd(v_delta_rl) then if v_delta_rl > 0 then -- add 1t if v_output.codvw_phase < pll_steps then v_output.codvw_phase := v_output.codvw_phase + pll_steps; else v_output.codvw_phase := v_output.codvw_phase - pll_steps; v_output.rlat := v_output.rlat + 1; end if; else -- subtract 1t if v_output.codvw_phase < pll_steps then v_output.codvw_phase := v_output.codvw_phase + pll_steps; v_output.rlat := v_output.rlat - 1; else v_output.codvw_phase := v_output.codvw_phase - pll_steps; end if; end if; end if; end if; if v_half_cl = '1' and is_ciii(family_id) then v_output.codvw_phase := v_output.codvw_phase - pll_steps/2; end if; end if; return v_output; end function; -- END ram_controller_phy_alt_mem_phy_record_pkg; --/* Legal Notice: (C)2006 Altera Corporation. All rights reserved. Your -- use of Altera Corporation's design tools, logic functions and other -- software and tools, and its AMPP partner logic functions, and any -- output files any of the foregoing (including device programming or -- simulation files), and any associated documentation or information are -- expressly subject to the terms and conditions of the Altera Program -- License Subscription Agreement or other applicable license agreement, -- including, without limitation, that your use is for the sole purpose -- of programming logic devices manufactured by Altera and sold by Altera -- or its authorized distributors. Please refer to the applicable -- agreement for further details. */ -- -- ----------------------------------------------------------------------------- -- Abstract : address and command package, shared between all variations of -- the AFI sequencer -- The address and command package (alt_mem_phy_addr_cmd_pkg) is -- used to combine DRAM address and command signals in one record -- and unify the functions operating on this record. -- -- -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ram_controller_phy_alt_mem_phy_addr_cmd_pkg is -- the following are bounds on the maximum range of address and command signals constant c_max_addr_bits : natural := 15; constant c_max_ba_bits : natural := 3; constant c_max_ranks : natural := 16; constant c_max_mode_reg_bit : natural := 12; constant c_max_cmds_per_clk : natural := 4; -- quarter rate -- a prefix for all report signals to identify phy and sequencer block -- constant ac_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (addr_cmd_pkg) : "; -- ------------------------------------------------------------- -- this record represents a single mem_clk command cycle -- ------------------------------------------------------------- type t_addr_cmd is record addr : natural range 0 to 2**c_max_addr_bits - 1; ba : natural range 0 to 2**c_max_ba_bits - 1; cas_n : boolean; ras_n : boolean; we_n : boolean; cke : natural range 0 to 2**c_max_ranks - 1; -- bounded max of 8 ranks cs_n : natural range 2**c_max_ranks - 1 downto 0; -- bounded max of 8 ranks odt : natural range 0 to 2**c_max_ranks - 1; -- bounded max of 8 ranks rst_n : boolean; end record t_addr_cmd; -- ------------------------------------------------------------- -- this vector is used to describe the fact that for slower clock domains -- mutiple commands per clock can be issued and encapsulates all these options in a -- type which can scale with rate -- ------------------------------------------------------------- type t_addr_cmd_vector is array (natural range <>) of t_addr_cmd; -- ------------------------------------------------------------- -- this record is used to define the memory interface type and allow packing and checking -- (it should be used as a generic to a entity or from a poject level constant) -- ------------------------------------------------------------- -- enumeration for mem_type type t_mem_type is ( DDR, DDR2, DDR3 ); -- memory interface configuration parameters type t_addr_cmd_config_rec is record num_addr_bits : natural; num_ba_bits : natural; num_cs_bits : natural; num_ranks : natural; cmds_per_clk : natural range 1 to c_max_cmds_per_clk; -- commands per clock cycle (equal to DWIDTH_RATIO/2) mem_type : t_mem_type; end record; -- ----------------------------------- -- the following type is used to switch between signals -- (for example, in the mask function below) -- ----------------------------------- type t_addr_cmd_signals is ( addr, ba, cas_n, ras_n, we_n, cke, cs_n, odt, rst_n ); -- ----------------------------------- -- odt record -- to hold the odt settings -- (an odt_record) per rank (in odt_array) -- ----------------------------------- type t_odt_record is record write : natural; read : natural; end record t_odt_record; type t_odt_array is array (natural range <>) of t_odt_record; -- ------------------------------------------------------------- -- exposed functions and procedures -- -- these functions cover the following memory types: -- DDR3, DDR2, DDR -- -- and the following operations: -- MRS, REF, PRE, PREA, ACT, -- WR, WRS8, WRS4, WRA, WRAS8, WRAS4, -- RD, RDS8, RDS4, RDA, RDAS8, RDAS4, -- -- for DDR3 on the fly burst length setting for reads/writes -- is supported -- ------------------------------------------------------------- function defaults ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function int_pup_reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector; function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector ) return t_addr_cmd_vector; function precharge_all ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function precharge_all ( config_rec : in t_addr_cmd_config_rec; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function precharge_bank ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd_vector; function activate ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; row : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd_vector; function write ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector; function read ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector; function refresh ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function self_refresh_entry ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd_vector; function dll_reset ( config_rec : in t_addr_cmd_config_rec; mode_reg_val : in std_logic_vector; rank_num : in natural range 0 to 2**c_max_ranks - 1; reorder_addr_bits : in boolean ) return t_addr_cmd_vector; function enter_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function maintain_pd_or_sr ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function exit_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function ZQCS ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function ZQCL ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector; function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector; function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector; function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd_vector; -- ------------------------------------------------------------- -- the following function sets up the odt settings -- NOTES: currently only supports DDR/DDR2 memories -- ------------------------------------------------------------- -- odt setting as implemented in the altera high-performance controller for ddr2 memories function set_odt_values (ranks : natural; ranks_per_slot : natural; mem_type : in string ) return t_odt_array; -- ------------------------------------------------------------- -- the following function enables assignment to the constant config_rec -- ------------------------------------------------------------- function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; num_ranks : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec; -- The non-levelled sequencer doesn't make a distinction between CS_WIDTH and NUM_RANKS. In this case, -- just set the two to be the same. function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec; -- ------------------------------------------------------------- -- the following function and procedure unpack address and -- command signals from the t_addr_cmd_vector format -- ------------------------------------------------------------- procedure unpack_addr_cmd_vector( addr_cmd_vector : in t_addr_cmd_vector; config_rec : in t_addr_cmd_config_rec; addr : out std_logic_vector; ba : out std_logic_vector; cas_n : out std_logic_vector; ras_n : out std_logic_vector; we_n : out std_logic_vector; cke : out std_logic_vector; cs_n : out std_logic_vector; odt : out std_logic_vector; rst_n : out std_logic_vector); procedure unpack_addr_cmd_vector( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal addr : out std_logic_vector; signal ba : out std_logic_vector; signal cas_n : out std_logic_vector; signal ras_n : out std_logic_vector; signal we_n : out std_logic_vector; signal cke : out std_logic_vector; signal cs_n : out std_logic_vector; signal odt : out std_logic_vector; signal rst_n : out std_logic_vector); -- ------------------------------------------------------------- -- the following functions perform bit masking to 0 or 1 (as -- specified by mask_value) to a chosen address/command signal (signal_name) -- across all signal bits or to a selected bit (mask_bit) -- ------------------------------------------------------------- -- mask all signal bits procedure function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic) return t_addr_cmd_vector; procedure mask( config_rec : in t_addr_cmd_config_rec; signal addr_cmd_vector : inout t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic); -- mask signal bit (mask_bit) procedure function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic; mask_bit : in natural) return t_addr_cmd_vector; -- end ram_controller_phy_alt_mem_phy_addr_cmd_pkg; -- package body ram_controller_phy_alt_mem_phy_addr_cmd_pkg IS -- ------------------------------------------------------------- -- Basic functions for a single command -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- defaults the bus no JEDEC abbreviated name -- ------------------------------------------------------------- function defaults ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.addr := 0; v_retval.ba := 0; v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1; v_retval.odt := 0; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- resets the addr/cmd signal (Same as default with cke and rst_n 0 ) -- ------------------------------------------------------------- function reset ( config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := defaults(config_rec); v_retval.cke := 0; if config_rec.mem_type = DDR3 then v_retval.rst_n := true; end if; return v_retval; end function; -- ------------------------------------------------------------- -- issues deselect (command) JEDEC abbreviated name: DES -- ------------------------------------------------------------- function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a precharge all command JEDEC abbreviated name: PREA -- ------------------------------------------------------------- function precharge_all( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned( c_max_addr_bits -1 downto 0); begin v_retval := previous; v_addr := to_unsigned(previous.addr, c_max_addr_bits); v_addr(10) := '1'; -- set AP bit high v_retval.addr := to_integer(v_addr); v_retval.ras_n := true; v_retval.cas_n := false; v_retval.we_n := true; v_retval.cs_n := (2 ** config_rec.num_cs_bits) - 1 - ranks; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- precharge (close) a bank JEDEC abbreviated name: PRE -- ------------------------------------------------------------- function precharge_bank( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned( c_max_addr_bits -1 downto 0); begin v_retval := previous; v_addr := to_unsigned(previous.addr, c_max_addr_bits); v_addr(10) := '0'; -- set AP bit low v_retval.addr := to_integer(v_addr); v_retval.ba := bank; v_retval.ras_n := true; v_retval.cas_n := false; v_retval.we_n := true; v_retval.cs_n := (2 ** config_rec.num_cs_bits) - ranks; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- Issues a activate (open row) JEDEC abbreviated name: ACT -- ------------------------------------------------------------- function activate (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits - 1; row : in natural range 0 to 2**c_max_addr_bits - 1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.addr := row; v_retval.ba := bank; v_retval.cas_n := false; v_retval.ras_n := true; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := previous.odt; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a write command JEDEC abbreviated name:WR, WRA -- WRS4, WRAS4 -- WRS8, WRAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL -- Auto Precharge (AP) -- ------------------------------------------------------------- function write (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks -1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned(c_max_addr_bits-1 downto 0); begin -- calculate correct address signal v_addr := to_unsigned(col, c_max_addr_bits); -- note pin A10 is used for AP, therfore shift the value from A10 onto A11. v_retval.addr := to_integer(v_addr(9 downto 0)); if v_addr(10) = '1' then v_retval.addr := v_retval.addr + 2**11; end if; if auto_prech = true then -- set AP bit (A10) v_retval.addr := v_retval.addr + 2**10; end if; if config_rec.mem_type = DDR3 then if op_length = 8 then -- set BL_OTF sel bit (A12) v_retval.addr := v_retval.addr + 2**12; elsif op_length = 4 then null; else report ac_report_prefix & "DDR3 DRAM only supports writes of burst length 4 or 8, the requested length was: " & integer'image(op_length) severity failure; end if; elsif config_rec.mem_type = DDR2 or config_rec.mem_type = DDR then null; else report ac_report_prefix & "only DDR memories are supported for memory writes" severity failure; end if; -- set a/c signal assignments for write v_retval.ba := bank; v_retval.cas_n := true; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := ranks; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a read command JEDEC abbreviated name: RD, RDA -- RDS4, RDAS4 -- RDS8, RDAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL, Auto Precharge (AP) -- ------------------------------------------------------------- function read (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks -1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr : unsigned(c_max_addr_bits-1 downto 0); begin -- calculate correct address signal v_addr := to_unsigned(col, c_max_addr_bits); -- note pin A10 is used for AP, therfore shift the value from A10 onto A11. v_retval.addr := to_integer(v_addr(9 downto 0)); if v_addr(10) = '1' then v_retval.addr := v_retval.addr + 2**11; end if; if auto_prech = true then -- set AP bit (A10) v_retval.addr := v_retval.addr + 2**10; end if; if config_rec.mem_type = DDR3 then if op_length = 8 then -- set BL_OTF sel bit (A12) v_retval.addr := v_retval.addr + 2**12; elsif op_length = 4 then null; else report ac_report_prefix & "DDR3 DRAM only supports reads of burst length 4 or 8" severity failure; end if; elsif config_rec.mem_type = DDR2 or config_rec.mem_type = DDR then null; else report ac_report_prefix & "only DDR memories are supported for memory reads" severity failure; end if; -- set a/c signals for read command v_retval.ba := bank; v_retval.cas_n := true; v_retval.ras_n := false; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := 0; v_retval.rst_n := false; return v_retval; end function; -- ------------------------------------------------------------- -- issues a refresh command JEDEC abbreviated name: REF -- ------------------------------------------------------------- function refresh (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cas_n := true; v_retval.ras_n := true; v_retval.we_n := false; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.rst_n := false; -- addr, BA and ODT are don't care therfore leave as previous value return v_retval; end function; -- ------------------------------------------------------------- -- issues a mode register set command JEDEC abbreviated name: MRS -- ------------------------------------------------------------- function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_addr_remap : unsigned(c_max_mode_reg_bit downto 0); begin v_retval.cas_n := true; v_retval.ras_n := true; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - ranks; v_retval.odt := 0; v_retval.rst_n := false; v_retval.ba := mode_register_num; v_retval.addr := to_integer(unsigned(mode_reg_value)); if remap_addr_and_ba = true then v_addr_remap := unsigned(mode_reg_value); v_addr_remap(8 downto 7) := v_addr_remap(7) & v_addr_remap(8); v_addr_remap(6 downto 5) := v_addr_remap(5) & v_addr_remap(6); v_addr_remap(4 downto 3) := v_addr_remap(3) & v_addr_remap(4); v_retval.addr := to_integer(v_addr_remap); v_addr_remap := to_unsigned(mode_register_num, c_max_mode_reg_bit + 1); v_addr_remap(1 downto 0) := v_addr_remap(0) & v_addr_remap(1); v_retval.ba := to_integer(v_addr_remap); end if; return v_retval; end function; -- ------------------------------------------------------------- -- maintains SR or PD mode on slected ranks. -- ------------------------------------------------------------- function maintain_pd_or_sr (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval := previous; v_retval.cke := (2 ** config_rec.num_ranks) - 1 - ranks; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (short) JEDEC abbreviated name: ZQCS -- NOTE - can only be issued to a single RANK at a time. -- ------------------------------------------------------------- function ZQCS (config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - rank; v_retval.rst_n := false; v_retval.addr := 0; -- clear bit 10 v_retval.ba := 0; v_retval.odt := 0; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (long) JEDEC abbreviated name: ZQCL -- NOTE - can only be issued to a single RANK at a time. -- ------------------------------------------------------------- function ZQCL (config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd is variable v_retval : t_addr_cmd; begin v_retval.cas_n := false; v_retval.ras_n := false; v_retval.we_n := true; v_retval.cke := (2 ** config_rec.num_ranks) -1; v_retval.cs_n := (2 ** config_rec.num_cs_bits) -1 - rank; v_retval.rst_n := false; v_retval.addr := 1024; -- set bit 10 v_retval.ba := 0; v_retval.odt := 0; return v_retval; end function; -- ------------------------------------------------------------- -- functions acting on all clock cycles from whatever rate -- in halfrate clock domain issues 1 command per clock -- in quarter rate issues 1 command per clock -- In the above cases they will be correctly aligned using the -- ALTMEMPHY 2T and 4T SDC -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- defaults the bus no JEDEC abbreviated name -- ------------------------------------------------------------- function defaults (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => defaults(config_rec)); return v_retval; end function; -- ------------------------------------------------------------- -- resets the addr/cmd signal (same as default with cke 0) -- ------------------------------------------------------------- function reset (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => reset(config_rec)); return v_retval; end function; function int_pup_reset (config_rec : in t_addr_cmd_config_rec ) return t_addr_cmd_vector is variable v_addr_cmd_config_rst : t_addr_cmd_config_rec; begin v_addr_cmd_config_rst := config_rec; v_addr_cmd_config_rst.num_ranks := c_max_ranks; return reset(v_addr_cmd_config_rst); end function; -- ------------------------------------------------------------- -- issues a deselect command JEDEC abbreviated name: DES -- ------------------------------------------------------------- function deselect ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(a_previous'range); begin for rate in a_previous'range loop v_retval(rate) := deselect(config_rec, a_previous(a_previous'high)); end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a precharge all command JEDEC abbreviated name: PREA -- ------------------------------------------------------------- function precharge_all ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in a_previous'range loop v_retval(rate) := precharge_all(config_rec, previous(a_previous'high), ranks); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- precharge (close) a bank JEDEC abbreviated name: PRE -- ------------------------------------------------------------- function precharge_bank ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1; bank : in natural range 0 to 2**c_max_ba_bits -1 ) return t_addr_cmd_vector is alias a_previous : t_addr_cmd_vector(previous'range) is previous; variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in a_previous'range loop v_retval(rate) := precharge_bank(config_rec, previous(a_previous'high), ranks, bank); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a activate (open row) JEDEC abbreviated name: ACT -- ------------------------------------------------------------- function activate ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; row : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := activate(config_rec, previous(previous'high), bank, row, ranks); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a write command JEDEC abbreviated name:WR, WRA -- WRS4, WRAS4 -- WRS8, WRAS8 -- -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL -- Auto Precharge (AP) -- ------------------------------------------------------------- function write ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := write(config_rec, previous(previous'high), bank, col, ranks, op_length, auto_prech); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a read command JEDEC abbreviated name: RD, RDA -- RDS4, RDAS4 -- RDS8, RDAS8 -- has the ability to support: -- DDR3: -- BL4, BL8, fixed BL -- Auto Precharge (AP) -- DDR2, DDR: -- fixed BL, Auto Precharge (AP) -- ------------------------------------------------------------- function read ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; bank : in natural range 0 to 2**c_max_ba_bits -1; col : in natural range 0 to 2**c_max_addr_bits -1; ranks : in natural range 0 to 2**c_max_ranks - 1; op_length : in natural range 1 to 8; auto_prech : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := read(config_rec, previous(previous'high), bank, col, ranks, op_length, auto_prech); -- use dwidth_ratio/2 as in FR = 0 , HR = 1, and in future QR = 2 tCK setup + 1 tCK hold if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a refresh command JEDEC abbreviated name: REF -- ------------------------------------------------------------- function refresh (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 )return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for rate in previous'range loop v_retval(rate) := refresh(config_rec, previous(previous'high), ranks); if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a self_refresh_entry command JEDEC abbreviated name: SRE -- ------------------------------------------------------------- function self_refresh_entry (config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 )return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := enter_sr_pd_mode(config_rec, refresh(config_rec, previous, ranks), ranks); return v_retval; end function; -- ------------------------------------------------------------- -- issues a self_refresh exit or power_down exit command -- JEDEC abbreviated names: SRX, PDX -- ------------------------------------------------------------- function exit_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); variable v_mask_workings : std_logic_vector(config_rec.num_ranks -1 downto 0); variable v_mask_workings_b : std_logic_vector(config_rec.num_ranks -1 downto 0); begin v_retval := maintain_pd_or_sr(config_rec, previous, ranks); v_mask_workings_b := std_logic_vector(to_unsigned(ranks, config_rec.num_ranks)); for rate in 0 to config_rec.cmds_per_clk - 1 loop v_mask_workings := std_logic_vector(to_unsigned(v_retval(rate).cke, config_rec.num_ranks)); for i in v_mask_workings_b'range loop v_mask_workings(i) := v_mask_workings(i) or v_mask_workings_b(i); end loop; if rate >= config_rec.cmds_per_clk / 2 then -- maintain command but clear CS of subsequenct command slots v_retval(rate).cke := to_integer(unsigned(v_mask_workings)); -- almost irrelevant. but optimises logic slightly for Quater rate end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- cause the selected ranks to enter Self-refresh or Powerdown mode -- JEDEC abbreviated names: PDE, -- SRE (if a refresh is concurrently issued to the same ranks) -- ------------------------------------------------------------- function enter_sr_pd_mode ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); variable v_mask_workings : std_logic_vector(config_rec.num_ranks -1 downto 0); variable v_mask_workings_b : std_logic_vector(config_rec.num_ranks -1 downto 0); begin v_retval := previous; v_mask_workings_b := std_logic_vector(to_unsigned(ranks, config_rec.num_ranks)); for rate in 0 to config_rec.cmds_per_clk - 1 loop if rate >= config_rec.cmds_per_clk / 2 then -- maintain command but clear CS of subsequenct command slots v_mask_workings := std_logic_vector(to_unsigned(v_retval(rate).cke, config_rec.num_ranks)); for i in v_mask_workings_b'range loop v_mask_workings(i) := v_mask_workings(i) and not v_mask_workings_b(i); end loop; v_retval(rate).cke := to_integer(unsigned(v_mask_workings)); -- almost irrelevant. but optimises logic slightly for Quater rate end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- Issues a mode register set command JEDEC abbreviated name: MRS -- ------------------------------------------------------------- function load_mode ( config_rec : in t_addr_cmd_config_rec; mode_register_num : in natural range 0 to 3; mode_reg_value : in std_logic_vector(c_max_mode_reg_bit downto 0); ranks : in natural range 0 to 2**c_max_ranks -1; remap_addr_and_ba : in boolean ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => load_mode(config_rec, mode_register_num, mode_reg_value, ranks, remap_addr_and_ba)); for rate in v_retval'range loop if rate /= config_rec.cmds_per_clk/2 then v_retval(rate).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- maintains SR or PD mode on slected ranks. -- NOTE: does not affect previous command -- ------------------------------------------------------------- function maintain_pd_or_sr ( config_rec : in t_addr_cmd_config_rec; previous : in t_addr_cmd_vector; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin for command in v_retval'range loop v_retval(command) := maintain_pd_or_sr(config_rec, previous(command), ranks); end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (long) JEDEC abbreviated name: ZQCL -- NOTE - can only be issued to a single RANK ata a time. -- ------------------------------------------------------------- function ZQCL ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in v_retval'range loop v_retval(command) := ZQCL(config_rec, rank); if command * 2 /= config_rec.cmds_per_clk then v_retval(command).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ------------------------------------------------------------- -- issues a ZQ cal (short) JEDEC abbreviated name: ZQCS -- NOTE - can only be issued to a single RANK ata a time. -- ------------------------------------------------------------- function ZQCS ( config_rec : in t_addr_cmd_config_rec; rank : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in v_retval'range loop v_retval(command) := ZQCS(config_rec, rank); if command * 2 /= config_rec.cmds_per_clk then v_retval(command).cs_n := (2 ** config_rec.num_cs_bits) -1; end if; end loop; return v_retval; end function; -- ---------------------- -- Additional Rank manipulation functions (main use DDR3) -- ------------- -- ----------------------------------- -- set the chip select for a group of ranks -- ----------------------------------- function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_mask_workings : std_logic_vector(config_rec.num_cs_bits-1 downto 0); begin v_retval := record_to_mask; v_mask_workings := std_logic_vector(to_unsigned(record_to_mask.cs_n, config_rec.num_cs_bits)); for i in mem_ac_swapped_ranks'range loop v_mask_workings(i):= v_mask_workings(i) or not mem_ac_swapped_ranks(i); end loop; v_retval.cs_n := to_integer(unsigned(v_mask_workings)); return v_retval; end function; -- ----------------------------------- -- inverse of the above -- ----------------------------------- function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable v_mask_workings : std_logic_vector(config_rec.num_cs_bits-1 downto 0); begin v_retval := record_to_mask; v_mask_workings := std_logic_vector(to_unsigned(record_to_mask.cs_n, config_rec.num_cs_bits)); for i in mem_ac_swapped_ranks'range loop v_mask_workings(i):= v_mask_workings(i) or mem_ac_swapped_ranks(i); end loop; v_retval.cs_n := to_integer(unsigned(v_mask_workings)); return v_retval; end function; -- ----------------------------------- -- set the chip select for a group of ranks in a way which handles diffrent rates -- ----------------------------------- function all_unreversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in record_to_mask'range loop v_retval(command) := all_unreversed_ranks(config_rec, record_to_mask(command), mem_ac_swapped_ranks); end loop; return v_retval; end function; -- ----------------------------------- -- inverse of the above handling ranks -- ----------------------------------- function all_reversed_ranks ( config_rec : in t_addr_cmd_config_rec; record_to_mask : in t_addr_cmd_vector; mem_ac_swapped_ranks : in std_logic_vector ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin for command in record_to_mask'range loop v_retval(command) := all_reversed_ranks(config_rec, record_to_mask(command), mem_ac_swapped_ranks); end loop; return v_retval; end function; -- -------------------------------------------------- -- Program a single control word onto RDIMM. -- This is accomplished rather goofily by asserting all chip selects -- and then writing out both the addr/data of the word onto the addr/ba bus -- -------------------------------------------------- function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd is variable v_retval : t_addr_cmd; variable ba : std_logic_vector(2 downto 0); variable addr : std_logic_vector(4 downto 0); begin v_retval := defaults(config_rec); v_retval.cs_n := 0; ba := control_word_addr(3) & control_word_data(3) & control_word_data(2); v_retval.ba := to_integer(unsigned(ba)); addr := control_word_data(1) & control_word_data(0) & control_word_addr(2) & control_word_addr(1) & control_word_addr(0); v_retval.addr := to_integer(unsigned(addr)); return v_retval; end function; function program_rdimm_register ( config_rec : in t_addr_cmd_config_rec; control_word_addr : in std_logic_vector(3 downto 0); control_word_data : in std_logic_vector(3 downto 0) ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_retval := (others => program_rdimm_register(config_rec, control_word_addr, control_word_data)); return v_retval; end function; -- -------------------------------------------------- -- overloaded functions, to simplify use, or provide simplified functionality -- -------------------------------------------------- -- ---------------------------------------------------- -- Precharge all, defaulting all bits. -- ---------------------------------------------------- function precharge_all ( config_rec : in t_addr_cmd_config_rec; ranks : in natural range 0 to 2**c_max_ranks -1 ) return t_addr_cmd_vector is variable v_retval : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1) := defaults(config_rec); begin v_retval := precharge_all(config_rec, v_retval, ranks); return v_retval; end function; -- ---------------------------------------------------- -- perform DLL reset through mode registers -- ---------------------------------------------------- function dll_reset ( config_rec : in t_addr_cmd_config_rec; mode_reg_val : in std_logic_vector; rank_num : in natural range 0 to 2**c_max_ranks - 1; reorder_addr_bits : in boolean ) return t_addr_cmd_vector is variable int_mode_reg : std_logic_vector(mode_reg_val'range); variable output : t_addr_cmd_vector(0 to config_rec.cmds_per_clk - 1); begin int_mode_reg := mode_reg_val; int_mode_reg(8) := '1'; -- set DLL reset bit. output := load_mode(config_rec, 0, int_mode_reg, rank_num, reorder_addr_bits); return output; end function; -- ------------------------------------------------------------- -- package configuration functions -- ------------------------------------------------------------- -- ------------------------------------------------------------- -- the following function sets up the odt settings -- NOTES: supports DDR/DDR2/DDR3 SDRAM memories -- ------------------------------------------------------------- function set_odt_values (ranks : natural; ranks_per_slot : natural; mem_type : in string ) return t_odt_array is variable v_num_slots : natural; variable v_cs : natural range 0 to ranks-1; variable v_odt_values : t_odt_array(0 to ranks-1); variable v_cs_addr : unsigned(ranks-1 downto 0); begin if mem_type = "DDR" then -- ODT not supported for DDR memory so set default off for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 0; v_odt_values(v_cs).read := 0; end loop; elsif mem_type = "DDR2" then -- odt setting as implemented in the altera high-performance controller for ddr2 memories assert (ranks rem ranks_per_slot = 0) report ac_report_prefix & "number of ranks per slot must be a multiple of number of ranks" severity failure; v_num_slots := ranks/ranks_per_slot; if v_num_slots = 1 then -- special condition for 1 slot (i.e. DIMM) (2^n, n=0,1,2,... ranks only) -- set odt on one chip for writes and no odt for reads for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 2**v_cs; -- on on the rank being written to v_odt_values(v_cs).read := 0; end loop; else -- if > 1 slot, set 1 odt enable on neighbouring slot for read and write -- as an example consider the below for 4 slots with 2 ranks per slot -- access to CS[0] or CS[1], enable ODT[2] or ODT[3] -- access to CS[2] or CS[3], enable ODT[0] or ODT[1] -- access to CS[4] or CS[5], enable ODT[6] or ODT[7] -- access to CS[6] or CS[7], enable ODT[4] or ODT[5] -- the logic below implements the above for varying ranks and ranks_per slot -- under the condition that ranks/ranks_per_slot is integer for v_cs in 0 to ranks-1 loop v_cs_addr := to_unsigned(v_cs, ranks); v_cs_addr(ranks_per_slot-1) := not v_cs_addr(ranks_per_slot-1); v_odt_values(v_cs).write := 2**to_integer(v_cs_addr); v_odt_values(v_cs).read := v_odt_values(v_cs).write; end loop; end if; elsif mem_type = "DDR3" then assert (ranks rem ranks_per_slot = 0) report ac_report_prefix & "number of ranks per slot must be a multiple of number of ranks" severity failure; v_num_slots := ranks/ranks_per_slot; if v_num_slots = 1 then -- special condition for 1 slot (i.e. DIMM) (2^n, n=0,1,2,... ranks only) -- set odt on one chip for writes and no odt for reads for v_cs in 0 to ranks-1 loop v_odt_values(v_cs).write := 2**v_cs; -- on on the rank being written to v_odt_values(v_cs).read := 0; end loop; else -- if > 1 slot, set 1 odt enable on neighbouring slot for read and write -- as an example consider the below for 4 slots with 2 ranks per slot -- access to CS[0] or CS[1], enable ODT[2] or ODT[3] -- access to CS[2] or CS[3], enable ODT[0] or ODT[1] -- access to CS[4] or CS[5], enable ODT[6] or ODT[7] -- access to CS[6] or CS[7], enable ODT[4] or ODT[5] -- the logic below implements the above for varying ranks and ranks_per slot -- under the condition that ranks/ranks_per_slot is integer for v_cs in 0 to ranks-1 loop v_cs_addr := to_unsigned(v_cs, ranks); v_cs_addr(ranks_per_slot-1) := not v_cs_addr(ranks_per_slot-1); v_odt_values(v_cs).write := 2**to_integer(v_cs_addr) + 2**(v_cs); -- turn on a neighbouring slots cs and current rank being written to v_odt_values(v_cs).read := 2**to_integer(v_cs_addr); end loop; end if; else report ac_report_prefix & "unknown mem_type specified in the set_odt_values function in addr_cmd_pkg package" severity failure; end if; return v_odt_values; end function; -- ----------------------------------------------------------- -- set constant values to config_rec -- ---------------------------------------------------------- function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; num_ranks : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec is variable v_config_rec : t_addr_cmd_config_rec; begin v_config_rec.num_addr_bits := num_addr_bits; v_config_rec.num_ba_bits := num_ba_bits; v_config_rec.num_cs_bits := num_cs_bits; v_config_rec.num_ranks := num_ranks; v_config_rec.cmds_per_clk := dwidth_ratio/2; if mem_type = "DDR" then v_config_rec.mem_type := DDR; elsif mem_type = "DDR2" then v_config_rec.mem_type := DDR2; elsif mem_type = "DDR3" then v_config_rec.mem_type := DDR3; else report ac_report_prefix & "unknown mem_type specified in the set_config_rec function in addr_cmd_pkg package" severity failure; end if; return v_config_rec; end function; -- The non-levelled sequencer doesn't make a distinction between CS_WIDTH and NUM_RANKS. In this case, -- just set the two to be the same. function set_config_rec ( num_addr_bits : in natural; num_ba_bits : in natural; num_cs_bits : in natural; dwidth_ratio : in natural range 1 to c_max_cmds_per_clk; mem_type : in string ) return t_addr_cmd_config_rec is begin return set_config_rec(num_addr_bits, num_ba_bits, num_cs_bits, num_cs_bits, dwidth_ratio, mem_type); end function; -- ----------------------------------------------------------- -- unpack and pack address and command signals from and to t_addr_cmd_vector -- ----------------------------------------------------------- -- ------------------------------------------------------------- -- convert from t_addr_cmd_vector to expanded addr/cmd signals -- ------------------------------------------------------------- procedure unpack_addr_cmd_vector( addr_cmd_vector : in t_addr_cmd_vector; config_rec : in t_addr_cmd_config_rec; addr : out std_logic_vector; ba : out std_logic_vector; cas_n : out std_logic_vector; ras_n : out std_logic_vector; we_n : out std_logic_vector; cke : out std_logic_vector; cs_n : out std_logic_vector; odt : out std_logic_vector; rst_n : out std_logic_vector ) is variable v_mem_if_ranks : natural range 0 to 2**c_max_ranks - 1; variable v_vec_len : natural range 1 to 4; variable v_addr : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_addr_bits - 1 downto 0); variable v_ba : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ba_bits - 1 downto 0); variable v_odt : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_cs_n : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_cs_bits - 1 downto 0); variable v_cke : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_cas_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_ras_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_we_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_rst_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); begin v_vec_len := config_rec.cmds_per_clk; v_mem_if_ranks := config_rec.num_ranks; for v_i in 0 to v_vec_len-1 loop assert addr_cmd_vector(v_i).addr < 2**config_rec.num_addr_bits report ac_report_prefix & "value of addr exceeds range of number of address bits in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).ba < 2**config_rec.num_ba_bits report ac_report_prefix & "value of ba exceeds range of number of bank address bits in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).odt < 2**v_mem_if_ranks report ac_report_prefix & "value of odt exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).cs_n < 2**config_rec.num_cs_bits report ac_report_prefix & "value of cs_n exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; assert addr_cmd_vector(v_i).cke < 2**v_mem_if_ranks report ac_report_prefix & "value of cke exceeds range of number of ranks in unpack_addr_cmd_vector procedure" severity failure; v_addr((v_i+1)*config_rec.num_addr_bits - 1 downto v_i*config_rec.num_addr_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).addr,config_rec.num_addr_bits)); v_ba((v_i+1)*config_rec.num_ba_bits - 1 downto v_i*config_rec.num_ba_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).ba,config_rec.num_ba_bits)); v_cke((v_i+1)*v_mem_if_ranks - 1 downto v_i*v_mem_if_ranks) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).cke,v_mem_if_ranks)); v_cs_n((v_i+1)*config_rec.num_cs_bits - 1 downto v_i*config_rec.num_cs_bits) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).cs_n,config_rec.num_cs_bits)); v_odt((v_i+1)*v_mem_if_ranks - 1 downto v_i*v_mem_if_ranks) := std_logic_vector(to_unsigned(addr_cmd_vector(v_i).odt,v_mem_if_ranks)); if (addr_cmd_vector(v_i).cas_n) then v_cas_n(v_i) := '0'; else v_cas_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).ras_n) then v_ras_n(v_i) := '0'; else v_ras_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).we_n) then v_we_n(v_i) := '0'; else v_we_n(v_i) := '1'; end if; if (addr_cmd_vector(v_i).rst_n) then v_rst_n(v_i) := '0'; else v_rst_n(v_i) := '1'; end if; end loop; addr := v_addr; ba := v_ba; cke := v_cke; cs_n := v_cs_n; odt := v_odt; cas_n := v_cas_n; ras_n := v_ras_n; we_n := v_we_n; rst_n := v_rst_n; end procedure; procedure unpack_addr_cmd_vector( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal addr : out std_logic_vector; signal ba : out std_logic_vector; signal cas_n : out std_logic_vector; signal ras_n : out std_logic_vector; signal we_n : out std_logic_vector; signal cke : out std_logic_vector; signal cs_n : out std_logic_vector; signal odt : out std_logic_vector; signal rst_n : out std_logic_vector ) is variable v_mem_if_ranks : natural range 0 to 2**c_max_ranks - 1; variable v_vec_len : natural range 1 to 4; variable v_seq_ac_addr : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_addr_bits - 1 downto 0); variable v_seq_ac_ba : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ba_bits - 1 downto 0); variable v_seq_ac_cas_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_ras_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_we_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); variable v_seq_ac_cke : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_seq_ac_cs_n : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_cs_bits - 1 downto 0); variable v_seq_ac_odt : std_logic_vector(config_rec.cmds_per_clk * config_rec.num_ranks - 1 downto 0); variable v_seq_ac_rst_n : std_logic_vector(config_rec.cmds_per_clk - 1 downto 0); begin unpack_addr_cmd_vector ( addr_cmd_vector, config_rec, v_seq_ac_addr, v_seq_ac_ba, v_seq_ac_cas_n, v_seq_ac_ras_n, v_seq_ac_we_n, v_seq_ac_cke, v_seq_ac_cs_n, v_seq_ac_odt, v_seq_ac_rst_n); addr <= v_seq_ac_addr; ba <= v_seq_ac_ba; cas_n <= v_seq_ac_cas_n; ras_n <= v_seq_ac_ras_n; we_n <= v_seq_ac_we_n; cke <= v_seq_ac_cke; cs_n <= v_seq_ac_cs_n; odt <= v_seq_ac_odt; rst_n <= v_seq_ac_rst_n; end procedure; -- ----------------------------------------------------------- -- function to mask each bit of signal signal_name in addr_cmd_ -- ----------------------------------------------------------- -- ----------------------------------------------------------- -- function to mask each bit of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic ) return t_addr_cmd_vector is variable v_i : integer; variable v_addr_cmd_vector : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_addr_cmd_vector := addr_cmd_vector; for v_i in 0 to (config_rec.cmds_per_clk)-1 loop case signal_name is when addr => if (mask_value = '0') then v_addr_cmd_vector(v_i).addr := 0; else v_addr_cmd_vector(v_i).addr := (2 ** config_rec.num_addr_bits) - 1; end if; when ba => if (mask_value = '0') then v_addr_cmd_vector(v_i).ba := 0; else v_addr_cmd_vector(v_i).ba := (2 ** config_rec.num_ba_bits) - 1; end if; when cas_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).cas_n := true; else v_addr_cmd_vector(v_i).cas_n := false; end if; when ras_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).ras_n := true; else v_addr_cmd_vector(v_i).ras_n := false; end if; when we_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).we_n := true; else v_addr_cmd_vector(v_i).we_n := false; end if; when cke => if (mask_value = '0') then v_addr_cmd_vector(v_i).cke := 0; else v_addr_cmd_vector(v_i).cke := (2**config_rec.num_ranks) -1; end if; when cs_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).cs_n := 0; else v_addr_cmd_vector(v_i).cs_n := (2**config_rec.num_cs_bits) -1; end if; when odt => if (mask_value = '0') then v_addr_cmd_vector(v_i).odt := 0; else v_addr_cmd_vector(v_i).odt := (2**config_rec.num_ranks) -1; end if; when rst_n => if (mask_value = '0') then v_addr_cmd_vector(v_i).rst_n := true; else v_addr_cmd_vector(v_i).rst_n := false; end if; when others => report ac_report_prefix & "bit masking not supported for the given signal name" severity failure; end case; end loop; return v_addr_cmd_vector; end function; -- ----------------------------------------------------------- -- procedure to mask each bit of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- procedure mask( config_rec : in t_addr_cmd_config_rec; signal addr_cmd_vector : inout t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic ) is variable v_i : integer; begin for v_i in 0 to (config_rec.cmds_per_clk)-1 loop case signal_name is when addr => if (mask_value = '0') then addr_cmd_vector(v_i).addr <= 0; else addr_cmd_vector(v_i).addr <= (2 ** config_rec.num_addr_bits) - 1; end if; when ba => if (mask_value = '0') then addr_cmd_vector(v_i).ba <= 0; else addr_cmd_vector(v_i).ba <= (2 ** config_rec.num_ba_bits) - 1; end if; when cas_n => if (mask_value = '0') then addr_cmd_vector(v_i).cas_n <= true; else addr_cmd_vector(v_i).cas_n <= false; end if; when ras_n => if (mask_value = '0') then addr_cmd_vector(v_i).ras_n <= true; else addr_cmd_vector(v_i).ras_n <= false; end if; when we_n => if (mask_value = '0') then addr_cmd_vector(v_i).we_n <= true; else addr_cmd_vector(v_i).we_n <= false; end if; when cke => if (mask_value = '0') then addr_cmd_vector(v_i).cke <= 0; else addr_cmd_vector(v_i).cke <= (2**config_rec.num_ranks) -1; end if; when cs_n => if (mask_value = '0') then addr_cmd_vector(v_i).cs_n <= 0; else addr_cmd_vector(v_i).cs_n <= (2**config_rec.num_cs_bits) -1; end if; when odt => if (mask_value = '0') then addr_cmd_vector(v_i).odt <= 0; else addr_cmd_vector(v_i).odt <= (2**config_rec.num_ranks) -1; end if; when rst_n => if (mask_value = '0') then addr_cmd_vector(v_i).rst_n <= true; else addr_cmd_vector(v_i).rst_n <= false; end if; when others => report ac_report_prefix & "masking not supported for the given signal name" severity failure; end case; end loop; end procedure; -- ----------------------------------------------------------- -- function to mask a given bit (mask_bit) of signal signal_name in addr_cmd_vector with mask_value -- ----------------------------------------------------------- function mask ( config_rec : in t_addr_cmd_config_rec; addr_cmd_vector : in t_addr_cmd_vector; signal_name : in t_addr_cmd_signals; mask_value : in std_logic; mask_bit : in natural ) return t_addr_cmd_vector is variable v_i : integer; variable v_addr : std_logic_vector(config_rec.num_addr_bits-1 downto 0); -- v_addr is bit vector of address variable v_ba : std_logic_vector(config_rec.num_ba_bits-1 downto 0); -- v_addr is bit vector of bank address variable v_vec_len : natural range 0 to 4; variable v_addr_cmd_vector : t_addr_cmd_vector(0 to config_rec.cmds_per_clk -1); begin v_addr_cmd_vector := addr_cmd_vector; v_vec_len := config_rec.cmds_per_clk; for v_i in 0 to v_vec_len-1 loop case signal_name is when addr => v_addr := std_logic_vector(to_unsigned(v_addr_cmd_vector(v_i).addr,v_addr'length)); v_addr(mask_bit) := mask_value; v_addr_cmd_vector(v_i).addr := to_integer(unsigned(v_addr)); when ba => v_ba := std_logic_vector(to_unsigned(v_addr_cmd_vector(v_i).ba,v_ba'length)); v_ba(mask_bit) := mask_value; v_addr_cmd_vector(v_i).ba := to_integer(unsigned(v_ba)); when others => report ac_report_prefix & "bit masking not supported for the given signal name" severity failure; end case; end loop; return v_addr_cmd_vector; end function; -- end ram_controller_phy_alt_mem_phy_addr_cmd_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : iram addressing package for the non-levelling AFI PHY sequencer -- The iram address package (alt_mem_phy_iram_addr_pkg) is -- used to define the base addresses used for iram writes -- during calibration. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- package ram_controller_phy_alt_mem_phy_iram_addr_pkg IS constant c_ihi_size : natural := 8; type t_base_hdr_addresses is record base_hdr : natural; rrp : natural; safe_dummy : natural; required_addr_bits : natural; end record; function defaults return t_base_hdr_addresses; function rrp_pll_phase_mult (dwidth_ratio : in natural; dqs_capture : in natural ) return natural; function iram_wd_for_full_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural; function iram_wd_for_one_pin_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural; function calc_iram_addresses ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; num_ranks : in natural; dqs_capture : in natural ) return t_base_hdr_addresses; -- end ram_controller_phy_alt_mem_phy_iram_addr_pkg; -- package body ram_controller_phy_alt_mem_phy_iram_addr_pkg IS -- set some safe default values function defaults return t_base_hdr_addresses is variable temp : t_base_hdr_addresses; begin temp.base_hdr := 0; temp.rrp := 0; temp.safe_dummy := 0; temp.required_addr_bits := 1; return temp; end function; -- this function determines now many times the PLL phases are swept through per pin -- i.e. an n * 360 degree phase sweep function rrp_pll_phase_mult (dwidth_ratio : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; begin if dwidth_ratio = 2 and dqs_capture = 1 then v_output := 2; -- if dqs_capture then a 720 degree sweep needed in FR else v_output := (dwidth_ratio/2); end if; return v_output; end function; -- function to calculate how many words are required for a rrp sweep over all pins function iram_wd_for_full_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; variable v_phase_mul : natural; begin -- determine the n * 360 degrees of sweep required v_phase_mul := rrp_pll_phase_mult(dwidth_ratio, dqs_capture); -- calculate output size v_output := dq_pins * (((v_phase_mul * pll_phases) + 31) / 32); return v_output; end function; -- function to calculate how many words are required for a rrp sweep over all pins function iram_wd_for_one_pin_rrp ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; dqs_capture : in natural ) return natural is variable v_output : natural; variable v_phase_mul : natural; begin -- determine the n * 360 degrees of sweep required v_phase_mul := rrp_pll_phase_mult(dwidth_ratio, dqs_capture); -- calculate output size v_output := ((v_phase_mul * pll_phases) + 31) / 32; return v_output; end function; -- return iram addresses function calc_iram_addresses ( dwidth_ratio : in natural; pll_phases : in natural; dq_pins : in natural; num_ranks : in natural; dqs_capture : in natural ) return t_base_hdr_addresses is variable working : t_base_hdr_addresses; variable temp : natural; variable v_required_words : natural; begin working.base_hdr := 0; working.rrp := working.base_hdr + c_ihi_size; -- work out required number of address bits -- + for 1 full rrp calibration v_required_words := iram_wd_for_full_rrp(dwidth_ratio, pll_phases, dq_pins, dqs_capture) + 2; -- +2 for header + footer -- * loop per cs v_required_words := v_required_words * num_ranks; -- + for 1 rrp_seek result v_required_words := v_required_words + 3; -- 1 header, 1 word result, 1 footer -- + 2 mtp_almt passes v_required_words := v_required_words + 2 * (iram_wd_for_one_pin_rrp(dwidth_ratio, pll_phases, dq_pins, dqs_capture) + 2); -- + for 2 read_mtp result calculation v_required_words := v_required_words + 3*2; -- 1 header, 1 word result, 1 footer -- * possible dwidth_ratio/2 iterations for different ac_nt settings v_required_words := v_required_words * (dwidth_ratio / 2); working.safe_dummy := working.rrp + v_required_words; temp := working.safe_dummy; working.required_addr_bits := 0; while (temp >= 1) loop working.required_addr_bits := working.required_addr_bits + 1; temp := temp /2; end loop; return working; end function calc_iram_addresses; -- END ram_controller_phy_alt_mem_phy_iram_addr_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : register package for the non-levelling AFI PHY sequencer -- The registers package (alt_mem_phy_regs_pkg) is used to -- combine the definition of the registers for the mmi status -- registers and functions/procedures applied to the registers -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- package ram_controller_phy_alt_mem_phy_regs_pkg is -- a prefix for all report signals to identify phy and sequencer block -- constant regs_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (register package) : "; -- --------------------------------------------------------------- -- register declarations with associated functions of: -- default - assign default values -- write - write data into the reg (from avalon i/f) -- read - read data from the reg (sent to the avalon i/f) -- write_clear - clear reg to all zeros -- --------------------------------------------------------------- -- TYPE DECLARATIONS -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- cal_status type t_cal_status is record iram_addr_width : std_logic_vector(3 downto 0); out_of_mem : std_logic; contested_access : std_logic; cal_fail : std_logic; cal_success : std_logic; ctrl_err_code : std_logic_vector(7 downto 0); trefi_failure : std_logic; int_ac_1t : std_logic; dqs_capture : std_logic; iram_present : std_logic; active_block : std_logic_vector(3 downto 0); current_stage : std_logic_vector(7 downto 0); end record; -- codvw status type t_codvw_status is record cal_codvw_phase : std_logic_vector(7 downto 0); cal_codvw_size : std_logic_vector(7 downto 0); codvw_trk_shift : std_logic_vector(11 downto 0); codvw_grt_one_dvw : std_logic; end record t_codvw_status; -- test status report type t_test_status is record ack_seen : std_logic_vector(c_hl_ccs_num_stages-1 downto 0); pll_mmi_err : std_logic_vector(1 downto 0); pll_busy : std_logic; end record; -- define all the read only registers : type t_ro_regs is record cal_status : t_cal_status; codvw_status : t_codvw_status; test_status : t_test_status; end record; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- Calibration control register type t_hl_css is record hl_css : std_logic_vector(c_hl_ccs_num_stages-1 downto 0); cal_start : std_logic; end record t_hl_css; -- Mode register A type t_mr_register_a is record mr0 : std_logic_vector(c_max_mode_reg_index -1 downto 0); mr1 : std_logic_vector(c_max_mode_reg_index -1 downto 0); end record t_mr_register_a; -- Mode register B type t_mr_register_b is record mr2 : std_logic_vector(c_max_mode_reg_index -1 downto 0); mr3 : std_logic_vector(c_max_mode_reg_index -1 downto 0); end record t_mr_register_b; -- algorithm parameterisation register type t_parameterisation_reg_a is record nominal_poa_phase_lead : std_logic_vector(3 downto 0); maximum_poa_delay : std_logic_vector(3 downto 0); num_phases_per_tck_pll : std_logic_vector(3 downto 0); pll_360_sweeps : std_logic_vector(3 downto 0); nominal_dqs_delay : std_logic_vector(2 downto 0); extend_octrt_by : std_logic_vector(3 downto 0); delay_octrt_by : std_logic_vector(3 downto 0); end record; -- test signal register type t_if_test_reg is record pll_phs_shft_phase_sel : natural range 0 to 15; pll_phs_shft_up_wc : std_logic; pll_phs_shft_dn_wc : std_logic; ac_1t_toggle : std_logic; -- unused tracking_period_ms : std_logic_vector(7 downto 0); -- 0 = as fast as possible approx in ms tracking_units_are_10us : std_logic; end record; -- define all the read/write registers type t_rw_regs is record mr_reg_a : t_mr_register_a; mr_reg_b : t_mr_register_b; rw_hl_css : t_hl_css; rw_param_reg : t_parameterisation_reg_a; rw_if_test : t_if_test_reg; end record; -- >>>>>>>>>>>>>>>>>>>>>>> -- Group all registers -- >>>>>>>>>>>>>>>>>>>>>>> type t_mmi_regs is record rw_regs : t_rw_regs; ro_regs : t_ro_regs; enable_writes : std_logic; end record; -- FUNCTION DECLARATIONS -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- cal_status function defaults return t_cal_status; function defaults ( ctrl_mmi : in t_ctrl_mmi; USE_IRAM : in std_logic; dqs_capture : in natural; int_ac_1t : in std_logic; trefi_failure : in std_logic; iram_status : in t_iram_stat; IRAM_AWIDTH : in natural ) return t_cal_status; function read (reg : t_cal_status) return std_logic_vector; -- codvw status function defaults return t_codvw_status; function defaults ( dgrb_mmi : t_dgrb_mmi ) return t_codvw_status; function read (reg : in t_codvw_status) return std_logic_vector; -- test status report function defaults return t_test_status; function defaults ( ctrl_mmi : in t_ctrl_mmi; pll_mmi : in t_pll_mmi; rw_if_test : t_if_test_reg ) return t_test_status; function read (reg : t_test_status) return std_logic_vector; -- define all the read only registers function defaults return t_ro_regs; function defaults (dgrb_mmi : t_dgrb_mmi; ctrl_mmi : t_ctrl_mmi; pll_mmi : t_pll_mmi; rw_if_test : t_if_test_reg; USE_IRAM : std_logic; dqs_capture : natural; int_ac_1t : std_logic; trefi_failure : std_logic; iram_status : t_iram_stat; IRAM_AWIDTH : natural ) return t_ro_regs; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write Registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- Calibration control register -- high level calibration stage set register comprises a bit vector for -- the calibration stage coding and the 1 control bit. function defaults return t_hl_css; function write (wdata_in : std_logic_vector(31 downto 0)) return t_hl_css; function read (reg : in t_hl_css) return std_logic_vector; procedure write_clear (signal reg : inout t_hl_css); -- Mode register A -- mode registers 0 and 1 (mr and emr1) function defaults return t_mr_register_a; function defaults ( mr0 : in std_logic_vector; mr1 : in std_logic_vector ) return t_mr_register_a; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_a; function read (reg : in t_mr_register_a) return std_logic_vector; -- Mode register B -- mode registers 2 and 3 (emr2 and emr3) - not present in ddr DRAM function defaults return t_mr_register_b; function defaults ( mr2 : in std_logic_vector; mr3 : in std_logic_vector ) return t_mr_register_b; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_b; function read (reg : in t_mr_register_b) return std_logic_vector; -- algorithm parameterisation register function defaults return t_parameterisation_reg_a; function defaults ( NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural ) return t_parameterisation_reg_a; function read ( reg : in t_parameterisation_reg_a) return std_logic_vector; function write (wdata_in : std_logic_vector(31 downto 0)) return t_parameterisation_reg_a; -- test signal register function defaults return t_if_test_reg; function defaults ( TRACKING_INTERVAL_IN_MS : in natural ) return t_if_test_reg; function read ( reg : in t_if_test_reg) return std_logic_vector; function write (wdata_in : std_logic_vector(31 downto 0)) return t_if_test_reg; procedure write_clear (signal reg : inout t_if_test_reg); -- define all the read/write registers function defaults return t_rw_regs; function defaults( mr0 : in std_logic_vector; mr1 : in std_logic_vector; mr2 : in std_logic_vector; mr3 : in std_logic_vector; NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural; TRACKING_INTERVAL_IN_MS : in natural; C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) )return t_rw_regs; procedure write_clear (signal regs : inout t_rw_regs); -- >>>>>>>>>>>>>>>>>>>>>>> -- Group all registers -- >>>>>>>>>>>>>>>>>>>>>>> function defaults return t_mmi_regs; function v_read (mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector; function read (signal mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector; procedure write (mmi_regs : inout t_mmi_regs; address : in natural; wdata : in std_logic_vector(31 downto 0)); -- >>>>>>>>>>>>>>>>>>>>>>> -- functions to communicate register settings to other sequencer blocks -- >>>>>>>>>>>>>>>>>>>>>>> function pack_record (ip_regs : t_rw_regs) return t_mmi_pll_reconfig; function pack_record (ip_regs : t_rw_regs) return t_admin_ctrl; function pack_record (ip_regs : t_rw_regs) return t_mmi_ctrl; function pack_record ( ip_regs : t_rw_regs) return t_algm_paramaterisation; -- >>>>>>>>>>>>>>>>>>>>>>> -- helper functions -- >>>>>>>>>>>>>>>>>>>>>>> function to_t_hl_css_reg (hl_css : t_hl_css ) return t_hl_css_reg; function pack_ack_seen ( cal_stage_ack_seen : in t_cal_stage_ack_seen ) return std_logic_vector; -- encoding of stage and active block for register setting function encode_current_stage (ctrl_cmd_id : t_ctrl_cmd_id) return std_logic_vector; function encode_active_block (active_block : t_ctrl_active_block) return std_logic_vector; -- end ram_controller_phy_alt_mem_phy_regs_pkg; -- package body ram_controller_phy_alt_mem_phy_regs_pkg is -- >>>>>>>>>>>>>>>>>>>> -- Read Only Registers -- >>>>>>>>>>>>>>>>>>> -- --------------------------------------------------------------- -- CODVW status report -- --------------------------------------------------------------- function defaults return t_codvw_status is variable temp: t_codvw_status; begin temp.cal_codvw_phase := (others => '0'); temp.cal_codvw_size := (others => '0'); temp.codvw_trk_shift := (others => '0'); temp.codvw_grt_one_dvw := '0'; return temp; end function; function defaults ( dgrb_mmi : t_dgrb_mmi ) return t_codvw_status is variable temp: t_codvw_status; begin temp := defaults; temp.cal_codvw_phase := dgrb_mmi.cal_codvw_phase; temp.cal_codvw_size := dgrb_mmi.cal_codvw_size; temp.codvw_trk_shift := dgrb_mmi.codvw_trk_shift; temp.codvw_grt_one_dvw := dgrb_mmi.codvw_grt_one_dvw; return temp; end function; function read (reg : in t_codvw_status) return std_logic_vector is variable temp : std_logic_vector(31 downto 0); begin temp := (others => '0'); temp(31 downto 24) := reg.cal_codvw_phase; temp(23 downto 16) := reg.cal_codvw_size; temp(15 downto 4) := reg.codvw_trk_shift; temp(0) := reg.codvw_grt_one_dvw; return temp; end function; -- --------------------------------------------------------------- -- Calibration status report -- --------------------------------------------------------------- function defaults return t_cal_status is variable temp: t_cal_status; begin temp.iram_addr_width := (others => '0'); temp.out_of_mem := '0'; temp.contested_access := '0'; temp.cal_fail := '0'; temp.cal_success := '0'; temp.ctrl_err_code := (others => '0'); temp.trefi_failure := '0'; temp.int_ac_1t := '0'; temp.dqs_capture := '0'; temp.iram_present := '0'; temp.active_block := (others => '0'); temp.current_stage := (others => '0'); return temp; end function; function defaults ( ctrl_mmi : in t_ctrl_mmi; USE_IRAM : in std_logic; dqs_capture : in natural; int_ac_1t : in std_logic; trefi_failure : in std_logic; iram_status : in t_iram_stat; IRAM_AWIDTH : in natural ) return t_cal_status is variable temp : t_cal_status; begin temp := defaults; temp.iram_addr_width := std_logic_vector(to_unsigned(IRAM_AWIDTH, temp.iram_addr_width'length)); temp.out_of_mem := iram_status.out_of_mem; temp.contested_access := iram_status.contested_access; temp.cal_fail := ctrl_mmi.ctrl_calibration_fail; temp.cal_success := ctrl_mmi.ctrl_calibration_success; temp.ctrl_err_code := ctrl_mmi.ctrl_err_code; temp.trefi_failure := trefi_failure; temp.int_ac_1t := int_ac_1t; if dqs_capture = 1 then temp.dqs_capture := '1'; elsif dqs_capture = 0 then temp.dqs_capture := '0'; else report regs_report_prefix & " invalid value for dqs_capture constant of " & integer'image(dqs_capture) severity failure; end if; temp.iram_present := USE_IRAM; temp.active_block := encode_active_block(ctrl_mmi.ctrl_current_active_block); temp.current_stage := encode_current_stage(ctrl_mmi.ctrl_current_stage); return temp; end function; -- read for mmi status register function read ( reg : t_cal_status ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); output( 7 downto 0) := reg.current_stage; output(11 downto 8) := reg.active_block; output(12) := reg.iram_present; output(13) := reg.dqs_capture; output(14) := reg.int_ac_1t; output(15) := reg.trefi_failure; output(23 downto 16) := reg.ctrl_err_code; output(24) := reg.cal_success; output(25) := reg.cal_fail; output(26) := reg.contested_access; output(27) := reg.out_of_mem; output(31 downto 28) := reg.iram_addr_width; return output; end function; -- --------------------------------------------------------------- -- Test status report -- --------------------------------------------------------------- function defaults return t_test_status is variable temp: t_test_status; begin temp.ack_seen := (others => '0'); temp.pll_mmi_err := (others => '0'); temp.pll_busy := '0'; return temp; end function; function defaults ( ctrl_mmi : in t_ctrl_mmi; pll_mmi : in t_pll_mmi; rw_if_test : t_if_test_reg ) return t_test_status is variable temp : t_test_status; begin temp := defaults; temp.ack_seen := pack_ack_seen(ctrl_mmi.ctrl_cal_stage_ack_seen); temp.pll_mmi_err := pll_mmi.err; temp.pll_busy := pll_mmi.pll_busy or rw_if_test.pll_phs_shft_up_wc or rw_if_test.pll_phs_shft_dn_wc; return temp; end function; -- read for mmi status register function read ( reg : t_test_status ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); output(31 downto 32-c_hl_ccs_num_stages) := reg.ack_seen; output( 5 downto 4) := reg.pll_mmi_err; output(0) := reg.pll_busy; return output; end function; ------------------------------------------------- -- FOR ALL RO REGS: ------------------------------------------------- function defaults return t_ro_regs is variable temp: t_ro_regs; begin temp.cal_status := defaults; temp.codvw_status := defaults; return temp; end function; function defaults (dgrb_mmi : t_dgrb_mmi; ctrl_mmi : t_ctrl_mmi; pll_mmi : t_pll_mmi; rw_if_test : t_if_test_reg; USE_IRAM : std_logic; dqs_capture : natural; int_ac_1t : std_logic; trefi_failure : std_logic; iram_status : t_iram_stat; IRAM_AWIDTH : natural ) return t_ro_regs is variable output : t_ro_regs; begin output := defaults; output.cal_status := defaults(ctrl_mmi, USE_IRAM, dqs_capture, int_ac_1t, trefi_failure, iram_status, IRAM_AWIDTH); output.codvw_status := defaults(dgrb_mmi); output.test_status := defaults(ctrl_mmi, pll_mmi, rw_if_test); return output; end function; -- >>>>>>>>>>>>>>>>>>>>>>>> -- Read / Write registers -- >>>>>>>>>>>>>>>>>>>>>>>> -- --------------------------------------------------------------- -- mode register set A -- --------------------------------------------------------------- function defaults return t_mr_register_a is variable temp :t_mr_register_a; begin temp.mr0 := (others => '0'); temp.mr1 := (others => '0'); return temp; end function; -- apply default mode register settings to register function defaults ( mr0 : in std_logic_vector; mr1 : in std_logic_vector ) return t_mr_register_a is variable temp :t_mr_register_a; begin temp := defaults; temp.mr0 := mr0(temp.mr0'range); temp.mr1 := mr1(temp.mr1'range); return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_a is variable temp :t_mr_register_a; begin temp.mr0 := wdata_in(c_max_mode_reg_index -1 downto 0); temp.mr1 := wdata_in(c_max_mode_reg_index -1 + 16 downto 16); return temp; end function; function read (reg : in t_mr_register_a) return std_logic_vector is variable temp : std_logic_vector(31 downto 0) := (others => '0'); begin temp(c_max_mode_reg_index -1 downto 0) := reg.mr0; temp(c_max_mode_reg_index -1 + 16 downto 16) := reg.mr1; return temp; end function; -- --------------------------------------------------------------- -- mode register set B -- --------------------------------------------------------------- function defaults return t_mr_register_b is variable temp :t_mr_register_b; begin temp.mr2 := (others => '0'); temp.mr3 := (others => '0'); return temp; end function; -- apply default mode register settings to register function defaults ( mr2 : in std_logic_vector; mr3 : in std_logic_vector ) return t_mr_register_b is variable temp :t_mr_register_b; begin temp := defaults; temp.mr2 := mr2(temp.mr2'range); temp.mr3 := mr3(temp.mr3'range); return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_mr_register_b is variable temp :t_mr_register_b; begin temp.mr2 := wdata_in(c_max_mode_reg_index -1 downto 0); temp.mr3 := wdata_in(c_max_mode_reg_index -1 + 16 downto 16); return temp; end function; function read (reg : in t_mr_register_b) return std_logic_vector is variable temp : std_logic_vector(31 downto 0) := (others => '0'); begin temp(c_max_mode_reg_index -1 downto 0) := reg.mr2; temp(c_max_mode_reg_index -1 + 16 downto 16) := reg.mr3; return temp; end function; -- --------------------------------------------------------------- -- HL CSS (high level calibration state status) -- --------------------------------------------------------------- function defaults return t_hl_css is variable temp : t_hl_css; begin temp.hl_css := (others => '0'); temp.cal_start := '0'; return temp; end function; function defaults ( C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) ) return t_hl_css is variable temp: t_hl_css; begin temp := defaults; temp.hl_css := temp.hl_css OR C_HL_STAGE_ENABLE; return temp; end function; function read ( reg : in t_hl_css) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp(30 downto 30-c_hl_ccs_num_stages+1) := reg.hl_css; temp(0) := reg.cal_start; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0) )return t_hl_css is variable reg : t_hl_css; begin reg.hl_css := wdata_in(30 downto 30-c_hl_ccs_num_stages+1); reg.cal_start := wdata_in(0); return reg; end function; procedure write_clear (signal reg : inout t_hl_css) is begin reg.cal_start <= '0'; end procedure; -- --------------------------------------------------------------- -- paramaterisation of sequencer through Avalon interface -- --------------------------------------------------------------- function defaults return t_parameterisation_reg_a is variable temp : t_parameterisation_reg_a; begin temp.nominal_poa_phase_lead := (others => '0'); temp.maximum_poa_delay := (others => '0'); temp.pll_360_sweeps := "0000"; temp.num_phases_per_tck_pll := "0011"; temp.nominal_dqs_delay := (others => '0'); temp.extend_octrt_by := "0100"; temp.delay_octrt_by := "0000"; return temp; end function; -- reset the paramterisation reg to given values function defaults ( NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural ) return t_parameterisation_reg_a is variable temp: t_parameterisation_reg_a; begin temp := defaults; temp.num_phases_per_tck_pll := std_logic_vector(to_unsigned(PLL_STEPS_PER_CYCLE /8 , temp.num_phases_per_tck_pll'high + 1 )); temp.pll_360_sweeps := std_logic_vector(to_unsigned(pll_360_sweeps , temp.pll_360_sweeps'high + 1 )); temp.nominal_dqs_delay := std_logic_vector(to_unsigned(NOM_DQS_PHASE_SETTING , temp.nominal_dqs_delay'high + 1 )); temp.extend_octrt_by := std_logic_vector(to_unsigned(5 , temp.extend_octrt_by'high + 1 )); temp.delay_octrt_by := std_logic_vector(to_unsigned(6 , temp.delay_octrt_by'high + 1 )); return temp; end function; function read ( reg : in t_parameterisation_reg_a) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp( 3 downto 0) := reg.pll_360_sweeps; temp( 7 downto 4) := reg.num_phases_per_tck_pll; temp(10 downto 8) := reg.nominal_dqs_delay; temp(19 downto 16) := reg.nominal_poa_phase_lead; temp(23 downto 20) := reg.maximum_poa_delay; temp(27 downto 24) := reg.extend_octrt_by; temp(31 downto 28) := reg.delay_octrt_by; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_parameterisation_reg_a is variable reg : t_parameterisation_reg_a; begin reg.pll_360_sweeps := wdata_in( 3 downto 0); reg.num_phases_per_tck_pll := wdata_in( 7 downto 4); reg.nominal_dqs_delay := wdata_in(10 downto 8); reg.nominal_poa_phase_lead := wdata_in(19 downto 16); reg.maximum_poa_delay := wdata_in(23 downto 20); reg.extend_octrt_by := wdata_in(27 downto 24); reg.delay_octrt_by := wdata_in(31 downto 28); return reg; end function; -- --------------------------------------------------------------- -- t_if_test_reg - additional test support register -- --------------------------------------------------------------- function defaults return t_if_test_reg is variable temp : t_if_test_reg; begin temp.pll_phs_shft_phase_sel := 0; temp.pll_phs_shft_up_wc := '0'; temp.pll_phs_shft_dn_wc := '0'; temp.ac_1t_toggle := '0'; temp.tracking_period_ms := "10000000"; -- 127 ms interval temp.tracking_units_are_10us := '0'; return temp; end function; -- reset the paramterisation reg to given values function defaults ( TRACKING_INTERVAL_IN_MS : in natural ) return t_if_test_reg is variable temp: t_if_test_reg; begin temp := defaults; temp.tracking_period_ms := std_logic_vector(to_unsigned(TRACKING_INTERVAL_IN_MS, temp.tracking_period_ms'length)); return temp; end function; function read ( reg : in t_if_test_reg) return std_logic_vector is variable temp : std_logic_vector (31 downto 0) := (others => '0'); begin temp( 3 downto 0) := std_logic_vector(to_unsigned(reg.pll_phs_shft_phase_sel,4)); temp(4) := reg.pll_phs_shft_up_wc; temp(5) := reg.pll_phs_shft_dn_wc; temp(16) := reg.ac_1t_toggle; temp(15 downto 8) := reg.tracking_period_ms; temp(20) := reg.tracking_units_are_10us; return temp; end function; function write (wdata_in : std_logic_vector(31 downto 0)) return t_if_test_reg is variable reg : t_if_test_reg; begin reg.pll_phs_shft_phase_sel := to_integer(unsigned(wdata_in( 3 downto 0))); reg.pll_phs_shft_up_wc := wdata_in(4); reg.pll_phs_shft_dn_wc := wdata_in(5); reg.ac_1t_toggle := wdata_in(16); reg.tracking_period_ms := wdata_in(15 downto 8); reg.tracking_units_are_10us := wdata_in(20); return reg; end function; procedure write_clear (signal reg : inout t_if_test_reg) is begin reg.ac_1t_toggle <= '0'; reg.pll_phs_shft_up_wc <= '0'; reg.pll_phs_shft_dn_wc <= '0'; end procedure; -- --------------------------------------------------------------- -- RW Regs, record of read/write register records (to simplify handling) -- --------------------------------------------------------------- function defaults return t_rw_regs is variable temp : t_rw_regs; begin temp.mr_reg_a := defaults; temp.mr_reg_b := defaults; temp.rw_hl_css := defaults; temp.rw_param_reg := defaults; temp.rw_if_test := defaults; return temp; end function; function defaults( mr0 : in std_logic_vector; mr1 : in std_logic_vector; mr2 : in std_logic_vector; mr3 : in std_logic_vector; NOM_DQS_PHASE_SETTING : in natural; PLL_STEPS_PER_CYCLE : in natural; pll_360_sweeps : in natural; TRACKING_INTERVAL_IN_MS : in natural; C_HL_STAGE_ENABLE : in std_logic_vector(c_hl_ccs_num_stages-1 downto 0) )return t_rw_regs is variable temp : t_rw_regs; begin temp := defaults; temp.mr_reg_a := defaults(mr0, mr1); temp.mr_reg_b := defaults(mr2, mr3); temp.rw_param_reg := defaults(NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, pll_360_sweeps); temp.rw_if_test := defaults(TRACKING_INTERVAL_IN_MS); temp.rw_hl_css := defaults(C_HL_STAGE_ENABLE); return temp; end function; procedure write_clear (signal regs : inout t_rw_regs) is begin write_clear(regs.rw_if_test); write_clear(regs.rw_hl_css); end procedure; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- All mmi registers: -- >>>>>>>>>>>>>>>>>>>>>>>>>> function defaults return t_mmi_regs is variable v_mmi_regs : t_mmi_regs; begin v_mmi_regs.rw_regs := defaults; v_mmi_regs.ro_regs := defaults; v_mmi_regs.enable_writes := '0'; return v_mmi_regs; end function; function v_read (mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); begin output := (others => '0'); case address is -- status register when c_regofst_cal_status => output := read (mmi_regs.ro_regs.cal_status); -- debug access register when c_regofst_debug_access => if (mmi_regs.enable_writes = '1') then output := c_mmi_access_codeword; else output := (others => '0'); end if; -- test i/f to check which stages have acknowledged a command and pll checks when c_regofst_test_status => output := read(mmi_regs.ro_regs.test_status); -- mode registers when c_regofst_mr_register_a => output := read(mmi_regs.rw_regs.mr_reg_a); when c_regofst_mr_register_b => output := read(mmi_regs.rw_regs.mr_reg_b); -- codvw r/o status register when c_regofst_codvw_status => output := read(mmi_regs.ro_regs.codvw_status); -- read/write registers when c_regofst_hl_css => output := read(mmi_regs.rw_regs.rw_hl_css); when c_regofst_if_param => output := read(mmi_regs.rw_regs.rw_param_reg); when c_regofst_if_test => output := read(mmi_regs.rw_regs.rw_if_test); when others => report regs_report_prefix & "MMI registers detected an attempt to read to non-existant register location" severity warning; -- set illegal addr interrupt. end case; return output; end function; function read (signal mmi_regs : in t_mmi_regs; address : in natural ) return std_logic_vector is variable output : std_logic_vector(31 downto 0); variable v_mmi_regs : t_mmi_regs; begin v_mmi_regs := mmi_regs; output := v_read(v_mmi_regs, address); return output; end function; procedure write (mmi_regs : inout t_mmi_regs; address : in natural; wdata : in std_logic_vector(31 downto 0)) is begin -- intercept writes to codeword. This needs to be set for iRAM access : if address = c_regofst_debug_access then if wdata = c_mmi_access_codeword then mmi_regs.enable_writes := '1'; else mmi_regs.enable_writes := '0'; end if; else case address is -- read only registers when c_regofst_cal_status | c_regofst_codvw_status | c_regofst_test_status => report regs_report_prefix & "MMI registers detected an attempt to write to read only register number" & integer'image(address) severity failure; -- read/write registers when c_regofst_mr_register_a => mmi_regs.rw_regs.mr_reg_a := write(wdata); when c_regofst_mr_register_b => mmi_regs.rw_regs.mr_reg_b := write(wdata); when c_regofst_hl_css => mmi_regs.rw_regs.rw_hl_css := write(wdata); when c_regofst_if_param => mmi_regs.rw_regs.rw_param_reg := write(wdata); when c_regofst_if_test => mmi_regs.rw_regs.rw_if_test := write(wdata); when others => -- set illegal addr interrupt. report regs_report_prefix & "MMI registers detected an attempt to write to non existant register, with expected number" & integer'image(address) severity failure; end case; end if; end procedure; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- the following functions enable register data to be communicated to other sequencer blocks -- >>>>>>>>>>>>>>>>>>>>>>>>>> function pack_record ( ip_regs : t_rw_regs ) return t_algm_paramaterisation is variable output : t_algm_paramaterisation; begin -- default assignments output.num_phases_per_tck_pll := 16; output.pll_360_sweeps := 1; output.nominal_dqs_delay := 2; output.nominal_poa_phase_lead := 1; output.maximum_poa_delay := 5; output.odt_enabled := false; output.num_phases_per_tck_pll := to_integer(unsigned(ip_regs.rw_param_reg.num_phases_per_tck_pll)) * 8; case ip_regs.rw_param_reg.nominal_dqs_delay is when "010" => output.nominal_dqs_delay := 2; when "001" => output.nominal_dqs_delay := 1; when "000" => output.nominal_dqs_delay := 0; when "011" => output.nominal_dqs_delay := 3; when others => report regs_report_prefix & "there is a unsupported number of DQS taps (" & natural'image(to_integer(unsigned(ip_regs.rw_param_reg.nominal_dqs_delay))) & ") being advertised as the standard value" severity error; end case; case ip_regs.rw_param_reg.nominal_poa_phase_lead is when "0001" => output.nominal_poa_phase_lead := 1; when "0010" => output.nominal_poa_phase_lead := 2; when "0011" => output.nominal_poa_phase_lead := 3; when "0000" => output.nominal_poa_phase_lead := 0; when others => report regs_report_prefix & "there is an unsupported nominal postamble phase lead paramater set (" & natural'image(to_integer(unsigned(ip_regs.rw_param_reg.nominal_poa_phase_lead))) & ")" severity error; end case; if ( (ip_regs.mr_reg_a.mr1(2) = '1') or (ip_regs.mr_reg_a.mr1(6) = '1') or (ip_regs.mr_reg_a.mr1(9) = '1') ) then output.odt_enabled := true; end if; output.pll_360_sweeps := to_integer(unsigned(ip_regs.rw_param_reg.pll_360_sweeps)); output.maximum_poa_delay := to_integer(unsigned(ip_regs.rw_param_reg.maximum_poa_delay)); output.extend_octrt_by := to_integer(unsigned(ip_regs.rw_param_reg.extend_octrt_by)); output.delay_octrt_by := to_integer(unsigned(ip_regs.rw_param_reg.delay_octrt_by)); output.tracking_period_ms := to_integer(unsigned(ip_regs.rw_if_test.tracking_period_ms)); return output; end function; function pack_record (ip_regs : t_rw_regs) return t_mmi_pll_reconfig is variable output : t_mmi_pll_reconfig; begin output.pll_phs_shft_phase_sel := ip_regs.rw_if_test.pll_phs_shft_phase_sel; output.pll_phs_shft_up_wc := ip_regs.rw_if_test.pll_phs_shft_up_wc; output.pll_phs_shft_dn_wc := ip_regs.rw_if_test.pll_phs_shft_dn_wc; return output; end function; function pack_record (ip_regs : t_rw_regs) return t_admin_ctrl is variable output : t_admin_ctrl := defaults; begin output.mr0 := ip_regs.mr_reg_a.mr0; output.mr1 := ip_regs.mr_reg_a.mr1; output.mr2 := ip_regs.mr_reg_b.mr2; output.mr3 := ip_regs.mr_reg_b.mr3; return output; end function; function pack_record (ip_regs : t_rw_regs) return t_mmi_ctrl is variable output : t_mmi_ctrl := defaults; begin output.hl_css := to_t_hl_css_reg (ip_regs.rw_hl_css); output.calibration_start := ip_regs.rw_hl_css.cal_start; output.tracking_period_ms := to_integer(unsigned(ip_regs.rw_if_test.tracking_period_ms)); output.tracking_orvd_to_10ms := ip_regs.rw_if_test.tracking_units_are_10us; return output; end function; -- >>>>>>>>>>>>>>>>>>>>>>>>>> -- Helper functions : -- >>>>>>>>>>>>>>>>>>>>>>>>>> function to_t_hl_css_reg (hl_css : t_hl_css ) return t_hl_css_reg is variable output : t_hl_css_reg := defaults; begin output.phy_initialise_dis := hl_css.hl_css(c_hl_css_reg_phy_initialise_dis_bit); output.init_dram_dis := hl_css.hl_css(c_hl_css_reg_init_dram_dis_bit); output.write_ihi_dis := hl_css.hl_css(c_hl_css_reg_write_ihi_dis_bit); output.cal_dis := hl_css.hl_css(c_hl_css_reg_cal_dis_bit); output.write_btp_dis := hl_css.hl_css(c_hl_css_reg_write_btp_dis_bit); output.write_mtp_dis := hl_css.hl_css(c_hl_css_reg_write_mtp_dis_bit); output.read_mtp_dis := hl_css.hl_css(c_hl_css_reg_read_mtp_dis_bit); output.rrp_reset_dis := hl_css.hl_css(c_hl_css_reg_rrp_reset_dis_bit); output.rrp_sweep_dis := hl_css.hl_css(c_hl_css_reg_rrp_sweep_dis_bit); output.rrp_seek_dis := hl_css.hl_css(c_hl_css_reg_rrp_seek_dis_bit); output.rdv_dis := hl_css.hl_css(c_hl_css_reg_rdv_dis_bit); output.poa_dis := hl_css.hl_css(c_hl_css_reg_poa_dis_bit); output.was_dis := hl_css.hl_css(c_hl_css_reg_was_dis_bit); output.adv_rd_lat_dis := hl_css.hl_css(c_hl_css_reg_adv_rd_lat_dis_bit); output.adv_wr_lat_dis := hl_css.hl_css(c_hl_css_reg_adv_wr_lat_dis_bit); output.prep_customer_mr_setup_dis := hl_css.hl_css(c_hl_css_reg_prep_customer_mr_setup_dis_bit); output.tracking_dis := hl_css.hl_css(c_hl_css_reg_tracking_dis_bit); return output; end function; -- pack the ack seen record element into a std_logic_vector function pack_ack_seen ( cal_stage_ack_seen : in t_cal_stage_ack_seen ) return std_logic_vector is variable v_output: std_logic_vector(c_hl_ccs_num_stages-1 downto 0); variable v_start : natural range 0 to c_hl_ccs_num_stages-1; begin v_output := (others => '0'); v_output(c_hl_css_reg_cal_dis_bit ) := cal_stage_ack_seen.cal; v_output(c_hl_css_reg_phy_initialise_dis_bit ) := cal_stage_ack_seen.phy_initialise; v_output(c_hl_css_reg_init_dram_dis_bit ) := cal_stage_ack_seen.init_dram; v_output(c_hl_css_reg_write_ihi_dis_bit ) := cal_stage_ack_seen.write_ihi; v_output(c_hl_css_reg_write_btp_dis_bit ) := cal_stage_ack_seen.write_btp; v_output(c_hl_css_reg_write_mtp_dis_bit ) := cal_stage_ack_seen.write_mtp; v_output(c_hl_css_reg_read_mtp_dis_bit ) := cal_stage_ack_seen.read_mtp; v_output(c_hl_css_reg_rrp_reset_dis_bit ) := cal_stage_ack_seen.rrp_reset; v_output(c_hl_css_reg_rrp_sweep_dis_bit ) := cal_stage_ack_seen.rrp_sweep; v_output(c_hl_css_reg_rrp_seek_dis_bit ) := cal_stage_ack_seen.rrp_seek; v_output(c_hl_css_reg_rdv_dis_bit ) := cal_stage_ack_seen.rdv; v_output(c_hl_css_reg_poa_dis_bit ) := cal_stage_ack_seen.poa; v_output(c_hl_css_reg_was_dis_bit ) := cal_stage_ack_seen.was; v_output(c_hl_css_reg_adv_rd_lat_dis_bit ) := cal_stage_ack_seen.adv_rd_lat; v_output(c_hl_css_reg_adv_wr_lat_dis_bit ) := cal_stage_ack_seen.adv_wr_lat; v_output(c_hl_css_reg_prep_customer_mr_setup_dis_bit) := cal_stage_ack_seen.prep_customer_mr_setup; v_output(c_hl_css_reg_tracking_dis_bit ) := cal_stage_ack_seen.tracking_setup; return v_output; end function; -- reg encoding of current stage function encode_current_stage (ctrl_cmd_id : t_ctrl_cmd_id ) return std_logic_vector is variable output : std_logic_vector(7 downto 0); begin case ctrl_cmd_id is when cmd_idle => output := X"00"; when cmd_phy_initialise => output := X"01"; when cmd_init_dram | cmd_prog_cal_mr => output := X"02"; when cmd_write_ihi => output := X"03"; when cmd_write_btp => output := X"04"; when cmd_write_mtp => output := X"05"; when cmd_read_mtp => output := X"06"; when cmd_rrp_reset => output := X"07"; when cmd_rrp_sweep => output := X"08"; when cmd_rrp_seek => output := X"09"; when cmd_rdv => output := X"0A"; when cmd_poa => output := X"0B"; when cmd_was => output := X"0C"; when cmd_prep_adv_rd_lat => output := X"0D"; when cmd_prep_adv_wr_lat => output := X"0E"; when cmd_prep_customer_mr_setup => output := X"0F"; when cmd_tr_due => output := X"10"; when others => null; report regs_report_prefix & "unknown cal command (" & t_ctrl_cmd_id'image(ctrl_cmd_id) & ") seen in encode_current_stage function" severity failure; end case; return output; end function; -- reg encoding of current active block function encode_active_block (active_block : t_ctrl_active_block ) return std_logic_vector is variable output : std_logic_vector(3 downto 0); begin case active_block is when idle => output := X"0"; when admin => output := X"1"; when dgwb => output := X"2"; when dgrb => output := X"3"; when proc => output := X"4"; when setup => output := X"5"; when iram => output := X"6"; when others => output := X"7"; report regs_report_prefix & "unknown active_block seen in encode_active_block function" severity failure; end case; return output; end function; -- end ram_controller_phy_alt_mem_phy_regs_pkg; -- -- ----------------------------------------------------------------------------- -- Abstract : mmi block for the non-levelling AFI PHY sequencer -- This is an optional block with an Avalon interface and status -- register instantiations to enhance the debug capabilities of -- the sequencer. The format of the block is: -- a) an Avalon interface which supports different avalon and -- sequencer clock sources -- b) mmi status registers (which hold information about the -- successof the calibration) -- c) a read interface to the iram to enable debug through the -- avalon interface. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- entity ram_controller_phy_alt_mem_phy_mmi is generic ( -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DQS_CAPTURE : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; ADV_LAT_WIDTH : natural; RESYNCHRONISE_AVALON_DBG : natural; AV_IF_ADDR_WIDTH : natural; MEM_IF_MEMTYPE : string; -- setup / algorithm information NOM_DQS_PHASE_SETTING : natural; SCAN_CLK_DIVIDE_BY : natural; RDP_ADDR_WIDTH : natural; PLL_STEPS_PER_CYCLE : natural; IOE_PHASES_PER_TCK : natural; IOE_DELAYS_PER_PHS : natural; MEM_IF_CLK_PS : natural; -- initial mode register settings PHY_DEF_MR_1ST : std_logic_vector(15 downto 0); PHY_DEF_MR_2ND : std_logic_vector(15 downto 0); PHY_DEF_MR_3RD : std_logic_vector(15 downto 0); PHY_DEF_MR_4TH : std_logic_vector(15 downto 0); PRESET_RLAT : natural; -- read latency preset value CAPABILITIES : natural; -- sequencer capabilities flags USE_IRAM : std_logic; -- RFU IRAM_AWIDTH : natural; TRACKING_INTERVAL_IN_MS : natural; READ_LAT_WIDTH : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; --synchronous Avalon debug interface (internally re-synchronised to input clock) dbg_seq_clk : in std_logic; dbg_seq_rst_n : in std_logic; dbg_seq_addr : in std_logic_vector(AV_IF_ADDR_WIDTH -1 downto 0); dbg_seq_wr : in std_logic; dbg_seq_rd : in std_logic; dbg_seq_cs : in std_logic; dbg_seq_wr_data : in std_logic_vector(31 downto 0); seq_dbg_rd_data : out std_logic_vector(31 downto 0); seq_dbg_waitrequest : out std_logic; -- mmi to admin interface regs_admin_ctrl : out t_admin_ctrl; admin_regs_status : in t_admin_stat; trefi_failure : in std_logic; -- mmi to iram interface mmi_iram : out t_iram_ctrl; mmi_iram_enable_writes : out std_logic; iram_status : in t_iram_stat; -- mmi to control interface mmi_ctrl : out t_mmi_ctrl; ctrl_mmi : in t_ctrl_mmi; int_ac_1t : in std_logic; invert_ac_1t : out std_logic; -- global parameterisation record parameterisation_rec : out t_algm_paramaterisation; -- mmi pll interface pll_mmi : in t_pll_mmi; mmi_pll : out t_mmi_pll_reconfig; -- codvw status signals dgrb_mmi : in t_dgrb_mmi ); end entity; library work; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ram_controller_phy_alt_mem_phy_regs_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ram_controller_phy_alt_mem_phy_iram_addr_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ram_controller_phy_alt_mem_phy_mmi IS -- maximum function function max (a, b : natural) return natural is begin if a > b then return a; else return b; end if; end function; -- ------------------------------------------- -- constant definitions -- ------------------------------------------- constant c_pll_360_sweeps : natural := rrp_pll_phase_mult(DWIDTH_RATIO, MEM_IF_DQS_CAPTURE); constant c_response_lat : natural := 6; constant c_codeword : std_logic_vector(31 downto 0) := c_mmi_access_codeword; constant c_int_iram_start_size : natural := max(IRAM_AWIDTH, 4); -- enable for ctrl state machine states constant c_slv_hl_stage_enable : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(CAPABILITIES, 32)); constant c_hl_stage_enable : std_logic_vector(c_hl_ccs_num_stages-1 downto 0) := c_slv_hl_stage_enable(c_hl_ccs_num_stages-1 downto 0); -- a prefix for all report signals to identify phy and sequencer block -- constant mmi_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (mmi) : "; -- -------------------------------------------- -- internal signals -- -------------------------------------------- -- internal clock domain register interface signals signal int_wdata : std_logic_vector(31 downto 0); signal int_rdata : std_logic_vector(31 downto 0); signal int_address : std_logic_vector(AV_IF_ADDR_WIDTH-1 downto 0); signal int_read : std_logic; signal int_cs : std_logic; signal int_write : std_logic; signal waitreq_int : std_logic; -- register storage -- contains: -- read only (ro_regs) -- read/write (rw_regs) -- enable_writes flag signal mmi_regs : t_mmi_regs := defaults; signal mmi_rw_regs_initialised : std_logic; -- this counter ensures that the mmi waits for c_response_lat clocks before -- responding to a new Avalon request signal waitreq_count : natural range 0 to 15; signal waitreq_count_is_zero : std_logic; -- register error signals signal int_ac_1t_r : std_logic; signal trefi_failure_r : std_logic; -- iram ready - calibration complete and USE_IRAM high signal iram_ready : std_logic; begin -- architecture struct -- the following signals are reserved for future use invert_ac_1t <= '0'; -- -------------------------------------------------------------- -- generate for synchronous avalon interface -- -------------------------------------------------------------- simply_registered_avalon : if RESYNCHRONISE_AVALON_DBG = 0 generate begin process (rst_n, clk) begin if rst_n = '0' then int_wdata <= (others => '0'); int_address <= (others => '0'); int_read <= '0'; int_write <= '0'; int_cs <= '0'; elsif rising_edge(clk) then int_wdata <= dbg_seq_wr_data; int_address <= dbg_seq_addr; int_read <= dbg_seq_rd; int_write <= dbg_seq_wr; int_cs <= dbg_seq_cs; end if; end process; seq_dbg_rd_data <= int_rdata; seq_dbg_waitrequest <= waitreq_int and (dbg_seq_rd or dbg_seq_wr) and dbg_seq_cs; end generate simply_registered_avalon; -- -------------------------------------------------------------- -- clock domain crossing for asynchronous mmi interface -- -------------------------------------------------------------- re_synchronise_avalon : if RESYNCHRONISE_AVALON_DBG = 1 generate --clock domain crossing signals signal ccd_new_cmd : std_logic; signal ccd_new_cmd_ack : std_logic; signal ccd_cmd_done : std_logic; signal ccd_cmd_done_ack : std_logic; signal ccd_rd_data : std_logic_vector(dbg_seq_wr_data'range); signal ccd_cmd_done_ack_t : std_logic; signal ccd_cmd_done_ack_2t : std_logic; signal ccd_cmd_done_ack_3t : std_logic; signal ccd_cmd_done_t : std_logic; signal ccd_cmd_done_2t : std_logic; signal ccd_cmd_done_3t : std_logic; signal ccd_new_cmd_t : std_logic; signal ccd_new_cmd_2t : std_logic; signal ccd_new_cmd_3t : std_logic; signal ccd_new_cmd_ack_t : std_logic; signal ccd_new_cmd_ack_2t : std_logic; signal ccd_new_cmd_ack_3t : std_logic; signal cmd_pending : std_logic; signal seq_clk_waitreq_int : std_logic; begin process (rst_n, clk) begin if rst_n = '0' then int_wdata <= (others => '0'); int_address <= (others => '0'); int_read <= '0'; int_write <= '0'; int_cs <= '0'; ccd_new_cmd_ack <= '0'; ccd_new_cmd_t <= '0'; ccd_new_cmd_2t <= '0'; ccd_new_cmd_3t <= '0'; elsif rising_edge(clk) then ccd_new_cmd_t <= ccd_new_cmd; ccd_new_cmd_2t <= ccd_new_cmd_t; ccd_new_cmd_3t <= ccd_new_cmd_2t; if ccd_new_cmd_3t = '0' and ccd_new_cmd_2t = '1' then int_wdata <= dbg_seq_wr_data; int_address <= dbg_seq_addr; int_read <= dbg_seq_rd; int_write <= dbg_seq_wr; int_cs <= '1'; ccd_new_cmd_ack <= '1'; elsif ccd_new_cmd_3t = '1' and ccd_new_cmd_2t = '0' then ccd_new_cmd_ack <= '0'; end if; if int_cs = '1' and waitreq_int= '0' then int_cs <= '0'; int_read <= '0'; int_write <= '0'; end if; end if; end process; -- process to generate new cmd process (dbg_seq_rst_n, dbg_seq_clk) begin if dbg_seq_rst_n = '0' then ccd_new_cmd <= '0'; ccd_new_cmd_ack_t <= '0'; ccd_new_cmd_ack_2t <= '0'; ccd_new_cmd_ack_3t <= '0'; cmd_pending <= '0'; elsif rising_edge(dbg_seq_clk) then ccd_new_cmd_ack_t <= ccd_new_cmd_ack; ccd_new_cmd_ack_2t <= ccd_new_cmd_ack_t; ccd_new_cmd_ack_3t <= ccd_new_cmd_ack_2t; if ccd_new_cmd = '0' and dbg_seq_cs = '1' and cmd_pending = '0' then ccd_new_cmd <= '1'; cmd_pending <= '1'; elsif ccd_new_cmd_ack_2t = '1' and ccd_new_cmd_ack_3t = '0' then ccd_new_cmd <= '0'; end if; -- use falling edge of cmd_done if cmd_pending = '1' and ccd_cmd_done_2t = '0' and ccd_cmd_done_3t = '1' then cmd_pending <= '0'; end if; end if; end process; -- process to take read data back and transfer it across the clock domains process (rst_n, clk) begin if rst_n = '0' then ccd_cmd_done <= '0'; ccd_rd_data <= (others => '0'); ccd_cmd_done_ack_3t <= '0'; ccd_cmd_done_ack_2t <= '0'; ccd_cmd_done_ack_t <= '0'; elsif rising_edge(clk) then if ccd_cmd_done_ack_2t = '1' and ccd_cmd_done_ack_3t = '0' then ccd_cmd_done <= '0'; elsif waitreq_int = '0' then ccd_cmd_done <= '1'; ccd_rd_data <= int_rdata; end if; ccd_cmd_done_ack_3t <= ccd_cmd_done_ack_2t; ccd_cmd_done_ack_2t <= ccd_cmd_done_ack_t; ccd_cmd_done_ack_t <= ccd_cmd_done_ack; end if; end process; process (dbg_seq_rst_n, dbg_seq_clk) begin if dbg_seq_rst_n = '0' then ccd_cmd_done_ack <= '0'; ccd_cmd_done_3t <= '0'; ccd_cmd_done_2t <= '0'; ccd_cmd_done_t <= '0'; seq_dbg_rd_data <= (others => '0'); seq_clk_waitreq_int <= '1'; elsif rising_edge(dbg_seq_clk) then seq_clk_waitreq_int <= '1'; if ccd_cmd_done_2t = '1' and ccd_cmd_done_3t = '0' then seq_clk_waitreq_int <= '0'; ccd_cmd_done_ack <= '1'; seq_dbg_rd_data <= ccd_rd_data; -- if read elsif ccd_cmd_done_2t = '0' and ccd_cmd_done_3t = '1' then ccd_cmd_done_ack <= '0'; end if; ccd_cmd_done_3t <= ccd_cmd_done_2t; ccd_cmd_done_2t <= ccd_cmd_done_t; ccd_cmd_done_t <= ccd_cmd_done; end if; end process; seq_dbg_waitrequest <= seq_clk_waitreq_int and (dbg_seq_rd or dbg_seq_wr) and dbg_seq_cs; end generate re_synchronise_avalon; -- register some inputs for speed. process (rst_n, clk) begin if rst_n = '0' then int_ac_1t_r <= '0'; trefi_failure_r <= '0'; elsif rising_edge(clk) then int_ac_1t_r <= int_ac_1t; trefi_failure_r <= trefi_failure; end if; end process; -- mmi not able to write to iram in current instance of mmi block mmi_iram_enable_writes <= '0'; -- check if iram ready process (rst_n, clk) begin if rst_n = '0' then iram_ready <= '0'; elsif rising_edge(clk) then if USE_IRAM = '0' then iram_ready <= '0'; else if ctrl_mmi.ctrl_calibration_success = '1' or ctrl_mmi.ctrl_calibration_fail = '1' then iram_ready <= '1'; else iram_ready <= '0'; end if; end if; end if; end process; -- -------------------------------------------------------------- -- single registered process for mmi access. -- -------------------------------------------------------------- process (rst_n, clk) variable v_mmi_regs : t_mmi_regs; begin if rst_n = '0' then mmi_regs <= defaults; mmi_rw_regs_initialised <= '0'; -- this register records whether the c_codeword has been written to address 0x0001 -- once it has, then other writes are accepted. mmi_regs.enable_writes <= '0'; int_rdata <= (others => '0'); waitreq_int <= '1'; -- clear wait request counter waitreq_count <= 0; waitreq_count_is_zero <= '1'; -- iram interface defaults mmi_iram <= defaults; elsif rising_edge(clk) then -- default assignment waitreq_int <= '1'; write_clear(mmi_regs.rw_regs); -- only initialise rw_regs once after hard reset if mmi_rw_regs_initialised = '0' then mmi_rw_regs_initialised <= '1'; --reset all read/write regs and read path ouput registers and apply default MRS Settings. mmi_regs.rw_regs <= defaults(PHY_DEF_MR_1ST, PHY_DEF_MR_2ND, PHY_DEF_MR_3RD, PHY_DEF_MR_4TH, NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, c_pll_360_sweeps, -- number of times 360 degrees is swept TRACKING_INTERVAL_IN_MS, c_hl_stage_enable); end if; -- bit packing input data structures into the ro_regs structure, for reading mmi_regs.ro_regs <= defaults(dgrb_mmi, ctrl_mmi, pll_mmi, mmi_regs.rw_regs.rw_if_test, USE_IRAM, MEM_IF_DQS_CAPTURE, int_ac_1t_r, trefi_failure_r, iram_status, IRAM_AWIDTH); -- write has priority over read if int_write = '1' and int_cs = '1' and waitreq_count_is_zero = '1' and waitreq_int = '1' then -- mmi local register write if to_integer(unsigned(int_address(int_address'high downto 4))) = 0 then v_mmi_regs := mmi_regs; write(v_mmi_regs, to_integer(unsigned(int_address(3 downto 0))), int_wdata); if mmi_regs.enable_writes = '1' then v_mmi_regs.rw_regs.rw_hl_css.hl_css := c_hl_stage_enable or v_mmi_regs.rw_regs.rw_hl_css.hl_css; end if; mmi_regs <= v_mmi_regs; -- handshake for safe transactions waitreq_int <= '0'; waitreq_count <= c_response_lat; -- iram write just handshake back (no write supported) else waitreq_int <= '0'; waitreq_count <= c_response_lat; end if; elsif int_read = '1' and int_cs = '1' and waitreq_count_is_zero = '1' and waitreq_int = '1' then -- mmi local register read if to_integer(unsigned(int_address(int_address'high downto 4))) = 0 then int_rdata <= read(mmi_regs, to_integer(unsigned(int_address(3 downto 0)))); waitreq_count <= c_response_lat; waitreq_int <= '0'; -- acknowledge read command regardless. -- iram being addressed elsif to_integer(unsigned(int_address(int_address'high downto c_int_iram_start_size))) = 1 and iram_ready = '1' then mmi_iram.read <= '1'; mmi_iram.addr <= to_integer(unsigned(int_address(IRAM_AWIDTH -1 downto 0))); if iram_status.done = '1' then waitreq_int <= '0'; mmi_iram.read <= '0'; waitreq_count <= c_response_lat; int_rdata <= iram_status.rdata; end if; else -- respond and keep the interface from hanging int_rdata <= x"DEADBEEF"; waitreq_int <= '0'; waitreq_count <= c_response_lat; end if; elsif waitreq_count /= 0 then waitreq_count <= waitreq_count -1; -- if performing a write, set back to defaults. If not, default anyway mmi_iram <= defaults; end if; if waitreq_count = 1 or waitreq_count = 0 then waitreq_count_is_zero <= '1'; -- as it will be next clock cycle else waitreq_count_is_zero <= '0'; end if; -- supply iram read data when ready if iram_status.done = '1' then int_rdata <= iram_status.rdata; end if; end if; end process; -- pack the registers into the output data structures regs_admin_ctrl <= pack_record(mmi_regs.rw_regs); parameterisation_rec <= pack_record(mmi_regs.rw_regs); mmi_pll <= pack_record(mmi_regs.rw_regs); mmi_ctrl <= pack_record(mmi_regs.rw_regs); end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : admin block for the non-levelling AFI PHY sequencer -- The admin block supports the autonomy of the sequencer from -- the memory interface controller. In this task admin handles -- memory initialisation (incl. the setting of mode registers) -- and memory refresh, bank activation and pre-charge commands -- (during memory interface calibration). Once calibration is -- complete admin is 'idle' and control of the memory device is -- passed to the users chosen memory interface controller. The -- supported memory types are exclusively DDR, DDR2 and DDR3. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ram_controller_phy_alt_mem_phy_addr_cmd_pkg.all; -- entity ram_controller_phy_alt_mem_phy_admin is generic ( -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; ADV_LAT_WIDTH : natural; MEM_IF_DQSN_EN : natural; MEM_IF_MEMTYPE : string; -- calibration address information MEM_IF_CAL_BANK : natural; -- Bank to which calibration data is written MEM_IF_CAL_BASE_ROW : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; NON_OP_EVAL_MD : string; -- non_operational evaluation mode (used when GENERATE_ADDITIONAL_DBG_RTL = 1) -- timing parameters MEM_IF_CLK_PS : natural; TINIT_TCK : natural; -- initial delay TINIT_RST : natural -- used for DDR3 device support ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- the 2 signals below are unused for non-levelled sequencer (maintained for equivalent interface to levelled sequencer) mem_ac_swapped_ranks : in std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- addr/cmd interface seq_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); seq_ac_sel : out std_logic; -- determined from MR settings enable_odt : out std_logic; -- interface to the mmi block regs_admin_ctrl_rec : in t_admin_ctrl; admin_regs_status_rec : out t_admin_stat; trefi_failure : out std_logic; -- interface to the ctrl block ctrl_admin : in t_ctrl_command; admin_ctrl : out t_ctrl_stat; -- interface with dgrb/dgwb blocks ac_access_req : in std_logic; ac_access_gnt : out std_logic; -- calibration status signals (from ctrl block) cal_fail : in std_logic; cal_success : in std_logic; -- recalibrate request issued ctl_recalibrate_req : in std_logic ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ram_controller_phy_alt_mem_phy_admin is constant c_max_mode_reg_index : natural := 12; -- timing below is safe for range 80-400MHz operation - taken from worst case DDR2 (JEDEC JESD79-2E) / DDR3 (JESD79-3B) -- Note: timings account for worst case use for both full rate and half rate ALTMEMPHY interfaces constant c_init_prech_delay : natural := 162; -- precharge delay (360ns = tRFC+10ns) (TXPR for DDR3) constant c_trp_in_clks : natural := 8; -- set equal to trp / tck (trp = 15ns) constant c_tmrd_in_clks : natural := 4; -- maximum 4 clock cycles (DDR3) constant c_tmod_in_clks : natural := 8; -- ODT update from MRS command (tmod = 12ns (DDR2)) constant c_trrd_min_in_clks : natural := 4; -- minimum clk cycles between bank activate cmds (10ns) constant c_trcd_min_in_clks : natural := 8; -- minimum bank activate to read/write cmd (15ns) -- the 2 constants below are parameterised to MEM_IF_CLK_PS due to the large range of possible clock frequency constant c_trfc_min_in_clks : natural := (350000/MEM_IF_CLK_PS)/(DWIDTH_RATIO/2) + 2; -- refresh-refresh timing (worst case trfc = 350 ns (DDR3)) constant c_trefi_min_in_clks : natural := (3900000/MEM_IF_CLK_PS)/(DWIDTH_RATIO/2) - 2; -- average refresh interval worst case trefi = 3.9 us (industrial grade devices) constant c_max_num_stacked_refreshes : natural := 8; -- max no. of stacked refreshes allowed constant c_max_wait_value : natural := 4; -- delay before moving from s_idle to s_refresh_state -- DDR3 specific: constant c_zq_init_duration_clks : natural := 514; -- full rate (worst case) cycle count for tZQCL init constant c_tzqcs : natural := 66; -- number of full rate clock cycles -- below is a record which is used to parameterise the address and command signals (addr_cmd) used in this block constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant admin_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (admin) : "; -- state type for admin_state (main state machine of admin block) type t_admin_state is ( s_reset, -- reset state s_run_init_seq, -- run the initialisation sequence (up to but not including MR setting) s_program_cal_mrs, -- program the mode registers ready for calibration (this is the user settings -- with some overloads and extra init functionality) s_idle, -- idle (i.e. maintaining refresh to max) s_topup_refresh, -- make sure refreshes are maxed out before going on. s_topup_refresh_done, -- wait for tRFC after refresh command s_zq_cal_short, -- ZQCAL short command (issued prior to activate) - DDR3 only s_access_act, -- activate s_access, -- dgrb, dgwb accesses, s_access_precharge, -- precharge all memory banks s_prog_user_mrs, -- program user mode register settings s_dummy_wait, -- wait before going to s_refresh state s_refresh, -- issue a memory refresh command s_refresh_done, -- wait for trfc after refresh command s_non_operational -- special debug state to toggle interface if calibration fails ); signal state : t_admin_state; -- admin block state machine -- state type for ac_state type t_ac_state is ( s_0 , s_1 , s_2 , s_3 , s_4 , s_5 , s_6 , s_7 , s_8 , s_9 , s_10, s_11, s_12, s_13, s_14); -- enforce one-hot fsm encoding attribute syn_encoding : string; attribute syn_encoding of t_ac_state : TYPE is "one-hot"; signal ac_state : t_ac_state; -- state machine for sub-states of t_admin_state states signal stage_counter : natural range 0 to 2**18 - 1; -- counter to support memory timing delays signal stage_counter_zero : std_logic; signal addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- internal copy of output DRAM addr/cmd signals signal mem_init_complete : std_logic; -- signifies memory initialisation is complete signal cal_complete : std_logic; -- calibration complete (equals: cal_success OR cal_fail) signal int_mr0 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); -- an internal copy of mode register settings signal int_mr1 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal int_mr2 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal int_mr3 : std_logic_vector(regs_admin_ctrl_rec.mr0'range); signal refresh_count : natural range c_trefi_min_in_clks downto 0; -- determine when refresh is due signal refresh_due : std_logic; -- need to do a refresh now signal refresh_done : std_logic; -- pulse when refresh complete signal num_stacked_refreshes : natural range 0 to c_max_num_stacked_refreshes - 1; -- can stack upto 8 refreshes (for DDR2) signal refreshes_maxed : std_logic; -- signal refreshes are maxed out signal initial_refresh_issued : std_logic; -- to start the refresh counter off signal ctrl_rec : t_ctrl_command; -- last state logic signal command_started : std_logic; -- provides a pulse when admin starts processing a command signal command_done : std_logic; -- provides a pulse when admin completes processing a command is completed signal finished_state : std_logic; -- finished current t_admin_state state signal admin_req_extended : std_logic; -- keep requests for this block asserted until it is an ack is asserted signal current_cs : natural range 0 to MEM_IF_NUM_RANKS - 1; -- which chip select being programmed at this instance signal per_cs_init_seen : std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); -- some signals to enable non_operational debug (optimised away if GENERATE_ADDITIONAL_DBG_RTL = 0) signal nop_toggle_signal : t_addr_cmd_signals; signal nop_toggle_pin : natural range 0 to MEM_IF_ADDR_WIDTH - 1; -- track which pin in a signal to toggle signal nop_toggle_value : std_logic; begin -- architecture struct -- concurrent assignment of internal addr_cmd to output port seq_ac process (addr_cmd) begin seq_ac <= addr_cmd; end process; -- generate calibration complete signal process (cal_success, cal_fail) begin cal_complete <= cal_success or cal_fail; end process; -- register the control command record process (clk, rst_n) begin if rst_n = '0' then ctrl_rec <= defaults; elsif rising_edge(clk) then ctrl_rec <= ctrl_admin; end if; end process; -- extend the admin block request until ack is asserted process (clk, rst_n) begin if rst_n = '0' then admin_req_extended <= '0'; elsif rising_edge(clk) then if ( (ctrl_rec.command_req = '1') and ( curr_active_block(ctrl_rec.command) = admin) ) then admin_req_extended <= '1'; elsif command_started = '1' then -- this is effectively a copy of command_ack generation admin_req_extended <= '0'; end if; end if; end process; -- generate the current_cs signal to track which cs accessed by PHY at any instance process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; elsif rising_edge(clk) then if ctrl_rec.command_req = '1' then current_cs <= ctrl_rec.command_op.current_cs; end if; end if; end process; -- ----------------------------------------------------------------------------- -- refresh logic: DDR/DDR2/DDR3 allows upto 8 refreshes to be "stacked" or queued up. -- In the idle state, will ensure refreshes are issued when necessary. Then, -- when an access_request is received, 7 topup refreshes will be done to max out -- the number of queued refreshes. That way, we know we have the maximum time -- available before another refresh is due. -- ----------------------------------------------------------------------------- -- initial_refresh_issued flag: used to sync refresh_count process (clk, rst_n) begin if rst_n = '0' then initial_refresh_issued <= '0'; elsif rising_edge(clk) then if cal_complete = '1' then initial_refresh_issued <= '0'; else if state = s_refresh_done or state = s_topup_refresh_done then initial_refresh_issued <= '1'; end if; end if; end if; end process; -- refresh timer: used to work out when a refresh is due process (clk, rst_n) begin if rst_n = '0' then refresh_count <= c_trefi_min_in_clks; elsif rising_edge(clk) then if cal_complete = '1' then refresh_count <= c_trefi_min_in_clks; else if refresh_count = 0 or initial_refresh_issued = '0' or (refreshes_maxed = '1' and refresh_done = '1') then -- if refresh issued when already maxed refresh_count <= c_trefi_min_in_clks; else refresh_count <= refresh_count - 1; end if; end if; end if; end process; -- refresh_due generation: 1 cycle pulse to indicate that c_trefi_min_in_clks has elapsed, and -- therefore a refresh is due process (clk, rst_n) begin if rst_n = '0' then refresh_due <= '0'; elsif rising_edge(clk) then if refresh_count = 0 and cal_complete = '0' then refresh_due <= '1'; else refresh_due <= '0'; end if; end if; end process; -- counter to keep track of number of refreshes "stacked". NB: Up to 8 -- refreshes can be stacked. process (clk, rst_n) begin if rst_n = '0' then num_stacked_refreshes <= 0; trefi_failure <= '0'; -- default no trefi failure elsif rising_edge (clk) then if state = s_reset then trefi_failure <= '0'; -- default no trefi failure (in restart) end if; if cal_complete = '1' then num_stacked_refreshes <= 0; else if refresh_due = '1' and num_stacked_refreshes /= 0 then num_stacked_refreshes <= num_stacked_refreshes - 1; elsif refresh_done = '1' and num_stacked_refreshes /= c_max_num_stacked_refreshes - 1 then num_stacked_refreshes <= num_stacked_refreshes + 1; end if; -- debug message if stacked refreshes are depleted and refresh is due if refresh_due = '1' and num_stacked_refreshes = 0 and initial_refresh_issued = '1' then report admin_report_prefix & "error refresh is due and num_stacked_refreshes is zero" severity error; trefi_failure <= '1'; -- persist end if; end if; end if; end process; -- generate signal to state if refreshes are maxed out process (clk, rst_n) begin if rst_n = '0' then refreshes_maxed <= '0'; elsif rising_edge (clk) then if num_stacked_refreshes < c_max_num_stacked_refreshes - 1 then refreshes_maxed <= '0'; else refreshes_maxed <= '1'; end if; end if; end process; -- ---------------------------------------------------- -- Mode register selection -- ----------------------------------------------------- int_mr0(regs_admin_ctrl_rec.mr0'range) <= regs_admin_ctrl_rec.mr0; int_mr1(regs_admin_ctrl_rec.mr1'range) <= regs_admin_ctrl_rec.mr1; int_mr2(regs_admin_ctrl_rec.mr2'range) <= regs_admin_ctrl_rec.mr2; int_mr3(regs_admin_ctrl_rec.mr3'range) <= regs_admin_ctrl_rec.mr3; -- ------------------------------------------------------- -- State machine -- ------------------------------------------------------- process(rst_n, clk) begin if rst_n = '0' then state <= s_reset; command_done <= '0'; command_started <= '0'; elsif rising_edge(clk) then -- Last state logic command_done <= '0'; command_started <= '0'; case state is when s_reset | s_non_operational => if ctrl_rec.command = cmd_init_dram and admin_req_extended = '1' then state <= s_run_init_seq; command_started <= '1'; end if; when s_run_init_seq => if finished_state = '1' then state <= s_idle; command_done <= '1'; end if; when s_program_cal_mrs => if finished_state = '1' then if refreshes_maxed = '0' and mem_init_complete = '1' then -- only refresh if all ranks initialised state <= s_topup_refresh; else state <= s_idle; end if; command_done <= '1'; end if; when s_idle => if ac_access_req = '1' then state <= s_topup_refresh; elsif ctrl_rec.command = cmd_init_dram and admin_req_extended = '1' then -- start initialisation sequence state <= s_run_init_seq; command_started <= '1'; elsif ctrl_rec.command = cmd_prog_cal_mr and admin_req_extended = '1' then -- program mode registers (used for >1 chip select) state <= s_program_cal_mrs; command_started <= '1'; -- always enter s_prog_user_mrs via topup refresh elsif ctrl_rec.command = cmd_prep_customer_mr_setup and admin_req_extended = '1' then state <= s_topup_refresh; elsif refreshes_maxed = '0' and mem_init_complete = '1' then -- only refresh once all ranks initialised state <= s_dummy_wait; end if; when s_dummy_wait => if finished_state = '1' then state <= s_refresh; end if; when s_topup_refresh => if finished_state = '1' then state <= s_topup_refresh_done; end if; when s_topup_refresh_done => if finished_state = '1' then -- to ensure trfc is not violated if refreshes_maxed = '0' then state <= s_topup_refresh; elsif ctrl_rec.command = cmd_prep_customer_mr_setup and admin_req_extended = '1' then state <= s_prog_user_mrs; command_started <= '1'; elsif ac_access_req = '1' then if MEM_IF_MEMTYPE = "DDR3" then state <= s_zq_cal_short; else state <= s_access_act; end if; else state <= s_idle; end if; end if; when s_zq_cal_short => -- DDR3 only if finished_state = '1' then state <= s_access_act; end if; when s_access_act => if finished_state = '1' then state <= s_access; end if; when s_access => if ac_access_req = '0' then state <= s_access_precharge; end if; when s_access_precharge => -- ensure precharge all timer has elapsed. if finished_state = '1' then state <= s_idle; end if; when s_prog_user_mrs => if finished_state = '1' then state <= s_idle; command_done <= '1'; end if; when s_refresh => if finished_state = '1' then state <= s_refresh_done; end if; when s_refresh_done => if finished_state = '1' then -- to ensure trfc is not violated if refreshes_maxed = '0' then state <= s_refresh; else state <= s_idle; end if; end if; when others => state <= s_reset; end case; if cal_complete = '1' then state <= s_idle; if GENERATE_ADDITIONAL_DBG_RTL = 1 and cal_success = '0' then state <= s_non_operational; -- if calibration failed and debug enabled then toggle pins in pre-defined pattern end if; end if; -- if recalibrating then put admin in reset state to -- avoid issuing refresh commands when not needed if ctl_recalibrate_req = '1' then state <= s_reset; end if; end if; end process; -- -------------------------------------------------- -- process to generate initialisation complete -- -------------------------------------------------- process (rst_n, clk) begin if rst_n = '0' then mem_init_complete <= '0'; elsif rising_edge(clk) then if to_integer(unsigned(per_cs_init_seen)) = 2**MEM_IF_NUM_RANKS - 1 then mem_init_complete <= '1'; else mem_init_complete <= '0'; end if; end if; end process; -- -------------------------------------------------- -- process to generate addr/cmd. -- -------------------------------------------------- process(rst_n, clk) variable v_mr_overload : std_logic_vector(regs_admin_ctrl_rec.mr0'range); -- required for non_operational state only variable v_nop_ac_0 : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); variable v_nop_ac_1 : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); begin if rst_n = '0' then ac_state <= s_0; stage_counter <= 0; stage_counter_zero <= '1'; finished_state <= '0'; seq_ac_sel <= '1'; refresh_done <= '0'; per_cs_init_seen <= (others => '0'); addr_cmd <= int_pup_reset(c_seq_addr_cmd_config); if GENERATE_ADDITIONAL_DBG_RTL = 1 then nop_toggle_signal <= addr; nop_toggle_pin <= 0; nop_toggle_value <= '0'; end if; elsif rising_edge(clk) then finished_state <= '0'; refresh_done <= '0'; -- address / command path control -- if seq_ac_sel = 1 then sequencer has control of a/c -- if seq_ac_sel = 0 then memory controller has control of a/c seq_ac_sel <= '1'; if cal_complete = '1' then if cal_success = '1' or GENERATE_ADDITIONAL_DBG_RTL = 0 then -- hand over interface if cal successful or no debug enabled seq_ac_sel <= '0'; end if; end if; -- if recalibration request then take control of a/c path if ctl_recalibrate_req = '1' then seq_ac_sel <= '1'; end if; if state = s_reset then addr_cmd <= reset(c_seq_addr_cmd_config); stage_counter <= 0; elsif state /= s_run_init_seq and state /= s_non_operational then addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value end if; if (stage_counter = 1 or stage_counter = 0) then stage_counter_zero <= '1'; else stage_counter_zero <= '0'; end if; if stage_counter_zero /= '1' and state /= s_reset then stage_counter <= stage_counter -1; else stage_counter_zero <= '0'; case state is when s_run_init_seq => per_cs_init_seen <= (others => '0'); -- per cs test if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then case ac_state is -- JEDEC (JESD79-2E) stage c when s_0 to s_9 => ac_state <= t_ac_state'succ(ac_state); stage_counter <= (TINIT_TCK/10)+1; addr_cmd <= maintain_pd_or_sr(c_seq_addr_cmd_config, deselect(c_seq_addr_cmd_config, addr_cmd), 2**MEM_IF_NUM_RANKS -1); -- JEDEC (JESD79-2E) stage d when s_10 => ac_state <= s_11; stage_counter <= c_init_prech_delay; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_11 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; -- finish sequence by going into s_program_cal_mrs state when others => ac_state <= s_0; end case; elsif MEM_IF_MEMTYPE = "DDR3" then -- DDR3 specific initialisation sequence case ac_state is when s_0 => ac_state <= s_1; stage_counter <= TINIT_RST + 1; addr_cmd <= reset(c_seq_addr_cmd_config); when s_1 to s_10 => ac_state <= t_ac_state'succ(ac_state); stage_counter <= (TINIT_TCK/10) + 1; addr_cmd <= maintain_pd_or_sr(c_seq_addr_cmd_config, deselect(c_seq_addr_cmd_config, addr_cmd), 2**MEM_IF_NUM_RANKS -1); when s_11 => ac_state <= s_12; stage_counter <= c_init_prech_delay; addr_cmd <= deselect(c_seq_addr_cmd_config, addr_cmd); when s_12 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; -- finish sequence by going into s_program_cal_mrs state when others => ac_state <= s_0; end case; else report admin_report_prefix & "unsupported memory type specified" severity error; end if; -- end of initialisation sequence when s_program_cal_mrs => if MEM_IF_MEMTYPE = "DDR2" then -- DDR2 style mode register settings case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value -- JEDEC (JESD79-2E) stage d when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage e when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage f when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage g when s_4 => ac_state <= s_5; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- override DLL enable v_mr_overload(9 downto 7) := "000"; -- required in JESD79-2E (but not in JESD79-2B) addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage h when s_5 => ac_state <= s_6; stage_counter <= c_tmod_in_clks; addr_cmd <= dll_reset(c_seq_addr_cmd_config, -- configuration int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage i when s_6 => ac_state <= s_7; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) -- JEDEC (JESD79-2E) stage j when s_7 => ac_state <= s_8; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage j - second refresh when s_8 => ac_state <= s_9; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank -- JEDEC (JESD79-2E) stage k when s_9 => ac_state <= s_10; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 3) & "010"; -- override to burst length 4 v_mr_overload(8) := '0'; -- required in JESD79-2E addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage l - wait 200 cycles when s_10 => ac_state <= s_11; stage_counter <= 200; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value -- JEDEC (JESD79-2E) stage l - OCD default when s_11 => ac_state <= s_12; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(9 downto 7) := "111"; -- OCD calibration default (i.e. OCD unused) v_mr_overload(0) := '0'; -- override for DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address -- JEDEC (JESD79-2E) stage l - OCD cal exit when s_12 => ac_state <= s_13; stage_counter <= c_tmod_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(9 downto 7) := "000"; -- OCD calibration exit v_mr_overload(0) := '0'; -- override for DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address per_cs_init_seen(current_cs) <= '1'; -- JEDEC (JESD79-2E) stage m - cal finished when s_13 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => null; end case; elsif MEM_IF_MEMTYPE = "DDR" then -- DDR style mode register setting following JEDEC (JESD79E) case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank(s) when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- override DLL enable addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload , -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmod_in_clks; addr_cmd <= dll_reset(c_seq_addr_cmd_config, -- configuration int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_4 => ac_state <= s_5; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_5 => ac_state <= s_6; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank when s_6 => ac_state <= s_7; stage_counter <= c_trfc_min_in_clks; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**current_cs); -- rank when s_7 => ac_state <= s_8; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 3) & "010"; -- override to burst length 4 addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_8 => ac_state <= s_9; stage_counter <= 200; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value per_cs_init_seen(current_cs) <= '1'; when s_9 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => null; end case; elsif MEM_IF_MEMTYPE = "DDR3" then case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trp_in_clks; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; v_mr_overload := int_mr1(c_max_mode_reg_index downto 0); v_mr_overload(0) := '0'; -- Override for DLL enable v_mr_overload(12) := '0'; -- output buffer enable. v_mr_overload(7) := '0'; -- Disable Write levelling addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_4 => ac_state <= s_5; stage_counter <= c_tmod_in_clks; v_mr_overload := int_mr0(c_max_mode_reg_index downto 0); v_mr_overload(1 downto 0) := "01"; -- override to on the fly burst length choice v_mr_overload(7) := '0'; -- test mode not enabled v_mr_overload(8) := '1'; -- DLL reset addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number v_mr_overload, -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_5 => ac_state <= s_6; stage_counter <= c_zq_init_duration_clks; addr_cmd <= ZQCL(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- rank per_cs_init_seen(current_cs) <= '1'; when s_6 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; else report admin_report_prefix & "unsupported memory type specified" severity error; end if; -- end of s_program_cal_mrs case when s_prog_user_mrs => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => if MEM_IF_MEMTYPE = "DDR" then -- for DDR memory skip MR2/3 because not present ac_state <= s_4; else -- for DDR2/DDR3 all MRs programmed ac_state <= s_2; end if; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_2 => ac_state <= s_3; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 2, -- mode register number int_mr2(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_3 => ac_state <= s_4; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 3, -- mode register number int_mr3(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address if to_integer(unsigned(int_mr3)) /= 0 then report admin_report_prefix & " mode register 3 is expected to have a value of 0 but has a value of : " & integer'image(to_integer(unsigned(int_mr3))) severity warning; end if; when s_4 => ac_state <= s_5; stage_counter <= c_tmrd_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 1, -- mode register number int_mr1(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address if (MEM_IF_DQSN_EN = 0) and (int_mr1(10) = '0') and (MEM_IF_MEMTYPE = "DDR2") then report admin_report_prefix & "mode register and generic conflict:" & LF & "* generic MEM_IF_DQSN_EN is set to 'disable' DQSN" & LF & "* user mode register MEM_IF_MR1 bit 10 is set to 'enable' DQSN" severity warning; end if; when s_5 => ac_state <= s_6; stage_counter <= c_tmod_in_clks; addr_cmd <= load_mode(c_seq_addr_cmd_config, -- configuration 0, -- mode register number int_mr0(c_max_mode_reg_index downto 0), -- mode register value 2**current_cs, -- rank false); -- remap address and bank address when s_6 => ac_state <= s_7; stage_counter <= 1; when s_7 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; -- end of s_prog_user_mr case when s_access_precharge => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 10; addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value when s_1 => ac_state <= s_2; stage_counter <= c_trp_in_clks; addr_cmd <= precharge_all(c_seq_addr_cmd_config, -- configuration 2**MEM_IF_NUM_RANKS - 1); -- rank(s) when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_topup_refresh | s_refresh => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; when s_1 => ac_state <= s_2; stage_counter <= 1; addr_cmd <= refresh(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value 2**MEM_IF_NUM_RANKS - 1); -- rank when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_topup_refresh_done | s_refresh_done => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trfc_min_in_clks; refresh_done <= '1'; -- ensure trfc not violated when s_1 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_zq_cal_short => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= 1; when s_1 => ac_state <= s_2; stage_counter <= c_tzqcs; addr_cmd <= ZQCS(c_seq_addr_cmd_config, -- configuration 2**current_cs); -- all ranks when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_access_act => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_trrd_min_in_clks; when s_1 => ac_state <= s_2; stage_counter <= c_trcd_min_in_clks; addr_cmd <= activate(c_seq_addr_cmd_config, -- configuration addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_ROW, -- row address 2**current_cs); -- rank when s_2 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; -- counter to delay transition from s_idle to s_refresh - this is to ensure a refresh command is not sent -- just as we enter operational state (could cause a trfc violation) when s_dummy_wait => case ac_state is when s_0 => ac_state <= s_1; stage_counter <= c_max_wait_value; when s_1 => ac_state <= s_0; stage_counter <= 1; finished_state <= '1'; when others => ac_state <= s_0; end case; when s_reset => stage_counter <= 1; -- default some s_non_operational signals if GENERATE_ADDITIONAL_DBG_RTL = 1 then nop_toggle_signal <= addr; nop_toggle_pin <= 0; nop_toggle_value <= '0'; end if; when s_non_operational => -- if failed then output a recognised pattern to the memory (Only executes if GENERATE_ADDITIONAL_DBG_RTL set) addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value if NON_OP_EVAL_MD = "PIN_FINDER" then -- toggle pins in turn for 200 memory clk cycles stage_counter <= 200/(DWIDTH_RATIO/2); -- 200 mem_clk cycles case nop_toggle_signal is when addr => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, addr, '0'); addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, addr, nop_toggle_value, nop_toggle_pin); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then if nop_toggle_pin = MEM_IF_ADDR_WIDTH-1 then nop_toggle_signal <= ba; nop_toggle_pin <= 0; else nop_toggle_pin <= nop_toggle_pin + 1; end if; end if; when ba => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ba, '0'); addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ba, nop_toggle_value, nop_toggle_pin); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then if nop_toggle_pin = MEM_IF_BANKADDR_WIDTH-1 then nop_toggle_signal <= cas_n; nop_toggle_pin <= 0; else nop_toggle_pin <= nop_toggle_pin + 1; end if; end if; when cas_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, cas_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= ras_n; end if; when ras_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, ras_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= we_n; end if; when we_n => addr_cmd <= mask (c_seq_addr_cmd_config, addr_cmd, we_n, nop_toggle_value); nop_toggle_value <= not nop_toggle_value; if nop_toggle_value = '1' then nop_toggle_signal <= addr; end if; when others => report admin_report_prefix & " an attempt to toggle a non addr/cmd pin detected" severity failure; end case; elsif NON_OP_EVAL_MD = "SI_EVALUATOR" then -- toggle all addr/cmd pins at fmax stage_counter <= 0; -- every mem_clk cycle stage_counter_zero <= '1'; v_nop_ac_0 := mask (c_seq_addr_cmd_config, addr_cmd, addr, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, ba, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, we_n, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, ras_n, nop_toggle_value); v_nop_ac_0 := mask (c_seq_addr_cmd_config, v_nop_ac_0, cas_n, nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, addr_cmd, addr, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, ba, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, we_n, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, ras_n, not nop_toggle_value); v_nop_ac_1 := mask (c_seq_addr_cmd_config, v_nop_ac_1, cas_n, not nop_toggle_value); for i in 0 to DWIDTH_RATIO/2 - 1 loop if i mod 2 = 0 then addr_cmd(i) <= v_nop_ac_0(i); else addr_cmd(i) <= v_nop_ac_1(i); end if; end loop; if DWIDTH_RATIO = 2 then nop_toggle_value <= not nop_toggle_value; end if; else report admin_report_prefix & "unknown non-operational evaluation mode " & NON_OP_EVAL_MD severity failure; end if; when others => addr_cmd <= deselect(c_seq_addr_cmd_config, -- configuration addr_cmd); -- previous value stage_counter <= 1; ac_state <= s_0; end case; end if; end if; end process; -- ------------------------------------------------------------------- -- output packing of mode register settings and enabling of ODT -- ------------------------------------------------------------------- process (int_mr0, int_mr1, int_mr2, int_mr3, mem_init_complete) begin admin_regs_status_rec.mr0 <= int_mr0; admin_regs_status_rec.mr1 <= int_mr1; admin_regs_status_rec.mr2 <= int_mr2; admin_regs_status_rec.mr3 <= int_mr3; admin_regs_status_rec.init_done <= mem_init_complete; enable_odt <= int_mr1(2) or int_mr1(6); -- if ODT enabled in MR settings (i.e. MR1 bits 2 or 6 /= 0) end process; -- -------------------------------------------------------------------------------- -- generation of handshake signals with ctrl, dgrb and dgwb blocks (this includes -- command ack, command done for ctrl and access grant for dgrb/dgwb) -- -------------------------------------------------------------------------------- process (rst_n, clk) begin if rst_n = '0' then admin_ctrl <= defaults; ac_access_gnt <= '0'; elsif rising_edge(clk) then admin_ctrl <= defaults; ac_access_gnt <= '0'; admin_ctrl.command_ack <= command_started; admin_ctrl.command_done <= command_done; if state = s_access then ac_access_gnt <= '1'; end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : inferred ram for the non-levelling AFI PHY sequencer -- The inferred ram is used in the iram block to store -- debug information about the sequencer. It is variable in -- size based on the IRAM_AWIDTH generic and is of size -- 32 * (2 ** IRAM_ADDR_WIDTH) bits -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- entity ram_controller_phy_alt_mem_phy_iram_ram IS generic ( IRAM_AWIDTH : natural ); port ( clk : in std_logic; rst_n : in std_logic; -- ram ports addr : in unsigned(IRAM_AWIDTH-1 downto 0); wdata : in std_logic_vector(31 downto 0); write : in std_logic; rdata : out std_logic_vector(31 downto 0) ); end entity; -- architecture struct of ram_controller_phy_alt_mem_phy_iram_ram is -- infer ram constant c_max_ram_address : natural := 2**IRAM_AWIDTH -1; -- registered ram signals signal addr_r : unsigned(IRAM_AWIDTH-1 downto 0); signal wdata_r : std_logic_vector(31 downto 0); signal write_r : std_logic; signal rdata_r : std_logic_vector(31 downto 0); -- ram storage array type t_iram is array (0 to c_max_ram_address) of std_logic_vector(31 downto 0); signal iram_ram : t_iram; attribute altera_attribute : string; attribute altera_attribute of iram_ram : signal is "-name ADD_PASS_THROUGH_LOGIC_TO_INFERRED_RAMS ""OFF"""; begin -- architecture struct -- inferred ram instance - standard ram logic process (clk, rst_n) begin if rst_n = '0' then rdata_r <= (others => '0'); elsif rising_edge(clk) then if write_r = '1' then iram_ram(to_integer(addr_r)) <= wdata_r; end if; rdata_r <= iram_ram(to_integer(addr_r)); end if; end process; -- register i/o for speed process (clk, rst_n) begin if rst_n = '0' then rdata <= (others => '0'); write_r <= '0'; addr_r <= (others => '0'); wdata_r <= (others => '0'); elsif rising_edge(clk) then rdata <= rdata_r; write_r <= write; addr_r <= addr; wdata_r <= wdata; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : iram block for the non-levelling AFI PHY sequencer -- This block is an optional storage of debug information for -- the sequencer. In the current form the iram stores header -- information about the arrangement of the sequencer and pass/ -- fail information for per-delay/phase/pin sweeps for the -- read resynch phase calibration stage. Support for debug of -- additional commands can be added at a later date -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The altmemphy iram ram (alt_mem_phy_iram_ram) is an inferred ram memory to implement the debug -- iram ram block -- use work.ram_controller_phy_alt_mem_phy_iram_ram; -- entity ram_controller_phy_alt_mem_phy_iram is generic ( -- physical interface width definitions MEM_IF_MEMTYPE : string; FAMILYGROUP_ID : natural; MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_NUM_RANKS : natural; IRAM_AWIDTH : natural; REFRESH_COUNT_INIT : natural; PRESET_RLAT : natural; PLL_STEPS_PER_CYCLE : natural; CAPABILITIES : natural; IP_BUILDNUM : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- read interface from mmi block: mmi_iram : in t_iram_ctrl; mmi_iram_enable_writes : in std_logic; --iram status signal (includes read data from iram) iram_status : out t_iram_stat; iram_push_done : out std_logic; -- from ctrl block ctrl_iram : in t_ctrl_command; -- from dgrb block dgrb_iram : in t_iram_push; -- from admin block admin_regs_status_rec : in t_admin_stat; -- current write position in the iram ctrl_idib_top : in natural range 0 to 2 ** IRAM_AWIDTH - 1; ctrl_iram_push : in t_ctrl_iram; -- the following signals are unused and reserved for future use dgwb_iram : in t_iram_push ); end entity; library work; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ram_controller_phy_alt_mem_phy_regs_pkg.all; -- architecture struct of ram_controller_phy_alt_mem_phy_iram is -- ------------------------------------------- -- IHI fields -- ------------------------------------------- -- memory type , Quartus Build No., Quartus release, sequencer architecture version : signal memtype : std_logic_vector(7 downto 0); signal ihi_self_description : std_logic_vector(31 downto 0); signal ihi_self_description_extra : std_logic_vector(31 downto 0); -- for iram address generation: signal curr_iram_offset : natural range 0 to 2 ** IRAM_AWIDTH - 1; -- set read latency for iram_rdata_valid signal control: constant c_iram_rlat : natural := 3; -- iram read latency (increment if read pipelining added -- for rdata valid generation: signal read_valid_ctr : natural range 0 to c_iram_rlat; signal iram_addr_r : unsigned(IRAM_AWIDTH downto 0); constant c_ihi_phys_if_desc : std_logic_vector(31 downto 0) := std_logic_vector (to_unsigned(MEM_IF_NUM_RANKS,8) & to_unsigned(MEM_IF_DM_WIDTH,8) & to_unsigned(MEM_IF_DQS_WIDTH,8) & to_unsigned(MEM_IF_DWIDTH,8)); constant c_ihi_timing_info : std_logic_vector(31 downto 0) := X"DEADDEAD"; constant c_ihi_ctrl_ss_word2 : std_logic_vector(31 downto 0) := std_logic_vector (to_unsigned(PRESET_RLAT,16) & X"0000"); -- IDIB header codes constant c_idib_header_code0 : std_logic_vector(7 downto 0) := X"4A"; constant c_idib_footer_code : std_logic_vector(7 downto 0) := X"5A"; -- encoded Quartus version -- constant c_quartus_version : natural := 0; -- Quartus 7.2 -- constant c_quartus_version : natural := 1; -- Quartus 8.0 --constant c_quartus_version : natural := 2; -- Quartus 8.1 --constant c_quartus_version : natural := 3; -- Quartus 9.0 --constant c_quartus_version : natural := 4; -- Quartus 9.0sp2 --constant c_quartus_version : natural := 5; -- Quartus 9.1 --constant c_quartus_version : natural := 6; -- Quartus 9.1sp1? --constant c_quartus_version : natural := 7; -- Quartus 9.1sp2? constant c_quartus_version : natural := 8; -- Quartus 10.0 -- constant c_quartus_version : natural := 114; -- reserved -- allow for different variants for debug i/f constant c_dbg_if_version : natural := 2; -- sequencer type 1 for levelling, 2 for non-levelling constant c_sequencer_type : natural := 2; -- a prefix for all report signals to identify phy and sequencer block -- constant iram_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (iram) : "; -- ------------------------------------------- -- signal and type declarations -- ------------------------------------------- type t_iram_state is ( s_reset, -- system reset s_pre_init_ram, -- identify pre-initialisation s_init_ram, -- zero all locations s_idle, -- default state s_word_access_ram, -- mmi access to the iram (post-calibration) s_word_fetch_ram_rdata, -- sample read data from RAM s_word_fetch_ram_rdata_r,-- register the sampling of data from RAM (to improve timing) s_word_complete, -- finalise iram ram write s_idib_header_write, -- when starting a command s_idib_header_inc_addr, -- address increment s_idib_footer_write, -- unique footer to indicate end of data s_cal_data_read, -- read RAM location (read occurs continuously from idle state) s_cal_data_read_r, s_cal_data_modify, -- modify RAM location (read occurs continuously) s_cal_data_write, -- write modified value back to RAM s_ihi_header_word0_wr, -- from 0 to 6 writing iram header info s_ihi_header_word1_wr, s_ihi_header_word2_wr, s_ihi_header_word3_wr, s_ihi_header_word4_wr, s_ihi_header_word5_wr, s_ihi_header_word6_wr, s_ihi_header_word7_wr-- end writing iram header info ); signal state : t_iram_state; signal contested_access : std_logic; signal idib_header_count : std_logic_vector(7 downto 0); -- register a new cmd request signal new_cmd : std_logic; signal cmd_processed : std_logic; -- signals to control dgrb writes signal iram_modified_data : std_logic_vector(31 downto 0); -- scratchpad memory for read-modify-write -- ------------------------------------------- -- physical ram connections -- ------------------------------------------- -- Note that the iram_addr here is created IRAM_AWIDTH downto 0, and not -- IRAM_AWIDTH-1 downto 0. This means that the MSB is outside the addressable -- area of the RAM. The purpose of this is that this shall be our memory -- overflow bit. It shall be directly connected to the iram_out_of_memory flag -- 32-bit interface port (read and write) signal iram_addr : unsigned(IRAM_AWIDTH downto 0); signal iram_wdata : std_logic_vector(31 downto 0); signal iram_rdata : std_logic_vector(31 downto 0); signal iram_write : std_logic; -- signal generated external to the iram to say when read data is valid signal iram_rdata_valid : std_logic; -- The FSM owns local storage that is loaded with the wdata/addr from the -- requesting sub-block, which is then fed to the iram's wdata/addr in turn -- until all data has gone across signal fsm_read : std_logic; -- ------------------------------------------- -- multiplexed push data -- ------------------------------------------- signal iram_done : std_logic; -- unused signal iram_pushdata : std_logic_vector(31 downto 0); signal pending_push : std_logic; -- push data to RAM signal iram_wordnum : natural range 0 to 511; signal iram_bitnum : natural range 0 to 31; begin -- architecture struct -- ------------------------------------------- -- iram ram instantiation -- ------------------------------------------- -- Note that the IRAM_AWIDTH is the physical number of address bits that the RAM has. -- However, for out of range access detection purposes, an additional bit is added to -- the various address signals. The iRAM does not register any of its inputs as the addr, -- wdata etc are registered directly before being driven to it. -- The dgrb accesses are of format read-modify-write to a single bit of a 32-bit word, the -- mmi reads and header writes are in 32-bit words -- ram : entity ram_controller_phy_alt_mem_phy_iram_ram generic map ( IRAM_AWIDTH => IRAM_AWIDTH ) port map ( clk => clk, rst_n => rst_n, addr => iram_addr(IRAM_AWIDTH-1 downto 0), wdata => iram_wdata, write => iram_write, rdata => iram_rdata ); -- ------------------------------------------- -- IHI fields -- asynchronously -- ------------------------------------------- -- this field identifies the type of memory memtype <= X"03" when (MEM_IF_MEMTYPE = "DDR3") else X"02" when (MEM_IF_MEMTYPE = "DDR2") else X"01" when (MEM_IF_MEMTYPE = "DDR") else X"10" when (MEM_IF_MEMTYPE = "QDRII") else X"00" ; -- this field indentifies the gross level description of the sequencer ihi_self_description <= memtype & std_logic_vector(to_unsigned(IP_BUILDNUM,8)) & std_logic_vector(to_unsigned(c_quartus_version,8)) & std_logic_vector(to_unsigned(c_dbg_if_version,8)); -- some extra information for the debug gui - sequencer type and familygroup ihi_self_description_extra <= std_logic_vector(to_unsigned(FAMILYGROUP_ID,4)) & std_logic_vector(to_unsigned(c_sequencer_type,4)) & x"000000"; -- ------------------------------------------- -- check for contested memory accesses -- ------------------------------------------- process(clk,rst_n) begin if rst_n = '0' then contested_access <= '0'; elsif rising_edge(clk) then contested_access <= '0'; if mmi_iram.read = '1' and pending_push = '1' then report iram_report_prefix & "contested memory accesses to the iram" severity failure; contested_access <= '1'; end if; -- sanity checks if mmi_iram.write = '1' then report iram_report_prefix & "mmi writes to the iram unsupported for non-levelling AFI PHY sequencer" severity failure; end if; if dgwb_iram.iram_write = '1' then report iram_report_prefix & "dgwb writes to the iram unsupported for non-levelling AFI PHY sequencer" severity failure; end if; end if; end process; -- ------------------------------------------- -- mux push data and associated signals -- note: single bit taken for iram_pushdata because 1-bit read-modify-write to -- a 32-bit word in the ram. This interface style is maintained for future -- scalability / wider application of the iram block. -- ------------------------------------------- process(clk,rst_n) begin if rst_n = '0' then iram_done <= '0'; iram_pushdata <= (others => '0'); pending_push <= '0'; iram_wordnum <= 0; iram_bitnum <= 0; elsif rising_edge(clk) then case curr_active_block(ctrl_iram.command) is when dgrb => iram_done <= dgrb_iram.iram_done; iram_pushdata <= dgrb_iram.iram_pushdata; pending_push <= dgrb_iram.iram_write; iram_wordnum <= dgrb_iram.iram_wordnum; iram_bitnum <= dgrb_iram.iram_bitnum; when others => -- default dgrb iram_done <= dgrb_iram.iram_done; iram_pushdata <= dgrb_iram.iram_pushdata; pending_push <= dgrb_iram.iram_write; iram_wordnum <= dgrb_iram.iram_wordnum; iram_bitnum <= dgrb_iram.iram_bitnum; end case; end if; end process; -- ------------------------------------------- -- generate write signal for the ram -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_write <= '0'; elsif rising_edge(clk) then case state is when s_idle => iram_write <= '0'; when s_pre_init_ram | s_init_ram => iram_write <= '1'; when s_ihi_header_word0_wr | s_ihi_header_word1_wr | s_ihi_header_word2_wr | s_ihi_header_word3_wr | s_ihi_header_word4_wr | s_ihi_header_word5_wr | s_ihi_header_word6_wr | s_ihi_header_word7_wr => iram_write <= '1'; when s_idib_header_write => iram_write <= '1'; when s_idib_footer_write => iram_write <= '1'; when s_cal_data_write => iram_write <= '1'; when others => iram_write <= '0'; -- default end case; end if; end process; -- ------------------------------------------- -- generate wdata for the ram -- ------------------------------------------- process(clk, rst_n) variable v_current_cs : std_logic_vector(3 downto 0); variable v_mtp_alignment : std_logic_vector(0 downto 0); variable v_single_bit : std_logic; begin if rst_n = '0' then iram_wdata <= (others => '0'); elsif rising_edge(clk) then case state is when s_pre_init_ram | s_init_ram => iram_wdata <= (others => '0'); when s_ihi_header_word0_wr => iram_wdata <= ihi_self_description; when s_ihi_header_word1_wr => iram_wdata <= c_ihi_phys_if_desc; when s_ihi_header_word2_wr => iram_wdata <= c_ihi_timing_info; when s_ihi_header_word3_wr => iram_wdata <= ( others => '0'); iram_wdata(admin_regs_status_rec.mr0'range) <= admin_regs_status_rec.mr0; iram_wdata(admin_regs_status_rec.mr1'high + 16 downto 16) <= admin_regs_status_rec.mr1; when s_ihi_header_word4_wr => iram_wdata <= ( others => '0'); iram_wdata(admin_regs_status_rec.mr2'range) <= admin_regs_status_rec.mr2; iram_wdata(admin_regs_status_rec.mr3'high + 16 downto 16) <= admin_regs_status_rec.mr3; when s_ihi_header_word5_wr => iram_wdata <= c_ihi_ctrl_ss_word2; when s_ihi_header_word6_wr => iram_wdata <= std_logic_vector(to_unsigned(IRAM_AWIDTH,32)); -- tbd write the occupancy at end of cal when s_ihi_header_word7_wr => iram_wdata <= ihi_self_description_extra; when s_idib_header_write => -- encode command_op for current operation v_current_cs := std_logic_vector(to_unsigned(ctrl_iram.command_op.current_cs, 4)); v_mtp_alignment := std_logic_vector(to_unsigned(ctrl_iram.command_op.mtp_almt, 1)); v_single_bit := ctrl_iram.command_op.single_bit; iram_wdata <= encode_current_stage(ctrl_iram.command) & -- which command being executed (currently this should only be cmd_rrp_sweep (8 bits) v_current_cs & -- which chip select being processed (4 bits) v_mtp_alignment & -- currently used MTP alignment (1 bit) v_single_bit & -- is single bit calibration selected (1 bit) - used during MTP alignment "00" & -- RFU idib_header_count & -- unique ID to how many headers have been written (8 bits) c_idib_header_code0; -- unique ID for headers (8 bits) when s_idib_footer_write => iram_wdata <= c_idib_footer_code & c_idib_footer_code & c_idib_footer_code & c_idib_footer_code; when s_cal_data_modify => -- default don't overwrite iram_modified_data <= iram_rdata; -- update iram data based on packing and write modes if ctrl_iram_push.packing_mode = dq_bitwise then case ctrl_iram_push.write_mode is when overwrite_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0); when or_into_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0) or iram_rdata(0); when and_into_ram => iram_modified_data(iram_bitnum) <= iram_pushdata(0) and iram_rdata(0); when others => report iram_report_prefix & "unidentified write mode of " & t_iram_write_mode'image(ctrl_iram_push.write_mode) & " specified when generating iram write data" severity failure; end case; elsif ctrl_iram_push.packing_mode = dq_wordwise then case ctrl_iram_push.write_mode is when overwrite_ram => iram_modified_data <= iram_pushdata; when or_into_ram => iram_modified_data <= iram_pushdata or iram_rdata; when and_into_ram => iram_modified_data <= iram_pushdata and iram_rdata; when others => report iram_report_prefix & "unidentified write mode of " & t_iram_write_mode'image(ctrl_iram_push.write_mode) & " specified when generating iram write data" severity failure; end case; else report iram_report_prefix & "unidentified packing mode of " & t_iram_packing_mode'image(ctrl_iram_push.packing_mode) & " specified when generating iram write data" severity failure; end if; when s_cal_data_write => iram_wdata <= iram_modified_data; when others => iram_wdata <= (others => '0'); end case; end if; end process; -- ------------------------------------------- -- generate addr for the ram -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_addr <= (others => '0'); curr_iram_offset <= 0; elsif rising_edge(clk) then case (state) is when s_idle => if mmi_iram.read = '1' then -- pre-set mmi read location address iram_addr <= ('0' & to_unsigned(mmi_iram.addr,IRAM_AWIDTH)); -- Pad MSB else -- default get next push data location from iram iram_addr <= to_unsigned(curr_iram_offset + iram_wordnum, IRAM_AWIDTH+1); end if; when s_word_access_ram => -- calculate the address if mmi_iram.read = '1' then -- mmi access iram_addr <= ('0' & to_unsigned(mmi_iram.addr,IRAM_AWIDTH)); -- Pad MSB end if; when s_ihi_header_word0_wr => iram_addr <= (others => '0'); -- increment address for IHI word writes : when s_ihi_header_word1_wr | s_ihi_header_word2_wr | s_ihi_header_word3_wr | s_ihi_header_word4_wr | s_ihi_header_word5_wr | s_ihi_header_word6_wr | s_ihi_header_word7_wr => iram_addr <= iram_addr + 1; when s_idib_header_write => iram_addr <= '0' & to_unsigned(ctrl_idib_top, IRAM_AWIDTH); -- Always write header at idib_top location when s_idib_footer_write => iram_addr <= to_unsigned(curr_iram_offset + iram_wordnum, IRAM_AWIDTH+1); -- active block communicates where to put the footer with done signal when s_idib_header_inc_addr => iram_addr <= iram_addr + 1; curr_iram_offset <= to_integer('0' & iram_addr) + 1; when s_init_ram => if iram_addr(IRAM_AWIDTH) = '1' then iram_addr <= (others => '0'); -- this prevents erroneous out-of-mem flag after initialisation else iram_addr <= iram_addr + 1; end if; when others => iram_addr <= iram_addr; end case; end if; end process; -- ------------------------------------------- -- generate new cmd signal to register the command_req signal -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then new_cmd <= '0'; elsif rising_edge(clk) then if ctrl_iram.command_req = '1' then case ctrl_iram.command is when cmd_rrp_sweep | -- only prompt new_cmd for commands we wish to write headers for cmd_rrp_seek | cmd_read_mtp | cmd_write_ihi => new_cmd <= '1'; when others => new_cmd <= '0'; end case; end if; if cmd_processed = '1' then new_cmd <= '0'; end if; end if; end process; -- ------------------------------------------- -- generate read valid signal which takes account of pipelining of reads -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_rdata_valid <= '0'; read_valid_ctr <= 0; iram_addr_r <= (others => '0'); elsif rising_edge(clk) then if read_valid_ctr < c_iram_rlat then iram_rdata_valid <= '0'; read_valid_ctr <= read_valid_ctr + 1; else iram_rdata_valid <= '1'; end if; if to_integer(iram_addr) /= to_integer(iram_addr_r) or iram_write = '1' then read_valid_ctr <= 0; iram_rdata_valid <= '0'; end if; -- register iram address iram_addr_r <= iram_addr; end if; end process; -- ------------------------------------------- -- state machine -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then state <= s_reset; cmd_processed <= '0'; elsif rising_edge(clk) then cmd_processed <= '0'; case state is when s_reset => state <= s_pre_init_ram; when s_pre_init_ram => state <= s_init_ram; -- remain in the init_ram state until all the ram locations have been zero'ed when s_init_ram => if iram_addr(IRAM_AWIDTH) = '1' then state <= s_idle; end if; -- default state after reset when s_idle => if pending_push = '1' then state <= s_cal_data_read; elsif iram_done = '1' then state <= s_idib_footer_write; elsif new_cmd = '1' then case ctrl_iram.command is when cmd_rrp_sweep | cmd_rrp_seek | cmd_read_mtp => state <= s_idib_header_write; when cmd_write_ihi => state <= s_ihi_header_word0_wr; when others => state <= state; end case; cmd_processed <= '1'; elsif mmi_iram.read = '1' then state <= s_word_access_ram; end if; -- mmi read accesses when s_word_access_ram => state <= s_word_fetch_ram_rdata; when s_word_fetch_ram_rdata => state <= s_word_fetch_ram_rdata_r; when s_word_fetch_ram_rdata_r => if iram_rdata_valid = '1' then state <= s_word_complete; end if; when s_word_complete => if iram_rdata_valid = '1' then -- return to idle when iram_rdata stable state <= s_idle; end if; -- header write (currently only for cmp_rrp stage) when s_idib_header_write => state <= s_idib_header_inc_addr; when s_idib_header_inc_addr => state <= s_idle; -- return to idle to wait for push when s_idib_footer_write => state <= s_word_complete; -- push data accesses (only used by the dgrb block at present) when s_cal_data_read => state <= s_cal_data_read_r; when s_cal_data_read_r => if iram_rdata_valid = '1' then state <= s_cal_data_modify; end if; when s_cal_data_modify => state <= s_cal_data_write; when s_cal_data_write => state <= s_word_complete; -- IHI Header write accesses when s_ihi_header_word0_wr => state <= s_ihi_header_word1_wr; when s_ihi_header_word1_wr => state <= s_ihi_header_word2_wr; when s_ihi_header_word2_wr => state <= s_ihi_header_word3_wr; when s_ihi_header_word3_wr => state <= s_ihi_header_word4_wr; when s_ihi_header_word4_wr => state <= s_ihi_header_word5_wr; when s_ihi_header_word5_wr => state <= s_ihi_header_word6_wr; when s_ihi_header_word6_wr => state <= s_ihi_header_word7_wr; when s_ihi_header_word7_wr => state <= s_idle; when others => state <= state; end case; end if; end process; -- ------------------------------------------- -- drive read data and responses back. -- ------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then iram_status <= defaults; iram_push_done <= '0'; idib_header_count <= (others => '0'); fsm_read <= '0'; elsif rising_edge(clk) then -- defaults iram_status <= defaults; iram_status.done <= '0'; iram_status.rdata <= (others => '0'); iram_push_done <= '0'; if state = s_init_ram then iram_status.out_of_mem <= '0'; else iram_status.out_of_mem <= iram_addr(IRAM_AWIDTH); end if; -- register read flag for 32 bit accesses if state = s_idle then fsm_read <= mmi_iram.read; end if; if state = s_word_complete then iram_status.done <= '1'; if fsm_read = '1' then iram_status.rdata <= iram_rdata; else iram_status.rdata <= (others => '0'); end if; end if; -- if another access is ever presented while the FSM is busy, set the contested flag if contested_access = '1' then iram_status.contested_access <= '1'; end if; -- set (and keep set) the iram_init_done output once initialisation of the RAM is complete if (state /= s_init_ram) and (state /= s_pre_init_ram) and (state /= s_reset) then iram_status.init_done <= '1'; end if; if state = s_ihi_header_word7_wr then iram_push_done <= '1'; end if; -- if completing push or footer write then acknowledge if state = s_cal_data_modify or state = s_idib_footer_write then iram_push_done <= '1'; end if; -- increment IDIB header count each time a header is written if state = s_idib_header_write then idib_header_count <= std_logic_vector(unsigned(idib_header_count) + to_unsigned(1,idib_header_count'high +1)); end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : data gatherer (read bias) [dgrb] block for the non-levelling -- AFI PHY sequencer -- This block handles all calibration commands which require -- memory read operations. -- -- These include: -- Resync phase calibration - sweep of phases, calculation of -- result and optional storage to iram -- Postamble calibration - clock cycle calibration of the postamble -- enable signal -- Read data valid signal alignment -- Calculation of advertised read and write latencies -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ram_controller_phy_alt_mem_phy_addr_cmd_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ram_controller_phy_alt_mem_phy_iram_addr_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- entity ram_controller_phy_alt_mem_phy_dgrb is generic ( MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQS_CAPTURE : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_MEMTYPE : string; ADV_LAT_WIDTH : natural; CLOCK_INDEX_WIDTH : natural; DWIDTH_RATIO : natural; PRESET_RLAT : natural; PLL_STEPS_PER_CYCLE : natural; -- number of PLL phase steps per PHY clock cycle SIM_TIME_REDUCTIONS : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; PRESET_CODVW_PHASE : natural; PRESET_CODVW_SIZE : natural; -- base column address to which calibration data is written -- memory at MEM_IF_CAL_BASE_COL - MEM_IF_CAL_BASE_COL + C_CAL_DATA_LEN - 1 -- is assumed to contain the proper data MEM_IF_CAL_BANK : natural; -- bank to which calibration data is written MEM_IF_CAL_BASE_COL : natural; EN_OCT : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- control interface dgrb_ctrl : out t_ctrl_stat; ctrl_dgrb : in t_ctrl_command; parameterisation_rec : in t_algm_paramaterisation; -- PLL reconfig interface phs_shft_busy : in std_logic; seq_pll_inc_dec_n : out std_logic; seq_pll_select : out std_logic_vector(CLOCK_INDEX_WIDTH - 1 DOWNTO 0); seq_pll_start_reconfig : out std_logic; pll_resync_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select resync clock pll_measure_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select mimic / aka measure clock -- iram 'push' interface dgrb_iram : out t_iram_push; iram_push_done : in std_logic; -- addr/cmd output for write commands dgrb_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- admin block req/gnt interface dgrb_ac_access_req : out std_logic; dgrb_ac_access_gnt : in std_logic; -- RDV latency controls seq_rdata_valid_lat_inc : out std_logic; seq_rdata_valid_lat_dec : out std_logic; -- POA latency controls seq_poa_lat_dec_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_lat_inc_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); -- read datapath interface rdata_valid : in std_logic_vector(DWIDTH_RATIO/2 - 1 downto 0); rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); doing_rd : out std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); rd_lat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- advertised write latency wd_lat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- OCT control seq_oct_value : out std_logic; dgrb_wdp_ovride : out std_logic; -- mimic path interface seq_mmc_start : out std_logic; mmc_seq_done : in std_logic; mmc_seq_value : in std_logic; -- calibration byte lane select (reserved for future use - RFU) ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- odt settings per chip select odt_settings : in t_odt_array(0 to MEM_IF_NUM_RANKS-1); -- signal to identify if a/c nt setting is correct (set after wr_lat calculation) -- NOTE: labelled nt for future scalability to quarter rate interfaces dgrb_ctrl_ac_nt_good : out std_logic; -- status signals on calibrated cdvw dgrb_mmi : out t_dgrb_mmi ); end entity; -- architecture struct of ram_controller_phy_alt_mem_phy_dgrb is -- ------------------------------------------------------------------ -- constant declarations -- ------------------------------------------------------------------ constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- command/result length constant c_command_result_len : natural := 8; -- burst characteristics and latency characteristics constant c_max_read_lat : natural := 2**rd_lat'length - 1; -- maximum read latency in phy clock-cycles -- training pattern characteristics constant c_cal_mtp_len : natural := 16; constant c_cal_mtp : std_logic_vector(c_cal_mtp_len - 1 downto 0) := x"30F5"; constant c_cal_mtp_t : natural := c_cal_mtp_len / DWIDTH_RATIO; -- number of phy-clk cycles required to read BTP -- read/write latency defaults constant c_default_rd_lat_slv : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0) := std_logic_vector(to_unsigned(c_default_rd_lat, ADV_LAT_WIDTH)); constant c_default_wd_lat_slv : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0) := std_logic_vector(to_unsigned(c_default_wr_lat, ADV_LAT_WIDTH)); -- tracking reporting parameters constant c_max_rsc_drift_in_phases : natural := 127; -- this must be a value of < 2^10 - 1 because of the range of signal codvw_trk_shift -- Returns '1' when boolean b is True; '0' otherwise. function active_high(b : in boolean) return std_logic is variable r : std_logic; begin if b then r := '1'; else r := '0'; end if; return r; end function; -- a prefix for all report signals to identify phy and sequencer block -- constant dgrb_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (dgrb) : "; -- Return the number of clock periods the resync clock should sweep. -- -- On half-rate systems and in DQS-capture based systems a 720 -- to guarantee the resync window can be properly observed. function rsc_sweep_clk_periods return natural is variable v_num_periods : natural; begin if DWIDTH_RATIO = 2 then if MEM_IF_DQS_CAPTURE = 1 then -- families which use DQS capture require a 720 degree sweep for FR to show a window v_num_periods := 2; else v_num_periods := 1; end if; elsif DWIDTH_RATIO = 4 then v_num_periods := 2; else report dgrb_report_prefix & "unsupported DWIDTH_RATIO." severity failure; end if; return v_num_periods; end function; -- window for PLL sweep constant c_max_phase_shifts : natural := rsc_sweep_clk_periods*PLL_STEPS_PER_CYCLE; constant c_pll_phs_inc : std_logic := '1'; constant c_pll_phs_dec : std_logic := not c_pll_phs_inc; -- ------------------------------------------------------------------ -- type declarations -- ------------------------------------------------------------------ -- dgrb main state machine type t_dgrb_state is ( -- idle state s_idle, -- request access to memory address/command bus from the admin block s_wait_admin, -- relinquish address/command bus access s_release_admin, -- wind back resync phase to a 'zero' point s_reset_cdvw, -- perform resync phase sweep (used for MTP alignment checking and actual RRP sweep) s_test_phases, -- processing to when checking MTP alignment s_read_mtp, -- processing for RRP (read resync phase) sweep s_seek_cdvw, -- clock cycle alignment of read data valid signal s_rdata_valid_align, -- calculate advertised read latency s_adv_rd_lat_setup, s_adv_rd_lat, -- calculate advertised write latency s_adv_wd_lat, -- postamble clock cycle calibration s_poa_cal, -- tracking - setup and periodic update s_track ); -- dgrb slave state machine for addr/cmd signals type t_ac_state is ( -- idle state s_ac_idle, -- wait X cycles (issuing NOP command) to flush address/command and DQ buses s_ac_relax, -- read MTP pattern s_ac_read_mtp, -- read pattern for read data valid alignment s_ac_read_rdv, -- read pattern for POA calibration s_ac_read_poa_mtp, -- read pattern to calculate advertised write latency s_ac_read_wd_lat ); -- dgrb slave state machine for read resync phase calibration type t_resync_state is ( -- idle state s_rsc_idle, -- shift resync phase by one s_rsc_next_phase, -- start test sequence for current pin and current phase s_rsc_test_phase, -- flush the read datapath s_rsc_wait_for_idle_dimm, -- wait until no longer driving s_rsc_flush_datapath, -- flush a/c path -- sample DQ data to test phase s_rsc_test_dq, -- reset rsc phase to a zero position s_rsc_reset_cdvw, s_rsc_rewind_phase, -- calculate the centre of resync window s_rsc_cdvw_calc, s_rsc_cdvw_wait, -- wait for calc result -- set rsc clock phase to centre of data valid window s_rsc_seek_cdvw, -- wait until all results written to iram s_rsc_wait_iram -- only entered if GENERATE_ADDITIONAL_DBG_RTL = 1 ); -- record definitions for window processing type t_win_processing_status is ( calculating, valid_result, no_invalid_phases, multiple_equal_windows, no_valid_phases ); type t_window_processing is record working_window : std_logic_vector( c_max_phase_shifts - 1 downto 0); first_good_edge : natural range 0 to c_max_phase_shifts - 1; -- pointer to first detected good edge current_window_start : natural range 0 to c_max_phase_shifts - 1; current_window_size : natural range 0 to c_max_phase_shifts - 1; current_window_centre : natural range 0 to c_max_phase_shifts - 1; largest_window_start : natural range 0 to c_max_phase_shifts - 1; largest_window_size : natural range 0 to c_max_phase_shifts - 1; largest_window_centre : natural range 0 to c_max_phase_shifts - 1; current_bit : natural range 0 to c_max_phase_shifts - 1; window_centre_update : std_logic; last_bit_value : std_logic; valid_phase_seen : boolean; invalid_phase_seen : boolean; first_cycle : boolean; multiple_eq_windows : boolean; found_a_good_edge : boolean; status : t_win_processing_status; windows_seen : natural range 0 to c_max_phase_shifts/2 - 1; end record; -- ------------------------------------------------------------------ -- function and procedure definitions -- ------------------------------------------------------------------ -- Returns a string representation of a std_logic_vector. -- Not synthesizable. function str(v: std_logic_vector) return string is variable str_value : string (1 to v'length); variable str_len : integer; variable c : character; begin str_len := 1; for i in v'range loop case v(i) is when '0' => c := '0'; when '1' => c := '1'; when others => c := '?'; end case; str_value(str_len) := c; str_len := str_len + 1; end loop; return str_value; end str; -- functions and procedures for window processing function defaults return t_window_processing is variable output : t_window_processing; begin output.working_window := (others => '1'); output.last_bit_value := '1'; output.first_good_edge := 0; output.current_window_start := 0; output.current_window_size := 0; output.current_window_centre := 0; output.largest_window_start := 0; output.largest_window_size := 0; output.largest_window_centre := 0; output.window_centre_update := '1'; output.current_bit := 0; output.multiple_eq_windows := false; output.valid_phase_seen := false; output.invalid_phase_seen := false; output.found_a_good_edge := false; output.status := no_valid_phases; output.first_cycle := false; output.windows_seen := 0; return output; end function defaults; procedure initialise_window_for_proc ( working : inout t_window_processing ) is variable v_working_window : std_logic_vector( c_max_phase_shifts - 1 downto 0); begin v_working_window := working.working_window; working := defaults; working.working_window := v_working_window; working.status := calculating; working.first_cycle := true; working.window_centre_update := '1'; working.windows_seen := 0; end procedure initialise_window_for_proc; procedure shift_window (working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.working_window(0) = '0' then working.invalid_phase_seen := true; else working.valid_phase_seen := true; end if; -- general bit serial shifting of window and incrementing of current bit counter. if working.current_bit < num_phases - 1 then working.current_bit := working.current_bit + 1; else working.current_bit := 0; end if; working.last_bit_value := working.working_window(0); working.working_window := working.working_window(0) & working.working_window(working.working_window'high downto 1); --synopsis translate_off -- for simulation to make it simpler to see IF we are not using all the bits in the window working.working_window(working.working_window'high) := 'H'; -- for visual debug --synopsis translate_on working.working_window(num_phases -1) := working.last_bit_value; working.first_cycle := false; end procedure shift_window; procedure find_centre_of_largest_data_valid_window ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.first_cycle = false then -- not first call to procedure, then handle end conditions if working.current_bit = 0 and working.found_a_good_edge = false then -- have been all way arround window (circular) if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; end if; elsif working.current_bit = working.first_good_edge then -- if have found a good edge then complete a circular sweep to that edge if working.multiple_eq_windows = true then working.status := multiple_equal_windows; else working.status := valid_result; end if; end if; end if; -- start of a window condition if working.last_bit_value = '0' and working.working_window(0) = '1' then working.current_window_start := working.current_bit; working.current_window_size := working.current_window_size + 1; -- equivalent to assigning to one because if not in a window then it is set to 0 working.window_centre_update := not working.window_centre_update; working.current_window_centre := working.current_bit; if working.found_a_good_edge /= true then -- if have not yet found a good edge then store this value working.first_good_edge := working.current_bit; working.found_a_good_edge := true; end if; -- end of window conditions elsif working.last_bit_value = '1' and working.working_window(0) = '0' then if working.current_window_size > working.largest_window_size then working.largest_window_size := working.current_window_size; working.largest_window_start := working.current_window_start; working.largest_window_centre := working.current_window_centre; working.multiple_eq_windows := false; elsif working.current_window_size = working.largest_window_size then working.multiple_eq_windows := true; end if; -- put counter in here because start of window 1 is observed twice if working.found_a_good_edge = true then working.windows_seen := working.windows_seen + 1; end if; working.current_window_size := 0; elsif working.last_bit_value = '1' and working.working_window(0) = '1' and (working.found_a_good_edge = true) then --note operand in brackets is excessive but for may provide power savings and makes visual inspection of simulatuion easier if working.window_centre_update = '1' then if working.current_window_centre < num_phases -1 then working.current_window_centre := working.current_window_centre + 1; else working.current_window_centre := 0; end if; end if; working.window_centre_update := not working.window_centre_update; working.current_window_size := working.current_window_size + 1; end if; shift_window(working,num_phases); end procedure find_centre_of_largest_data_valid_window; procedure find_last_failing_phase ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts + 1 ) is begin if working.first_cycle = false then -- not first call to procedure if working.current_bit = 0 then -- and working.found_a_good_edge = false then if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; else working.status := valid_result; end if; end if; end if; if working.working_window(1) = '1' and working.working_window(0) = '0' and working.status = calculating then working.current_window_start := working.current_bit; end if; shift_window(working, num_phases); -- shifts window and sets first_cycle = false end procedure find_last_failing_phase; procedure find_first_passing_phase ( working : inout t_window_processing; num_phases : in natural range 1 to c_max_phase_shifts ) is begin if working.first_cycle = false then -- not first call to procedure if working.current_bit = 0 then -- and working.found_a_good_edge = false then if working.valid_phase_seen = false then working.status := no_valid_phases; elsif working.invalid_phase_seen = false then working.status := no_invalid_phases; else working.status := valid_result; end if; end if; end if; if working.working_window(0) = '1' and working.last_bit_value = '0' and working.status = calculating then working.current_window_start := working.current_bit; end if; shift_window(working, num_phases); -- shifts window and sets first_cycle = false end procedure find_first_passing_phase; -- shift in current pass/fail result to the working window procedure shift_in( working : inout t_window_processing; status : in std_logic; num_phases : in natural range 1 to c_max_phase_shifts ) is begin working.last_bit_value := working.working_window(0); working.working_window(num_phases-1 downto 0) := (working.working_window(0) and status) & working.working_window(num_phases-1 downto 1); end procedure; -- The following function sets the width over which -- write latency should be repeated on the dq bus -- the default value is MEM_IF_DQ_PER_DQS function set_wlat_dq_rep_width return natural is begin for i in 1 to MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS loop if (i*MEM_IF_DQ_PER_DQS) >= ADV_LAT_WIDTH then return i*MEM_IF_DQ_PER_DQS; end if; end loop; report dgrb_report_prefix & "the specified maximum write latency cannot be fully represented in the given number of DQ pins" & LF & "** NOTE: This may cause overflow when setting ctl_wlat signal" severity warning; return MEM_IF_DQ_PER_DQS; end function; -- extract PHY 'addr/cmd' to 'wdata_valid' write latency from current read data function wd_lat_from_rdata(signal rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0)) return std_logic_vector is variable v_wd_lat : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); begin v_wd_lat := (others => '0'); if set_wlat_dq_rep_width >= ADV_LAT_WIDTH then v_wd_lat := rdata(v_wd_lat'high downto 0); else v_wd_lat := (others => '0'); v_wd_lat(set_wlat_dq_rep_width - 1 downto 0) := rdata(set_wlat_dq_rep_width - 1 downto 0); end if; return v_wd_lat; end function; -- check if rdata_valid is correctly aligned function rdata_valid_aligned( signal rdata : in std_logic_vector(DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); signal rdata_valid : in std_logic_vector(DWIDTH_RATIO/2 - 1 downto 0) ) return std_logic is variable v_dq_rdata : std_logic_vector(DWIDTH_RATIO - 1 downto 0); variable v_aligned : std_logic; begin -- Look at data from a single DQ pin 0 (DWIDTH_RATIO data bits) for i in 0 to DWIDTH_RATIO - 1 loop v_dq_rdata(i) := rdata(i*MEM_IF_DWIDTH); end loop; -- Check each alignment (necessary because in the HR case rdata can be in any alignment) v_aligned := '0'; for i in 0 to DWIDTH_RATIO/2 - 1 loop if rdata_valid(i) = '1' then if v_dq_rdata(2*i + 1 downto 2*i) = "00" then v_aligned := '1'; end if; end if; end loop; return v_aligned; end function; -- set severity level for calibration failures function set_cal_fail_sev_level ( generate_additional_debug_rtl : natural ) return severity_level is begin if generate_additional_debug_rtl = 1 then return warning; else return failure; end if; end function; constant cal_fail_sev_level : severity_level := set_cal_fail_sev_level(GENERATE_ADDITIONAL_DBG_RTL); -- ------------------------------------------------------------------ -- signal declarations -- rsc = resync - the mechanism of capturing DQ pin data onto a local clock domain -- trk = tracking - a mechanism to track rsc clock phase with PVT variations -- poa = postamble - protection circuitry from postamble glitched on DQS -- ac = memory address / command signals -- ------------------------------------------------------------------ -- main state machine signal sig_dgrb_state : t_dgrb_state; signal sig_dgrb_last_state : t_dgrb_state; signal sig_rsc_req : t_resync_state; -- tells resync block which state to transition to. -- centre of data-valid window process signal sig_cdvw_state : t_window_processing; -- control signals for the address/command process signal sig_addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal sig_ac_req : t_ac_state; signal sig_dimm_driving_dq : std_logic; signal sig_doing_rd : std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); signal sig_ac_even : std_logic; -- odd/even count of PHY clock cycles. -- -- sig_ac_even behaviour -- -- sig_ac_even is always '1' on the cycle a command is issued. It will -- be '1' on even clock cycles thereafter and '0' otherwise. -- -- ; ; ; ; ; ; -- ; _______ ; ; ; ; ; -- XXXXX / \ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- addr/cmd XXXXXX CMD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- XXXXX \_______/ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ _________ -- sig_ac_even ____| |_________| |_________| |__________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- phy clk -- count (0) (1) (2) (3) (4) -- -- -- resync related signals signal sig_rsc_ack : std_logic; signal sig_rsc_err : std_logic; signal sig_rsc_result : std_logic_vector(c_command_result_len - 1 downto 0 ); signal sig_rsc_cdvw_phase : std_logic; signal sig_rsc_cdvw_shift_in : std_logic; signal sig_rsc_cdvw_calc : std_logic; signal sig_rsc_pll_start_reconfig : std_logic; signal sig_rsc_pll_inc_dec_n : std_logic; signal sig_rsc_ac_access_req : std_logic; -- High when the resync block requires a training pattern to be read. -- tracking related signals signal sig_trk_ack : std_logic; signal sig_trk_err : std_logic; signal sig_trk_result : std_logic_vector(c_command_result_len - 1 downto 0 ); signal sig_trk_cdvw_phase : std_logic; signal sig_trk_cdvw_shift_in : std_logic; signal sig_trk_cdvw_calc : std_logic; signal sig_trk_pll_start_reconfig : std_logic; signal sig_trk_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 DOWNTO 0); signal sig_trk_pll_inc_dec_n : std_logic; signal sig_trk_rsc_drift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores total change in rsc phase from first calibration -- phs_shft_busy could (potentially) be asynchronous -- triple register it for metastability hardening -- these signals are the taps on the shift register signal sig_phs_shft_busy : std_logic; signal sig_phs_shft_busy_1t : std_logic; signal sig_phs_shft_start : std_logic; signal sig_phs_shft_end : std_logic; -- locally register crl_dgrb to minimise fan out signal ctrl_dgrb_r : t_ctrl_command; -- command_op signals signal current_cs : natural range 0 to MEM_IF_NUM_RANKS - 1; signal current_mtp_almt : natural range 0 to 1; signal single_bit_cal : std_logic; -- codvw status signals (packed into record and sent to mmi block) signal cal_codvw_phase : std_logic_vector(7 downto 0); signal codvw_trk_shift : std_logic_vector(11 downto 0); signal cal_codvw_size : std_logic_vector(7 downto 0); -- error signal and result from main state machine (operations other than rsc or tracking) signal sig_cmd_err : std_logic; signal sig_cmd_result : std_logic_vector(c_command_result_len - 1 downto 0 ); -- signals that the training pattern matched correctly on the last clock -- cycle. signal sig_dq_pin_ctr : natural range 0 to MEM_IF_DWIDTH - 1; signal sig_mtp_match : std_logic; -- controls postamble match and timing. signal sig_poa_match_en : std_logic; signal sig_poa_match : std_logic; -- postamble signals signal sig_poa_ack : std_logic; -- '1' for postamble block to acknowledge. -- calibration byte lane select signal cal_byte_lanes : std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); signal codvw_grt_one_dvw : std_logic; begin doing_rd <= sig_doing_rd; -- pack record of codvw status signals dgrb_mmi.cal_codvw_phase <= cal_codvw_phase; dgrb_mmi.codvw_trk_shift <= codvw_trk_shift; dgrb_mmi.cal_codvw_size <= cal_codvw_size; dgrb_mmi.codvw_grt_one_dvw <= codvw_grt_one_dvw; -- map some internal signals to outputs dgrb_ac <= sig_addr_cmd; -- locally register crl_dgrb to minimise fan out process (clk, rst_n) begin if rst_n = '0' then ctrl_dgrb_r <= defaults; elsif rising_edge(clk) then ctrl_dgrb_r <= ctrl_dgrb; end if; end process; -- generate the current_cs signal to track which cs accessed by PHY at any instance current_cs_proc : process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; current_mtp_almt <= 0; single_bit_cal <= '0'; cal_byte_lanes <= (others => '0'); elsif rising_edge(clk) then if ctrl_dgrb_r.command_req = '1' then current_cs <= ctrl_dgrb_r.command_op.current_cs; current_mtp_almt <= ctrl_dgrb_r.command_op.mtp_almt; single_bit_cal <= ctrl_dgrb_r.command_op.single_bit; end if; -- mux byte lane select for given chip select for i in 0 to MEM_IF_DQS_WIDTH - 1 loop cal_byte_lanes(i) <= ctl_cal_byte_lanes((current_cs * MEM_IF_DQS_WIDTH) + i); end loop; assert ctl_cal_byte_lanes(0) = '1' report dgrb_report_prefix & " Byte lane 0 (chip select 0) disable is not supported - ending simulation" severity failure; end if; end process; -- ------------------------------------------------------------------ -- main state machine for dgrb architecture -- -- process of commands from control (ctrl) block and overall control of -- the subsequent calibration processing functions -- also communicates completion and any errors back to the ctrl block -- read data valid alignment and advertised latency calculations are -- included in this block -- ------------------------------------------------------------------ dgrb_main_block : block signal sig_count : natural range 0 to 2**8 - 1; signal sig_wd_lat : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); begin dgrb_state_proc : process(rst_n, clk) begin if rst_n = '0' then -- initialise state sig_dgrb_state <= s_idle; sig_dgrb_last_state <= s_idle; sig_ac_req <= s_ac_idle; sig_rsc_req <= s_rsc_idle; -- set up rd_lat defaults rd_lat <= c_default_rd_lat_slv; wd_lat <= c_default_wd_lat_slv; -- set up rdata_valid latency control defaults seq_rdata_valid_lat_inc <= '0'; seq_rdata_valid_lat_dec <= '0'; -- reset counter sig_count <= 0; -- error signals sig_cmd_err <= '0'; sig_cmd_result <= (others => '0'); -- sig_wd_lat sig_wd_lat <= (others => '0'); -- status of the ac_nt alignment dgrb_ctrl_ac_nt_good <= '1'; elsif rising_edge(clk) then sig_dgrb_last_state <= sig_dgrb_state; sig_rsc_req <= s_rsc_idle; -- set up rdata_valid latency control defaults seq_rdata_valid_lat_inc <= '0'; seq_rdata_valid_lat_dec <= '0'; -- error signals sig_cmd_err <= '0'; sig_cmd_result <= (others => '0'); -- register wd_lat output. wd_lat <= sig_wd_lat; case sig_dgrb_state is when s_idle => sig_count <= 0; if ctrl_dgrb_r.command_req = '1' then if curr_active_block(ctrl_dgrb_r.command) = dgrb then sig_dgrb_state <= s_wait_admin; end if; end if; sig_ac_req <= s_ac_idle; when s_wait_admin => sig_dgrb_state <= s_wait_admin; case ctrl_dgrb_r.command is when cmd_read_mtp => sig_dgrb_state <= s_read_mtp; when cmd_rrp_reset => sig_dgrb_state <= s_reset_cdvw; when cmd_rrp_sweep => sig_dgrb_state <= s_test_phases; when cmd_rrp_seek => sig_dgrb_state <= s_seek_cdvw; when cmd_rdv => sig_dgrb_state <= s_rdata_valid_align; when cmd_prep_adv_rd_lat => sig_dgrb_state <= s_adv_rd_lat_setup; when cmd_prep_adv_wr_lat => sig_dgrb_state <= s_adv_wd_lat; when cmd_tr_due => sig_dgrb_state <= s_track; when cmd_poa => sig_dgrb_state <= s_poa_cal; when others => report dgrb_report_prefix & "unknown command" severity failure; sig_dgrb_state <= s_idle; end case; when s_reset_cdvw => -- the cdvw proc watches for this state and resets the cdvw -- state block. if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_reset_cdvw; end if; when s_test_phases => if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_test_phase; if sig_rsc_ac_access_req = '1' then sig_ac_req <= s_ac_read_mtp; else sig_ac_req <= s_ac_idle; end if; end if; when s_seek_cdvw | s_read_mtp => if sig_rsc_ack = '1' then sig_dgrb_state <= s_release_admin; else sig_rsc_req <= s_rsc_cdvw_calc; end if; when s_release_admin => sig_ac_req <= s_ac_idle; if dgrb_ac_access_gnt = '0' and sig_dimm_driving_dq = '0' then sig_dgrb_state <= s_idle; end if; when s_rdata_valid_align => sig_ac_req <= s_ac_read_rdv; seq_rdata_valid_lat_dec <= '0'; seq_rdata_valid_lat_inc <= '0'; if sig_dimm_driving_dq = '1' then -- only do comparison if rdata_valid is all 'ones' if rdata_valid /= std_logic_vector(to_unsigned(0, DWIDTH_RATIO/2)) then -- rdata_valid is all ones if rdata_valid_aligned(rdata, rdata_valid) = '1' then -- success: rdata_valid and rdata are properly aligned sig_dgrb_state <= s_release_admin; else -- misaligned: bring in rdata_valid by a clock cycle seq_rdata_valid_lat_dec <= '1'; end if; end if; end if; when s_adv_rd_lat_setup => -- wait for sig_doing_rd to go high sig_ac_req <= s_ac_read_rdv; if sig_dgrb_state /= sig_dgrb_last_state then rd_lat <= (others => '0'); sig_count <= 0; elsif sig_dimm_driving_dq = '1' and sig_doing_rd(MEM_IF_DQS_WIDTH*(DWIDTH_RATIO/2-1)) = '1' then -- a read has started: start counter sig_dgrb_state <= s_adv_rd_lat; end if; when s_adv_rd_lat => sig_ac_req <= s_ac_read_rdv; if sig_dimm_driving_dq = '1' then if sig_count >= 2**rd_lat'length then report dgrb_report_prefix & "maximum read latency exceeded while waiting for rdata_valid" severity cal_fail_sev_level; sig_cmd_err <= '1'; sig_cmd_result <= std_logic_vector(to_unsigned(C_ERR_MAX_RD_LAT_EXCEEDED,sig_cmd_result'length)); end if; if rdata_valid /= std_logic_vector(to_unsigned(0, rdata_valid'length)) then -- have found the read latency sig_dgrb_state <= s_release_admin; else sig_count <= sig_count + 1; end if; rd_lat <= std_logic_vector(to_unsigned(sig_count, rd_lat'length)); end if; when s_adv_wd_lat => sig_ac_req <= s_ac_read_wd_lat; if sig_dgrb_state /= sig_dgrb_last_state then sig_wd_lat <= (others => '0'); else if sig_dimm_driving_dq = '1' and rdata_valid /= std_logic_vector(to_unsigned(0, rdata_valid'length)) then -- construct wd_lat using data from the lowest addresses -- wd_lat <= rdata(MEM_IF_DQ_PER_DQS - 1 downto 0); sig_wd_lat <= wd_lat_from_rdata(rdata); sig_dgrb_state <= s_release_admin; -- check data integrity for i in 1 to MEM_IF_DWIDTH/set_wlat_dq_rep_width - 1 loop -- wd_lat is copied across MEM_IF_DWIDTH bits in fields of width MEM_IF_DQ_PER_DQS. -- All of these fields must have the same value or it is an error. -- only check if byte lane not disabled if cal_byte_lanes((i*set_wlat_dq_rep_width)/MEM_IF_DQ_PER_DQS) = '1' then if rdata(set_wlat_dq_rep_width - 1 downto 0) /= rdata((i+1)*set_wlat_dq_rep_width - 1 downto i*set_wlat_dq_rep_width) then -- signal write latency different between DQS groups report dgrb_report_prefix & "the write latency read from memory is different accross dqs groups" severity cal_fail_sev_level; sig_cmd_err <= '1'; sig_cmd_result <= std_logic_vector(to_unsigned(C_ERR_WD_LAT_DISAGREEMENT, sig_cmd_result'length)); end if; end if; end loop; -- check if ac_nt alignment is ok -- in this condition all DWIDTH_RATIO copies of rdata should be identical dgrb_ctrl_ac_nt_good <= '1'; if DWIDTH_RATIO /= 2 then for j in 0 to DWIDTH_RATIO/2 - 1 loop if rdata(j*MEM_IF_DWIDTH + MEM_IF_DQ_PER_DQS - 1 downto j*MEM_IF_DWIDTH) /= rdata((j+2)*MEM_IF_DWIDTH + MEM_IF_DQ_PER_DQS - 1 downto (j+2)*MEM_IF_DWIDTH) then dgrb_ctrl_ac_nt_good <= '0'; end if; end loop; end if; end if; end if; when s_poa_cal => -- Request the address/command block begins reading the "M" -- training pattern here. There is no provision for doing -- refreshes so this limits the time spent in this state -- to 9 x tREFI (by the DDR2 JEDEC spec). Instead of the -- maximum value, a maximum "safe" time in this postamble -- state is chosen to be tpoamax = 5 x tREFI = 5 x 3.9us. -- When entering this s_poa_cal state it must be guaranteed -- that the number of stacked refreshes is at maximum. -- -- Minimum clock freq supported by DRAM is fck,min=125MHz. -- Each adjustment to postamble latency requires 16*clock -- cycles (time to read "M" training pattern twice) so -- maximum number of adjustments to POA latency (n) is: -- -- n = (5 x trefi x fck,min) / 16 -- = (5 x 3.9us x 125MHz) / 16 -- ~ 152 -- -- Postamble latency must be adjusted less than 152 cycles -- to meet this requirement. -- sig_ac_req <= s_ac_read_poa_mtp; if sig_poa_ack = '1' then sig_dgrb_state <= s_release_admin; end if; when s_track => if sig_trk_ack = '1' then sig_dgrb_state <= s_release_admin; end if; when others => null; report dgrb_report_prefix & "undefined state" severity failure; sig_dgrb_state <= s_idle; end case; -- default if not calibrating go to idle state via s_release_admin if ctrl_dgrb_r.command = cmd_idle and sig_dgrb_state /= s_idle and sig_dgrb_state /= s_release_admin then sig_dgrb_state <= s_release_admin; end if; end if; end process; end block; -- ------------------------------------------------------------------ -- metastability hardening of potentially async phs_shift_busy signal -- -- Triple register it for metastability hardening. This process -- creates the shift register. Also add a sig_phs_shft_busy and -- an sig_phs_shft_busy_1t echo because various other processes find -- this useful. -- ------------------------------------------------------------------ phs_shft_busy_reg: block signal phs_shft_busy_1r : std_logic; signal phs_shft_busy_2r : std_logic; signal phs_shft_busy_3r : std_logic; begin phs_shift_busy_sync : process (clk, rst_n) begin if rst_n = '0' then sig_phs_shft_busy <= '0'; sig_phs_shft_busy_1t <= '0'; phs_shft_busy_1r <= '0'; phs_shft_busy_2r <= '0'; phs_shft_busy_3r <= '0'; sig_phs_shft_start <= '0'; sig_phs_shft_end <= '0'; elsif rising_edge(clk) then sig_phs_shft_busy_1t <= phs_shft_busy_3r; sig_phs_shft_busy <= phs_shft_busy_2r; -- register the below to reduce fan out on sig_phs_shft_busy and sig_phs_shft_busy_1t sig_phs_shft_start <= phs_shft_busy_3r or phs_shft_busy_2r; sig_phs_shft_end <= phs_shft_busy_3r and not(phs_shft_busy_2r); phs_shft_busy_3r <= phs_shft_busy_2r; phs_shft_busy_2r <= phs_shft_busy_1r; phs_shft_busy_1r <= phs_shft_busy; end if; end process; end block; -- ------------------------------------------------------------------ -- PLL reconfig MUX -- -- switches PLL Reconfig input between tracking and resync blocks -- ------------------------------------------------------------------ pll_reconf_mux : process (clk, rst_n) begin if rst_n = '0' then seq_pll_inc_dec_n <= '0'; seq_pll_select <= (others => '0'); seq_pll_start_reconfig <= '0'; elsif rising_edge(clk) then if sig_dgrb_state = s_seek_cdvw or sig_dgrb_state = s_test_phases or sig_dgrb_state = s_reset_cdvw then seq_pll_select <= pll_resync_clk_index; seq_pll_inc_dec_n <= sig_rsc_pll_inc_dec_n; seq_pll_start_reconfig <= sig_rsc_pll_start_reconfig; elsif sig_dgrb_state = s_track then seq_pll_select <= sig_trk_pll_select; seq_pll_inc_dec_n <= sig_trk_pll_inc_dec_n; seq_pll_start_reconfig <= sig_trk_pll_start_reconfig; else seq_pll_select <= pll_measure_clk_index; seq_pll_inc_dec_n <= '0'; seq_pll_start_reconfig <= '0'; end if; end if; end process; -- ------------------------------------------------------------------ -- Centre of data valid window calculation block -- -- This block handles the sharing of the centre of window calculation -- logic between the rsc and trk operations. Functions defined in the -- header of this entity are called to do this. -- ------------------------------------------------------------------ cdvw_block : block signal sig_cdvw_calc_1t : std_logic; begin -- purpose: manages centre of data valid window calculations -- type : sequential -- inputs : clk, rst_n -- outputs: sig_cdvw_state cdvw_proc: process (clk, rst_n) variable v_cdvw_state : t_window_processing; variable v_start_calc : std_logic; variable v_shift_in : std_logic; variable v_phase : std_logic; begin -- process cdvw_proc if rst_n = '0' then -- asynchronous reset (active low) sig_cdvw_state <= defaults; sig_cdvw_calc_1t <= '0'; elsif rising_edge(clk) then -- rising clock edge v_cdvw_state := sig_cdvw_state; case sig_dgrb_state is when s_track => v_start_calc := sig_trk_cdvw_calc; v_phase := sig_trk_cdvw_phase; v_shift_in := sig_trk_cdvw_shift_in; when s_read_mtp | s_seek_cdvw | s_test_phases => v_start_calc := sig_rsc_cdvw_calc; v_phase := sig_rsc_cdvw_phase; v_shift_in := sig_rsc_cdvw_shift_in; when others => v_start_calc := '0'; v_phase := '0'; v_shift_in := '0'; end case; if sig_dgrb_state = s_reset_cdvw or (sig_dgrb_state = s_track and sig_dgrb_last_state /= s_track) then -- reset *C*entre of *D*ata *V*alid *W*indow v_cdvw_state := defaults; elsif sig_cdvw_calc_1t /= '1' and v_start_calc = '1' then initialise_window_for_proc(v_cdvw_state); elsif v_cdvw_state.status = calculating then if sig_dgrb_state = s_track then -- ensure 360 degrees sweep find_centre_of_largest_data_valid_window(v_cdvw_state, PLL_STEPS_PER_CYCLE); else -- can be a 720 degrees sweep find_centre_of_largest_data_valid_window(v_cdvw_state, c_max_phase_shifts); end if; elsif v_shift_in = '1' then if sig_dgrb_state = s_track then -- ensure 360 degrees sweep shift_in(v_cdvw_state, v_phase, PLL_STEPS_PER_CYCLE); else shift_in(v_cdvw_state, v_phase, c_max_phase_shifts); end if; end if; sig_cdvw_calc_1t <= v_start_calc; sig_cdvw_state <= v_cdvw_state; end if; end process cdvw_proc; end block; -- ------------------------------------------------------------------ -- block for resync calculation. -- -- This block implements the following: -- 1) Control logic for the rsc slave state machine -- 2) Processing of resync operations - through reports form cdvw block and -- test pattern match blocks -- 3) Shifting of the resync phase for rsc sweeps -- 4) Writing of results to iram (optional) -- ------------------------------------------------------------------ rsc_block : block signal sig_rsc_state : t_resync_state; signal sig_rsc_last_state : t_resync_state; signal sig_num_phase_shifts : natural range c_max_phase_shifts - 1 downto 0; signal sig_rewind_direction : std_logic; signal sig_count : natural range 0 to 2**8 - 1; signal sig_test_dq_expired : std_logic; signal sig_chkd_all_dq_pins : std_logic; -- prompts to write data to iram signal sig_dgrb_iram : t_iram_push; -- internal copy of dgrb to iram control signals signal sig_rsc_push_rrp_sweep : std_logic; -- push result of a rrp sweep pass (for cmd_rrp_sweep) signal sig_rsc_push_rrp_pass : std_logic; -- result of a rrp sweep result (for cmd_rrp_sweep) signal sig_rsc_push_rrp_seek : std_logic; -- write seek results (for cmd_rrp_seek / cmd_read_mtp states) signal sig_rsc_push_footer : std_logic; -- write a footer signal sig_dq_pin_ctr_r : natural range 0 to MEM_IF_DWIDTH - 1; -- registered version of dq_pin_ctr signal sig_rsc_curr_phase : natural range 0 to c_max_phase_shifts - 1; -- which phase is being processed signal sig_iram_idle : std_logic; -- track if iram currently writing data signal sig_mtp_match_en : std_logic; -- current byte lane disabled? signal sig_curr_byte_ln_dis : std_logic; signal sig_iram_wds_req : integer; -- words required for a given iram dump (used to locate where to write footer) begin -- When using DQS capture or not at full-rate only match on "even" clock cycles. sig_mtp_match_en <= active_high(sig_ac_even = '1' or MEM_IF_DQS_CAPTURE = 0 or DWIDTH_RATIO /= 2); -- register current byte lane disable mux for speed byte_lane_dis: process (clk, rst_n) begin if rst_n = '0' then sig_curr_byte_ln_dis <= '0'; elsif rising_edge(clk) then sig_curr_byte_ln_dis <= cal_byte_lanes(sig_dq_pin_ctr/MEM_IF_DQ_PER_DQS); end if; end process; -- check if all dq pins checked in rsc sweep chkd_dq : process (clk, rst_n) begin if rst_n = '0' then sig_chkd_all_dq_pins <= '0'; elsif rising_edge(clk) then if sig_dq_pin_ctr = 0 then sig_chkd_all_dq_pins <= '1'; else sig_chkd_all_dq_pins <= '0'; end if; end if; end process; -- main rsc process rsc_proc : process (clk, rst_n) -- these are temporary variables which should not infer FFs and -- are not guaranteed to be initialized by s_rsc_idle. variable v_rdata_correct : std_logic; variable v_phase_works : std_logic; begin if rst_n = '0' then -- initialise signals sig_rsc_state <= s_rsc_idle; sig_rsc_last_state <= s_rsc_idle; sig_dq_pin_ctr <= 0; sig_num_phase_shifts <= c_max_phase_shifts - 1; -- want c_max_phase_shifts-1 inc / decs of phase sig_count <= 0; sig_test_dq_expired <= '0'; v_phase_works := '0'; -- interface to other processes to tell them when we are done. sig_rsc_ack <= '0'; sig_rsc_err <= '0'; sig_rsc_result <= std_logic_vector(to_unsigned(C_SUCCESS, c_command_result_len)); -- centre of data valid window functions sig_rsc_cdvw_phase <= '0'; sig_rsc_cdvw_shift_in <= '0'; sig_rsc_cdvw_calc <= '0'; -- set up PLL reconfig interface controls sig_rsc_pll_start_reconfig <= '0'; sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rewind_direction <= c_pll_phs_dec; -- True when access to the ac_block is required. sig_rsc_ac_access_req <= '0'; -- default values on centre and size of data valid window if SIM_TIME_REDUCTIONS = 1 then cal_codvw_phase <= std_logic_vector(to_unsigned(PRESET_CODVW_PHASE, 8)); cal_codvw_size <= std_logic_vector(to_unsigned(PRESET_CODVW_SIZE, 8)); else cal_codvw_phase <= (others => '0'); cal_codvw_size <= (others => '0'); end if; sig_rsc_push_rrp_sweep <= '0'; sig_rsc_push_rrp_seek <= '0'; sig_rsc_push_rrp_pass <= '0'; sig_rsc_push_footer <= '0'; codvw_grt_one_dvw <= '0'; elsif rising_edge(clk) then -- default values assigned to some signals sig_rsc_ack <= '0'; sig_rsc_cdvw_phase <= '0'; sig_rsc_cdvw_shift_in <= '0'; sig_rsc_cdvw_calc <= '0'; sig_rsc_pll_start_reconfig <= '0'; sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rewind_direction <= c_pll_phs_dec; -- by default don't ask the resync block to read anything sig_rsc_ac_access_req <= '0'; sig_rsc_push_rrp_sweep <= '0'; sig_rsc_push_rrp_seek <= '0'; sig_rsc_push_rrp_pass <= '0'; sig_rsc_push_footer <= '0'; sig_test_dq_expired <= '0'; -- resync state machine case sig_rsc_state is when s_rsc_idle => -- initialize those signals we are ready to use. sig_dq_pin_ctr <= 0; sig_count <= 0; if sig_rsc_state = sig_rsc_last_state then -- avoid transition when acknowledging a command has finished if sig_rsc_req = s_rsc_test_phase then sig_rsc_state <= s_rsc_test_phase; elsif sig_rsc_req = s_rsc_cdvw_calc then sig_rsc_state <= s_rsc_cdvw_calc; elsif sig_rsc_req = s_rsc_seek_cdvw then sig_rsc_state <= s_rsc_seek_cdvw; elsif sig_rsc_req = s_rsc_reset_cdvw then sig_rsc_state <= s_rsc_reset_cdvw; else sig_rsc_state <= s_rsc_idle; end if; end if; when s_rsc_next_phase => sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_start = '1' then -- PLL phase shift started - so stop requesting a shift sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then -- PLL phase shift finished - so proceed to flush the datapath sig_num_phase_shifts <= sig_num_phase_shifts - 1; sig_rsc_state <= s_rsc_test_phase; end if; when s_rsc_test_phase => v_phase_works := '1'; -- Note: For single pin single CS calibration set sig_dq_pin_ctr to 0 to -- ensure that only 1 pin calibrated sig_rsc_state <= s_rsc_wait_for_idle_dimm; if single_bit_cal = '1' then sig_dq_pin_ctr <= 0; else sig_dq_pin_ctr <= MEM_IF_DWIDTH-1; end if; when s_rsc_wait_for_idle_dimm => if sig_dimm_driving_dq = '0' then sig_rsc_state <= s_rsc_flush_datapath; end if; when s_rsc_flush_datapath => sig_rsc_ac_access_req <= '1'; if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state. sig_count <= c_max_read_lat - 1; else if sig_dimm_driving_dq = '1' then if sig_count = 0 then sig_rsc_state <= s_rsc_test_dq; else sig_count <= sig_count - 1; end if; end if; end if; when s_rsc_test_dq => sig_rsc_ac_access_req <= '1'; if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state. sig_count <= 2*c_cal_mtp_t; else if sig_dimm_driving_dq = '1' then if ( (sig_mtp_match = '1' and sig_mtp_match_en = '1') or -- have a pattern match (sig_test_dq_expired = '1') or -- time in this phase has expired. sig_curr_byte_ln_dis = '0' -- byte lane disabled ) then v_phase_works := v_phase_works and ((sig_mtp_match and sig_mtp_match_en) or (not sig_curr_byte_ln_dis)); sig_rsc_push_rrp_sweep <= '1'; sig_rsc_push_rrp_pass <= (sig_mtp_match and sig_mtp_match_en) or (not sig_curr_byte_ln_dis); if sig_chkd_all_dq_pins = '1' then -- finished checking all dq pins. -- done checking this phase. -- shift phase status into sig_rsc_cdvw_phase <= v_phase_works; sig_rsc_cdvw_shift_in <= '1'; if sig_num_phase_shifts /= 0 then -- there are more phases to test so shift to next phase sig_rsc_state <= s_rsc_next_phase; else -- no more phases to check. -- clean up after ourselves by -- going into s_rsc_rewind_phase sig_rsc_state <= s_rsc_rewind_phase; sig_rewind_direction <= c_pll_phs_dec; sig_num_phase_shifts <= c_max_phase_shifts - 1; end if; else -- shift to next dq pin if MEM_IF_DWIDTH > 71 and -- if >= 72 pins then: (sig_dq_pin_ctr mod 64) = 0 then -- ensure refreshes at least once every 64 pins sig_rsc_state <= s_rsc_wait_for_idle_dimm; else -- otherwise continue sweep sig_rsc_state <= s_rsc_flush_datapath; end if; sig_dq_pin_ctr <= sig_dq_pin_ctr - 1; end if; else sig_count <= sig_count - 1; if sig_count = 1 then sig_test_dq_expired <= '1'; end if; end if; end if; end if; when s_rsc_reset_cdvw => sig_rsc_state <= s_rsc_rewind_phase; -- determine the amount to rewind by (may be wind forward depending on tracking behaviour) if to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift < 0 then sig_num_phase_shifts <= - (to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift); sig_rewind_direction <= c_pll_phs_inc; else sig_num_phase_shifts <= (to_integer(unsigned(cal_codvw_phase)) + sig_trk_rsc_drift); sig_rewind_direction <= c_pll_phs_dec; end if; -- reset the calibrated phase and size to zero (because un-doing prior calibration here) cal_codvw_phase <= (others => '0'); cal_codvw_size <= (others => '0'); when s_rsc_rewind_phase => -- rewinds the resync PLL by sig_num_phase_shifts steps and returns to idle state if sig_num_phase_shifts = 0 then -- no more steps to take off, go to next state sig_num_phase_shifts <= c_max_phase_shifts - 1; if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; else sig_rsc_pll_inc_dec_n <= sig_rewind_direction; -- request a phase shift sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_busy = '1' then -- inhibit a phase shift if phase shift is busy. sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_busy_1t = '1' and sig_phs_shft_busy /= '1' then -- we've just successfully removed a phase step -- decrement counter sig_num_phase_shifts <= sig_num_phase_shifts - 1; sig_rsc_pll_start_reconfig <= '0'; end if; end if; when s_rsc_cdvw_calc => if sig_rsc_state /= sig_rsc_last_state then if sig_dgrb_state = s_read_mtp then report dgrb_report_prefix & "gathered resync phase samples (for mtp alignment " & natural'image(current_mtp_almt) & ") is DGRB_PHASE_SAMPLES: " & str(sig_cdvw_state.working_window) severity note; else report dgrb_report_prefix & "gathered resync phase samples DGRB_PHASE_SAMPLES: " & str(sig_cdvw_state.working_window) severity note; end if; sig_rsc_cdvw_calc <= '1'; -- begin calculating result else sig_rsc_state <= s_rsc_cdvw_wait; end if; when s_rsc_cdvw_wait => if sig_cdvw_state.status /= calculating then -- a result has been reached. if sig_dgrb_state = s_read_mtp then -- if doing mtp alignment then skip setting phase if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; else if sig_cdvw_state.status = valid_result then -- calculation successfully found a -- data-valid window to seek to. sig_rsc_state <= s_rsc_seek_cdvw; sig_rsc_result <= std_logic_vector(to_unsigned(C_SUCCESS, sig_rsc_result'length)); -- If more than one data valid window was seen, then set the result code : if (sig_cdvw_state.windows_seen > 1) then report dgrb_report_prefix & "Warning : multiple data-valid windows found, largest chosen." severity note; codvw_grt_one_dvw <= '1'; else report dgrb_report_prefix & "data-valid window found successfully." severity note; end if; else -- calculation failed to find a data-valid window. report dgrb_report_prefix & "couldn't find a data-valid window in resync." severity warning; sig_rsc_ack <= '1'; sig_rsc_err <= '1'; sig_rsc_state <= s_rsc_idle; -- set resync result code case sig_cdvw_state.status is when no_invalid_phases => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_rsc_result'length)); when multiple_equal_windows => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS, sig_rsc_result'length)); when no_valid_phases => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_rsc_result'length)); when others => sig_rsc_result <= std_logic_vector(to_unsigned(C_ERR_CRITICAL, sig_rsc_result'length)); end case; end if; end if; -- signal to write a rrp_sweep result to iram if GENERATE_ADDITIONAL_DBG_RTL = 1 then sig_rsc_push_rrp_seek <= '1'; end if; end if; when s_rsc_seek_cdvw => if sig_rsc_state /= sig_rsc_last_state then -- reset variables we are interested in when we first arrive in this state sig_count <= sig_cdvw_state.largest_window_centre; else if sig_count = 0 or ((MEM_IF_DQS_CAPTURE = 1 and DWIDTH_RATIO = 2) and sig_count = PLL_STEPS_PER_CYCLE) -- if FR and DQS capture ensure within 0-360 degrees phase then -- ready to transition to next state if GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if iram present hold off until access finished sig_rsc_state <= s_rsc_wait_iram; else sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; end if; -- return largest window centre and size in the result -- perform cal_codvw phase / size update only if a valid result is found if sig_cdvw_state.status = valid_result then cal_codvw_phase <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_centre, 8)); cal_codvw_size <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size, 8)); end if; -- leaving sig_rsc_err or sig_rsc_result at -- their default values (of success) else sig_rsc_pll_inc_dec_n <= c_pll_phs_inc; -- request a phase shift sig_rsc_pll_start_reconfig <= '1'; if sig_phs_shft_start = '1' then -- inhibit a phase shift if phase shift is busy sig_rsc_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then -- we've just successfully removed a phase step -- decrement counter sig_count <= sig_count - 1; end if; end if; end if; when s_rsc_wait_iram => -- hold off check 1 clock cycle to enable last rsc push operations to start if sig_rsc_state = sig_rsc_last_state then if sig_iram_idle = '1' then sig_rsc_ack <= '1'; sig_rsc_state <= s_rsc_idle; if sig_dgrb_state = s_test_phases or sig_dgrb_state = s_seek_cdvw or sig_dgrb_state = s_read_mtp then sig_rsc_push_footer <= '1'; end if; end if; end if; when others => null; end case; sig_rsc_last_state <= sig_rsc_state; end if; end process; -- write results to the iram iram_push: process (clk, rst_n) begin if rst_n = '0' then sig_dgrb_iram <= defaults; sig_iram_idle <= '0'; sig_dq_pin_ctr_r <= 0; sig_rsc_curr_phase <= 0; sig_iram_wds_req <= 0; elsif rising_edge(clk) then if GENERATE_ADDITIONAL_DBG_RTL = 1 then if sig_dgrb_iram.iram_write = '1' and sig_dgrb_iram.iram_done = '1' then report dgrb_report_prefix & "iram_done and iram_write signals concurrently set - iram contents may be corrupted" severity failure; end if; if sig_dgrb_iram.iram_write = '0' and sig_dgrb_iram.iram_done = '0' then sig_iram_idle <= '1'; else sig_iram_idle <= '0'; end if; -- registered sig_dq_pin_ctr to align with rrp_sweep result sig_dq_pin_ctr_r <= sig_dq_pin_ctr; -- calculate current phase (registered to align with rrp_sweep result) sig_rsc_curr_phase <= (c_max_phase_shifts - 1) - sig_num_phase_shifts; -- serial push of rrp_sweep results into memory if sig_rsc_push_rrp_sweep = '1' then -- signal an iram write and track a write pending sig_dgrb_iram.iram_write <= '1'; sig_iram_idle <= '0'; -- if not single_bit_cal then pack pin phase results in MEM_IF_DWIDTH word blocks if single_bit_cal = '1' then sig_dgrb_iram.iram_wordnum <= sig_dq_pin_ctr_r + (sig_rsc_curr_phase/32); sig_iram_wds_req <= iram_wd_for_one_pin_rrp( DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE); -- note total word requirement else sig_dgrb_iram.iram_wordnum <= sig_dq_pin_ctr_r + (sig_rsc_curr_phase/32) * MEM_IF_DWIDTH; sig_iram_wds_req <= iram_wd_for_full_rrp( DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE); -- note total word requirement end if; -- check if current pin and phase passed: sig_dgrb_iram.iram_pushdata(0) <= sig_rsc_push_rrp_pass; -- bit offset is modulo phase sig_dgrb_iram.iram_bitnum <= sig_rsc_curr_phase mod 32; end if; -- write result of rrp_calc to iram when completed if sig_rsc_push_rrp_seek = '1' then -- a result found sig_dgrb_iram.iram_write <= '1'; sig_iram_idle <= '0'; sig_dgrb_iram.iram_wordnum <= 0; sig_iram_wds_req <= 1; -- note total word requirement if sig_cdvw_state.status = valid_result then -- result is valid sig_dgrb_iram.iram_pushdata <= x"0000" & std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_centre, 8)) & std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size, 8)); else -- invalid result (error code communicated elsewhere) sig_dgrb_iram.iram_pushdata <= x"FFFF" & -- signals an error condition x"0000"; end if; end if; -- when stage finished write footer if sig_rsc_push_footer = '1' then sig_dgrb_iram.iram_done <= '1'; sig_iram_idle <= '0'; -- set address location of footer sig_dgrb_iram.iram_wordnum <= sig_iram_wds_req; end if; -- if write completed deassert iram_write and done signals if iram_push_done = '1' then sig_dgrb_iram.iram_write <= '0'; sig_dgrb_iram.iram_done <= '0'; end if; else sig_iram_idle <= '0'; sig_dq_pin_ctr_r <= 0; sig_rsc_curr_phase <= 0; sig_dgrb_iram <= defaults; end if; end if; end process; -- concurrently assign sig_dgrb_iram to dgrb_iram dgrb_iram <= sig_dgrb_iram; end block; -- resync calculation -- ------------------------------------------------------------------ -- test pattern match block -- -- This block handles the sharing of logic for test pattern matching -- which is used in resync and postamble calibration / code blocks -- ------------------------------------------------------------------ tp_match_block : block -- -- Ascii Waveforms: -- -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ -- delayed_dqs |____| |____| |____| |____| |____| |____| |____| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; _______ ; _______ ; _______ ; _______ ; _______ _______ -- XXXXX / \ / \ / \ / \ / \ / \ -- c0,c1 XXXXXX A B X C D X E F X G H X I J X L M X captured data -- XXXXX \_______/ \_______/ \_______/ \_______/ \_______/ \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____; ____; ____ ____ ____ ____ ____ -- 180-resync_clk |____| |____| |____| |____| |____| |____| | 180deg shift from delayed dqs -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; _______ _______ _______ _______ _______ ____ -- XXXXXXXXXX / \ / \ / \ / \ / \ / -- 180-r0,r1 XXXXXXXXXXX A B X C D X E F X G H X I J X L resync data -- XXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \_______/ \____ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ -- 360-resync_clk ____| |____| |____| |____| |____| |____| |____| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; _______ ; _______ ; _______ ; _______ ; _______ -- XXXXXXXXXXXXXXX / \ / \ / \ / \ / \ -- 360-r0,r1 XXXXXXXXXXXXXXXX A B X C D X E F X G H X I J X resync data -- XXXXXXXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ____ ____ ____ ____ ____ ____ ____ -- 540-resync_clk |____| |____| |____| |____| |____| |____| | -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; _______ _______ _______ _______ ____ -- XXXXXXXXXXXXXXXXXXX / \ / \ / \ / \ / -- 540-r0,r1 XXXXXXXXXXXXXXXXXXXX A B X C D X E F X G H X I resync data -- XXXXXXXXXXXXXXXXXXX \_______/ \_______/ \_______/ \_______/ \____ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ;____ ____ ____ ____ ____ ____ -- phy_clk |____| |____| |____| |____| |____| |____| |____| -- -- 0 1 2 3 4 5 6 -- -- -- |<- Aligned Data ->| -- phy_clk 180-r0,r1 540-r0,r1 sig_mtp_match_en (generated from sig_ac_even) -- 0 XXXXXXXX XXXXXXXX '1' -- 1 XXXXXXAB XXXXXXXX '0' -- 2 XXXXABCD XXXXXXAB '1' -- 3 XXABCDEF XXXXABCD '0' -- 4 ABCDEFGH XXABCDEF '1' -- 5 CDEFGHAB ABCDEFGH '0' -- -- In DQS-based capture, sweeping resync_clk from 180 degrees to 360 -- does not necessarily result in a failure because the setup/hold -- requirements are so small. The data comparison needs to fail when -- the resync_clk is shifted more than 360 degrees. The -- sig_mtp_match_en signal allows the sequencer to blind itself -- training pattern matches that occur above 360 degrees. -- -- -- -- -- -- Asserts sig_mtp_match. -- -- Data comes in from rdata and is pushed into a two-bit wide shift register. -- It is a critical assumption that the rdata comes back byte aligned. -- -- --sig_mtp_match_valid -- rdata_valid (shift-enable) -- | -- | -- +-----------------------+-----------+------------------+ -- ___ | | | -- dq(0) >---| \ | Shift Register | -- dq(1) >---| \ +------+ +------+ +------------------+ -- dq(2) >---| )--->| D(0) |-+->| D(1) |-+->...-+->| D(c_cal_mtp_len - 1) | -- ... | / +------+ | +------+ | | +------------------+ -- dq(n-1) >---|___/ +-----------++-...-+ -- | || +---+ -- | (==)--------> sig_mtp_match_0t ---->| |-->sig_mtp_match_1t-->sig_mtp_match -- | || +---+ -- | +-----------++...-+ -- sig_dq_pin_ctr >-+ +------+ | +------+ | | +------------------+ -- | P(0) |-+ | P(1) |-+ ...-+->| P(c_cal_mtp_len - 1) | -- +------+ +------+ +------------------+ -- -- -- -- signal sig_rdata_current_pin : std_logic_vector(c_cal_mtp_len - 1 downto 0); -- A fundamental assumption here is that rdata_valid is all -- ones or all zeros - not both. signal sig_rdata_valid_1t : std_logic; -- rdata_valid delayed by 1 clock period. signal sig_rdata_valid_2t : std_logic; -- rdata_valid delayed by 2 clock periods. begin rdata_valid_1t_proc : process (clk, rst_n) begin if rst_n = '0' then sig_rdata_valid_1t <= '0'; sig_rdata_valid_2t <= '0'; elsif rising_edge(clk) then sig_rdata_valid_2t <= sig_rdata_valid_1t; sig_rdata_valid_1t <= rdata_valid(0); end if; end process; -- MUX data into sig_rdata_current_pin shift register. rdata_current_pin_proc: process (clk, rst_n) begin if rst_n = '0' then sig_rdata_current_pin <= (others => '0'); elsif rising_edge(clk) then -- shift old data down the shift register sig_rdata_current_pin(sig_rdata_current_pin'high - DWIDTH_RATIO downto 0) <= sig_rdata_current_pin(sig_rdata_current_pin'high downto DWIDTH_RATIO); -- shift new data into the bottom of the shift register. for i in 0 to DWIDTH_RATIO - 1 loop sig_rdata_current_pin(sig_rdata_current_pin'high - DWIDTH_RATIO + 1 + i) <= rdata(i*MEM_IF_DWIDTH + sig_dq_pin_ctr); end loop; end if; end process; mtp_match_proc : process (clk, rst_n) begin if rst_n = '0' then -- * when at least c_max_read_lat clock cycles have passed sig_mtp_match <= '0'; elsif rising_edge(clk) then sig_mtp_match <= '0'; if sig_rdata_current_pin = c_cal_mtp then sig_mtp_match <= '1'; end if; end if; end process; poa_match_proc : process (clk, rst_n) -- poa_match_Calibration Strategy -- -- Ascii Waveforms: -- -- __ __ __ __ __ __ __ __ __ -- clk __| |__| |__| |__| |__| |__| |__| |__| |__| | -- -- ; ; ; ; -- _________________ -- rdata_valid ________| |___________________________ -- -- ; ; ; ; -- _____ -- poa_match_en ______________________________________| |_______________ -- -- ; ; ; ; -- _____ -- poa_match XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX -- -- -- Notes: -- -poa_match is only valid while poa_match_en is asserted. -- -- -- -- -- -- begin if rst_n = '0' then sig_poa_match_en <= '0'; sig_poa_match <= '0'; elsif rising_edge(clk) then sig_poa_match <= '0'; sig_poa_match_en <= '0'; if sig_rdata_valid_2t = '1' and sig_rdata_valid_1t = '0' then sig_poa_match_en <= '1'; end if; if DWIDTH_RATIO = 2 then if sig_rdata_current_pin(sig_rdata_current_pin'high downto sig_rdata_current_pin'length - 6) = "111100" then sig_poa_match <= '1'; end if; elsif DWIDTH_RATIO = 4 then if sig_rdata_current_pin(sig_rdata_current_pin'high downto sig_rdata_current_pin'length - 8) = "11111100" then sig_poa_match <= '1'; end if; else report dgrb_report_prefix & "unsupported DWIDTH_RATIO" severity failure; end if; end if; end process; end block; -- ------------------------------------------------------------------ -- Postamble calibration -- -- Implements the postamble slave state machine and collates the -- processing data from the test pattern match block. -- ------------------------------------------------------------------ poa_block : block -- Postamble Calibration Strategy -- -- Ascii Waveforms: -- -- c_read_burst_t c_read_burst_t -- ;<------->; ;<------->; -- ; ; ; ; -- __ / / __ -- mem_dq[0] ___________| |_____\ \________| |___ -- -- ; ; ; ; -- ; ; ; ; -- _________ / / _________ -- poa_enable ______| |___\ \_| |___ -- ; ; ; ; -- ; ; ; ; -- __ / / ______ -- rdata[0] ___________| |______\ \_______| -- ; ; ; ; -- ; ; ; ; -- ; ; ; ; -- _ / / _ -- poa_match_en _____________| |___\ \___________| |_ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- / / _ -- poa_match ___________________\ \___________| |_ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _ / / -- seq_poa_lat_dec _______________| |_\ \_______________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- / / -- seq_poa_lat_inc ___________________\ \_______________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- -- (1) (2) -- -- -- (1) poa_enable signal is late, and the zeros on mem_dq after (1) -- are captured. -- (2) poa_enable signal is aligned. Zeros following (2) are not -- captured rdata remains at '1'. -- -- The DQS capture circuit wth the dqs enable asynchronous set. -- -- -- -- dqs_en_async_preset ----------+ -- | -- v -- +---------+ -- +--|Q SET D|----------- gnd -- | | <O---+ -- | +---------+ | -- | | -- | | -- +--+---. | -- |AND )--------+------- dqs_bus -- delayed_dqs -----+---^ -- -- -- -- _____ _____ _____ _____ -- dqs ____| |_____| |_____| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- ; ; ; ; ; -- ; ; ; ; -- _____ _____ _____ _____ -- delayed_dqs _______| |_____| |_____| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- -- ; ; ; ; ; -- ; ______________________________________________________________ -- dqs_en_async_ _____________________________| |_____ -- preset -- ; ; ; ; ; -- ; ; ; ; ; -- _____ _____ _____ -- dqs_bus _______| |_________________| |_____| |_____XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX -- -- ; ; -- (1) (2) -- -- -- Notes: -- (1) The dqs_bus pulse here comes because the last value of Q -- is '1' until the first DQS pulse clocks gnd into the FF, -- brings low the AND gate, and disables dqs_bus. A training -- pattern could potentially match at this point even though -- between (1) and (2) there are no dqs_bus triggers. Data -- is frozen on rdata while awaiting the dqs_bus pulses at -- (2). For this reason, wait until the first match of the -- training pattern, and continue reducing latency until it -- TP no longer matches, then increase latency by one. In -- this case, dqs_en_async_preset will have its latency -- reduced by three until the training pattern is not matched, -- then latency is increased by one. -- -- -- -- -- Postamble calibration state type t_poa_state is ( -- decrease poa enable latency by 1 cycle iteratively until 'correct' position found s_poa_rewind_to_pass, -- poa cal complete s_poa_done ); constant c_poa_lat_cmd_wait : natural := 10; -- Number of clock cycles to wait for lat_inc/lat_dec signal to take effect. constant c_poa_max_lat : natural := 100; -- Maximum number of allowable latency changes. signal sig_poa_adjust_count : integer range 0 to 2**8 - 1; signal sig_poa_state : t_poa_state; begin poa_proc : process (clk, rst_n) begin if rst_n = '0' then sig_poa_ack <= '0'; seq_poa_lat_dec_1x <= (others => '0'); seq_poa_lat_inc_1x <= (others => '0'); sig_poa_adjust_count <= 0; sig_poa_state <= s_poa_rewind_to_pass; elsif rising_edge(clk) then sig_poa_ack <= '0'; seq_poa_lat_inc_1x <= (others => '0'); seq_poa_lat_dec_1x <= (others => '0'); if sig_dgrb_state = s_poa_cal then case sig_poa_state is when s_poa_rewind_to_pass => -- In postamble calibration -- -- Normally, must wait for sig_dimm_driving_dq to be '1' -- before reading, but by this point in calibration -- rdata_valid is assumed to be set up properly. The -- sig_poa_match_en (derived from rdata_valid) is used -- here rather than sig_dimm_driving_dq. if sig_poa_match_en = '1' then if sig_poa_match = '1' then sig_poa_state <= s_poa_done; else seq_poa_lat_dec_1x <= (others => '1'); end if; sig_poa_adjust_count <= sig_poa_adjust_count + 1; end if; when s_poa_done => sig_poa_ack <= '1'; end case; else sig_poa_state <= s_poa_rewind_to_pass; sig_poa_adjust_count <= 0; end if; assert sig_poa_adjust_count <= c_poa_max_lat report dgrb_report_prefix & "Maximum number of postamble latency adjustments exceeded." severity failure; end if; end process; end block; -- ------------------------------------------------------------------ -- code block for tracking signal generation -- -- this is used for initial tracking setup (finding a reference window) -- and periodic tracking operations (PVT compensation on rsc phase) -- -- A slave trk state machine is described and implemented within the block -- The mimic path is controlled within this block -- ------------------------------------------------------------------ trk_block : block type t_tracking_state is ( -- initialise variables out of reset s_trk_init, -- idle state s_trk_idle, -- sample data from the mimic path (build window) s_trk_mimic_sample, -- 'shift' mimic path phase s_trk_next_phase, -- calculate mimic window s_trk_cdvw_calc, s_trk_cdvw_wait, -- for results -- calculate how much mimic window has moved (only entered in periodic tracking) s_trk_cdvw_drift, -- track rsc phase (only entered in periodic tracking) s_trk_adjust_resync, -- communicate command complete to the master state machine s_trk_complete ); signal sig_mmc_seq_done : std_logic; signal sig_mmc_seq_done_1t : std_logic; signal mmc_seq_value_r : std_logic; signal sig_mmc_start : std_logic; signal sig_trk_state : t_tracking_state; signal sig_trk_last_state : t_tracking_state; signal sig_rsc_drift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores total change in rsc phase from first calibration signal sig_req_rsc_shift : integer range -c_max_rsc_drift_in_phases to c_max_rsc_drift_in_phases; -- stores required shift in rsc phase instantaneously signal sig_mimic_cdv_found : std_logic; signal sig_mimic_cdv : integer range 0 to PLL_STEPS_PER_CYCLE; -- centre of data valid window calculated from first mimic-cycle signal sig_mimic_delta : integer range -PLL_STEPS_PER_CYCLE to PLL_STEPS_PER_CYCLE; signal sig_large_drift_seen : std_logic; signal sig_remaining_samples : natural range 0 to 2**8 - 1; begin -- advertise the codvw phase shift process (clk, rst_n) variable v_length : integer; begin if rst_n = '0' then codvw_trk_shift <= (others => '0'); elsif rising_edge(clk) then if sig_mimic_cdv_found = '1' then -- check range v_length := codvw_trk_shift'length; codvw_trk_shift <= std_logic_vector(to_signed(sig_rsc_drift, v_length)); else codvw_trk_shift <= (others => '0'); end if; end if; end process; -- request a mimic sample mimic_sample_req : process (clk, rst_n) variable seq_mmc_start_r : std_logic_vector(3 downto 0); begin if rst_n = '0' then seq_mmc_start <= '0'; seq_mmc_start_r := "0000"; elsif rising_edge(clk) then seq_mmc_start_r(3) := seq_mmc_start_r(2); seq_mmc_start_r(2) := seq_mmc_start_r(1); seq_mmc_start_r(1) := seq_mmc_start_r(0); -- extend sig_mmc_start by one clock cycle if sig_mmc_start = '1' then seq_mmc_start <= '1'; seq_mmc_start_r(0) := '1'; elsif ( (seq_mmc_start_r(3) = '1') or (seq_mmc_start_r(2) = '1') or (seq_mmc_start_r(1) = '1') or (seq_mmc_start_r(0) = '1') ) then seq_mmc_start <= '1'; seq_mmc_start_r(0) := '0'; else seq_mmc_start <= '0'; end if; end if; end process; -- metastability hardening of async mmc_seq_done signal mmc_seq_req_sync : process (clk, rst_n) variable v_mmc_seq_done_1r : std_logic; variable v_mmc_seq_done_2r : std_logic; variable v_mmc_seq_done_3r : std_logic; begin if rst_n = '0' then sig_mmc_seq_done <= '0'; sig_mmc_seq_done_1t <= '0'; v_mmc_seq_done_1r := '0'; v_mmc_seq_done_2r := '0'; v_mmc_seq_done_3r := '0'; elsif rising_edge(clk) then sig_mmc_seq_done_1t <= v_mmc_seq_done_3r; sig_mmc_seq_done <= v_mmc_seq_done_2r; mmc_seq_value_r <= mmc_seq_value; v_mmc_seq_done_3r := v_mmc_seq_done_2r; v_mmc_seq_done_2r := v_mmc_seq_done_1r; v_mmc_seq_done_1r := mmc_seq_done; end if; end process; -- collect mimic samples as they arrive shift_in_mmc_seq_value : process (clk, rst_n) begin if rst_n = '0' then sig_trk_cdvw_shift_in <= '0'; sig_trk_cdvw_phase <= '0'; elsif rising_edge(clk) then sig_trk_cdvw_shift_in <= '0'; sig_trk_cdvw_phase <= '0'; if sig_mmc_seq_done_1t = '1' and sig_mmc_seq_done = '0' then sig_trk_cdvw_shift_in <= '1'; sig_trk_cdvw_phase <= mmc_seq_value_r; end if; end if; end process; -- main tracking state machine trk_proc : process (clk, rst_n) begin if rst_n = '0' then sig_trk_state <= s_trk_init; sig_trk_last_state <= s_trk_init; sig_trk_result <= (others => '0'); sig_trk_err <= '0'; sig_mmc_start <= '0'; sig_trk_pll_select <= (others => '0'); sig_req_rsc_shift <= -c_max_rsc_drift_in_phases; sig_rsc_drift <= -c_max_rsc_drift_in_phases; sig_mimic_delta <= -PLL_STEPS_PER_CYCLE; sig_mimic_cdv_found <= '0'; sig_mimic_cdv <= 0; sig_large_drift_seen <= '0'; sig_trk_cdvw_calc <= '0'; sig_remaining_samples <= 0; sig_trk_pll_start_reconfig <= '0'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_trk_ack <= '0'; elsif rising_edge(clk) then sig_trk_pll_select <= pll_measure_clk_index; sig_trk_pll_start_reconfig <= '0'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_large_drift_seen <= '0'; sig_trk_cdvw_calc <= '0'; sig_trk_ack <= '0'; sig_trk_err <= '0'; sig_trk_result <= (others => '0'); sig_mmc_start <= '0'; -- if no cdv found then reset tracking results if sig_mimic_cdv_found = '0' then sig_rsc_drift <= 0; sig_req_rsc_shift <= 0; sig_mimic_delta <= 0; end if; if sig_dgrb_state = s_track then -- resync state machine case sig_trk_state is when s_trk_init => sig_trk_state <= s_trk_idle; sig_mimic_cdv_found <= '0'; sig_rsc_drift <= 0; sig_req_rsc_shift <= 0; sig_mimic_delta <= 0; when s_trk_idle => sig_remaining_samples <= PLL_STEPS_PER_CYCLE; -- ensure a 360 degrees sweep sig_trk_state <= s_trk_mimic_sample; when s_trk_mimic_sample => if sig_remaining_samples = 0 then sig_trk_state <= s_trk_cdvw_calc; else if sig_trk_state /= sig_trk_last_state then -- request a sample as soon as we arrive in this state. -- the default value of sig_mmc_start is zero! sig_mmc_start <= '1'; end if; if sig_mmc_seq_done_1t = '1' and sig_mmc_seq_done = '0' then -- a sample has been collected, go to next PLL phase sig_remaining_samples <= sig_remaining_samples - 1; sig_trk_state <= s_trk_next_phase; end if; end if; when s_trk_next_phase => sig_trk_pll_start_reconfig <= '1'; sig_trk_pll_inc_dec_n <= c_pll_phs_inc; if sig_phs_shft_start = '1' then sig_trk_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then sig_trk_state <= s_trk_mimic_sample; end if; when s_trk_cdvw_calc => if sig_trk_state /= sig_trk_last_state then -- reset variables we are interested in when we first arrive in this state sig_trk_cdvw_calc <= '1'; report dgrb_report_prefix & "gathered mimic phase samples DGRB_MIMIC_SAMPLES: " & str(sig_cdvw_state.working_window(sig_cdvw_state.working_window'high downto sig_cdvw_state.working_window'length - PLL_STEPS_PER_CYCLE)) severity note; else sig_trk_state <= s_trk_cdvw_wait; end if; when s_trk_cdvw_wait => if sig_cdvw_state.status /= calculating then if sig_cdvw_state.status = valid_result then report dgrb_report_prefix & "mimic window successfully found." severity note; if sig_mimic_cdv_found = '0' then -- first run of tracking operation sig_mimic_cdv_found <= '1'; sig_mimic_cdv <= sig_cdvw_state.largest_window_centre; sig_trk_state <= s_trk_complete; else -- subsequent tracking operation runs sig_mimic_delta <= sig_mimic_cdv - sig_cdvw_state.largest_window_centre; sig_mimic_cdv <= sig_cdvw_state.largest_window_centre; sig_trk_state <= s_trk_cdvw_drift; end if; else report dgrb_report_prefix & "couldn't find a data-valid window for tracking." severity cal_fail_sev_level; sig_trk_ack <= '1'; sig_trk_err <= '1'; sig_trk_state <= s_trk_idle; -- set resync result code case sig_cdvw_state.status is when no_invalid_phases => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_INVALID_PHASES, sig_trk_result'length)); when multiple_equal_windows => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS, sig_trk_result'length)); when no_valid_phases => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_RESYNC_NO_VALID_PHASES, sig_trk_result'length)); when others => sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_CRITICAL, sig_trk_result'length)); end case; end if; end if; when s_trk_cdvw_drift => -- calculate the drift in rsc phase -- pipeline stage 1 if abs(sig_mimic_delta) > PLL_STEPS_PER_CYCLE/2 then sig_large_drift_seen <= '1'; else sig_large_drift_seen <= '0'; end if; --pipeline stage 2 if sig_trk_state = sig_trk_last_state then if sig_large_drift_seen = '1' then if sig_mimic_delta < 0 then -- anti-clockwise movement sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta + PLL_STEPS_PER_CYCLE; else -- clockwise movement sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta - PLL_STEPS_PER_CYCLE; end if; else sig_req_rsc_shift <= sig_req_rsc_shift + sig_mimic_delta; end if; sig_trk_state <= s_trk_adjust_resync; end if; when s_trk_adjust_resync => sig_trk_pll_select <= pll_resync_clk_index; sig_trk_pll_start_reconfig <= '1'; if sig_trk_state /= sig_trk_last_state then if sig_req_rsc_shift < 0 then sig_trk_pll_inc_dec_n <= c_pll_phs_inc; sig_req_rsc_shift <= sig_req_rsc_shift + 1; sig_rsc_drift <= sig_rsc_drift + 1; elsif sig_req_rsc_shift > 0 then sig_trk_pll_inc_dec_n <= c_pll_phs_dec; sig_req_rsc_shift <= sig_req_rsc_shift - 1; sig_rsc_drift <= sig_rsc_drift - 1; else sig_trk_state <= s_trk_complete; sig_trk_pll_start_reconfig <= '0'; end if; else sig_trk_pll_inc_dec_n <= sig_trk_pll_inc_dec_n; -- maintain current value end if; if abs(sig_rsc_drift) = c_max_rsc_drift_in_phases then report dgrb_report_prefix & " a maximum absolute change in resync_clk of " & integer'image(sig_rsc_drift) & " phases has " & LF & " occurred (since read resynch phase calibration) during tracking" severity cal_fail_sev_level; sig_trk_err <= '1'; sig_trk_result <= std_logic_vector(to_unsigned(C_ERR_MAX_TRK_SHFT_EXCEEDED, sig_trk_result'length)); end if; if sig_phs_shft_start = '1' then sig_trk_pll_start_reconfig <= '0'; end if; if sig_phs_shft_end = '1' then sig_trk_state <= s_trk_complete; end if; when s_trk_complete => sig_trk_ack <= '1'; end case; sig_trk_last_state <= sig_trk_state; else sig_trk_state <= s_trk_idle; sig_trk_last_state <= s_trk_idle; end if; end if; end process; rsc_drift: process (sig_rsc_drift) begin sig_trk_rsc_drift <= sig_rsc_drift; -- communicate tracking shift to rsc process end process; end block; -- tracking signals -- ------------------------------------------------------------------ -- write-datapath (WDP) ` and on-chip-termination (OCT) signal -- ------------------------------------------------------------------ wdp_oct : process(clk,rst_n) begin if rst_n = '0' then seq_oct_value <= c_set_oct_to_rs; dgrb_wdp_ovride <= '0'; elsif rising_edge(clk) then if ((sig_dgrb_state = s_idle) or (EN_OCT = 0)) then seq_oct_value <= c_set_oct_to_rs; dgrb_wdp_ovride <= '0'; else seq_oct_value <= c_set_oct_to_rt; dgrb_wdp_ovride <= '1'; end if; end if; end process; -- ------------------------------------------------------------------ -- handles muxing of error codes to the control block -- ------------------------------------------------------------------ ac_handshake_proc : process(rst_n, clk) begin if rst_n = '0' then dgrb_ctrl <= defaults; elsif rising_edge(clk) then dgrb_ctrl <= defaults; if sig_dgrb_state = s_wait_admin and sig_dgrb_last_state = s_idle then dgrb_ctrl.command_ack <= '1'; end if; case sig_dgrb_state is when s_seek_cdvw => dgrb_ctrl.command_err <= sig_rsc_err; dgrb_ctrl.command_result <= sig_rsc_result; when s_track => dgrb_ctrl.command_err <= sig_trk_err; dgrb_ctrl.command_result <= sig_trk_result; when others => -- from main state machine dgrb_ctrl.command_err <= sig_cmd_err; dgrb_ctrl.command_result <= sig_cmd_result; end case; if ctrl_dgrb_r.command = cmd_read_mtp then -- check against command because aligned with command done not command_err dgrb_ctrl.command_err <= '0'; dgrb_ctrl.command_result <= std_logic_vector(to_unsigned(sig_cdvw_state.largest_window_size,dgrb_ctrl.command_result'length)); end if; if sig_dgrb_state = s_idle and sig_dgrb_last_state = s_release_admin then dgrb_ctrl.command_done <= '1'; end if; end if; end process; -- ------------------------------------------------------------------ -- address/command state machine -- process is commanded to begin reading training patterns. -- -- implements the address/command slave state machine -- issues read commands to the memory relative to given calibration -- stage being implemented -- burst length is dependent on memory type -- ------------------------------------------------------------------ ac_block : block -- override the calibration burst length for DDR3 device support -- (requires BL8 / on the fly setting in MR in admin block) function set_read_bl ( memtype: in string ) return natural is begin if memtype = "DDR3" then return 8; elsif memtype = "DDR" or memtype = "DDR2" then return c_cal_burst_len; else report dgrb_report_prefix & " a calibration burst length choice has not been set for memory type " & memtype severity failure; end if; return 0; end function; -- parameterisation of the read algorithm by burst length constant c_poa_addr_width : natural := 6; constant c_cal_read_burst_len : natural := set_read_bl(MEM_IF_MEMTYPE); constant c_bursts_per_btp : natural := c_cal_mtp_len / c_cal_read_burst_len; constant c_read_burst_t : natural := c_cal_read_burst_len / DWIDTH_RATIO; constant c_max_rdata_valid_lat : natural := 50*(c_cal_read_burst_len / DWIDTH_RATIO); -- maximum latency that rdata_valid can ever have with respect to doing_rd constant c_rdv_ones_rd_clks : natural := (c_max_rdata_valid_lat + c_read_burst_t) / c_read_burst_t; -- number of cycles to read ones for before a pulse of zeros -- array of burst training pattern addresses -- here the MTP is used in this addressing subtype t_btp_addr is natural range 0 to 2 ** MEM_IF_ADDR_WIDTH - 1; type t_btp_addr_array is array (0 to c_bursts_per_btp - 1) of t_btp_addr; -- default values function defaults return t_btp_addr_array is variable v_btp_array : t_btp_addr_array; begin for i in 0 to c_bursts_per_btp - 1 loop v_btp_array(i) := 0; end loop; return v_btp_array; end function; -- load btp array addresses -- Note: this scales to burst lengths of 2, 4 and 8 -- the settings here are specific to the choice of training pattern and need updating if the pattern changes function set_btp_addr (mtp_almt : natural ) return t_btp_addr_array is variable v_addr_array : t_btp_addr_array; begin for i in 0 to 8/c_cal_read_burst_len - 1 loop -- set addresses for xF5 data v_addr_array((c_bursts_per_btp - 1) - i) := MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5 + i*c_cal_read_burst_len; -- set addresses for x30 data (based on mtp alignment) if mtp_almt = 0 then v_addr_array((c_bursts_per_btp - 1) - (8/c_cal_read_burst_len + i)) := MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0 + i*c_cal_read_burst_len; else v_addr_array((c_bursts_per_btp - 1) - (8/c_cal_read_burst_len + i)) := MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1 + i*c_cal_read_burst_len; end if; end loop; return v_addr_array; end function; function find_poa_cycle_period return natural is -- Returns the period over which the postamble reads -- repeat in c_read_burst_t units. variable v_num_bursts : natural; begin v_num_bursts := 2 ** c_poa_addr_width / c_read_burst_t; if v_num_bursts * c_read_burst_t < 2**c_poa_addr_width then v_num_bursts := v_num_bursts + 1; end if; v_num_bursts := v_num_bursts + c_bursts_per_btp + 1; return v_num_bursts; end function; function get_poa_burst_addr(burst_count : in natural; mtp_almt : in natural) return t_btp_addr is variable v_addr : t_btp_addr; begin if burst_count = 0 then if mtp_almt = 0 then v_addr := c_cal_ofs_x30_almt_1; elsif mtp_almt = 1 then v_addr := c_cal_ofs_x30_almt_0; else report "Unsupported mtp_almt " & natural'image(mtp_almt) severity failure; end if; -- address gets incremented by four if in burst-length four. v_addr := v_addr + (8 - c_cal_read_burst_len); else v_addr := c_cal_ofs_zeros; end if; return v_addr; end function; signal btp_addr_array : t_btp_addr_array; -- burst training pattern addresses signal sig_addr_cmd_state : t_ac_state; signal sig_addr_cmd_last_state : t_ac_state; signal sig_doing_rd_count : integer range 0 to c_read_burst_t - 1; signal sig_count : integer range 0 to 2**8 - 1; signal sig_setup : integer range c_max_read_lat downto 0; signal sig_burst_count : integer range 0 to c_read_burst_t; begin -- handles counts for when to begin burst-reads (sig_burst_count) -- sets sig_dimm_driving_dq -- sets dgrb_ac_access_req dimm_driving_dq_proc : process(rst_n, clk) begin if rst_n = '0' then sig_dimm_driving_dq <= '1'; sig_setup <= c_max_read_lat; sig_burst_count <= 0; dgrb_ac_access_req <= '0'; sig_ac_even <= '0'; elsif rising_edge(clk) then sig_dimm_driving_dq <= '0'; if sig_addr_cmd_state /= s_ac_idle and sig_addr_cmd_state /= s_ac_relax then dgrb_ac_access_req <= '1'; else dgrb_ac_access_req <= '0'; end if; case sig_addr_cmd_state is when s_ac_read_mtp | s_ac_read_rdv | s_ac_read_wd_lat | s_ac_read_poa_mtp => sig_ac_even <= not sig_ac_even; -- a counter that keeps track of when we are ready -- to issue a burst read. Issue burst read eigvery -- time we are at zero. if sig_burst_count = 0 then sig_burst_count <= c_read_burst_t - 1; else sig_burst_count <= sig_burst_count - 1; end if; if dgrb_ac_access_gnt /= '1' then sig_setup <= c_max_read_lat; else -- primes reads -- signal that dimms are driving dq pins after -- at least c_max_read_lat clock cycles have passed. -- if sig_setup = 0 then sig_dimm_driving_dq <= '1'; elsif dgrb_ac_access_gnt = '1' then sig_setup <= sig_setup - 1; end if; end if; when s_ac_relax => sig_dimm_driving_dq <= '1'; sig_burst_count <= 0; sig_ac_even <= '0'; when others => sig_burst_count <= 0; sig_ac_even <= '0'; end case; end if; end process; ac_proc : process(rst_n, clk) begin if rst_n = '0' then sig_count <= 0; sig_addr_cmd_state <= s_ac_idle; sig_addr_cmd_last_state <= s_ac_idle; sig_doing_rd_count <= 0; sig_addr_cmd <= reset(c_seq_addr_cmd_config); btp_addr_array <= defaults; sig_doing_rd <= (others => '0'); elsif rising_edge(clk) then assert c_cal_mtp_len mod c_cal_read_burst_len = 0 report dgrb_report_prefix & "burst-training pattern length must be a multiple of burst-length." severity failure; assert MEM_IF_CAL_BANK < 2**MEM_IF_BANKADDR_WIDTH report dgrb_report_prefix & "MEM_IF_CAL_BANK out of range." severity failure; assert MEM_IF_CAL_BASE_COL < 2**MEM_IF_ADDR_WIDTH - 1 - C_CAL_DATA_LEN report dgrb_report_prefix & "MEM_IF_CAL_BASE_COL out of range." severity failure; sig_addr_cmd <= deselect(c_seq_addr_cmd_config, sig_addr_cmd); if sig_ac_req /= sig_addr_cmd_state and sig_addr_cmd_state /= s_ac_idle then -- and dgrb_ac_access_gnt = '1' sig_addr_cmd_state <= s_ac_relax; else sig_addr_cmd_state <= sig_ac_req; end if; if sig_doing_rd_count /= 0 then sig_doing_rd <= (others => '1'); sig_doing_rd_count <= sig_doing_rd_count - 1; else sig_doing_rd <= (others => '0'); end if; case sig_addr_cmd_state is when s_ac_idle => sig_addr_cmd <= defaults(c_seq_addr_cmd_config); when s_ac_relax => -- waits at least c_max_read_lat before returning to s_ac_idle state if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_max_read_lat; else if sig_count = 0 then sig_addr_cmd_state <= s_ac_idle; else sig_count <= sig_count - 1; end if; end if; when s_ac_read_mtp => -- reads 'more'-training pattern -- issue read commands for proper addresses -- set burst training pattern (mtp in this case) addresses btp_addr_array <= set_btp_addr(current_mtp_almt); if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_bursts_per_btp - 1; -- counts number of bursts in a training pattern else sig_doing_rd <= (others => '1'); -- issue a read command every c_read_burst_t clock cycles if sig_burst_count = 0 then -- decide which read command to issue for i in 0 to c_bursts_per_btp - 1 loop if sig_count = i then sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank btp_addr_array(i), -- column address 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); end if; end loop; -- Set next value of count if sig_count = 0 then sig_count <= c_bursts_per_btp - 1; else sig_count <= sig_count - 1; end if; end if; end if; when s_ac_read_poa_mtp => -- Postamble rdata/rdata_valid Activity: -- -- -- (0) (1) (2) -- ; ; ; ; -- _________ __ ____________ _____________ _______ _________ -- \ / \ / \ \ \ / \ / -- (a) rdata[0] 00000000 X 11 X 0000000000 / / 0000000000 X MTP X 00000000 -- _________/ \__/ \____________\ \____________/ \_______/ \_________ -- ; ; ; ; -- ; ; ; ; -- _________ / / _________ -- rdata_valid ____| |_____________\ \_____________| |__________ -- -- ;<- (b) ->;<------------(c)------------>; ; -- ; ; ; ; -- -- -- This block must issue reads and drive doing_rd to place the above pattern on -- the rdata and rdata_valid ports. MTP will most likely come back corrupted but -- the postamble block (poa_block) will make the necessary adjustments to improve -- matters. -- -- (a) Read zeros followed by two ones. The two will be at the end of a burst. -- Assert rdata_valid only during the burst containing the ones. -- (b) c_read_burst_t clock cycles. -- (c) Must be greater than but NOT equal to maximum postamble latency clock -- cycles. Another way: c_min = (max_poa_lat + 1) phy clock cycles. This -- must also be long enough to allow the postamble block to respond to a -- the seq_poa_lat_dec_1x signal, but this requirement is less stringent -- than the first so that we can ignore it. -- -- The find_poa_cycle_period function should return (b+c)/c_read_burst_t -- rounded up to the next largest integer. -- -- -- set burst training pattern (mtp in this case) addresses btp_addr_array <= set_btp_addr(current_mtp_almt); -- issue read commands for proper addresses if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= find_poa_cycle_period - 1; -- length of read patter in bursts. elsif dgrb_ac_access_gnt = '1' then -- only begin operation once dgrb_ac_access_gnt has been issued -- otherwise rdata_valid may be asserted when rdasta is not -- valid. -- -- *** WARNING: BE SAFE. DON'T LET THIS HAPPEN TO YOU: *** -- -- ; ; ; ; ; ; -- ; _______ ; ; _______ ; ; _______ -- XXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX -- addr/cmd XXXXXX READ XXXXXXXXXXX READ XXXXXXXXXXX READ XXXXXXXXXXX -- XXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- ; ; ; ; ; ; _______ -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX / \ -- rdata XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX MTP X -- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX \_______/ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ _________ -- doing_rd ____| |_________| |_________| |__________ -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- __________________________________________________ -- ac_accesss_gnt ______________| -- ; ; ; ; ; ; -- ; ; ; ; ; ; -- _________ _________ -- rdata_valid __________________________________| |_________| | -- ; ; ; ; ; ; -- -- (0) (1) (2) -- -- -- Cmmand and doing_rd issued at (0). The doing_rd signal enters the -- rdata_valid pipe here so that it will return on rdata_valid with the -- expected latency (at this point in calibration, rdata_valid and adv_rd_lat -- should be properly calibrated). Unlike doing_rd, since ac_access_gnt is not -- asserted the READ command at (0) is never actually issued. This results -- in the situation at (2) where rdata is undefined yet rdata_valid indicates -- valid data. The moral of this story is to wait for ac_access_gnt = '1' -- before issuing commands when it is important that rdata_valid be accurate. -- -- -- -- if sig_burst_count = 0 then sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank get_poa_burst_addr(sig_count, current_mtp_almt),-- column address 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); -- Set doing_rd if sig_count = 0 then sig_doing_rd <= (others => '1'); sig_doing_rd_count <= c_read_burst_t - 1; -- Extend doing_rd pulse by this many phy_clk cycles. end if; -- Set next value of count if sig_count = 0 then sig_count <= find_poa_cycle_period - 1; -- read for one period then relax (no read) for same time period else sig_count <= sig_count - 1; end if; end if; end if; when s_ac_read_rdv => assert c_max_rdata_valid_lat mod c_read_burst_t = 0 report dgrb_report_prefix & "c_max_rdata_valid_lat must be a multiple of c_read_burst_t." severity failure; if sig_addr_cmd_state /= sig_addr_cmd_last_state then sig_count <= c_rdv_ones_rd_clks - 1; else if sig_burst_count = 0 then if sig_count = 0 then -- expecting to read ZEROS sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous valid MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + C_CAL_OFS_ZEROS, -- column 2**current_cs, -- rank c_cal_read_burst_len, -- burst length false); else -- expecting to read ONES sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + C_CAL_OFS_ONES, -- column address 2**current_cs, -- rank c_cal_read_burst_len, -- op length false); end if; if sig_count = 0 then sig_count <= c_rdv_ones_rd_clks - 1; else sig_count <= sig_count - 1; end if; end if; if (sig_count = c_rdv_ones_rd_clks - 1 and sig_burst_count = 1) or (sig_count = 0 and c_read_burst_t = 1) then -- the last burst read- that was issued was supposed to read only zeros -- a burst read command will be issued on the next clock cycle -- -- A long (>= maximim rdata_valid latency) series of burst reads are -- issued for ONES. -- Into this stream a single burst read for ZEROs is issued. After -- the ZERO read command is issued, rdata_valid needs to come back -- high one clock cycle before the next read command (reading ONES -- again) is issued. Since the rdata_valid is just a delayed -- version of doing_rd, doing_rd needs to exhibit the same behaviour. -- -- for FR (burst length 4): require that doing_rd high 1 clock cycle after cs_n is low -- ____ ____ ____ ____ ____ ____ ____ ____ ____ -- clk ____| |____| |____| |____| |____| |____| |____| |____| |____| -- -- ___ _______ _______ _______ _______ -- \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXXXXXXX / \ XXXX -- addr XXXXXXXXXXX ONES XXXXXXXXXXX ONES XXXXXXXXXXX ZEROS XXXXXXXXXXX ONES XXXXX--> Repeat -- ___/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXXXXXXX \_______/ XXXX -- -- _________ _________ _________ _________ ____ -- cs_n ____| |_________| |_________| |_________| |_________| -- -- _________ -- doing_rd ________________________________________________________________| |______________ -- -- -- for HR: require that doing_rd high in the same clock cycle as cs_n is low -- sig_doing_rd(MEM_IF_DQS_WIDTH*(DWIDTH_RATIO/2-1)) <= '1'; end if; end if; when s_ac_read_wd_lat => -- continuously issues reads on the memory locations -- containing write latency addr=[2*c_cal_burst_len - (3*c_cal_burst_len - 1)] if sig_addr_cmd_state /= sig_addr_cmd_last_state then -- no initialization required here. Must still wait -- a clock cycle before beginning operations so that -- we are properly synchronized with -- dimm_driving_dq_proc. else if sig_burst_count = 0 then if sig_dimm_driving_dq = '1' then sig_doing_rd <= (others => '1'); end if; sig_addr_cmd <= read(c_seq_addr_cmd_config, -- configuration sig_addr_cmd, -- previous value MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_wd_lat, -- column 2**current_cs, -- rank c_cal_read_burst_len, false); end if; end if; when others => report dgrb_report_prefix & "undefined state in addr_cmd_proc" severity error; sig_addr_cmd_state <= s_ac_idle; end case; -- mask odt signal for i in 0 to (DWIDTH_RATIO/2)-1 loop sig_addr_cmd(i).odt <= odt_settings(current_cs).read; end loop; sig_addr_cmd_last_state <= sig_addr_cmd_state; end if; end process; end block ac_block; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : data gatherer (write bias) [dgwb] block for the non-levelling -- AFI PHY sequencer -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ram_controller_phy_alt_mem_phy_addr_cmd_pkg.all; -- entity ram_controller_phy_alt_mem_phy_dgwb is generic ( -- Physical IF width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; DWIDTH_RATIO : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_NUM_RANKS : natural; -- The sequencer outputs memory control signals of width num_ranks MEM_IF_MEMTYPE : string; ADV_LAT_WIDTH : natural; MEM_IF_CAL_BANK : natural; -- Bank to which calibration data is written -- Base column address to which calibration data is written. -- Memory at MEM_IF_CAL_BASE_COL - MEM_IF_CAL_BASE_COL + C_CAL_DATA_LEN - 1 -- is assumed to contain the proper data. MEM_IF_CAL_BASE_COL : natural ); port ( -- CLK Reset clk : in std_logic; rst_n : in std_logic; parameterisation_rec : in t_algm_paramaterisation; -- Control interface : dgwb_ctrl : out t_ctrl_stat; ctrl_dgwb : in t_ctrl_command; -- iRAM 'push' interface : dgwb_iram : out t_iram_push; iram_push_done : in std_logic; -- Admin block req/gnt interface. dgwb_ac_access_req : out std_logic; dgwb_ac_access_gnt : in std_logic; -- WDP interface dgwb_dqs_burst : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); dgwb_wdata_valid : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); dgwb_wdata : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); dgwb_dm : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DM_WIDTH - 1 downto 0); dgwb_dqs : out std_logic_vector( DWIDTH_RATIO - 1 downto 0); dgwb_wdp_ovride : out std_logic; -- addr/cmd output for write commands. dgwb_ac : out t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); bypassed_rdata : in std_logic_vector(MEM_IF_DWIDTH-1 downto 0); -- odt settings per chip select odt_settings : in t_odt_array(0 to MEM_IF_NUM_RANKS-1) ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- architecture rtl of ram_controller_phy_alt_mem_phy_dgwb is type t_dgwb_state is ( s_idle, s_wait_admin, s_write_btp, -- Writes bit-training pattern s_write_ones, -- Writes ones s_write_zeros, -- Writes zeros s_write_mtp, -- Write more training patterns (requires read to check allignment) s_write_01_pairs, -- Writes 01 pairs s_write_1100_step,-- Write step function (half zeros, half ones) s_write_0011_step,-- Write reversed step function (half ones, half zeros) s_write_wlat, -- Writes the write latency into a memory address. s_release_admin ); constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant dgwb_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (dgwb) : "; function dqs_pattern return std_logic_vector is variable dqs : std_logic_vector( DWIDTH_RATIO - 1 downto 0); begin if DWIDTH_RATIO = 2 then dqs := "10"; elsif DWIDTH_RATIO = 4 then dqs := "1100"; else report dgwb_report_prefix & "unsupported DWIDTH_RATIO in function dqs_pattern." severity failure; end if; return dqs; end; signal sig_addr_cmd : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal sig_dgwb_state : t_dgwb_state; signal sig_dgwb_last_state : t_dgwb_state; signal access_complete : std_logic; signal generate_wdata : std_logic; -- for s_write_wlat only -- current chip select being processed signal current_cs : natural range 0 to MEM_IF_NUM_RANKS-1; begin dgwb_ac <= sig_addr_cmd; -- Set IRAM interface to defaults dgwb_iram <= defaults; -- Master state machine. Generates state transitions. master_dgwb_state_block : if True generate signal sig_ctrl_dgwb : t_ctrl_command; -- registers ctrl_dgwb input. begin -- generate the current_cs signal to track which cs accessed by PHY at any instance current_cs_proc : process (clk, rst_n) begin if rst_n = '0' then current_cs <= 0; elsif rising_edge(clk) then if sig_ctrl_dgwb.command_req = '1' then current_cs <= sig_ctrl_dgwb.command_op.current_cs; end if; end if; end process; master_dgwb_state_proc : process(rst_n, clk) begin if rst_n = '0' then sig_dgwb_state <= s_idle; sig_dgwb_last_state <= s_idle; sig_ctrl_dgwb <= defaults; elsif rising_edge(clk) then case sig_dgwb_state is when s_idle => if sig_ctrl_dgwb.command_req = '1' then if (curr_active_block(sig_ctrl_dgwb.command) = dgwb) then sig_dgwb_state <= s_wait_admin; end if; end if; when s_wait_admin => case sig_ctrl_dgwb.command is when cmd_write_btp => sig_dgwb_state <= s_write_btp; when cmd_write_mtp => sig_dgwb_state <= s_write_mtp; when cmd_was => sig_dgwb_state <= s_write_wlat; when others => report dgwb_report_prefix & "unknown command" severity error; end case; if dgwb_ac_access_gnt /= '1' then sig_dgwb_state <= s_wait_admin; end if; when s_write_btp => sig_dgwb_state <= s_write_zeros; when s_write_zeros => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_ones; end if; when s_write_ones => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_write_mtp => sig_dgwb_state <= s_write_01_pairs; when s_write_01_pairs => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_1100_step; end if; when s_write_1100_step => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_write_0011_step; end if; when s_write_0011_step => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_write_wlat => if sig_dgwb_state = sig_dgwb_last_state and access_complete = '1' then sig_dgwb_state <= s_release_admin; end if; when s_release_admin => if dgwb_ac_access_gnt = '0' then sig_dgwb_state <= s_idle; end if; when others => report dgwb_report_prefix & "undefined state in addr_cmd_proc" severity error; sig_dgwb_state <= s_idle; end case; sig_dgwb_last_state <= sig_dgwb_state; sig_ctrl_dgwb <= ctrl_dgwb; end if; end process; end generate; -- Generates writes ac_write_block : if True generate constant C_BURST_T : natural := C_CAL_BURST_LEN / DWIDTH_RATIO; -- Number of phy-clock cycles per burst constant C_MAX_WLAT : natural := 2**ADV_LAT_WIDTH-1; -- Maximum latency in clock cycles constant C_MAX_COUNT : natural := C_MAX_WLAT + C_BURST_T + 4*12 - 1; -- up to 12 consecutive writes at 4 cycle intervals -- The following function sets the width over which -- write latency should be repeated on the dq bus -- the default value is MEM_IF_DQ_PER_DQS function set_wlat_dq_rep_width return natural is begin for i in 1 to MEM_IF_DWIDTH/MEM_IF_DQ_PER_DQS loop if (i*MEM_IF_DQ_PER_DQS) >= ADV_LAT_WIDTH then return i*MEM_IF_DQ_PER_DQS; end if; end loop; report dgwb_report_prefix & "the specified maximum write latency cannot be fully represented in the given number of DQ pins" & LF & "** NOTE: This may cause overflow when setting ctl_wlat signal" severity warning; return MEM_IF_DQ_PER_DQS; end function; constant C_WLAT_DQ_REP_WIDTH : natural := set_wlat_dq_rep_width; signal sig_count : natural range 0 to 2**8 - 1; begin ac_write_proc : process(rst_n, clk) begin if rst_n = '0' then dgwb_wdp_ovride <= '0'; dgwb_dqs <= (others => '0'); dgwb_dm <= (others => '1'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '0'); dgwb_wdata_valid <= (others => '0'); generate_wdata <= '0'; -- for s_write_wlat only sig_count <= 0; sig_addr_cmd <= int_pup_reset(c_seq_addr_cmd_config); access_complete <= '0'; elsif rising_edge(clk) then dgwb_wdp_ovride <= '0'; dgwb_dqs <= (others => '0'); dgwb_dm <= (others => '1'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '0'); dgwb_wdata_valid <= (others => '0'); sig_addr_cmd <= deselect(c_seq_addr_cmd_config, sig_addr_cmd); access_complete <= '0'; generate_wdata <= '0'; -- for s_write_wlat only case sig_dgwb_state is when s_idle => sig_addr_cmd <= defaults(c_seq_addr_cmd_config); -- require ones in locations: -- 1. c_cal_ofs_ones (8 locations) -- 2. 2nd half of location c_cal_ofs_xF5 (4 locations) when s_write_ones => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); -- Write ONES to DQ pins dgwb_wdata <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else -- ensure safe intervals for DDRx memory writes (min 4 mem clk cycles between writes for BC4 DDR3) if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_ones, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 4 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_ones + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 8 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5 + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- require zeros in locations: -- 1. c_cal_ofs_zeros (8 locations) -- 2. 1st half of c_cal_ofs_x30_almt_0 (4 locations) -- 3. 1st half of c_cal_ofs_x30_almt_1 (4 locations) when s_write_zeros => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); -- Write ZEROS to DQ pins dgwb_wdata <= (others => '0'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_zeros, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 4 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_zeros + 4, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 8 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge elsif sig_count = 12 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1, -- address 2**current_cs, -- rank 4, -- burst length (fixed at BC4) false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- require 0101 pattern in locations: -- 1. 1st half of location c_cal_ofs_xF5 (4 locations) when s_write_01_pairs => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_count <= 0; else if sig_count = 0 then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_xF5, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge end if; sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 01 to pairs of memory addresses for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if i mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); end if; end loop; -- require pattern "0011" (or "1100") in locations: -- 1. 2nd half of c_cal_ofs_x30_almt_0 (4 locations) when s_write_0011_step => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_0 + 4, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge sig_count <= 0; else sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 0011 step to column addresses. Note that -- it cannot be determined which at this point. The -- strategy is to write both alignments and see which -- one is correct later on. -- this calculation has 2 parts: -- a) sig_count mod C_BURST_T is a timewise iterator of repetition of the pattern -- b) i represents the temporal iterator of the pattern -- it is required to sum a and b and switch the pattern between 0 and 1 every 2 locations in each dimension -- Note: the same formulae is used below for the 1100 pattern for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if ((sig_count mod C_BURST_T) + (i/2)) mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); end if; end loop; -- require pattern "1100" (or "0011") in locations: -- 1. 2nd half of c_cal_ofs_x30_almt_1 (4 locations) when s_write_1100_step => dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); -- Issue write command if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_x30_almt_1 + 4, -- address 2**current_cs, -- rank 4, -- burst length false); -- auto-precharge sig_count <= 0; else sig_count <= sig_count + 1; end if; if sig_count = C_MAX_COUNT - 1 then access_complete <= '1'; end if; -- Write 1100 step to column addresses. Note that -- it cannot be determined which at this point. The -- strategy is to write both alignments and see which -- one is correct later on. for i in 0 to dgwb_wdata'length / MEM_IF_DWIDTH - 1 loop if ((sig_count mod C_BURST_T) + (i/2)) mod 2 = 0 then dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '1'); else dgwb_wdata((i+1)*MEM_IF_DWIDTH - 1 downto i*MEM_IF_DWIDTH) <= (others => '0'); end if; end loop; when s_write_wlat => -- Effect: -- *Writes the memory latency to an array formed -- from memory addr=[2*C_CAL_BURST_LEN-(3*C_CAL_BURST_LEN-1)]. -- The write latency is written to pairs of addresses -- across the given range. -- -- Example -- C_CAL_BURST_LEN = 4 -- addr 8 - 9 [WLAT] size = 2*MEM_IF_DWIDTH bits -- addr 10 - 11 [WLAT] size = 2*MEM_IF_DWIDTH bits -- dgwb_wdp_ovride <= '1'; dgwb_dqs <= dqs_pattern; dgwb_dm <= (others => '0'); dgwb_wdata <= (others => '0'); dgwb_dqs_burst <= (others => '1'); dgwb_wdata_valid <= (others => '1'); if sig_dgwb_state /= sig_dgwb_last_state then sig_addr_cmd <= write(c_seq_addr_cmd_config, -- A/C configuration sig_addr_cmd, MEM_IF_CAL_BANK, -- bank MEM_IF_CAL_BASE_COL + c_cal_ofs_wd_lat, -- address 2**current_cs, -- rank 8, -- burst length (8 for DDR3 and 4 for DDR/DDR2) false); -- auto-precharge sig_count <= 0; else -- hold wdata_valid and wdata 2 clock cycles -- 1 - because ac signal registered at top level of sequencer -- 2 - because want time to dqs_burst edge which occurs 1 cycle earlier -- than wdata_valid in an AFI compliant controller generate_wdata <= '1'; end if; if generate_wdata = '1' then for i in 0 to dgwb_wdata'length/C_WLAT_DQ_REP_WIDTH - 1 loop dgwb_wdata((i+1)*C_WLAT_DQ_REP_WIDTH - 1 downto i*C_WLAT_DQ_REP_WIDTH) <= std_logic_vector(to_unsigned(sig_count, C_WLAT_DQ_REP_WIDTH)); end loop; -- delay by 1 clock cycle to account for 1 cycle discrepancy -- between dqs_burst and wdata_valid if sig_count = C_MAX_COUNT then access_complete <= '1'; end if; sig_count <= sig_count + 1; end if; when others => null; end case; -- mask odt signal for i in 0 to (DWIDTH_RATIO/2)-1 loop sig_addr_cmd(i).odt <= odt_settings(current_cs).write; end loop; end if; end process; end generate; -- Handles handshaking for access to address/command ac_handshake_proc : process(rst_n, clk) begin if rst_n = '0' then dgwb_ctrl <= defaults; dgwb_ac_access_req <= '0'; elsif rising_edge(clk) then dgwb_ctrl <= defaults; dgwb_ac_access_req <= '0'; if sig_dgwb_state /= s_idle and sig_dgwb_state /= s_release_admin then dgwb_ac_access_req <= '1'; elsif sig_dgwb_state = s_idle or sig_dgwb_state = s_release_admin then dgwb_ac_access_req <= '0'; else report dgwb_report_prefix & "unexpected state in ac_handshake_proc so haven't requested access to address/command." severity warning; end if; if sig_dgwb_state = s_wait_admin and sig_dgwb_last_state = s_idle then dgwb_ctrl.command_ack <= '1'; end if; if sig_dgwb_state = s_idle and sig_dgwb_last_state = s_release_admin then dgwb_ctrl.command_done <= '1'; end if; end if; end process; end architecture rtl; -- -- ----------------------------------------------------------------------------- -- Abstract : ctrl block for the non-levelling AFI PHY sequencer -- This block is the central control unit for the sequencer. The method -- of control is to issue commands (prefixed cmd_) to each of the other -- sequencer blocks to execute. Each command corresponds to a stage of -- the AFI PHY calibaration stage, and in turn each state represents a -- command or a supplimentary flow control operation. In addition to -- controlling the sequencer this block also checks for time out -- conditions which occur when a different system block is faulty. -- ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ram_controller_phy_alt_mem_phy_iram_addr_pkg.all; -- entity ram_controller_phy_alt_mem_phy_ctrl is generic ( FAMILYGROUP_ID : natural; MEM_IF_DLL_LOCK_COUNT : natural; MEM_IF_MEMTYPE : string; DWIDTH_RATIO : natural; IRAM_ADDRESSING : t_base_hdr_addresses; MEM_IF_CLK_PS : natural; TRACKING_INTERVAL_IN_MS : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_DQS_WIDTH : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; SIM_TIME_REDUCTIONS : natural; -- if 0 null, if 1 skip rrp, if 2 rrp for 1 dqs group and 1 cs ACK_SEVERITY : severity_level ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- calibration status and redo request ctl_init_success : out std_logic; ctl_init_fail : out std_logic; ctl_recalibrate_req : in std_logic; -- acts as a synchronous reset -- status signals from iram iram_status : in t_iram_stat; iram_push_done : in std_logic; -- standard control signal to all blocks ctrl_op_rec : out t_ctrl_command; -- standardised response from all system blocks admin_ctrl : in t_ctrl_stat; dgrb_ctrl : in t_ctrl_stat; dgwb_ctrl : in t_ctrl_stat; -- mmi to ctrl interface mmi_ctrl : in t_mmi_ctrl; ctrl_mmi : out t_ctrl_mmi; -- byte lane select ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- signals to control the ac_nt setting dgrb_ctrl_ac_nt_good : in std_logic; int_ac_nt : out std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); -- width of 1 for DWIDTH_RATIO =2,4 and 2 for DWIDTH_RATIO = 8 -- the following signals are reserved for future use ctrl_iram_push : out t_ctrl_iram ); end entity; library work; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- architecture struct of ram_controller_phy_alt_mem_phy_ctrl is -- a prefix for all report signals to identify phy and sequencer block -- constant ctrl_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (ctrl) : "; -- decoder to find the relevant disable bit (from mmi registers) for a given state function find_dis_bit ( state : t_master_sm_state; mmi_ctrl : t_mmi_ctrl ) return std_logic is variable v_dis : std_logic; begin case state is when s_phy_initialise => v_dis := mmi_ctrl.hl_css.phy_initialise_dis; when s_init_dram | s_prog_cal_mr => v_dis := mmi_ctrl.hl_css.init_dram_dis; when s_write_ihi => v_dis := mmi_ctrl.hl_css.write_ihi_dis; when s_cal => v_dis := mmi_ctrl.hl_css.cal_dis; when s_write_btp => v_dis := mmi_ctrl.hl_css.write_btp_dis; when s_write_mtp => v_dis := mmi_ctrl.hl_css.write_mtp_dis; when s_read_mtp => v_dis := mmi_ctrl.hl_css.read_mtp_dis; when s_rrp_reset => v_dis := mmi_ctrl.hl_css.rrp_reset_dis; when s_rrp_sweep => v_dis := mmi_ctrl.hl_css.rrp_sweep_dis; when s_rrp_seek => v_dis := mmi_ctrl.hl_css.rrp_seek_dis; when s_rdv => v_dis := mmi_ctrl.hl_css.rdv_dis; when s_poa => v_dis := mmi_ctrl.hl_css.poa_dis; when s_was => v_dis := mmi_ctrl.hl_css.was_dis; when s_adv_rd_lat => v_dis := mmi_ctrl.hl_css.adv_rd_lat_dis; when s_adv_wr_lat => v_dis := mmi_ctrl.hl_css.adv_wr_lat_dis; when s_prep_customer_mr_setup => v_dis := mmi_ctrl.hl_css.prep_customer_mr_setup_dis; when s_tracking_setup | s_tracking => v_dis := mmi_ctrl.hl_css.tracking_dis; when others => v_dis := '1'; -- default change stage end case; return v_dis; end function; -- decoder to find the relevant command for a given state function find_cmd ( state : t_master_sm_state ) return t_ctrl_cmd_id is begin case state is when s_phy_initialise => return cmd_phy_initialise; when s_init_dram => return cmd_init_dram; when s_prog_cal_mr => return cmd_prog_cal_mr; when s_write_ihi => return cmd_write_ihi; when s_cal => return cmd_idle; when s_write_btp => return cmd_write_btp; when s_write_mtp => return cmd_write_mtp; when s_read_mtp => return cmd_read_mtp; when s_rrp_reset => return cmd_rrp_reset; when s_rrp_sweep => return cmd_rrp_sweep; when s_rrp_seek => return cmd_rrp_seek; when s_rdv => return cmd_rdv; when s_poa => return cmd_poa; when s_was => return cmd_was; when s_adv_rd_lat => return cmd_prep_adv_rd_lat; when s_adv_wr_lat => return cmd_prep_adv_wr_lat; when s_prep_customer_mr_setup => return cmd_prep_customer_mr_setup; when s_tracking_setup | s_tracking => return cmd_tr_due; when others => return cmd_idle; end case; end function; function mcs_rw_state -- returns true for multiple cs read/write states ( state : t_master_sm_state ) return boolean is begin case state is when s_write_btp | s_write_mtp | s_rrp_sweep => return true; when s_reset | s_phy_initialise | s_init_dram | s_prog_cal_mr | s_write_ihi | s_cal | s_read_mtp | s_rrp_reset | s_rrp_seek | s_rdv | s_poa | s_was | s_adv_rd_lat | s_adv_wr_lat | s_prep_customer_mr_setup | s_tracking_setup | s_tracking | s_operational | s_non_operational => return false; when others => -- return false; end case; end function; -- timing parameters constant c_done_timeout_count : natural := 32768; constant c_ack_timeout_count : natural := 1000; constant c_ticks_per_ms : natural := 1000000000/(MEM_IF_CLK_PS*(DWIDTH_RATIO/2)); constant c_ticks_per_10us : natural := 10000000 /(MEM_IF_CLK_PS*(DWIDTH_RATIO/2)); -- local copy of calibration fail/success signals signal int_ctl_init_fail : std_logic; signal int_ctl_init_success : std_logic; -- state machine (master for sequencer) signal state : t_master_sm_state; signal last_state : t_master_sm_state; -- flow control signals for state machine signal dis_state : std_logic; -- disable state signal hold_state : std_logic; -- hold in state for 1 clock cycle signal master_ctrl_op_rec : t_ctrl_command; -- master command record to all sequencer blocks signal master_ctrl_iram_push : t_ctrl_iram; -- record indicating control details for pushes signal dll_lock_counter : natural range MEM_IF_DLL_LOCK_COUNT - 1 downto 0; -- to wait for dll to lock signal iram_init_complete : std_logic; -- timeout signals to check if a block has 'hung' signal timeout_counter : natural range c_done_timeout_count - 1 downto 0; signal timeout_counter_stop : std_logic; signal timeout_counter_enable : std_logic; signal timeout_counter_clear : std_logic; signal cmd_req_asserted : std_logic; -- a command has been issued signal flag_ack_timeout : std_logic; -- req -> ack timed out signal flag_done_timeout : std_logic; -- reg -> done timed out signal waiting_for_ack : std_logic; -- command issued signal cmd_ack_seen : std_logic; -- command completed signal curr_ctrl : t_ctrl_stat; -- response for current active block signal curr_cmd : t_ctrl_cmd_id; -- store state information based on issued command signal int_ctrl_prev_stage : t_ctrl_cmd_id; signal int_ctrl_current_stage : t_ctrl_cmd_id; -- multiple chip select counter signal cs_counter : natural range 0 to MEM_IF_NUM_RANKS - 1; signal reissue_cmd_req : std_logic; -- reissue command request for multiple cs signal cal_cs_enabled : std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); -- signals to check the ac_nt setting signal ac_nt_almts_checked : natural range 0 to DWIDTH_RATIO/2-1; signal ac_nt : std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); -- track the mtp alignment setting signal mtp_almts_checked : natural range 0 to 2; signal mtp_correct_almt : natural range 0 to 1; signal mtp_no_valid_almt : std_logic; signal mtp_both_valid_almt : std_logic; signal mtp_err : std_logic; -- tracking timing signal milisecond_tick_gen_count : natural range 0 to c_ticks_per_ms -1 := c_ticks_per_ms -1; signal tracking_ms_counter : natural range 0 to 255; signal tracking_update_due : std_logic; begin -- architecture struct ------------------------------------------------------------------------------- -- check if chip selects are enabled -- this only effects reactive stages (i,e, those requiring memory reads) ------------------------------------------------------------------------------- process(ctl_cal_byte_lanes) variable v_cs_enabled : std_logic; begin for i in 0 to MEM_IF_NUM_RANKS - 1 loop -- check if any bytes enabled v_cs_enabled := '0'; for j in 0 to MEM_IF_DQS_WIDTH - 1 loop v_cs_enabled := v_cs_enabled or ctl_cal_byte_lanes(i*MEM_IF_DQS_WIDTH + j); end loop; -- if any byte enabled set cs as enabled else not cal_cs_enabled(i) <= v_cs_enabled; -- sanity checking: if i = 0 and v_cs_enabled = '0' then report ctrl_report_prefix & " disabling of chip select 0 is unsupported by the sequencer," & LF & "-> if this is your intention then please remap CS pins such that CS 0 is not disabled" severity failure; end if; end loop; end process; -- ----------------------------------------------------------------------------- -- dll lock counter -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then dll_lock_counter <= MEM_IF_DLL_LOCK_COUNT -1; elsif rising_edge(clk) then if ctl_recalibrate_req = '1' then dll_lock_counter <= MEM_IF_DLL_LOCK_COUNT -1; elsif dll_lock_counter /= 0 then dll_lock_counter <= dll_lock_counter - 1; end if; end if; end process; -- ----------------------------------------------------------------------------- -- timeout counter : this counter is used to determine if an ack, or done has -- not been received within the expected number of clock cycles of a req being -- asserted. -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then timeout_counter <= c_done_timeout_count - 1; elsif rising_edge(clk) then if timeout_counter_clear = '1' then timeout_counter <= c_done_timeout_count - 1; elsif timeout_counter_enable = '1' and state /= s_init_dram then if timeout_counter /= 0 then timeout_counter <= timeout_counter - 1; end if; end if; end if; end process; -- ----------------------------------------------------------------------------- -- register current ctrl signal based on current command -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then curr_ctrl <= defaults; curr_cmd <= cmd_idle; elsif rising_edge(clk) then case curr_active_block(curr_cmd) is when admin => curr_ctrl <= admin_ctrl; when dgrb => curr_ctrl <= dgrb_ctrl; when dgwb => curr_ctrl <= dgwb_ctrl; when others => curr_ctrl <= defaults; end case; curr_cmd <= master_ctrl_op_rec.command; end if; end process; -- ----------------------------------------------------------------------------- -- generation of cmd_ack_seen -- ----------------------------------------------------------------------------- process (curr_ctrl) begin cmd_ack_seen <= curr_ctrl.command_ack; end process; ------------------------------------------------------------------------------- -- generation of waiting_for_ack flag (to determine whether ack has timed out) ------------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then waiting_for_ack <= '0'; elsif rising_edge(clk) then if cmd_req_asserted = '1' then waiting_for_ack <= '1'; elsif cmd_ack_seen = '1' then waiting_for_ack <= '0'; end if; end if; end process; -- ----------------------------------------------------------------------------- -- generation of timeout flags -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then flag_ack_timeout <= '0'; flag_done_timeout <= '0'; elsif rising_edge(clk) then if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then flag_ack_timeout <= '0'; elsif timeout_counter = 0 and waiting_for_ack = '1' then flag_ack_timeout <= '1'; end if; if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then flag_done_timeout <= '0'; elsif timeout_counter = 0 and state /= s_rrp_sweep and -- rrp can take enough cycles to overflow counter so don't timeout state /= s_init_dram and -- init_dram takes about 200 us, so don't timeout timeout_counter_clear /= '1' then -- check if currently clearing the timeout (i.e. command_done asserted for s_init_dram or s_rrp_sweep) flag_done_timeout <= '1'; end if; end if; end process; -- generation of timeout_counter_stop timeout_counter_stop <= curr_ctrl.command_done; -- ----------------------------------------------------------------------------- -- generation of timeout_counter_enable and timeout_counter_clear -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then timeout_counter_enable <= '0'; timeout_counter_clear <= '0'; elsif rising_edge(clk) then if cmd_req_asserted = '1' then timeout_counter_enable <= '1'; timeout_counter_clear <= '0'; elsif timeout_counter_stop = '1' or state = s_operational or state = s_non_operational or state = s_reset then timeout_counter_enable <= '0'; timeout_counter_clear <= '1'; end if; end if; end process; ------------------------------------------------------------------------------- -- assignment to ctrl_mmi record ------------------------------------------------------------------------------- process (clk, rst_n) variable v_ctrl_mmi : t_ctrl_mmi; begin if rst_n = '0' then v_ctrl_mmi := defaults; ctrl_mmi <= defaults; int_ctrl_prev_stage <= cmd_idle; int_ctrl_current_stage <= cmd_idle; elsif rising_edge(clk) then ctrl_mmi <= v_ctrl_mmi; v_ctrl_mmi.ctrl_calibration_success := '0'; v_ctrl_mmi.ctrl_calibration_fail := '0'; if (curr_ctrl.command_ack = '1') then case state is when s_init_dram => v_ctrl_mmi.ctrl_cal_stage_ack_seen.init_dram := '1'; when s_write_btp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_btp := '1'; when s_write_mtp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_mtp := '1'; when s_read_mtp => v_ctrl_mmi.ctrl_cal_stage_ack_seen.read_mtp := '1'; when s_rrp_reset => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_reset := '1'; when s_rrp_sweep => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_sweep := '1'; when s_rrp_seek => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rrp_seek := '1'; when s_rdv => v_ctrl_mmi.ctrl_cal_stage_ack_seen.rdv := '1'; when s_poa => v_ctrl_mmi.ctrl_cal_stage_ack_seen.poa := '1'; when s_was => v_ctrl_mmi.ctrl_cal_stage_ack_seen.was := '1'; when s_adv_rd_lat => v_ctrl_mmi.ctrl_cal_stage_ack_seen.adv_rd_lat := '1'; when s_adv_wr_lat => v_ctrl_mmi.ctrl_cal_stage_ack_seen.adv_wr_lat := '1'; when s_prep_customer_mr_setup => v_ctrl_mmi.ctrl_cal_stage_ack_seen.prep_customer_mr_setup := '1'; when s_tracking_setup | s_tracking => v_ctrl_mmi.ctrl_cal_stage_ack_seen.tracking_setup := '1'; when others => null; end case; end if; -- special 'ack' (actually finished) triggers for phy_initialise, writing iram header info and s_cal if state = s_phy_initialise then if iram_status.init_done = '1' and dll_lock_counter = 0 then v_ctrl_mmi.ctrl_cal_stage_ack_seen.phy_initialise := '1'; end if; end if; if state = s_write_ihi then if iram_push_done = '1' then v_ctrl_mmi.ctrl_cal_stage_ack_seen.write_ihi := '1'; end if; end if; if state = s_cal and find_dis_bit(state, mmi_ctrl) = '0' then -- if cal state and calibration not disabled acknowledge v_ctrl_mmi.ctrl_cal_stage_ack_seen.cal := '1'; end if; if state = s_operational then v_ctrl_mmi.ctrl_calibration_success := '1'; end if; if state = s_non_operational then v_ctrl_mmi.ctrl_calibration_fail := '1'; end if; if state /= s_non_operational then v_ctrl_mmi.ctrl_current_active_block := master_ctrl_iram_push.active_block; v_ctrl_mmi.ctrl_current_stage := master_ctrl_op_rec.command; else v_ctrl_mmi.ctrl_current_active_block := v_ctrl_mmi.ctrl_current_active_block; v_ctrl_mmi.ctrl_current_stage := v_ctrl_mmi.ctrl_current_stage; end if; int_ctrl_prev_stage <= int_ctrl_current_stage; int_ctrl_current_stage <= v_ctrl_mmi.ctrl_current_stage; if int_ctrl_prev_stage /= int_ctrl_current_stage then v_ctrl_mmi.ctrl_current_stage_done := '0'; else if curr_ctrl.command_done = '1' then v_ctrl_mmi.ctrl_current_stage_done := '1'; end if; end if; v_ctrl_mmi.master_state_r := last_state; if mmi_ctrl.calibration_start = '1' or ctl_recalibrate_req = '1' then v_ctrl_mmi := defaults; ctrl_mmi <= defaults; end if; -- assert error codes here if curr_ctrl.command_err = '1' then v_ctrl_mmi.ctrl_err_code := curr_ctrl.command_result; elsif flag_ack_timeout = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(c_err_ctrl_ack_timeout, v_ctrl_mmi.ctrl_err_code'length)); elsif flag_done_timeout = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(c_err_ctrl_done_timeout, v_ctrl_mmi.ctrl_err_code'length)); elsif mtp_err = '1' then if mtp_no_valid_almt = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(C_ERR_READ_MTP_NO_VALID_ALMT, v_ctrl_mmi.ctrl_err_code'length)); elsif mtp_both_valid_almt = '1' then v_ctrl_mmi.ctrl_err_code := std_logic_vector(to_unsigned(C_ERR_READ_MTP_BOTH_ALMT_PASS, v_ctrl_mmi.ctrl_err_code'length)); end if; end if; end if; end process; -- check if iram finished init process(iram_status) begin if GENERATE_ADDITIONAL_DBG_RTL = 0 then iram_init_complete <= '1'; else iram_init_complete <= iram_status.init_done; end if; end process; -- ----------------------------------------------------------------------------- -- master state machine -- (this controls the operation of the entire sequencer) -- the states are summarised as follows: -- s_reset -- s_phy_initialise - wait for dll lock and init done flag from iram -- s_init_dram, -- dram initialisation - reset sequence -- s_prog_cal_mr, -- dram initialisation - programming mode registers (once per chip select) -- s_write_ihi - write header information in iRAM -- s_cal - check if calibration to be executed -- s_write_btp - write burst training pattern -- s_write_mtp - write more training pattern -- s_rrp_reset - read resync phase setup - reset initial conditions -- s_rrp_sweep - read resync phase setup - sweep phases per chip select -- s_read_mtp - read training patterns to find correct alignment for 1100 burst -- (this is a special case of s_rrp_seek with no resych phase setting) -- s_rrp_seek - read resync phase setup - seek correct alignment -- s_rdv - read data valid setup -- s_poa - calibrate the postamble -- s_was - write datapath setup (ac to write data timing) -- s_adv_rd_lat - advertise read latency -- s_adv_wr_lat - advertise write latency -- s_tracking_setup - perform tracking (1st pass to setup mimic window) -- s_prep_customer_mr_setup - apply user mode register settings (in admin block) -- s_tracking - perform tracking (subsequent passes in user mode) -- s_operational - calibration successful and in user mode -- s_non_operational - calibration unsuccessful and in user mode -- ----------------------------------------------------------------------------- process(clk, rst_n) variable v_seen_ack : boolean; variable v_dis : std_logic; -- disable bit begin if rst_n = '0' then state <= s_reset; last_state <= s_reset; int_ctl_init_success <= '0'; int_ctl_init_fail <= '0'; v_seen_ack := false; hold_state <= '0'; cs_counter <= 0; mtp_almts_checked <= 0; ac_nt <= (others => '1'); ac_nt_almts_checked <= 0; reissue_cmd_req <= '0'; dis_state <= '0'; elsif rising_edge(clk) then last_state <= state; -- check if state_tx required if curr_ctrl.command_ack = '1' then v_seen_ack := true; end if; -- find disable bit for current state (do once to avoid exit mid-state) if state /= last_state then dis_state <= find_dis_bit(state, mmi_ctrl); end if; -- Set special conditions: if state = s_reset or state = s_operational or state = s_non_operational then dis_state <= '1'; end if; -- override to ensure execution of next state logic if (state = s_cal) then dis_state <= '1'; end if; -- if header writing in iram check finished if (state = s_write_ihi) then if iram_push_done = '1' or mmi_ctrl.hl_css.write_ihi_dis = '1' then dis_state <= '1'; else dis_state <= '0'; end if; end if; -- Special condition for initialisation if (state = s_phy_initialise) then if ((dll_lock_counter = 0) and (iram_init_complete = '1')) or (mmi_ctrl.hl_css.phy_initialise_dis = '1') then dis_state <= '1'; else dis_state <= '0'; end if; end if; if dis_state = '1' then v_seen_ack := false; elsif curr_ctrl.command_done = '1' then if v_seen_ack = false then report ctrl_report_prefix & "have not seen ack but have seen command done from " & t_ctrl_active_block'image(curr_active_block(master_ctrl_op_rec.command)) & "_block in state " & t_master_sm_state'image(state) severity warning; end if; v_seen_ack := false; end if; -- default do not reissue command request reissue_cmd_req <= '0'; if (hold_state = '1') then hold_state <= '0'; else if ((dis_state = '1') or (curr_ctrl.command_done = '1') or ((cal_cs_enabled(cs_counter) = '0') and (mcs_rw_state(state) = True))) then -- current chip select is disabled and read/write hold_state <= '1'; -- Only reset the below if making state change int_ctl_init_success <= '0'; int_ctl_init_fail <= '0'; -- default chip select counter gets reset to zero cs_counter <= 0; case state is when s_reset => state <= s_phy_initialise; ac_nt <= (others => '1'); mtp_almts_checked <= 0; ac_nt_almts_checked <= 0; when s_phy_initialise => state <= s_init_dram; when s_init_dram => state <= s_prog_cal_mr; when s_prog_cal_mr => if cs_counter = MEM_IF_NUM_RANKS - 1 then -- if no debug interface don't write iram header if GENERATE_ADDITIONAL_DBG_RTL = 1 then state <= s_write_ihi; else state <= s_cal; end if; else cs_counter <= cs_counter + 1; reissue_cmd_req <= '1'; end if; when s_write_ihi => state <= s_cal; when s_cal => if mmi_ctrl.hl_css.cal_dis = '0' then state <= s_write_btp; else state <= s_tracking_setup; end if; -- always enter s_cal before calibration so reset some variables here mtp_almts_checked <= 0; ac_nt_almts_checked <= 0; when s_write_btp => if cs_counter = MEM_IF_NUM_RANKS-1 or SIM_TIME_REDUCTIONS = 2 then state <= s_write_mtp; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_write_mtp => if cs_counter = MEM_IF_NUM_RANKS - 1 or SIM_TIME_REDUCTIONS = 2 then if SIM_TIME_REDUCTIONS = 1 then state <= s_rdv; else state <= s_rrp_reset; end if; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_rrp_reset => state <= s_rrp_sweep; when s_rrp_sweep => if cs_counter = MEM_IF_NUM_RANKS - 1 or mtp_almts_checked /= 2 or SIM_TIME_REDUCTIONS = 2 then if mtp_almts_checked /= 2 then state <= s_read_mtp; else state <= s_rrp_seek; end if; else cs_counter <= cs_counter + 1; -- only reissue command if current chip select enabled if cal_cs_enabled(cs_counter + 1) = '1' then reissue_cmd_req <= '1'; end if; end if; when s_read_mtp => if mtp_almts_checked /= 2 then mtp_almts_checked <= mtp_almts_checked + 1; end if; state <= s_rrp_reset; when s_rrp_seek => state <= s_rdv; when s_rdv => state <= s_was; when s_was => state <= s_adv_rd_lat; when s_adv_rd_lat => state <= s_adv_wr_lat; when s_adv_wr_lat => if dgrb_ctrl_ac_nt_good = '1' then state <= s_poa; else if ac_nt_almts_checked = (DWIDTH_RATIO/2 - 1) then state <= s_non_operational; else -- switch alignment and restart calibration ac_nt <= std_logic_vector(unsigned(ac_nt) + 1); ac_nt_almts_checked <= ac_nt_almts_checked + 1; if SIM_TIME_REDUCTIONS = 1 then state <= s_rdv; else state <= s_rrp_reset; end if; mtp_almts_checked <= 0; end if; end if; when s_poa => state <= s_tracking_setup; when s_tracking_setup => state <= s_prep_customer_mr_setup; when s_prep_customer_mr_setup => if cs_counter = MEM_IF_NUM_RANKS - 1 then -- s_prep_customer_mr_setup is always performed over all cs state <= s_operational; else cs_counter <= cs_counter + 1; reissue_cmd_req <= '1'; end if; when s_tracking => state <= s_operational; int_ctl_init_success <= int_ctl_init_success; int_ctl_init_fail <= int_ctl_init_fail; when s_operational => int_ctl_init_success <= '1'; int_ctl_init_fail <= '0'; hold_state <= '0'; if tracking_update_due = '1' and mmi_ctrl.hl_css.tracking_dis = '0' then state <= s_tracking; hold_state <= '1'; end if; when s_non_operational => int_ctl_init_success <= '0'; int_ctl_init_fail <= '1'; hold_state <= '0'; if last_state /= s_non_operational then -- print a warning on entering this state report ctrl_report_prefix & "memory calibration has failed (output from ctrl block)" severity WARNING; end if; when others => state <= t_master_sm_state'succ(state); end case; end if; end if; if flag_done_timeout = '1' -- no done signal from current active block or flag_ack_timeout = '1' -- or no ack signal from current active block or curr_ctrl.command_err = '1' -- or an error from current active block or mtp_err = '1' then -- or an error due to mtp alignment state <= s_non_operational; end if; if mmi_ctrl.calibration_start = '1' then -- restart calibration process state <= s_cal; end if; if ctl_recalibrate_req = '1' then -- restart all incl. initialisation state <= s_reset; end if; end if; end process; -- generate output calibration fail/success signals process(clk, rst_n) begin if rst_n = '0' then ctl_init_fail <= '0'; ctl_init_success <= '0'; elsif rising_edge(clk) then ctl_init_fail <= int_ctl_init_fail; ctl_init_success <= int_ctl_init_success; end if; end process; -- assign ac_nt to the output int_ac_nt process(ac_nt) begin int_ac_nt <= ac_nt; end process; -- ------------------------------------------------------------------------------ -- find correct mtp_almt from returned data -- ------------------------------------------------------------------------------ mtp_almt: block signal dvw_size_a0 : natural range 0 to 255; -- maximum size of command result signal dvw_size_a1 : natural range 0 to 255; begin process (clk, rst_n) variable v_dvw_a0_small : boolean; variable v_dvw_a1_small : boolean; begin if rst_n = '0' then mtp_correct_almt <= 0; dvw_size_a0 <= 0; dvw_size_a1 <= 0; mtp_no_valid_almt <= '0'; mtp_both_valid_almt <= '0'; mtp_err <= '0'; elsif rising_edge(clk) then -- update the dvw sizes if state = s_read_mtp then if curr_ctrl.command_done = '1' then if mtp_almts_checked = 0 then dvw_size_a0 <= to_integer(unsigned(curr_ctrl.command_result)); else dvw_size_a1 <= to_integer(unsigned(curr_ctrl.command_result)); end if; end if; end if; -- check dvw size and set mtp almt if dvw_size_a0 < dvw_size_a1 then mtp_correct_almt <= 1; else mtp_correct_almt <= 0; end if; -- error conditions if mtp_almts_checked = 2 and GENERATE_ADDITIONAL_DBG_RTL = 1 then -- if finished alignment checking (and GENERATE_ADDITIONAL_DBG_RTL set) -- perform size checks once per dvw if dvw_size_a0 < 3 then v_dvw_a0_small := true; else v_dvw_a0_small := false; end if; if dvw_size_a1 < 3 then v_dvw_a1_small := true; else v_dvw_a1_small := false; end if; if v_dvw_a0_small = true and v_dvw_a1_small = true then mtp_no_valid_almt <= '1'; mtp_err <= '1'; end if; if v_dvw_a0_small = false and v_dvw_a1_small = false then mtp_both_valid_almt <= '1'; mtp_err <= '1'; end if; else mtp_no_valid_almt <= '0'; mtp_both_valid_almt <= '0'; mtp_err <= '0'; end if; end if; end process; end block; -- ------------------------------------------------------------------------------ -- process to generate command outputs, based on state, last_state and mmi_ctrl. -- asynchronously -- ------------------------------------------------------------------------------ process (state, last_state, mmi_ctrl, reissue_cmd_req, cs_counter, mtp_almts_checked, mtp_correct_almt) begin master_ctrl_op_rec <= defaults; master_ctrl_iram_push <= defaults; case state is -- special condition states when s_reset | s_phy_initialise | s_cal => null; when s_write_ihi => if mmi_ctrl.hl_css.write_ihi_dis = '0' then master_ctrl_op_rec.command <= find_cmd(state); if state /= last_state then master_ctrl_op_rec.command_req <= '1'; end if; end if; when s_operational | s_non_operational => master_ctrl_op_rec.command <= find_cmd(state); when others => -- default condition for most states if find_dis_bit(state, mmi_ctrl) = '0' then master_ctrl_op_rec.command <= find_cmd(state); if state /= last_state or reissue_cmd_req = '1' then master_ctrl_op_rec.command_req <= '1'; end if; else if state = last_state then -- safe state exit if state disabled mid-calibration master_ctrl_op_rec.command <= find_cmd(state); end if; end if; end case; -- for multiple chip select commands assign operand to cs_counter master_ctrl_op_rec.command_op <= defaults; master_ctrl_op_rec.command_op.current_cs <= cs_counter; if state = s_rrp_sweep or state = s_read_mtp or state = s_poa then if mtp_almts_checked /= 2 or SIM_TIME_REDUCTIONS = 2 then master_ctrl_op_rec.command_op.single_bit <= '1'; end if; if mtp_almts_checked /= 2 then master_ctrl_op_rec.command_op.mtp_almt <= mtp_almts_checked; else master_ctrl_op_rec.command_op.mtp_almt <= mtp_correct_almt; end if; end if; -- set write mode and packing mode for iram if GENERATE_ADDITIONAL_DBG_RTL = 1 then case state is when s_rrp_sweep => master_ctrl_iram_push.write_mode <= overwrite_ram; master_ctrl_iram_push.packing_mode <= dq_bitwise; when s_rrp_seek | s_read_mtp => master_ctrl_iram_push.write_mode <= overwrite_ram; master_ctrl_iram_push.packing_mode <= dq_wordwise; when others => null; end case; end if; -- set current active block master_ctrl_iram_push.active_block <= curr_active_block(find_cmd(state)); end process; -- some concurc_read_burst_trent assignments to outputs process (master_ctrl_iram_push, master_ctrl_op_rec) begin ctrl_iram_push <= master_ctrl_iram_push; ctrl_op_rec <= master_ctrl_op_rec; cmd_req_asserted <= master_ctrl_op_rec.command_req; end process; -- ----------------------------------------------------------------------------- -- tracking interval counter -- ----------------------------------------------------------------------------- process(clk, rst_n) begin if rst_n = '0' then milisecond_tick_gen_count <= c_ticks_per_ms -1; tracking_ms_counter <= 0; tracking_update_due <= '0'; elsif rising_edge(clk) then if state = s_operational and last_state/= s_operational then if mmi_ctrl.tracking_orvd_to_10ms = '1' then milisecond_tick_gen_count <= c_ticks_per_10us -1; else milisecond_tick_gen_count <= c_ticks_per_ms -1; end if; tracking_ms_counter <= mmi_ctrl.tracking_period_ms; elsif state = s_operational then if milisecond_tick_gen_count = 0 and tracking_update_due /= '1' then if tracking_ms_counter = 0 then tracking_update_due <= '1'; else tracking_ms_counter <= tracking_ms_counter -1; end if; if mmi_ctrl.tracking_orvd_to_10ms = '1' then milisecond_tick_gen_count <= c_ticks_per_10us -1; else milisecond_tick_gen_count <= c_ticks_per_ms -1; end if; elsif milisecond_tick_gen_count /= 0 then milisecond_tick_gen_count <= milisecond_tick_gen_count -1; end if; else tracking_update_due <= '0'; end if; end if; end process; end architecture struct; -- -- ----------------------------------------------------------------------------- -- Abstract : top level for the non-levelling AFI PHY sequencer -- The top level instances the sub-blocks of the AFI PHY -- sequencer. In addition a number of multiplexing and high- -- level control operations are performed. This includes the -- multiplexing and generation of control signals for: the -- address and command DRAM interface and pll, oct and datapath -- latency control signals. -- ----------------------------------------------------------------------------- --altera message_off 10036 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- entity ram_controller_phy_alt_mem_phy_seq IS generic ( -- choice of FPGA device family and DRAM type FAMILY : string; MEM_IF_MEMTYPE : string; SPEED_GRADE : string; FAMILYGROUP_ID : natural; -- physical interface width definitions MEM_IF_DQS_WIDTH : natural; MEM_IF_DWIDTH : natural; MEM_IF_DM_WIDTH : natural; MEM_IF_DQ_PER_DQS : natural; DWIDTH_RATIO : natural; CLOCK_INDEX_WIDTH : natural; MEM_IF_CLK_PAIR_COUNT : natural; MEM_IF_ADDR_WIDTH : natural; MEM_IF_BANKADDR_WIDTH : natural; MEM_IF_CS_WIDTH : natural; MEM_IF_NUM_RANKS : natural; MEM_IF_RANKS_PER_SLOT : natural; ADV_LAT_WIDTH : natural; RESYNCHRONISE_AVALON_DBG : natural; -- 0 = false, 1 = true AV_IF_ADDR_WIDTH : natural; -- Not used for non-levelled seq CHIP_OR_DIMM : string; RDIMM_CONFIG_BITS : string; -- setup / algorithm information NOM_DQS_PHASE_SETTING : natural; SCAN_CLK_DIVIDE_BY : natural; RDP_ADDR_WIDTH : natural; PLL_STEPS_PER_CYCLE : natural; IOE_PHASES_PER_TCK : natural; IOE_DELAYS_PER_PHS : natural; MEM_IF_CLK_PS : natural; WRITE_DESKEW_T10 : natural; WRITE_DESKEW_HC_T10 : natural; WRITE_DESKEW_T9NI : natural; WRITE_DESKEW_HC_T9NI : natural; WRITE_DESKEW_T9I : natural; WRITE_DESKEW_HC_T9I : natural; WRITE_DESKEW_RANGE : natural; -- initial mode register settings PHY_DEF_MR_1ST : natural; PHY_DEF_MR_2ND : natural; PHY_DEF_MR_3RD : natural; PHY_DEF_MR_4TH : natural; MEM_IF_DQSN_EN : natural; -- default off for Cyclone-III MEM_IF_DQS_CAPTURE_EN : natural; GENERATE_ADDITIONAL_DBG_RTL : natural; -- 1 signals to include iram and mmi blocks and 0 not to include SINGLE_DQS_DELAY_CONTROL_CODE : natural; -- reserved for future use PRESET_RLAT : natural; -- reserved for future use EN_OCT : natural; -- Does the sequencer use OCT during calibration. OCT_LAT_WIDTH : natural; SIM_TIME_REDUCTIONS : natural; -- if 0 null, if 2 rrp for 1 dqs group and 1 cs FORCE_HC : natural; -- Use to force HardCopy in simulation. CAPABILITIES : natural; -- advertise capabilities i.e. which ctrl block states to execute (default all on) TINIT_TCK : natural; TINIT_RST : natural; GENERATE_TRACKING_PHASE_STORE : natural; -- reserved for future use IP_BUILDNUM : natural ); port ( -- clk / reset clk : in std_logic; rst_n : in std_logic; -- calibration status and prompt ctl_init_success : out std_logic; ctl_init_fail : out std_logic; ctl_init_warning : out std_logic; -- unused ctl_recalibrate_req : in std_logic; -- the following two signals are reserved for future use mem_ac_swapped_ranks : in std_logic_vector(MEM_IF_NUM_RANKS - 1 downto 0); ctl_cal_byte_lanes : in std_logic_vector(MEM_IF_NUM_RANKS * MEM_IF_DQS_WIDTH - 1 downto 0); -- pll reconfiguration seq_pll_inc_dec_n : out std_logic; seq_pll_start_reconfig : out std_logic; seq_pll_select : out std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); seq_pll_phs_shift_busy : in std_logic; pll_resync_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select resync clock pll_measure_clk_index : in std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); -- PLL phase used to select mimic/measure clock -- scanchain associated signals (reserved for future use) seq_scan_clk : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dqs_config : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_update : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_din : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_ck : out std_logic_vector(MEM_IF_CLK_PAIR_COUNT - 1 downto 0); seq_scan_enable_dqs : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dqsn : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_scan_enable_dq : out std_logic_vector(MEM_IF_DWIDTH - 1 downto 0); seq_scan_enable_dm : out std_logic_vector(MEM_IF_DM_WIDTH - 1 downto 0); hr_rsc_clk : in std_logic; -- address / command interface (note these are mapped internally to the seq_ac record) seq_ac_addr : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_ADDR_WIDTH - 1 downto 0); seq_ac_ba : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_BANKADDR_WIDTH - 1 downto 0); seq_ac_cas_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_ras_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_we_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_cke : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_cs_n : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_odt : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_NUM_RANKS - 1 downto 0); seq_ac_rst_n : out std_logic_vector((DWIDTH_RATIO/2) - 1 downto 0); seq_ac_sel : out std_logic; seq_mem_clk_disable : out std_logic; -- additional datapath latency (reserved for future use) seq_ac_add_1t_ac_lat_internal : out std_logic; seq_ac_add_1t_odt_lat_internal : out std_logic; seq_ac_add_2t : out std_logic; -- read datapath interface seq_rdp_reset_req_n : out std_logic; seq_rdp_inc_read_lat_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_rdp_dec_read_lat_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); rdata : in std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); -- read data valid (associated signals) interface seq_rdv_doing_rd : out std_logic_vector(MEM_IF_DQS_WIDTH * DWIDTH_RATIO/2 - 1 downto 0); rdata_valid : in std_logic_vector( DWIDTH_RATIO/2 - 1 downto 0); seq_rdata_valid_lat_inc : out std_logic; seq_rdata_valid_lat_dec : out std_logic; seq_ctl_rlat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- postamble interface (unused for Cyclone-III) seq_poa_lat_dec_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_lat_inc_1x : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_poa_protection_override_1x : out std_logic; -- OCT path control seq_oct_oct_delay : out std_logic_vector(OCT_LAT_WIDTH - 1 downto 0); seq_oct_oct_extend : out std_logic_vector(OCT_LAT_WIDTH - 1 downto 0); seq_oct_value : out std_logic; -- write data path interface seq_wdp_dqs_burst : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); seq_wdp_wdata_valid : out std_logic_vector((DWIDTH_RATIO/2) * MEM_IF_DQS_WIDTH - 1 downto 0); seq_wdp_wdata : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DWIDTH - 1 downto 0); seq_wdp_dm : out std_logic_vector( DWIDTH_RATIO * MEM_IF_DM_WIDTH - 1 downto 0); seq_wdp_dqs : out std_logic_vector( DWIDTH_RATIO - 1 downto 0); seq_wdp_ovride : out std_logic; seq_dqs_add_2t_delay : out std_logic_vector(MEM_IF_DQS_WIDTH - 1 downto 0); seq_ctl_wlat : out std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- mimic path interface seq_mmc_start : out std_logic; mmc_seq_done : in std_logic; mmc_seq_value : in std_logic; -- parity signals (not used for non-levelled PHY) mem_err_out_n : in std_logic; parity_error_n : out std_logic; --synchronous Avalon debug interface (internally re-synchronised to input clock (a generic option)) dbg_seq_clk : in std_logic; dbg_seq_rst_n : in std_logic; dbg_seq_addr : in std_logic_vector(AV_IF_ADDR_WIDTH - 1 downto 0); dbg_seq_wr : in std_logic; dbg_seq_rd : in std_logic; dbg_seq_cs : in std_logic; dbg_seq_wr_data : in std_logic_vector(31 downto 0); seq_dbg_rd_data : out std_logic_vector(31 downto 0); seq_dbg_waitrequest : out std_logic ); end entity; library work; -- The record package (alt_mem_phy_record_pkg) is used to combine command and status signals -- (into records) to be passed between sequencer blocks. It also contains type and record definitions -- for the stages of DRAM memory calibration. -- use work.ram_controller_phy_alt_mem_phy_record_pkg.all; -- The registers package (alt_mem_phy_regs_pkg) is used to combine the definition of the -- registers for the mmi status registers and functions/procedures applied to the registers -- use work.ram_controller_phy_alt_mem_phy_regs_pkg.all; -- The constant package (alt_mem_phy_constants_pkg) contains global 'constants' which are fixed -- thoughout the sequencer and will not change (for constants which may change between sequencer -- instances generics are used) -- use work.ram_controller_phy_alt_mem_phy_constants_pkg.all; -- The iram address package (alt_mem_phy_iram_addr_pkg) is used to define the base addresses used -- for iram writes during calibration -- use work.ram_controller_phy_alt_mem_phy_iram_addr_pkg.all; -- The address and command package (alt_mem_phy_addr_cmd_pkg) is used to combine DRAM address -- and command signals in one record and unify the functions operating on this record. -- use work.ram_controller_phy_alt_mem_phy_addr_cmd_pkg.all; -- Individually include each of library files for the sub-blocks of the sequencer: -- use work.ram_controller_phy_alt_mem_phy_admin; -- use work.ram_controller_phy_alt_mem_phy_mmi; -- use work.ram_controller_phy_alt_mem_phy_iram; -- use work.ram_controller_phy_alt_mem_phy_dgrb; -- use work.ram_controller_phy_alt_mem_phy_dgwb; -- use work.ram_controller_phy_alt_mem_phy_ctrl; -- architecture struct of ram_controller_phy_alt_mem_phy_seq IS attribute altera_attribute : string; attribute altera_attribute of struct : architecture is "-name MESSAGE_DISABLE 18010"; -- debug signals (similar to those seen in the Quartus v8.0 DDR/DDR2 sequencer) signal rsu_multiple_valid_latencies_err : std_logic; -- true if >2 valid latency values are detected signal rsu_grt_one_dvw_err : std_logic; -- true if >1 data valid window is detected signal rsu_no_dvw_err : std_logic; -- true if no data valid window is detected signal rsu_codvw_phase : std_logic_vector(11 downto 0); -- set to the phase of the DVW detected if calibration is successful signal rsu_codvw_size : std_logic_vector(11 downto 0); -- set to the phase of the DVW detected if calibration is successful signal rsu_read_latency : std_logic_vector(ADV_LAT_WIDTH - 1 downto 0); -- set to the correct read latency if calibration is successful -- outputs from the dgrb to generate the above rsu_codvw_* signals and report status to the mmi signal dgrb_mmi : t_dgrb_mmi; -- admin to mmi interface signal regs_admin_ctrl_rec : t_admin_ctrl; -- mmi register settings information signal admin_regs_status_rec : t_admin_stat; -- admin status information -- odt enable from the admin block based on mr settings signal enable_odt : std_logic; -- iram status information (sent to the ctrl block) signal iram_status : t_iram_stat; -- dgrb iram write interface signal dgrb_iram : t_iram_push; -- ctrl to iram interface signal ctrl_idib_top : natural; -- current write location in the iram signal ctrl_active_block : t_ctrl_active_block; signal ctrl_iram_push : t_ctrl_iram; signal iram_push_done : std_logic; signal ctrl_iram_ihi_write : std_logic; -- local copies of calibration status signal ctl_init_success_int : std_logic; signal ctl_init_fail_int : std_logic; -- refresh period failure flag signal trefi_failure : std_logic; -- unified ctrl signal broadcast to all blocks from the ctrl block signal ctrl_broadcast : t_ctrl_command; -- standardised status report per block to control block signal admin_ctrl : t_ctrl_stat; signal dgwb_ctrl : t_ctrl_stat; signal dgrb_ctrl : t_ctrl_stat; -- mmi and ctrl block interface signal mmi_ctrl : t_mmi_ctrl; signal ctrl_mmi : t_ctrl_mmi; -- write datapath override signals signal dgwb_wdp_override : std_logic; signal dgrb_wdp_override : std_logic; -- address/command access request and grant between the dgrb/dgwb blocks and the admin block signal dgb_ac_access_gnt : std_logic; signal dgb_ac_access_gnt_r : std_logic; signal dgb_ac_access_req : std_logic; signal dgwb_ac_access_req : std_logic; signal dgrb_ac_access_req : std_logic; -- per block address/command record (multiplexed in this entity) signal admin_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal dgwb_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); signal dgrb_ac : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); -- doing read signal signal seq_rdv_doing_rd_int : std_logic_vector(seq_rdv_doing_rd'range); -- local copy of interface to inc/dec latency on rdata_valid and postamble signal seq_rdata_valid_lat_dec_int : std_logic; signal seq_rdata_valid_lat_inc_int : std_logic; signal seq_poa_lat_inc_1x_int : std_logic_vector(MEM_IF_DQS_WIDTH -1 downto 0); signal seq_poa_lat_dec_1x_int : std_logic_vector(MEM_IF_DQS_WIDTH -1 downto 0); -- local copy of write/read latency signal seq_ctl_wlat_int : std_logic_vector(seq_ctl_wlat'range); signal seq_ctl_rlat_int : std_logic_vector(seq_ctl_rlat'range); -- parameterisation of dgrb / dgwb / admin blocks from mmi register settings signal parameterisation_rec : t_algm_paramaterisation; -- PLL reconfig signal seq_pll_phs_shift_busy_r : std_logic; signal seq_pll_phs_shift_busy_ccd : std_logic; signal dgrb_pll_inc_dec_n : std_logic; signal dgrb_pll_start_reconfig : std_logic; signal dgrb_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); signal dgrb_phs_shft_busy : std_logic; signal mmi_pll_inc_dec_n : std_logic; signal mmi_pll_start_reconfig : std_logic; signal mmi_pll_select : std_logic_vector(CLOCK_INDEX_WIDTH - 1 downto 0); signal pll_mmi : t_pll_mmi; signal mmi_pll : t_mmi_pll_reconfig; -- address and command 1t setting (unused for Full Rate) signal int_ac_nt : std_logic_vector(((DWIDTH_RATIO+2)/4) - 1 downto 0); signal dgrb_ctrl_ac_nt_good : std_logic; -- the following signals are reserved for future use signal ctl_cal_byte_lanes_r : std_logic_vector(ctl_cal_byte_lanes'range); signal mmi_setup : t_ctrl_cmd_id; signal dgwb_iram : t_iram_push; -- track number of poa / rdv adjustments (reporting only) signal poa_adjustments : natural; signal rdv_adjustments : natural; -- convert input generics from natural to std_logic_vector constant c_phy_def_mr_1st_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_1ST, 16)); constant c_phy_def_mr_2nd_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_2ND, 16)); constant c_phy_def_mr_3rd_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_3RD, 16)); constant c_phy_def_mr_4th_sl_vector : std_logic_vector(15 downto 0) := std_logic_vector(to_unsigned(PHY_DEF_MR_4TH, 16)); -- overrride on capabilities to speed up simulation time function capabilities_override(capabilities : natural; sim_time_reductions : natural) return natural is begin if sim_time_reductions = 1 then return 2**c_hl_css_reg_cal_dis_bit; -- disable calibration completely else return capabilities; end if; end function; -- set sequencer capabilities constant c_capabilities_override : natural := capabilities_override(CAPABILITIES, SIM_TIME_REDUCTIONS); constant c_capabilities : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(c_capabilities_override,32)); -- setup for address/command interface constant c_seq_addr_cmd_config : t_addr_cmd_config_rec := set_config_rec(MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS, DWIDTH_RATIO, MEM_IF_MEMTYPE); -- setup for odt signals -- odt setting as implemented in the altera high-performance controller for ddrx memories constant c_odt_settings : t_odt_array(0 to MEM_IF_NUM_RANKS-1) := set_odt_values(MEM_IF_NUM_RANKS, MEM_IF_RANKS_PER_SLOT, MEM_IF_MEMTYPE); -- a prefix for all report signals to identify phy and sequencer block -- constant seq_report_prefix : string := "ram_controller_phy_alt_mem_phy_seq (top) : "; -- setup iram configuration constant c_iram_addresses : t_base_hdr_addresses := calc_iram_addresses(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_NUM_RANKS, MEM_IF_DQS_CAPTURE_EN); constant c_int_iram_awidth : natural := c_iram_addresses.required_addr_bits; constant c_preset_cal_setup : t_preset_cal := setup_instant_on(SIM_TIME_REDUCTIONS, FAMILYGROUP_ID, MEM_IF_MEMTYPE, DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, c_phy_def_mr_1st_sl_vector, c_phy_def_mr_2nd_sl_vector, c_phy_def_mr_3rd_sl_vector); constant c_preset_codvw_phase : natural := c_preset_cal_setup.codvw_phase; constant c_preset_codvw_size : natural := c_preset_cal_setup.codvw_size; constant c_tracking_interval_in_ms : natural := 128; constant c_mem_if_cal_bank : natural := 0; -- location to calibrate to constant c_mem_if_cal_base_col : natural := 0; -- default all zeros constant c_mem_if_cal_base_row : natural := 0; constant c_non_op_eval_md : string := "PIN_FINDER"; -- non_operational evaluation mode (used when GENERATE_ADDITIONAL_DBG_RTL = 1) begin -- architecture struct -- --------------------------------------------------------------- -- tie off unused signals to default values -- --------------------------------------------------------------- -- scan chain associated signals seq_scan_clk <= (others => '0'); seq_scan_enable_dqs_config <= (others => '0'); seq_scan_update <= (others => '0'); seq_scan_din <= (others => '0'); seq_scan_enable_ck <= (others => '0'); seq_scan_enable_dqs <= (others => '0'); seq_scan_enable_dqsn <= (others => '0'); seq_scan_enable_dq <= (others => '0'); seq_scan_enable_dm <= (others => '0'); seq_dqs_add_2t_delay <= (others => '0'); seq_rdp_inc_read_lat_1x <= (others => '0'); seq_rdp_dec_read_lat_1x <= (others => '0'); -- warning flag (not used in non-levelled sequencer) ctl_init_warning <= '0'; -- parity error flag (not used in non-levelled sequencer) parity_error_n <= '1'; -- admin: entity ram_controller_phy_alt_mem_phy_admin generic map ( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_CLK_PAIR_COUNT => MEM_IF_CLK_PAIR_COUNT, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, ADV_LAT_WIDTH => ADV_LAT_WIDTH, MEM_IF_DQSN_EN => MEM_IF_DQSN_EN, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_ROW => c_mem_if_cal_base_row, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, NON_OP_EVAL_MD => c_non_op_eval_md, MEM_IF_CLK_PS => MEM_IF_CLK_PS, TINIT_TCK => TINIT_TCK, TINIT_RST => TINIT_RST ) port map ( clk => clk, rst_n => rst_n, mem_ac_swapped_ranks => mem_ac_swapped_ranks, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, seq_ac => admin_ac, seq_ac_sel => seq_ac_sel, enable_odt => enable_odt, regs_admin_ctrl_rec => regs_admin_ctrl_rec, admin_regs_status_rec => admin_regs_status_rec, trefi_failure => trefi_failure, ctrl_admin => ctrl_broadcast, admin_ctrl => admin_ctrl, ac_access_req => dgb_ac_access_req, ac_access_gnt => dgb_ac_access_gnt, cal_fail => ctl_init_fail_int, cal_success => ctl_init_success_int, ctl_recalibrate_req => ctl_recalibrate_req ); -- selectively include the debug i/f (iram and mmi blocks) with_debug_if : if GENERATE_ADDITIONAL_DBG_RTL = 1 generate signal mmi_iram : t_iram_ctrl; signal mmi_iram_enable_writes : std_logic; signal rrp_mem_loc : natural range 0 to 2 ** c_int_iram_awidth - 1; signal command_req_r : std_logic; signal ctrl_broadcast_r : t_ctrl_command; begin -- register ctrl_broadcast locally process (clk, rst_n) begin if rst_n = '0' then ctrl_broadcast_r <= defaults; elsif rising_edge(clk) then ctrl_broadcast_r <= ctrl_broadcast; end if; end process; -- mmi : entity ram_controller_phy_alt_mem_phy_mmi generic map ( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_CLK_PAIR_COUNT => MEM_IF_CLK_PAIR_COUNT, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_DQS_CAPTURE => MEM_IF_DQS_CAPTURE_EN, ADV_LAT_WIDTH => ADV_LAT_WIDTH, RESYNCHRONISE_AVALON_DBG => RESYNCHRONISE_AVALON_DBG, AV_IF_ADDR_WIDTH => AV_IF_ADDR_WIDTH, NOM_DQS_PHASE_SETTING => NOM_DQS_PHASE_SETTING, SCAN_CLK_DIVIDE_BY => SCAN_CLK_DIVIDE_BY, RDP_ADDR_WIDTH => RDP_ADDR_WIDTH, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, IOE_PHASES_PER_TCK => IOE_PHASES_PER_TCK, IOE_DELAYS_PER_PHS => IOE_DELAYS_PER_PHS, MEM_IF_CLK_PS => MEM_IF_CLK_PS, PHY_DEF_MR_1ST => c_phy_def_mr_1st_sl_vector, PHY_DEF_MR_2ND => c_phy_def_mr_2nd_sl_vector, PHY_DEF_MR_3RD => c_phy_def_mr_3rd_sl_vector, PHY_DEF_MR_4TH => c_phy_def_mr_4th_sl_vector, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, PRESET_RLAT => PRESET_RLAT, CAPABILITIES => c_capabilities_override, USE_IRAM => '1', -- always use iram (generic is rfu) IRAM_AWIDTH => c_int_iram_awidth, TRACKING_INTERVAL_IN_MS => c_tracking_interval_in_ms, READ_LAT_WIDTH => ADV_LAT_WIDTH ) port map( clk => clk, rst_n => rst_n, dbg_seq_clk => dbg_seq_clk, dbg_seq_rst_n => dbg_seq_rst_n, dbg_seq_addr => dbg_seq_addr, dbg_seq_wr => dbg_seq_wr, dbg_seq_rd => dbg_seq_rd, dbg_seq_cs => dbg_seq_cs, dbg_seq_wr_data => dbg_seq_wr_data, seq_dbg_rd_data => seq_dbg_rd_data, seq_dbg_waitrequest => seq_dbg_waitrequest, regs_admin_ctrl => regs_admin_ctrl_rec, admin_regs_status => admin_regs_status_rec, mmi_iram => mmi_iram, mmi_iram_enable_writes => mmi_iram_enable_writes, iram_status => iram_status, mmi_ctrl => mmi_ctrl, ctrl_mmi => ctrl_mmi, int_ac_1t => int_ac_nt(0), invert_ac_1t => open, trefi_failure => trefi_failure, parameterisation_rec => parameterisation_rec, pll_mmi => pll_mmi, mmi_pll => mmi_pll, dgrb_mmi => dgrb_mmi ); -- iram : entity ram_controller_phy_alt_mem_phy_iram generic map( MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, FAMILYGROUP_ID => FAMILYGROUP_ID, MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, IRAM_AWIDTH => c_int_iram_awidth, REFRESH_COUNT_INIT => 12, PRESET_RLAT => PRESET_RLAT, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, CAPABILITIES => c_capabilities_override, IP_BUILDNUM => IP_BUILDNUM ) port map( clk => clk, rst_n => rst_n, mmi_iram => mmi_iram, mmi_iram_enable_writes => mmi_iram_enable_writes, iram_status => iram_status, iram_push_done => iram_push_done, ctrl_iram => ctrl_broadcast_r, dgrb_iram => dgrb_iram, admin_regs_status_rec => admin_regs_status_rec, ctrl_idib_top => ctrl_idib_top, ctrl_iram_push => ctrl_iram_push, dgwb_iram => dgwb_iram ); -- calculate where current data should go in the iram process (clk, rst_n) variable v_words_req : natural range 0 to 2 * MEM_IF_DWIDTH * PLL_STEPS_PER_CYCLE * DWIDTH_RATIO - 1; -- how many words are required begin if rst_n = '0' then ctrl_idib_top <= 0; command_req_r <= '0'; rrp_mem_loc <= 0; elsif rising_edge(clk) then if command_req_r = '0' and ctrl_broadcast_r.command_req = '1' then -- execute once on each command_req assertion -- default a 'safe location' ctrl_idib_top <= c_iram_addresses.safe_dummy; case ctrl_broadcast_r.command is when cmd_write_ihi => -- reset pointers rrp_mem_loc <= c_iram_addresses.rrp; ctrl_idib_top <= 0; -- write header to zero location always when cmd_rrp_sweep => -- add previous space requirement onto the current address ctrl_idib_top <= rrp_mem_loc; -- add the current space requirement to v_rrp_mem_loc -- there are (DWIDTH_RATIO/2) * PLL_STEPS_PER_CYCLE phases swept packed into 32 bit words per pin -- note: special case for single_bit calibration stages (e.g. read_mtp alignment) if ctrl_broadcast_r.command_op.single_bit = '1' then v_words_req := iram_wd_for_one_pin_rrp(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE_EN); else v_words_req := iram_wd_for_full_rrp(DWIDTH_RATIO, PLL_STEPS_PER_CYCLE, MEM_IF_DWIDTH, MEM_IF_DQS_CAPTURE_EN); end if; v_words_req := v_words_req + 2; -- add 1 word location for header / footer information rrp_mem_loc <= rrp_mem_loc + v_words_req; when cmd_rrp_seek | cmd_read_mtp => -- add previous space requirement onto the current address ctrl_idib_top <= rrp_mem_loc; -- require 3 words - header, result and footer v_words_req := 3; rrp_mem_loc <= rrp_mem_loc + v_words_req; when others => null; end case; end if; command_req_r <= ctrl_broadcast_r.command_req; -- if recalibration request then reset iram address if ctl_recalibrate_req = '1' or mmi_ctrl.calibration_start = '1' then rrp_mem_loc <= c_iram_addresses.rrp; end if; end if; end process; end generate; -- with debug interface -- if no debug interface (iram/mmi block) tie off relevant signals without_debug_if : if GENERATE_ADDITIONAL_DBG_RTL = 0 generate constant c_slv_hl_stage_enable : std_logic_vector(31 downto 0) := std_logic_vector(to_unsigned(c_capabilities_override, 32)); constant c_hl_stage_enable : std_logic_vector(c_hl_ccs_num_stages-1 downto 0) := c_slv_hl_stage_enable(c_hl_ccs_num_stages-1 downto 0); constant c_pll_360_sweeps : natural := rrp_pll_phase_mult(DWIDTH_RATIO, MEM_IF_DQS_CAPTURE_EN); signal mmi_regs : t_mmi_regs := defaults; begin -- avalon interface signals seq_dbg_rd_data <= (others => '0'); seq_dbg_waitrequest <= '0'; -- The following registers are generated to simplify the assignments which follow -- but will be optimised away in synthesis mmi_regs.rw_regs <= defaults(c_phy_def_mr_1st_sl_vector, c_phy_def_mr_2nd_sl_vector, c_phy_def_mr_3rd_sl_vector, c_phy_def_mr_4th_sl_vector, NOM_DQS_PHASE_SETTING, PLL_STEPS_PER_CYCLE, c_pll_360_sweeps, c_tracking_interval_in_ms, c_hl_stage_enable); mmi_regs.ro_regs <= defaults(dgrb_mmi, ctrl_mmi, pll_mmi, mmi_regs.rw_regs.rw_if_test, '0', -- do not use iram MEM_IF_DQS_CAPTURE_EN, int_ac_nt(0), trefi_failure, iram_status, c_int_iram_awidth); process(mmi_regs) begin -- debug parameterisation signals regs_admin_ctrl_rec <= pack_record(mmi_regs.rw_regs); parameterisation_rec <= pack_record(mmi_regs.rw_regs); mmi_pll <= pack_record(mmi_regs.rw_regs); mmi_ctrl <= pack_record(mmi_regs.rw_regs); end process; -- from the iram iram_status <= defaults; iram_push_done <= '0'; end generate; -- without debug interface -- dgrb : entity ram_controller_phy_alt_mem_phy_dgrb generic map( MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, MEM_IF_DQS_CAPTURE => MEM_IF_DQS_CAPTURE_EN, DWIDTH_RATIO => DWIDTH_RATIO, CLOCK_INDEX_WIDTH => CLOCK_INDEX_WIDTH, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, ADV_LAT_WIDTH => ADV_LAT_WIDTH, PRESET_RLAT => PRESET_RLAT, PLL_STEPS_PER_CYCLE => PLL_STEPS_PER_CYCLE, SIM_TIME_REDUCTIONS => SIM_TIME_REDUCTIONS, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, PRESET_CODVW_PHASE => c_preset_codvw_phase, PRESET_CODVW_SIZE => c_preset_codvw_size, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_COL => c_mem_if_cal_base_col, EN_OCT => EN_OCT ) port map( clk => clk, rst_n => rst_n, dgrb_ctrl => dgrb_ctrl, ctrl_dgrb => ctrl_broadcast, parameterisation_rec => parameterisation_rec, phs_shft_busy => dgrb_phs_shft_busy, seq_pll_inc_dec_n => dgrb_pll_inc_dec_n, seq_pll_select => dgrb_pll_select, seq_pll_start_reconfig => dgrb_pll_start_reconfig, pll_resync_clk_index => pll_resync_clk_index, pll_measure_clk_index => pll_measure_clk_index, dgrb_iram => dgrb_iram, iram_push_done => iram_push_done, dgrb_ac => dgrb_ac, dgrb_ac_access_req => dgrb_ac_access_req, dgrb_ac_access_gnt => dgb_ac_access_gnt_r, seq_rdata_valid_lat_inc => seq_rdata_valid_lat_inc_int, seq_rdata_valid_lat_dec => seq_rdata_valid_lat_dec_int, seq_poa_lat_dec_1x => seq_poa_lat_dec_1x_int, seq_poa_lat_inc_1x => seq_poa_lat_inc_1x_int, rdata_valid => rdata_valid, rdata => rdata, doing_rd => seq_rdv_doing_rd_int, rd_lat => seq_ctl_rlat_int, wd_lat => seq_ctl_wlat_int, dgrb_wdp_ovride => dgrb_wdp_override, seq_oct_value => seq_oct_value, seq_mmc_start => seq_mmc_start, mmc_seq_done => mmc_seq_done, mmc_seq_value => mmc_seq_value, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, odt_settings => c_odt_settings, dgrb_ctrl_ac_nt_good => dgrb_ctrl_ac_nt_good, dgrb_mmi => dgrb_mmi ); -- dgwb : entity ram_controller_phy_alt_mem_phy_dgwb generic map( -- Physical IF width definitions MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, MEM_IF_DQ_PER_DQS => MEM_IF_DQ_PER_DQS, MEM_IF_DWIDTH => MEM_IF_DWIDTH, MEM_IF_DM_WIDTH => MEM_IF_DM_WIDTH, DWIDTH_RATIO => DWIDTH_RATIO, MEM_IF_ADDR_WIDTH => MEM_IF_ADDR_WIDTH, MEM_IF_BANKADDR_WIDTH => MEM_IF_BANKADDR_WIDTH, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, ADV_LAT_WIDTH => ADV_LAT_WIDTH, MEM_IF_CAL_BANK => c_mem_if_cal_bank, MEM_IF_CAL_BASE_COL => c_mem_if_cal_base_col ) port map( clk => clk, rst_n => rst_n, parameterisation_rec => parameterisation_rec, dgwb_ctrl => dgwb_ctrl, ctrl_dgwb => ctrl_broadcast, dgwb_iram => dgwb_iram, iram_push_done => iram_push_done, dgwb_ac_access_req => dgwb_ac_access_req, dgwb_ac_access_gnt => dgb_ac_access_gnt_r, dgwb_dqs_burst => seq_wdp_dqs_burst, dgwb_wdata_valid => seq_wdp_wdata_valid, dgwb_wdata => seq_wdp_wdata, dgwb_dm => seq_wdp_dm, dgwb_dqs => seq_wdp_dqs, dgwb_wdp_ovride => dgwb_wdp_override, dgwb_ac => dgwb_ac, bypassed_rdata => rdata(DWIDTH_RATIO * MEM_IF_DWIDTH -1 downto (DWIDTH_RATIO-1) * MEM_IF_DWIDTH), odt_settings => c_odt_settings ); -- ctrl: entity ram_controller_phy_alt_mem_phy_ctrl generic map( FAMILYGROUP_ID => FAMILYGROUP_ID, MEM_IF_DLL_LOCK_COUNT => 1280/(DWIDTH_RATIO/2), MEM_IF_MEMTYPE => MEM_IF_MEMTYPE, DWIDTH_RATIO => DWIDTH_RATIO, IRAM_ADDRESSING => c_iram_addresses, MEM_IF_CLK_PS => MEM_IF_CLK_PS, TRACKING_INTERVAL_IN_MS => c_tracking_interval_in_ms, GENERATE_ADDITIONAL_DBG_RTL => GENERATE_ADDITIONAL_DBG_RTL, MEM_IF_NUM_RANKS => MEM_IF_NUM_RANKS, MEM_IF_DQS_WIDTH => MEM_IF_DQS_WIDTH, SIM_TIME_REDUCTIONS => SIM_TIME_REDUCTIONS, ACK_SEVERITY => warning ) port map( clk => clk, rst_n => rst_n, ctl_init_success => ctl_init_success_int, ctl_init_fail => ctl_init_fail_int, ctl_recalibrate_req => ctl_recalibrate_req, iram_status => iram_status, iram_push_done => iram_push_done, ctrl_op_rec => ctrl_broadcast, admin_ctrl => admin_ctrl, dgrb_ctrl => dgrb_ctrl, dgwb_ctrl => dgwb_ctrl, ctrl_iram_push => ctrl_iram_push, ctl_cal_byte_lanes => ctl_cal_byte_lanes_r, dgrb_ctrl_ac_nt_good => dgrb_ctrl_ac_nt_good, int_ac_nt => int_ac_nt, mmi_ctrl => mmi_ctrl, ctrl_mmi => ctrl_mmi ); -- ------------------------------------------------------------------ -- generate legacy rsu signals -- ------------------------------------------------------------------ process(rst_n, clk) begin if rst_n = '0' then rsu_multiple_valid_latencies_err <= '0'; rsu_grt_one_dvw_err <= '0'; rsu_no_dvw_err <= '0'; rsu_codvw_phase <= (others => '0'); rsu_codvw_size <= (others => '0'); rsu_read_latency <= (others => '0'); elsif rising_edge(clk) then if dgrb_ctrl.command_err = '1' then case to_integer(unsigned(dgrb_ctrl.command_result)) is when C_ERR_RESYNC_NO_VALID_PHASES => rsu_no_dvw_err <= '1'; when C_ERR_RESYNC_MULTIPLE_EQUAL_WINDOWS => rsu_multiple_valid_latencies_err <= '1'; when others => null; end case; end if; rsu_codvw_phase(dgrb_mmi.cal_codvw_phase'range) <= dgrb_mmi.cal_codvw_phase; rsu_codvw_size(dgrb_mmi.cal_codvw_size'range) <= dgrb_mmi.cal_codvw_size; rsu_read_latency <= seq_ctl_rlat_int; rsu_grt_one_dvw_err <= dgrb_mmi.codvw_grt_one_dvw; -- Reset the flag on a recal request : if ( ctl_recalibrate_req = '1') then rsu_grt_one_dvw_err <= '0'; rsu_no_dvw_err <= '0'; rsu_multiple_valid_latencies_err <= '0'; end if; end if; end process; -- --------------------------------------------------------------- -- top level multiplexing and ctrl functionality -- --------------------------------------------------------------- oct_delay_block : block constant DEFAULT_OCT_DELAY_CONST : integer := - 2; -- higher increases delay by one mem_clk cycle, lower decreases delay by one mem_clk cycle. constant DEFAULT_OCT_EXTEND : natural := 3; -- Returns additive latency extracted from mr0 as a natural number. function decode_cl(mr0 : in std_logic_vector(12 downto 0)) return natural is variable v_cl : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then v_cl := to_integer(unsigned(mr0(6 downto 4))); elsif MEM_IF_MEMTYPE = "DDR3" then v_cl := to_integer(unsigned(mr0(6 downto 4))) + 4; else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_cl; end function; -- Returns additive latency extracted from mr1 as a natural number. function decode_al(mr1 : in std_logic_vector(12 downto 0)) return natural is variable v_al : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" or MEM_IF_MEMTYPE = "DDR2" then v_al := to_integer(unsigned(mr1(5 downto 3))); elsif MEM_IF_MEMTYPE = "DDR3" then v_al := to_integer(unsigned(mr1(4 downto 3))); else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_al; end function; -- Returns cas write latency extracted from mr2 as a natural number. function decode_cwl( mr0 : in std_logic_vector(12 downto 0); mr2 : in std_logic_vector(12 downto 0) ) return natural is variable v_cwl : natural range 0 to 2**4 - 1; begin if MEM_IF_MEMTYPE = "DDR" then v_cwl := 1; elsif MEM_IF_MEMTYPE = "DDR2" then v_cwl := decode_cl(mr0) - 1; elsif MEM_IF_MEMTYPE = "DDR3" then v_cwl := to_integer(unsigned(mr2(4 downto 3))) + 5; else report "Unsupported memory type " & MEM_IF_MEMTYPE severity failure; end if; return v_cwl; end function; begin -- Process to work out timings for OCT extension and delay with respect to doing_read. NOTE that it is calculated on the basis of CL, CWL, ctl_wlat oct_delay_proc : process(clk, rst_n) variable v_cl : natural range 0 to 2**4 - 1; -- Total read latency. variable v_cwl : natural range 0 to 2**4 - 1; -- Total write latency variable oct_delay : natural range 0 to 2**OCT_LAT_WIDTH - 1; variable v_wlat : natural range 0 to 2**ADV_LAT_WIDTH - 1; begin if rst_n = '0' then seq_oct_oct_delay <= (others => '0'); seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); elsif rising_edge(clk) then if ctl_init_success_int = '1' then seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); v_cl := decode_cl(admin_regs_status_rec.mr0); v_cwl := decode_cwl(admin_regs_status_rec.mr0, admin_regs_status_rec.mr2); if SIM_TIME_REDUCTIONS = 1 then v_wlat := c_preset_cal_setup.wlat; else v_wlat := to_integer(unsigned(seq_ctl_wlat_int)); end if; oct_delay := DWIDTH_RATIO * v_wlat / 2 + (v_cl - v_cwl) + DEFAULT_OCT_DELAY_CONST; if not (FAMILYGROUP_ID = 2) then -- CIII doesn't support OCT seq_oct_oct_delay <= std_logic_vector(to_unsigned(oct_delay, OCT_LAT_WIDTH)); end if; else seq_oct_oct_delay <= (others => '0'); seq_oct_oct_extend <= std_logic_vector(to_unsigned(DEFAULT_OCT_EXTEND, OCT_LAT_WIDTH)); end if; end if; end process; end block; -- control postamble protection override signal (seq_poa_protection_override_1x) process(clk, rst_n) variable v_warning_given : std_logic; begin if rst_n = '0' then seq_poa_protection_override_1x <= '0'; v_warning_given := '0'; elsif rising_edge(clk) then case ctrl_broadcast.command is when cmd_rdv | cmd_rrp_sweep | cmd_rrp_seek | cmd_prep_adv_rd_lat | cmd_prep_adv_wr_lat => seq_poa_protection_override_1x <= '1'; when others => seq_poa_protection_override_1x <= '0'; end case; end if; end process; ac_mux : block constant c_mem_clk_disable_pipe_len : natural := 3; signal seen_phy_init_complete : std_logic; signal mem_clk_disable : std_logic_vector(c_mem_clk_disable_pipe_len - 1 downto 0); signal ctrl_broadcast_r : t_ctrl_command; begin -- register ctrl_broadcast locally -- #for speed and to reduce fan out process (clk, rst_n) begin if rst_n = '0' then ctrl_broadcast_r <= defaults; elsif rising_edge(clk) then ctrl_broadcast_r <= ctrl_broadcast; end if; end process; -- multiplex mem interface control between admin, dgrb and dgwb process(clk, rst_n) variable v_seq_ac_mux : t_addr_cmd_vector(0 to (DWIDTH_RATIO/2)-1); begin if rst_n = '0' then seq_rdv_doing_rd <= (others => '0'); seq_mem_clk_disable <= '1'; mem_clk_disable <= (others => '1'); seen_phy_init_complete <= '0'; seq_ac_addr <= (others => '0'); seq_ac_ba <= (others => '0'); seq_ac_cas_n <= (others => '1'); seq_ac_ras_n <= (others => '1'); seq_ac_we_n <= (others => '1'); seq_ac_cke <= (others => '0'); seq_ac_cs_n <= (others => '1'); seq_ac_odt <= (others => '0'); seq_ac_rst_n <= (others => '0'); elsif rising_edge(clk) then seq_rdv_doing_rd <= seq_rdv_doing_rd_int; seq_mem_clk_disable <= mem_clk_disable(c_mem_clk_disable_pipe_len-1); mem_clk_disable(c_mem_clk_disable_pipe_len-1 downto 1) <= mem_clk_disable(c_mem_clk_disable_pipe_len-2 downto 0); if dgwb_ac_access_req = '1' and dgb_ac_access_gnt = '1' then v_seq_ac_mux := dgwb_ac; elsif dgrb_ac_access_req = '1' and dgb_ac_access_gnt = '1' then v_seq_ac_mux := dgrb_ac; else v_seq_ac_mux := admin_ac; end if; if ctl_recalibrate_req = '1' then mem_clk_disable(0) <= '1'; seen_phy_init_complete <= '0'; elsif ctrl_broadcast_r.command = cmd_init_dram and ctrl_broadcast_r.command_req = '1' then mem_clk_disable(0) <= '0'; seen_phy_init_complete <= '1'; end if; if seen_phy_init_complete /= '1' then -- if not initialised the phy hold in reset seq_ac_addr <= (others => '0'); seq_ac_ba <= (others => '0'); seq_ac_cas_n <= (others => '1'); seq_ac_ras_n <= (others => '1'); seq_ac_we_n <= (others => '1'); seq_ac_cke <= (others => '0'); seq_ac_cs_n <= (others => '1'); seq_ac_odt <= (others => '0'); seq_ac_rst_n <= (others => '0'); else if enable_odt = '0' then v_seq_ac_mux := mask(c_seq_addr_cmd_config, v_seq_ac_mux, odt, '0'); end if; unpack_addr_cmd_vector ( c_seq_addr_cmd_config, v_seq_ac_mux, seq_ac_addr, seq_ac_ba, seq_ac_cas_n, seq_ac_ras_n, seq_ac_we_n, seq_ac_cke, seq_ac_cs_n, seq_ac_odt, seq_ac_rst_n); end if; end if; end process; end block; -- register dgb_ac_access_gnt signal to ensure ODT set correctly in dgrb and dgwb prior to a read or write operation process(clk, rst_n) begin if rst_n = '0' then dgb_ac_access_gnt_r <= '0'; elsif rising_edge(clk) then dgb_ac_access_gnt_r <= dgb_ac_access_gnt; end if; end process; -- multiplex access request from dgrb/dgwb to admin block with checking for multiple accesses process (dgrb_ac_access_req, dgwb_ac_access_req) begin dgb_ac_access_req <= '0'; if dgwb_ac_access_req = '1' and dgrb_ac_access_req = '1' then report seq_report_prefix & "multiple accesses attempted from DGRB and DGWB to admin block via signals dg.b_ac_access_reg " severity failure; elsif dgwb_ac_access_req = '1' or dgrb_ac_access_req = '1' then dgb_ac_access_req <= '1'; end if; end process; rdv_poa_blk : block -- signals to control static setup of ctl_rdata_valid signal for instant on mode: constant c_static_rdv_offset : integer := c_preset_cal_setup.rdv_lat; -- required change in RDV latency (should always be > 0) signal static_rdv_offset : natural range 0 to abs(c_static_rdv_offset); -- signal to count # RDV shifts constant c_dly_rdv_set : natural := 7; -- delay between RDV shifts signal dly_rdv_inc_dec : std_logic; -- 1 = inc, 0 = dec signal rdv_set_delay : natural range 0 to c_dly_rdv_set; -- signal to delay RDV shifts -- same for poa protection constant c_static_poa_offset : integer := c_preset_cal_setup.poa_lat; signal static_poa_offset : natural range 0 to abs(c_static_poa_offset); constant c_dly_poa_set : natural := 7; signal dly_poa_inc_dec : std_logic; signal poa_set_delay : natural range 0 to c_dly_poa_set; -- function to abstract increment or decrement checking function set_inc_dec(offset : integer) return std_logic is begin if offset < 0 then return '1'; else return '0'; end if; end function; begin -- register postamble and rdata_valid latencies -- note: postamble unused for Cyclone-III -- RDV process(clk, rst_n) begin if rst_n = '0' then if SIM_TIME_REDUCTIONS = 1 then -- setup offset calc static_rdv_offset <= abs(c_static_rdv_offset); dly_rdv_inc_dec <= set_inc_dec(c_static_rdv_offset); rdv_set_delay <= c_dly_rdv_set; end if; seq_rdata_valid_lat_dec <= '0'; seq_rdata_valid_lat_inc <= '0'; elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then -- perform static setup of RDV signal if ctl_recalibrate_req = '1' then -- second reset condition -- setup offset calc static_rdv_offset <= abs(c_static_rdv_offset); dly_rdv_inc_dec <= set_inc_dec(c_static_rdv_offset); rdv_set_delay <= c_dly_rdv_set; else if static_rdv_offset /= 0 and rdv_set_delay = 0 then seq_rdata_valid_lat_dec <= not dly_rdv_inc_dec; seq_rdata_valid_lat_inc <= dly_rdv_inc_dec; static_rdv_offset <= static_rdv_offset - 1; rdv_set_delay <= c_dly_rdv_set; else -- once conplete pass through internal signals seq_rdata_valid_lat_dec <= seq_rdata_valid_lat_dec_int; seq_rdata_valid_lat_inc <= seq_rdata_valid_lat_inc_int; end if; if rdv_set_delay /= 0 then rdv_set_delay <= rdv_set_delay - 1; end if; end if; else -- no static setup seq_rdata_valid_lat_dec <= seq_rdata_valid_lat_dec_int; seq_rdata_valid_lat_inc <= seq_rdata_valid_lat_inc_int; end if; end if; end process; -- count number of RDV adjustments for debug process(clk, rst_n) begin if rst_n = '0' then rdv_adjustments <= 0; elsif rising_edge(clk) then if seq_rdata_valid_lat_dec_int = '1' then rdv_adjustments <= rdv_adjustments + 1; end if; if seq_rdata_valid_lat_inc_int = '1' then if rdv_adjustments = 0 then report seq_report_prefix & " read data valid adjustment wrap around detected - more increments than decrements" severity failure; else rdv_adjustments <= rdv_adjustments - 1; end if; end if; end if; end process; -- POA protection process(clk, rst_n) begin if rst_n = '0' then if SIM_TIME_REDUCTIONS = 1 then -- setup offset calc static_poa_offset <= abs(c_static_poa_offset); dly_poa_inc_dec <= set_inc_dec(c_static_poa_offset); poa_set_delay <= c_dly_poa_set; end if; seq_poa_lat_dec_1x <= (others => '0'); seq_poa_lat_inc_1x <= (others => '0'); elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then -- static setup if ctl_recalibrate_req = '1' then -- second reset condition -- setup offset calc static_poa_offset <= abs(c_static_poa_offset); dly_poa_inc_dec <= set_inc_dec(c_static_poa_offset); poa_set_delay <= c_dly_poa_set; else if static_poa_offset /= 0 and poa_set_delay = 0 then seq_poa_lat_dec_1x <= (others => not(dly_poa_inc_dec)); seq_poa_lat_inc_1x <= (others => dly_poa_inc_dec); static_poa_offset <= static_poa_offset - 1; poa_set_delay <= c_dly_poa_set; else seq_poa_lat_inc_1x <= seq_poa_lat_inc_1x_int; seq_poa_lat_dec_1x <= seq_poa_lat_dec_1x_int; end if; if poa_set_delay /= 0 then poa_set_delay <= poa_set_delay - 1; end if; end if; else -- no static setup seq_poa_lat_inc_1x <= seq_poa_lat_inc_1x_int; seq_poa_lat_dec_1x <= seq_poa_lat_dec_1x_int; end if; end if; end process; -- count POA protection adjustments for debug process(clk, rst_n) begin if rst_n = '0' then poa_adjustments <= 0; elsif rising_edge(clk) then if seq_poa_lat_dec_1x_int(0) = '1' then poa_adjustments <= poa_adjustments + 1; end if; if seq_poa_lat_inc_1x_int(0) = '1' then if poa_adjustments = 0 then report seq_report_prefix & " postamble adjustment wrap around detected - more increments than decrements" severity failure; else poa_adjustments <= poa_adjustments - 1; end if; end if; end if; end process; end block; -- register output fail/success signals - avoiding optimisation out process(clk, rst_n) begin if rst_n = '0' then ctl_init_fail <= '0'; ctl_init_success <= '0'; elsif rising_edge(clk) then ctl_init_fail <= ctl_init_fail_int; ctl_init_success <= ctl_init_success_int; end if; end process; -- ctl_cal_byte_lanes register -- seq_rdp_reset_req_n - when ctl_recalibrate_req issued process(clk,rst_n) begin if rst_n = '0' then seq_rdp_reset_req_n <= '0'; ctl_cal_byte_lanes_r <= (others => '1'); elsif rising_edge(clk) then ctl_cal_byte_lanes_r <= not ctl_cal_byte_lanes; if ctl_recalibrate_req = '1' then seq_rdp_reset_req_n <= '0'; else if ctrl_broadcast.command = cmd_rrp_sweep or SIM_TIME_REDUCTIONS = 1 then seq_rdp_reset_req_n <= '1'; end if; end if; end if; end process; -- register 1t addr/cmd and odt latency outputs process(clk, rst_n) begin if rst_n = '0' then seq_ac_add_1t_ac_lat_internal <= '0'; seq_ac_add_1t_odt_lat_internal <= '0'; seq_ac_add_2t <= '0'; elsif rising_edge(clk) then if SIM_TIME_REDUCTIONS = 1 then seq_ac_add_1t_ac_lat_internal <= c_preset_cal_setup.ac_1t; seq_ac_add_1t_odt_lat_internal <= c_preset_cal_setup.ac_1t; else seq_ac_add_1t_ac_lat_internal <= int_ac_nt(0); seq_ac_add_1t_odt_lat_internal <= int_ac_nt(0); end if; seq_ac_add_2t <= '0'; end if; end process; -- override write datapath signal generation process(dgwb_wdp_override, dgrb_wdp_override, ctl_init_success_int, ctl_init_fail_int) begin if ctl_init_success_int = '0' and ctl_init_fail_int = '0' then -- if calibrating seq_wdp_ovride <= dgwb_wdp_override or dgrb_wdp_override; else seq_wdp_ovride <= '0'; end if; end process; -- output write/read latency (override with preset values when sim time reductions equals 1 seq_ctl_wlat <= std_logic_vector(to_unsigned(c_preset_cal_setup.wlat,ADV_LAT_WIDTH)) when SIM_TIME_REDUCTIONS = 1 else seq_ctl_wlat_int; seq_ctl_rlat <= std_logic_vector(to_unsigned(c_preset_cal_setup.rlat,ADV_LAT_WIDTH)) when SIM_TIME_REDUCTIONS = 1 else seq_ctl_rlat_int; process (clk, rst_n) begin if rst_n = '0' then seq_pll_phs_shift_busy_r <= '0'; seq_pll_phs_shift_busy_ccd <= '0'; elsif rising_edge(clk) then seq_pll_phs_shift_busy_r <= seq_pll_phs_shift_busy; seq_pll_phs_shift_busy_ccd <= seq_pll_phs_shift_busy_r; end if; end process; pll_ctrl: block -- static resync setup variables for sim time reductions signal static_rst_offset : natural range 0 to 2*PLL_STEPS_PER_CYCLE; signal phs_shft_busy_1r : std_logic; signal pll_set_delay : natural range 100 downto 0; -- wait 100 clock cycles for clk to be stable before setting resync phase -- pll signal generation signal mmi_pll_active : boolean; signal seq_pll_phs_shift_busy_ccd_1t : std_logic; begin -- multiplex ppl interface between dgrb and mmi blocks -- plus static setup of rsc phase to a known 'good' condition process(clk,rst_n) begin if rst_n = '0' then seq_pll_inc_dec_n <= '0'; seq_pll_start_reconfig <= '0'; seq_pll_select <= (others => '0'); dgrb_phs_shft_busy <= '0'; -- static resync setup variables for sim time reductions if SIM_TIME_REDUCTIONS = 1 then static_rst_offset <= c_preset_codvw_phase; else static_rst_offset <= 0; end if; phs_shft_busy_1r <= '0'; pll_set_delay <= 100; elsif rising_edge(clk) then dgrb_phs_shft_busy <= '0'; if static_rst_offset /= 0 and -- not finished decrementing pll_set_delay = 0 and -- initial reset period over SIM_TIME_REDUCTIONS = 1 then -- in reduce sim time mode (optimse logic away when not in this mode) seq_pll_inc_dec_n <= '1'; seq_pll_start_reconfig <= '1'; seq_pll_select <= pll_resync_clk_index; if seq_pll_phs_shift_busy_ccd = '1' then -- no metastability hardening needed in simulation -- PLL phase shift started - so stop requesting a shift seq_pll_start_reconfig <= '0'; end if; if seq_pll_phs_shift_busy_ccd = '0' and phs_shft_busy_1r = '1' then -- PLL phase shift finished - so proceed to flush the datapath static_rst_offset <= static_rst_offset - 1; seq_pll_start_reconfig <= '0'; end if; phs_shft_busy_1r <= seq_pll_phs_shift_busy_ccd; else if ctrl_iram_push.active_block = ret_dgrb then seq_pll_inc_dec_n <= dgrb_pll_inc_dec_n; seq_pll_start_reconfig <= dgrb_pll_start_reconfig; seq_pll_select <= dgrb_pll_select; dgrb_phs_shft_busy <= seq_pll_phs_shift_busy_ccd; else seq_pll_inc_dec_n <= mmi_pll_inc_dec_n; seq_pll_start_reconfig <= mmi_pll_start_reconfig; seq_pll_select <= mmi_pll_select; end if; end if; if pll_set_delay /= 0 then pll_set_delay <= pll_set_delay - 1; end if; if ctl_recalibrate_req = '1' then pll_set_delay <= 100; end if; end if; end process; -- generate mmi pll signals process (clk, rst_n) begin if rst_n = '0' then pll_mmi.pll_busy <= '0'; pll_mmi.err <= (others => '0'); mmi_pll_inc_dec_n <= '0'; mmi_pll_start_reconfig <= '0'; mmi_pll_select <= (others => '0'); mmi_pll_active <= false; seq_pll_phs_shift_busy_ccd_1t <= '0'; elsif rising_edge(clk) then if mmi_pll_active = true then pll_mmi.pll_busy <= '1'; else pll_mmi.pll_busy <= mmi_pll.pll_phs_shft_up_wc or mmi_pll.pll_phs_shft_dn_wc; end if; if pll_mmi.err = "00" and dgrb_pll_start_reconfig = '1' then pll_mmi.err <= "01"; elsif pll_mmi.err = "00" and mmi_pll_active = true then pll_mmi.err <= "10"; elsif pll_mmi.err = "00" and dgrb_pll_start_reconfig = '1' and mmi_pll_active = true then pll_mmi.err <= "11"; end if; if mmi_pll.pll_phs_shft_up_wc = '1' and mmi_pll_active = false then mmi_pll_inc_dec_n <= '1'; mmi_pll_select <= std_logic_vector(to_unsigned(mmi_pll.pll_phs_shft_phase_sel,mmi_pll_select'length)); mmi_pll_active <= true; elsif mmi_pll.pll_phs_shft_dn_wc = '1' and mmi_pll_active = false then mmi_pll_inc_dec_n <= '0'; mmi_pll_select <= std_logic_vector(to_unsigned(mmi_pll.pll_phs_shft_phase_sel,mmi_pll_select'length)); mmi_pll_active <= true; elsif seq_pll_phs_shift_busy_ccd_1t = '1' and seq_pll_phs_shift_busy_ccd = '0' then mmi_pll_start_reconfig <= '0'; mmi_pll_active <= false; elsif mmi_pll_active = true and mmi_pll_start_reconfig = '0' and seq_pll_phs_shift_busy_ccd = '0' then mmi_pll_start_reconfig <= '1'; elsif seq_pll_phs_shift_busy_ccd_1t = '0' and seq_pll_phs_shift_busy_ccd = '1' then mmi_pll_start_reconfig <= '0'; end if; seq_pll_phs_shift_busy_ccd_1t <= seq_pll_phs_shift_busy_ccd; end if; end process; end block; -- pll_ctrl --synopsys synthesis_off reporting : block function pass_or_fail_report( cal_success : in std_logic; cal_fail : in std_logic ) return string is begin if cal_success = '1' and cal_fail = '1' then return "unknown state cal_fail and cal_success both high"; end if; if cal_success = '1' then return "PASSED"; end if; if cal_fail = '1' then return "FAILED"; end if; return "calibration report run whilst sequencer is still calibrating"; end function; function is_stage_disabled ( stage_name : in string; stage_dis : in std_logic ) return string is begin if stage_dis = '0' then return ""; else return stage_name & " stage is disabled" & LF; end if; end function; function disabled_stages ( capabilities : in std_logic_vector ) return string is begin return is_stage_disabled("all calibration", c_capabilities(c_hl_css_reg_cal_dis_bit)) & is_stage_disabled("initialisation", c_capabilities(c_hl_css_reg_phy_initialise_dis_bit)) & is_stage_disabled("DRAM initialisation", c_capabilities(c_hl_css_reg_init_dram_dis_bit)) & is_stage_disabled("iram header write", c_capabilities(c_hl_css_reg_write_ihi_dis_bit)) & is_stage_disabled("burst training pattern write", c_capabilities(c_hl_css_reg_write_btp_dis_bit)) & is_stage_disabled("more training pattern (MTP) write", c_capabilities(c_hl_css_reg_write_mtp_dis_bit)) & is_stage_disabled("check MTP pattern alignment calculation", c_capabilities(c_hl_css_reg_read_mtp_dis_bit)) & is_stage_disabled("read resynch phase reset stage", c_capabilities(c_hl_css_reg_rrp_reset_dis_bit)) & is_stage_disabled("read resynch phase sweep stage", c_capabilities(c_hl_css_reg_rrp_sweep_dis_bit)) & is_stage_disabled("read resynch phase seek stage (set phase)", c_capabilities(c_hl_css_reg_rrp_seek_dis_bit)) & is_stage_disabled("read data valid window setup", c_capabilities(c_hl_css_reg_rdv_dis_bit)) & is_stage_disabled("postamble calibration", c_capabilities(c_hl_css_reg_poa_dis_bit)) & is_stage_disabled("write latency timing calc", c_capabilities(c_hl_css_reg_was_dis_bit)) & is_stage_disabled("advertise read latency", c_capabilities(c_hl_css_reg_adv_rd_lat_dis_bit)) & is_stage_disabled("advertise write latency", c_capabilities(c_hl_css_reg_adv_wr_lat_dis_bit)) & is_stage_disabled("write customer mode register settings", c_capabilities(c_hl_css_reg_prep_customer_mr_setup_dis_bit)) & is_stage_disabled("tracking", c_capabilities(c_hl_css_reg_tracking_dis_bit)); end function; function ac_nt_report( ac_nt : in std_logic_vector; dgrb_ctrl_ac_nt_good : in std_logic; preset_cal_setup : in t_preset_cal) return string is variable v_ac_nt : std_logic_vector(0 downto 0); begin if SIM_TIME_REDUCTIONS = 1 then v_ac_nt(0) := preset_cal_setup.ac_1t; if v_ac_nt(0) = '1' then return "-- statically set address and command 1T delay: add 1T delay" & LF; else return "-- statically set address and command 1T delay: no 1T delay" & LF; end if; else v_ac_nt(0) := ac_nt(0); if dgrb_ctrl_ac_nt_good = '1' then if v_ac_nt(0) = '1' then return "-- chosen address and command 1T delay: add 1T delay" & LF; else return "-- chosen address and command 1T delay: no 1T delay" & LF; end if; else return "-- no valid address and command phase chosen (calibration FAILED)" & LF; end if; end if; end function; function read_resync_report ( codvw_phase : in std_logic_vector; codvw_size : in std_logic_vector; ctl_rlat : in std_logic_vector; ctl_wlat : in std_logic_vector; preset_cal_setup : in t_preset_cal) return string is begin if SIM_TIME_REDUCTIONS = 1 then return "-- read resynch phase static setup (no calibration run) report:" & LF & " -- statically set centre of data valid window phase : " & natural'image(preset_cal_setup.codvw_phase) & LF & " -- statically set centre of data valid window size : " & natural'image(preset_cal_setup.codvw_size) & LF & " -- statically set read latency (ctl_rlat) : " & natural'image(preset_cal_setup.rlat) & LF & " -- statically set write latency (ctl_wlat) : " & natural'image(preset_cal_setup.wlat) & LF & " -- note: this mode only works for simulation and sets resync phase" & LF & " to a known good operating condition for no test bench" & LF & " delays on mem_dq signal" & LF; else return "-- PHY read latency (ctl_rlat) is : " & natural'image(to_integer(unsigned(ctl_rlat))) & LF & "-- address/command to PHY write latency (ctl_wlat) is : " & natural'image(to_integer(unsigned(ctl_wlat))) & LF & "-- read resynch phase calibration report:" & LF & " -- calibrated centre of data valid window phase : " & natural'image(to_integer(unsigned(codvw_phase))) & LF & " -- calibrated centre of data valid window size : " & natural'image(to_integer(unsigned(codvw_size))) & LF; end if; end function; function poa_rdv_adjust_report( poa_adjust : in natural; rdv_adjust : in natural; preset_cal_setup : in t_preset_cal) return string is begin if SIM_TIME_REDUCTIONS = 1 then return "Statically set poa and rdv (adjustments from reset value):" & LF & "poa 'dec' adjustments = " & natural'image(preset_cal_setup.poa_lat) & LF & "rdv 'dec' adjustments = " & natural'image(preset_cal_setup.rdv_lat) & LF; else return "poa 'dec' adjustments = " & natural'image(poa_adjust) & LF & "rdv 'dec' adjustments = " & natural'image(rdv_adjust) & LF; end if; end function; function calibration_report ( capabilities : in std_logic_vector; cal_success : in std_logic; cal_fail : in std_logic; ctl_rlat : in std_logic_vector; ctl_wlat : in std_logic_vector; codvw_phase : in std_logic_vector; codvw_size : in std_logic_vector; ac_nt : in std_logic_vector; dgrb_ctrl_ac_nt_good : in std_logic; preset_cal_setup : in t_preset_cal; poa_adjust : in natural; rdv_adjust : in natural) return string is begin return seq_report_prefix & " report..." & LF & "-----------------------------------------------------------------------" & LF & "-- **** ALTMEMPHY CALIBRATION has completed ****" & LF & "-- Status:" & LF & "-- calibration has : " & pass_or_fail_report(cal_success, cal_fail) & LF & read_resync_report(codvw_phase, codvw_size, ctl_rlat, ctl_wlat, preset_cal_setup) & ac_nt_report(ac_nt, dgrb_ctrl_ac_nt_good, preset_cal_setup) & poa_rdv_adjust_report(poa_adjust, rdv_adjust, preset_cal_setup) & disabled_stages(capabilities) & "-----------------------------------------------------------------------"; end function; begin -- ------------------------------------------------------- -- calibration result reporting -- ------------------------------------------------------- process(rst_n, clk) variable v_reports_written : std_logic; variable v_cal_request_r : std_logic; variable v_rewrite_report : std_logic; begin if rst_n = '0' then v_reports_written := '0'; v_cal_request_r := '0'; v_rewrite_report := '0'; elsif Rising_Edge(clk) then if v_reports_written = '0' then if ctl_init_success_int = '1' or ctl_init_fail_int = '1' then v_reports_written := '1'; report calibration_report(c_capabilities, ctl_init_success_int, ctl_init_fail_int, seq_ctl_rlat_int, seq_ctl_wlat_int, dgrb_mmi.cal_codvw_phase, dgrb_mmi.cal_codvw_size, int_ac_nt, dgrb_ctrl_ac_nt_good, c_preset_cal_setup, poa_adjustments, rdv_adjustments ) severity note; end if; end if; -- if recalibrate request triggered watch for cal success / fail going low and re-trigger report writing if ctl_recalibrate_req = '1' and v_cal_request_r = '0' then v_rewrite_report := '1'; end if; if v_rewrite_report = '1' and ctl_init_success_int = '0' and ctl_init_fail_int = '0' then v_reports_written := '0'; v_rewrite_report := '0'; end if; v_cal_request_r := ctl_recalibrate_req; end if; end process; -- ------------------------------------------------------- -- capabilities vector reporting and coarse PHY setup sanity checks -- ------------------------------------------------------- process(rst_n, clk) variable reports_written : std_logic; begin if rst_n = '0' then reports_written := '0'; elsif Rising_Edge(clk) then if reports_written = '0' then reports_written := '1'; if MEM_IF_MEMTYPE="DDR" or MEM_IF_MEMTYPE="DDR2" or MEM_IF_MEMTYPE="DDR3" then if DWIDTH_RATIO = 2 or DWIDTH_RATIO = 4 then report disabled_stages(c_capabilities) severity note; else report seq_report_prefix & "unsupported rate for non-levelling AFI PHY sequencer - only full- or half-rate supported" severity warning; end if; else report seq_report_prefix & "memory type " & MEM_IF_MEMTYPE & " is not supported in non-levelling AFI PHY sequencer" severity failure; end if; end if; end if; end process; end block; -- reporting --synopsys synthesis_on end architecture struct;
gpl-2.0
samvartaka/simon_vhdl
MIXED_ROUND_PIPELINING/tb_neg_reg_32.vhd
3
1825
-- SIMON 64/128 -- feistel round function operation phi test bench -- -- @Author: Jos Wetzels -- @Author: Wouter Bokslag -- LIBRARY ieee; USE ieee.std_logic_1164.ALL; ENTITY tb_neg_reg_32 IS END tb_neg_reg_32; ARCHITECTURE behavior OF tb_neg_reg_32 IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT neg_reg_32 is port(clk : in std_logic; rst : in std_logic; data_in : in std_logic_vector(31 downto 0); data_out : out std_logic_vector(31 downto 0) ); END COMPONENT; --Inputs signal clk : std_logic := '0'; signal rst : std_logic := '1'; signal data_in : std_logic_vector(31 downto 0) := (others => '0'); -- input --Outputs signal data_out : std_logic_vector(31 downto 0); -- output -- Clock period definitions constant clk_period : time := 10 ns; signal clk_generator_finish : STD_LOGIC := '0'; signal test_bench_finish : STD_LOGIC := '0'; BEGIN -- Instantiate the Unit Under Test (UUT) uut: neg_reg_32 PORT MAP ( clk => clk, rst => rst, data_in => data_in, data_out => data_out ); -- Clock process definitions clock : process begin while ( clk_generator_finish /= '1') loop clk <= not clk; wait for clk_period/2; end loop; wait; end process; -- Stimulus process stim_proc: process begin wait for clk_period/2 + 10*clk_period; rst <= '1'; wait for clk_period; assert data_out = X"00000000" report "NEG_REG_32 ERROR (r_1)" severity FAILURE; rst <= '0'; data_in <= X"CAFECAFE"; wait for clk_period; assert data_out = X"CAFECAFE" report "NEG_REG_32 ERROR (r_1)" severity FAILURE; test_bench_finish <= '1'; clk_generator_finish <= '1'; wait for clk_period; wait; end process; END;
gpl-2.0
twasiluk/hdmilight
fpga/ws2811Driver.vhd
2
3565
---------------------------------------------------------------------------------- -- -- Copyright (C) 2013 Stephen Robinson -- -- This file is part of HDMI-Light -- -- HDMI-Light is free software: you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation, either version 2 of the License, or -- (at your option) any later version. -- -- HDMI-Light is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this code (see the file names COPING). -- If not, see <http://www.gnu.org/licenses/>. -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use ieee.numeric_std.all; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity ws2811Driver is Port ( clk : in STD_LOGIC; load : in STD_LOGIC; datain : in STD_LOGIC_VECTOR (23 downto 0); busy : out STD_LOGIC := '0'; dataout : out STD_LOGIC); end ws2811Driver; architecture Behavioral of ws2811Driver is signal bitcount : std_logic_vector(4 downto 0); signal subbitcount : std_logic_vector(4 downto 0); --signal count : std_logic_vector(9 downto 0) := "1011111000"; signal countEnable : std_logic; signal shiftData : std_logic_vector(23 downto 0); signal shiftEnable : std_logic; signal shiftOutput : std_logic; signal nextOutput : std_logic; begin process(clk) begin if(rising_edge(clk)) then if(load = '1') then bitcount <= (others => '0'); subbitcount <= (others => '0'); elsif(countEnable = '1') then subbitcount <= std_logic_vector(unsigned(subbitcount) + 1); if(subbitcount = "10011") then bitcount <= std_logic_vector(unsigned(bitcount) + 1); subbitcount <= (others => '0'); end if; end if; end if; end process; --process(clk) --begin -- if(rising_edge(clk)) then -- if(load = '1') then -- count <= (others => '0'); -- elsif(countEnable = '1') then -- count <= std_logic_vector(unsigned(count) + 1); -- end if; -- end if; --end process; process(clk) begin if(rising_edge(clk)) then if(load = '1') then shiftData <= datain; elsif(shiftEnable = '1') then shiftData <= shiftData(22 downto 0) & "0"; end if; end if; end process; process(clk) begin if(rising_edge(clk)) then dataout <= nextOutput; end if; end process; process(clk) begin if(rising_edge(clk)) then if(load = '1') then busy <= '1'; elsif (bitcount = "10111" and subbitcount = "10001") then busy <= '0'; end if; end if; end process; -- freeze counter when it reaches 24 bytes (24*4 clocks) countEnable <= '0' when bitcount = "10111" and subbitcount = "10011" else '1'; -- enable shift every 4 clocks shiftEnable <= '1' when subbitcount = "10011" else '0'; shiftOutput <= shiftData(23); -- over a 4 clock period: -- for a 1 output 1 1 1 0 -- for a 0 output 1 0 0 0 nextOutput <= '1' when subbitcount(4 downto 2) = "000" else '0' when subbitcount(4 downto 2) = "100" else shiftOutput; end Behavioral;
gpl-2.0
sksavant/geda-gaf
gnetlist/tests/gnetlistrc.vhdl
8
205
; ; This file is really a gnetlistrc file. ; It is renamed to gnetlistrc before any vhdl backend test is run. ; ; The path is hardcoded for now. ; (component-library "${HOME}/geda/share/gEDA/sym/vhdl")
gpl-2.0
quartushaters/project
M1/Part 1/LCD_Display.vhd
1
9000
LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.all; USE IEEE.STD_LOGIC_ARITH.all; USE IEEE.STD_LOGIC_UNSIGNED.all; -- SW8 (GLOBAL RESET) resets LCD ENTITY LCD_Display IS -- Enter number of live Hex hardware data values to display -- (do not count ASCII character constants) GENERIC(Num_Hex_Digits: Integer:= 8); ----------------------------------------------------------------------- -- LCD Displays 16 Characters on 2 lines -- LCD_display string is an ASCII character string entered in hex for -- the two lines of the LCD Display (See ASCII to hex table below) -- Edit LCD_Display_String entries above to modify display -- Enter the ASCII character's 2 hex digit equivalent value -- (see table below for ASCII hex values) -- To display character assign ASCII value to LCD_display_string(x) -- To skip a character use X"20" (ASCII space) -- To dislay "live" hex values from hardware on LCD use the following: -- make array element for that character location X"0" & 4-bit field from Hex_Display_Data -- state machine sees X"0" in high 4-bits & grabs the next lower 4-bits from Hex_Display_Data input -- and performs 4-bit binary to ASCII conversion needed to print a hex digit -- Num_Hex_Digits must be set to the count of hex data characters (ie. "00"s) in the display -- Connect hardware bits to display to Hex_Display_Data input -- To display less than 32 characters, terminate string with an entry of X"FE" -- (fewer characters may slightly increase the LCD's data update rate) ------------------------------------------------------------------- -- ASCII HEX TABLE -- Hex Low Hex Digit -- Value 0 1 2 3 4 5 6 7 8 9 A B C D E F ------\---------------------------------------------------------------- --H 2 | SP ! " # $ % & ' ( ) * + , - . / --i 3 | 0 1 2 3 4 5 6 7 8 9 : ; < = > ? --g 4 | @ A B C D E F G H I J K L M N O --h 5 | P Q R S T U V W X Y Z [ \ ] ^ _ -- 6 | ` a b c d e f g h i j k l m n o -- 7 | p q r s t u v w x y z { | } ~ DEL ----------------------------------------------------------------------- -- Example "A" is row 4 column 1, so hex value is X"41" -- *see LCD Controller's Datasheet for other graphics characters available -- PORT(reset, clk_48Mhz : IN STD_LOGIC; Hex_Display_Data : IN STD_LOGIC_VECTOR((Num_Hex_Digits*4)-1 DOWNTO 0); Display_Data : IN STD_LOGIC_VECTOR(((Num_Hex_Digits*4)*4)-1 DOWNTO 0); LCD_RS, LCD_EN : OUT STD_LOGIC; LCD_RW : OUT STD_LOGIC; DATA_BUS : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY LCD_Display; ARCHITECTURE a OF LCD_Display IS TYPE character_string IS ARRAY ( 0 TO 31 ) OF STD_LOGIC_VECTOR( 7 DOWNTO 0 ); TYPE STATE_TYPE IS (HOLD, FUNC_SET, DISPLAY_ON, MODE_SET, Print_String, LINE2, RETURN_HOME, DROP_LCD_EN, RESET1, RESET2, RESET3, DISPLAY_OFF, DISPLAY_CLEAR); SIGNAL state, next_command: STATE_TYPE; SIGNAL LCD_display_string : character_string; -- Enter new ASCII hex data above for LCD Display SIGNAL DATA_BUS_VALUE, Next_Char: STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL CLK_COUNT_400HZ: STD_LOGIC_VECTOR(19 DOWNTO 0); SIGNAL CHAR_COUNT: STD_LOGIC_VECTOR(4 DOWNTO 0); SIGNAL CLK_400HZ_Enable,LCD_RW_INT : STD_LOGIC; SIGNAL Line1_chars, Line2_chars: STD_LOGIC_VECTOR(127 DOWNTO 0); BEGIN LCD_display_string <= ( -- ASCII hex values for LCD Display -- Enter Live Hex Data Values from hardware here -- LCD DISPLAYS THE FOLLOWING: ------------------------------ --| Count=XX | --| Data =XXXXXXXX | ------------------------------ -- Line 1 X"43",X"6F",X"75",X"6E",X"74",X"3D", X"0" & Hex_Display_Data(7 DOWNTO 4),X"0" & Hex_Display_Data(3 DOWNTO 0), X"20",X"20",X"20",X"20",X"20",X"20",X"20",X"20", -- Line 2 X"44",X"41",X"54",X"41",X"20",X"3D", X"0" & Display_Data(31 DOWNTO 28), X"0" & Display_Data(27 DOWNTO 24), X"0" & Display_Data(23 DOWNTO 20), X"0" & Display_Data(19 DOWNTO 16), X"0" & Display_Data(15 DOWNTO 12), X"0" & Display_Data(11 DOWNTO 8), X"0" & Display_Data(7 DOWNTO 4), X"0" & Display_Data(3 DOWNTO 0), X"20",X"20"); -- BIDIRECTIONAL TRI STATE LCD DATA BUS DATA_BUS <= DATA_BUS_VALUE WHEN LCD_RW_INT = '0' ELSE "ZZZZZZZZ"; -- get next character in display string Next_Char <= LCD_display_string(CONV_INTEGER(CHAR_COUNT)); LCD_RW <= LCD_RW_INT; PROCESS BEGIN WAIT UNTIL CLK_48MHZ'EVENT AND CLK_48MHZ = '1'; IF RESET = '0' THEN CLK_COUNT_400HZ <= X"00000"; CLK_400HZ_Enable <= '0'; ELSE IF CLK_COUNT_400HZ < X"0EA60" THEN CLK_COUNT_400HZ <= CLK_COUNT_400HZ + 1; CLK_400HZ_Enable <= '0'; ELSE CLK_COUNT_400HZ <= X"00000"; CLK_400HZ_Enable <= '1'; END IF; END IF; END PROCESS; PROCESS (CLK_48MHZ, reset) BEGIN IF reset = '0' THEN state <= RESET1; DATA_BUS_VALUE <= X"38"; next_command <= RESET2; LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '1'; ELSIF CLK_48MHZ'EVENT AND CLK_48MHZ = '1' THEN -- State Machine to send commands and data to LCD DISPLAY IF CLK_400HZ_Enable = '1' THEN CASE state IS -- Set Function to 8-bit transfer and 2 line display with 5x8 Font size -- see Hitachi HD44780 family data sheet for LCD command and timing details WHEN RESET1 => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"38"; state <= DROP_LCD_EN; next_command <= RESET2; CHAR_COUNT <= "00000"; WHEN RESET2 => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"38"; state <= DROP_LCD_EN; next_command <= RESET3; WHEN RESET3 => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"38"; state <= DROP_LCD_EN; next_command <= FUNC_SET; -- EXTRA STATES ABOVE ARE NEEDED FOR RELIABLE PUSHBUTTON RESET OF LCD WHEN FUNC_SET => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"38"; state <= DROP_LCD_EN; next_command <= DISPLAY_OFF; -- Turn off Display and Turn off cursor WHEN DISPLAY_OFF => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"08"; state <= DROP_LCD_EN; next_command <= DISPLAY_CLEAR; -- Clear Display and Turn off cursor WHEN DISPLAY_CLEAR => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"01"; state <= DROP_LCD_EN; next_command <= DISPLAY_ON; -- Turn on Display and Turn off cursor WHEN DISPLAY_ON => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"0C"; state <= DROP_LCD_EN; next_command <= MODE_SET; -- Set write mode to auto increment address and move cursor to the right WHEN MODE_SET => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"06"; state <= DROP_LCD_EN; next_command <= Print_String; -- Write ASCII hex character in first LCD character location WHEN Print_String => state <= DROP_LCD_EN; LCD_EN <= '1'; LCD_RS <= '1'; LCD_RW_INT <= '0'; -- ASCII character to output IF Next_Char(7 DOWNTO 4) /= X"0" THEN DATA_BUS_VALUE <= Next_Char; ELSE -- Convert 4-bit value to an ASCII hex digit IF Next_Char(3 DOWNTO 0) >9 THEN -- ASCII A...F DATA_BUS_VALUE <= X"4" & (Next_Char(3 DOWNTO 0)-9); ELSE -- ASCII 0...9 DATA_BUS_VALUE <= X"3" & Next_Char(3 DOWNTO 0); END IF; END IF; state <= DROP_LCD_EN; -- Loop to send out 32 characters to LCD Display (16 by 2 lines) IF (CHAR_COUNT < 31) AND (Next_Char /= X"FE") THEN CHAR_COUNT <= CHAR_COUNT +1; ELSE CHAR_COUNT <= "00000"; END IF; -- Jump to second line? IF CHAR_COUNT = 15 THEN next_command <= line2; -- Return to first line? ELSIF (CHAR_COUNT = 31) OR (Next_Char = X"FE") THEN next_command <= return_home; ELSE next_command <= Print_String; END IF; -- Set write address to line 2 character 1 WHEN LINE2 => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"C0"; state <= DROP_LCD_EN; next_command <= Print_String; -- Return write address to first character postion on line 1 WHEN RETURN_HOME => LCD_EN <= '1'; LCD_RS <= '0'; LCD_RW_INT <= '0'; DATA_BUS_VALUE <= X"80"; state <= DROP_LCD_EN; next_command <= Print_String; -- The next three states occur at the end of each command or data transfer to the LCD -- Drop LCD E line - falling edge loads inst/data to LCD controller WHEN DROP_LCD_EN => LCD_EN <= '0'; state <= HOLD; -- Hold LCD inst/data valid after falling edge of E line WHEN HOLD => state <= next_command; END CASE; END IF; END IF; END PROCESS; END a;
gpl-2.0
samvartaka/simon_vhdl
ITERATIVE/ITERATIVE_INTEGRATED_CACHEROUTE/round_f.vhd
4
1054
-- SIMON 64/128 -- feistel round function -- -- @Author: Jos Wetzels -- @Author: Wouter Bokslag -- -- Parameters: -- v_in: plaintext block -- v_k: subkey -- v_out: ciphertext block -- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity round_f is port(v_in : in std_logic_vector(63 downto 0); v_k : in std_logic_vector(31 downto 0); v_out : out std_logic_vector(63 downto 0) ); end round_f; architecture Behavioral of round_f is signal op_1_s : std_logic_vector(31 downto 0); signal op_2_s : std_logic_vector(31 downto 0); signal op_8_s : std_logic_vector(31 downto 0); begin -- shifts over left half op_1_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 1)); op_2_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 2)); op_8_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 8)); -- xors/ands over subkey and right half v_out <= ((op_1_s and op_8_s) xor op_2_s xor v_in(31 downto 0) xor v_k) & v_in(63 downto 32); end Behavioral;
gpl-2.0
samvartaka/simon_vhdl
ITERATIVE/ITERATIVE_INTEGRATED_RAMROUTE/round_f.vhd
4
1054
-- SIMON 64/128 -- feistel round function -- -- @Author: Jos Wetzels -- @Author: Wouter Bokslag -- -- Parameters: -- v_in: plaintext block -- v_k: subkey -- v_out: ciphertext block -- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity round_f is port(v_in : in std_logic_vector(63 downto 0); v_k : in std_logic_vector(31 downto 0); v_out : out std_logic_vector(63 downto 0) ); end round_f; architecture Behavioral of round_f is signal op_1_s : std_logic_vector(31 downto 0); signal op_2_s : std_logic_vector(31 downto 0); signal op_8_s : std_logic_vector(31 downto 0); begin -- shifts over left half op_1_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 1)); op_2_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 2)); op_8_s <= std_logic_vector(rotate_left(unsigned(v_in(63 downto 32)), 8)); -- xors/ands over subkey and right half v_out <= ((op_1_s and op_8_s) xor op_2_s xor v_in(31 downto 0) xor v_k) & v_in(63 downto 32); end Behavioral;
gpl-2.0
datalogics-kam/ctags
Test/test.vhd
91
192381
package body badger is end package body; package body badger2 is end package body badger2; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity accumulator is port ( a: in std_logic_vector(3 downto 0); clk, reset: in std_logic; accum: out std_logic_vector(3 downto 0) ); end accumulator; architecture simple of accumulator is signal accumL: unsigned(3 downto 0); begin accumulate: process (clk, reset) begin if (reset = '1') then accumL <= "0000"; elsif (clk'event and clk= '1') then accumL <= accumL + to_unsigned(a); end if; end process; accum <= std_logic_vector(accumL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity adder is port ( a,b : in std_logic_vector (15 downto 0); sum: out std_logic_vector (15 downto 0) ); end adder; architecture dataflow of adder is begin sum <= a + b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity pAdderAttr is generic(n : integer := 8); port (a : in std_logic_vector(n - 1 downto 0); b : in std_logic_vector(n - 1 downto 0); cin : in std_logic; sum : out std_logic_vector(n - 1 downto 0); cout : out std_logic); end pAdderAttr; architecture loopDemo of pAdderAttr is begin process(a, b, cin) variable carry: std_logic_vector(sum'length downto 0); variable localSum: std_logic_vector(sum'high downto 0); begin carry(0) := cin; for i in sum'reverse_range loop localSum(i) := (a(i) xor b(i)) xor carry(i); carry(i + 1) := (a(i) and b(i)) or (carry(i) and (a(i) or b(i))); end loop; sum <= localSum; cout <= carry(carry'high - 1); end process; end loopDemo; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in unsigned(3 downto 0); sum: out unsigned(3 downto 0) ); end adder; architecture simple of adder is begin sum <= a + b; end simple; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity asyncLoad is port ( loadVal, d: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLoad; architecture rtl of asyncLoad is begin process (clk, load, loadVal) begin if (load = '1') then q <= loadVal; elsif (clk'event and clk = '1' ) then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity BidirBuf is port ( OE: in std_logic; input: in std_logic_vector; output: out std_logic_vector ); end BidirBuf; architecture behavioral of BidirBuf is begin bidirBuf: process (OE, input) begin if (OE = '1') then output <= input; else output <= (others => 'Z'); end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BidirCnt is port ( OE: in std_logic; CntEnable: in std_logic; LdCnt: in std_logic; Clk: in std_logic; Rst: in std_logic; Cnt: inout std_logic_vector(3 downto 0) ); end BidirCnt; architecture behavioral of BidirCnt is component LoadCnt port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end component; component BidirBuf port ( OE: in std_logic; input: in std_logic_vector; output: inout std_logic_vector ); end component; signal CntVal: std_logic_vector(3 downto 0); signal LoadVal: std_logic_vector(3 downto 0); begin u1: loadcnt port map (CntEn => CntEnable, LdCnt => LdCnt, LdData => LoadVal, Clk => Clk, Rst => Rst, CntVal => CntVal ); u2: bidirbuf port map (OE => oe, input => CntVal, output => Cnt ); LoadVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity bidirbuffer is port ( input: in std_logic; enable: in std_logic; feedback: out std_logic; output: inout std_logic ); end bidirbuffer; architecture structural of bidirbuffer is begin u1: bidir port map (ip => input, oe => enable, op_fb => feedback, op => output ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity clkGen is port ( clk: in std_logic; reset: in std_logic; ClkDiv2, ClkDiv4, ClkDiv6,ClkDiv8: out std_logic ); end clkGen; architecture behav of clkGen is subtype numClks is std_logic_vector(1 to 4); subtype numPatterns is integer range 0 to 11; type clkTableType is array (numpatterns'low to numPatterns'high) of numClks; constant clkTable: clkTableType := clkTableType'( -- ClkDiv8______ -- ClkDiv6_____ | -- ClkDiv4____ || -- ClkDiv2 __ ||| -- |||| "1111", "0111", "1011", "0001", "1100", "0100", "1010", "0010", "1111", "0001", "1001", "0101"); signal index: numPatterns; begin lookupTable: process (clk, reset) begin if reset = '1' then index <= 0; elsif (clk'event and clk = '1') then if index = numPatterns'high then index <= numPatterns'low; else index <= index + 1; end if; end if; end process; (ClkDiv2,ClkDiv4,ClkDiv6,ClkDiv8) <= clkTable(index); end behav; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; enable: in std_logic; reset: in std_logic; count: buffer unsigned(3 downto 0) ); end counter; architecture simple of counter is begin increment: process (clk, reset) begin if reset = '1' then count <= "0000"; elsif(clk'event and clk = '1') then if enable = '1' then count <= count + 1; else count <= count; end if; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; use work.scaleable.all; entity count8 is port ( clk: in std_logic; rst: in std_logic; count: out std_logic_vector(7 downto 0) ); end count8; architecture structural of count8 is begin u1: scaleUpCnt port map (clk => clk, reset => rst, cnt => count ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 9) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 9); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(3,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(9 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(9 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(0,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; enable: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); elsif (enable = '1') then countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity Cnt4Term is port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic ); end Cnt4Term; architecture behavioral of Cnt4Term is signal CntL: unsigned(3 downto 0); begin increment: process begin wait until clk = '1'; CntL <= CntL + 1; end process; Cnt <= to_stdlogicvector(CntL); TermCnt <= '1' when CntL = "1111" else '0'; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity Counter is port ( clock: in std_logic; Count: out std_logic_vector(3 downto 0) ); end Counter; architecture structural of Counter is component Cnt4Term port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic); end component; begin u1: Cnt4Term port map (clk => clock, Cnt => Count, TermCnt => open ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if(clk'event and clk = '1') then if (reset = '1') then countL <= "0000"; else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity convertArith is port ( truncate: out unsigned(3 downto 0); extend: out unsigned(15 downto 0); direction: out unsigned(0 to 7) ); end convertArith; architecture simple of convertArith is constant Const: unsigned(7 downto 0) := "00111010"; begin truncate <= resize(Const, truncate'length); extend <= resize(Const, extend'length); direction <= resize(Const, direction'length); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is constant THREE: std_logic_vector(1 downto 0) := "11"; begin y <= '1' when (a & b = THREE) or (c & d /= THREE) else '0'; end concurrent; -- incorporates Errata 12.1 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity typeConvert is port ( a: out unsigned(7 downto 0) ); end typeConvert; architecture simple of typeConvert is constant Const: natural := 43; begin a <= To_unsigned(Const,8); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if (clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 3) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 3); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then countL <= countL + "001"; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + "0001"; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use work.decProcs.all; entity decoder is port ( decIn: in std_logic_vector(1 downto 0); decOut: out std_logic_vector(3 downto 0) ); end decoder; architecture simple of decoder is begin DEC2x4(decIn,decOut); end simple; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); decOut_n: out std_logic_vector(5 downto 0) ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; alias sio_dec_n: std_logic is decOut_n(5); alias rst_ctrl_rd_n: std_logic is decOut_n(4); alias atc_stat_rd_n: std_logic is decOut_n(3); alias mgmt_stat_rd_n: std_logic is decOut_n(2); alias io_int_stat_rd_n: std_logic is decOut_n(1); alias int_ctrl_rd_n: std_logic is decOut_n(0); alias upper: std_logic_vector(2 downto 0) is dev_adr(19 downto 17); alias CtrlBits: std_logic_vector(16 downto 0) is dev_adr(16 downto 0); begin decoder: process (upper, CtrlBits) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case upper is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case CtrlBits is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr) begin -- Set defaults for outputs sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin sio_dec_n <= '0' when dev_adr (19 downto 17) = SuperIORange else '1'; int_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IntCtrlReg) else '1'; io_int_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IoIntStatReg) else '1'; rst_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = RstCtrlReg) else '1'; atc_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = AtcStatusReg) else '1'; mgmt_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = MgmtStatusReg) else '1'; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr, cs0_n) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; else null; end if; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; signal Lsio_dec_n: std_logic; signal Lrst_ctrl_rd_n: std_logic; signal Latc_stat_rd_n: std_logic; signal Lmgmt_stat_rd_n: std_logic; signal Lio_int_stat_rd_n: std_logic; signal Lint_ctrl_rd_n: std_logic; begin decoder: process (dev_adr) begin -- Set defaults for outputs - for synthesis reasons. Lsio_dec_n <= '1'; Lint_ctrl_rd_n <= '1'; Lio_int_stat_rd_n <= '1'; Lrst_ctrl_rd_n <= '1'; Latc_stat_rd_n <= '1'; Lmgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => Lsio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => Lint_ctrl_rd_n <= '0'; when IoIntStatReg => Lio_int_stat_rd_n <= '0'; when RstCtrlReg => Lrst_ctrl_rd_n <= '0'; when AtcStatusReg => Latc_stat_rd_n <= '0'; when MgmtStatusReg => Lmgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; qualify: process (cs0_n) begin sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then sio_dec_n <= Lsio_dec_n; int_ctrl_rd_n <= Lint_ctrl_rd_n; io_int_stat_rd_n <= Lio_int_stat_rd_n; rst_ctrl_rd_n <= Lrst_ctrl_rd_n; atc_stat_rd_n <= Latc_stat_rd_n; mgmt_stat_rd_n <= Lmgmt_stat_rd_n; else null; end if; end process qualify; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process ( dev_adr) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if dev_adr(19 downto 17) = SuperIOrange then sio_dec_n <= '0'; elsif dev_adr(19 downto 17) = CtrlRegrange then if dev_adr(16 downto 0) = IntCtrlReg then int_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0)= IoIntStatReg then io_int_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = RstCtrlReg then rst_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0) = AtcStatusReg then atc_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = MgmtStatusReg then mgmt_stat_rd_n <= '0'; else null; end if; else null; end if; end process decoder; end synthesis; library IEEE; use IEEE.std_logic_1164.all; package decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ); end decProcs; package body decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ) is begin case inputs is when "11" => decode := "1000"; when "10" => decode := "0100"; when "01" => decode := "0010"; when "00" => decode := "0001"; when others => decode := "0001"; end case; end DEC2x4; end decProcs; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin with dev_adr(19 downto 17) select sio_dec_n <= '0' when SuperIORange, '1' when others; with dev_adr(19 downto 0) select int_ctrl_rd_n <= '0' when CtrlRegRange & IntCtrlReg, '1' when others; with dev_adr(19 downto 0) select io_int_stat_rd_n <= '0' when CtrlRegRange & IoIntStatReg, '1' when others; with dev_adr(19 downto 0) select rst_ctrl_rd_n <= '0' when CtrlRegRange & RstCtrlReg, '1' when others; with dev_adr(19 downto 0) select atc_stat_rd_n <= '0' when CtrlRegRange & AtcStatusReg, '1' when others; with dev_adr(19 downto 0) select mgmt_stat_rd_n <= '0' when CtrlRegRange & MgmtStatusReg, '1' when others; end synthesis; -- Incorporates Errata 5.1 and 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal delayCnt, pulseCnt: unsigned(7 downto 0); signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; begin delayReg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadLength = '1' then -- changed loadLength to loadDelay (Errata 5.1) pulseCntVal <= unsigned(data); end if; end if; end process; pulseDelay: process (clk, reset) begin if (reset = '1') then delayCnt <= "11111111"; elsif(clk'event and clk = '1') then if (loadDelay = '1' or loadLength = '1' or endPulse = '1') then -- changed startPulse to endPulse (Errata 5.1) delayCnt <= delayCntVal; elsif endPulse = '1' then delayCnt <= delayCnt - 1; end if; end if; end process; startPulse <= '1' when delayCnt = "00000000" else '0'; pulseLength: process (clk, reset) begin if (reset = '1') then pulseCnt <= "11111111"; elsif (clk'event and clk = '1') then if (loadLength = '1') then pulseCnt <= pulseCntVal; elsif (startPulse = '1' and endPulse = '1') then pulseCnt <= pulseCntVal; elsif (endPulse = '1') then pulseCnt <= pulseCnt; else pulseCnt <= pulseCnt - 1; end if; end if; end process; endPulse <= '1' when pulseCnt = "00000000" else '0'; pulseOutput: process (clk, reset) begin if (reset = '1') then pulse <= '0'; elsif (clk'event and clk = '1') then if (startPulse = '1') then pulse <= '1'; elsif (endPulse = '1') then pulse <= '0'; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst : in std_logic; q: out std_logic; ); end DFF; architecture rtl of DFF is begin process (clk) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, a,b,c) begin if ((a = '1' and b = '1') or c = '1') then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is signal localRst: std_logic; begin localRst <= '1' when (( a = '1' and b = '1') or c = '1') else '0'; process (clk, localRst) begin if localRst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; aset : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, aset) begin if aset = '1' then q <= '1'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; arst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q1 <= '0'; q2 <= '1'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; wait on clk; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; en: in std_logic; clk: in std_logic; q: out std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; envector: in std_logic_vector(7 downto 0); q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if envector = "10010111" then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (prst = '1') then q <= '1'; elsif (rst = '1') then q <= '0'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity flipFlop is port ( clock, input: in std_logic; ffOut: out std_logic ); end flipFlop; architecture simple of flipFlop is procedure dff (signal clk: in std_logic; signal d: in std_logic; signal q: out std_logic ) is begin if clk'event and clk = '1' then q <= d; end if; end procedure dff; begin dff(clock, input, ffOut); end simple; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; end: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until rising_edge(clk); if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; srst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q1 <= '0'; q2 <= '1'; else q1 <= d1; q2 <= d2; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if srst = '1' then q <= '0'; else q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe_sr is port ( d: in std_logic; clk: in std_logic; en: in std_logic; rst,prst: in std_logic; q: out std_logic ); end struct_dffe_sr; use work.primitive.all; architecture instance of struct_dffe_sr is begin ff: dffe_sr port map ( d => d, clk => clk, en => en, rst => rst, prst => prst, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q <= '0'; else q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end struct_dffe; use work.primitive.all; architecture instance of struct_dffe is begin ff: dffe port map ( d => d, clk => clk, en => en, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity dffTri is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end dffTri; architecture parameterize of dffTri is type tribufType is record ip: std_logic; oe: std_logic; op: std_logic; end record; type tribufArrayType is array (integer range <>) of tribufType; signal tri: tribufArrayType(size - 1 downto 0); begin g0: for i in 0 to size - 1 generate u1: DFFE port map (data(i), tri(i).ip, ff_enable, clock); end generate; g1: for i in 0 to size - 1 generate u2: TRIBUF port map (tri(i).ip, tri(i).oe, tri(i).op); tri(i).oe <= op_enable; qout(i) <= tri(i).op; end generate; end parameterize; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic bus ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is signal qLocal: std_logic; begin qLocal <= d when en = '1' else qLocal; q <= qLocal; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en, d) begin if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dlatch is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end struct_dlatch; use work.primitive.all; architecture instance of struct_dlatch is begin latch: dlatchh port map ( d => d, en => en, q => q ); end instance; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity downCounter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end downCounter; architecture simple of downCounter is signal countL: unsigned(3 downto 0); signal termCnt: std_logic; begin decrement: process (clk, reset) begin if (reset = '1') then countL <= "1011"; -- Reset to 11 termCnt <= '1'; elsif(clk'event and clk = '1') then if (termCnt = '1') then countL <= "1011"; -- Count rolls over to 11 else countL <= countL - 1; end if; if (countL = "0001") then -- Terminal count decoded 1 cycle earlier termCnt <= '1'; else termCnt <= '0'; end if; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity compareDC is port ( addressBus: in std_logic_vector(31 downto 0); addressHit: out std_logic ); end compareDC; architecture wontWork of compareDC is begin compare: process(addressBus) begin if (addressBus = "011110101011--------------------") then addressHit <= '1'; else addressHit <= '0'; end if; end process compare; end wontWork; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin encode: process (invec) begin case invec is when "00000001" => enc_out <= "000"; when "00000010" => enc_out <= "001"; when "00000100" => enc_out <= "010"; when "00001000" => enc_out <= "011"; when "00010000" => enc_out <= "100"; when "00100000" => enc_out <= "101"; when "01000000" => enc_out <= "110"; when "10000000" => enc_out <= "111"; when others => enc_out <= "000"; end case; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec:in std_logic_vector(7 downto 0); enc_out:out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin process (invec) begin if invec(7) = '1' then enc_out <= "111"; elsif invec(6) = '1' then enc_out <= "110"; elsif invec(5) = '1' then enc_out <= "101"; elsif invec(4) = '1' then enc_out <= "100"; elsif invec(3) = '1' then enc_out <= "011"; elsif invec(2) = '1' then enc_out <= "010"; elsif invec(1) = '1' then enc_out <= "001"; elsif invec(0) = '1' then enc_out <= "000"; else enc_out <= "000"; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin enc_out <= "111" when invec(7) = '1' else "110" when invec(6) = '1' else "101" when invec(5) = '1' else "100" when invec(4) = '1' else "011" when invec(3) = '1' else "010" when invec(2) = '1' else "001" when invec(1) = '1' else "000" when invec(0) = '1' else "000"; end rtl; -- includes Errata 5.2 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- errata 5.2 entity compare is port ( ina: in std_logic_vector (3 downto 0); inb: in std_logic_vector (2 downto 0); equal: out std_logic ); end compare; architecture simple of compare is begin equalProc: process (ina, inb) begin if (ina = inb ) then equal <= '1'; else equal <= '0'; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture behavioral of LogicFcn is begin fcn: process (A,B,C) begin if (A = '0' and B = '0') then Y <= '1'; elsif C = '1' then Y <= '1'; else Y <= '0'; end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture dataflow of LogicFcn is begin Y <= '1' when (A = '0' AND B = '0') OR (C = '1') else '0'; end dataflow; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture structural of LogicFcn is signal notA, notB, andSignal: std_logic; begin i1: inverter port map (i => A, o => notA); i2: inverter port map (i => B, o => notB); a1: and2 port map (i1 => notA, i2 => notB, y => andSignal); o1: or2 port map (i1 => andSignal, i2 => C, y => Y); end structural; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is port ( D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is constant tCQ: time := 8 ns; constant tS: time := 4 ns; constant tH: time := 3 ns; begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin wait until clk = '1'; q <= d; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; q <= d; wait on clk; end process; end rtl; configuration SimpleGatesCfg of FEWGATES is for structural for all: AND2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; configuration SimpleGatesCfg of FEWGATES is for structural for u1: and2 use entity work.and2(rtl); end for; for u2: and2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; -- Configution specifications for all: and2 use entity work.and2(rtl); for u3: inverter use entity work.inverter(rtl); for u4: or2 use entity work.or2(rtl); begin u1: and2 port map (i1 => a, i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.GatesPkg.all; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin a_and_b <= '1' when a = '1' and b = '1' else '0'; c_and_d <= '1' when c = '1' and d = '1' else '0'; not_c_and_d <= not c_and_d; y <= '1' when a_and_b = '1' or not_c_and_d = '1' else '0'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; package GatesPkg is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; end GatesPkg; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 =>c, i2 => d, y => c_and_d ); u3: inverter port map (a => c_and_d, y => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; use work.simPrimitives.all; entity simHierarchy is port ( A, B, Clk: in std_logic; Y: out std_logic ); end simHierarchy; architecture hierarchical of simHierarchy is signal ADly, BDly, OrGateDly, ClkDly: std_logic; signal OrGate, FlopOut: std_logic; begin ADly <= transport A after 2 ns; BDly <= transport B after 2 ns; OrGateDly <= transport OrGate after 1.5 ns; ClkDly <= transport Clk after 1 ns; u1: OR2 generic map (tPD => 10 ns) port map ( I1 => ADly, I2 => BDly, Y => OrGate ); u2: simDFF generic map ( tS => 4 ns, tH => 3 ns, tCQ => 8 ns ) port map ( D => OrGateDly, Clk => ClkDly, Q => FlopOut ); Y <= transport FlopOut after 2 ns; end hierarchical; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; -------------------------------------------------------------------------------- --| File name : $RCSfile: io1164.vhd $ --| Library : SUPPORT --| Revision : $Revision: 1.1 $ --| Author(s) : Vantage Analysis Systems, Inc; Des Young --| Integration : Des Young --| Creation : Nov 1995 --| Status : $State: Exp $ --| --| Purpose : IO routines for std_logic_1164. --| Assumptions : Numbers use radixed character set with no prefix. --| Limitations : Does not read VHDL pound-radixed numbers. --| Known Errors: none --| --| Description: --| This is a modified library. The source is basically that donated by --| Vantage to libutil. Des Young removed std_ulogic_vector support (to --| conform to synthesizable libraries), and added read_oct/hex to integer. --| --| ======================================================================= --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights --| reserved. This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package VHDL source --| Package Name: somelib.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : * Overloads procedures READ and WRITE for STD_LOGIC types --| in manner consistent with TEXTIO package. --| * Provides procedures to read and write logic values as --| binary, octal, or hexadecimal values ('X' as appropriate). --| These should be particularly useful for models --| to read in stimulus as 0/1/x or octal or hex. --| Subprograms : --| Notes : --| History : 1. Donated to libutil by Dave Bernstein 15 Jun 94 --| 2. Removed all std_ulogic_vector support, Des Young, 14 Nov 95 --| (This is because that type is not supported for synthesis). --| 3. Added read_oct/hex to integer, Des Young, 20 Nov 95 --| --| ======================================================================= --| Extra routines by Des Young, [email protected]. 1995. GNU copyright. --| ======================================================================= --| -------------------------------------------------------------------------------- library ieee; package io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- import std_logic package use ieee.std_logic_1164.all; -- import textio package use std.textio.all; -- -- the READ and WRITE procedures act similarly to the procedures in the -- STD.TEXTIO package. for each type, there are two read procedures and -- one write procedure for converting between character and internal -- representations of values. each value is represented as the string of -- characters that you would use in VHDL code. (remember that apostrophes -- and quotation marks are not used.) input is case-insensitive. output -- is in upper case. see the following LRM sections for more information: -- -- 2.3 - Subprogram Overloading -- 3.3 - Access Types (STD.TEXTIO.LINE is an access type) -- 7.3.6 - Allocators (allocators create access values) -- 14.3 - Package TEXTIO -- -- Note that the procedures for std_ulogic will match calls with the value -- parameter of type std_logic. -- -- declare READ procedures to overload like in TEXTIO -- procedure read(l: inout line; value: out std_ulogic ; good: out boolean); procedure read(l: inout line; value: out std_ulogic ); procedure read(l: inout line; value: out std_logic_vector ; good: out boolean); procedure read(l: inout line; value: out std_logic_vector ); -- -- declare WRITE procedures to overload like in TEXTIO -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ); procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ); -- -- declare procedures to convert between logic values and octal -- or hexadecimal ('X' where appropriate). -- -- octal / std_logic_vector procedure read_oct (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_oct (l : inout line ; value : out std_logic_vector ); procedure write_oct(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- hexadecimal / std_logic_vector procedure read_hex (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_hex (l : inout line ; value : out std_logic_vector ); procedure write_hex(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- read a number into an integer procedure read_oct(l : inout line; value : out integer; good : out boolean); procedure read_oct(l : inout line; value : out integer); procedure read_hex(l : inout line; value : out integer; good : out boolean); procedure read_hex(l : inout line; value : out integer); end io1164; -------------------------------------------------------------------------------- --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights reserved --| This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package body VHDL source --| Package Name: VANTAGE_LOGIC.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : source for IO1164 package body --| Subprograms : --| Notes : see package declaration --| History : see package declaration -------------------------------------------------------------------------------- package body io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- define lowercase conversion of characters for canonical comparison type char2char_t is array (character'low to character'high) of character; constant lowcase: char2char_t := ( nul, soh, stx, etx, eot, enq, ack, bel, bs, ht, lf, vt, ff, cr, so, si, dle, dc1, dc2, dc3, dc4, nak, syn, etb, can, em, sub, esc, fsp, gsp, rsp, usp, ' ', '!', '"', '#', '$', '%', '&', ''', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', del); -- define conversions between various types -- logic -> character type f_logic_to_character_t is array (std_ulogic'low to std_ulogic'high) of character; constant f_logic_to_character : f_logic_to_character_t := ( 'U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-' ); -- character, integer, logic constant x_charcode : integer := -1; constant maxoct_charcode: integer := 7; constant maxhex_charcode: integer := 15; constant bad_charcode : integer := integer'left; type digit2int_t is array ( character'low to character'high ) of integer; constant octdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, 'X' | 'x' => x_charcode, others => bad_charcode ); constant hexdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9, 'A' | 'a' => 10, 'B' | 'b' => 11, 'C' | 'c' => 12, 'D' | 'd' => 13, 'E' | 'e' => 14, 'F' | 'f' => 15, 'X' | 'x' => x_charcode, others => bad_charcode ); constant oct_bits_per_digit: integer := 3; constant hex_bits_per_digit: integer := 4; type int2octdigit_t is array ( 0 to maxoct_charcode ) of character; constant int2octdigit: int2octdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7' ); type int2hexdigit_t is array ( 0 to maxhex_charcode ) of character; constant int2hexdigit: int2hexdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7', 8 => '8', 9 => '9', 10 => 'A', 11 => 'B', 12 => 'C', 13 => 'D', 14 => 'E', 15 => 'F' ); type oct_logic_vector_t is array(1 to oct_bits_per_digit) of std_ulogic; type octint2logic_t is array (x_charcode to maxoct_charcode) of oct_logic_vector_t; constant octint2logic : octint2logic_t := ( ( 'X', 'X', 'X' ), ( '0', '0', '0' ), ( '0', '0', '1' ), ( '0', '1', '0' ), ( '0', '1', '1' ), ( '1', '0', '0' ), ( '1', '0', '1' ), ( '1', '1', '0' ), ( '1', '1', '1' ) ); type hex_logic_vector_t is array(1 to hex_bits_per_digit) of std_ulogic; type hexint2logic_t is array (x_charcode to maxhex_charcode) of hex_logic_vector_t; constant hexint2logic : hexint2logic_t := ( ( 'X', 'X', 'X', 'X' ), ( '0', '0', '0', '0' ), ( '0', '0', '0', '1' ), ( '0', '0', '1', '0' ), ( '0', '0', '1', '1' ), ( '0', '1', '0', '0' ), ( '0', '1', '0', '1' ), ( '0', '1', '1', '0' ), ( '0', '1', '1', '1' ), ( '1', '0', '0', '0' ), ( '1', '0', '0', '1' ), ( '1', '0', '1', '0' ), ( '1', '0', '1', '1' ), ( '1', '1', '0', '0' ), ( '1', '1', '0', '1' ), ( '1', '1', '1', '0' ), ( '1', '1', '1', '1' ) ); ---------------------------------------------------------------------------- -- READ procedure bodies -- -- The strategy for duplicating TEXTIO's overloading of procedures -- with and without GOOD parameters is to put all the logic in the -- version with the GOOD parameter and to have the version without -- GOOD approximate a runtime error by use of an assertion. -- ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure read( l: inout line; value: out std_ulogic; good : out boolean ) is variable c : character; -- char read while looping variable m : line; -- safe copy of L variable success: boolean := false; -- readable version of GOOD variable done : boolean := false; -- flag to say done reading chars begin -- -- algorithm: -- -- if there are characters in the line -- save a copy of the line -- get the next character -- if got one -- set value -- if all ok -- free temp copy -- else -- free passed in line -- assign copy back to line -- set GOOD -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- grab the next character read( l, c, success ); -- if read ok if success then -- -- an issue here is whether lower-case values should be accepted or not -- -- determine the value case c is when 'U' | 'u' => value := 'U'; when 'X' | 'x' => value := 'X'; when '0' => value := '0'; when '1' => value := '1'; when 'Z' | 'z' => value := 'Z'; when 'W' | 'w' => value := 'W'; when 'L' | 'l' => value := 'L'; when 'H' | 'h' => value := 'H'; when '-' => value := '-'; when others => success := false; end case; end if; -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; end if; -- non null access, non empty string -- set output parameter good := success; end read; procedure read( l: inout line; value: out std_ulogic ) is variable success: boolean; -- internal good flag begin read( l, value, success ); -- use safe version assert success report "IO1164.READ: Unable to read STD_ULOGIC value." severity error; end read; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure read(l : inout line ; value: out std_logic_vector; good : out boolean ) is variable m : line ; -- saved copy of L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- value for one array element variable c : character ; -- read a character begin -- -- algorithm: -- -- this procedure strips off leading whitespace, and then calls the -- READ procedure for each single logic value element in the output -- array. -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- loop for each element in output array for i in value'range loop -- prohibit internal blanks if i /= value'left then if l.all'length = 0 then success := false; exit; end if; c := l.all(l.all'left); if c = ' ' or c = ht then success := false; exit; end if; end if; -- read the next logic value read( l, logic_value, success ); -- stuff the value in if ok, else bail out if success then value( i ) := logic_value; else exit; end if; end loop; -- each element in output array -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; elsif ( value'length /= 0 ) then -- string is empty but the return array has 1+ elements success := false; end if; -- set output parameter good := success; end read; procedure read(l: inout line; value: out std_logic_vector ) is variable success: boolean; begin read( l, value, success ); assert success report "IO1164.READ: Unable to read T_WLOGIC_VECTOR value." severity error; end read; ---------------------------------------------------------------------------- -- WRITE procedure bodies ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ) is begin -- -- algorithm: -- -- just write out the string associated with the enumerated -- value. -- case value is when 'U' => write( l, character'('U'), justified, field ); when 'X' => write( l, character'('X'), justified, field ); when '0' => write( l, character'('0'), justified, field ); when '1' => write( l, character'('1'), justified, field ); when 'Z' => write( l, character'('Z'), justified, field ); when 'W' => write( l, character'('W'), justified, field ); when 'L' => write( l, character'('L'), justified, field ); when 'H' => write( l, character'('H'), justified, field ); when '-' => write( l, character'('-'), justified, field ); end case; end write; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m: line; -- build up intermediate string begin -- -- algorithm: -- -- for each value in array -- add string representing value to intermediate string -- write intermediate string to line parameter -- free intermediate string -- -- for each value in array for i in value'range loop -- add string representing value to intermediate string write( m, value( i ) ); end loop; -- write intermediate string to line parameter write( l, m.all, justified, field ); -- free intermediate string deallocate( m ); end write; -------------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- procedure bodies for octal and hexadecimal read and write ---------------------------------------------------------------------------- -- -- std_logic_vector/octal -- note: NOT compatible with std_ulogic_vector -- procedure read_oct(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable oct_logic_vector: oct_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem oct_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := octdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array oct_logic_vector := octint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := oct_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = oct_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := octdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array oct_logic_vector := octint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_oct; procedure read_oct(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read T_LOGIC_VECTOR value." severity error; end read_oct; procedure write_oct(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem oct_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_OCT: VALUE'Length is not a multiple of 3." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / oct_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = oct_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2octdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_oct; -- -- std_logic_vector/hexadecimal -- note: NOT compatible with std_ulogic_vector -- procedure read_hex(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable hex_logic_vector: hex_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem hex_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := hexdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array hex_logic_vector := hexint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := hex_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = hex_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := hexdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array hex_logic_vector := hexint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_hex; procedure read_hex(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read T_LOGIC_VECTOR value." severity error; end read_hex; procedure write_hex(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem hex_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_HEX: VALUE'Length is not a multiple of 4." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / hex_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = hex_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2hexdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_hex; ------------------------------------------------------------------------------ ------------------------------------ -- Read octal/hex numbers to integer ------------------------------------ -- -- Read octal to integer -- procedure read_oct(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := octdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := octdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 8) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_oct; -- simple version procedure read_oct(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read octal integer value." severity error; end read_oct; -- -- Read hex to integer -- procedure read_hex(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := hexdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := hexdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 16) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_hex; -- simple version procedure read_hex(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read hex integer value." severity error; end read_hex; end io1164; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity asyncLdCnt is port ( loadVal: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLdCnt; architecture rtl of asyncLdCnt is signal qLocal: unsigned(3 downto 0); begin process (clk, load, loadVal) begin if (load = '1') then qLocal <= to_unsigned(loadVal); elsif (clk'event and clk = '1' ) then qLocal <= qLocal + 1; end if; end process; q <= to_stdlogicvector(qLocal); end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity LoadCnt is port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end LoadCnt; architecture behavioral of LoadCnt is signal Cnt: std_logic_vector(3 downto 0); begin counter: process (Clk, Rst) begin if Rst = '1' then Cnt <= (others => '0'); elsif (Clk'event and Clk = '1') then if (LdCnt = '1') then Cnt <= LdData; elsif (CntEn = '1') then Cnt <= Cnt + 1; else Cnt <= Cnt; end if; end if; end process; CntVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; library UTILS; use UTILS.io1164.all; use std.textio.all; entity loadCntTB is end loadCntTB; architecture testbench of loadCntTB is component loadCnt port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end component; file vectorFile: text is in "vectorfile"; type vectorType is record data: std_logic_vector(7 downto 0); load: std_logic; rst: std_logic; q: std_logic_vector(7 downto 0); end record; signal testVector: vectorType; signal TestClk: std_logic := '0'; signal Qout: std_logic_vector(7 downto 0); constant ClkPeriod: time := 100 ns; for all: loadCnt use entity work.loadcnt(rtl); begin -- File reading and stimulus application readVec: process variable VectorLine: line; variable VectorValid: boolean; variable vRst: std_logic; variable vLoad: std_logic; variable vData: std_logic_vector(7 downto 0); variable vQ: std_logic_vector(7 downto 0); begin while not endfile (vectorFile) loop readline(vectorFile, VectorLine); read(VectorLine, vRst, good => VectorValid); next when not VectorValid; read(VectorLine, vLoad); read(VectorLine, vData); read(VectorLine, vQ); wait for ClkPeriod/4; testVector.Rst <= vRst; testVector.Load <= vLoad; testVector.Data <= vData; testVector.Q <= vQ; wait for (ClkPeriod/4) * 3; end loop; assert false report "Simulation complete" severity note; wait; end process; -- Free running test clock TestClk <= not TestClk after ClkPeriod/2; -- Instance of design being tested u1: loadCnt port map (Data => testVector.Data, load => testVector.Load, clk => TestClk, rst => testVector.Rst, q => Qout ); -- Process to verify outputs verify: process (TestClk) variable ErrorMsg: line; begin if (TestClk'event and TestClk = '0') then if Qout /= testVector.Q then write(ErrorMsg, string'("Vector failed ")); write(ErrorMsg, now); writeline(output, ErrorMsg); end if; end if; end process; end testbench; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity loadCnt is port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end loadCnt; architecture rtl of loadCnt is signal cnt: std_logic_vector (7 downto 0); begin counter: process (clk, rst) begin if (rst = '1') then cnt <= (others => '0'); elsif (clk'event and clk = '1') then if (load = '1') then cnt <= data; else cnt <= cnt + 1; end if; end if; end process; q <= cnt; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity multiplier is port ( a,b : in std_logic_vector (15 downto 0); product: out std_logic_vector (31 downto 0) ); end multiplier; architecture dataflow of multiplier is begin product <= a * b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity mux is port ( A, B, Sel: in std_logic; Y: out std_logic ); end mux; architecture simModel of mux is -- Delay Constants constant tPD_A: time := 10 ns; constant tPD_B: time := 15 ns; constant tPD_Sel: time := 5 ns; begin DelayMux: process (A, B, Sel) variable localY: std_logic; -- Zero delay place holder for Y begin -- Zero delay model case Sel is when '0' => localY := A; when others => localY := B; end case; -- Delay calculation if (B'event) then Y <= localY after tPD_B; elsif (A'event) then Y <= localY after tPD_A; else Y <= localY after tPD_Sel; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) begin if (a + b = "10011010") then result <= c; elsif (a + b = "01011001") then result <= d; elsif (a + b = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture concurrent of TRIBUF8 is begin op <= ip when oe = '1' else (others => 'Z'); end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture concurrent of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture sequential of TRIBUF8 is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= (others => 'Z'); end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in bit; oe: in bit; op: out bit ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= 'Z'; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity tribuffer is port ( input: in std_logic; enable: in std_logic; output: out std_logic ); end tribuffer; architecture structural of tribuffer is begin u1: tribuf port map (ip => input, oe => enable, op => output ); end structural; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); begin genXOR(0) <= '0'; parTree: for i in 1 to ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; entity oddParityLoop is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityLoop ; architecture scaleable of oddParityLoop is begin process (ad) variable loopXor: std_logic; begin loopXor := '0'; for i in 0 to width -1 loop loopXor := loopXor xor ad( i ) ; end loop ; oddParity <= loopXor ; end process; end scaleable ; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is port ( I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after 10 ns; end simple; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in std_logic_vector(3 downto 0); sum: out std_logic_vector(3 downto 0); overflow: out std_logic ); end adder; architecture concat of adder is signal localSum: std_logic_vector(4 downto 0); begin localSum <= std_logic_vector(unsigned('0' & a) + unsigned('0' & b)); sum <= localSum(3 downto 0); overflow <= localSum(4); end concat; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity paramDFF is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; reset: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end paramDFF; architecture parameterize of paramDFF is signal reg: std_logic_vector(size - 1 downto 0); begin u1: pDFFE generic map (n => size) port map (d => data, clk =>clock, rst => reset, en => ff_enable, q => reg ); u2: pTRIBUF generic map (n => size) port map (ip => reg, oe => op_enable, op => qout ); end paramterize; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); signal one: std_logic := '1'; begin parTree: for i in ad'range generate g0: if i = 0 generate x0: xor2 port map (i1 => one, i2 => one, y => genXor(0) ); end generate; g1: if i > 0 and i <= ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); -- (2 <= width <= 32) and a power of 2 port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal stage0: std_logic_vector(31 downto 0); signal stage1: std_logic_vector(15 downto 0); signal stage2: std_logic_vector(7 downto 0); signal stage3: std_logic_vector(3 downto 0); signal stage4: std_logic_vector(1 downto 0); begin g4: for i in stage4'range generate g41: if (ad'length > 2) generate x4: xor2 port map (stage3(i), stage3(i + stage4'length), stage4(i)); end generate; end generate; g3: for i in stage3'range generate g31: if (ad'length > 4) generate x3: xor2 port map (stage2(i), stage2(i + stage3'length), stage3(i)); end generate; end generate; g2: for i in stage2'range generate g21: if (ad'length > 8) generate x2: xor2 port map (stage1(i), stage1(i + stage2'length), stage2(i)); end generate; end generate; g1: for i in stage1'range generate g11: if (ad'length > 16) generate x1: xor2 port map (stage0(i), stage0(i + stage1'length), stage1(i)); end generate; end generate; s1: for i in ad'range generate s14: if (ad'length = 2) generate stage4(i) <= ad(i); end generate; s13: if (ad'length = 4) generate stage3(i) <= ad(i); end generate; s12: if (ad'length = 8) generate stage2(i) <= ad(i); end generate; s11: if (ad'length = 16) generate stage1(i) <= ad(i); end generate; s10: if (ad'length = 32) generate stage0(i) <= ad(i); end generate; end generate; genPar: xor2 port map (stage4(0), stage4(1), oddParity); end scaleable ; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in unsigned(3 downto 0); power : out unsigned(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; signal inputValInt: integer range 0 to 15; signal powerL: integer range 0 to 65535; begin inputValInt <= to_integer(inputVal); power <= to_unsigned(powerL,16); process begin wait until Clk = '1'; powerL <= Pow(inputValInt,4); end process; end behavioral; package PowerPkg is component Power port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end component; end PowerPkg; use work.bv_math.all; use work.int_math.all; use work.PowerPkg.all; entity Power is port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end Power; architecture funky of Power is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; Variable i : integer := 0; begin while( i < Exp ) loop Result := Result * N; i := i + 1; end loop; return( Result ); end Pow; function RollVal( CntlVal : integer ) return integer is begin return( Pow( 2, CntlVal ) + 2 ); end RollVal; begin process begin wait until Clk = '1'; power <= i2bv(Rollval(bv2I(inputVal)),16); end process; end funky; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity priority_encoder is port (interrupts : in std_logic_vector(7 downto 0); priority : in std_logic_vector(2 downto 0); result : out std_logic_vector(2 downto 0) ); end priority_encoder; architecture behave of priority_encoder is begin process (interrupts) variable selectIn : integer; variable LoopCount : integer; begin LoopCount := 1; selectIn := to_integer(to_unsigned(priority)); while (LoopCount <= 7) and (interrupts(selectIn) /= '0') loop if (selectIn = 0) then selectIn := 7; else selectIn := selectIn - 1; end if; LoopCount := LoopCount + 1; end loop; result <= std_logic_vector(to_unsigned(selectIn,3)); end process; end behave; library IEEE; use IEEE.std_logic_1164.all; package primitive is component DFFE port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end component; component DFFE_SR port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end component; component DLATCHH port ( d: in std_logic; en: in std_logic; q: out std_logic ); end component; component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; component TRIBUF port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end component; component BIDIR port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end component; end package; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en) begin if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture rtl of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; subtype fsmType is std_logic_vector(1 downto 0); constant loadDelayCnt : fsmType := "00"; constant waitDelayEnd : fsmType := "10"; constant loadLengthCnt : fsmType := "11"; constant waitLengthEnd : fsmType := "01"; signal currState, nextState: fsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; -- Assign pulse output pulse <= currState(0); end rtl; library ieee; use ieee.std_logic_1164.all; entity pulseErr is port (a: in std_logic; b: out std_logic ); end pulseErr; architecture behavior of pulseErr is signal c: std_logic; begin pulse: process (a,c) begin b <= c XOR a; c <= a; end process; end behavior; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '0'; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); type stateVec is array (3 downto 0) of std_logic; type stateBits is array (progPulseFsmType) of stateVec; signal loadVal: std_logic; constant stateTable: stateBits := ( loadDelayCnt => "0010", waitDelayEnd => "0100", loadLengthCnt => "0011", waitLengthEnd => "1101" ); -- ^^^^ -- ||||__ loadVal -- |||___ downCntLd -- ||____ downCntEn -- |_____ pulse signal currState, nextState: progPulseFsmType; begin nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; pulse <= stateTable(currState)(3); downCntEn <= stateTable(currState)(2); downCntLd <= stateTable(currState)(1); loadVal <= stateTable(currState)(0); downCntData <= delayCntVal when loadVal = '0' else lengthCntVal; end fsm; -- Incorporates Errata 6.1 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downtCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; signal downCntL: unsigned (7 downto 0); begin downCntL <= to_unsigned(downCnt); -- convert downCnt to unsigned nextStProc: process (currState, downCntL, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, lengthCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= lengthCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= lengthCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; end case; end process outConProc; end fsm; -- Incorporates errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; use work.specialFunctions.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(unsigned(inputVal)),4),16)); end process; end behavioral; -- Incorporate errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(to_unsigned(inputVal)),4),16)); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all; use IEEE.std_logic_unsigned.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= conv_std_logic_vector(Pow(conv_integer(inputVal),4),16); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity regFile is port ( clk, rst: in std_logic; data: in std_logic_vector(31 downto 0); regSel: in std_logic_vector(1 downto 0); wrEnable: in std_logic; regOut: out std_logic_vector(31 downto 0) ); end regFile; architecture behavioral of regFile is subtype reg is std_logic_vector(31 downto 0); type regArray is array (integer range <>) of reg; signal registerFile: regArray(0 to 3); begin regProc: process (clk, rst) variable i: integer; begin i := 0; if rst = '1' then while i <= registerFile'high loop registerFile(i) <= (others => '0'); i := i + 1; end loop; elsif clk'event and clk = '1' then if (wrEnable = '1') then case regSel is when "00" => registerFile(0) <= data; when "01" => registerFile(1) <= data; when "10" => registerFile(2) <= data; when "11" => registerFile(3) <= data; when others => null; end case; end if; end if; end process; outputs: process(regSel, registerFile) begin case regSel is when "00" => regOut <= registerFile(0); when "01" => regOut <= registerFile(1); when "10" => regOut <= registerFile(2); when "11" => regOut <= registerFile(3); when others => null; end case; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1,d2: in std_logic; q1,q2: out std_logic; clk: in std_logic; rst : in std_logic ); end DFF; architecture rtl of DFF is begin resetLatch: process (clk, rst) begin if rst = '1' then q1 <= '0'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity resFcnDemo is port ( a, b: in std_logic; oeA,oeB: in std_logic; result: out std_logic ); end resFcnDemo; architecture multiDriver of resFcnDemo is begin result <= a when oeA = '1' else 'Z'; result <= b when oeB = '1' else 'Z'; end multiDriver; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleDFF is port ( data: in std_logic_vector(7 downto 0); clock: in std_logic; enable: in std_logic; qout: out std_logic_vector(7 downto 0) ); end scaleDFF; architecture scalable of scaleDFF is begin u1: sDFFE port map (d => data, clk =>clock, en => enable, q => qout ); end scalable; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is signal la_n, lb_n, lc_n, ld_n, le_n, lf_n, lg_n: std_logic; signal oe: std_logic; begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" la_n <= '1'; lb_n <= '1'; lc_n <= '1'; ld_n <= '1'; le_n <= '1'; lf_n <= '1'; lg_n <= '1'; case bcdInputs is when "0000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; when "0001" => lb_n <= '0'; lc_n <= '0'; when "0010" => la_n <= '0'; lb_n <= '0'; ld_n <= '0'; le_n <= '0'; lg_n <= '0'; when "0011" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lg_n <= '0'; when "0100" => lb_n <= '0'; lc_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0101" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0110" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0111" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; when "1000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "1001" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; -- All other inputs possibilities are "don't care" when others => la_n <= 'X'; lb_n <= 'X'; lc_n <= 'X'; ld_n <= 'X'; le_n <= 'X'; lf_n <= 'X'; lg_n <= 'X'; end case; end process bcd2sevSeg; -- Disable outputs for all invalid input values oe <= '1' when (bcdInputs < 10) else '0'; a_n <= la_n when oe = '1' else 'Z'; b_n <= lb_n when oe = '1' else 'Z'; c_n <= lc_n when oe = '1' else 'Z'; d_n <= ld_n when oe = '1' else 'Z'; e_n <= le_n when oe = '1' else 'Z'; f_n <= lf_n when oe = '1' else 'Z'; g_n <= lg_n when oe = '1' else 'Z'; end behavioral; library ieee; use ieee.std_logic_1164.all; use std.textio.all; entity sevenSegmentTB is end sevenSegmentTB; architecture testbench of sevenSegmentTB is component sevenSegment port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end component; type vector is record bcdStimulus: std_logic_vector(3 downto 0); sevSegOut: std_logic_vector(6 downto 0); end record; constant NumVectors: integer:= 17; constant PropDelay: time := 40 ns; constant SimLoopDelay: time := 10 ns; type vectorArray is array (0 to NumVectors - 1) of vector; constant vectorTable: vectorArray := ( (bcdStimulus => "0000", sevSegOut => "0000001"), (bcdStimulus => "0001", sevSegOut => "1001111"), (bcdStimulus => "0010", sevSegOut => "0010010"), (bcdStimulus => "0011", sevSegOut => "0000110"), (bcdStimulus => "0100", sevSegOut => "1001100"), (bcdStimulus => "0101", sevSegOut => "0100100"), (bcdStimulus => "0110", sevSegOut => "0100000"), (bcdStimulus => "0111", sevSegOut => "0001111"), (bcdStimulus => "1000", sevSegOut => "0000000"), (bcdStimulus => "1001", sevSegOut => "0000100"), (bcdStimulus => "1010", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1011", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1100", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1101", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1110", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1111", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "0000", sevSegOut => "0110110") -- this vector fails ); for all : sevenSegment use entity work.sevenSegment(behavioral); signal StimInputs: std_logic_vector(3 downto 0); signal CaptureOutputs: std_logic_vector(6 downto 0); begin u1: sevenSegment port map (bcdInputs => StimInputs, a_n => CaptureOutputs(6), b_n => CaptureOutputs(5), c_n => CaptureOutputs(4), d_n => CaptureOutputs(3), e_n => CaptureOutputs(2), f_n => CaptureOutputs(1), g_n => CaptureOutputs(0)); LoopStim: process variable FoundError: boolean := false; variable TempVector: vector; variable ErrorMsgLine: line; begin for i in vectorTable'range loop TempVector := vectorTable(i); StimInputs <= TempVector.bcdStimulus; wait for PropDelay; if CaptureOutputs /= TempVector.sevSegOut then write (ErrorMsgLine, string'("Vector failed at ")); write (ErrorMsgLine, now); writeline (output, ErrorMsgLine); FoundError := true; end if; wait for SimLoopDelay; end loop; assert FoundError report "No errors. All vectors passed." severity note; wait; end process; end testbench; library ieee; use ieee.std_logic_1164.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" a_n <= '1'; b_n <= '1'; c_n <= '1'; d_n <= '1'; e_n <= '1'; f_n <= '1'; g_n <= '1'; case bcdInputs is when "0000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; when "0001" => b_n <= '0'; c_n <= '0'; when "0010" => a_n <= '0'; b_n <= '0'; d_n <= '0'; e_n <= '0'; g_n <= '0'; when "0011" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; g_n <= '0'; when "0100" => b_n <= '0'; c_n <= '0'; f_n <= '0'; g_n <= '0'; when "0101" => a_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when "0110" => a_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "0111" => a_n <= '0'; b_n <= '0'; c_n <= '0'; when "1000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "1001" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when others => null; end case; end process bcd2sevSeg; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) variable tempSum: std_logic_vector(7 downto 0); begin tempSum := a + b; -- temporary node for sum if (tempSum = "10011010") then result <= c; elsif (tempSum = "01011001") then result <= d; elsif (tempSum = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity shifter is port ( clk, rst: in std_logic; shiftEn,shiftIn: std_logic; q: out std_logic_vector (15 downto 0) ); end shifter; architecture behav of shifter is signal qLocal: std_logic_vector(15 downto 0); begin shift: process (clk, rst) begin if (rst = '1') then qLocal <= (others => '0'); elsif (clk'event and clk = '1') then if (shiftEn = '1') then qLocal <= qLocal(14 downto 0) & shiftIn; else qLocal <= qLocal; end if; end if; q <= qLocal; end process; end behav; library ieee; use ieee.std_logic_1164.all; entity lastAssignment is port (a, b: in std_logic; selA, selb: in std_logic; result: out std_logic ); end lastAssignment; architecture behavioral of lastAssignment is begin demo: process (a,b,selA,selB) begin if (selA = '1') then result <= a; else result <= '0'; end if; if (selB = '1') then result <= b; else result <= '0'; end if; end process demo; end behavioral; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '0' then b <= a; else b <= '0'; end if; end process; end basic; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '1' then b <= a; else b <= '0'; end if; end process; end basic; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; component SimDFF generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until rising_edge(clk); if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until clk = '1'; if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; package scaleable is component scaleUpCnt port ( clk: in std_logic; reset: in std_logic; cnt: in std_logic_vector ); end component; end scaleable; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleUpCnt is port ( clk: in std_logic; reset: in std_logic; cnt: out std_logic_vector ); end scaleUpCnt; architecture scaleable of scaleUpCnt is signal one: std_logic := '1'; signal cntL: std_logic_vector(cnt'range); signal andTerm: std_logic_vector(cnt'range); begin -- Special case is the least significant bit lsb: tff port map (t => one, reset => reset, clk => clk, q => cntL(cntL'low) ); andTerm(0) <= cntL(cntL'low); -- General case for all other bits genAnd: for i in 1 to cntL'high generate andTerm(i) <= andTerm(i - 1) and cntL(i); end generate; genTFF: for i in 1 to cntL'high generate t1: tff port map (t => andTerm(i), clk => clk, reset => reset, q => cntl(i) ); end generate; cnt <= CntL; end scaleable; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "010"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(3 downto 0); constant Idle: targetFsmType := "0000"; constant B_Busy: targetFsmType := "0001"; constant Backoff: targetFsmType := "0011"; constant S_Data: targetFsmType := "1100"; constant Turn_Ar: targetFsmType := "1101"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; constant Dont_Care: targetFsmType := "XXX"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= Dont_Care; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Stop_n: out std_logic; -- PCI Stop# PCI_Trdy_n: out std_logic; -- PCI Trdy# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; type targetFsmType is (Idle, B_Busy, Backoff, S_Data, Turn_Ar); signal currState, nextState: targetFsmType; begin -- Process to generate next state logic nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; -- Process to register the current state curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; -- Process to generate outputs outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; -- Assign output ports PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; -- Incorporates Errata 10.1 and 10.2 library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(4 downto 0); constant Idle: integer := 0; constant B_Busy: integer := 1; constant Backoff: integer := 2; constant S_Data: integer := 3; constant Turn_Ar: integer := 4; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin nextState <= (others => '0'); if currState(Idle) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; if currState(B_Busy) = '1' then if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState(Idle) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState(S_Data) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState(Backoff) <= '1'; else nextState(B_Busy) <= '1'; end if; end if; if currState(S_Data) = '1' then if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState(Backoff) <= '1'; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState(Turn_Ar) <= '1'; else nextState(S_Data) <= '1'; end if; end if; if currState(Backoff) = '1' then if PCI_Frame_n = '1' then nextState(Turn_Ar) <= '1'; else nextState(Backoff) <= '1'; end if; end if; if currState(Turn_Ar) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= (others => '0'); -- per Errata 10.2 currState(Idle) <= '1'; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; -- defaults per errata 10.1 OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; if (currState(S_Data) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Backoff) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; end if; if (currState(Turn_Ar) = '1') then OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Idle) = '1' or currState(B_Busy) = '1') then OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end if; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= IDLE; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library ieee; use ieee.std_logic_1164.all; entity test is port ( a: in std_logic; z: out std_logic; en: in std_logic ); end test; architecture simple of test is begin z <= a when en = '1' else 'z'; end simple;
gpl-2.0
gigglesninja/digital-system-design
uart/ipcore_dir/fifo_rx/simulation/fifo_rx_pkg.vhd
2
11257
-------------------------------------------------------------------------------- -- -- FIFO Generator Core Demo Testbench -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: fifo_rx_pkg.vhd -- -- Description: -- This is the demo testbench package file for FIFO Generator core. -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE ieee.std_logic_arith.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; PACKAGE fifo_rx_pkg IS FUNCTION divroundup ( data_value : INTEGER; divisor : INTEGER) RETURN INTEGER; ------------------------ FUNCTION if_then_else ( condition : BOOLEAN; true_case : INTEGER; false_case : INTEGER) RETURN INTEGER; ------------------------ FUNCTION if_then_else ( condition : BOOLEAN; true_case : STD_LOGIC; false_case : STD_LOGIC) RETURN STD_LOGIC; ------------------------ FUNCTION if_then_else ( condition : BOOLEAN; true_case : TIME; false_case : TIME) RETURN TIME; ------------------------ FUNCTION log2roundup ( data_value : INTEGER) RETURN INTEGER; ------------------------ FUNCTION hexstr_to_std_logic_vec( arg1 : string; size : integer ) RETURN std_logic_vector; ------------------------ COMPONENT fifo_rx_rng IS GENERIC (WIDTH : integer := 8; SEED : integer := 3); PORT ( CLK : IN STD_LOGIC; RESET : IN STD_LOGIC; ENABLE : IN STD_LOGIC; RANDOM_NUM : OUT STD_LOGIC_VECTOR (WIDTH-1 DOWNTO 0) ); END COMPONENT; ------------------------ COMPONENT fifo_rx_dgen IS GENERIC ( C_DIN_WIDTH : INTEGER := 32; C_DOUT_WIDTH : INTEGER := 32; C_CH_TYPE : INTEGER := 0; TB_SEED : INTEGER := 2 ); PORT ( RESET : IN STD_LOGIC; WR_CLK : IN STD_LOGIC; PRC_WR_EN : IN STD_LOGIC; FULL : IN STD_LOGIC; WR_EN : OUT STD_LOGIC; WR_DATA : OUT STD_LOGIC_VECTOR(C_DIN_WIDTH-1 DOWNTO 0) ); END COMPONENT; ------------------------ COMPONENT fifo_rx_dverif IS GENERIC( C_DIN_WIDTH : INTEGER := 0; C_DOUT_WIDTH : INTEGER := 0; C_USE_EMBEDDED_REG : INTEGER := 0; C_CH_TYPE : INTEGER := 0; TB_SEED : INTEGER := 2 ); PORT( RESET : IN STD_LOGIC; RD_CLK : IN STD_LOGIC; PRC_RD_EN : IN STD_LOGIC; EMPTY : IN STD_LOGIC; DATA_OUT : IN STD_LOGIC_VECTOR(C_DOUT_WIDTH-1 DOWNTO 0); RD_EN : OUT STD_LOGIC; DOUT_CHK : OUT STD_LOGIC ); END COMPONENT; ------------------------ COMPONENT fifo_rx_pctrl IS GENERIC( AXI_CHANNEL : STRING := "NONE"; C_APPLICATION_TYPE : INTEGER := 0; C_DIN_WIDTH : INTEGER := 0; C_DOUT_WIDTH : INTEGER := 0; C_WR_PNTR_WIDTH : INTEGER := 0; C_RD_PNTR_WIDTH : INTEGER := 0; C_CH_TYPE : INTEGER := 0; FREEZEON_ERROR : INTEGER := 0; TB_STOP_CNT : INTEGER := 2; TB_SEED : INTEGER := 2 ); PORT( RESET_WR : IN STD_LOGIC; RESET_RD : IN STD_LOGIC; WR_CLK : IN STD_LOGIC; RD_CLK : IN STD_LOGIC; FULL : IN STD_LOGIC; EMPTY : IN STD_LOGIC; ALMOST_FULL : IN STD_LOGIC; ALMOST_EMPTY : IN STD_LOGIC; DATA_IN : IN STD_LOGIC_VECTOR(C_DIN_WIDTH-1 DOWNTO 0); DATA_OUT : IN STD_LOGIC_VECTOR(C_DOUT_WIDTH-1 DOWNTO 0); DOUT_CHK : IN STD_LOGIC; PRC_WR_EN : OUT STD_LOGIC; PRC_RD_EN : OUT STD_LOGIC; RESET_EN : OUT STD_LOGIC; SIM_DONE : OUT STD_LOGIC; STATUS : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ); END COMPONENT; ------------------------ COMPONENT fifo_rx_synth IS GENERIC( FREEZEON_ERROR : INTEGER := 0; TB_STOP_CNT : INTEGER := 0; TB_SEED : INTEGER := 1 ); PORT( CLK : IN STD_LOGIC; RESET : IN STD_LOGIC; SIM_DONE : OUT STD_LOGIC; STATUS : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) ); END COMPONENT; ------------------------ COMPONENT fifo_rx_exdes IS PORT ( CLK : IN std_logic; SRST : IN std_logic; WR_EN : IN std_logic; RD_EN : IN std_logic; DIN : IN std_logic_vector(9-1 DOWNTO 0); DOUT : OUT std_logic_vector(9-1 DOWNTO 0); FULL : OUT std_logic; EMPTY : OUT std_logic); END COMPONENT; ------------------------ END fifo_rx_pkg; PACKAGE BODY fifo_rx_pkg IS FUNCTION divroundup ( data_value : INTEGER; divisor : INTEGER) RETURN INTEGER IS VARIABLE div : INTEGER; BEGIN div := data_value/divisor; IF ( (data_value MOD divisor) /= 0) THEN div := div+1; END IF; RETURN div; END divroundup; --------------------------------- FUNCTION if_then_else ( condition : BOOLEAN; true_case : INTEGER; false_case : INTEGER) RETURN INTEGER IS VARIABLE retval : INTEGER := 0; BEGIN IF condition=false THEN retval:=false_case; ELSE retval:=true_case; END IF; RETURN retval; END if_then_else; --------------------------------- FUNCTION if_then_else ( condition : BOOLEAN; true_case : STD_LOGIC; false_case : STD_LOGIC) RETURN STD_LOGIC IS VARIABLE retval : STD_LOGIC := '0'; BEGIN IF condition=false THEN retval:=false_case; ELSE retval:=true_case; END IF; RETURN retval; END if_then_else; --------------------------------- FUNCTION if_then_else ( condition : BOOLEAN; true_case : TIME; false_case : TIME) RETURN TIME IS VARIABLE retval : TIME := 0 ps; BEGIN IF condition=false THEN retval:=false_case; ELSE retval:=true_case; END IF; RETURN retval; END if_then_else; ------------------------------- FUNCTION log2roundup ( data_value : INTEGER) RETURN INTEGER IS VARIABLE width : INTEGER := 0; VARIABLE cnt : INTEGER := 1; BEGIN IF (data_value <= 1) THEN width := 1; ELSE WHILE (cnt < data_value) LOOP width := width + 1; cnt := cnt *2; END LOOP; END IF; RETURN width; END log2roundup; ------------------------------------------------------------------------------ -- hexstr_to_std_logic_vec -- This function converts a hex string to a std_logic_vector ------------------------------------------------------------------------------ FUNCTION hexstr_to_std_logic_vec( arg1 : string; size : integer ) RETURN std_logic_vector IS VARIABLE result : std_logic_vector(size-1 DOWNTO 0) := (OTHERS => '0'); VARIABLE bin : std_logic_vector(3 DOWNTO 0); VARIABLE index : integer := 0; BEGIN FOR i IN arg1'reverse_range LOOP CASE arg1(i) IS WHEN '0' => bin := (OTHERS => '0'); WHEN '1' => bin := (0 => '1', OTHERS => '0'); WHEN '2' => bin := (1 => '1', OTHERS => '0'); WHEN '3' => bin := (0 => '1', 1 => '1', OTHERS => '0'); WHEN '4' => bin := (2 => '1', OTHERS => '0'); WHEN '5' => bin := (0 => '1', 2 => '1', OTHERS => '0'); WHEN '6' => bin := (1 => '1', 2 => '1', OTHERS => '0'); WHEN '7' => bin := (3 => '0', OTHERS => '1'); WHEN '8' => bin := (3 => '1', OTHERS => '0'); WHEN '9' => bin := (0 => '1', 3 => '1', OTHERS => '0'); WHEN 'A' => bin := (0 => '0', 2 => '0', OTHERS => '1'); WHEN 'a' => bin := (0 => '0', 2 => '0', OTHERS => '1'); WHEN 'B' => bin := (2 => '0', OTHERS => '1'); WHEN 'b' => bin := (2 => '0', OTHERS => '1'); WHEN 'C' => bin := (0 => '0', 1 => '0', OTHERS => '1'); WHEN 'c' => bin := (0 => '0', 1 => '0', OTHERS => '1'); WHEN 'D' => bin := (1 => '0', OTHERS => '1'); WHEN 'd' => bin := (1 => '0', OTHERS => '1'); WHEN 'E' => bin := (0 => '0', OTHERS => '1'); WHEN 'e' => bin := (0 => '0', OTHERS => '1'); WHEN 'F' => bin := (OTHERS => '1'); WHEN 'f' => bin := (OTHERS => '1'); WHEN OTHERS => FOR j IN 0 TO 3 LOOP bin(j) := 'X'; END LOOP; END CASE; FOR j IN 0 TO 3 LOOP IF (index*4)+j < size THEN result((index*4)+j) := bin(j); END IF; END LOOP; index := index + 1; END LOOP; RETURN result; END hexstr_to_std_logic_vec; END fifo_rx_pkg;
gpl-2.0
pf3gnuchains/urjtag
extra/fjmem/fjmem_pack-p.vhd
1
3039
------------------------------------------------------------------------------- -- -- $Id$ -- -- This program is free software; you can redistribute it and/or -- modify it under the terms of the GNU General Public License -- as published by the Free Software Foundation; either version 2 -- of the License, or (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. -- -- Written by Arnim Laeuger <[email protected]>, 2008. -- ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use work.fjmem_config_pack.all; package fjmem_pack is ----------------------------------------------------------------------------- -- Constants that build the shift register -- constant shift_instr_pos_c : natural := 0; constant shift_instr_width_c : natural := 3; constant shift_ack_pos_c : natural := shift_instr_pos_c + shift_instr_width_c; constant shift_ack_width_c : natural := 1; constant shift_block_pos_c : natural := shift_ack_pos_c + shift_ack_width_c; constant shift_block_width_c : natural := num_block_field_c; constant shift_addr_pos_c : natural := shift_block_pos_c + shift_block_width_c; constant shift_addr_width_c : natural := max_addr_width_c; constant shift_data_pos_c : natural := shift_addr_pos_c + shift_addr_width_c; constant shift_data_width_c : natural := max_data_width_c; constant shift_width_c : natural := shift_data_pos_c + shift_data_width_c; -- subtype instr_range_t is natural range shift_instr_width_c-1 downto 0; subtype block_range_t is natural range shift_block_pos_c+shift_block_width_c-1 downto shift_block_pos_c; subtype addr_range_t is natural range shift_addr_pos_c+shift_addr_width_c-1 downto shift_addr_pos_c; subtype data_range_t is natural range shift_data_pos_c+shift_data_width_c-1 downto shift_data_pos_c; subtype shift_range_t is natural range shift_width_c-1 downto 0; -- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -- Instruction constants -- constant instr_idle_c : std_logic_vector(instr_range_t) := "000"; constant instr_detect_c : std_logic_vector(instr_range_t) := "111"; constant instr_query_c : std_logic_vector(instr_range_t) := "110"; constant instr_read_c : std_logic_vector(instr_range_t) := "001"; constant instr_write_c : std_logic_vector(instr_range_t) := "010"; -- ----------------------------------------------------------------------------- end;
gpl-2.0
xerpi/3ds-arm9-linux
toolchain/ndstool/source/passme.vhd
3
3058
-- standard libraries library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity PassMe is port ( DSSLOT_CLK : in std_logic; DSSLOT_ROMCS : in std_logic; DSSLOT_RESET : in std_logic; DSSLOT_EEPCS : in std_logic; DSSLOT_IRQ : out std_logic; DSSLOT_IO : inout std_logic_vector(7 downto 0); DSCART_CLK : out std_logic; DSCART_ROMCS : out std_logic; DSCART_RESET : out std_logic; DSCART_EEPCS : out std_logic; DSCART_IRQ : in std_logic; DSCART_IO : inout std_logic_vector(7 downto 0); LED0 : out std_logic ); end entity; architecture rtl of passme is -- removes Xilinx mapping errors attribute CLOCK_BUFFER : string; attribute CLOCK_BUFFER of DSSLOT_CLK: signal is "ibuf"; attribute CLOCK_BUFFER of DSCART_CLK: signal is "obuf"; signal is_command : boolean; signal cmddata_cnt : natural range 0 to 511; -- 8 + 504 signal patched_data : std_logic_vector(7 downto 0); signal patch_en : boolean; begin -- direct passthrough DSCART_CLK <= DSSLOT_CLK; DSCART_ROMCS <= DSSLOT_ROMCS; DSCART_RESET <= DSSLOT_RESET; DSSLOT_IRQ <= DSCART_IRQ; DSCART_EEPCS <= DSSLOT_EEPCS; -- activity LED LED0 <= not DSSLOT_ROMCS; -- patch process (cmddata_cnt) begin case (cmddata_cnt - 8) is --! ALL PATCHES ARE TO BE GENERATED HERE when others => patched_data <= DSCART_IO; end case; end process; -- dataswitcher process (DSSLOT_RESET, DSSLOT_ROMCS, DSSLOT_EEPCS, DSSLOT_IO, DSCART_IO, patched_data) begin DSSLOT_IO <= (others => 'Z'); -- default is high impedance DSCART_IO <= (others => 'Z'); -- default is high impedance if (DSSLOT_RESET='1') then -- if not reset if (DSSLOT_ROMCS='0') then -- ROM is selected if (is_command) then -- is command byte DSCART_IO <= DSSLOT_IO; -- from DS to cartridge else -- is data byte if (patch_en) then -- patch enabled DSSLOT_IO <= patched_data; else DSSLOT_IO <= DSCART_IO; end if; end if; elsif (DSSLOT_EEPCS='0') then -- EEPROM is selected DSCART_IO(7) <= DSSLOT_IO(7); -- pass serial data DSSLOT_IO(6) <= DSCART_IO(6); -- pass serial data in opposite direction end if; end if; end process; -- patch_en process (DSSLOT_RESET, DSSLOT_CLK) begin if (DSSLOT_RESET='0') then patch_en <= true; -- patch header elsif (rising_edge(DSSLOT_CLK)) then if (is_command) then if (DSCART_IO(5) = '1') then -- detect 3C command, assume other command bytes are 00 patch_en <= false; -- do not patch other data end if; end if; end if; end process; -- cmddata_cnt, is_command process (DSSLOT_ROMCS, DSSLOT_CLK) begin if (DSSLOT_ROMCS='1') then cmddata_cnt <= 0; -- new transfer is_command <= true; -- start with command elsif (rising_edge(DSSLOT_CLK)) then if (cmddata_cnt mod 8 = 7) then is_command <= false; -- next byte is data end if; cmddata_cnt <= cmddata_cnt + 1; -- next byte end if; end process; end architecture;
gpl-2.0
gigglesninja/digital-system-design
lab9_uart_rx/ipcore_dir/fifo_rx/simulation/fifo_rx_dgen.vhd
1
4520
-------------------------------------------------------------------------------- -- -- FIFO Generator Core Demo Testbench -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: fifo_rx_dgen.vhd -- -- Description: -- Used for write interface stimulus generation -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_unsigned.all; USE IEEE.std_logic_arith.all; USE IEEE.std_logic_misc.all; LIBRARY work; USE work.fifo_rx_pkg.ALL; ENTITY fifo_rx_dgen IS GENERIC ( C_DIN_WIDTH : INTEGER := 32; C_DOUT_WIDTH : INTEGER := 32; C_CH_TYPE : INTEGER := 0; TB_SEED : INTEGER := 2 ); PORT ( RESET : IN STD_LOGIC; WR_CLK : IN STD_LOGIC; PRC_WR_EN : IN STD_LOGIC; FULL : IN STD_LOGIC; WR_EN : OUT STD_LOGIC; WR_DATA : OUT STD_LOGIC_VECTOR(C_DIN_WIDTH-1 DOWNTO 0) ); END ENTITY; ARCHITECTURE fg_dg_arch OF fifo_rx_dgen IS CONSTANT C_DATA_WIDTH : INTEGER := if_then_else(C_DIN_WIDTH > C_DOUT_WIDTH,C_DIN_WIDTH,C_DOUT_WIDTH); CONSTANT LOOP_COUNT : INTEGER := divroundup(C_DATA_WIDTH,8); SIGNAL pr_w_en : STD_LOGIC := '0'; SIGNAL rand_num : STD_LOGIC_VECTOR(8*LOOP_COUNT-1 DOWNTO 0); SIGNAL wr_data_i : STD_LOGIC_VECTOR(C_DIN_WIDTH-1 DOWNTO 0); BEGIN WR_EN <= PRC_WR_EN ; WR_DATA <= wr_data_i AFTER 50 ns; ---------------------------------------------- -- Generation of DATA ---------------------------------------------- gen_stim:FOR N IN LOOP_COUNT-1 DOWNTO 0 GENERATE rd_gen_inst1:fifo_rx_rng GENERIC MAP( WIDTH => 8, SEED => TB_SEED+N ) PORT MAP( CLK => WR_CLK, RESET => RESET, RANDOM_NUM => rand_num(8*(N+1)-1 downto 8*N), ENABLE => pr_w_en ); END GENERATE; pr_w_en <= PRC_WR_EN AND NOT FULL; wr_data_i <= rand_num(C_DIN_WIDTH-1 DOWNTO 0); END ARCHITECTURE;
gpl-2.0
pragmaware/ctags
Units/parser-vhdl.r/vhdl-type.d/input.vhd
7
9685
-- -- Taken from rtl/misclib/types_misc.vhd of https://github.com/sergeykhbr/riscv_vhdl -- --! --! Copyright 2018 Sergey Khabarov, [email protected] --! --! Licensed under the Apache License, Version 2.0 (the "License"); --! you may not use this file except in compliance with the License. --! You may obtain a copy of the License at --! --! http://www.apache.org/licenses/LICENSE-2.0 --! Unless required by applicable law or agreed to in writing, software --! distributed under the License is distributed on an "AS IS" BASIS, --! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. --! See the License for the specific language governing permissions and --! limitations under the License. --! --! Standard library. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library commonlib; use commonlib.types_common.all; --! Technology definition library. library techmap; use techmap.gencomp.all; --! CPU, System Bus and common peripheries library. library ambalib; use ambalib.types_amba4.all; use ambalib.types_bus0.all; --! @brief Declaration of components visible on SoC top level. package types_misc is --! @defgroup irq_id_group AXI4 interrupt generic IDs. --! @ingroup axi4_config_generic_group --! @details Unique indentificator of the interrupt pin also used --! as an index in the interrupts bus. --! @{ --! Zero interrupt index must be unused. constant CFG_IRQ_UNUSED : integer := 0; --! UART_A interrupt pin. constant CFG_IRQ_UART1 : integer := 1; --! Ethernet MAC interrupt pin. constant CFG_IRQ_ETHMAC : integer := 2; --! GP Timers interrupt pin constant CFG_IRQ_GPTIMERS : integer := 3; --! GNSS Engine IRQ pin that generates 1 msec pulses. constant CFG_IRQ_GNSSENGINE : integer := 4; --! Total number of used interrupts in a system constant CFG_IRQ_TOTAL : integer := 5; --! @} --! @brief SOC global reset former. --! @details This module produces output reset signal in a case if --! button 'Reset' was pushed or PLL isn't a 'lock' state. --! param[in] inSysReset Button generated signal --! param[in] inSysClk Clock from the PLL. Bus clock. --! param[out] outReset Output reset signal with active 'High' (1 = reset). component reset_global port ( inSysReset : in std_ulogic; inSysClk : in std_ulogic; outReset : out std_ulogic ); end component; --! Boot ROM with AXI4 interface declaration. component axi4_rom is generic ( memtech : integer := inferred; async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; sim_hexfile : string ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i : in axi4_slave_in_type; o : out axi4_slave_out_type ); end component; --! Internal RAM with AXI4 interface declaration. component axi4_sram is generic ( memtech : integer := inferred; async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; abits : integer := 17; init_file : string := "" -- only for 'inferred' ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i : in axi4_slave_in_type; o : out axi4_slave_out_type ); end component; --! AXI4 to SPI brdige for external Flash IC Micron M25AA1024 type spi_in_type is record SDI : std_logic; end record; type spi_out_type is record SDO : std_logic; SCK : std_logic; nCS : std_logic; nWP : std_logic; nHOLD : std_logic; RESET : std_logic; end record; constant spi_out_none : spi_out_type := ( '0', '0', '1', '1', '1', '0' ); component axi4_flashspi is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; wait_while_write : boolean := true -- hold AXI bus response until end of write cycle ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i_spi : in spi_in_type; o_spi : out spi_out_type; i_axi : in axi4_slave_in_type; o_axi : out axi4_slave_out_type ); end component; --! @brief AXI4 GPIO controller component axi4_gpio is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; xirq : integer := 0; width : integer := 12 ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i : in axi4_slave_in_type; o : out axi4_slave_out_type; i_gpio : in std_logic_vector(width-1 downto 0); o_gpio : out std_logic_vector(width-1 downto 0); o_gpio_dir : out std_logic_vector(width-1 downto 0) ); end component; type uart_in_type is record rd : std_ulogic; cts : std_ulogic; end record; type uart_out_type is record td : std_ulogic; rts : std_ulogic; end record; --! UART with the AXI4 interface declaration. component axi4_uart is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; xirq : integer := 0; fifosz : integer := 16 ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i_uart : in uart_in_type; o_uart : out uart_out_type; i_axi : in axi4_slave_in_type; o_axi : out axi4_slave_out_type; o_irq : out std_logic); end component; --! Test Access Point via UART (debug access) component uart_tap is port ( nrst : in std_logic; clk : in std_logic; i_uart : in uart_in_type; o_uart : out uart_out_type; i_msti : in axi4_master_in_type; o_msto : out axi4_master_out_type; o_mstcfg : out axi4_master_config_type ); end component; -- JTAG TAP component tap_jtag is generic ( ainst : integer range 0 to 255 := 2; dinst : integer range 0 to 255 := 3); port ( nrst : in std_logic; clk : in std_logic; i_tck : in std_logic; -- in: Test Clock i_ntrst : in std_logic; -- in: i_tms : in std_logic; -- in: Test Mode State i_tdi : in std_logic; -- in: Test Data Input o_tdo : out std_logic; -- out: Test Data Output o_jtag_vref : out std_logic; i_msti : in axi4_master_in_type; o_msto : out axi4_master_out_type; o_mstcfg : out axi4_master_config_type ); end component; --! @brief Interrupt controller with the AXI4 interface declaration. --! @details To rise interrupt on certain CPU HostIO interface is used. component axi4_irqctrl is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff# ); port ( clk : in std_logic; nrst : in std_logic; i_irqs : in std_logic_vector(CFG_IRQ_TOTAL-1 downto 1); o_cfg : out axi4_slave_config_type; i_axi : in axi4_slave_in_type; o_axi : out axi4_slave_out_type; o_irq_meip : out std_logic ); end component; --! @brief General Purpose Timers with the AXI interface. --! @details This module provides high precision counter and --! generic number of GP timers. component axi4_gptimers is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; xirq : integer := 0; tmr_total : integer := 2 ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i_axi : in axi4_slave_in_type; o_axi : out axi4_slave_out_type; o_pwm : out std_logic_vector(tmr_total-1 downto 0); o_irq : out std_logic ); end component; --! @brief Plug-n-Play support module with AXI4 interface declaration. --! @details Each device in a system hase to implements sideband signal --! structure 'nasti_slave_config_type' that allows FW to --! detect Hardware configuration in a run-time. --! @todo Implements PnP signals for all Masters devices. component axi4_pnp is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#fffff#; tech : integer := 0; hw_id : std_logic_vector(31 downto 0) := X"20170101" ); port ( sys_clk : in std_logic; adc_clk : in std_logic; nrst : in std_logic; mstcfg : in bus0_xmst_cfg_vector; slvcfg : in bus0_xslv_cfg_vector; cfg : out axi4_slave_config_type; i : in axi4_slave_in_type; o : out axi4_slave_out_type; -- OTP Timing control i_otp_busy : in std_logic; o_otp_cfg_rsetup : out std_logic_vector(3 downto 0); o_otp_cfg_wadrsetup : out std_logic_vector(3 downto 0); o_otp_cfg_wactive : out std_logic_vector(31 downto 0); o_otp_cfg_whold : out std_logic_vector(3 downto 0) ); end component; component axi4_otp is generic ( async_reset : boolean := false; xaddr : integer := 0; xmask : integer := 16#ffffe# ); port ( clk : in std_logic; nrst : in std_logic; cfg : out axi4_slave_config_type; i_axi : in axi4_slave_in_type; o_axi : out axi4_slave_out_type; o_otp_we : out std_ulogic; o_otp_re : out std_ulogic; o_otp_addr : out std_logic_vector(11 downto 0); o_otp_wdata : out std_logic_vector(15 downto 0); i_otp_rdata : in std_logic_vector(15 downto 0); i_cfg_rsetup : in std_logic_vector(3 downto 0); i_cfg_wadrsetup : in std_logic_vector(3 downto 0); i_cfg_wactive : in std_logic_vector(31 downto 0); i_cfg_whold : in std_logic_vector(3 downto 0); o_busy : out std_logic ); end component; end; -- package declaration
gpl-2.0
gigglesninja/digital-system-design
lab9_uart_rx/ipcore_dir/fifo_rx/simulation/fifo_rx_rng.vhd
2
3884
-------------------------------------------------------------------------------- -- -- FIFO Generator Core Demo Testbench -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: fifo_rx_rng.vhd -- -- Description: -- Used for generation of pseudo random numbers -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_unsigned.all; USE IEEE.std_logic_arith.all; USE IEEE.std_logic_misc.all; ENTITY fifo_rx_rng IS GENERIC ( WIDTH : integer := 8; SEED : integer := 3); PORT ( CLK : IN STD_LOGIC; RESET : IN STD_LOGIC; ENABLE : IN STD_LOGIC; RANDOM_NUM : OUT STD_LOGIC_VECTOR (WIDTH-1 DOWNTO 0)); END ENTITY; ARCHITECTURE rg_arch OF fifo_rx_rng IS BEGIN PROCESS (CLK,RESET) VARIABLE rand_temp : STD_LOGIC_VECTOR(width-1 DOWNTO 0):=conv_std_logic_vector(SEED,width); VARIABLE temp : STD_LOGIC := '0'; BEGIN IF(RESET = '1') THEN rand_temp := conv_std_logic_vector(SEED,width); temp := '0'; ELSIF (CLK'event AND CLK = '1') THEN IF (ENABLE = '1') THEN temp := rand_temp(width-1) xnor rand_temp(width-3) xnor rand_temp(width-4) xnor rand_temp(width-5); rand_temp(width-1 DOWNTO 1) := rand_temp(width-2 DOWNTO 0); rand_temp(0) := temp; END IF; END IF; RANDOM_NUM <= rand_temp; END PROCESS; END ARCHITECTURE;
gpl-2.0
gigglesninja/digital-system-design
lab8_uart_tx/ipcore_dir/fifo/example_design/fifo_exdes.vhd
1
4767
-------------------------------------------------------------------------------- -- -- FIFO Generator Core - core top file for implementation -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: fifo_exdes.vhd -- -- Description: -- This is the FIFO core wrapper with BUFG instances for clock connections. -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; library unisim; use unisim.vcomponents.all; -------------------------------------------------------------------------------- -- Entity Declaration -------------------------------------------------------------------------------- entity fifo_exdes is PORT ( CLK : IN std_logic; RST : IN std_logic; WR_EN : IN std_logic; RD_EN : IN std_logic; DIN : IN std_logic_vector(8-1 DOWNTO 0); DOUT : OUT std_logic_vector(8-1 DOWNTO 0); FULL : OUT std_logic; EMPTY : OUT std_logic); end fifo_exdes; architecture xilinx of fifo_exdes is signal clk_i : std_logic; component fifo is PORT ( CLK : IN std_logic; RST : IN std_logic; WR_EN : IN std_logic; RD_EN : IN std_logic; DIN : IN std_logic_vector(8-1 DOWNTO 0); DOUT : OUT std_logic_vector(8-1 DOWNTO 0); FULL : OUT std_logic; EMPTY : OUT std_logic); end component; begin clk_buf: bufg PORT map( i => CLK, o => clk_i ); exdes_inst : fifo PORT MAP ( CLK => clk_i, RST => rst, WR_EN => wr_en, RD_EN => rd_en, DIN => din, DOUT => dout, FULL => full, EMPTY => empty); end xilinx;
gpl-2.0
gigglesninja/digital-system-design
uart/ipcore_dir/fifo_tx/simulation/fifo_tx_tb.vhd
1
5704
-------------------------------------------------------------------------------- -- -- FIFO Generator Core Demo Testbench -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2009 - 2010 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -------------------------------------------------------------------------------- -- -- Filename: fifo_tx_tb.vhd -- -- Description: -- This is the demo testbench top file for fifo_generator core. -- -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY ieee; LIBRARY std; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_unsigned.ALL; USE IEEE.std_logic_arith.ALL; USE IEEE.std_logic_misc.ALL; USE ieee.numeric_std.ALL; USE ieee.std_logic_textio.ALL; USE std.textio.ALL; LIBRARY work; USE work.fifo_tx_pkg.ALL; ENTITY fifo_tx_tb IS END ENTITY; ARCHITECTURE fifo_tx_arch OF fifo_tx_tb IS SIGNAL status : STD_LOGIC_VECTOR(7 DOWNTO 0) := "00000000"; SIGNAL wr_clk : STD_LOGIC; SIGNAL reset : STD_LOGIC; SIGNAL sim_done : STD_LOGIC := '0'; SIGNAL end_of_sim : STD_LOGIC_VECTOR(4 DOWNTO 0) := (OTHERS => '0'); -- Write and Read clock periods CONSTANT wr_clk_period_by_2 : TIME := 100 ns; -- Procedures to display strings PROCEDURE disp_str(CONSTANT str:IN STRING) IS variable dp_l : line := null; BEGIN write(dp_l,str); writeline(output,dp_l); END PROCEDURE; PROCEDURE disp_hex(signal hex:IN STD_LOGIC_VECTOR(7 DOWNTO 0)) IS variable dp_lx : line := null; BEGIN hwrite(dp_lx,hex); writeline(output,dp_lx); END PROCEDURE; BEGIN -- Generation of clock PROCESS BEGIN WAIT FOR 200 ns; -- Wait for global reset WHILE 1 = 1 LOOP wr_clk <= '0'; WAIT FOR wr_clk_period_by_2; wr_clk <= '1'; WAIT FOR wr_clk_period_by_2; END LOOP; END PROCESS; -- Generation of Reset PROCESS BEGIN reset <= '1'; WAIT FOR 2100 ns; reset <= '0'; WAIT; END PROCESS; -- Error message printing based on STATUS signal from fifo_tx_synth PROCESS(status) BEGIN IF(status /= "0" AND status /= "1") THEN disp_str("STATUS:"); disp_hex(status); END IF; IF(status(7) = '1') THEN assert false report "Data mismatch found" severity error; END IF; IF(status(1) = '1') THEN END IF; IF(status(5) = '1') THEN assert false report "Empty flag Mismatch/timeout" severity error; END IF; IF(status(6) = '1') THEN assert false report "Full Flag Mismatch/timeout" severity error; END IF; END PROCESS; PROCESS BEGIN wait until sim_done = '1'; IF(status /= "0" AND status /= "1") THEN assert false report "Simulation failed" severity failure; ELSE assert false report "Test Completed Successfully" severity failure; END IF; END PROCESS; PROCESS BEGIN wait for 400 ms; assert false report "Test bench timed out" severity failure; END PROCESS; -- Instance of fifo_tx_synth fifo_tx_synth_inst:fifo_tx_synth GENERIC MAP( FREEZEON_ERROR => 0, TB_STOP_CNT => 2, TB_SEED => 27 ) PORT MAP( CLK => wr_clk, RESET => reset, SIM_DONE => sim_done, STATUS => status ); END ARCHITECTURE;
gpl-2.0
pf3gnuchains/urjtag
extra/fjmem/fjmem_config_pack_spartan3-p.vhd
1
3042
------------------------------------------------------------------------------- -- -- $Id$ -- -- This program is free software; you can redistribute it and/or -- modify it under the terms of the GNU General Public License -- as published by the Free Software Foundation; either version 2 -- of the License, or (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA -- 02111-1307, USA. -- -- Written by Arnim Laeuger <[email protected]>, 2008. -- ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; package fjmem_config_pack is ----------------------------------------------------------------------------- -- Specify the active levels of trst_i, shift_i and res_i -- constant trst_act_level_c : std_logic := '1'; constant shift_act_level_c : std_logic := '1'; constant res_act_level_c : std_logic := '1'; -- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -- Adapt the number of used blocks and the number of bits that are -- required for the block field (2 ** num_block_field_c >= num_blocks_c) -- -- number of used blocks constant num_blocks_c : natural := 4; -- number of bits for block field constant num_block_field_c : natural := 2; -- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -- Don't change the array type -- type block_desc_t is record addr_width : natural; data_width : natural; end record; type block_array_t is array (natural range 0 to num_blocks_c-1) of block_desc_t; -- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -- Fill in the array for all your used blocks -- constant blocks_c : block_array_t := ((addr_width => 24, -- block #0, FLASH data_width => 16), (addr_width => 18, -- block #1, RAM0 data_width => 16), (addr_width => 18, -- block #2, RAM1 data_width => 16), (addr_width => 8, -- block #3, embedded RAM data_width => 8) ); -- -- And specify the maximum address and data width -- constant max_addr_width_c : natural := 24; constant max_data_width_c : natural := 16; -- ----------------------------------------------------------------------------- end;
gpl-2.0
simlrh/ctags
Units/review-needed.r/test.vhd.t/input.vhd
91
192381
package body badger is end package body; package body badger2 is end package body badger2; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity accumulator is port ( a: in std_logic_vector(3 downto 0); clk, reset: in std_logic; accum: out std_logic_vector(3 downto 0) ); end accumulator; architecture simple of accumulator is signal accumL: unsigned(3 downto 0); begin accumulate: process (clk, reset) begin if (reset = '1') then accumL <= "0000"; elsif (clk'event and clk= '1') then accumL <= accumL + to_unsigned(a); end if; end process; accum <= std_logic_vector(accumL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity adder is port ( a,b : in std_logic_vector (15 downto 0); sum: out std_logic_vector (15 downto 0) ); end adder; architecture dataflow of adder is begin sum <= a + b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity pAdderAttr is generic(n : integer := 8); port (a : in std_logic_vector(n - 1 downto 0); b : in std_logic_vector(n - 1 downto 0); cin : in std_logic; sum : out std_logic_vector(n - 1 downto 0); cout : out std_logic); end pAdderAttr; architecture loopDemo of pAdderAttr is begin process(a, b, cin) variable carry: std_logic_vector(sum'length downto 0); variable localSum: std_logic_vector(sum'high downto 0); begin carry(0) := cin; for i in sum'reverse_range loop localSum(i) := (a(i) xor b(i)) xor carry(i); carry(i + 1) := (a(i) and b(i)) or (carry(i) and (a(i) or b(i))); end loop; sum <= localSum; cout <= carry(carry'high - 1); end process; end loopDemo; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in unsigned(3 downto 0); sum: out unsigned(3 downto 0) ); end adder; architecture simple of adder is begin sum <= a + b; end simple; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity asyncLoad is port ( loadVal, d: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLoad; architecture rtl of asyncLoad is begin process (clk, load, loadVal) begin if (load = '1') then q <= loadVal; elsif (clk'event and clk = '1' ) then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity BidirBuf is port ( OE: in std_logic; input: in std_logic_vector; output: out std_logic_vector ); end BidirBuf; architecture behavioral of BidirBuf is begin bidirBuf: process (OE, input) begin if (OE = '1') then output <= input; else output <= (others => 'Z'); end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BidirCnt is port ( OE: in std_logic; CntEnable: in std_logic; LdCnt: in std_logic; Clk: in std_logic; Rst: in std_logic; Cnt: inout std_logic_vector(3 downto 0) ); end BidirCnt; architecture behavioral of BidirCnt is component LoadCnt port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end component; component BidirBuf port ( OE: in std_logic; input: in std_logic_vector; output: inout std_logic_vector ); end component; signal CntVal: std_logic_vector(3 downto 0); signal LoadVal: std_logic_vector(3 downto 0); begin u1: loadcnt port map (CntEn => CntEnable, LdCnt => LdCnt, LdData => LoadVal, Clk => Clk, Rst => Rst, CntVal => CntVal ); u2: bidirbuf port map (OE => oe, input => CntVal, output => Cnt ); LoadVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity bidirbuffer is port ( input: in std_logic; enable: in std_logic; feedback: out std_logic; output: inout std_logic ); end bidirbuffer; architecture structural of bidirbuffer is begin u1: bidir port map (ip => input, oe => enable, op_fb => feedback, op => output ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity clkGen is port ( clk: in std_logic; reset: in std_logic; ClkDiv2, ClkDiv4, ClkDiv6,ClkDiv8: out std_logic ); end clkGen; architecture behav of clkGen is subtype numClks is std_logic_vector(1 to 4); subtype numPatterns is integer range 0 to 11; type clkTableType is array (numpatterns'low to numPatterns'high) of numClks; constant clkTable: clkTableType := clkTableType'( -- ClkDiv8______ -- ClkDiv6_____ | -- ClkDiv4____ || -- ClkDiv2 __ ||| -- |||| "1111", "0111", "1011", "0001", "1100", "0100", "1010", "0010", "1111", "0001", "1001", "0101"); signal index: numPatterns; begin lookupTable: process (clk, reset) begin if reset = '1' then index <= 0; elsif (clk'event and clk = '1') then if index = numPatterns'high then index <= numPatterns'low; else index <= index + 1; end if; end if; end process; (ClkDiv2,ClkDiv4,ClkDiv6,ClkDiv8) <= clkTable(index); end behav; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; enable: in std_logic; reset: in std_logic; count: buffer unsigned(3 downto 0) ); end counter; architecture simple of counter is begin increment: process (clk, reset) begin if reset = '1' then count <= "0000"; elsif(clk'event and clk = '1') then if enable = '1' then count <= count + 1; else count <= count; end if; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; use work.scaleable.all; entity count8 is port ( clk: in std_logic; rst: in std_logic; count: out std_logic_vector(7 downto 0) ); end count8; architecture structural of count8 is begin u1: scaleUpCnt port map (clk => clk, reset => rst, cnt => count ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 9) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 9); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(3,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(9 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(9 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(0,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; enable: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); elsif (enable = '1') then countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity Cnt4Term is port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic ); end Cnt4Term; architecture behavioral of Cnt4Term is signal CntL: unsigned(3 downto 0); begin increment: process begin wait until clk = '1'; CntL <= CntL + 1; end process; Cnt <= to_stdlogicvector(CntL); TermCnt <= '1' when CntL = "1111" else '0'; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity Counter is port ( clock: in std_logic; Count: out std_logic_vector(3 downto 0) ); end Counter; architecture structural of Counter is component Cnt4Term port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic); end component; begin u1: Cnt4Term port map (clk => clock, Cnt => Count, TermCnt => open ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if(clk'event and clk = '1') then if (reset = '1') then countL <= "0000"; else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity convertArith is port ( truncate: out unsigned(3 downto 0); extend: out unsigned(15 downto 0); direction: out unsigned(0 to 7) ); end convertArith; architecture simple of convertArith is constant Const: unsigned(7 downto 0) := "00111010"; begin truncate <= resize(Const, truncate'length); extend <= resize(Const, extend'length); direction <= resize(Const, direction'length); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is constant THREE: std_logic_vector(1 downto 0) := "11"; begin y <= '1' when (a & b = THREE) or (c & d /= THREE) else '0'; end concurrent; -- incorporates Errata 12.1 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity typeConvert is port ( a: out unsigned(7 downto 0) ); end typeConvert; architecture simple of typeConvert is constant Const: natural := 43; begin a <= To_unsigned(Const,8); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if (clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 3) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 3); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then countL <= countL + "001"; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + "0001"; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use work.decProcs.all; entity decoder is port ( decIn: in std_logic_vector(1 downto 0); decOut: out std_logic_vector(3 downto 0) ); end decoder; architecture simple of decoder is begin DEC2x4(decIn,decOut); end simple; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); decOut_n: out std_logic_vector(5 downto 0) ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; alias sio_dec_n: std_logic is decOut_n(5); alias rst_ctrl_rd_n: std_logic is decOut_n(4); alias atc_stat_rd_n: std_logic is decOut_n(3); alias mgmt_stat_rd_n: std_logic is decOut_n(2); alias io_int_stat_rd_n: std_logic is decOut_n(1); alias int_ctrl_rd_n: std_logic is decOut_n(0); alias upper: std_logic_vector(2 downto 0) is dev_adr(19 downto 17); alias CtrlBits: std_logic_vector(16 downto 0) is dev_adr(16 downto 0); begin decoder: process (upper, CtrlBits) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case upper is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case CtrlBits is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr) begin -- Set defaults for outputs sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin sio_dec_n <= '0' when dev_adr (19 downto 17) = SuperIORange else '1'; int_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IntCtrlReg) else '1'; io_int_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IoIntStatReg) else '1'; rst_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = RstCtrlReg) else '1'; atc_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = AtcStatusReg) else '1'; mgmt_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = MgmtStatusReg) else '1'; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr, cs0_n) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; else null; end if; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; signal Lsio_dec_n: std_logic; signal Lrst_ctrl_rd_n: std_logic; signal Latc_stat_rd_n: std_logic; signal Lmgmt_stat_rd_n: std_logic; signal Lio_int_stat_rd_n: std_logic; signal Lint_ctrl_rd_n: std_logic; begin decoder: process (dev_adr) begin -- Set defaults for outputs - for synthesis reasons. Lsio_dec_n <= '1'; Lint_ctrl_rd_n <= '1'; Lio_int_stat_rd_n <= '1'; Lrst_ctrl_rd_n <= '1'; Latc_stat_rd_n <= '1'; Lmgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => Lsio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => Lint_ctrl_rd_n <= '0'; when IoIntStatReg => Lio_int_stat_rd_n <= '0'; when RstCtrlReg => Lrst_ctrl_rd_n <= '0'; when AtcStatusReg => Latc_stat_rd_n <= '0'; when MgmtStatusReg => Lmgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; qualify: process (cs0_n) begin sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then sio_dec_n <= Lsio_dec_n; int_ctrl_rd_n <= Lint_ctrl_rd_n; io_int_stat_rd_n <= Lio_int_stat_rd_n; rst_ctrl_rd_n <= Lrst_ctrl_rd_n; atc_stat_rd_n <= Latc_stat_rd_n; mgmt_stat_rd_n <= Lmgmt_stat_rd_n; else null; end if; end process qualify; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process ( dev_adr) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if dev_adr(19 downto 17) = SuperIOrange then sio_dec_n <= '0'; elsif dev_adr(19 downto 17) = CtrlRegrange then if dev_adr(16 downto 0) = IntCtrlReg then int_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0)= IoIntStatReg then io_int_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = RstCtrlReg then rst_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0) = AtcStatusReg then atc_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = MgmtStatusReg then mgmt_stat_rd_n <= '0'; else null; end if; else null; end if; end process decoder; end synthesis; library IEEE; use IEEE.std_logic_1164.all; package decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ); end decProcs; package body decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ) is begin case inputs is when "11" => decode := "1000"; when "10" => decode := "0100"; when "01" => decode := "0010"; when "00" => decode := "0001"; when others => decode := "0001"; end case; end DEC2x4; end decProcs; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin with dev_adr(19 downto 17) select sio_dec_n <= '0' when SuperIORange, '1' when others; with dev_adr(19 downto 0) select int_ctrl_rd_n <= '0' when CtrlRegRange & IntCtrlReg, '1' when others; with dev_adr(19 downto 0) select io_int_stat_rd_n <= '0' when CtrlRegRange & IoIntStatReg, '1' when others; with dev_adr(19 downto 0) select rst_ctrl_rd_n <= '0' when CtrlRegRange & RstCtrlReg, '1' when others; with dev_adr(19 downto 0) select atc_stat_rd_n <= '0' when CtrlRegRange & AtcStatusReg, '1' when others; with dev_adr(19 downto 0) select mgmt_stat_rd_n <= '0' when CtrlRegRange & MgmtStatusReg, '1' when others; end synthesis; -- Incorporates Errata 5.1 and 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal delayCnt, pulseCnt: unsigned(7 downto 0); signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; begin delayReg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadLength = '1' then -- changed loadLength to loadDelay (Errata 5.1) pulseCntVal <= unsigned(data); end if; end if; end process; pulseDelay: process (clk, reset) begin if (reset = '1') then delayCnt <= "11111111"; elsif(clk'event and clk = '1') then if (loadDelay = '1' or loadLength = '1' or endPulse = '1') then -- changed startPulse to endPulse (Errata 5.1) delayCnt <= delayCntVal; elsif endPulse = '1' then delayCnt <= delayCnt - 1; end if; end if; end process; startPulse <= '1' when delayCnt = "00000000" else '0'; pulseLength: process (clk, reset) begin if (reset = '1') then pulseCnt <= "11111111"; elsif (clk'event and clk = '1') then if (loadLength = '1') then pulseCnt <= pulseCntVal; elsif (startPulse = '1' and endPulse = '1') then pulseCnt <= pulseCntVal; elsif (endPulse = '1') then pulseCnt <= pulseCnt; else pulseCnt <= pulseCnt - 1; end if; end if; end process; endPulse <= '1' when pulseCnt = "00000000" else '0'; pulseOutput: process (clk, reset) begin if (reset = '1') then pulse <= '0'; elsif (clk'event and clk = '1') then if (startPulse = '1') then pulse <= '1'; elsif (endPulse = '1') then pulse <= '0'; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst : in std_logic; q: out std_logic; ); end DFF; architecture rtl of DFF is begin process (clk) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, a,b,c) begin if ((a = '1' and b = '1') or c = '1') then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is signal localRst: std_logic; begin localRst <= '1' when (( a = '1' and b = '1') or c = '1') else '0'; process (clk, localRst) begin if localRst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; aset : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, aset) begin if aset = '1' then q <= '1'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; arst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q1 <= '0'; q2 <= '1'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; wait on clk; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; en: in std_logic; clk: in std_logic; q: out std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; envector: in std_logic_vector(7 downto 0); q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if envector = "10010111" then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (prst = '1') then q <= '1'; elsif (rst = '1') then q <= '0'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity flipFlop is port ( clock, input: in std_logic; ffOut: out std_logic ); end flipFlop; architecture simple of flipFlop is procedure dff (signal clk: in std_logic; signal d: in std_logic; signal q: out std_logic ) is begin if clk'event and clk = '1' then q <= d; end if; end procedure dff; begin dff(clock, input, ffOut); end simple; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; end: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until rising_edge(clk); if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; srst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q1 <= '0'; q2 <= '1'; else q1 <= d1; q2 <= d2; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if srst = '1' then q <= '0'; else q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe_sr is port ( d: in std_logic; clk: in std_logic; en: in std_logic; rst,prst: in std_logic; q: out std_logic ); end struct_dffe_sr; use work.primitive.all; architecture instance of struct_dffe_sr is begin ff: dffe_sr port map ( d => d, clk => clk, en => en, rst => rst, prst => prst, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q <= '0'; else q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end struct_dffe; use work.primitive.all; architecture instance of struct_dffe is begin ff: dffe port map ( d => d, clk => clk, en => en, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity dffTri is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end dffTri; architecture parameterize of dffTri is type tribufType is record ip: std_logic; oe: std_logic; op: std_logic; end record; type tribufArrayType is array (integer range <>) of tribufType; signal tri: tribufArrayType(size - 1 downto 0); begin g0: for i in 0 to size - 1 generate u1: DFFE port map (data(i), tri(i).ip, ff_enable, clock); end generate; g1: for i in 0 to size - 1 generate u2: TRIBUF port map (tri(i).ip, tri(i).oe, tri(i).op); tri(i).oe <= op_enable; qout(i) <= tri(i).op; end generate; end parameterize; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic bus ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is signal qLocal: std_logic; begin qLocal <= d when en = '1' else qLocal; q <= qLocal; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en, d) begin if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dlatch is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end struct_dlatch; use work.primitive.all; architecture instance of struct_dlatch is begin latch: dlatchh port map ( d => d, en => en, q => q ); end instance; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity downCounter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end downCounter; architecture simple of downCounter is signal countL: unsigned(3 downto 0); signal termCnt: std_logic; begin decrement: process (clk, reset) begin if (reset = '1') then countL <= "1011"; -- Reset to 11 termCnt <= '1'; elsif(clk'event and clk = '1') then if (termCnt = '1') then countL <= "1011"; -- Count rolls over to 11 else countL <= countL - 1; end if; if (countL = "0001") then -- Terminal count decoded 1 cycle earlier termCnt <= '1'; else termCnt <= '0'; end if; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity compareDC is port ( addressBus: in std_logic_vector(31 downto 0); addressHit: out std_logic ); end compareDC; architecture wontWork of compareDC is begin compare: process(addressBus) begin if (addressBus = "011110101011--------------------") then addressHit <= '1'; else addressHit <= '0'; end if; end process compare; end wontWork; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin encode: process (invec) begin case invec is when "00000001" => enc_out <= "000"; when "00000010" => enc_out <= "001"; when "00000100" => enc_out <= "010"; when "00001000" => enc_out <= "011"; when "00010000" => enc_out <= "100"; when "00100000" => enc_out <= "101"; when "01000000" => enc_out <= "110"; when "10000000" => enc_out <= "111"; when others => enc_out <= "000"; end case; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec:in std_logic_vector(7 downto 0); enc_out:out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin process (invec) begin if invec(7) = '1' then enc_out <= "111"; elsif invec(6) = '1' then enc_out <= "110"; elsif invec(5) = '1' then enc_out <= "101"; elsif invec(4) = '1' then enc_out <= "100"; elsif invec(3) = '1' then enc_out <= "011"; elsif invec(2) = '1' then enc_out <= "010"; elsif invec(1) = '1' then enc_out <= "001"; elsif invec(0) = '1' then enc_out <= "000"; else enc_out <= "000"; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin enc_out <= "111" when invec(7) = '1' else "110" when invec(6) = '1' else "101" when invec(5) = '1' else "100" when invec(4) = '1' else "011" when invec(3) = '1' else "010" when invec(2) = '1' else "001" when invec(1) = '1' else "000" when invec(0) = '1' else "000"; end rtl; -- includes Errata 5.2 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- errata 5.2 entity compare is port ( ina: in std_logic_vector (3 downto 0); inb: in std_logic_vector (2 downto 0); equal: out std_logic ); end compare; architecture simple of compare is begin equalProc: process (ina, inb) begin if (ina = inb ) then equal <= '1'; else equal <= '0'; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture behavioral of LogicFcn is begin fcn: process (A,B,C) begin if (A = '0' and B = '0') then Y <= '1'; elsif C = '1' then Y <= '1'; else Y <= '0'; end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture dataflow of LogicFcn is begin Y <= '1' when (A = '0' AND B = '0') OR (C = '1') else '0'; end dataflow; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture structural of LogicFcn is signal notA, notB, andSignal: std_logic; begin i1: inverter port map (i => A, o => notA); i2: inverter port map (i => B, o => notB); a1: and2 port map (i1 => notA, i2 => notB, y => andSignal); o1: or2 port map (i1 => andSignal, i2 => C, y => Y); end structural; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is port ( D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is constant tCQ: time := 8 ns; constant tS: time := 4 ns; constant tH: time := 3 ns; begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin wait until clk = '1'; q <= d; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; q <= d; wait on clk; end process; end rtl; configuration SimpleGatesCfg of FEWGATES is for structural for all: AND2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; configuration SimpleGatesCfg of FEWGATES is for structural for u1: and2 use entity work.and2(rtl); end for; for u2: and2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; -- Configution specifications for all: and2 use entity work.and2(rtl); for u3: inverter use entity work.inverter(rtl); for u4: or2 use entity work.or2(rtl); begin u1: and2 port map (i1 => a, i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.GatesPkg.all; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin a_and_b <= '1' when a = '1' and b = '1' else '0'; c_and_d <= '1' when c = '1' and d = '1' else '0'; not_c_and_d <= not c_and_d; y <= '1' when a_and_b = '1' or not_c_and_d = '1' else '0'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; package GatesPkg is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; end GatesPkg; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 =>c, i2 => d, y => c_and_d ); u3: inverter port map (a => c_and_d, y => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; use work.simPrimitives.all; entity simHierarchy is port ( A, B, Clk: in std_logic; Y: out std_logic ); end simHierarchy; architecture hierarchical of simHierarchy is signal ADly, BDly, OrGateDly, ClkDly: std_logic; signal OrGate, FlopOut: std_logic; begin ADly <= transport A after 2 ns; BDly <= transport B after 2 ns; OrGateDly <= transport OrGate after 1.5 ns; ClkDly <= transport Clk after 1 ns; u1: OR2 generic map (tPD => 10 ns) port map ( I1 => ADly, I2 => BDly, Y => OrGate ); u2: simDFF generic map ( tS => 4 ns, tH => 3 ns, tCQ => 8 ns ) port map ( D => OrGateDly, Clk => ClkDly, Q => FlopOut ); Y <= transport FlopOut after 2 ns; end hierarchical; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; -------------------------------------------------------------------------------- --| File name : $RCSfile: io1164.vhd $ --| Library : SUPPORT --| Revision : $Revision: 1.1 $ --| Author(s) : Vantage Analysis Systems, Inc; Des Young --| Integration : Des Young --| Creation : Nov 1995 --| Status : $State: Exp $ --| --| Purpose : IO routines for std_logic_1164. --| Assumptions : Numbers use radixed character set with no prefix. --| Limitations : Does not read VHDL pound-radixed numbers. --| Known Errors: none --| --| Description: --| This is a modified library. The source is basically that donated by --| Vantage to libutil. Des Young removed std_ulogic_vector support (to --| conform to synthesizable libraries), and added read_oct/hex to integer. --| --| ======================================================================= --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights --| reserved. This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package VHDL source --| Package Name: somelib.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : * Overloads procedures READ and WRITE for STD_LOGIC types --| in manner consistent with TEXTIO package. --| * Provides procedures to read and write logic values as --| binary, octal, or hexadecimal values ('X' as appropriate). --| These should be particularly useful for models --| to read in stimulus as 0/1/x or octal or hex. --| Subprograms : --| Notes : --| History : 1. Donated to libutil by Dave Bernstein 15 Jun 94 --| 2. Removed all std_ulogic_vector support, Des Young, 14 Nov 95 --| (This is because that type is not supported for synthesis). --| 3. Added read_oct/hex to integer, Des Young, 20 Nov 95 --| --| ======================================================================= --| Extra routines by Des Young, [email protected]. 1995. GNU copyright. --| ======================================================================= --| -------------------------------------------------------------------------------- library ieee; package io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- import std_logic package use ieee.std_logic_1164.all; -- import textio package use std.textio.all; -- -- the READ and WRITE procedures act similarly to the procedures in the -- STD.TEXTIO package. for each type, there are two read procedures and -- one write procedure for converting between character and internal -- representations of values. each value is represented as the string of -- characters that you would use in VHDL code. (remember that apostrophes -- and quotation marks are not used.) input is case-insensitive. output -- is in upper case. see the following LRM sections for more information: -- -- 2.3 - Subprogram Overloading -- 3.3 - Access Types (STD.TEXTIO.LINE is an access type) -- 7.3.6 - Allocators (allocators create access values) -- 14.3 - Package TEXTIO -- -- Note that the procedures for std_ulogic will match calls with the value -- parameter of type std_logic. -- -- declare READ procedures to overload like in TEXTIO -- procedure read(l: inout line; value: out std_ulogic ; good: out boolean); procedure read(l: inout line; value: out std_ulogic ); procedure read(l: inout line; value: out std_logic_vector ; good: out boolean); procedure read(l: inout line; value: out std_logic_vector ); -- -- declare WRITE procedures to overload like in TEXTIO -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ); procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ); -- -- declare procedures to convert between logic values and octal -- or hexadecimal ('X' where appropriate). -- -- octal / std_logic_vector procedure read_oct (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_oct (l : inout line ; value : out std_logic_vector ); procedure write_oct(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- hexadecimal / std_logic_vector procedure read_hex (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_hex (l : inout line ; value : out std_logic_vector ); procedure write_hex(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- read a number into an integer procedure read_oct(l : inout line; value : out integer; good : out boolean); procedure read_oct(l : inout line; value : out integer); procedure read_hex(l : inout line; value : out integer; good : out boolean); procedure read_hex(l : inout line; value : out integer); end io1164; -------------------------------------------------------------------------------- --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights reserved --| This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package body VHDL source --| Package Name: VANTAGE_LOGIC.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : source for IO1164 package body --| Subprograms : --| Notes : see package declaration --| History : see package declaration -------------------------------------------------------------------------------- package body io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- define lowercase conversion of characters for canonical comparison type char2char_t is array (character'low to character'high) of character; constant lowcase: char2char_t := ( nul, soh, stx, etx, eot, enq, ack, bel, bs, ht, lf, vt, ff, cr, so, si, dle, dc1, dc2, dc3, dc4, nak, syn, etb, can, em, sub, esc, fsp, gsp, rsp, usp, ' ', '!', '"', '#', '$', '%', '&', ''', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', del); -- define conversions between various types -- logic -> character type f_logic_to_character_t is array (std_ulogic'low to std_ulogic'high) of character; constant f_logic_to_character : f_logic_to_character_t := ( 'U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-' ); -- character, integer, logic constant x_charcode : integer := -1; constant maxoct_charcode: integer := 7; constant maxhex_charcode: integer := 15; constant bad_charcode : integer := integer'left; type digit2int_t is array ( character'low to character'high ) of integer; constant octdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, 'X' | 'x' => x_charcode, others => bad_charcode ); constant hexdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9, 'A' | 'a' => 10, 'B' | 'b' => 11, 'C' | 'c' => 12, 'D' | 'd' => 13, 'E' | 'e' => 14, 'F' | 'f' => 15, 'X' | 'x' => x_charcode, others => bad_charcode ); constant oct_bits_per_digit: integer := 3; constant hex_bits_per_digit: integer := 4; type int2octdigit_t is array ( 0 to maxoct_charcode ) of character; constant int2octdigit: int2octdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7' ); type int2hexdigit_t is array ( 0 to maxhex_charcode ) of character; constant int2hexdigit: int2hexdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7', 8 => '8', 9 => '9', 10 => 'A', 11 => 'B', 12 => 'C', 13 => 'D', 14 => 'E', 15 => 'F' ); type oct_logic_vector_t is array(1 to oct_bits_per_digit) of std_ulogic; type octint2logic_t is array (x_charcode to maxoct_charcode) of oct_logic_vector_t; constant octint2logic : octint2logic_t := ( ( 'X', 'X', 'X' ), ( '0', '0', '0' ), ( '0', '0', '1' ), ( '0', '1', '0' ), ( '0', '1', '1' ), ( '1', '0', '0' ), ( '1', '0', '1' ), ( '1', '1', '0' ), ( '1', '1', '1' ) ); type hex_logic_vector_t is array(1 to hex_bits_per_digit) of std_ulogic; type hexint2logic_t is array (x_charcode to maxhex_charcode) of hex_logic_vector_t; constant hexint2logic : hexint2logic_t := ( ( 'X', 'X', 'X', 'X' ), ( '0', '0', '0', '0' ), ( '0', '0', '0', '1' ), ( '0', '0', '1', '0' ), ( '0', '0', '1', '1' ), ( '0', '1', '0', '0' ), ( '0', '1', '0', '1' ), ( '0', '1', '1', '0' ), ( '0', '1', '1', '1' ), ( '1', '0', '0', '0' ), ( '1', '0', '0', '1' ), ( '1', '0', '1', '0' ), ( '1', '0', '1', '1' ), ( '1', '1', '0', '0' ), ( '1', '1', '0', '1' ), ( '1', '1', '1', '0' ), ( '1', '1', '1', '1' ) ); ---------------------------------------------------------------------------- -- READ procedure bodies -- -- The strategy for duplicating TEXTIO's overloading of procedures -- with and without GOOD parameters is to put all the logic in the -- version with the GOOD parameter and to have the version without -- GOOD approximate a runtime error by use of an assertion. -- ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure read( l: inout line; value: out std_ulogic; good : out boolean ) is variable c : character; -- char read while looping variable m : line; -- safe copy of L variable success: boolean := false; -- readable version of GOOD variable done : boolean := false; -- flag to say done reading chars begin -- -- algorithm: -- -- if there are characters in the line -- save a copy of the line -- get the next character -- if got one -- set value -- if all ok -- free temp copy -- else -- free passed in line -- assign copy back to line -- set GOOD -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- grab the next character read( l, c, success ); -- if read ok if success then -- -- an issue here is whether lower-case values should be accepted or not -- -- determine the value case c is when 'U' | 'u' => value := 'U'; when 'X' | 'x' => value := 'X'; when '0' => value := '0'; when '1' => value := '1'; when 'Z' | 'z' => value := 'Z'; when 'W' | 'w' => value := 'W'; when 'L' | 'l' => value := 'L'; when 'H' | 'h' => value := 'H'; when '-' => value := '-'; when others => success := false; end case; end if; -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; end if; -- non null access, non empty string -- set output parameter good := success; end read; procedure read( l: inout line; value: out std_ulogic ) is variable success: boolean; -- internal good flag begin read( l, value, success ); -- use safe version assert success report "IO1164.READ: Unable to read STD_ULOGIC value." severity error; end read; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure read(l : inout line ; value: out std_logic_vector; good : out boolean ) is variable m : line ; -- saved copy of L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- value for one array element variable c : character ; -- read a character begin -- -- algorithm: -- -- this procedure strips off leading whitespace, and then calls the -- READ procedure for each single logic value element in the output -- array. -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- loop for each element in output array for i in value'range loop -- prohibit internal blanks if i /= value'left then if l.all'length = 0 then success := false; exit; end if; c := l.all(l.all'left); if c = ' ' or c = ht then success := false; exit; end if; end if; -- read the next logic value read( l, logic_value, success ); -- stuff the value in if ok, else bail out if success then value( i ) := logic_value; else exit; end if; end loop; -- each element in output array -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; elsif ( value'length /= 0 ) then -- string is empty but the return array has 1+ elements success := false; end if; -- set output parameter good := success; end read; procedure read(l: inout line; value: out std_logic_vector ) is variable success: boolean; begin read( l, value, success ); assert success report "IO1164.READ: Unable to read T_WLOGIC_VECTOR value." severity error; end read; ---------------------------------------------------------------------------- -- WRITE procedure bodies ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ) is begin -- -- algorithm: -- -- just write out the string associated with the enumerated -- value. -- case value is when 'U' => write( l, character'('U'), justified, field ); when 'X' => write( l, character'('X'), justified, field ); when '0' => write( l, character'('0'), justified, field ); when '1' => write( l, character'('1'), justified, field ); when 'Z' => write( l, character'('Z'), justified, field ); when 'W' => write( l, character'('W'), justified, field ); when 'L' => write( l, character'('L'), justified, field ); when 'H' => write( l, character'('H'), justified, field ); when '-' => write( l, character'('-'), justified, field ); end case; end write; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m: line; -- build up intermediate string begin -- -- algorithm: -- -- for each value in array -- add string representing value to intermediate string -- write intermediate string to line parameter -- free intermediate string -- -- for each value in array for i in value'range loop -- add string representing value to intermediate string write( m, value( i ) ); end loop; -- write intermediate string to line parameter write( l, m.all, justified, field ); -- free intermediate string deallocate( m ); end write; -------------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- procedure bodies for octal and hexadecimal read and write ---------------------------------------------------------------------------- -- -- std_logic_vector/octal -- note: NOT compatible with std_ulogic_vector -- procedure read_oct(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable oct_logic_vector: oct_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem oct_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := octdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array oct_logic_vector := octint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := oct_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = oct_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := octdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array oct_logic_vector := octint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_oct; procedure read_oct(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read T_LOGIC_VECTOR value." severity error; end read_oct; procedure write_oct(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem oct_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_OCT: VALUE'Length is not a multiple of 3." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / oct_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = oct_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2octdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_oct; -- -- std_logic_vector/hexadecimal -- note: NOT compatible with std_ulogic_vector -- procedure read_hex(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable hex_logic_vector: hex_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem hex_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := hexdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array hex_logic_vector := hexint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := hex_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = hex_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := hexdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array hex_logic_vector := hexint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_hex; procedure read_hex(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read T_LOGIC_VECTOR value." severity error; end read_hex; procedure write_hex(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem hex_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_HEX: VALUE'Length is not a multiple of 4." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / hex_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = hex_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2hexdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_hex; ------------------------------------------------------------------------------ ------------------------------------ -- Read octal/hex numbers to integer ------------------------------------ -- -- Read octal to integer -- procedure read_oct(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := octdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := octdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 8) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_oct; -- simple version procedure read_oct(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read octal integer value." severity error; end read_oct; -- -- Read hex to integer -- procedure read_hex(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := hexdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := hexdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 16) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_hex; -- simple version procedure read_hex(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read hex integer value." severity error; end read_hex; end io1164; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity asyncLdCnt is port ( loadVal: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLdCnt; architecture rtl of asyncLdCnt is signal qLocal: unsigned(3 downto 0); begin process (clk, load, loadVal) begin if (load = '1') then qLocal <= to_unsigned(loadVal); elsif (clk'event and clk = '1' ) then qLocal <= qLocal + 1; end if; end process; q <= to_stdlogicvector(qLocal); end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity LoadCnt is port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end LoadCnt; architecture behavioral of LoadCnt is signal Cnt: std_logic_vector(3 downto 0); begin counter: process (Clk, Rst) begin if Rst = '1' then Cnt <= (others => '0'); elsif (Clk'event and Clk = '1') then if (LdCnt = '1') then Cnt <= LdData; elsif (CntEn = '1') then Cnt <= Cnt + 1; else Cnt <= Cnt; end if; end if; end process; CntVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; library UTILS; use UTILS.io1164.all; use std.textio.all; entity loadCntTB is end loadCntTB; architecture testbench of loadCntTB is component loadCnt port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end component; file vectorFile: text is in "vectorfile"; type vectorType is record data: std_logic_vector(7 downto 0); load: std_logic; rst: std_logic; q: std_logic_vector(7 downto 0); end record; signal testVector: vectorType; signal TestClk: std_logic := '0'; signal Qout: std_logic_vector(7 downto 0); constant ClkPeriod: time := 100 ns; for all: loadCnt use entity work.loadcnt(rtl); begin -- File reading and stimulus application readVec: process variable VectorLine: line; variable VectorValid: boolean; variable vRst: std_logic; variable vLoad: std_logic; variable vData: std_logic_vector(7 downto 0); variable vQ: std_logic_vector(7 downto 0); begin while not endfile (vectorFile) loop readline(vectorFile, VectorLine); read(VectorLine, vRst, good => VectorValid); next when not VectorValid; read(VectorLine, vLoad); read(VectorLine, vData); read(VectorLine, vQ); wait for ClkPeriod/4; testVector.Rst <= vRst; testVector.Load <= vLoad; testVector.Data <= vData; testVector.Q <= vQ; wait for (ClkPeriod/4) * 3; end loop; assert false report "Simulation complete" severity note; wait; end process; -- Free running test clock TestClk <= not TestClk after ClkPeriod/2; -- Instance of design being tested u1: loadCnt port map (Data => testVector.Data, load => testVector.Load, clk => TestClk, rst => testVector.Rst, q => Qout ); -- Process to verify outputs verify: process (TestClk) variable ErrorMsg: line; begin if (TestClk'event and TestClk = '0') then if Qout /= testVector.Q then write(ErrorMsg, string'("Vector failed ")); write(ErrorMsg, now); writeline(output, ErrorMsg); end if; end if; end process; end testbench; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity loadCnt is port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end loadCnt; architecture rtl of loadCnt is signal cnt: std_logic_vector (7 downto 0); begin counter: process (clk, rst) begin if (rst = '1') then cnt <= (others => '0'); elsif (clk'event and clk = '1') then if (load = '1') then cnt <= data; else cnt <= cnt + 1; end if; end if; end process; q <= cnt; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity multiplier is port ( a,b : in std_logic_vector (15 downto 0); product: out std_logic_vector (31 downto 0) ); end multiplier; architecture dataflow of multiplier is begin product <= a * b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity mux is port ( A, B, Sel: in std_logic; Y: out std_logic ); end mux; architecture simModel of mux is -- Delay Constants constant tPD_A: time := 10 ns; constant tPD_B: time := 15 ns; constant tPD_Sel: time := 5 ns; begin DelayMux: process (A, B, Sel) variable localY: std_logic; -- Zero delay place holder for Y begin -- Zero delay model case Sel is when '0' => localY := A; when others => localY := B; end case; -- Delay calculation if (B'event) then Y <= localY after tPD_B; elsif (A'event) then Y <= localY after tPD_A; else Y <= localY after tPD_Sel; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) begin if (a + b = "10011010") then result <= c; elsif (a + b = "01011001") then result <= d; elsif (a + b = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture concurrent of TRIBUF8 is begin op <= ip when oe = '1' else (others => 'Z'); end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture concurrent of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture sequential of TRIBUF8 is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= (others => 'Z'); end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in bit; oe: in bit; op: out bit ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= 'Z'; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity tribuffer is port ( input: in std_logic; enable: in std_logic; output: out std_logic ); end tribuffer; architecture structural of tribuffer is begin u1: tribuf port map (ip => input, oe => enable, op => output ); end structural; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); begin genXOR(0) <= '0'; parTree: for i in 1 to ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; entity oddParityLoop is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityLoop ; architecture scaleable of oddParityLoop is begin process (ad) variable loopXor: std_logic; begin loopXor := '0'; for i in 0 to width -1 loop loopXor := loopXor xor ad( i ) ; end loop ; oddParity <= loopXor ; end process; end scaleable ; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is port ( I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after 10 ns; end simple; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in std_logic_vector(3 downto 0); sum: out std_logic_vector(3 downto 0); overflow: out std_logic ); end adder; architecture concat of adder is signal localSum: std_logic_vector(4 downto 0); begin localSum <= std_logic_vector(unsigned('0' & a) + unsigned('0' & b)); sum <= localSum(3 downto 0); overflow <= localSum(4); end concat; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity paramDFF is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; reset: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end paramDFF; architecture parameterize of paramDFF is signal reg: std_logic_vector(size - 1 downto 0); begin u1: pDFFE generic map (n => size) port map (d => data, clk =>clock, rst => reset, en => ff_enable, q => reg ); u2: pTRIBUF generic map (n => size) port map (ip => reg, oe => op_enable, op => qout ); end paramterize; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); signal one: std_logic := '1'; begin parTree: for i in ad'range generate g0: if i = 0 generate x0: xor2 port map (i1 => one, i2 => one, y => genXor(0) ); end generate; g1: if i > 0 and i <= ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); -- (2 <= width <= 32) and a power of 2 port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal stage0: std_logic_vector(31 downto 0); signal stage1: std_logic_vector(15 downto 0); signal stage2: std_logic_vector(7 downto 0); signal stage3: std_logic_vector(3 downto 0); signal stage4: std_logic_vector(1 downto 0); begin g4: for i in stage4'range generate g41: if (ad'length > 2) generate x4: xor2 port map (stage3(i), stage3(i + stage4'length), stage4(i)); end generate; end generate; g3: for i in stage3'range generate g31: if (ad'length > 4) generate x3: xor2 port map (stage2(i), stage2(i + stage3'length), stage3(i)); end generate; end generate; g2: for i in stage2'range generate g21: if (ad'length > 8) generate x2: xor2 port map (stage1(i), stage1(i + stage2'length), stage2(i)); end generate; end generate; g1: for i in stage1'range generate g11: if (ad'length > 16) generate x1: xor2 port map (stage0(i), stage0(i + stage1'length), stage1(i)); end generate; end generate; s1: for i in ad'range generate s14: if (ad'length = 2) generate stage4(i) <= ad(i); end generate; s13: if (ad'length = 4) generate stage3(i) <= ad(i); end generate; s12: if (ad'length = 8) generate stage2(i) <= ad(i); end generate; s11: if (ad'length = 16) generate stage1(i) <= ad(i); end generate; s10: if (ad'length = 32) generate stage0(i) <= ad(i); end generate; end generate; genPar: xor2 port map (stage4(0), stage4(1), oddParity); end scaleable ; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in unsigned(3 downto 0); power : out unsigned(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; signal inputValInt: integer range 0 to 15; signal powerL: integer range 0 to 65535; begin inputValInt <= to_integer(inputVal); power <= to_unsigned(powerL,16); process begin wait until Clk = '1'; powerL <= Pow(inputValInt,4); end process; end behavioral; package PowerPkg is component Power port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end component; end PowerPkg; use work.bv_math.all; use work.int_math.all; use work.PowerPkg.all; entity Power is port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end Power; architecture funky of Power is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; Variable i : integer := 0; begin while( i < Exp ) loop Result := Result * N; i := i + 1; end loop; return( Result ); end Pow; function RollVal( CntlVal : integer ) return integer is begin return( Pow( 2, CntlVal ) + 2 ); end RollVal; begin process begin wait until Clk = '1'; power <= i2bv(Rollval(bv2I(inputVal)),16); end process; end funky; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity priority_encoder is port (interrupts : in std_logic_vector(7 downto 0); priority : in std_logic_vector(2 downto 0); result : out std_logic_vector(2 downto 0) ); end priority_encoder; architecture behave of priority_encoder is begin process (interrupts) variable selectIn : integer; variable LoopCount : integer; begin LoopCount := 1; selectIn := to_integer(to_unsigned(priority)); while (LoopCount <= 7) and (interrupts(selectIn) /= '0') loop if (selectIn = 0) then selectIn := 7; else selectIn := selectIn - 1; end if; LoopCount := LoopCount + 1; end loop; result <= std_logic_vector(to_unsigned(selectIn,3)); end process; end behave; library IEEE; use IEEE.std_logic_1164.all; package primitive is component DFFE port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end component; component DFFE_SR port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end component; component DLATCHH port ( d: in std_logic; en: in std_logic; q: out std_logic ); end component; component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; component TRIBUF port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end component; component BIDIR port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end component; end package; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en) begin if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture rtl of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; subtype fsmType is std_logic_vector(1 downto 0); constant loadDelayCnt : fsmType := "00"; constant waitDelayEnd : fsmType := "10"; constant loadLengthCnt : fsmType := "11"; constant waitLengthEnd : fsmType := "01"; signal currState, nextState: fsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; -- Assign pulse output pulse <= currState(0); end rtl; library ieee; use ieee.std_logic_1164.all; entity pulseErr is port (a: in std_logic; b: out std_logic ); end pulseErr; architecture behavior of pulseErr is signal c: std_logic; begin pulse: process (a,c) begin b <= c XOR a; c <= a; end process; end behavior; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '0'; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); type stateVec is array (3 downto 0) of std_logic; type stateBits is array (progPulseFsmType) of stateVec; signal loadVal: std_logic; constant stateTable: stateBits := ( loadDelayCnt => "0010", waitDelayEnd => "0100", loadLengthCnt => "0011", waitLengthEnd => "1101" ); -- ^^^^ -- ||||__ loadVal -- |||___ downCntLd -- ||____ downCntEn -- |_____ pulse signal currState, nextState: progPulseFsmType; begin nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; pulse <= stateTable(currState)(3); downCntEn <= stateTable(currState)(2); downCntLd <= stateTable(currState)(1); loadVal <= stateTable(currState)(0); downCntData <= delayCntVal when loadVal = '0' else lengthCntVal; end fsm; -- Incorporates Errata 6.1 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downtCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; signal downCntL: unsigned (7 downto 0); begin downCntL <= to_unsigned(downCnt); -- convert downCnt to unsigned nextStProc: process (currState, downCntL, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, lengthCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= lengthCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= lengthCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; end case; end process outConProc; end fsm; -- Incorporates errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; use work.specialFunctions.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(unsigned(inputVal)),4),16)); end process; end behavioral; -- Incorporate errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(to_unsigned(inputVal)),4),16)); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all; use IEEE.std_logic_unsigned.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= conv_std_logic_vector(Pow(conv_integer(inputVal),4),16); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity regFile is port ( clk, rst: in std_logic; data: in std_logic_vector(31 downto 0); regSel: in std_logic_vector(1 downto 0); wrEnable: in std_logic; regOut: out std_logic_vector(31 downto 0) ); end regFile; architecture behavioral of regFile is subtype reg is std_logic_vector(31 downto 0); type regArray is array (integer range <>) of reg; signal registerFile: regArray(0 to 3); begin regProc: process (clk, rst) variable i: integer; begin i := 0; if rst = '1' then while i <= registerFile'high loop registerFile(i) <= (others => '0'); i := i + 1; end loop; elsif clk'event and clk = '1' then if (wrEnable = '1') then case regSel is when "00" => registerFile(0) <= data; when "01" => registerFile(1) <= data; when "10" => registerFile(2) <= data; when "11" => registerFile(3) <= data; when others => null; end case; end if; end if; end process; outputs: process(regSel, registerFile) begin case regSel is when "00" => regOut <= registerFile(0); when "01" => regOut <= registerFile(1); when "10" => regOut <= registerFile(2); when "11" => regOut <= registerFile(3); when others => null; end case; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1,d2: in std_logic; q1,q2: out std_logic; clk: in std_logic; rst : in std_logic ); end DFF; architecture rtl of DFF is begin resetLatch: process (clk, rst) begin if rst = '1' then q1 <= '0'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity resFcnDemo is port ( a, b: in std_logic; oeA,oeB: in std_logic; result: out std_logic ); end resFcnDemo; architecture multiDriver of resFcnDemo is begin result <= a when oeA = '1' else 'Z'; result <= b when oeB = '1' else 'Z'; end multiDriver; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleDFF is port ( data: in std_logic_vector(7 downto 0); clock: in std_logic; enable: in std_logic; qout: out std_logic_vector(7 downto 0) ); end scaleDFF; architecture scalable of scaleDFF is begin u1: sDFFE port map (d => data, clk =>clock, en => enable, q => qout ); end scalable; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is signal la_n, lb_n, lc_n, ld_n, le_n, lf_n, lg_n: std_logic; signal oe: std_logic; begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" la_n <= '1'; lb_n <= '1'; lc_n <= '1'; ld_n <= '1'; le_n <= '1'; lf_n <= '1'; lg_n <= '1'; case bcdInputs is when "0000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; when "0001" => lb_n <= '0'; lc_n <= '0'; when "0010" => la_n <= '0'; lb_n <= '0'; ld_n <= '0'; le_n <= '0'; lg_n <= '0'; when "0011" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lg_n <= '0'; when "0100" => lb_n <= '0'; lc_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0101" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0110" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0111" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; when "1000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "1001" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; -- All other inputs possibilities are "don't care" when others => la_n <= 'X'; lb_n <= 'X'; lc_n <= 'X'; ld_n <= 'X'; le_n <= 'X'; lf_n <= 'X'; lg_n <= 'X'; end case; end process bcd2sevSeg; -- Disable outputs for all invalid input values oe <= '1' when (bcdInputs < 10) else '0'; a_n <= la_n when oe = '1' else 'Z'; b_n <= lb_n when oe = '1' else 'Z'; c_n <= lc_n when oe = '1' else 'Z'; d_n <= ld_n when oe = '1' else 'Z'; e_n <= le_n when oe = '1' else 'Z'; f_n <= lf_n when oe = '1' else 'Z'; g_n <= lg_n when oe = '1' else 'Z'; end behavioral; library ieee; use ieee.std_logic_1164.all; use std.textio.all; entity sevenSegmentTB is end sevenSegmentTB; architecture testbench of sevenSegmentTB is component sevenSegment port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end component; type vector is record bcdStimulus: std_logic_vector(3 downto 0); sevSegOut: std_logic_vector(6 downto 0); end record; constant NumVectors: integer:= 17; constant PropDelay: time := 40 ns; constant SimLoopDelay: time := 10 ns; type vectorArray is array (0 to NumVectors - 1) of vector; constant vectorTable: vectorArray := ( (bcdStimulus => "0000", sevSegOut => "0000001"), (bcdStimulus => "0001", sevSegOut => "1001111"), (bcdStimulus => "0010", sevSegOut => "0010010"), (bcdStimulus => "0011", sevSegOut => "0000110"), (bcdStimulus => "0100", sevSegOut => "1001100"), (bcdStimulus => "0101", sevSegOut => "0100100"), (bcdStimulus => "0110", sevSegOut => "0100000"), (bcdStimulus => "0111", sevSegOut => "0001111"), (bcdStimulus => "1000", sevSegOut => "0000000"), (bcdStimulus => "1001", sevSegOut => "0000100"), (bcdStimulus => "1010", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1011", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1100", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1101", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1110", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1111", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "0000", sevSegOut => "0110110") -- this vector fails ); for all : sevenSegment use entity work.sevenSegment(behavioral); signal StimInputs: std_logic_vector(3 downto 0); signal CaptureOutputs: std_logic_vector(6 downto 0); begin u1: sevenSegment port map (bcdInputs => StimInputs, a_n => CaptureOutputs(6), b_n => CaptureOutputs(5), c_n => CaptureOutputs(4), d_n => CaptureOutputs(3), e_n => CaptureOutputs(2), f_n => CaptureOutputs(1), g_n => CaptureOutputs(0)); LoopStim: process variable FoundError: boolean := false; variable TempVector: vector; variable ErrorMsgLine: line; begin for i in vectorTable'range loop TempVector := vectorTable(i); StimInputs <= TempVector.bcdStimulus; wait for PropDelay; if CaptureOutputs /= TempVector.sevSegOut then write (ErrorMsgLine, string'("Vector failed at ")); write (ErrorMsgLine, now); writeline (output, ErrorMsgLine); FoundError := true; end if; wait for SimLoopDelay; end loop; assert FoundError report "No errors. All vectors passed." severity note; wait; end process; end testbench; library ieee; use ieee.std_logic_1164.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" a_n <= '1'; b_n <= '1'; c_n <= '1'; d_n <= '1'; e_n <= '1'; f_n <= '1'; g_n <= '1'; case bcdInputs is when "0000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; when "0001" => b_n <= '0'; c_n <= '0'; when "0010" => a_n <= '0'; b_n <= '0'; d_n <= '0'; e_n <= '0'; g_n <= '0'; when "0011" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; g_n <= '0'; when "0100" => b_n <= '0'; c_n <= '0'; f_n <= '0'; g_n <= '0'; when "0101" => a_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when "0110" => a_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "0111" => a_n <= '0'; b_n <= '0'; c_n <= '0'; when "1000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "1001" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when others => null; end case; end process bcd2sevSeg; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) variable tempSum: std_logic_vector(7 downto 0); begin tempSum := a + b; -- temporary node for sum if (tempSum = "10011010") then result <= c; elsif (tempSum = "01011001") then result <= d; elsif (tempSum = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity shifter is port ( clk, rst: in std_logic; shiftEn,shiftIn: std_logic; q: out std_logic_vector (15 downto 0) ); end shifter; architecture behav of shifter is signal qLocal: std_logic_vector(15 downto 0); begin shift: process (clk, rst) begin if (rst = '1') then qLocal <= (others => '0'); elsif (clk'event and clk = '1') then if (shiftEn = '1') then qLocal <= qLocal(14 downto 0) & shiftIn; else qLocal <= qLocal; end if; end if; q <= qLocal; end process; end behav; library ieee; use ieee.std_logic_1164.all; entity lastAssignment is port (a, b: in std_logic; selA, selb: in std_logic; result: out std_logic ); end lastAssignment; architecture behavioral of lastAssignment is begin demo: process (a,b,selA,selB) begin if (selA = '1') then result <= a; else result <= '0'; end if; if (selB = '1') then result <= b; else result <= '0'; end if; end process demo; end behavioral; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '0' then b <= a; else b <= '0'; end if; end process; end basic; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '1' then b <= a; else b <= '0'; end if; end process; end basic; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; component SimDFF generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until rising_edge(clk); if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until clk = '1'; if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; package scaleable is component scaleUpCnt port ( clk: in std_logic; reset: in std_logic; cnt: in std_logic_vector ); end component; end scaleable; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleUpCnt is port ( clk: in std_logic; reset: in std_logic; cnt: out std_logic_vector ); end scaleUpCnt; architecture scaleable of scaleUpCnt is signal one: std_logic := '1'; signal cntL: std_logic_vector(cnt'range); signal andTerm: std_logic_vector(cnt'range); begin -- Special case is the least significant bit lsb: tff port map (t => one, reset => reset, clk => clk, q => cntL(cntL'low) ); andTerm(0) <= cntL(cntL'low); -- General case for all other bits genAnd: for i in 1 to cntL'high generate andTerm(i) <= andTerm(i - 1) and cntL(i); end generate; genTFF: for i in 1 to cntL'high generate t1: tff port map (t => andTerm(i), clk => clk, reset => reset, q => cntl(i) ); end generate; cnt <= CntL; end scaleable; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "010"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(3 downto 0); constant Idle: targetFsmType := "0000"; constant B_Busy: targetFsmType := "0001"; constant Backoff: targetFsmType := "0011"; constant S_Data: targetFsmType := "1100"; constant Turn_Ar: targetFsmType := "1101"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; constant Dont_Care: targetFsmType := "XXX"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= Dont_Care; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Stop_n: out std_logic; -- PCI Stop# PCI_Trdy_n: out std_logic; -- PCI Trdy# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; type targetFsmType is (Idle, B_Busy, Backoff, S_Data, Turn_Ar); signal currState, nextState: targetFsmType; begin -- Process to generate next state logic nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; -- Process to register the current state curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; -- Process to generate outputs outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; -- Assign output ports PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; -- Incorporates Errata 10.1 and 10.2 library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(4 downto 0); constant Idle: integer := 0; constant B_Busy: integer := 1; constant Backoff: integer := 2; constant S_Data: integer := 3; constant Turn_Ar: integer := 4; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin nextState <= (others => '0'); if currState(Idle) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; if currState(B_Busy) = '1' then if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState(Idle) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState(S_Data) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState(Backoff) <= '1'; else nextState(B_Busy) <= '1'; end if; end if; if currState(S_Data) = '1' then if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState(Backoff) <= '1'; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState(Turn_Ar) <= '1'; else nextState(S_Data) <= '1'; end if; end if; if currState(Backoff) = '1' then if PCI_Frame_n = '1' then nextState(Turn_Ar) <= '1'; else nextState(Backoff) <= '1'; end if; end if; if currState(Turn_Ar) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= (others => '0'); -- per Errata 10.2 currState(Idle) <= '1'; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; -- defaults per errata 10.1 OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; if (currState(S_Data) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Backoff) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; end if; if (currState(Turn_Ar) = '1') then OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Idle) = '1' or currState(B_Busy) = '1') then OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end if; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= IDLE; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library ieee; use ieee.std_logic_1164.all; entity test is port ( a: in std_logic; z: out std_logic; en: in std_logic ); end test; architecture simple of test is begin z <= a when en = '1' else 'z'; end simple;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/tb_register_16bit.vhd
4
2290
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 04:12:05 11/16/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_register_16bit.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: register_16bit -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_register_16bit IS END tb_register_16bit; ARCHITECTURE behavior OF tb_register_16bit IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT register_16bit PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; --Inputs signal D : std_logic_vector(15 downto 0) := (others => '0'); signal en : std_logic := '0'; signal clk : std_logic := '0'; --Outputs signal Q : std_logic_vector(15 downto 0); -- Clock period definitions constant clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: register_16bit PORT MAP ( D => D, Q => Q, en => en, clk => clk ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; en <= '0', '1' after 10 ns; D <= "0101101011110000", "0000000000000000" after 9 ns, "0101101011110000" after 19ns, "0000000000000000" after 29ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/tb_register_16bit.vhd
4
2290
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 04:12:05 11/16/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_register_16bit.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: register_16bit -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_register_16bit IS END tb_register_16bit; ARCHITECTURE behavior OF tb_register_16bit IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT register_16bit PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; --Inputs signal D : std_logic_vector(15 downto 0) := (others => '0'); signal en : std_logic := '0'; signal clk : std_logic := '0'; --Outputs signal Q : std_logic_vector(15 downto 0); -- Clock period definitions constant clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: register_16bit PORT MAP ( D => D, Q => Q, en => en, clk => clk ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; en <= '0', '1' after 10 ns; D <= "0101101011110000", "0000000000000000" after 9 ns, "0101101011110000" after 19ns, "0000000000000000" after 29ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/tb_trafo.vhd
4
3581
---------------------------------------------------------------------------------- -- Company: -- Engineer: Tolga Sel -- -- Create Date: 14:21:42 11/03/2015 -- Design Name: -- Module Name: /home/ga69kaw/vhdl_system_design_lab/workspace/Exercise1/direct_implementation/tb_trafo.vhd -- Project Name: direct_implementation -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: trafo -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values USE ieee.numeric_std.ALL; ENTITY tb_trafo IS END tb_trafo; ARCHITECTURE behavior OF tb_trafo IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT trafo PORT( X1 : IN std_logic_vector(15 downto 0); X2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); X4 : IN std_logic_vector(15 downto 0); Z1 : IN std_logic_vector(15 downto 0); Z2 : IN std_logic_vector(15 downto 0); Z3 : IN std_logic_vector(15 downto 0); Z4 : IN std_logic_vector(15 downto 0); Y1 : OUT std_logic_vector(15 downto 0); Y2 : OUT std_logic_vector(15 downto 0); Y3 : OUT std_logic_vector(15 downto 0); Y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; --Inputs signal X1 : std_logic_vector(15 downto 0) := (others => '0'); signal X2 : std_logic_vector(15 downto 0) := (others => '0'); signal X3 : std_logic_vector(15 downto 0) := (others => '0'); signal X4 : std_logic_vector(15 downto 0) := (others => '0'); signal Z1 : std_logic_vector(15 downto 0) := (others => '0'); signal Z2 : std_logic_vector(15 downto 0) := (others => '0'); signal Z3 : std_logic_vector(15 downto 0) := (others => '0'); signal Z4 : std_logic_vector(15 downto 0) := (others => '0'); --Outputs signal Y1 : std_logic_vector(15 downto 0); signal Y2 : std_logic_vector(15 downto 0); signal Y3 : std_logic_vector(15 downto 0); signal Y4 : std_logic_vector(15 downto 0); -- No clocks detected in port list. Replace <clock> below with -- appropriate port name BEGIN -- Instantiate the Unit Under Test (UUT) uut: trafo PORT MAP ( X1 => X1, X2 => X2, X3 => X3, X4 => X4, Z1 => Z1, Z2 => Z2, Z3 => Z3, Z4 => Z4, Y1 => Y1, Y2 => Y2, Y3 => Y3, Y4 => Y4 ); X1 <= std_logic_vector(to_unsigned(2596, 16)); X2 <= std_logic_vector(to_unsigned(152, 16)); X3 <= std_logic_vector(to_unsigned(60523, 16)); X4 <= std_logic_vector(to_unsigned(18725, 16)); Z1 <= std_logic_vector(to_unsigned(128, 16)); Z2 <= std_logic_vector(to_unsigned(192, 16)); Z3 <= std_logic_vector(to_unsigned(256, 16)); Z4 <= std_logic_vector(to_unsigned(320, 16)); END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/tb_multiplexer_4_to_1.vhd
2
2887
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 17:54:42 12/23/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs2/tb_multiplexer_4_to_1.vhd -- Project Name: idea_rcs2 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: multiplexer_4_to_1 -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_multiplexer_4_to_1 IS END tb_multiplexer_4_to_1; ARCHITECTURE behavior OF tb_multiplexer_4_to_1 IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT multiplexer_4_to_1 PORT( in1 : IN std_logic_vector(15 downto 0); in2 : IN std_logic_vector(15 downto 0); in3 : IN std_logic_vector(15 downto 0); in4 : IN std_logic_vector(15 downto 0); s : IN std_logic_vector(1 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; --Inputs signal in1 : std_logic_vector(15 downto 0) := (others => '0'); signal in2 : std_logic_vector(15 downto 0) := (others => '0'); signal in3 : std_logic_vector(15 downto 0) := (others => '0'); signal in4 : std_logic_vector(15 downto 0) := (others => '0'); signal s : std_logic_vector(1 downto 0) := (others => '0'); --Outputs signal O : std_logic_vector(15 downto 0); -- No clocks detected in port list. Replace <clock> below with -- appropriate port name BEGIN -- Instantiate the Unit Under Test (UUT) uut: multiplexer_4_to_1 PORT MAP ( in1 => in1, in2 => in2, in3 => in3, in4 => in4, s => s, O => O ); in1 <= "0000000000000000", "0000000000000001" after 20 ns, "0000000000000011" after 40 ns; in2 <= "0000000000000001", "0000000000000001" after 20 ns, "0000000000000011" after 40 ns; in3 <= "0000000000000010", "0000000000000001" after 20 ns, "0000000000000011" after 40 ns; in4 <= "0000000000000100", "0000000000000001" after 20 ns, "0000000000000011" after 40 ns; s <= "00", "01" after 5 ns, "11" after 15 ns, "10" after 25 ns, "00" after 35 ns, "01" after 40 ns, "10" after 50 ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/idea_com_inner.vhd
1
11113
---------------------------------------------------------------------------------- -- Company: -- Engineer: Martin Strasser, Ning Chen -- -- Create Date: 20:59:47 06/19/2008 -- Design Name: -- Module Name: idea_com_inner - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 1.00 - File Created -- Revision 2.00 (nnc) - Key can be programmed -- Revision 2.01 (nnc) - Add loopback mode for cable testing ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; ---- Uncomment the following library declaration if instantiating ---- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity idea_com_inner is Port ( Clk : in STD_LOGIC; Reset : in STD_LOGIC; RxD : in STD_LOGIC; TxD : out STD_LOGIC; LEDs : out STD_LOGIC_VECTOR (7 downto 0)); end idea_com_inner; architecture Behavioral of idea_com_inner is -- The UART for the communication with the PC: component uart port ( mclkx16 : in STD_LOGIC; reset : in STD_LOGIC; read : in STD_LOGIC; write : in STD_LOGIC; --data : inout STD_LOGIC_VECTOR (7 downto 0); rxdata : out STD_LOGIC_VECTOR (7 downto 0); txdata : in STD_LOGIC_VECTOR (7 downto 0); sin : in STD_LOGIC; sout : out STD_LOGIC; rxrdy : out STD_LOGIC; txrdy : out STD_LOGIC; parity_error : out STD_LOGIC; framing_error : out STD_LOGIC; overrun : out STD_LOGIC ); end component; --component idea_hw -- Port ( CLK : in STD_LOGIC; -- START : in STD_LOGIC; -- READY : out STD_LOGIC; -- KEY : in STD_LOGIC_VECTOR (127 downto 0); -- X1 : in STD_LOGIC_VECTOR (15 downto 0); -- X2 : in STD_LOGIC_VECTOR (15 downto 0); -- X3 : in STD_LOGIC_VECTOR (15 downto 0); -- X4 : in STD_LOGIC_VECTOR (15 downto 0); -- Y1 : out STD_LOGIC_VECTOR (15 downto 0); -- Y2 : out STD_LOGIC_VECTOR (15 downto 0); -- Y3 : out STD_LOGIC_VECTOR (15 downto 0); -- Y4 : out STD_LOGIC_VECTOR (15 downto 0)); --end component; COMPONENT idea_single PORT( KEY : IN std_logic_vector(127 downto 0); clk_in : IN std_logic; ready_out : OUT std_logic; start_in : IN std_logic; X1 : IN std_logic_vector(15 downto 0); X2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); X4 : IN std_logic_vector(15 downto 0); Y1 : OUT std_logic_vector(15 downto 0); Y2 : OUT std_logic_vector(15 downto 0); Y3 : OUT std_logic_vector(15 downto 0); Y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT multiplexer PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0); s : IN std_logic ); END COMPONENT; -- All used signals for the top level are defined here: signal read : STD_LOGIC := '1'; signal write : STD_LOGIC := '1'; signal rxrdy, txrdy : STD_LOGIC := '1'; signal parity_error, framing_error, overrun : STD_LOGIC := '0'; signal data : STD_LOGIC_VECTOR(7 downto 0) := "00000000"; signal txdata : STD_LOGIC_VECTOR(7 downto 0) := "00000000"; signal start_idea, ready_idea : STD_LOGIC := '0'; signal x1, x2, x3, x4 : STD_LOGIC_VECTOR (15 downto 0) := "0000000000000000"; signal y1, y2, y3, y4 : STD_LOGIC_VECTOR (15 downto 0) := "0000000000000000"; signal key : STD_logic_vector (127 downto 0) := x"00000000000000000000000000000000"; type STATE_TYPE is ( IDLE, WAIT_FOR_DATA, RECEIVED_BYTE, READ_BYTE, WAIT_FOR_RXRDY_0, WAIT_FOR_IDEA_TO_DEACTIVATE_READY, WAIT_FOR_IDEA_TO_COMPLETE, WRITE_BYTE, WRITE_BYTE_NOW, WRITE_BYTE_ACK, WAIT_FOR_TXRDY_1, LOOPBACK_MODE ); signal state : STATE_TYPE := IDLE; signal byte_cntr : std_logic_vector(4 downto 0) := "00000"; signal loopback_select : std_logic := '0'; signal z1, z2, z3, z4 : STD_LOGIC_VECTOR (15 downto 0) := "0000000000000000"; signal led_count_sig : std_logic_vector(7 downto 0) := "00000000"; signal counter_sig : std_logic_vector(18 downto 0) := (others => '0'); begin -- The UART module uart1: uart port map( Clk, Reset, read, write, data, txdata, RxD, TxD, rxrdy, txrdy, parity_error, framing_error, overrun ); -- The encryption algorithm -- idea1: idea_hw port map( clk, start_idea, ready_idea, key, x1, x2, x3, x4, y1, y2, y3, y4); uut: idea_single PORT MAP ( KEY => key, clk_in => Clk, ready_out => ready_idea, start_in => start_idea, X1 => x1, X2 => x2, X3 => x3, X4 => x4, Y1 => y1, Y2 => y2, Y3 => y3, Y4 => y4 ); -- mux for loopback mode mux1 : multiplexer port map( A => y1, B => x1, S => loopback_select, O => z1); mux2 : multiplexer port map( A => y2, B => x2, S => loopback_select, O => z2); mux3 : multiplexer port map( A => y3, B => X3, S => loopback_select, O => z3); mux4 : multiplexer port map( A => y4, B => X4, S => loopback_select, O => z4); -- The state machine for the communication: process ( Clk ) begin if ( Clk'event and Clk='1' ) then if ( Reset = '1' ) then state <= IDLE; byte_cntr <= "00000"; read <= '1'; write <= '1'; --LEDs <= "00000000"; else if ( state = IDLE ) then -- Initial state state <= WAIT_FOR_DATA; byte_cntr <= "00000"; elsif ( state = WAIT_FOR_DATA ) then write <= '1'; -- Waiting for incoming data. if ( rxrdy = '1' ) then -- There is a byte at the receiver! state <= RECEIVED_BYTE; end if; elsif ( state = RECEIVED_BYTE ) then -- The UART signalizes, that there -- is a new byte to be read! read <= '0'; --LEDs(3) <= '0'; state <= READ_BYTE; elsif ( state = READ_BYTE ) then -- Read the byte and set the -- right input registers of the -- IDEA block. --LEDs(0) <= framing_error; --LEDs(1) <= parity_error; --LEDs(2) <= overrun; byte_cntr <= byte_cntr+"00001"; if ( byte_cntr = "00000" ) then x1(7 downto 0) <= data; elsif ( byte_cntr = "00001" ) then x1(15 downto 8) <= data; elsif ( byte_cntr = "00010" ) then x2(7 downto 0) <= data; elsif ( byte_cntr = "00011" ) then x2(15 downto 8) <= data; elsif ( byte_cntr = "00100" ) then x3(7 downto 0) <= data; elsif ( byte_cntr = "00101" ) then x3(15 downto 8) <= data; elsif ( byte_cntr = "00110" ) then x4(7 downto 0) <= data; elsif ( byte_cntr = "00111" ) then x4(15 downto 8) <= data; elsif ( byte_cntr = "01000" ) then key(7 downto 0) <= data; elsif ( byte_cntr = "01001" ) then key(15 downto 8) <= data; elsif ( byte_cntr = "01010" ) then key(23 downto 16) <= data; elsif ( byte_cntr = "01011" ) then key(31 downto 24) <= data; elsif ( byte_cntr = "01100" ) then key(39 downto 32) <= data; elsif ( byte_cntr = "01101" ) then key(47 downto 40) <= data; elsif ( byte_cntr = "01110" ) then key(55 downto 48) <= data; elsif ( byte_cntr = "01111" ) then key(63 downto 56) <= data; elsif ( byte_cntr = "10000" ) then key(71 downto 64) <= data; elsif ( byte_cntr = "10001" ) then key(79 downto 72) <= data; elsif ( byte_cntr = "10010" ) then key(87 downto 80) <= data; elsif ( byte_cntr = "10011" ) then key(95 downto 88) <= data; elsif ( byte_cntr = "10100" ) then key(103 downto 96) <= data; elsif ( byte_cntr = "10101" ) then key(111 downto 104) <= data; elsif ( byte_cntr = "10110" ) then key(119 downto 112) <= data; elsif ( byte_cntr = "10111" ) then key(127 downto 120) <= data; end if; read <= '1'; state <= WAIT_FOR_RXRDY_0; elsif ( state = WAIT_FOR_RXRDY_0 ) then -- Wait until the UART has acknowledged -- that the data has been read. if ( rxrdy = '0' ) then if ( byte_cntr = "11000" ) then -- add loopback mode if (key = X"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF") then state <= LOOPBACK_MODE; loopback_select <= '1'; else start_idea <= '1'; state <= WAIT_FOR_IDEA_TO_DEACTIVATE_READY; loopback_select <= '0'; end if; -- added newly: 20130405 -- read <= '1'; else state <= WAIT_FOR_DATA; end if; end if; elsif(state=LOOPBACK_MODE) then byte_cntr <= "00000"; state <= WRITE_BYTE; elsif ( state = WAIT_FOR_IDEA_TO_DEACTIVATE_READY ) then if ( ready_idea = '0' ) then state <= WAIT_FOR_IDEA_TO_COMPLETE; end if; elsif ( state = WAIT_FOR_IDEA_TO_COMPLETE ) then -- The IDEA algorithm has computed its results now. byte_cntr <= "00000"; start_idea <= '0'; if ( ready_idea = '1' ) then state <= WRITE_BYTE; end if; elsif ( state = WRITE_BYTE ) then -- Write back the computed data set byte_cntr <= byte_cntr + "00001"; if ( byte_cntr = "00000" ) then txdata <= z1(7 downto 0); elsif ( byte_cntr = 1 ) then txdata <= z1(15 downto 8); elsif ( byte_cntr = 2 ) then txdata <= z2(7 downto 0); elsif ( byte_cntr = 3 ) then txdata <= z2(15 downto 8); elsif ( byte_cntr = 4 ) then txdata <= z3(7 downto 0); elsif ( byte_cntr = 5 ) then txdata <= z3(15 downto 8); elsif ( byte_cntr = 6 ) then txdata <= z4(7 downto 0); elsif ( byte_cntr = 7 ) then txdata <= z4(15 downto 8); end if; state <= WRITE_BYTE_NOW; elsif ( state = WRITE_BYTE_NOW ) then write <= '0'; state <= WRITE_BYTE_ACK; elsif ( state = WRITE_BYTE_ACK ) then write <= '1'; if ( txrdy = '0' ) then state <= WAIT_FOR_TXRDY_1; end if; elsif ( state = WAIT_FOR_TXRDY_1 ) then if ( txrdy = '1' ) then txdata <= "00000000"; if ( byte_cntr = "01000" ) then state <= WAIT_FOR_DATA; byte_cntr <= "00000"; else state <= WRITE_BYTE; end if; end if; end if; end if; end if; end process; LEDs_proc : process ( Clk ) begin if ( Clk'event and Clk='1' ) then if(counter_sig = "1001011000000000000") then counter_sig <= "0000000000000000000"; if(led_count_sig = "11111111") then led_count_sig <= "00000000"; else LEDs <= led_count_sig; led_count_sig <= led_count_sig +1; end if; else counter_sig <= counter_sig +1; end if; end if; end process LEDs_proc; end Behavioral;
gpl-2.0
tolgasel/vhdl_system_design
workspace/Exercise1/direct_implementation/tb_mulop.vhd
4
2226
---------------------------------------------------------------------------------- -- Company: -- Engineer: Tolga Sel -- -- Create Date: 09:51:37 11/03/2015 -- Design Name: -- Module Name: /home/ga69kaw/vhdl_system_design_lab/workspace/Exercise1/direct_implementation/tb_mulop.vhd -- Project Name: direct_implementation -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: mulop -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_mulop IS END tb_mulop; ARCHITECTURE behavior OF tb_mulop IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT mulop PORT( X : IN std_logic_vector(15 downto 0); Y : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; --Inputs signal X : std_logic_vector(15 downto 0) := (others => '0'); signal Y : std_logic_vector(15 downto 0) := (others => '0'); --Outputs signal O : std_logic_vector(15 downto 0); -- No clocks detected in port list. Replace <clock> below with -- appropriate port name BEGIN -- Instantiate the Unit Under Test (UUT) (43241*63743) mod (65537) uut: mulop PORT MAP ( X => X, Y => Y, O => O ); X <= "0000000000000000", "1000000000000000" after 200ns, "1111111111111111" after 400ns, "1010100011101001" after 800ns; Y <= "0000000000000000", "1000000000000000" after 200ns, "1111111111111111" after 400ns, "1111100011111111" after 800ns; end behavior;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2/datapath.vhd
2
6774
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 21:11:48 12/23/2015 -- Design Name: -- Module Name: datapath - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity datapath is Port ( Clock : in STD_LOGIC; S : IN std_logic_vector(1 downto 0); S_t : IN std_logic_vector(1 downto 0); EN125 : in STD_LOGIC; EN346 : in STD_LOGIC; EN78 : in STD_LOGIC; X1 : IN std_logic_vector(15 downto 0); X2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); X4 : IN std_logic_vector(15 downto 0); Z1 : IN std_logic_vector(15 downto 0); Z2 : IN std_logic_vector(15 downto 0); Z3 : IN std_logic_vector(15 downto 0); Z4 : IN std_logic_vector(15 downto 0); Z5 : IN std_logic_vector(15 downto 0); Z6 : IN std_logic_vector(15 downto 0); Y1_trafo : OUT std_logic_vector(15 downto 0); Y2_trafo : OUT std_logic_vector(15 downto 0); Y3_trafo : OUT std_logic_vector(15 downto 0); Y4_trafo : OUT std_logic_vector(15 downto 0); Y1 : OUT std_logic_vector(15 downto 0); Y2 : OUT std_logic_vector(15 downto 0); Y3 : OUT std_logic_vector(15 downto 0); Y4 : OUT std_logic_vector(15 downto 0)); end datapath; architecture Behavioral of datapath is COMPONENT register_16bit PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; COMPONENT multiplexer_4_to_1 PORT( in1 : IN std_logic_vector(15 downto 0); in2 : IN std_logic_vector(15 downto 0); in3 : IN std_logic_vector(15 downto 0); in4 : IN std_logic_vector(15 downto 0); S : IN std_logic_vector(1 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT mulop PORT( X : IN std_logic_vector(15 downto 0); Y : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT addop PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT xorop PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; SIGNAL MUL1_OUT : std_logic_vector(15 downto 0); SIGNAL ADD1_OUT : std_logic_vector(15 downto 0); SIGNAL XOR1_OUT : std_logic_vector(15 downto 0); SIGNAL R1_OUT : std_logic_vector(15 downto 0); SIGNAL R2_OUT : std_logic_vector(15 downto 0); SIGNAL R3_OUT : std_logic_vector(15 downto 0); SIGNAL R4_OUT : std_logic_vector(15 downto 0); SIGNAL R5_OUT : std_logic_vector(15 downto 0); SIGNAL R6_OUT : std_logic_vector(15 downto 0); SIGNAL R7_OUT : std_logic_vector(15 downto 0); SIGNAL R8_OUT : std_logic_vector(15 downto 0); SIGNAL MUX1_OUT : std_logic_vector(15 downto 0); SIGNAL MUX2_OUT : std_logic_vector(15 downto 0); SIGNAL MUX3_OUT : std_logic_vector(15 downto 0); SIGNAL MUX4_OUT : std_logic_vector(15 downto 0); begin Y3_trafo <= R3_OUT; Y2_trafo <= R2_OUT; Y4_trafo <= R4_OUT; Y1_trafo <= R1_OUT; REG_1: register_16bit PORT MAP ( D => MUL1_OUT, Q => R1_OUT, en => EN125, clk => Clock ); REG_2: register_16bit PORT MAP ( D => ADD1_OUT, Q => R2_OUT, en => EN125, clk => Clock ); REG_3: register_16bit PORT MAP ( D => ADD1_OUT, Q => R3_OUT, en => EN346, clk => Clock ); REG_4: register_16bit PORT MAP ( D => MUL1_OUT, Q => R4_OUT, en => EN346, clk => Clock ); REG_5: register_16bit PORT MAP ( D => XOR1_OUT, Q => R5_OUT, en => EN125, clk => Clock ); REG_6: register_16bit PORT MAP ( D => XOR1_OUT, Q => R6_OUT, en => EN346, clk => Clock ); REG_7: register_16bit PORT MAP ( D => MUL1_OUT, Q => R7_OUT, en => EN78, clk => Clock ); REG_8: register_16bit PORT MAP ( D => ADD1_OUT, Q => R8_OUT, en => EN78, clk => Clock ); XOR_1: xorop PORT MAP ( A => MUL1_OUT, B => ADD1_OUT, O => XOR1_OUT ); XOR_2: xorop PORT MAP ( A => R3_OUT, B => ADD1_OUT, O => Y3 ); XOR_3: xorop PORT MAP ( A => R2_OUT, B => MUL1_OUT, O => Y2 ); XOR_4: xorop PORT MAP ( A => R4_OUT, B => ADD1_OUT, O => Y4 ); XOR_5: xorop PORT MAP ( A => R1_OUT, B => MUL1_OUT, O => Y1 ); ADDER1: addop PORT MAP ( A => MUX3_OUT, B => MUX4_OUT, O => ADD1_OUT ); MUL1: mulop PORT MAP ( X => MUX1_OUT, Y => MUX2_OUT, O => MUL1_OUT ); MUX1_4_to_1: multiplexer_4_to_1 PORT MAP ( in1 => X1, in2 => X4, in3 => Z5, in4 => Z6, S => S, O => MUX1_OUT ); MUX2_4_to_1: multiplexer_4_to_1 PORT MAP ( in1 => Z1, in2 => Z4, in3 => R5_OUT, in4 => R8_OUT, S => S, O => MUX2_OUT ); MUX3_4_to_1: multiplexer_4_to_1 PORT MAP ( in1 => X3, in2 => X2, in3 => R6_OUT, in4 => R7_OUT, S => S, O => MUX3_OUT ); MUX4_4_to_1: multiplexer_4_to_1 PORT MAP ( in1 => Z3, in2 => Z2, in3 => MUL1_OUT, in4 => MUL1_OUT, S => S_t, O => MUX4_OUT ); end Behavioral;
gpl-2.0
tolgasel/vhdl_system_design
uni_rech/rcs1/idea_single.vhd
4
8352
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 02:05:10 11/16/2015 -- Design Name: -- Module Name: idea_single - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity idea_single is Port ( KEY : in std_logic_vector(127 downto 0); clk_in : in std_logic; ready_out : out std_logic; start_in : in std_logic; X1 : in std_logic_vector(15 downto 0); X2 : in std_logic_vector(15 downto 0); X3 : in std_logic_vector(15 downto 0); X4 : in std_logic_vector(15 downto 0); Y1 : out std_logic_vector(15 downto 0); Y2 : out std_logic_vector(15 downto 0); Y3 : out std_logic_vector(15 downto 0); Y4 : out std_logic_vector(15 downto 0)); end idea_single; architecture Behavioral of idea_single is COMPONENT keygen PORT( rc : IN std_logic_vector(3 downto 0) ; key_in : IN std_logic_vector(127 downto 0); z1 : OUT std_logic_vector(15 downto 0); z2 : OUT std_logic_vector(15 downto 0); z3 : OUT std_logic_vector(15 downto 0); z4 : OUT std_logic_vector(15 downto 0); z5 : OUT std_logic_vector(15 downto 0); z6 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT multiplexer PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0); s : IN std_logic ); END COMPONENT; COMPONENT trafo PORT( X1 : IN std_logic_vector(15 downto 0); X2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); X4 : IN std_logic_vector(15 downto 0); Z1 : IN std_logic_vector(15 downto 0); Z2 : IN std_logic_vector(15 downto 0); Z3 : IN std_logic_vector(15 downto 0); Z4 : IN std_logic_vector(15 downto 0); Y1 : OUT std_logic_vector(15 downto 0); Y2 : OUT std_logic_vector(15 downto 0); Y3 : OUT std_logic_vector(15 downto 0); Y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT round PORT( x1 : IN std_logic_vector(15 downto 0); x2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); x4 : IN std_logic_vector(15 downto 0); z1 : IN std_logic_vector(15 downto 0); z2 : IN std_logic_vector(15 downto 0); z3 : IN std_logic_vector(15 downto 0); z4 : IN std_logic_vector(15 downto 0); z5 : IN std_logic_vector(15 downto 0); z6 : IN std_logic_vector(15 downto 0); y1 : OUT std_logic_vector(15 downto 0); y2 : OUT std_logic_vector(15 downto 0); y3 : OUT std_logic_vector(15 downto 0); y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT control PORT( clk : IN std_logic; start : IN std_logic; round : OUT std_logic_vector(3 downto 0); ready : OUT std_logic; en : OUT std_logic; s : OUT std_logic ); END COMPONENT; COMPONENT register_16bit PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; signal round_out_y1 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y2 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y3 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y4 : std_logic_vector(15 downto 0) := (others => '0'); signal round_number : std_logic_vector(3 downto 0) := (others => '0'); signal enable_sig : std_logic := '0'; signal s_sig : std_logic := '0'; signal key_1_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_2_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_3_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_4_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_5_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_6_sig : std_logic_vector(15 downto 0) := (others => '0'); signal reg_1_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_2_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_3_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_4_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_1_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_2_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_3_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_4_out : std_logic_vector(15 downto 0) := (others => '0'); signal y1_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y2_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y3_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y4_sig : std_logic_vector(15 downto 0) := (others => '0'); begin Y1 <= y1_sig; Y2 <= y2_sig; Y3 <= y3_sig; Y4 <= y4_sig; register_1: register_16bit PORT MAP ( D => round_out_y1, Q => reg_1_out, en => enable_sig, clk => clk_in ); register_2: register_16bit PORT MAP ( D => round_out_y2, Q => reg_2_out, en => enable_sig, clk => clk_in ); register_3: register_16bit PORT MAP ( D => round_out_y3, Q => reg_3_out, en => enable_sig, clk => clk_in ); register_4: register_16bit PORT MAP ( D => round_out_y4, Q => reg_4_out, en => enable_sig, clk => clk_in ); control_1: control PORT MAP ( clk => clk_in, start => start_in, round => round_number, ready => ready_out, en => enable_sig, s => s_sig ); trafo_1: trafo PORT MAP ( X1 => reg_1_out, X2 => reg_2_out, X3 => reg_3_out, X4 => reg_4_out, Z1 => key_1_sig, Z2 => key_2_sig, Z3 => key_3_sig, Z4 => key_4_sig, Y1 => y1_sig, Y2 => y2_sig, Y3 => y3_sig, Y4 => y4_sig ); round_module: round PORT MAP ( x1 => mux_1_out, x2 => mux_2_out, X3 => mux_3_out, x4 => mux_4_out, z1 => key_1_sig, z2 => key_2_sig, z3 => key_3_sig, z4 => key_4_sig, z5 => key_5_sig, z6 => key_6_sig, y1 => round_out_y1, y2 => round_out_y2, y3 => round_out_y3, y4 => round_out_y4 ); mux_1: multiplexer PORT MAP ( A => X1, B => reg_1_out, O => mux_1_out, s => s_sig ); mux_2: multiplexer PORT MAP ( A => X2, B => reg_2_out, O => mux_2_out, s => s_sig ); mux_3: multiplexer PORT MAP ( A => X3, B => reg_3_out, O => mux_3_out, s => s_sig ); mux_4: multiplexer PORT MAP ( A => X4, B => reg_4_out, O => mux_4_out, s => s_sig ); keygen_module: keygen PORT MAP ( rc => round_number, key_in => KEY, z1 => key_1_sig, z2 => key_2_sig, z3 => key_3_sig, z4 => key_4_sig, z5 => key_5_sig, z6 => key_6_sig ); end Behavioral;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/idea_single.vhd
4
8352
---------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 02:05:10 11/16/2015 -- Design Name: -- Module Name: idea_single - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity idea_single is Port ( KEY : in std_logic_vector(127 downto 0); clk_in : in std_logic; ready_out : out std_logic; start_in : in std_logic; X1 : in std_logic_vector(15 downto 0); X2 : in std_logic_vector(15 downto 0); X3 : in std_logic_vector(15 downto 0); X4 : in std_logic_vector(15 downto 0); Y1 : out std_logic_vector(15 downto 0); Y2 : out std_logic_vector(15 downto 0); Y3 : out std_logic_vector(15 downto 0); Y4 : out std_logic_vector(15 downto 0)); end idea_single; architecture Behavioral of idea_single is COMPONENT keygen PORT( rc : IN std_logic_vector(3 downto 0) ; key_in : IN std_logic_vector(127 downto 0); z1 : OUT std_logic_vector(15 downto 0); z2 : OUT std_logic_vector(15 downto 0); z3 : OUT std_logic_vector(15 downto 0); z4 : OUT std_logic_vector(15 downto 0); z5 : OUT std_logic_vector(15 downto 0); z6 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT multiplexer PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0); s : IN std_logic ); END COMPONENT; COMPONENT trafo PORT( X1 : IN std_logic_vector(15 downto 0); X2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); X4 : IN std_logic_vector(15 downto 0); Z1 : IN std_logic_vector(15 downto 0); Z2 : IN std_logic_vector(15 downto 0); Z3 : IN std_logic_vector(15 downto 0); Z4 : IN std_logic_vector(15 downto 0); Y1 : OUT std_logic_vector(15 downto 0); Y2 : OUT std_logic_vector(15 downto 0); Y3 : OUT std_logic_vector(15 downto 0); Y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT round PORT( x1 : IN std_logic_vector(15 downto 0); x2 : IN std_logic_vector(15 downto 0); X3 : IN std_logic_vector(15 downto 0); x4 : IN std_logic_vector(15 downto 0); z1 : IN std_logic_vector(15 downto 0); z2 : IN std_logic_vector(15 downto 0); z3 : IN std_logic_vector(15 downto 0); z4 : IN std_logic_vector(15 downto 0); z5 : IN std_logic_vector(15 downto 0); z6 : IN std_logic_vector(15 downto 0); y1 : OUT std_logic_vector(15 downto 0); y2 : OUT std_logic_vector(15 downto 0); y3 : OUT std_logic_vector(15 downto 0); y4 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT control PORT( clk : IN std_logic; start : IN std_logic; round : OUT std_logic_vector(3 downto 0); ready : OUT std_logic; en : OUT std_logic; s : OUT std_logic ); END COMPONENT; COMPONENT register_16bit PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; signal round_out_y1 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y2 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y3 : std_logic_vector(15 downto 0) := (others => '0'); signal round_out_y4 : std_logic_vector(15 downto 0) := (others => '0'); signal round_number : std_logic_vector(3 downto 0) := (others => '0'); signal enable_sig : std_logic := '0'; signal s_sig : std_logic := '0'; signal key_1_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_2_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_3_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_4_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_5_sig : std_logic_vector(15 downto 0) := (others => '0'); signal key_6_sig : std_logic_vector(15 downto 0) := (others => '0'); signal reg_1_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_2_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_3_out : std_logic_vector(15 downto 0) := (others => '0'); signal reg_4_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_1_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_2_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_3_out : std_logic_vector(15 downto 0) := (others => '0'); signal mux_4_out : std_logic_vector(15 downto 0) := (others => '0'); signal y1_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y2_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y3_sig : std_logic_vector(15 downto 0) := (others => '0'); signal y4_sig : std_logic_vector(15 downto 0) := (others => '0'); begin Y1 <= y1_sig; Y2 <= y2_sig; Y3 <= y3_sig; Y4 <= y4_sig; register_1: register_16bit PORT MAP ( D => round_out_y1, Q => reg_1_out, en => enable_sig, clk => clk_in ); register_2: register_16bit PORT MAP ( D => round_out_y2, Q => reg_2_out, en => enable_sig, clk => clk_in ); register_3: register_16bit PORT MAP ( D => round_out_y3, Q => reg_3_out, en => enable_sig, clk => clk_in ); register_4: register_16bit PORT MAP ( D => round_out_y4, Q => reg_4_out, en => enable_sig, clk => clk_in ); control_1: control PORT MAP ( clk => clk_in, start => start_in, round => round_number, ready => ready_out, en => enable_sig, s => s_sig ); trafo_1: trafo PORT MAP ( X1 => reg_1_out, X2 => reg_2_out, X3 => reg_3_out, X4 => reg_4_out, Z1 => key_1_sig, Z2 => key_2_sig, Z3 => key_3_sig, Z4 => key_4_sig, Y1 => y1_sig, Y2 => y2_sig, Y3 => y3_sig, Y4 => y4_sig ); round_module: round PORT MAP ( x1 => mux_1_out, x2 => mux_2_out, X3 => mux_3_out, x4 => mux_4_out, z1 => key_1_sig, z2 => key_2_sig, z3 => key_3_sig, z4 => key_4_sig, z5 => key_5_sig, z6 => key_6_sig, y1 => round_out_y1, y2 => round_out_y2, y3 => round_out_y3, y4 => round_out_y4 ); mux_1: multiplexer PORT MAP ( A => X1, B => reg_1_out, O => mux_1_out, s => s_sig ); mux_2: multiplexer PORT MAP ( A => X2, B => reg_2_out, O => mux_2_out, s => s_sig ); mux_3: multiplexer PORT MAP ( A => X3, B => reg_3_out, O => mux_3_out, s => s_sig ); mux_4: multiplexer PORT MAP ( A => X4, B => reg_4_out, O => mux_4_out, s => s_sig ); keygen_module: keygen PORT MAP ( rc => round_number, key_in => KEY, z1 => key_1_sig, z2 => key_2_sig, z3 => key_3_sig, z4 => key_4_sig, z5 => key_5_sig, z6 => key_6_sig ); end Behavioral;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/tb_idea_com.vhd
4
2368
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 11:16:27 11/18/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_idea_com.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: idea_com -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_idea_com IS END tb_idea_com; ARCHITECTURE behavior OF tb_idea_com IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT idea_com PORT( Clk : IN std_logic; Reset : IN std_logic; RxD : IN std_logic; TxD : OUT std_logic; LEDs : OUT std_logic_vector(7 downto 0) ); END COMPONENT; --Inputs signal Clk : std_logic := '0'; signal Reset : std_logic := '0'; signal RxD : std_logic := '0'; --Outputs signal TxD : std_logic; signal LEDs : std_logic_vector(7 downto 0); -- Clock period definitions constant Clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: idea_com PORT MAP ( Clk => Clk, Reset => Reset, RxD => RxD, TxD => TxD, LEDs => LEDs ); -- Clock process definitions Clk_process :process begin Clk <= '0'; wait for Clk_period/2; Clk <= '1'; wait for Clk_period/2; end process; -- Stimulus process stim_proc: process begin -- hold reset state for 100 ns. wait for 100 ns; wait for Clk_period*10; -- insert stimulus here wait; end process; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/tb_keygen.vhd
4
3237
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 19:06:01 11/15/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_keygen.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: keygen -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values USE ieee.numeric_std.ALL; ENTITY tb_keygen IS END tb_keygen; ARCHITECTURE behavior OF tb_keygen IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT keygen PORT( rc : IN std_logic_vector(3 downto 0); key_in : IN std_logic_vector(127 downto 0); z1 : OUT std_logic_vector(15 downto 0); z2 : OUT std_logic_vector(15 downto 0); z3 : OUT std_logic_vector(15 downto 0); z4 : OUT std_logic_vector(15 downto 0); z5 : OUT std_logic_vector(15 downto 0); z6 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; --Inputs signal rc : std_logic_vector(3 downto 0) := (others => '0'); signal key_in : std_logic_vector(127 downto 0) := (others => '0'); --Outputs signal z1 : std_logic_vector(15 downto 0); signal z2 : std_logic_vector(15 downto 0); signal z3 : std_logic_vector(15 downto 0); signal z4 : std_logic_vector(15 downto 0); signal z5 : std_logic_vector(15 downto 0); signal z6 : std_logic_vector(15 downto 0); -- No clocks detected in port list. Replace <clock> below with -- appropriate port name BEGIN -- Instantiate the Unit Under Test (UUT) uut: keygen PORT MAP ( rc => rc, key_in => key_in, z1 => z1, z2 => z2, z3 => z3, z4 => z4, z5 => z5, z6 => z6 ); key_in <= std_logic_vector(to_unsigned(1,16))&std_logic_vector(to_unsigned(2,16))&std_logic_vector(to_unsigned(3,16))&std_logic_vector(to_unsigned(4,16))&std_logic_vector(to_unsigned(5,16))&std_logic_vector(to_unsigned(6,16))&std_logic_vector(to_unsigned(7,16))&std_logic_vector(to_unsigned(8,16)); rc <= std_logic_vector(to_unsigned(0,4)), std_logic_vector(to_unsigned(1,4))after 10 ns, std_logic_vector(to_unsigned(2,4)) after 20 ns,std_logic_vector(to_unsigned(3,4)) after 30 ns,std_logic_vector(to_unsigned(4,4)) after 40 ns,std_logic_vector(to_unsigned(5,4)) after 50 ns,std_logic_vector(to_unsigned(6,4)) after 60 ns,std_logic_vector(to_unsigned(7,4)) after 70 ns,std_logic_vector(to_unsigned(8,4)) after 80 ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/tb_keygen.vhd
4
3237
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 19:06:01 11/15/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_keygen.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: keygen -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values USE ieee.numeric_std.ALL; ENTITY tb_keygen IS END tb_keygen; ARCHITECTURE behavior OF tb_keygen IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT keygen PORT( rc : IN std_logic_vector(3 downto 0); key_in : IN std_logic_vector(127 downto 0); z1 : OUT std_logic_vector(15 downto 0); z2 : OUT std_logic_vector(15 downto 0); z3 : OUT std_logic_vector(15 downto 0); z4 : OUT std_logic_vector(15 downto 0); z5 : OUT std_logic_vector(15 downto 0); z6 : OUT std_logic_vector(15 downto 0) ); END COMPONENT; --Inputs signal rc : std_logic_vector(3 downto 0) := (others => '0'); signal key_in : std_logic_vector(127 downto 0) := (others => '0'); --Outputs signal z1 : std_logic_vector(15 downto 0); signal z2 : std_logic_vector(15 downto 0); signal z3 : std_logic_vector(15 downto 0); signal z4 : std_logic_vector(15 downto 0); signal z5 : std_logic_vector(15 downto 0); signal z6 : std_logic_vector(15 downto 0); -- No clocks detected in port list. Replace <clock> below with -- appropriate port name BEGIN -- Instantiate the Unit Under Test (UUT) uut: keygen PORT MAP ( rc => rc, key_in => key_in, z1 => z1, z2 => z2, z3 => z3, z4 => z4, z5 => z5, z6 => z6 ); key_in <= std_logic_vector(to_unsigned(1,16))&std_logic_vector(to_unsigned(2,16))&std_logic_vector(to_unsigned(3,16))&std_logic_vector(to_unsigned(4,16))&std_logic_vector(to_unsigned(5,16))&std_logic_vector(to_unsigned(6,16))&std_logic_vector(to_unsigned(7,16))&std_logic_vector(to_unsigned(8,16)); rc <= std_logic_vector(to_unsigned(0,4)), std_logic_vector(to_unsigned(1,4))after 10 ns, std_logic_vector(to_unsigned(2,4)) after 20 ns,std_logic_vector(to_unsigned(3,4)) after 30 ns,std_logic_vector(to_unsigned(4,4)) after 40 ns,std_logic_vector(to_unsigned(5,4)) after 50 ns,std_logic_vector(to_unsigned(6,4)) after 60 ns,std_logic_vector(to_unsigned(7,4)) after 70 ns,std_logic_vector(to_unsigned(8,4)) after 80 ns; END;
gpl-2.0
tolgasel/vhdl_system_design
uni_rech/rcs1/tb_control.vhd
2
2308
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 01:23:07 11/16/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_control.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: control -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_control IS END tb_control; ARCHITECTURE behavior OF tb_control IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT control PORT( clk : IN std_logic; start : IN std_logic; round : OUT std_logic_vector(3 downto 0); ready : OUT std_logic; en : OUT std_logic; s : OUT std_logic ); END COMPONENT; --Inputs signal clk : std_logic := '0'; signal start : std_logic := '0'; --Outputs signal round : std_logic_vector(3 downto 0); signal ready : std_logic; signal en : std_logic; signal s : std_logic; -- Clock period definitions constant clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: control PORT MAP ( clk => clk, start => start, round => round, ready => ready, en => en, s => s ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; start <= '0', '1' after 5 ns, '0' after 15 ns, '1' after 505 ns, '0' after 515 ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs1/idea_rcs1/tb_control.vhd
2
2308
-------------------------------------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 01:23:07 11/16/2015 -- Design Name: -- Module Name: /home/superus/vhdl_system_design/workspace/idea_rcs1/idea_rcs1/tb_control.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: control -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_control IS END tb_control; ARCHITECTURE behavior OF tb_control IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT control PORT( clk : IN std_logic; start : IN std_logic; round : OUT std_logic_vector(3 downto 0); ready : OUT std_logic; en : OUT std_logic; s : OUT std_logic ); END COMPONENT; --Inputs signal clk : std_logic := '0'; signal start : std_logic := '0'; --Outputs signal round : std_logic_vector(3 downto 0); signal ready : std_logic; signal en : std_logic; signal s : std_logic; -- Clock period definitions constant clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: control PORT MAP ( clk => clk, start => start, round => round, ready => ready, en => en, s => s ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; start <= '0', '1' after 5 ns, '0' after 15 ns, '1' after 505 ns, '0' after 515 ns; END;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/tb_reg_sync.vhd
4
2269
---------------------------------------------------------------------------------- -- Company: -- Engineer: Tolga Sel -- -- Create Date: 16:31:10 11/14/2015 -- Design Name: -- Module Name: /home/superus/Vhdl_System_Design_WiSe1516/workspace/idea_rcs1/idea_rcs1/tb_reg_sync.vhd -- Project Name: idea_rcs1 -- Target Device: -- Tool versions: -- Description: -- -- VHDL Test Bench Created by ISE for module: reg_sync -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- -- Notes: -- This testbench has been automatically generated using types std_logic and -- std_logic_vector for the ports of the unit under test. Xilinx recommends -- that these types always be used for the top-level I/O of a design in order -- to guarantee that the testbench will bind correctly to the post-implementation -- simulation model. -------------------------------------------------------------------------------- LIBRARY ieee; USE ieee.std_logic_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --USE ieee.numeric_std.ALL; ENTITY tb_reg_sync IS END tb_reg_sync; ARCHITECTURE behavior OF tb_reg_sync IS -- Component Declaration for the Unit Under Test (UUT) COMPONENT reg_sync PORT( D : IN std_logic_vector(15 downto 0); Q : OUT std_logic_vector(15 downto 0); en : IN std_logic; clk : IN std_logic ); END COMPONENT; --Inputs signal D : std_logic_vector(15 downto 0) := (others => '0'); signal en : std_logic := '0'; signal clk : std_logic := '0'; --Outputs signal Q : std_logic_vector(15 downto 0); -- Clock period definitions constant clk_period : time := 10 ns; BEGIN -- Instantiate the Unit Under Test (UUT) uut: reg_sync PORT MAP ( D => D, Q => Q, en => en, clk => clk ); -- Clock process definitions clk_process :process begin clk <= '0'; wait for clk_period/2; clk <= '1'; wait for clk_period/2; end process; en <= '0', '1' after 10 ns; D <= "0101101011110000", "0000000000000000" after 9 ns, "0101101011110000" after 19ns, "0000000000000000" after 29ns; END;
gpl-2.0
tugrulyatagan/RISC-processor
xilinx_processor/ipcore_dir/ROM_4K_ste/example_design/bmg_wrapper.vhd
1
10171
-------------------------------------------------------------------------------- -- -- BLK MEM GEN v6.2 Core - Top-level wrapper -- -------------------------------------------------------------------------------- -- -- (c) Copyright 2006-2011 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- -------------------------------------------------------------------------------- -- -- Filename: bmg_wrapper.vhd -- -- Description: -- This is the top-level BMG wrapper (over BMG core). -- -------------------------------------------------------------------------------- -- Author: IP Solutions Division -- -- History: August 31, 2005 - First Release -------------------------------------------------------------------------------- -- -- Configured Core Parameter Values: -- (Refer to the SIM Parameters table in the datasheet for more information on -- the these parameters.) -- C_FAMILY : spartan6 -- C_XDEVICEFAMILY : spartan6 -- C_INTERFACE_TYPE : 0 -- C_AXI_TYPE : 1 -- C_AXI_SLAVE_TYPE : 0 -- C_AXI_ID_WIDTH : 4 -- C_MEM_TYPE : 3 -- C_BYTE_SIZE : 9 -- C_ALGORITHM : 1 -- C_PRIM_TYPE : 1 -- C_LOAD_INIT_FILE : 1 -- C_INIT_FILE_NAME : ROM_4K.mif -- C_USE_DEFAULT_DATA : 0 -- C_DEFAULT_DATA : 0 -- C_RST_TYPE : SYNC -- C_HAS_RSTA : 0 -- C_RST_PRIORITY_A : CE -- C_RSTRAM_A : 0 -- C_INITA_VAL : 0 -- C_HAS_ENA : 1 -- C_HAS_REGCEA : 0 -- C_USE_BYTE_WEA : 0 -- C_WEA_WIDTH : 1 -- C_WRITE_MODE_A : WRITE_FIRST -- C_WRITE_WIDTH_A : 16 -- C_READ_WIDTH_A : 16 -- C_WRITE_DEPTH_A : 4096 -- C_READ_DEPTH_A : 4096 -- C_ADDRA_WIDTH : 12 -- C_HAS_RSTB : 0 -- C_RST_PRIORITY_B : CE -- C_RSTRAM_B : 0 -- C_INITB_VAL : 0 -- C_HAS_ENB : 0 -- C_HAS_REGCEB : 0 -- C_USE_BYTE_WEB : 0 -- C_WEB_WIDTH : 1 -- C_WRITE_MODE_B : WRITE_FIRST -- C_WRITE_WIDTH_B : 16 -- C_READ_WIDTH_B : 16 -- C_WRITE_DEPTH_B : 4096 -- C_READ_DEPTH_B : 4096 -- C_ADDRB_WIDTH : 12 -- C_HAS_MEM_OUTPUT_REGS_A : 0 -- C_HAS_MEM_OUTPUT_REGS_B : 0 -- C_HAS_MUX_OUTPUT_REGS_A : 0 -- C_HAS_MUX_OUTPUT_REGS_B : 0 -- C_HAS_SOFTECC_INPUT_REGS_A : 0 -- C_HAS_SOFTECC_OUTPUT_REGS_B : 0 -- C_MUX_PIPELINE_STAGES : 0 -- C_USE_ECC : 0 -- C_USE_SOFTECC : 0 -- C_HAS_INJECTERR : 0 -- C_SIM_COLLISION_CHECK : ALL -- C_COMMON_CLK : 0 -- C_DISABLE_WARN_BHV_COLL : 1 -- C_DISABLE_WARN_BHV_RANGE : 1 -------------------------------------------------------------------------------- -- Library Declarations -------------------------------------------------------------------------------- LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_ARITH.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; LIBRARY UNISIM; USE UNISIM.VCOMPONENTS.ALL; -------------------------------------------------------------------------------- -- Entity Declaration -------------------------------------------------------------------------------- ENTITY bmg_wrapper IS PORT ( --Port A CLKA : IN STD_LOGIC; RSTA : IN STD_LOGIC; --opt port ENA : IN STD_LOGIC; --optional port REGCEA : IN STD_LOGIC; --optional port WEA : IN STD_LOGIC_VECTOR(0 DOWNTO 0); ADDRA : IN STD_LOGIC_VECTOR(11 DOWNTO 0); DINA : IN STD_LOGIC_VECTOR(15 DOWNTO 0); DOUTA : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); --Port B CLKB : IN STD_LOGIC; RSTB : IN STD_LOGIC; --opt port ENB : IN STD_LOGIC; --optional port REGCEB : IN STD_LOGIC; --optional port WEB : IN STD_LOGIC_VECTOR(0 DOWNTO 0); ADDRB : IN STD_LOGIC_VECTOR(11 DOWNTO 0); DINB : IN STD_LOGIC_VECTOR(15 DOWNTO 0); DOUTB : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); --ECC INJECTSBITERR : IN STD_LOGIC; --optional port INJECTDBITERR : IN STD_LOGIC; --optional port SBITERR : OUT STD_LOGIC; --optional port DBITERR : OUT STD_LOGIC; --optional port RDADDRECC : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); --optional port -- AXI BMG Input and Output Port Declarations -- AXI Global Signals S_ACLK : IN STD_LOGIC; S_AXI_AWID : IN STD_LOGIC_VECTOR(3 DOWNTO 0); S_AXI_AWADDR : IN STD_LOGIC_VECTOR(31 DOWNTO 0); S_AXI_AWLEN : IN STD_LOGIC_VECTOR(7 DOWNTO 0); S_AXI_AWSIZE : IN STD_LOGIC_VECTOR(2 DOWNTO 0); S_AXI_AWBURST : IN STD_LOGIC_VECTOR(1 DOWNTO 0); S_AXI_AWVALID : IN STD_LOGIC; S_AXI_AWREADY : OUT STD_LOGIC; S_AXI_WDATA : IN STD_LOGIC_VECTOR(15 DOWNTO 0); S_AXI_WSTRB : IN STD_LOGIC_VECTOR(0 DOWNTO 0); S_AXI_WLAST : IN STD_LOGIC; S_AXI_WVALID : IN STD_LOGIC; S_AXI_WREADY : OUT STD_LOGIC; S_AXI_BID : OUT STD_LOGIC_VECTOR(3 DOWNTO 0):= (OTHERS => '0'); S_AXI_BRESP : OUT STD_LOGIC_VECTOR(1 DOWNTO 0); S_AXI_BVALID : OUT STD_LOGIC; S_AXI_BREADY : IN STD_LOGIC; -- AXI Full/Lite Slave Read (Write side) S_AXI_ARID : IN STD_LOGIC_VECTOR(3 DOWNTO 0); S_AXI_ARADDR : IN STD_LOGIC_VECTOR(31 DOWNTO 0); S_AXI_ARLEN : IN STD_LOGIC_VECTOR(7 DOWNTO 0); S_AXI_ARSIZE : IN STD_LOGIC_VECTOR(2 DOWNTO 0); S_AXI_ARBURST : IN STD_LOGIC_VECTOR(1 DOWNTO 0); S_AXI_ARVALID : IN STD_LOGIC; S_AXI_ARREADY : OUT STD_LOGIC; S_AXI_RID : OUT STD_LOGIC_VECTOR(3 DOWNTO 0):= (OTHERS => '0'); S_AXI_RDATA : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); S_AXI_RRESP : OUT STD_LOGIC_VECTOR(1 DOWNTO 0); S_AXI_RLAST : OUT STD_LOGIC; S_AXI_RVALID : OUT STD_LOGIC; S_AXI_RREADY : IN STD_LOGIC; -- AXI Full/Lite Sideband Signals S_AXI_INJECTSBITERR : IN STD_LOGIC; S_AXI_INJECTDBITERR : IN STD_LOGIC; S_AXI_SBITERR : OUT STD_LOGIC; S_AXI_DBITERR : OUT STD_LOGIC; S_AXI_RDADDRECC : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); S_ARESETN : IN STD_LOGIC ); END bmg_wrapper; ARCHITECTURE xilinx OF bmg_wrapper IS COMPONENT ROM_4K_top IS PORT ( --Port A ENA : IN STD_LOGIC; --opt port ADDRA : IN STD_LOGIC_VECTOR(11 DOWNTO 0); DOUTA : OUT STD_LOGIC_VECTOR(15 DOWNTO 0); CLKA : IN STD_LOGIC ); END COMPONENT; BEGIN bmg0 : ROM_4K_top PORT MAP ( --Port A ENA => ENA, ADDRA => ADDRA, DOUTA => DOUTA, CLKA => CLKA ); END xilinx;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2plus/idea_com.vhd
4
1828
---------------------------------------------------------------------------------- -- TUM -- Engineer: Martin Strasser, Ning Chen -- -- Create Date: 16:34:40 06/16/2008 -- Design Name: -- Module Name: idea_com - Behavioral -- Project Name: idea lab -- Target Devices: Spartan 3E -- Tool versions: > 9.2 -- Description: This file is intended to be the top -- level module. It brings the clock generator -- and the clocked idea module together. -- -- Revision 1.00 - File created and tested -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; -- Make this the top module: entity idea_com is Port ( Clk : in STD_LOGIC; Reset : in STD_LOGIC; RxD : in STD_LOGIC; TxD : out STD_LOGIC; LEDs : out STD_LOGIC_VECTOR (7 downto 0)); end idea_com; architecture Behavioral of idea_com is -- Mapping the inner idea part. -- The outer part is only to syntesize -- the clock generator properly. component idea_com_inner port ( Clk : in STD_LOGIC; Reset : in STD_LOGIC; RxD : in STD_LOGIC; TxD : out STD_LOGIC; LEDs : out STD_LOGIC_VECTOR (7 downto 0)); end component; -- The clock generator for the UART. -- This block generates a clock of approx. 16*9600 Hz -- from the 50 MHz system clock. component clk_div port ( CLK : in STD_LOGIC; CLK_OUT : out STD_LOGIC ); end component; signal clk_out : STD_LOGIC; begin clk_div_1 : clk_div port map( clk, clk_out ); idea_1 : idea_com_inner port map( clk_out, Reset, RxD, TxD, LEDs ); --here original: idea_1 : idea_com_inner port map( clk_out, Reset, RxD, TxD, LEDs ); end Behavioral;
gpl-2.0
tolgasel/vhdl_system_design
workspace/idea_rcs2/trafo.vhd
4
2281
---------------------------------------------------------------------------------- -- Company: -- Engineer: Tolga Sel -- -- Create Date: 14:13:12 11/03/2015 -- Design Name: -- Module Name: trafo - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity trafo is Port ( X1 : in STD_LOGIC_VECTOR(15 downto 0); X2 : in STD_LOGIC_VECTOR(15 downto 0); X3 : in STD_LOGIC_VECTOR(15 downto 0); X4 : in STD_LOGIC_VECTOR(15 downto 0); Z1 : in STD_LOGIC_VECTOR(15 downto 0); Z2 : in STD_LOGIC_VECTOR(15 downto 0); Z3 : in STD_LOGIC_VECTOR(15 downto 0); Z4 : in STD_LOGIC_VECTOR(15 downto 0); Y1 : OUT STD_LOGIC_VECTOR(15 downto 0); Y2 : OUT STD_LOGIC_VECTOR(15 downto 0); Y3 : OUT STD_LOGIC_VECTOR(15 downto 0); Y4 : OUT STD_LOGIC_VECTOR(15 downto 0)); end trafo; architecture Behavioral of trafo is COMPONENT addop PORT( A : IN std_logic_vector(15 downto 0); B : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; COMPONENT mulop PORT( X : IN std_logic_vector(15 downto 0); Y : IN std_logic_vector(15 downto 0); O : OUT std_logic_vector(15 downto 0) ); END COMPONENT; begin mulop_1: mulop PORT MAP ( X => X1, Y => Z1, O => Y1 ); mulop_2: mulop PORT MAP ( X => X4, Y => Z4, O => Y4 ); addop_1: addop PORT MAP ( A => X3, B => Z2, O => Y2 ); addop_2: addop PORT MAP ( A => X2, B => Z3, O => Y3 ); end Behavioral;
gpl-2.0
ashtonchase/logic_analyzer
target_hardware/Zybo/zybo_top.vhd
1
4355
------------------------------------------------------------------------------- -- Title : Zybo Board Top Level -- Project : fpga_logic_analyzer ------------------------------------------------------------------------------- -- File : zybo_top.vhd -- Created : 2016-02-22 -- Last update: 2016-02-22 -- Standard : VHDL'08 ------------------------------------------------------------------------------- -- Description: Xilinx Zynq 7000 on a Digilent Zybo Board Top Level Module, ------------------------------------------------------------------------------- -- Copyright (c) 2016 Ashton Johnson, Paul Henny, Ian Swepston, David Hurt ------------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License along -- with this program; if not, write to the Free Software Foundation, Inc., -- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ------------------------------------------------------------------------------- -- Revisions : -- Date Version Author Description -- 2016-02-22 1.0 ashton Created ------------------------------------------------------------------------------- ENTITY zybo_top IS PORT ( clk : IN STD_LOGIC; -- 125 MHz clock je : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- PMOD JE inputs led : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); --LED outputs sw : IN STD_LOGIC_VECTOR(3 DOWNTO 0); -- Switches btn : IN STD_LOGIC_VECTOR(3 DOWNTO 0) --Buttons ); END ENTITY zybo_top; ARCHITECTURE top OF zybo_top IS ----------------------------------------------------------------------------- -- Components ----------------------------------------------------------------------------- COMPONENT clock_gen PORT ( -- Clock in ports clk_in1 : IN STD_LOGIC; -- Clock out ports clk_25mhz : OUT STD_LOGIC; -- Status and control signals reset : IN STD_LOGIC; locked : OUT STD_LOGIC ); END COMPONENT; ----------------------------------------------------------------------------- -- Signals ----------------------------------------------------------------------------- SIGNAL reset : STD_LOGIC := '1'; -- reset (async high, sync low) SIGNAL run_clk : STD_LOGIC := '0'; -- clock output of the clocking wizard SIGNAL clk_locked : STD_LOGIC := '0'; -- indicator if the clocking wizard has locked ----------------------------------------------------------------------------- -- Aliases ----------------------------------------------------------------------------- ALIAS reset_btn : STD_LOGIC IS btn(0); BEGIN -- ARCHITECTURE top ----------------------------------------------------------------------------- -- Component Instatiations ----------------------------------------------------------------------------- -- purpose: this component will generate the desired system clock based on -- the 125 MHz input clock. Not the output is already downstream of a global -- clock buffer -- inputs : clk, reset -- outputs: clk_locked run_clk_component : clock_gen PORT MAP ( -- Clock in ports clk_in1 => clk, -- Clock out ports clk_out1 => run_clk, -- Status and control signals reset => reset_btn, locked => clk_locked ); -- purpose: this process will reset the system when btn0 is pressed -- type : combinational -- inputs : reset_btn, clk, clk_locked -- outputs: reset reset_proc : PROCESS (reset_btn, clk) IS BEGIN -- PROCESS reset_proc IF reset_btn = '1' THEN reset <= '1'; ELSIF rising_edge(clk) THEN reset <= '0'; END IF; END PROCESS reset_proc; END ARCHITECTURE top;
gpl-2.0
terfect/Geany-plus
data/filetypes.vhdl
1
3198
# For complete documentation of this file, please see Geany's main documentation [styling] # foreground;background;bold;italic default=0x000000;0xffffff;false;false comment=0xd00000;0xffffff;false;false comment_line_bang=0x3f5fbf;0xffffff;false;false; number=0x007f00;0xffffff;false;false string=0xff901e;0xffffff;false;false operator=0x301010;0xffffff;false;false identifier=0x000000;0xffffff;false;false stringeol=0x000000;0xe0c0e0;false;false keyword=0x001a7f;0xffffff;true;false stdoperator=0x007f7f;0xffffff;false;false attribute=0x804020;0xffffff;false;false stdfunction=0x808020;0xffffff;true;false stdpackage=0x208020;0xffffff;false;false stdtype=0x208080;0xffffff;false;false userword=0x804020;0xffffff;true;false [keywords] # all items must be in one line keywords=access after alias all architecture array assert attribute begin block body buffer bus case component configuration constant disconnect downto else elsif end entity exit file for function generate generic group guarded if impure in inertial inout is label library linkage literal loop map new next null of on open others out package port postponed procedure process pure range record register reject report return select severity shared signal subtype then to transport type unaffected units until use variable wait when while with operators=abs and mod nand nor not or rem rol ror sla sll sra srl xnor xor attributes=left right low high ascending image value pos val succ pred leftof rightof base range reverse_range length delayed stable quiet transaction event active last_event last_active last_value driving driving_value simple_name path_name instance_name std_functions=now readline read writeline write endfile resolved to_bit to_bitvector to_stdulogic to_stdlogicvector to_stdulogicvector to_x01 to_x01z to_UX01 rising_edge falling_edge is_x shift_left shift_right rotate_left rotate_right resize to_integer to_unsigned to_signed std_match to_01 std_packages=std ieee work standard textio std_logic_1164 std_logic_arith std_logic_misc std_logic_signed std_logic_textio std_logic_unsigned numeric_bit numeric_std math_complex math_real vital_primitives vital_timing std_types=boolean bit character severity_level integer real time delay_length natural positive string bit_vector file_open_kind file_open_status line text side width std_ulogic std_ulogic_vector std_logic std_logic_vector X01 X01Z UX01 UX01Z unsigned signed userwords= [settings] # default extension used when saving files extension=vhd # the following characters are these which a "word" can contains, see documentation #wordchars=_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 # single comments, like # in this file comment_single=-- # multiline comments #comment_open= #comment_close= # set to false if a comment character/string should start at column 0 of a line, true uses any # indentation of the line, e.g. setting to true causes the following on pressing CTRL+d #command_example(); # setting to false would generate this # command_example(); # This setting works only for single line comments comment_use_indent=true # context action command (please see Geany's main documentation for details) context_action_cmd=
gpl-2.0
alyoshin/geda-gaf
gnetlist/examples/vams/vhdl/basic-vhdl/voltage_source.vhdl
15
415
LIBRARY ieee,disciplines; USE ieee.math_real.all; USE ieee.math_real.all; USE work.electrical_system.all; USE work.all; -- Entity declaration -- ENTITY VOLTAGE_SOURCE IS GENERIC ( amplitude : REAL := 2.0; offset : REAL := 1.2; width : REAL := 0.002; period : REAL := 0.005; k : REAL := 100.0 ); PORT ( terminal RT : electrical; terminal LT : electrical ); END ENTITY VOLTAGE_SOURCE;
gpl-2.0
alyoshin/geda-gaf
gnetlist/examples/vams/vhdl/basic-vhdl/resistor.vhdl
15
289
LIBRARY ieee,disciplines; USE ieee.math_real.all; USE ieee.math_real.all; USE work.electrical_system.all; USE work.all; -- Entity declaration -- ENTITY RESISTOR IS GENERIC ( r : REAL := 60.0 ); PORT ( terminal LT : electrical; terminal RT : electrical ); END ENTITY RESISTOR;
gpl-2.0
ashtonchase/logic_analyzer
src/msg_processor.vhd
1
7195
------------------------------------------------------------------------------- -- Title : Message Processor -- Project : fpga_logic_analyzer ------------------------------------------------------------------------------- -- File : msg_processor.vhd -- Created : 2016-03-17 -- Last update: 2016-04-09 -- Standard : VHDL'08 ------------------------------------------------------------------------------- -- Description: The message processor waits for the UART module to provide -- commands and data from the SUMP software. When the command is ready, it is -- read, the ready flag is driven low, and the command is decoded. After the -- command is decoded, appropiate lines are set to control the sample rate, -- trigger mask, and sample counts. ------------------------------------------------------------------------------- -- Copyright (c) 2016 Ashton Johnson, Paul Henny, Ian Swepston, David Hurt ------------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- You should have received a copy of the GNU General Public License along -- with this program; if not, write to the Free Software Foundation, Inc., -- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ------------------------------------------------------------------------------- -- Revisions : -- Date Version Author Description -- 2016-03-17 0.0 David Created -- 2016-03-31 0.1 David Entity done -- 2016-04-04 0.2 David State machine in progress -- 2016-04-05 1.0 David Complete -- 2016-04-07 1.1 David Handles unrecognized commands -- 2016-04-08 1.2 Ashton Changed READ_CMD check of cmd_in from -- invalid if statement to case statement. -- Beautified.. ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity msg_processor is port( -- Global Signals clk : in std_logic; -- Clock rst : in std_logic; -- Synchronous reset -- UART Interface byte_in : in std_logic_vector(7 downto 0); -- Byte of command/data from UART byte_new : in std_logic; -- Strobe to indicate new byte -- Sample Rate Control Interface sample_f : out std_logic_vector(23 downto 0); -- Sampling frequency to Sample Rate Control -- Capture Control Interface reset : out std_logic; -- Reset capture control armed : out std_logic; -- Arm capture control send_ID : out std_logic; -- Send device ID send_debug : out std_logic; -- Send debug status read_cnt : out std_logic_vector(15 downto 0); -- Number of samples (divided by 4) to send to memory delay_cnt : out std_logic_vector(15 downto 0); -- Number of samples (divided by 4) to capture after trigger trig_msk : out std_logic_vector(31 downto 0); -- Define which trigger values must match trig_vals : out std_logic_vector(31 downto 0) -- Set the trigger's individual bit values ); -- port end entity msg_processor; architecture behave of msg_processor is signal cmd_in : std_logic_vector(7 downto 0) := (others => '0'); signal data_in : std_logic_vector(31 downto 0) := (others => '0'); type state_t is (INIT, READ_CMD, DO_CMD, BYTE1, BYTE2, BYTE3, BYTE4); signal state : state_t; begin process(clk) begin if rising_edge(clk) then reset <= '0'; armed <= '0'; send_ID <= '0'; send_debug <= '0'; if rst = '1' then read_cnt <= x"0000"; delay_cnt <= x"0000"; sample_f <= x"000000"; trig_msk <= x"00000000"; trig_vals <= x"00000000"; state <= INIT; else case state is when INIT => if byte_new = '1' then cmd_in <= byte_in; state <= READ_CMD; end if; when READ_CMD => case cmd_in is when x"C0" | x"C4" | x"C8" | x"CC" | -- Trig Mask x"C1" | x"C5" | x"C9" | x"CD" | -- Trig Vals x"C2" | x"C6" | x"CA" | x"CE" | -- Trig Config x"80" | x"81" | x"82" => state <= BYTE1; -- Recognized long command when others => state <= DO_CMD; -- Unrecognized command or short command end case; when BYTE1 => if byte_new = '1' then data_in(7 downto 0) <= byte_in; state <= BYTE2; end if; when BYTE2 => if byte_new = '1' then data_in(15 downto 8) <= byte_in; state <= BYTE3; end if; when BYTE3 => if byte_new = '1' then data_in(23 downto 16) <= byte_in; state <= BYTE4; end if; when BYTE4 => if byte_new = '1' then data_in(31 downto 24) <= byte_in; state <= DO_CMD; end if; when DO_CMD => case cmd_in is when x"00" => -- Reset reset <= '1'; when x"01" => -- Run armed <= '1'; when x"02" => -- Send ID send_ID <= '1'; when x"11" => -- XON (unimplemented) when x"13" => -- XOFF (unimplemented) -- when x"C0" | x"C4" | x"C8" | x"CC" => -- Set Trigger Mask when x"C0" => -- Set Trigger Mask trig_msk <= data_in; --when x"C1" | x"C5" | x"C9" | x"CD" => -- Set Trigger Values when x"C1" => -- Set Trigger Values trig_vals <= data_in; when x"C2" | x"C6" | x"CA" | x"CE" => -- Set Trigger Configuration (unimplemented) when x"80" => -- Set Divider sample_f <= data_in(23 downto 0); when x"81" => -- Set Read & Delay Count read_cnt <= data_in(15 downto 0); delay_cnt <= data_in(31 downto 16); when x"82" => -- Set Flags (unimplemented) when x"FF" => -- Debug send_debug <= '1'; when others => end case; state <= INIT; end case; end if; end if; end process; end architecture;
gpl-2.0
ashtonchase/logic_analyzer
test/capture_ctrl_tb.vhd
1
6755
------------------------------------------------------------------------------- -- Title : Testbench for design "capture_ctrl" -- Project : fpga_logic_analyzer ------------------------------------------------------------------------------- -- File : capture_ctrl_tb.vhd -- Created : 2016-02-27 -- Last update: 2016-02-27 -- Standard : VHDL'08 ------------------------------------------------------------------------------- -- Description: ------------------------------------------------------------------------------- -- Copyright (c) 2016 Ashton Johnson, Paul Henny, Ian Swepston, David Hurt ----------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- You should have received a copy of the GNU General Public License along -- with this program; if not, write to the Free Software Foundation, Inc., -- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ------------------------------------------------------------------------------- -- Revisions : -- Date Version Author Description -- 2016-02-27 1.0 ashton Created ------------------------------------------------------------------------------- USE std.textio.ALL; LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.numeric_std.ALL; USE ieee.std_logic_textio.ALL; --------------------------------------------- ENTITY capture_ctrl_tb IS END ENTITY capture_ctrl_tb; ------------------------------------------------------------------------------- ARCHITECTURE acj_func_test OF capture_ctrl_tb IS -- component generics CONSTANT DATA_WIDTH : POSITIVE RANGE 1 TO 32 := 8; -- component ports SIGNAL rst : STD_LOGIC := '1'; SIGNAL din : STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0) := (OTHERS => '0'); SIGNAL armed : STD_LOGIC; SIGNAL triggered : STD_LOGIC; SIGNAL rst_cmd : STD_LOGIC := '0'; SIGNAL arm_cmd : STD_LOGIC := '0'; SIGNAL id_cmd : STD_LOGIC := '0'; SIGNAL debug_cmd : STD_LOGIC := '0'; SIGNAL sample_enable : STD_LOGIC := '1'; SIGNAL sample_cnt_rst : STD_LOGIC; SIGNAL read_cnt_4x : STD_LOGIC_VECTOR(16-1 DOWNTO 0) := STD_LOGIC_VECTOR(to_unsigned(1000,16)); SIGNAL par_trig_msk : STD_LOGIC_VECTOR(32-1 DOWNTO 0) := X"FE_6B_28_40"; SIGNAL par_trig_val : STD_LOGIC_VECTOR(32-1 DOWNTO 0) := (OTHERS => '1'); SIGNAL capture_rdy : STD_LOGIC; SIGNAL fifo_tdata : STD_LOGIC_VECTOR(32-1 DOWNTO 0); SIGNAL fifo_tvalid : STD_LOGIC; SIGNAL fifo_tlast : STD_LOGIC; SIGNAL fifo_tready : STD_LOGIC := '0'; SIGNAL fifo_tfull : STD_LOGIC := '0'; SIGNAL placeholder : STD_LOGIC := '0'; -- clock SIGNAL Clk : STD_LOGIC := '1'; BEGIN -- ARCHITECTURE acj_func_test -- component instantiation DUT : ENTITY work.capture_ctrl GENERIC MAP ( DATA_WIDTH => DATA_WIDTH) PORT MAP ( clk => clk, rst => rst, din => din, armed => armed, triggered => triggered, rst_cmd => rst_cmd, arm_cmd => arm_cmd, id_cmd => id_cmd, debug_cmd => debug_cmd, sample_enable => sample_enable, sample_cnt_rst => sample_cnt_rst, delay_cnt_4x => read_cnt_4x, read_cnt_4x => read_cnt_4x, par_trig_msk => par_trig_msk, par_trig_val => par_trig_val, capture_rdy => capture_rdy, fifo_tdata => fifo_tdata, fifo_tvalid => fifo_tvalid, fifo_tlast => fifo_tlast, fifo_tready => fifo_tready, fifo_tfull => fifo_tfull, placeholder => placeholder); rst <= '0' AFTER 5 US; -- clock generation Clk <= NOT Clk AFTER 2 NS; sample_rate_sim : process begin wait UNTIL falling_edge(sample_cnt_rst); loop sample_enable<='0'; wait for 30ns; WAIT UNTIL rising_edge(clk); sample_enable<='1'; WAIT UNTIL rising_edge(clk); end loop; end process; -- waveform generation WaveGen_Proc : PROCESS BEGIN -- insert signal assignments here WAIT UNTIL rst = '0'; FOR cycle IN 0 TO 20 LOOP WAIT UNTIL rising_edge(clk); END LOOP; -- cycle WAIT UNTIL rising_edge(capture_rdy); WAIT UNTIL rising_edge(clk); arm_cmd <= '1'; WAIT UNTIL rising_edge(clk); arm_cmd <= '0'; rst_cmd<='1'; WAIT UNTIL rising_edge(clk); rst_cmd<='0'; wait for 10 us; WAIT UNTIL rising_edge(clk); id_cmd<='1'; WAIT UNTIL rising_edge(clk); id_cmd<='0'; wait for 10 us; WAIT UNTIL rising_edge(clk); debug_cmd<='1'; WAIT UNTIL rising_edge(clk); debug_cmd<='0'; wait for 10 us; FOR cycle IN 0 TO 20 LOOP WAIT UNTIL rising_edge(clk); END LOOP; -- cycle WAIT UNTIL rising_edge(clk); arm_cmd <= '1'; WAIT UNTIL rising_edge(clk); arm_cmd <= '0'; WAIT; END PROCESS WaveGen_Proc; din_gen : PROCESS (clk) IS BEGIN -- PROCESS din_gen IF rising_edge(clk) THEN -- rising clock edge IF rst = '1' THEN -- synchronous reset (active high) din <= (OTHERS => '0'); ELSE din <= STD_LOGIC_VECTOR(UNSIGNED(din)+1); END IF; END IF; END PROCESS din_gen; PROCESS (armed) IS BEGIN -- PROCESS IF rising_edge(armed) THEN REPORT "system has armed" SEVERITY NOTE; END IF; END PROCESS; PROCESS (triggered) IS BEGIN -- PROCESS IF rising_edge(triggered) THEN REPORT "system has triggered" SEVERITY NOTE; ASSERT din = X"40" REPORT "system triggered on incorrect value" SEVERITY ERROR; END IF; END PROCESS; PROCESS IS BEGIN -- PROCESS WAIT UNTIL falling_edge(rst); WAIT FOR 1 US; fifo_tready <= '1'; WAIT; END PROCESS; END ARCHITECTURE acj_func_test; ------------------------------------------------------------------------------- ------------------------------------------------
gpl-2.0
ashtonchase/logic_analyzer
target_hardware/ZedBoard/zed_top_uart_test.vhd
1
10973
------------------------------------------------------------------------------- -- Title : Zybo Board Top Level -- Project : fpga_logic_analyzer ------------------------------------------------------------------------------- -- File : zybo_top_capture_cotnrol_test.vhd -- Created : 2016-02-22 -- Last update: 2016-03-25 -- Standard : VHDL'08 ------------------------------------------------------------------------------- -- Description: Xilinx Zynq 7000 on a Digilent Zybo Board Top Level Module, ------------------------------------------------------------------------------- -- Copyright (c) 2016 Ashton Johnson, Paul Henny, Ian Swepston, David Hurt ------------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License along -- with this program; if not, write to the Free Software Foundation, Inc., -- 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. ------------------------------------------------------------------------------- -- Revisions : -- Date Version Author Description -- 2016-02-22 1.0 ashton Created ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity zed_uart_top is port ( --Clock Source GCLK : in std_logic; -- 100 MHz clock --LED Outputs LD0, LD1, LD2, LD3, LD4, LD5, LD6, LD7 : out std_logic; --Buttons BTNC, BTND, BTNL, BTNR, BTNU : in std_logic; --Temporary Data Ouput (JA10-JA7, JA4-JA1) JA10, JA9, JA8, JA7, JA4, JA3, JA2, JA1 : out std_logic; --UART SIGNALS JB4 : in std_logic := 'H'; --RX JB1 : out std_logic; --TX --Switches SW7, SW6, SW5, SW4, SW3, SW2, SW1, SW0 : in std_logic --Fixed Zync Signals --DDR_addr : INOUT STD_LOGIC_VECTOR (14 DOWNTO 0); --DDR_ba : INOUT STD_LOGIC_VECTOR (2 DOWNTO 0); --DDR_cas_n : INOUT STD_LOGIC; --DDR_ck_n : INOUT STD_LOGIC; --DDR_ck_p : INOUT STD_LOGIC; --DDR_cke : INOUT STD_LOGIC; --DDR_cs_n : INOUT STD_LOGIC; --DDR_dm : INOUT STD_LOGIC_VECTOR (3 DOWNTO 0); --DDR_dq : INOUT STD_LOGIC_VECTOR (31 DOWNTO 0); --DDR_dqs_n : INOUT STD_LOGIC_VECTOR (3 DOWNTO 0); --DDR_dqs_p : INOUT STD_LOGIC_VECTOR (3 DOWNTO 0); --DDR_odt : INOUT STD_LOGIC; --DDR_ras_n : INOUT STD_LOGIC; --DDR_reset_n : INOUT STD_LOGIC; --DDR_we_n : INOUT STD_LOGIC; --FIXED_IO_ddr_vrn : INOUT STD_LOGIC; --FIXED_IO_ddr_vrp : INOUT STD_LOGIC; --FIXED_IO_mio : INOUT STD_LOGIC_VECTOR (53 DOWNTO 0); --FIXED_IO_ps_clk : INOUT STD_LOGIC; --FIXED_IO_ps_porb : INOUT STD_LOGIC; --FIXED_IO_ps_srstb : INOUT STD_LOGIC; ); end entity zed_uart_top; architecture top of zed_uart_top is ----------------------------------------------------------------------------- -- Components ----------------------------------------------------------------------------- component Zynq_BD_wrapper is port ( DDR_addr : inout std_logic_vector (14 downto 0); DDR_ba : inout std_logic_vector (2 downto 0); DDR_cas_n : inout std_logic; DDR_ck_n : inout std_logic; DDR_ck_p : inout std_logic; DDR_cke : inout std_logic; DDR_cs_n : inout std_logic; DDR_dm : inout std_logic_vector (3 downto 0); DDR_dq : inout std_logic_vector (31 downto 0); DDR_dqs_n : inout std_logic_vector (3 downto 0); DDR_dqs_p : inout std_logic_vector (3 downto 0); DDR_odt : inout std_logic; DDR_ras_n : inout std_logic; DDR_reset_n : inout std_logic; DDR_we_n : inout std_logic; FIXED_IO_ddr_vrn : inout std_logic; FIXED_IO_ddr_vrp : inout std_logic; FIXED_IO_mio : inout std_logic_vector (53 downto 0); FIXED_IO_ps_clk : inout std_logic; FIXED_IO_ps_porb : inout std_logic; FIXED_IO_ps_srstb : inout std_logic; UART_rxd : in std_logic; UART_txd : out std_logic ); end component; ----------------------------------------------------------------------------- -- Constants ----------------------------------------------------------------------------- constant DATA_WIDTH : positive := 32; ----------------------------------------------------------------------------- -- Signals ----------------------------------------------------------------------------- signal reset, reset_clk_gen : std_logic := '1'; -- reset (async high, sync low) signal run_clk : std_logic := '0'; -- clock output of the clocking wizard signal clk_locked : std_logic := '0'; -- indicator if the clocking wizard has locked signal din : std_logic_vector(DATA_WIDTH-1 downto 0); signal armed : std_logic; signal triggered : std_logic; signal rst_cmd : std_logic := '0'; signal arm_cmd : std_logic; signal sample_enable : std_logic := '1'; signal sample_cnt_rst : std_logic; signal delay_cnt_4x : std_logic_vector(16-1 downto 0) := (others => '0'); signal read_cnt_4x : std_logic_vector(16-1 downto 0) := std_logic_vector(to_unsigned(1000, 16)); signal par_trig_msk : std_logic_vector(32-1 downto 0) := X"00_00_00_03"; signal par_trig_val : std_logic_vector(32-1 downto 0) := (others => '1'); signal capture_rdy : std_logic; signal in_fifo_tdata : std_logic_vector(31 downto 0); signal in_fifo_tvalid : std_logic; signal in_fifo_tlast : std_logic; signal in_fifo_tready : std_logic; signal in_fifo_tfull : std_logic; signal in_fifo_tempty : std_logic; signal in_fifo_tflush : std_logic; -- signal out_fifo_tdata : std_logic_vector(7 downto 0); signal out_fifo_tvalid : std_logic; signal out_fifo_tlast : std_logic; signal out_fifo_tready : std_logic; -- signal rx_get_more_data : std_logic; signal rx_data_ready : std_logic; signal rx : std_logic; signal tx_data_sent : std_logic; ----------------------------------------------------------------------------- -- Aliases ----------------------------------------------------------------------------- alias reset_btn : std_logic is BTND; alias CLK : std_logic is GCLK; alias UART_RX : std_logic is JB4; alias UART_TX : std_logic is JB1; begin -- ARCHITECTURE top LD7 <= out_fifo_tdata(7); LD6<= out_fifo_tdata(6); LD5<= out_fifo_tdata(5); LD4<= out_fifo_tdata(4); LD3<= out_fifo_tdata(3); LD2<= out_fifo_tdata(2); LD1<= out_fifo_tdata(1); LD0<= out_fifo_tdata(0); --LED to indicate that the clock is locked uart_comms_test_blk : entity work.uart_comms generic map ( baud_rate => 115_200, clock_freq => 10_000_000) port map ( clk => run_clk, rst => reset_clk_gen, rx_get_more_data => '1', rx => UART_RX, tx_data_ready => BTNU, tx => UART_TX, data_in => SW7& SW6& SW5& SW4& SW3& SW2& SW1& SW0, data_out =>out_fifo_tdata); ----------------------------------------------------------------------------- -- Component Instatiations ----------------------------------------------------------------------------- -- purpose: this component will generate the desired system clock based on -- the 125 MHz input clock. Not the output is already downstream of a global -- clock buffer -- inputs : clk, reset -- outputs: clk_locked run_clk_component : entity work.clock_gen port map ( -- Clock in ports clk_in1 => clk, -- Clock out ports clk_out1 => run_clk, -- Status and control signals reset => reset_clk_gen, locked => clk_locked ); -- purpose: this process will reset the system when btn0 is pressed -- type : combinational -- inputs : reset_btn, clk, clk_locked -- outputs: reset run_clk_reset_proc : process (reset_btn, run_clk) is variable reset_dly_v : std_logic; begin -- PROCESS reset_proc if reset_btn = '1' then reset <= '1'; reset_dly_v := '1'; elsif rising_edge(run_clk) then if clk_locked = '1' then reset <= reset_dly_v; reset_dly_v := '0'; else reset <= '1'; reset_dly_v := '1'; end if; end if; end process run_clk_reset_proc; reset_proc : process (reset_btn, clk) is variable reset_dly_v : std_logic; begin -- PROCESS reset_proc if reset_btn = '1' then reset_clk_gen <= '1'; elsif rising_edge(clk) then reset_clk_gen <= reset_dly_v; reset_dly_v := '0'; end if; end process reset_proc; --zynq : ENTITY work.Zynq_BD_wrapper -- PORT MAP ( -- DDR_addr => DDR_addr, -- DDR_ba => DDR_ba, -- DDR_cas_n => DDR_cas_n, -- DDR_ck_n => DDR_ck_n, -- DDR_ck_p => DDR_ck_p, -- DDR_cke => DDR_cke, -- DDR_cs_n => DDR_cs_n, -- DDR_dm => DDR_dm, -- DDR_dq => DDR_dq, -- DDR_dqs_n => DDR_dqs_n, -- DDR_dqs_p => DDR_dqs_p, -- DDR_odt => DDR_odt, -- DDR_ras_n => DDR_ras_n, -- DDR_reset_n => DDR_reset_n, -- DDR_we_n => DDR_we_n, -- FIXED_IO_ddr_vrn => FIXED_IO_ddr_vrn, -- FIXED_IO_ddr_vrp => FIXED_IO_ddr_vrp, -- FIXED_IO_mio => FIXED_IO_mio, -- FIXED_IO_ps_clk => FIXED_IO_ps_clk, -- FIXED_IO_ps_porb => FIXED_IO_ps_porb, -- FIXED_IO_ps_srstb => FIXED_IO_ps_srstb, -- UART_rxd => UART_rxd, -- UART_txd => UART_txd); end architecture top;
gpl-2.0
oridb/ctags
Units/review-needed.r/bug2374109.vhd.t/input.vhd
98
196
function Pow2( N, Exp : integer ) return mylib.myinteger is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow;
gpl-2.0
kennethlyn/fpga-image-example
hdl_nodes/adder/adder.srcs/sources_1/dyplo_user_logic_adder.vhd
1
5765
-- File: dyplo_user_logic_stub.vhd -- -- � COPYRIGHT 2014 TOPIC EMBEDDED PRODUCTS B.V. ALL RIGHTS RESERVED. -- -- This file contains confidential and proprietary information of -- Topic Embedded Products B.V. and is protected under Dutch and -- International copyright and other international intellectual property laws. -- -- Disclaimer -- -- This disclaimer is not a license and does not grant any rights to the -- materials distributed herewith. Except as otherwise provided in a valid -- license issued to you by Topic Embedded Products B.V., and to the maximum -- extend permitted by applicable law: -- -- 1. Dyplo is furnished on an �as is�, as available basis. Topic makes no -- warranty, express or implied, with respect to the capability of Dyplo. All -- warranties of any type, express or implied, including the warranties of -- merchantability, fitness for a particular purpose and non-infringement of -- third party rights are expressly disclaimed. -- -- 2. Topic�s maximum total liability shall be limited to general money -- damages in an amount not to exceed the total amount paid for in the year -- in which the damages have occurred. Under no circumstances including -- negligence shall Topic be liable for direct, indirect, incidental, special, -- consequential or punitive damages, or for loss of profits, revenue, or data, -- that are directly or indirectly related to the use of, or the inability to -- access and use Dyplo and related services, whether in an action in contract, -- tort, product liability, strict liability, statute or otherwise even if -- Topic has been advised of the possibility of those damages. -- -- This copyright notice and disclaimer must be retained as part of this file at all times. library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library dyplo_hdl_node_lib; use dyplo_hdl_node_lib.hdl_node_package.all; use dyplo_hdl_node_lib.hdl_node_user_params.all; entity dyplo_user_logic_adder is generic( INPUT_STREAMS : integer := 4; OUTPUT_STREAMS : integer := 4 ); port( -- Processor bus interface dab_clk : in std_logic; dab_rst : in std_logic; dab_addr : in std_logic_vector(15 DOWNTO 0); dab_sel : in std_logic; dab_wvalid : in std_logic; dab_rvalid : in std_logic; dab_wdata : in std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); dab_rdata : out std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); -- Streaming input interfaces cin_tdata : in cin_tdata_ul_type; cin_tvalid : in std_logic_vector(INPUT_STREAMS - 1 downto 0); cin_tready : out std_logic_vector(INPUT_STREAMS - 1 downto 0); cin_tlevel : in cin_tlevel_ul_type; -- Streaming output interfaces cout_tdata : out cout_tdata_ul_type; cout_tvalid : out std_logic_vector(OUTPUT_STREAMS - 1 downto 0); cout_tready : in std_logic_vector(OUTPUT_STREAMS - 1 downto 0); -- Clock signals user_clocks : in std_logic_vector(3 downto 0) ); end dyplo_user_logic_adder; architecture rtl of dyplo_user_logic_adder is type signed_matrix_4x32 is array (0 to INPUT_STREAMS - 1) of signed(31 downto 0); signal value_to_add : signed_matrix_4x32; signal cout_tdata_i : signed_matrix_4x32 := (others => (others => '0')); signal cout_tvalid_i : std_logic_vector(OUTPUT_STREAMS - 1 downto 0) := (others => '0'); signal cin_tready_i : std_logic_vector(INPUT_STREAMS - 1 downto 0) := (others => '0'); begin config_reg : process (dab_clk) variable index : integer; begin if rising_edge(dab_clk) then if (dab_rst = '1') then value_to_add <= (others => (others => '0')); else index := to_integer(unsigned(dab_addr(3 downto 2))); if (dab_sel = '1') and (dab_wvalid = '1') then value_to_add(index) <= signed(dab_wdata); end if; dab_rdata <= std_logic_vector(value_to_add(index)); end if; end if; end process config_reg; adders : for i in 0 to 3 generate type sm_calc_states is (S_FETCH, S_CALC, S_SEND, S_FINISH); signal sm_calc : sm_calc_states := S_FETCH; signal tdata : signed(31 downto 0) := (others => '0'); begin calc_data : process (dab_clk) begin if rising_edge(dab_clk) then if (dab_rst = '1') then cin_tready_i(i) <= '0'; tdata <= (others => '0'); sm_calc <= S_FETCH; cout_tvalid_i(i) <= '0'; else case sm_calc is when S_FETCH => if (cin_tvalid(i) = '1') then cin_tready_i(i) <= '1'; tdata <= signed(cin_tdata(i)); sm_calc <= S_CALC; end if; when S_CALC => cin_tready_i(i) <= '0'; cout_tdata_i(i) <= tdata + value_to_add(i); cout_tvalid_i(i) <= '1'; sm_calc <= S_SEND; when S_SEND => if (cout_tready(i) = '1') then cout_tvalid_i(i) <= '0'; sm_calc <= S_FINISH; end if; when S_FINISH => sm_calc <= S_FETCH; end case; end if; end if; end process calc_data; end generate adders; cout_tvalid <= cout_tvalid_i; cin_tready <= cin_tready_i; cout_tdata(0) <= std_logic_vector(cout_tdata_i(0)); cout_tdata(1) <= std_logic_vector(cout_tdata_i(1)); cout_tdata(2) <= std_logic_vector(cout_tdata_i(2)); cout_tdata(3) <= std_logic_vector(cout_tdata_i(3)); end rtl;
gpl-2.0
kennethlyn/fpga-image-example
hdl_nodes/adder/adder.srcs/sources_1/dyplo_fifo.vhd
3
11516
`protect begin_protected `protect version = 1 `protect encrypt_agent = "XILINX" `protect encrypt_agent_info = "Xilinx Encryption Tool 2014" `protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa" `protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256) `protect key_block uS9Fi4wEl+hlOoAxATWz7JOEkR0NrTOAPXB71RDz/0sJ9oBkdyJcZqzmiJBSpJVLGXrHypKErbng NIq2yEIKicsHE2U2q0TwmOX5SeBUf5ATfJiLQmZtyrgyJ/TKwJ5Nrg3HL+15E0oFzqZEKRQD0RV0 gUht+SMMiNU2xM6RPT7pKCsVb5W4nxZuUNAOyuABEDGRH8YW/kscyF5trBuA48XfiXtVpzBwqK6v PeJ+bU10he4Sno6k9Dn4FGHEKjKtWs1EQPCyJM25dDSrh8kM7MRJepMfF7YseaGlTZntu/uKxJDR ZL3LeAxQZMrU6BodVmaZalC+X5WBYD/UwSiWkQ== `protect data_method = "AES128-CBC" `protect encoding = (enctype = "BASE64", line_length = 76, bytes = 7920) `protect data_block W/Ftl9SAKOTNEa2yJsCpF9dfYPSv/cmWSdVwe9hk8ipAX8Gt0mZ2HF32usr1++s2zNmpNqr9nqlA 5/WFU3c+EQ7dDY9P02EBbgbeHrhyskdqf+rxbsDVMCQ813wvcofiahIJhzmT7jYn2qp5ENL4t+Tw LWi7bXUD/I/uy4g+RJjHbKJG8ll23sDhzuSdTiqKkV6bwln4ZakMetHZq6bqBVCWstHn78ikJbC4 dWW4bKv/jCGTj2FGo3JotdYYrQ0ooKEsuIvIwMUwrRVWab/GHFLfvycsL2dTnVU3dGiKFUpi854S 7GHyrMyl+D7FpaylSGKVzGTlxki+wUkTynGKEuf1QnbazQxATs6eKJkJ62xYzaNiwC+uNsGocLoI T+qBLfIzxyO1CwQ9PY9FbEGb+qMjBjUb0Blsxeg6sRobQT8+Ar+Iz3xx2DBlfWNzOUGjhT1L8QFG CAbh7ybUHeqrq9JVM2D0Mpqe1JG/hTulW7VIzyfGg9Ebx9islQ1ZKXCvtiTcvVXnZPwl+eeeQBPc 7zvVdEkIGFdJ1PZsy311SLcI3wAPckLzTkEE+BVHz87str8rs1Cb5Ig6uGOVRFsF6Ndj3cXZE9d3 vj/IxEvVFg0/COfJdmBFXFMROyvrmxS8GTgsjaILdILyF7w+Zm7Z22xgmZevD2qvBM/alitiINzw 2eqUKvvdr9tRcf2dbT6eNwolu12GnU/BSTuJSYbwEq9Kms9k59mnhnV0mlZwbsFclGP/UhPzzEK7 hSur/fZpBdrfdnzKKF3+unfmmVEmMtj6NEHFHqle00TKwinf/iv86rCJzVD795UikRp+A4PMFP1W ypG5iO3280Jp9YJz+g4tK9Ko29PToG1jGjlGoM1WPHuLpLhqgcZlUM78BY9Q7X8Bc0ku46rUnqGz k9D+aRyFxofYyLfcFsYwx4Z1TEnDfYaa77SHuqK2FqQQUT/V0ZxlC1xnb6vKEzzDdDOFCyr4HfzY w2CoMRbZJG5wkVv/RYCXws0/g/AMrJIj+gCSVuiVgTS8bBQFJ+qxf8vyvFx8M6zLT4vTYVbn+tk6 bX+3VqmDXqn0B8Ho2g2ZhHWYRk+9cAzyoxptiCMYmg01WiTfBKcoKM4j6LFHT/naZDnWRJ2t7MLu L1J3BC7m8iFNyndZJGeUC5FST28Lq6rlpwrqD7YcjhbyGjFIowy/OBtQ8xFiTq6hU6VI4WtaxuZS kg2X/ccIV1fakuuMRPNUWxdmj88mMT72dswz5HMXYpizNTbge2ykvS+4a8crBdcBsCHlssx+IkGx 5JlceHXlxwQDPKqF+GlZ9YST8LHrRFbCxbT+NCuNAaMsjgdzR+aipSZp8vWL5aSQFO87xd5v8Su4 a6/bdFxK3X8/bGVMNbzi4zih72j+SiaIyvUCV9QI45VbTdGdhc0Mr84ZjfoT/PYpAEKWsslhLTWU IC1HB3ZBlcByRJzOgQvJoxtQFXeFQW4O1q9PdfFTD/TmblbqWvqIgd4ou6vMG0AwS20VDTilkxls BFZ3ewXVYilO9OTPQzxr72LKxPGfw8yyJgFT1o72QqiHms4ZOo+JNxyTwjuFlNg4V306lialdk5A SCz57K8CqUXX79eiTlq3qWX00Yw5zt5XvfA/l7B+Qd40q9Kp23fC7RISI9+haR2DChWKh6HwPJgQ Avg4q11b1fIUeR/9eEKFUxNFU4MlBjpZTw2unIyk5kX7jDsAEHwiDYdPw3hHzt1hKD3cS4qpSLz5 h4bhut40CkQT5PAtf/3s5dJQaPJkGNU2I27oEbiIPYOTO6JtJxO1+nlmv/hx2atduddrLHJbzjqn dPZEijGH1yGQseSRphSIsekLay3Qs405ySEKcdtKrj/Q7oxmvNcgzqwrccUCDTGbi9Esih4/6iYz 7Yo6i/N9+mDhR4TUQNZMeXToCVJSgSSSbdCX89u9zz0zlpDFuiM2m3yNtJS+YFUDIjr4KjbRSxNp 2BKbeeydusUH9Of2/C29kk2pLODIEMn90Di40kLfPizSw4Ji/KQnx9/8rQp0N/z/Lt1YxfptNea6 JGIwBqEYF9mSswW6AqkbbYkPocbPq8hjU+6POaZ5SiBQqjNxTHrYqn/H4EClF2uOCDl5N++Fg5rz TE/MPsg1904wfXJgWHgpBDZ7RLUkx0uuX34VAVhyymKsy0n2+fdzmk7LF3vg+JQaxuKrUixjrqMT JJS/iWEN3OfPU7H5xWbfD1567xKjaKK9IxqoemdgAMKrls2oC5riDcuMsxjjPfcvrCgOEzW+J41m y1zu+ZjOFESvU5dgnF8WewlyXb0Q1T3GjLVupMXpYZIK53yjyjPyjuaHrChTu3K/sm3C2VvONp9H wUGybVl4/7UDP9V4mDosyPkKhE32vdTZKM2CWD8M/ec2q1IdWBPFUdxA+HzF/oSroPUS5V/6jr6r BYQw3/+sBnFvXNhIRZGdzT4TMk/A9zcY06M42OhMJxOwXy5CIoMMDr/tkIHKhRWzSTQ6gt5T5Ni+ CWMfPvisz6Hs+3sFmgjD9Vs1my79VM6ru+xRlor1KsWX8fF9Dt4wpAa/vjwhsax0P4gYlwPs9JPZ XfXdP6tKK4YDmA2L5WsmRELqJ9afINrII3nVHoo8Uby0kuLalrBgWIWuahen6AL4A8jz9cbW4CgT /zV0RuDzP+LiLB2kK90cIhgxchKG9jwmjcrZyBSoEvHRuVLwNHxeEjsqWJ73hrZ6zsmE4ajnX6wf QUcFncW1oBe76qMtTuLHdZmGYrK75U3grt1PKoPBVvKw6kKLnZG7hCcIwQfcUdt18Djhm1aGpxqg 9H3CuHzoeyMYghxoZd/yEvWvC03YxDEAyImGTJF1Jp0a2DbvUIsigdk/4+cpU8N2HFP9g8maKvXe u4jS5e69TdBSQFTWb6nfbYWCND2v2zU+yn2QVQ5pndzL5W173YaGHacJkHWuuXB9nWzsik0mw0jz FZaBBjZTmdr2bYIfdvIbAYlLQxkRqhW0ZPcbWO5J56u+fPHUeW35h2Si94h6dIos8Of1I9fjoMdG IaUqVbVLQbiHLAGJlXyRVY19wyPfCZUtnOOmaW99XPP2WkJZG65kH7QAGC+8I2nJPa/Fnso5Ljwt LoI3VafgzEVbFvBmG61UZWG/cI2lmzj1C69HGcZT5mxXxT7TyJvU/yhmZI56x5AHQzo595jtEC/q Pd15RAemh2l7oxx7CFH1U4jksl+slWRlUpzeInttC+Frw6HTy3A0TwQ19RUeNFlbT9Z1Px04tG9E Mfa1z8Q/D7Q/Kfp3ibWI9lRM04QcAC+ytB1WBZiicLMwyHhJMmKJ9NFkcaD9gacTvfmbeGnzztBv 0khvlg5TG6NE6/fuWRIGc3poxbh8y8W02kyzNiU3olhVUo5Mxk5V8TigsykR73bYe1EQu8YiMEgO W3ue/G3HGwyQXtAIrN8U6xS5POeK+dJwqEATkpB8GQDGdOdRmzCXTOeEA3ArVmImzqSXvUzle/nY WDgRG5ew3GsPRJfyr7qd3O6gG3c5ry760f34PeQ6TmEaH/TCeXyjaninPN5a50/xEYcHFNH3qlpE vSHd/qYTg+ocTlMOBGe2E4LQ9lkfZ/lDyzspc/+DTUPqLVb2L3cNuN4TvMD3/mzGe/32+bVW5s/X 5L5amPDN/iO+Lu4K95VYZs/yGRR009U9XSezxVZPr58ealjs8EsOALrHnfi47N8CFWyvYejkFSKJ 8MmqvfpZSqEvW1e2a+uZuzeHaQXzPC8TgIjXTBHdrMDC0YCWNRV7iymmUXrQgtDi1qVcfhCfnYSH 2haW4NuChTNO/iyPiXjluvC1OgUy8Dhz7IsatZtIRlWOfNdRQmA9jGx7HTEYg90uhdXxvD0uLZLf ZOPghHoI/YG+22AaS/cZ5eJW08kBSBMGCC5Xn1KtXHtELaOQYnKLRJowzdeauM96bN21cl4MisqD 7RjXQdDMIZc/j312k80wYSi1OT2J55ReL589bVaUhO6g/bsA/BkMI+BreBo2VjKlWDSSERek/KwB 7QMi/kuovjFdKMf835mi3vG/GGK8S5mCdDa4XHgDyrzloN8RKzPsxCGrp3X79ZMUg2CSUQIku8+Q H/vlFWjwqKTnsoR0CQ8OcfajlvJPYfpPmoG7nN7IpTRjYqNGlZvonoTbckeltQBQIaKNOuOTg603 xRRez05zDhmMsY/ZTbasZk+Y4f2TLhWtCx4TD517/IWamOFRm9t+NEAtouwYhaTZC2wf1VYbGjMd OAidpQ8FO8H8OGQ5vv27GuuJTYXpI29VeYfcTGyDHeaWXXrw1Sce2ivApTurqLW+kZFpMpVOyVX9 lb994rzBECMhBNvG4erjOVu/a2yVdPFI/UT8N7jDr9fQEhYbv8oH5J/u5qVVIAv2qOMV19+RZU4S l8Yf0I1xvQXYlg8ghf7ldbytN83Kr4TZqGOv+Fa8VXAttOMujrkpFczKJ3CYAf9kUqGAd8YXvTgI 24BFmScp9Ix7eyz5RJ3Me/oQv8WV0AydaJmC3Az6DPW+fGBcZ/MArpcCi6YEvxyAV8ecZShS5czC gArm6rR+hsOiN9D1VW4/w0gmob7AzIRAmXZpBBumM1sXdimdqQmOYxZeXszhdY1WJZYWsBaNoMuP uCKq4lh5rgqdgRMy3NE8xJNgaHJ78EzqLGMXE8F2FKT3HmnKbCq0MX/R+c+MQ9XcyNv1YvzO6gOp iLBP6rGvjyPzg208aUYZAwabR1VT3B+WXqoI3ozrI141BC4mTwPofIdPR2BjH2xILcQUf13ykExk O3xGrXFTqgq4/8EwLwOOAkeyQjdQIbdFyQa++AA6G4gTaVal+cvZ/GEzpgOnWqvCPfD5SFluz3Vc xOXERzSt2f7xnXTa1U30e4FM4COgp8pg6c8FOXyPE8txozTeIdpwc2VD0hwvq+TrET6zs/mMHvDv 4E3PPmmoGJBFi5LR1IM8Jw5KkAbXMldEmt+dIDktIZ2V1f6NiV7FMOg+1n3di8fOttFu11LodwIV ZHyNBUstib0KjbpPkJ7ufETvTIk8Zg+MSLYMd6QU+YrJ/zWVgNCyZiHMLofO2ShJ8a4FTQ7tzPHd TU00eOVzZKhcc8Q+yG0zhB4kI7EIGwBJUvuZIU6JMsFVGPAYwbVXdZmZOtyr54WOu4MuXYU7m4i7 TVI85qsHfObc5TnLNHqnETQ36DRPn4a0/+SCWOC3RfEyd1m4d2dAYTaE1/Yh5zbq2eJnk6nxvlkd k6CJLjX60Wl1NAY85veQqy+jVlCC3xEUyfjrtqSeNNriO2hFJfQALWe75bDkDUE4RfHzDhsETHDs NXBHNqwN78N796x+KwSelFN9e7UClmEzzhQ9MZbXteyMHlIQo8KVzBrRpNE6OeQ3KYSf0WzsfAc3 haI9i+0/w/rRPbdVp2A64G9MdCJjeNGbhOBhtLT9MXPnY/9KSuoUp24PnEVL55eWYnPLJDF/zmVZ 5FED2dWwzkaUcKdt0y3YafyuAALHLUet7RbXYbVsKsJQ5uVfKN+BBZgJ29gvZbFLMPUXKyziQtex uCxozpjAz/ePFhw8nUM2HEfG3j8y8JSwB25PY1+PPd3jh9SndyThMN7JZowC77ohduFffskVlNqC ex6oKvfV6zgrlLsuuaKlyi+S+YNLr4c8LiTcohGycXyrIwSaTSyOdl2UTwNmW2aPdepTYi2heH7c wX1yxZRcCmhvDLF9QXa5CGldMbh/FTlVyv3X5FCpl5thzBhg694xM+LK4H7zRK5cZ73G8AyyxY/8 6Vm1AGXrgZMfjlDN1PsE+0lxmchkSzMMMlW6zoGhTBA8WpmMhq6BpVJOWMQtDjgMFijl6F+2V8Ba u4S7ISnkNXKUt5W4l2yTg2pyxHteJLW/JJrVv021OqCcit3NZgpbPXe5mrObRywXR7z0HzPXDU1D ybwBgR7YhAfe1etsLrHApxIpZQvBGemWevnnCOPLViMft68esXCrIBE3mntn7rc+ZDf4pdc+o7sW MSQgTRGNDUhpZhxAcq0mv2DFMPwh7mgNLBrPoio1hHGXa26tKNAikQelCwaaQPdkNhz6wuVMwfpA S166PueZYOg3qh6yiFzUpum/UwRJ+dR0OaA7GfHMwRQlFg6UbfTUheS/5RtnTaRsUqIo10VRpuub rzNxy6ddhfNVuqABghD3lbKG45A8rJm7qB9U8CgLGtZIhuz7dRet9MljKtFTEZMWapv24BQMO1go 0sfNMJO/g9UxITfTgGQUZpOwWAtv+wHy//m6NOhQeWORkoVUkz7lNHlpkw6Gf/UP0Br0vbw7OB/4 fUEKvmvLVOj9Ur67YAvuKPE3NHb7Q7lXZrSEuazvW7ELFLF6Gpe+s96hGgkTizr7N4Ftlfdu9adj nFh3HYagla78E78vf0e8gZ7HEdwhXjIHU+AamsDVhhyVlIKP7VmHPogzXT5IsUMcI96AqNir/o92 Y9hQUZhhx8fw8XX0HEIY5bXHjP+9UDcvnZhfzEHOT6r/LKxhEle2Vnh96ejp1YoB+ls44H6ndpiK gTU/Q/RQraeLl+PGzyBBgv9W77ukOShMsRhQTyJJAQcAeagOYxQqYAB8lqmK2bO5ceiOVwYcaEUO yeq4Dfq1ywi5Ail5+5wDSO0lqBlMp63USKgl9zF7/t9i40oPXM1SMJwgu1J9vZfvay4yrg6ouUN3 DqVWGCF1cIM9u4HQucXWFcwJ0yKMqzaBoOjJDFEoqbjHdmZwjqffkbQGfXLD96aCg3T3LL51PNK7 fQEO52HiLfN8erU4rP6T4PUws5+jT4LXcbuslPUE+k08rBNMzQgMmz8W7cYVgHoOx2GejJJEgP3T tD5c/xswwKyuycl/ZFHz1SkApduVHZSVBB1nZRTOGwrSI8YmGjw3DcL27K5FwLHxzWQ9nfY3NCMa NL0Gb+O2quYPQzx93dPWwvwlxPbLXPi0FJmzQqXdj7BdsM+HriyT5j/FA05nB0hiW87qqaUhcv3X jVPMy6X62ywazpV7DJzMANO5LfaeGr/veMZJDJRbGQtT3MWvbovTb+ee8w0UoDNc664LHg0ae2U5 qMPVagocWpxDsT83/PUeuL1qeIJx0oXk/qDJQp9hYYu8BTr8fj+cdr2HIys/WfWXYzt/gAu6EX4U hstAEiTisspCj/Li97ROs0o++ZPRHejQP2cFgf0xpRTYh1/nSgKi0MKzV+07onnG8kPMZLecxEtw ACRQ7acjXYfiNg04VeMmqWI/ppW1ZhNI6urWqXrU4jhzfj75Upcw4IYfF3uTq1SjYuKWT0c8URHK FFG9MUnPPFZY9nXkCJ+rZegJ+63DgZV6GLmetRCIb8NjXsPV0TH17WkO1Ay1dNYTQkWTiXtReSnI 0Zd/AsQq73DhlSFgNPo9Yyklc2W3Nh8EO3BIQAiLDZwBMk+xG3A9rf28EsjYScx/g7JzIPGbCv7M oJew0MsGbuxi6Bt10sRNgpV6wi/i8NKAyvUTAUFRzX1uFb8HzrB9mll2io1ilRtbx4BCextX9c2M a9WoS+zRohLafTf7xivuCHlaGi7uFU8xdDctfq2gE6TiPwhvd39a1KVor/UWwAwZqKGzGMVzGoo+ fMUQwjbyOCel+Pguou/jTOzfqiwYLXGmwfOX6Fw1zTGoAVfXhDxP85Faps4mg0RxRZyABu9wnyAd /0YhflvKJ600XCco/tc7P47t+t8TzYwQjK0ga6X4adSvdpxJpddosnCJRXnVIDhR8a97MPHDvF4F oBubViwoIXTCExI5Ypt7rvtsicvB9kcsHA4bC/ToJDWkVXH3t5jnIQsgoz9hqBL9g6YKLGmP0K95 ZnQL0VQLvE4ALgplTKhaKApK9Ei+Zy4AaZpi56cGlGY6+LieeyiPq781vxHQDtmw4HJ/zjIe6EOs cgipXLRYOB3ZOJEHmdT1Fa94lWchKT4Yqid8vY6jbx9EqdYnXpIhn9cyiVQHqulagArOKapbSJsR I1kLZJLkGgGO2b2gBh91Um8/fpZorzulaXPnGGPdmq0Cy2117XmZHj/b+Bd0AnqroqDJrXey20IH dvhNeFBgVrdJ/+AEawkh0KUTkGVU26s9o1GX8ktZXA+yRiCU1ed6GRviWRFziBefkD1trQduyifg biklVygQIyRLavT/BurO9db80dgsWW4ZLsdqwzgQP/NMdbLHNKvaWgnh5bXN+/IIWzWbVpOCYt5p kEPzGr22c3yGgAOG2kn4Gj094o63w+iKLCNP1trKfymMoUnxuonEbZOeQ2//xdIuE1elW/mEjFUe wsULYROE4OmwoJfSD9dFxGzCsK6cg+zE+N8sgBZry+eo2H4wzRNruKBrQeflVTvhwavCZUtHaaeT 16Liwt9A7uuCaymuTGoBW5SX1r9uZuw68AbTnQVwI8fWkkmeo6GwDYChEUXiVtOS3hQorjJ/n++r sbv4sNRildr13DYl7icfVOCdcxoyk56DQ8vBFshkdTiZa5ppZ2b02liC0YMq7joMvh8Siek6EKMH s0s5NFRNUpQOArVEx+xwCC8LQumwvY/oEBGhH/8qPT7lMVtIvr8cvV+9JQ2v0YuLfz4JqjxRkQHg 8xHb2jfxrKsoEGZGDTYmgsjxskBg6BVh5TPP27C0iNNFTi1ehw/kCjKMgkKRyEBWvScvSYKKZQLw UbrAJZePuYtfZNxj7clQhLt57iKkQH/BwZiiN4aIBCpUlyp+KeC2azUM4wEJXm7h58l6wvMb6CUU 48W8CBt4Qp19bwPyIlMiOGuUR6A722GEoDyqo1rTKjb20R8D6zZUXpUpwKenctyv6CcvBSOVzIFN OjthKsZ5HKFlcTNYMYaf0G2E0Ak32Mkun4XlkHJQ1QYMfun/k19OJYpi+1Rj0IezUqfmXgwb67mW vcKB8kG0k9yviVRJCPmSTzNrgoRHL6e/hmsE191BPTZWQlHPCjKOFlUK5m3h3NGMiP9K2skPn/L0 JkJb8NKH1W7MkjcxGEg+iO79y/RivgtjYS6F2f5JpiWVf1w+W5yIW2sXyXUSQTDWhO84fBbtZrBG czg9yAjVEmhVXnft+HTwhDVvU/gUAENSK1gotWwxNv+/zEGmqsc3QepltrwNp+Yabv04c0L6miFm ZDAR9rZi+e1tv3OgDybn12UgRvljXNve3yC1QfQbl34MIZfZHqrSAX/rnMmxYy1U+PpzANk2oqqE UHlIrBOlqi9NR1BcavyGa/KEFB6V/t9CVQc/UdbuqIec+JHXbkKdOk9axiWVWHcn5ZaGy7UQ6gXc XCbqp04Q6dDBsCRPkk6hOdXvs1KZQNsbac/VzEMnJfsSIX2ESeEXM44yikThKlQMjbCo7S5JoyFy 4r3vvKTjHtG/iGlKBcEq8p/x7uBhscI9aFyZmpONMMMlovR7X+kzNwp2YMT8QatU4Dv9teCQ2wxb EamqHNH2CExq4EOF412MDwsu9oYDpTgGixDlx79zDx/wKfHJvSP6SG/lSYBZOF3pXajPetXudbOX OoxJ16xKNx4JryedGVSY8snmGWkSej2/520nguA0WgZufhmv0LwQ7Ywpbwf/5eyBfFl5KsTc9+4x bvK5bWFncgfiKgTNAmJ4HlzCam1Bd6Y6I3JzqObxUssAJtbN5diZfsP/ju1UREjYHR5ohFWSkMHy FzCdmGyHJpvjZbcCoY6lFuyOYMfwW2W1SJwQB8VwWRk4QtxLph4lrVB6Ay4+Ap1YC1tgvLayYs1y 6WaihKRNFK5miyECRh2UV6hrI9Y8sygWeVjcvZK7luQoNFKZTfxRHuFBiJRFNJRUglYgQh5XD89u ZsrYzxgPH0SANOxX5bt+Fxfdy2+WdF9/u7npZUYvRPnUK+b2RnmYN7n88Yicn533dSGRTUogNp2S gYT+w2Y4XmfxIcOEfUdWXXO9bByQBHdKutuNd83/t2aTYNQ3LcREJD+89X5caP03zX/UaZWDRhkb vVRoaa6FO1xxPdYzTfdnvGwV//ux397v3TLIKbq/B2I8i4O0nJs0GVzyIkDuPRA9pwKnpSF0nfpI h4SeD/M/nnWMA1xuEr0hIap01C1aWH+DcdT5CumXL//vuShKsEvQY6+govLOC25/LR3wNVWnSwyT nFJxw3OgHlkdt25pxNxNk12tR3T+Q7JnkdWIpR/2/neXnG0KmyZcSA7wU5huR7K3l2sRdYJhn5mj sLPvBkBvQl7YkTikaCgw1Ia1qLn3KTcmim9sdCANHC/TaJRQ0Tgea5p1vh5+JAvOgDqrMPg85ZPF 4xk8fDCWnx2aD0tMAkNfrz+ucCtRhJzR/+f70DEEgcAeo+5fB6nVbKEMXj8KhqHxmQKIqzEeu18N AHRhXEACfa/PalTUn4IE/Vtbl43eZgOXmSw9CQIkrmmgLgDarWKoMwKAOtm2pV8/esI+YFop79gx 2B8dBexHjg6hdVd/B3Unjy/8UlHKnJoCnBgn7o3ia/hBdVkHpzkSFgxbmgdEKCn9DiVnAt5dwZkV Vxd8iOSg0vUOISwxoOGPfYh+sT44XnzA5taAMhoBANN5jWIKNiC3fHbCs/uO3nR8PBHafq29 `protect end_protected
gpl-2.0
kennethlyn/fpga-image-example
hdl_nodes/adder/adder.srcs/sim_1/backplane_simulator.vhd
3
30931
-- File: backplane_simulator.vhd -- -- � COPYRIGHT 2014 TOPIC EMBEDDED PRODUCTS B.V. ALL RIGHTS RESERVED. -- -- This file contains confidential and proprietary information of -- Topic Embedded Products B.V. and is protected under Dutch and -- International copyright and other international intellectual property laws. -- -- Disclaimer -- -- This disclaimer is not a license and does not grant any rights to the -- materials distributed herewith. Except as otherwise provided in a valid -- license issued to you by Topic Embedded Products B.V., and to the maximum -- extend permitted by applicable law: -- -- 1. Dyplo is furnished on an "as is", as available basis. Topic makes no -- warranty, express or implied, with respect to the capability of Dyplo. All -- warranties of any type, express or implied, including the warranties of -- merchantability, fitness for a particular purpose and non-infringement of -- third party rights are expressly disclaimed. -- -- 2. Topic's maximum total liability shall be limited to general money -- damages in an amount not to exceed the total amount paid for in the year -- in which the damages have occurred. Under no circumstances including -- negligence shall Topic be liable for direct, indirect, incidental, special, -- consequential or punitive damages, or for loss of profits, revenue, or data, -- that are directly or indirectly related to the use of, or the inability to -- access and use Dyplo and related services, whether in an action in contract, -- tort, product liability, strict liability, statute or otherwise even if -- Topic has been advised of the possibility of those damages. -- -- This copyright notice and disclaimer must be retained as part of this file at all times. library IEEE; use IEEE.STD_LOGIC_1164.ALL; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; library tb_lib; use tb_lib.tb_env_pkg.all; library std; use std.env.all; use std.textio.all; library dyplo_hdl_node_lib; use dyplo_hdl_node_lib.hdl_node_package.all; use dyplo_hdl_node_lib.hdl_node_user_params.all; library dyplo; use dyplo.all; entity backplane_simulator is end backplane_simulator; architecture rtl of backplane_simulator is -- clock and reset for testbench signal dab_clk : std_logic := '0'; signal dab_rst : std_logic := '1'; --Internal signals for HDL node signal dab_clk_i : std_logic; signal dab_rst_i : std_logic; signal dab_addr_i : std_logic_vector(c_hdl_dab_awidth - 1 downto 0); signal dab_sel_i : std_logic; signal dab_wvalid_i : std_logic; signal dab_rvalid_i : std_logic; signal dab_wdata_i : std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); signal dab_rdata_i : std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); -- Receive data from backplane to FIFO signal b2f_tdata_i : std_logic_vector(c_hdl_backplane_bus_width - 1 downto 0); signal b2f_tstream_id_i : std_logic_vector(c_hdl_stream_id_width - 1 downto 0); signal b2f_tvalid_i : std_logic; signal b2f_tready_i : std_logic; -- Send data from FIFO to backplane signal f2b_tdata_i : std_logic_vector(c_hdl_backplane_bus_width - 1 downto 0); signal f2b_tstream_id_i : std_logic_vector(c_hdl_stream_id_width - 1 downto 0); signal f2b_tvalid_i : std_logic; signal f2b_tready_i : std_logic; -- Clock signals signal dest_fifo_status_i : std_logic_vector(3 downto 0) := (others => '1'); -- Clock signals signal user_clocks_i : std_logic_vector(3 downto 0); --internal signals for stim_reader signal cmd_i : cmd_record; signal cmd_accept_i : std_logic; signal eof_i : std_logic; --stream signals for datain stream processes type streams_in_tdata_type is array (0 to c_input_streams - 1) of std_logic_vector(c_hdl_backplane_bus_width - 1 downto 0); type streams_in_tstream_id_type is array (0 to c_input_streams - 1) of std_logic_vector(c_hdl_stream_id_width - 1 downto 0); signal streams_in_tdata : streams_in_tdata_type; signal streams_in_tstream_id : streams_in_tstream_id_type; signal streams_in_tvalid : std_logic_vector(c_input_streams - 1 downto 0); signal streams_in_tready : std_logic_vector(c_input_streams - 1 downto 0); --tready signals for dataout stream processes signal streams_out_tready : std_logic_vector(c_output_streams - 1 downto 0); --tready signals for dataout combinatoric combined with tstream_id signal streams_out_tready_c : std_logic_vector(c_output_streams - 1 downto 0); --data signal for storing stream parameters for each stream type data_in_streams_type is array (0 to c_input_streams - 1) of data_stream; signal data_in_streams : data_in_streams_type; type data_out_streams_type is array (0 to c_output_streams - 1) of data_stream; signal data_out_streams : data_out_streams_type; --type definition of type for state machine type sm_control_type is (IDLE, PARSE_CMD, DAB_DELAY_WRITE, DAB_DELAY_READ); signal sm_control : sm_control_type := IDLE; signal schedule_in_streams : integer := 0; signal dab_delay_cnt : unsigned(1 downto 0); --delay for dab r/w signal out_streams_enabled : std_logic_vector(c_output_streams - 1 downto 0); signal out_streams_finished : std_logic_vector(c_output_streams - 1 downto 0); signal in_streams_enabled : std_logic_vector(c_input_streams - 1 downto 0); signal in_streams_finished : std_logic_vector(c_input_streams - 1 downto 0); --component declaration stim_reader component tb_stim_reader is generic( STIM_FILE_NAME : string := "" ); port ( cmd_out : out cmd_record; cmd_accept_in : in std_logic; eof : out std_logic ); end component; --component declaration HDL_node component dyplo_hdl_node is port( -- Miscellaneous node_id : in std_logic_vector(c_hdl_node_id_width - 1 downto 0); -- DAB interface dab_clk : in std_logic; dab_rst : in std_logic; dab_addr : in std_logic_vector(c_hdl_dab_awidth - 1 downto 0); dab_sel : in std_logic; dab_wvalid : in std_logic; dab_rvalid : in std_logic; dab_wdata : in std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); dab_rdata : out std_logic_vector(c_hdl_dab_dwidth - 1 downto 0); -- Receive data from backplane to FIFO b2f_tdata : in std_logic_vector(c_hdl_backplane_bus_width - 1 downto 0); b2f_tstream_id : in std_logic_vector(c_hdl_stream_id_width - 1 downto 0); b2f_tvalid : in std_logic; b2f_tready : out std_logic; -- Send data from FIFO to backplane f2b_tdata : out std_logic_vector(c_hdl_backplane_bus_width - 1 downto 0); f2b_tstream_id : out std_logic_vector(c_hdl_stream_id_width - 1 downto 0); f2b_tvalid : out std_logic; f2b_tready : in std_logic; -- Serial fifo status info fifo_status_sync : in std_logic; fifo_status_flag : out std_logic; -- fifo statuses of destination fifo's dest_fifo_status : in std_logic_vector(3 downto 0); -- Clock signals user_clocks : in std_logic_vector(3 downto 0) ); end component; begin hdl_node : dyplo_hdl_node port map( -- Miscellaneous node_id => "00010", -- don't change, because of address range in simulation -- DAB interface dab_clk => dab_clk_i, dab_rst => dab_rst_i, dab_addr => dab_addr_i, dab_sel => dab_sel_i, dab_wvalid => dab_wvalid_i, dab_rvalid => dab_rvalid_i, dab_wdata => dab_wdata_i, dab_rdata => dab_rdata_i, -- Receive data from backplane to FIFO b2f_tdata => b2f_tdata_i, b2f_tstream_id => b2f_tstream_id_i, b2f_tvalid => b2f_tvalid_i, b2f_tready => b2f_tready_i, -- Send data from FIFO to backplane f2b_tdata => f2b_tdata_i, f2b_tstream_id => f2b_tstream_id_i, f2b_tvalid => f2b_tvalid_i, f2b_tready => f2b_tready_i, -- Serial fifo status info fifo_status_sync => '0', fifo_status_flag => open, -- fifo statuses of destination fifo's dest_fifo_status => dest_fifo_status_i, -- Clock signals user_clocks => user_clocks_i ); stim_reader : tb_stim_reader generic map( STIM_FILE_NAME => "../../stimuli/control_stimuli.txt" ) port map( cmd_out => cmd_i, cmd_accept_in => cmd_accept_i, eof => eof_i ); dab_clk <= not dab_clk after 5 ns; -- 100MHz clock dab_rst <= '0' after 50 ns; -- Synchronous, active high reset dab_clk_i <= dab_clk; dab_rst_i <= dab_rst; control : process(dab_clk) variable stream_no : integer := 0; variable v_value_int : integer; variable v_value_slv : std_logic_vector(31 downto 0); variable v_result : boolean; variable v_result_len : integer; variable v_string : string(1 to CMD_WORD_SIZE); begin if(rising_edge(dab_clk)) then if(dab_rst = '1') then dab_addr_i <= (others => '0'); dab_sel_i <= '0'; dab_wvalid_i <= '0'; dab_rvalid_i <= '0'; dab_wdata_i <= (others => '0'); dab_delay_cnt <= "11"; sm_control <= IDLE; data_in_streams <= (others => ((others => NUL), 0, '0')); data_out_streams <= (others => ((others => NUL), 0, '0')); else case(sm_control) is when IDLE => dab_sel_i <= '0'; dab_wvalid_i <= '0'; dab_rvalid_i <= '0'; if(cmd_i.valid = true) then sm_control <= PARSE_CMD; else cmd_accept_i <= '0'; --release command end if; when PARSE_CMD => if (cmd_i.word(0)(1 to 12) = "write_config") then -- dab write_control (hdl_node) command --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); proc_get_value ( str => v_string(1 to cmd_i.size(i)), slv => v_value_slv, result => v_result, len => v_result_len ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; if (i=1) then --address dab_addr_i <= "00000" & ( X"1000" + v_value_slv(15 downto 0)); elsif (i=2) then --data dab_wdata_i <= v_value_slv(31 downto 0); end if; end loop; dab_sel_i <= '1'; dab_delay_cnt <= "11"; sm_control <= DAB_DELAY_WRITE; elsif (cmd_i.word(0)(1 to 10) = "write_data") then -- dab write_data (user_logic) command --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); proc_get_value ( str => v_string(1 to cmd_i.size(i)), slv => v_value_slv, result => v_result, len => v_result_len ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; if (i=1) then --address dab_addr_i <= "00010" & v_value_slv(15 downto 0); elsif (i=2) then --data dab_wdata_i <= v_value_slv(31 downto 0); end if; end loop; dab_sel_i <= '1'; dab_delay_cnt <= "11"; sm_control <= DAB_DELAY_WRITE; elsif (cmd_i.word(0)(1 to 11) = "read_config") then -- dab read_control (hdl_node) command --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); proc_get_value ( str => v_string(1 to cmd_i.size(i)), slv => v_value_slv, result => v_result, len => v_result_len ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; if (i=1) then --address dab_addr_i <= "00000" & ( X"1000" + v_value_slv(15 downto 0)); end if; end loop; dab_sel_i <= '1'; dab_delay_cnt <= "11"; sm_control <= DAB_DELAY_READ; elsif (cmd_i.word(0)(1 to 9) = "read_data") then -- dab read_data (user_logic) command --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); proc_get_value ( str => v_string(1 to cmd_i.size(i)), slv => v_value_slv, result => v_result, len => v_result_len ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; if (i=1) then --address dab_addr_i <= "00010" & v_value_slv(15 downto 0); end if; end loop; dab_sel_i <= '1'; dab_delay_cnt <= "11"; sm_control <= DAB_DELAY_READ; elsif (cmd_i.word(0)(1 to 9) = "stream_in") then -- stream settings --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string := (others => NUL); v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); if(i /= 3) then proc_str_to_int ( str => v_string(1 to cmd_i.size(i)), int => v_value_int, result => v_result ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; end if; if (i=1) then --stream_no stream_no := v_value_int; if(stream_no >= c_input_streams) then report "ERROR: stream_in command: Stream nr " & integer'image(stream_no) & " invalid, valid stream nrs are 0 to " & integer'image(c_input_streams - 1) severity failure; else data_in_streams(stream_no).enable <= '1'; end if; elsif (i=2) then --length data_in_streams(stream_no).length <= v_value_int; elsif (i=3) then --filename if(v_string(1) /= NUL) then data_in_streams(stream_no).filename <= v_string; else report "ERROR: stream_in command: Filename cannot be empty" severity failure; end if; end if; end loop; sm_control <= IDLE; elsif (cmd_i.word(0)(1 to 10) = "stream_out") then -- stream settings --read arguments for i in 1 to (cmd_i.cnt-1) loop v_string := (others => NUL); v_string(1 to cmd_i.size(i)) := cmd_i.word(i)(1 to cmd_i.size(i)); if(i /= 3) then proc_str_to_int ( str => v_string(1 to cmd_i.size(i)), int => v_value_int, result => v_result ); if not(v_result) then report "ERROR: Unknown value!"; report "Found: " & cmd_i.word(i)(1 to cmd_i.size(i)); report "Expected: hexadecimal or binary value e.g. 0xABCD or 0b1011010000100100 or X1011010000HLL100" severity failure; end if; end if; if (i=1) then --stream_no stream_no := v_value_int; if(stream_no >= c_output_streams) then report "ERROR: stream_out command: Stream nr " & integer'image(stream_no) & " invalid, valid stream nrs are 0 to " & integer'image(c_output_streams - 1) severity failure; else data_out_streams(stream_no).enable <= '1'; end if; elsif (i=2) then --length data_out_streams(stream_no).length <= v_value_int; elsif (i=3) then --filename data_out_streams(stream_no).filename <= v_string; end if; end loop; sm_control <= IDLE; else report "ERROR: Unknown command!"; report "Found: " & cmd_i.word(0) severity failure; end if; cmd_accept_i <= '1'; -- do accept command when DAB_DELAY_WRITE => if (dab_delay_cnt /= 0) then dab_delay_cnt <= dab_delay_cnt - 1; else dab_wvalid_i <= '1'; sm_control <= IDLE; end if; when DAB_DELAY_READ => if (dab_delay_cnt /= 0) then dab_delay_cnt <= dab_delay_cnt - 1; else dab_rvalid_i <= '1'; sm_control <= IDLE; end if; end case; end if; end if; end process; -- Data in streams data_streams_in : for i in 0 to c_input_streams - 1 generate signal words_send : integer := 0; type sm_stream_type is (START_BURST, INTERRUPT_BURST, BURST); signal sm_stream : sm_stream_type := START_BURST; signal burst_cnt : integer := 0; begin stream_x : process(dab_clk) file datafile : text; variable v_file_opened : boolean := false; variable v_data_file_status : file_open_status; variable v_data_line : line; variable v_data_word : string(1 to 10); begin if(rising_edge(dab_clk)) then if(dab_rst = '1') then streams_in_tdata(i) <= (others => '0'); streams_in_tstream_id(i) <= (others => '0'); streams_in_tvalid(i) <= '0'; in_streams_finished(i) <= '0'; sm_stream <= START_BURST; else streams_in_tstream_id(i) <= std_logic_vector(to_unsigned(i,c_hdl_stream_id_width)); if(data_in_streams(i).enable = '1' and words_send < data_in_streams(i).length) then case(sm_stream) is when START_BURST => if(v_file_opened = false) then file_open(v_data_file_status, datafile, (string'("../../data/") & data_in_streams(i).filename), read_mode); if not(v_data_file_status = OPEN_OK) then report "ERROR: Unable to open data file: " & string'(data_in_streams(i).filename) severity failure; else v_file_opened := true; end if; end if; --read line from data file if(not endfile(datafile)) then str_read(datafile, v_data_word); streams_in_tdata(i) <= hstr_to_slv(v_data_word(3 to 10)); streams_in_tvalid(i) <= '1'; else report "ERROR: End of file!" severity failure; end if; burst_cnt <= 0; sm_stream <= BURST; when BURST => if(streams_in_tready(i) = '1' and streams_in_tvalid(i) = '1') then words_send <= words_send + 1; burst_cnt <= burst_cnt + 1; if( (words_send + 1) < data_in_streams(i).length) then --read line from data file if(not endfile(datafile)) then str_read(datafile, v_data_word); streams_in_tdata(i) <= hstr_to_slv(v_data_word(3 to 10)); if(burst_cnt = 63) then streams_in_tvalid(i) <= '0'; burst_cnt <= 0; sm_stream <= INTERRUPT_BURST; else streams_in_tvalid(i) <= '1'; end if; else file_close(datafile); report "ERROR: End of file!" severity failure; end if; else streams_in_tvalid(i) <= '0'; in_streams_finished(i) <= '1'; file_close(datafile); end if; end if; when INTERRUPT_BURST => streams_in_tvalid(i) <= '1'; sm_stream <= BURST; end case; end if; end if; end if; end process; end generate; b2f_tdata_i <= streams_in_tdata(schedule_in_streams); b2f_tstream_id_i <= streams_in_tstream_id(schedule_in_streams); b2f_tvalid_i <= streams_in_tvalid(schedule_in_streams); streams_in_tready <= (schedule_in_streams => b2f_tready_i, others => '0'); -- Data in streams data_streams_out : for i in 0 to c_output_streams - 1 generate signal words_received : integer := 0; type sm_stream_type is (WAITING, BURST, END_BURST); signal sm_stream : sm_stream_type := WAITING; begin stream_x : process(dab_clk) file datafile : text; variable v_file_opened : boolean := false; variable v_data_file_status : file_open_status; variable v_data_line : line; variable v_data_word : string(1 to 10); variable v_expected_data : std_logic_vector(31 downto 0); begin if(rising_edge(dab_clk)) then if(dab_rst = '1') then streams_out_tready(i) <= '0'; out_streams_finished(i) <= '0'; else if(data_out_streams(i).enable = '1' and words_received < data_out_streams(i).length) then streams_out_tready(i) <= '1'; if(data_out_streams(i).filename(1) /= NUL) then if(v_file_opened = false) then file_open(v_data_file_status, datafile, (string'("../../data/") & data_out_streams(i).filename), read_mode); if not(v_data_file_status = OPEN_OK) then report "ERROR: Unable to open data file: " & string'(data_out_streams(i).filename) severity failure; else v_file_opened := true; end if; end if; end if; if(f2b_tvalid_i = '1' and streams_out_tready(i) = '1' and conv_integer(f2b_tstream_id_i) = i) then words_received <= words_received + 1; if(data_out_streams(i).filename(1) /= NUL) then --read line from data file if(not endfile(datafile)) then str_read(datafile, v_data_word); v_expected_data := hstr_to_slv(v_data_word(3 to 10)); else report "ERROR: End of file!" severity failure; end if; assert f2b_tdata_i = v_expected_data report "ERROR: Received data does not match expected data" severity failure; end if; --read from file and data bus and check (assert) if( (words_received + 1) = data_out_streams(i).length) then streams_out_tready(i) <= '0'; out_streams_finished(i) <= '1'; if(data_out_streams(i).filename(1) /= NUL) then file_close(datafile); end if; end if; end if; end if; end if; end if; end process; streams_out_tready_c(i) <= '1' when (streams_out_tready(i) = '1' and conv_integer(f2b_tstream_id_i) = i) else '0'; end generate; f2b_tready_i <= '1' when (streams_out_tready_c /= std_logic_vector(to_unsigned(0,4))) else '0'; schedule : process(dab_clk) variable schedule_in_next : integer := 0; begin if(rising_edge(dab_clk)) then if(dab_rst_i = '1') then schedule_in_streams <= 0; else if(streams_in_tvalid(schedule_in_streams) = '0') then --Schedule, next lane schedule_in_next := schedule_in_streams; for s in 0 to c_input_streams - 1 loop if(schedule_in_next = c_input_streams - 1) then schedule_in_next := 0; else schedule_in_next := schedule_in_next + 1; end if; if(streams_in_tvalid(schedule_in_next) = '1') then exit; end if; end loop; schedule_in_streams <= schedule_in_next; --Schedule, next lane end if; end if; end if; end process; user_clock_0 : process begin user_clocks_i(0) <= '0'; wait for 20 ns; user_clocks_i(0) <= '1'; wait for 20 ns; end process; user_clock_1 : process begin user_clocks_i(1) <= '0'; wait for 15 ns; user_clocks_i(1) <= '1'; wait for 15 ns; end process; user_clock_2 : process begin user_clocks_i(2) <= '0'; wait for 10 ns; user_clocks_i(2) <= '1'; wait for 10 ns; end process; user_clock_3 : process begin user_clocks_i(3) <= '0'; wait for 5 ns; user_clocks_i(3) <= '1'; wait for 5 ns; end process; enabled_in: for i in 0 to c_input_streams - 1 generate begin in_streams_enabled(i) <= data_in_streams(i).enable; end generate enabled_in; enabled_out: for i in 0 to c_output_streams - 1 generate begin out_streams_enabled(i) <= data_out_streams(i).enable; end generate enabled_out; p_finished: process(dab_clk) begin if (rising_edge(dab_clk)) then if dab_rst_i = '0' then if(eof_i = '1' and (out_streams_finished = out_streams_enabled and in_streams_finished = in_streams_enabled) ) then report "*** End of simulation ***"; finish(0); end if; end if; end if; end process p_finished; end rtl;
gpl-2.0
scriptum/geany
tests/ctags/test.vhd
91
192381
package body badger is end package body; package body badger2 is end package body badger2; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity accumulator is port ( a: in std_logic_vector(3 downto 0); clk, reset: in std_logic; accum: out std_logic_vector(3 downto 0) ); end accumulator; architecture simple of accumulator is signal accumL: unsigned(3 downto 0); begin accumulate: process (clk, reset) begin if (reset = '1') then accumL <= "0000"; elsif (clk'event and clk= '1') then accumL <= accumL + to_unsigned(a); end if; end process; accum <= std_logic_vector(accumL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity adder is port ( a,b : in std_logic_vector (15 downto 0); sum: out std_logic_vector (15 downto 0) ); end adder; architecture dataflow of adder is begin sum <= a + b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity pAdderAttr is generic(n : integer := 8); port (a : in std_logic_vector(n - 1 downto 0); b : in std_logic_vector(n - 1 downto 0); cin : in std_logic; sum : out std_logic_vector(n - 1 downto 0); cout : out std_logic); end pAdderAttr; architecture loopDemo of pAdderAttr is begin process(a, b, cin) variable carry: std_logic_vector(sum'length downto 0); variable localSum: std_logic_vector(sum'high downto 0); begin carry(0) := cin; for i in sum'reverse_range loop localSum(i) := (a(i) xor b(i)) xor carry(i); carry(i + 1) := (a(i) and b(i)) or (carry(i) and (a(i) or b(i))); end loop; sum <= localSum; cout <= carry(carry'high - 1); end process; end loopDemo; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in unsigned(3 downto 0); sum: out unsigned(3 downto 0) ); end adder; architecture simple of adder is begin sum <= a + b; end simple; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity asyncLoad is port ( loadVal, d: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLoad; architecture rtl of asyncLoad is begin process (clk, load, loadVal) begin if (load = '1') then q <= loadVal; elsif (clk'event and clk = '1' ) then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity BidirBuf is port ( OE: in std_logic; input: in std_logic_vector; output: out std_logic_vector ); end BidirBuf; architecture behavioral of BidirBuf is begin bidirBuf: process (OE, input) begin if (OE = '1') then output <= input; else output <= (others => 'Z'); end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BidirCnt is port ( OE: in std_logic; CntEnable: in std_logic; LdCnt: in std_logic; Clk: in std_logic; Rst: in std_logic; Cnt: inout std_logic_vector(3 downto 0) ); end BidirCnt; architecture behavioral of BidirCnt is component LoadCnt port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end component; component BidirBuf port ( OE: in std_logic; input: in std_logic_vector; output: inout std_logic_vector ); end component; signal CntVal: std_logic_vector(3 downto 0); signal LoadVal: std_logic_vector(3 downto 0); begin u1: loadcnt port map (CntEn => CntEnable, LdCnt => LdCnt, LdData => LoadVal, Clk => Clk, Rst => Rst, CntVal => CntVal ); u2: bidirbuf port map (OE => oe, input => CntVal, output => Cnt ); LoadVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity bidirbuffer is port ( input: in std_logic; enable: in std_logic; feedback: out std_logic; output: inout std_logic ); end bidirbuffer; architecture structural of bidirbuffer is begin u1: bidir port map (ip => input, oe => enable, op_fb => feedback, op => output ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity clkGen is port ( clk: in std_logic; reset: in std_logic; ClkDiv2, ClkDiv4, ClkDiv6,ClkDiv8: out std_logic ); end clkGen; architecture behav of clkGen is subtype numClks is std_logic_vector(1 to 4); subtype numPatterns is integer range 0 to 11; type clkTableType is array (numpatterns'low to numPatterns'high) of numClks; constant clkTable: clkTableType := clkTableType'( -- ClkDiv8______ -- ClkDiv6_____ | -- ClkDiv4____ || -- ClkDiv2 __ ||| -- |||| "1111", "0111", "1011", "0001", "1100", "0100", "1010", "0010", "1111", "0001", "1001", "0101"); signal index: numPatterns; begin lookupTable: process (clk, reset) begin if reset = '1' then index <= 0; elsif (clk'event and clk = '1') then if index = numPatterns'high then index <= numPatterns'low; else index <= index + 1; end if; end if; end process; (ClkDiv2,ClkDiv4,ClkDiv6,ClkDiv8) <= clkTable(index); end behav; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; enable: in std_logic; reset: in std_logic; count: buffer unsigned(3 downto 0) ); end counter; architecture simple of counter is begin increment: process (clk, reset) begin if reset = '1' then count <= "0000"; elsif(clk'event and clk = '1') then if enable = '1' then count <= count + 1; else count <= count; end if; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; use work.scaleable.all; entity count8 is port ( clk: in std_logic; rst: in std_logic; count: out std_logic_vector(7 downto 0) ); end count8; architecture structural of count8 is begin u1: scaleUpCnt port map (clk => clk, reset => rst, cnt => count ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 9) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 9); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(3,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(9 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(9 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= to_unsigned(0,10); elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; enable: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); elsif (enable = '1') then countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; load: in std_logic; data: in std_logic_vector(3 downto 0); count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then if (load = '1') then countL <= to_unsigned(data); else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity Cnt4Term is port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic ); end Cnt4Term; architecture behavioral of Cnt4Term is signal CntL: unsigned(3 downto 0); begin increment: process begin wait until clk = '1'; CntL <= CntL + 1; end process; Cnt <= to_stdlogicvector(CntL); TermCnt <= '1' when CntL = "1111" else '0'; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity Counter is port ( clock: in std_logic; Count: out std_logic_vector(3 downto 0) ); end Counter; architecture structural of Counter is component Cnt4Term port ( clk: in std_logic; Cnt: out std_logic_vector(3 downto 0); TermCnt: out std_logic); end component; begin u1: Cnt4Term port map (clk => clock, Cnt => Count, TermCnt => open ); end structural; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if(clk'event and clk = '1') then if (reset = '1') then countL <= "0000"; else countL <= countL + 1; end if; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity convertArith is port ( truncate: out unsigned(3 downto 0); extend: out unsigned(15 downto 0); direction: out unsigned(0 to 7) ); end convertArith; architecture simple of convertArith is constant Const: unsigned(7 downto 0) := "00111010"; begin truncate <= resize(Const, truncate'length); extend <= resize(Const, extend'length); direction <= resize(Const, direction'length); end simple; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is constant THREE: std_logic_vector(1 downto 0) := "11"; begin y <= '1' when (a & b = THREE) or (c & d /= THREE) else '0'; end concurrent; -- incorporates Errata 12.1 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity typeConvert is port ( a: out unsigned(7 downto 0) ); end typeConvert; architecture simple of typeConvert is constant Const: natural := 43; begin a <= To_unsigned(Const,8); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk) begin if (clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(0 to 3) ); end counter; architecture simple of counter is signal countL: unsigned(0 to 3); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "0000"; elsif(clk'event and clk = '1') then countL <= countL + "001"; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if reset = '1' then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + 1; end if; end process; count <= std_logic_vector(countL); end simple; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity counter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end counter; architecture simple of counter is signal countL: unsigned(3 downto 0); begin increment: process (clk, reset) begin if (reset = '1') then countL <= "1001"; elsif(clk'event and clk = '1') then countL <= countL + "0001"; end if; end process; count <= std_logic_vector(countL); end simple; library IEEE; use IEEE.std_logic_1164.all; use work.decProcs.all; entity decoder is port ( decIn: in std_logic_vector(1 downto 0); decOut: out std_logic_vector(3 downto 0) ); end decoder; architecture simple of decoder is begin DEC2x4(decIn,decOut); end simple; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); decOut_n: out std_logic_vector(5 downto 0) ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; alias sio_dec_n: std_logic is decOut_n(5); alias rst_ctrl_rd_n: std_logic is decOut_n(4); alias atc_stat_rd_n: std_logic is decOut_n(3); alias mgmt_stat_rd_n: std_logic is decOut_n(2); alias io_int_stat_rd_n: std_logic is decOut_n(1); alias int_ctrl_rd_n: std_logic is decOut_n(0); alias upper: std_logic_vector(2 downto 0) is dev_adr(19 downto 17); alias CtrlBits: std_logic_vector(16 downto 0) is dev_adr(16 downto 0); begin decoder: process (upper, CtrlBits) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case upper is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case CtrlBits is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr) begin -- Set defaults for outputs sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin sio_dec_n <= '0' when dev_adr (19 downto 17) = SuperIORange else '1'; int_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IntCtrlReg) else '1'; io_int_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = IoIntStatReg) else '1'; rst_ctrl_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = RstCtrlReg) else '1'; atc_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = AtcStatusReg) else '1'; mgmt_stat_rd_n <= '0' when (dev_adr (19 downto 17) = CtrlRegRange) and (dev_adr(16 downto 0) = MgmtStatusReg) else '1'; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process (dev_adr, cs0_n) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then case dev_adr(19 downto 17) is when SuperIoRange => sio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => int_ctrl_rd_n <= '0'; when IoIntStatReg => io_int_stat_rd_n <= '0'; when RstCtrlReg => rst_ctrl_rd_n <= '0'; when AtcStatusReg => atc_stat_rd_n <= '0'; when MgmtStatusReg => mgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; else null; end if; end process decoder; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); cs0_n: in std_logic; sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; signal Lsio_dec_n: std_logic; signal Lrst_ctrl_rd_n: std_logic; signal Latc_stat_rd_n: std_logic; signal Lmgmt_stat_rd_n: std_logic; signal Lio_int_stat_rd_n: std_logic; signal Lint_ctrl_rd_n: std_logic; begin decoder: process (dev_adr) begin -- Set defaults for outputs - for synthesis reasons. Lsio_dec_n <= '1'; Lint_ctrl_rd_n <= '1'; Lio_int_stat_rd_n <= '1'; Lrst_ctrl_rd_n <= '1'; Latc_stat_rd_n <= '1'; Lmgmt_stat_rd_n <= '1'; case dev_adr(19 downto 17) is when SuperIoRange => Lsio_dec_n <= '0'; when CtrlRegRange => case dev_adr(16 downto 0) is when IntCtrlReg => Lint_ctrl_rd_n <= '0'; when IoIntStatReg => Lio_int_stat_rd_n <= '0'; when RstCtrlReg => Lrst_ctrl_rd_n <= '0'; when AtcStatusReg => Latc_stat_rd_n <= '0'; when MgmtStatusReg => Lmgmt_stat_rd_n <= '0'; when others => null; end case; when others => null; end case; end process decoder; qualify: process (cs0_n) begin sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if (cs0_n = '0') then sio_dec_n <= Lsio_dec_n; int_ctrl_rd_n <= Lint_ctrl_rd_n; io_int_stat_rd_n <= Lio_int_stat_rd_n; rst_ctrl_rd_n <= Lrst_ctrl_rd_n; atc_stat_rd_n <= Latc_stat_rd_n; mgmt_stat_rd_n <= Lmgmt_stat_rd_n; else null; end if; end process qualify; end synthesis; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n: out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin decoder: process ( dev_adr) begin -- Set defaults for outputs - for synthesis reasons. sio_dec_n <= '1'; int_ctrl_rd_n <= '1'; io_int_stat_rd_n <= '1'; rst_ctrl_rd_n <= '1'; atc_stat_rd_n <= '1'; mgmt_stat_rd_n <= '1'; if dev_adr(19 downto 17) = SuperIOrange then sio_dec_n <= '0'; elsif dev_adr(19 downto 17) = CtrlRegrange then if dev_adr(16 downto 0) = IntCtrlReg then int_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0)= IoIntStatReg then io_int_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = RstCtrlReg then rst_ctrl_rd_n <= '0'; elsif dev_adr(16 downto 0) = AtcStatusReg then atc_stat_rd_n <= '0'; elsif dev_adr(16 downto 0) = MgmtStatusReg then mgmt_stat_rd_n <= '0'; else null; end if; else null; end if; end process decoder; end synthesis; library IEEE; use IEEE.std_logic_1164.all; package decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ); end decProcs; package body decProcs is procedure DEC2x4 (inputs : in std_logic_vector(1 downto 0); decode: out std_logic_vector(3 downto 0) ) is begin case inputs is when "11" => decode := "1000"; when "10" => decode := "0100"; when "01" => decode := "0010"; when "00" => decode := "0001"; when others => decode := "0001"; end case; end DEC2x4; end decProcs; library ieee; use ieee.std_logic_1164.all; entity isa_dec is port ( dev_adr: in std_logic_vector(19 downto 0); sio_dec_n: out std_logic; rst_ctrl_rd_n: out std_logic; atc_stat_rd_n: out std_logic; mgmt_stat_rd_n: out std_logic; io_int_stat_rd_n:out std_logic; int_ctrl_rd_n: out std_logic ); end isa_dec; architecture synthesis of isa_dec is constant CtrlRegRange: std_logic_vector(2 downto 0) := "100"; constant SuperIoRange: std_logic_vector(2 downto 0) := "010"; constant IntCtrlReg: std_logic_vector(16 downto 0) := "00000000000000000"; constant IoIntStatReg: std_logic_vector(16 downto 0) := "00000000000000001"; constant RstCtrlReg: std_logic_vector(16 downto 0) := "00000000000000010"; constant AtcStatusReg: std_logic_vector(16 downto 0) := "00000000000000011"; constant MgmtStatusReg:std_logic_vector(16 downto 0) := "00000000000000100"; begin with dev_adr(19 downto 17) select sio_dec_n <= '0' when SuperIORange, '1' when others; with dev_adr(19 downto 0) select int_ctrl_rd_n <= '0' when CtrlRegRange & IntCtrlReg, '1' when others; with dev_adr(19 downto 0) select io_int_stat_rd_n <= '0' when CtrlRegRange & IoIntStatReg, '1' when others; with dev_adr(19 downto 0) select rst_ctrl_rd_n <= '0' when CtrlRegRange & RstCtrlReg, '1' when others; with dev_adr(19 downto 0) select atc_stat_rd_n <= '0' when CtrlRegRange & AtcStatusReg, '1' when others; with dev_adr(19 downto 0) select mgmt_stat_rd_n <= '0' when CtrlRegRange & MgmtStatusReg, '1' when others; end synthesis; -- Incorporates Errata 5.1 and 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal delayCnt, pulseCnt: unsigned(7 downto 0); signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; begin delayReg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadLength = '1' then -- changed loadLength to loadDelay (Errata 5.1) pulseCntVal <= unsigned(data); end if; end if; end process; pulseDelay: process (clk, reset) begin if (reset = '1') then delayCnt <= "11111111"; elsif(clk'event and clk = '1') then if (loadDelay = '1' or loadLength = '1' or endPulse = '1') then -- changed startPulse to endPulse (Errata 5.1) delayCnt <= delayCntVal; elsif endPulse = '1' then delayCnt <= delayCnt - 1; end if; end if; end process; startPulse <= '1' when delayCnt = "00000000" else '0'; pulseLength: process (clk, reset) begin if (reset = '1') then pulseCnt <= "11111111"; elsif (clk'event and clk = '1') then if (loadLength = '1') then pulseCnt <= pulseCntVal; elsif (startPulse = '1' and endPulse = '1') then pulseCnt <= pulseCntVal; elsif (endPulse = '1') then pulseCnt <= pulseCnt; else pulseCnt <= pulseCnt - 1; end if; end if; end process; endPulse <= '1' when pulseCnt = "00000000" else '0'; pulseOutput: process (clk, reset) begin if (reset = '1') then pulse <= '0'; elsif (clk'event and clk = '1') then if (startPulse = '1') then pulse <= '1'; elsif (endPulse = '1') then pulse <= '0'; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst : in std_logic; q: out std_logic; ); end DFF; architecture rtl of DFF is begin process (clk) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, a,b,c) begin if ((a = '1' and b = '1') or c = '1') then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; a,b,c : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is signal localRst: std_logic; begin localRst <= '1' when (( a = '1' and b = '1') or c = '1') else '0'; process (clk, localRst) begin if localRst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; arst: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q <= '0'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; aset : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, aset) begin if aset = '1' then q <= '1'; elsif clk'event and clk = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; arst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk, arst) begin if arst = '1' then q1 <= '0'; q2 <= '1'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; wait on clk; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; en: in std_logic; clk: in std_logic; q: out std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; envector: in std_logic_vector(7 downto 0); q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if envector = "10010111" then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if en = '1' then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (prst = '1') then q <= '1'; elsif (rst = '1') then q <= '0'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity flipFlop is port ( clock, input: in std_logic; ffOut: out std_logic ); end flipFlop; architecture simple of flipFlop is procedure dff (signal clk: in std_logic; signal d: in std_logic; signal q: out std_logic ) is begin if clk'event and clk = '1' then q <= d; end if; end procedure dff; begin dff(clock, input, ffOut); end simple; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; end: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until rising_edge(clk); if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1, d2: in std_logic; clk: in std_logic; srst : in std_logic; q1, q2: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q1 <= '0'; q2 <= '1'; else q1 <= d1; q2 <= d2; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if srst = '1' then q <= '0'; else q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe_sr is port ( d: in std_logic; clk: in std_logic; en: in std_logic; rst,prst: in std_logic; q: out std_logic ); end struct_dffe_sr; use work.primitive.all; architecture instance of struct_dffe_sr is begin ff: dffe_sr port map ( d => d, clk => clk, en => en, rst => rst, prst => prst, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; srst : in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin if clk'event and clk = '1' then if srst = '1' then q <= '0'; else q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dffe is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end struct_dffe; use work.primitive.all; architecture instance of struct_dffe is begin ff: dffe port map ( d => d, clk => clk, en => en, q => q ); end instance; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity dffTri is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end dffTri; architecture parameterize of dffTri is type tribufType is record ip: std_logic; oe: std_logic; op: std_logic; end record; type tribufArrayType is array (integer range <>) of tribufType; signal tri: tribufArrayType(size - 1 downto 0); begin g0: for i in 0 to size - 1 generate u1: DFFE port map (data(i), tri(i).ip, ff_enable, clock); end generate; g1: for i in 0 to size - 1 generate u2: TRIBUF port map (tri(i).ip, tri(i).oe, tri(i).op); tri(i).oe <= op_enable; qout(i) <= tri(i).op; end generate; end parameterize; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; en: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic bus ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is signal qLocal: std_logic; begin qLocal <= d when en = '1' else qLocal; q <= qLocal; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en, d) begin if en = '1' then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity struct_dlatch is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end struct_dlatch; use work.primitive.all; architecture instance of struct_dlatch is begin latch: dlatchh port map ( d => d, en => en, q => q ); end instance; -- Incorporates Errata 5.4 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity downCounter is port ( clk: in std_logic; reset: in std_logic; count: out std_logic_vector(3 downto 0) ); end downCounter; architecture simple of downCounter is signal countL: unsigned(3 downto 0); signal termCnt: std_logic; begin decrement: process (clk, reset) begin if (reset = '1') then countL <= "1011"; -- Reset to 11 termCnt <= '1'; elsif(clk'event and clk = '1') then if (termCnt = '1') then countL <= "1011"; -- Count rolls over to 11 else countL <= countL - 1; end if; if (countL = "0001") then -- Terminal count decoded 1 cycle earlier termCnt <= '1'; else termCnt <= '0'; end if; end if; end process; count <= std_logic_vector(countL); end simple; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity compareDC is port ( addressBus: in std_logic_vector(31 downto 0); addressHit: out std_logic ); end compareDC; architecture wontWork of compareDC is begin compare: process(addressBus) begin if (addressBus = "011110101011--------------------") then addressHit <= '1'; else addressHit <= '0'; end if; end process compare; end wontWork; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin encode: process (invec) begin case invec is when "00000001" => enc_out <= "000"; when "00000010" => enc_out <= "001"; when "00000100" => enc_out <= "010"; when "00001000" => enc_out <= "011"; when "00010000" => enc_out <= "100"; when "00100000" => enc_out <= "101"; when "01000000" => enc_out <= "110"; when "10000000" => enc_out <= "111"; when others => enc_out <= "000"; end case; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec:in std_logic_vector(7 downto 0); enc_out:out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin process (invec) begin if invec(7) = '1' then enc_out <= "111"; elsif invec(6) = '1' then enc_out <= "110"; elsif invec(5) = '1' then enc_out <= "101"; elsif invec(4) = '1' then enc_out <= "100"; elsif invec(3) = '1' then enc_out <= "011"; elsif invec(2) = '1' then enc_out <= "010"; elsif invec(1) = '1' then enc_out <= "001"; elsif invec(0) = '1' then enc_out <= "000"; else enc_out <= "000"; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity encoder is port (invec: in std_logic_vector(7 downto 0); enc_out: out std_logic_vector(2 downto 0) ); end encoder; architecture rtl of encoder is begin enc_out <= "111" when invec(7) = '1' else "110" when invec(6) = '1' else "101" when invec(5) = '1' else "100" when invec(4) = '1' else "011" when invec(3) = '1' else "010" when invec(2) = '1' else "001" when invec(1) = '1' else "000" when invec(0) = '1' else "000"; end rtl; -- includes Errata 5.2 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; -- errata 5.2 entity compare is port ( ina: in std_logic_vector (3 downto 0); inb: in std_logic_vector (2 downto 0); equal: out std_logic ); end compare; architecture simple of compare is begin equalProc: process (ina, inb) begin if (ina = inb ) then equal <= '1'; else equal <= '0'; end if; end process; end simple; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture behavioral of LogicFcn is begin fcn: process (A,B,C) begin if (A = '0' and B = '0') then Y <= '1'; elsif C = '1' then Y <= '1'; else Y <= '0'; end if; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture dataflow of LogicFcn is begin Y <= '1' when (A = '0' AND B = '0') OR (C = '1') else '0'; end dataflow; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity LogicFcn is port ( A: in std_logic; B: in std_logic; C: in std_logic; Y: out std_logic ); end LogicFcn; architecture structural of LogicFcn is signal notA, notB, andSignal: std_logic; begin i1: inverter port map (i => A, o => notA); i2: inverter port map (i => B, o => notB); a1: and2 port map (i1 => notA, i2 => notB, y => andSignal); o1: or2 port map (i1 => andSignal, i2 => C, y => Y); end structural; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is port ( D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is constant tCQ: time := 8 ns; constant tS: time := 4 ns; constant tH: time := 3 ns; begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process (clk) begin wait until clk = '1'; q <= d; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d: in std_logic; clk: in std_logic; q: out std_logic ); end DFF; architecture rtl of DFF is begin process begin wait until clk = '1'; q <= d; wait on clk; end process; end rtl; configuration SimpleGatesCfg of FEWGATES is for structural for all: AND2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; configuration SimpleGatesCfg of FEWGATES is for structural for u1: and2 use entity work.and2(rtl); end for; for u2: and2 use entity work.and2(rtl); end for; for u3: inverter use entity work.inverter(rtl); end for; for u4: or2 use entity work.or2(rtl); end for; end for; end SimpleGatesCfg; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.and2; use work.or2; use work.inverter; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; -- Configution specifications for all: and2 use entity work.and2(rtl); for u3: inverter use entity work.inverter(rtl); for u4: or2 use entity work.or2(rtl); begin u1: and2 port map (i1 => a, i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; use work.GatesPkg.all; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture concurrent of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin a_and_b <= '1' when a = '1' and b = '1' else '0'; c_and_d <= '1' when c = '1' and d = '1' else '0'; not_c_and_d <= not c_and_d; y <= '1' when a_and_b = '1' or not_c_and_d = '1' else '0'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; package GatesPkg is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; end GatesPkg; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 =>c, i2 => d, y => c_and_d ); u3: inverter port map (a => c_and_d, y => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity FEWGATES is port ( a,b,c,d: in std_logic; y: out std_logic ); end FEWGATES; architecture structural of FEWGATES is component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; signal a_and_b, c_and_d, not_c_and_d: std_logic; begin u1: and2 port map (i1 => a , i2 => b, y => a_and_b ); u2: and2 port map (i1 => c, i2 => d, y => c_and_d ); u3: inverter port map (i => c_and_d, o => not_c_and_d); u4: or2 port map (i1 => a_and_b, i2 => not_c_and_d, y => y ); end structural; library IEEE; use IEEE.std_logic_1164.all; use work.simPrimitives.all; entity simHierarchy is port ( A, B, Clk: in std_logic; Y: out std_logic ); end simHierarchy; architecture hierarchical of simHierarchy is signal ADly, BDly, OrGateDly, ClkDly: std_logic; signal OrGate, FlopOut: std_logic; begin ADly <= transport A after 2 ns; BDly <= transport B after 2 ns; OrGateDly <= transport OrGate after 1.5 ns; ClkDly <= transport Clk after 1 ns; u1: OR2 generic map (tPD => 10 ns) port map ( I1 => ADly, I2 => BDly, Y => OrGate ); u2: simDFF generic map ( tS => 4 ns, tH => 3 ns, tCQ => 8 ns ) port map ( D => OrGateDly, Clk => ClkDly, Q => FlopOut ); Y <= transport FlopOut after 2 ns; end hierarchical; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; -------------------------------------------------------------------------------- --| File name : $RCSfile: io1164.vhd $ --| Library : SUPPORT --| Revision : $Revision: 1.1 $ --| Author(s) : Vantage Analysis Systems, Inc; Des Young --| Integration : Des Young --| Creation : Nov 1995 --| Status : $State: Exp $ --| --| Purpose : IO routines for std_logic_1164. --| Assumptions : Numbers use radixed character set with no prefix. --| Limitations : Does not read VHDL pound-radixed numbers. --| Known Errors: none --| --| Description: --| This is a modified library. The source is basically that donated by --| Vantage to libutil. Des Young removed std_ulogic_vector support (to --| conform to synthesizable libraries), and added read_oct/hex to integer. --| --| ======================================================================= --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights --| reserved. This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package VHDL source --| Package Name: somelib.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : * Overloads procedures READ and WRITE for STD_LOGIC types --| in manner consistent with TEXTIO package. --| * Provides procedures to read and write logic values as --| binary, octal, or hexadecimal values ('X' as appropriate). --| These should be particularly useful for models --| to read in stimulus as 0/1/x or octal or hex. --| Subprograms : --| Notes : --| History : 1. Donated to libutil by Dave Bernstein 15 Jun 94 --| 2. Removed all std_ulogic_vector support, Des Young, 14 Nov 95 --| (This is because that type is not supported for synthesis). --| 3. Added read_oct/hex to integer, Des Young, 20 Nov 95 --| --| ======================================================================= --| Extra routines by Des Young, [email protected]. 1995. GNU copyright. --| ======================================================================= --| -------------------------------------------------------------------------------- library ieee; package io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- import std_logic package use ieee.std_logic_1164.all; -- import textio package use std.textio.all; -- -- the READ and WRITE procedures act similarly to the procedures in the -- STD.TEXTIO package. for each type, there are two read procedures and -- one write procedure for converting between character and internal -- representations of values. each value is represented as the string of -- characters that you would use in VHDL code. (remember that apostrophes -- and quotation marks are not used.) input is case-insensitive. output -- is in upper case. see the following LRM sections for more information: -- -- 2.3 - Subprogram Overloading -- 3.3 - Access Types (STD.TEXTIO.LINE is an access type) -- 7.3.6 - Allocators (allocators create access values) -- 14.3 - Package TEXTIO -- -- Note that the procedures for std_ulogic will match calls with the value -- parameter of type std_logic. -- -- declare READ procedures to overload like in TEXTIO -- procedure read(l: inout line; value: out std_ulogic ; good: out boolean); procedure read(l: inout line; value: out std_ulogic ); procedure read(l: inout line; value: out std_logic_vector ; good: out boolean); procedure read(l: inout line; value: out std_logic_vector ); -- -- declare WRITE procedures to overload like in TEXTIO -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ); procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ); -- -- declare procedures to convert between logic values and octal -- or hexadecimal ('X' where appropriate). -- -- octal / std_logic_vector procedure read_oct (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_oct (l : inout line ; value : out std_logic_vector ); procedure write_oct(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- hexadecimal / std_logic_vector procedure read_hex (l : inout line ; value : out std_logic_vector ; good : out boolean ); procedure read_hex (l : inout line ; value : out std_logic_vector ); procedure write_hex(l : inout line ; value : in std_logic_vector ; justified : in side := right; field : in width := 0 ); -- read a number into an integer procedure read_oct(l : inout line; value : out integer; good : out boolean); procedure read_oct(l : inout line; value : out integer); procedure read_hex(l : inout line; value : out integer; good : out boolean); procedure read_hex(l : inout line; value : out integer); end io1164; -------------------------------------------------------------------------------- --| Copyright (c) 1992-1994 Vantage Analysis Systems, Inc., all rights reserved --| This package is provided by Vantage Analysis Systems. --| The package may not be sold without the express written consent of --| Vantage Analysis Systems, Inc. --| --| The VHDL for this package may be copied and/or distributed as long as --| this copyright notice is retained in the source and any modifications --| are clearly marked in the History: list. --| --| Title : IO1164 package body VHDL source --| Package Name: VANTAGE_LOGIC.IO1164 --| File Name : io1164.vhdl --| Author(s) : dbb --| Purpose : source for IO1164 package body --| Subprograms : --| Notes : see package declaration --| History : see package declaration -------------------------------------------------------------------------------- package body io1164 is --$ !VANTAGE_METACOMMENTS_ON --$ !VANTAGE_DNA_ON -- define lowercase conversion of characters for canonical comparison type char2char_t is array (character'low to character'high) of character; constant lowcase: char2char_t := ( nul, soh, stx, etx, eot, enq, ack, bel, bs, ht, lf, vt, ff, cr, so, si, dle, dc1, dc2, dc3, dc4, nak, syn, etb, can, em, sub, esc, fsp, gsp, rsp, usp, ' ', '!', '"', '#', '$', '%', '&', ''', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '[', '\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', del); -- define conversions between various types -- logic -> character type f_logic_to_character_t is array (std_ulogic'low to std_ulogic'high) of character; constant f_logic_to_character : f_logic_to_character_t := ( 'U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-' ); -- character, integer, logic constant x_charcode : integer := -1; constant maxoct_charcode: integer := 7; constant maxhex_charcode: integer := 15; constant bad_charcode : integer := integer'left; type digit2int_t is array ( character'low to character'high ) of integer; constant octdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, 'X' | 'x' => x_charcode, others => bad_charcode ); constant hexdigit2int: digit2int_t := ( '0' => 0, '1' => 1, '2' => 2, '3' => 3, '4' => 4, '5' => 5, '6' => 6, '7' => 7, '8' => 8, '9' => 9, 'A' | 'a' => 10, 'B' | 'b' => 11, 'C' | 'c' => 12, 'D' | 'd' => 13, 'E' | 'e' => 14, 'F' | 'f' => 15, 'X' | 'x' => x_charcode, others => bad_charcode ); constant oct_bits_per_digit: integer := 3; constant hex_bits_per_digit: integer := 4; type int2octdigit_t is array ( 0 to maxoct_charcode ) of character; constant int2octdigit: int2octdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7' ); type int2hexdigit_t is array ( 0 to maxhex_charcode ) of character; constant int2hexdigit: int2hexdigit_t := ( 0 => '0', 1 => '1', 2 => '2', 3 => '3', 4 => '4', 5 => '5', 6 => '6', 7 => '7', 8 => '8', 9 => '9', 10 => 'A', 11 => 'B', 12 => 'C', 13 => 'D', 14 => 'E', 15 => 'F' ); type oct_logic_vector_t is array(1 to oct_bits_per_digit) of std_ulogic; type octint2logic_t is array (x_charcode to maxoct_charcode) of oct_logic_vector_t; constant octint2logic : octint2logic_t := ( ( 'X', 'X', 'X' ), ( '0', '0', '0' ), ( '0', '0', '1' ), ( '0', '1', '0' ), ( '0', '1', '1' ), ( '1', '0', '0' ), ( '1', '0', '1' ), ( '1', '1', '0' ), ( '1', '1', '1' ) ); type hex_logic_vector_t is array(1 to hex_bits_per_digit) of std_ulogic; type hexint2logic_t is array (x_charcode to maxhex_charcode) of hex_logic_vector_t; constant hexint2logic : hexint2logic_t := ( ( 'X', 'X', 'X', 'X' ), ( '0', '0', '0', '0' ), ( '0', '0', '0', '1' ), ( '0', '0', '1', '0' ), ( '0', '0', '1', '1' ), ( '0', '1', '0', '0' ), ( '0', '1', '0', '1' ), ( '0', '1', '1', '0' ), ( '0', '1', '1', '1' ), ( '1', '0', '0', '0' ), ( '1', '0', '0', '1' ), ( '1', '0', '1', '0' ), ( '1', '0', '1', '1' ), ( '1', '1', '0', '0' ), ( '1', '1', '0', '1' ), ( '1', '1', '1', '0' ), ( '1', '1', '1', '1' ) ); ---------------------------------------------------------------------------- -- READ procedure bodies -- -- The strategy for duplicating TEXTIO's overloading of procedures -- with and without GOOD parameters is to put all the logic in the -- version with the GOOD parameter and to have the version without -- GOOD approximate a runtime error by use of an assertion. -- ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure read( l: inout line; value: out std_ulogic; good : out boolean ) is variable c : character; -- char read while looping variable m : line; -- safe copy of L variable success: boolean := false; -- readable version of GOOD variable done : boolean := false; -- flag to say done reading chars begin -- -- algorithm: -- -- if there are characters in the line -- save a copy of the line -- get the next character -- if got one -- set value -- if all ok -- free temp copy -- else -- free passed in line -- assign copy back to line -- set GOOD -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- grab the next character read( l, c, success ); -- if read ok if success then -- -- an issue here is whether lower-case values should be accepted or not -- -- determine the value case c is when 'U' | 'u' => value := 'U'; when 'X' | 'x' => value := 'X'; when '0' => value := '0'; when '1' => value := '1'; when 'Z' | 'z' => value := 'Z'; when 'W' | 'w' => value := 'W'; when 'L' | 'l' => value := 'L'; when 'H' | 'h' => value := 'H'; when '-' => value := '-'; when others => success := false; end case; end if; -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; end if; -- non null access, non empty string -- set output parameter good := success; end read; procedure read( l: inout line; value: out std_ulogic ) is variable success: boolean; -- internal good flag begin read( l, value, success ); -- use safe version assert success report "IO1164.READ: Unable to read STD_ULOGIC value." severity error; end read; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure read(l : inout line ; value: out std_logic_vector; good : out boolean ) is variable m : line ; -- saved copy of L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- value for one array element variable c : character ; -- read a character begin -- -- algorithm: -- -- this procedure strips off leading whitespace, and then calls the -- READ procedure for each single logic value element in the output -- array. -- -- only operate on lines that contain characters if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save a copy of string in case read fails m := new string'( l.all ); -- loop for each element in output array for i in value'range loop -- prohibit internal blanks if i /= value'left then if l.all'length = 0 then success := false; exit; end if; c := l.all(l.all'left); if c = ' ' or c = ht then success := false; exit; end if; end if; -- read the next logic value read( l, logic_value, success ); -- stuff the value in if ok, else bail out if success then value( i ) := logic_value; else exit; end if; end loop; -- each element in output array -- free working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; elsif ( value'length /= 0 ) then -- string is empty but the return array has 1+ elements success := false; end if; -- set output parameter good := success; end read; procedure read(l: inout line; value: out std_logic_vector ) is variable success: boolean; begin read( l, value, success ); assert success report "IO1164.READ: Unable to read T_WLOGIC_VECTOR value." severity error; end read; ---------------------------------------------------------------------------- -- WRITE procedure bodies ---------------------------------------------------------------------------- -- -- std_ulogic -- note: compatible with std_logic -- procedure write(l : inout line ; value : in std_ulogic ; justified: in side := right; field : in width := 0 ) is begin -- -- algorithm: -- -- just write out the string associated with the enumerated -- value. -- case value is when 'U' => write( l, character'('U'), justified, field ); when 'X' => write( l, character'('X'), justified, field ); when '0' => write( l, character'('0'), justified, field ); when '1' => write( l, character'('1'), justified, field ); when 'Z' => write( l, character'('Z'), justified, field ); when 'W' => write( l, character'('W'), justified, field ); when 'L' => write( l, character'('L'), justified, field ); when 'H' => write( l, character'('H'), justified, field ); when '-' => write( l, character'('-'), justified, field ); end case; end write; -- -- std_logic_vector -- note: NOT compatible with std_ulogic_vector -- procedure write(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m: line; -- build up intermediate string begin -- -- algorithm: -- -- for each value in array -- add string representing value to intermediate string -- write intermediate string to line parameter -- free intermediate string -- -- for each value in array for i in value'range loop -- add string representing value to intermediate string write( m, value( i ) ); end loop; -- write intermediate string to line parameter write( l, m.all, justified, field ); -- free intermediate string deallocate( m ); end write; -------------------------------------------------------------------------------- ---------------------------------------------------------------------------- -- procedure bodies for octal and hexadecimal read and write ---------------------------------------------------------------------------- -- -- std_logic_vector/octal -- note: NOT compatible with std_ulogic_vector -- procedure read_oct(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable oct_logic_vector: oct_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem oct_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := octdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array oct_logic_vector := octint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := oct_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = oct_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := octdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array oct_logic_vector := octint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_oct; procedure read_oct(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read T_LOGIC_VECTOR value." severity error; end read_oct; procedure write_oct(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem oct_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_OCT: VALUE'Length is not a multiple of 3." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / oct_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = oct_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2octdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_oct; -- -- std_logic_vector/hexadecimal -- note: NOT compatible with std_ulogic_vector -- procedure read_hex(l : inout line ; value : out std_logic_vector; good : out boolean ) is variable m : line ; -- safe L variable success : boolean := true; -- readable GOOD variable logic_value : std_logic ; -- elem value variable c : character ; -- char read variable charcode : integer ; -- char->int variable hex_logic_vector: hex_logic_vector_t ; -- for 1 digit variable bitpos : integer ; -- in state vec. begin -- -- algorithm: -- -- skip over leading blanks, then read a digit -- and do a conversion into a logic value -- for each element in array -- -- make sure logic array is right size to read this base success := ( ( value'length rem hex_bits_per_digit ) = 0 ); if success then -- only operate on non-empty strings if ( ( l /= null ) and ( l.all'length /= 0 ) ) then -- save old copy of string in case read fails m := new string'( l.all ); -- pick off leading white space and get first significant char c := ' '; while success and ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = ht ) ) loop read( l, c, success ); end loop; -- turn character into integer charcode := hexdigit2int( c ); -- not doing any bits yet bitpos := 0; -- check for bad first character if charcode = bad_charcode then success := false; else -- loop through each value in array hex_logic_vector := hexint2logic( charcode ); for i in value'range loop -- doing the next bit bitpos := bitpos + 1; -- stick the value in value( i ) := hex_logic_vector( bitpos ); -- read the next character if we're not at array end if ( bitpos = hex_bits_per_digit ) and ( i /= value'right ) then read( l, c, success ); if not success then exit; end if; -- turn character into integer charcode := hexdigit2int( c ); -- check for bad char if charcode = bad_charcode then success := false; exit; end if; -- reset bit position bitpos := 0; -- turn character code into state array hex_logic_vector := hexint2logic( charcode ); end if; end loop; -- each index in return array end if; -- if bad first character -- clean up working storage if success then deallocate( m ); else deallocate( l ); l := m; end if; -- no characters to read for return array that isn't null slice elsif ( value'length /= 0 ) then success := false; end if; -- non null access, non empty string end if; -- set out parameter of success good := success; end read_hex; procedure read_hex(l : inout line ; value : out std_logic_vector) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read T_LOGIC_VECTOR value." severity error; end read_hex; procedure write_hex(l : inout line ; value : in std_logic_vector ; justified: in side := right; field : in width := 0 ) is variable m : line ; -- safe copy of L variable goodlength : boolean ; -- array is ok len for this base variable isx : boolean ; -- an X in this digit variable integer_value: integer ; -- accumulate integer value variable c : character; -- character read variable charpos : integer ; -- index string being contructed variable bitpos : integer ; -- bit index inside digit begin -- -- algorithm: -- -- make sure this array can be written in this base -- create a string to place intermediate results -- initialize counters and flags to beginning of string -- for each item in array -- note unknown, else accumulate logic into integer -- if at this digit's last bit -- stuff digit just computed into intermediate result -- reset flags and counters except for charpos -- write intermediate result into line -- free work storage -- -- make sure this array can be written in this base goodlength := ( ( value'length rem hex_bits_per_digit ) = 0 ); assert goodlength report "IO1164.WRITE_HEX: VALUE'Length is not a multiple of 4." severity error; if goodlength then -- create a string to place intermediate results m := new string(1 to ( value'length / hex_bits_per_digit ) ); -- initialize counters and flags to beginning of string charpos := 0; bitpos := 0; isx := false; integer_value := 0; -- for each item in array for i in value'range loop -- note unknown, else accumulate logic into integer case value(i) is when '0' | 'L' => integer_value := integer_value * 2; when '1' | 'H' => integer_value := ( integer_value * 2 ) + 1; when others => isx := true; end case; -- see if we've done this digit's last bit bitpos := bitpos + 1; if bitpos = hex_bits_per_digit then -- stuff the digit just computed into the intermediate result charpos := charpos + 1; if isx then m.all(charpos) := 'X'; else m.all(charpos) := int2hexdigit( integer_value ); end if; -- reset flags and counters except for location in string being constructed bitpos := 0; isx := false; integer_value := 0; end if; end loop; -- write intermediate result into line write( l, m.all, justified, field ); -- free work storage deallocate( m ); end if; end write_hex; ------------------------------------------------------------------------------ ------------------------------------ -- Read octal/hex numbers to integer ------------------------------------ -- -- Read octal to integer -- procedure read_oct(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := octdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := octdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 8) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_oct; -- simple version procedure read_oct(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_oct( l, value, success ); -- use safe version assert success report "IO1164.READ_OCT: Unable to read octal integer value." severity error; end read_oct; -- -- Read hex to integer -- procedure read_hex(l : inout line; value : out integer; good : out boolean) is variable pos : integer; variable digit : integer; variable result : integer := 0; variable success : boolean := true; variable c : character; variable old_l : line := l; begin -- algorithm: -- -- skip leading white space, read digit, convert -- into integer -- if (l /= NULL) then -- set pos to start of actual number by skipping white space pos := l'LEFT; c := l(pos); while ( l.all'length > 0 ) and ( ( c = ' ' ) or ( c = HT ) ) loop pos := pos + 1; c := l(pos); end loop; -- check for start of valid number digit := hexdigit2int(l(pos)); if ((digit = bad_charcode) or (digit = x_charcode)) then good := FALSE; return; else -- calculate integer value for i in pos to l'RIGHT loop digit := hexdigit2int(l(pos)); exit when (digit = bad_charcode) or (digit = x_charcode); result := (result * 16) + digit; pos := pos + 1; end loop; value := result; -- shrink line if (pos > 1) then l := new string'(old_l(pos to old_l'HIGH)); deallocate(old_l); end if; good := TRUE; return; end if; else good := FALSE; end if; end read_hex; -- simple version procedure read_hex(l : inout line; value : out integer) is variable success: boolean; -- internal good flag begin read_hex( l, value, success ); -- use safe version assert success report "IO1164.READ_HEX: Unable to read hex integer value." severity error; end read_hex; end io1164; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity asyncLdCnt is port ( loadVal: in std_logic_vector(3 downto 0); clk, load: in std_logic; q: out std_logic_vector(3 downto 0) ); end asyncLdCnt; architecture rtl of asyncLdCnt is signal qLocal: unsigned(3 downto 0); begin process (clk, load, loadVal) begin if (load = '1') then qLocal <= to_unsigned(loadVal); elsif (clk'event and clk = '1' ) then qLocal <= qLocal + 1; end if; end process; q <= to_stdlogicvector(qLocal); end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity LoadCnt is port ( CntEn: in std_logic; LdCnt: in std_logic; LdData: in std_logic_vector(3 downto 0); Clk: in std_logic; Rst: in std_logic; CntVal: out std_logic_vector(3 downto 0) ); end LoadCnt; architecture behavioral of LoadCnt is signal Cnt: std_logic_vector(3 downto 0); begin counter: process (Clk, Rst) begin if Rst = '1' then Cnt <= (others => '0'); elsif (Clk'event and Clk = '1') then if (LdCnt = '1') then Cnt <= LdData; elsif (CntEn = '1') then Cnt <= Cnt + 1; else Cnt <= Cnt; end if; end if; end process; CntVal <= Cnt; end behavioral; library IEEE; use IEEE.std_logic_1164.all; library UTILS; use UTILS.io1164.all; use std.textio.all; entity loadCntTB is end loadCntTB; architecture testbench of loadCntTB is component loadCnt port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end component; file vectorFile: text is in "vectorfile"; type vectorType is record data: std_logic_vector(7 downto 0); load: std_logic; rst: std_logic; q: std_logic_vector(7 downto 0); end record; signal testVector: vectorType; signal TestClk: std_logic := '0'; signal Qout: std_logic_vector(7 downto 0); constant ClkPeriod: time := 100 ns; for all: loadCnt use entity work.loadcnt(rtl); begin -- File reading and stimulus application readVec: process variable VectorLine: line; variable VectorValid: boolean; variable vRst: std_logic; variable vLoad: std_logic; variable vData: std_logic_vector(7 downto 0); variable vQ: std_logic_vector(7 downto 0); begin while not endfile (vectorFile) loop readline(vectorFile, VectorLine); read(VectorLine, vRst, good => VectorValid); next when not VectorValid; read(VectorLine, vLoad); read(VectorLine, vData); read(VectorLine, vQ); wait for ClkPeriod/4; testVector.Rst <= vRst; testVector.Load <= vLoad; testVector.Data <= vData; testVector.Q <= vQ; wait for (ClkPeriod/4) * 3; end loop; assert false report "Simulation complete" severity note; wait; end process; -- Free running test clock TestClk <= not TestClk after ClkPeriod/2; -- Instance of design being tested u1: loadCnt port map (Data => testVector.Data, load => testVector.Load, clk => TestClk, rst => testVector.Rst, q => Qout ); -- Process to verify outputs verify: process (TestClk) variable ErrorMsg: line; begin if (TestClk'event and TestClk = '0') then if Qout /= testVector.Q then write(ErrorMsg, string'("Vector failed ")); write(ErrorMsg, now); writeline(output, ErrorMsg); end if; end if; end process; end testbench; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity loadCnt is port ( data: in std_logic_vector (7 downto 0); load: in std_logic; clk: in std_logic; rst: in std_logic; q: out std_logic_vector (7 downto 0) ); end loadCnt; architecture rtl of loadCnt is signal cnt: std_logic_vector (7 downto 0); begin counter: process (clk, rst) begin if (rst = '1') then cnt <= (others => '0'); elsif (clk'event and clk = '1') then if (load = '1') then cnt <= data; else cnt <= cnt + 1; end if; end if; end process; q <= cnt; end rtl; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity multiplier is port ( a,b : in std_logic_vector (15 downto 0); product: out std_logic_vector (31 downto 0) ); end multiplier; architecture dataflow of multiplier is begin product <= a * b; end dataflow; library IEEE; use IEEE.std_logic_1164.all; entity mux is port ( A, B, Sel: in std_logic; Y: out std_logic ); end mux; architecture simModel of mux is -- Delay Constants constant tPD_A: time := 10 ns; constant tPD_B: time := 15 ns; constant tPD_Sel: time := 5 ns; begin DelayMux: process (A, B, Sel) variable localY: std_logic; -- Zero delay place holder for Y begin -- Zero delay model case Sel is when '0' => localY := A; when others => localY := B; end case; -- Delay calculation if (B'event) then Y <= localY after tPD_B; elsif (A'event) then Y <= localY after tPD_A; else Y <= localY after tPD_Sel; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) begin if (a + b = "10011010") then result <= c; elsif (a + b = "01011001") then result <= d; elsif (a + b = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture concurrent of TRIBUF8 is begin op <= ip when oe = '1' else (others => 'Z'); end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture concurrent of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end concurrent; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF8 is port ( ip: in std_logic_vector(7 downto 0); oe: in std_logic; op: out std_logic_vector(7 downto 0) ); end TRIBUF8; architecture sequential of TRIBUF8 is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= (others => 'Z'); end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in bit; oe: in bit; op: out bit ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= null; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture sequential of TRIBUF is begin enable: process (ip,oe) begin if (oe = '1') then op <= ip; else op <= 'Z'; end if; end process; end sequential; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity tribuffer is port ( input: in std_logic; enable: in std_logic; output: out std_logic ); end tribuffer; architecture structural of tribuffer is begin u1: tribuf port map (ip => input, oe => enable, op => output ); end structural; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); begin genXOR(0) <= '0'; parTree: for i in 1 to ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; entity oddParityLoop is generic ( width : integer := 8 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityLoop ; architecture scaleable of oddParityLoop is begin process (ad) variable loopXor: std_logic; begin loopXor := '0'; for i in 0 to width -1 loop loopXor := loopXor xor ad( i ) ; end loop ; oddParity <= loopXor ; end process; end scaleable ; library IEEE; use IEEE.std_logic_1164.all; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is port ( I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after 10 ns; end simple; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity adder is port ( a,b: in std_logic_vector(3 downto 0); sum: out std_logic_vector(3 downto 0); overflow: out std_logic ); end adder; architecture concat of adder is signal localSum: std_logic_vector(4 downto 0); begin localSum <= std_logic_vector(unsigned('0' & a) + unsigned('0' & b)); sum <= localSum(3 downto 0); overflow <= localSum(4); end concat; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity paramDFF is generic (size: integer := 8); port ( data: in std_logic_vector(size - 1 downto 0); clock: in std_logic; reset: in std_logic; ff_enable: in std_logic; op_enable: in std_logic; qout: out std_logic_vector(size - 1 downto 0) ); end paramDFF; architecture parameterize of paramDFF is signal reg: std_logic_vector(size - 1 downto 0); begin u1: pDFFE generic map (n => size) port map (d => data, clk =>clock, rst => reset, en => ff_enable, q => reg ); u2: pTRIBUF generic map (n => size) port map (ip => reg, oe => op_enable, op => qout ); end paramterize; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal genXor: std_logic_vector(ad'range); signal one: std_logic := '1'; begin parTree: for i in ad'range generate g0: if i = 0 generate x0: xor2 port map (i1 => one, i2 => one, y => genXor(0) ); end generate; g1: if i > 0 and i <= ad'high generate x1: xor2 port map (i1 => genXor(i - 1), i2 => ad(i - 1), y => genXor(i) ); end generate; end generate; oddParity <= genXor(ad'high) ; end scaleable ; library ieee; use ieee.std_logic_1164.all; use work.primitive.all; entity oddParityGen is generic ( width : integer := 32 ); -- (2 <= width <= 32) and a power of 2 port (ad: in std_logic_vector (width - 1 downto 0); oddParity : out std_logic ) ; end oddParityGen; architecture scaleable of oddParityGen is signal stage0: std_logic_vector(31 downto 0); signal stage1: std_logic_vector(15 downto 0); signal stage2: std_logic_vector(7 downto 0); signal stage3: std_logic_vector(3 downto 0); signal stage4: std_logic_vector(1 downto 0); begin g4: for i in stage4'range generate g41: if (ad'length > 2) generate x4: xor2 port map (stage3(i), stage3(i + stage4'length), stage4(i)); end generate; end generate; g3: for i in stage3'range generate g31: if (ad'length > 4) generate x3: xor2 port map (stage2(i), stage2(i + stage3'length), stage3(i)); end generate; end generate; g2: for i in stage2'range generate g21: if (ad'length > 8) generate x2: xor2 port map (stage1(i), stage1(i + stage2'length), stage2(i)); end generate; end generate; g1: for i in stage1'range generate g11: if (ad'length > 16) generate x1: xor2 port map (stage0(i), stage0(i + stage1'length), stage1(i)); end generate; end generate; s1: for i in ad'range generate s14: if (ad'length = 2) generate stage4(i) <= ad(i); end generate; s13: if (ad'length = 4) generate stage3(i) <= ad(i); end generate; s12: if (ad'length = 8) generate stage2(i) <= ad(i); end generate; s11: if (ad'length = 16) generate stage1(i) <= ad(i); end generate; s10: if (ad'length = 32) generate stage0(i) <= ad(i); end generate; end generate; genPar: xor2 port map (stage4(0), stage4(1), oddParity); end scaleable ; library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in unsigned(3 downto 0); power : out unsigned(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; signal inputValInt: integer range 0 to 15; signal powerL: integer range 0 to 65535; begin inputValInt <= to_integer(inputVal); power <= to_unsigned(powerL,16); process begin wait until Clk = '1'; powerL <= Pow(inputValInt,4); end process; end behavioral; package PowerPkg is component Power port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end component; end PowerPkg; use work.bv_math.all; use work.int_math.all; use work.PowerPkg.all; entity Power is port( Clk : in bit; inputVal : in bit_vector(0 to 3); power : out bit_vector(0 to 15) ); end Power; architecture funky of Power is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; Variable i : integer := 0; begin while( i < Exp ) loop Result := Result * N; i := i + 1; end loop; return( Result ); end Pow; function RollVal( CntlVal : integer ) return integer is begin return( Pow( 2, CntlVal ) + 2 ); end RollVal; begin process begin wait until Clk = '1'; power <= i2bv(Rollval(bv2I(inputVal)),16); end process; end funky; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity priority_encoder is port (interrupts : in std_logic_vector(7 downto 0); priority : in std_logic_vector(2 downto 0); result : out std_logic_vector(2 downto 0) ); end priority_encoder; architecture behave of priority_encoder is begin process (interrupts) variable selectIn : integer; variable LoopCount : integer; begin LoopCount := 1; selectIn := to_integer(to_unsigned(priority)); while (LoopCount <= 7) and (interrupts(selectIn) /= '0') loop if (selectIn = 0) then selectIn := 7; else selectIn := selectIn - 1; end if; LoopCount := LoopCount + 1; end loop; result <= std_logic_vector(to_unsigned(selectIn,3)); end process; end behave; library IEEE; use IEEE.std_logic_1164.all; package primitive is component DFFE port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end component; component DFFE_SR port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end component; component DLATCHH port ( d: in std_logic; en: in std_logic; q: out std_logic ); end component; component AND2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component OR2 port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end component; component INVERTER port ( i: in std_logic; o: out std_logic ); end component; component TRIBUF port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end component; component BIDIR port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end component; end package; library IEEE; use IEEE.std_logic_1164.all; entity DFFE is port ( d: in std_logic; q: out std_logic; en: in std_logic; clk: in std_logic ); end DFFE; architecture rtl of DFFE is begin process begin wait until clk = '1'; if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DFFE_SR is port ( d: in std_logic; en: in std_logic; clk: in std_logic; rst: in std_logic; prst: in std_logic; q: out std_logic ); end DFFE_SR; architecture rtl of DFFE_SR is begin process (clk, rst, prst) begin if (rst = '1') then q <= '0'; elsif (prst = '1') then q <= '1'; elsif (clk'event and clk = '1') then if (en = '1') then q <= d; end if; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity DLATCHH is port ( d: in std_logic; en: in std_logic; q: out std_logic ); end DLATCHH; architecture rtl of DLATCHH is begin process (en) begin if (en = '1') then q <= d; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity AND2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end AND2; architecture rtl of AND2 is begin y <= '1' when i1 = '1' and i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity OR2 is port ( i1: in std_logic; i2: in std_logic; y: out std_logic ); end OR2; architecture rtl of OR2 is begin y <= '1' when i1 = '1' or i2 = '1' else '0'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity INVERTER is port ( i: in std_logic; o: out std_logic ); end INVERTER; architecture rtl of INVERTER is begin o <= not i; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity TRIBUF is port ( ip: in std_logic; oe: in std_logic; op: out std_logic ); end TRIBUF; architecture rtl of TRIBUF is begin op <= ip when oe = '1' else 'Z'; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity BIDIR is port ( ip: in std_logic; oe: in std_logic; op_fb: out std_logic; op: inout std_logic ); end BIDIR; architecture rtl of BIDIR is begin op <= ip when oe = '1' else 'Z'; op_fb <= op; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; subtype fsmType is std_logic_vector(1 downto 0); constant loadDelayCnt : fsmType := "00"; constant waitDelayEnd : fsmType := "10"; constant loadLengthCnt : fsmType := "11"; constant waitLengthEnd : fsmType := "01"; signal currState, nextState: fsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; -- Assign pulse output pulse <= currState(0); end rtl; library ieee; use ieee.std_logic_1164.all; entity pulseErr is port (a: in std_logic; b: out std_logic ); end pulseErr; architecture behavior of pulseErr is signal c: std_logic; begin pulse: process (a,c) begin b <= c XOR a; c <= a; end process; end behavior; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulse is port ( clk, reset: in std_logic; loadLength,loadDelay: in std_logic; data: in std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulse; architecture rtl of progPulse is signal downCnt, downCntData: unsigned(7 downto 0); signal downCntLd, downCntEn: std_logic; signal delayCntVal, pulseCntVal: unsigned(7 downto 0); signal startPulse, endPulse: std_logic; type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; begin delayreg: process (clk, reset) begin if reset = '1' then delayCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then delayCntVal <= to_unsigned(data); end if; end if; end process; lengthReg: process (clk, reset) begin if reset = '1' then pulseCntVal <= "11111111"; elsif clk'event and clk = '1' then if loadDelay = '1' then pulseCntVal <= to_unsigned(data); end if; end if; end process; nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCnt = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, pulseCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downCntData <= pulseCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downCntData <= pulseCntVal; pulse <= '0'; end case; end process outConProc; downCntr: process (clk,reset) begin if (reset = '1') then downCnt <= "00000000"; elsif (clk'event and clk = '1') then if (downCntLd = '1') then downCnt <= downCntData; elsif (downCntEn = '1') then downCnt <= downCnt - 1; else downCnt <= downCnt; end if; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); type stateVec is array (3 downto 0) of std_logic; type stateBits is array (progPulseFsmType) of stateVec; signal loadVal: std_logic; constant stateTable: stateBits := ( loadDelayCnt => "0010", waitDelayEnd => "0100", loadLengthCnt => "0011", waitLengthEnd => "1101" ); -- ^^^^ -- ||||__ loadVal -- |||___ downCntLd -- ||____ downCntEn -- |_____ pulse signal currState, nextState: progPulseFsmType; begin nextStProc: process (currState, downCnt, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (to_unsigned(downCnt) = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; pulse <= stateTable(currState)(3); downCntEn <= stateTable(currState)(2); downCntLd <= stateTable(currState)(1); loadVal <= stateTable(currState)(0); downCntData <= delayCntVal when loadVal = '0' else lengthCntVal; end fsm; -- Incorporates Errata 6.1 library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity progPulseFsm is port ( downCnt: in std_logic_vector(7 downto 0); delayCntVal: in std_logic_vector(7 downto 0); lengthCntVal: in std_logic_vector(7 downto 0); loadLength: in std_logic; loadDelay: in std_logic; clk: in std_logic; reset: in std_logic; downCntEn: out std_logic; downCntLd: out std_logic; downtCntData: out std_logic_vector(7 downto 0); pulse: out std_logic ); end progPulseFsm; architecture fsm of progPulseFsm is type progPulseFsmType is (loadDelayCnt, waitDelayEnd, loadLengthCnt, waitLengthEnd); signal currState, nextState: progPulseFsmType; signal downCntL: unsigned (7 downto 0); begin downCntL <= to_unsigned(downCnt); -- convert downCnt to unsigned nextStProc: process (currState, downCntL, loadDelay, loadLength) begin case currState is when loadDelayCnt => nextState <= waitDelayEnd; when waitDelayEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadLengthCnt; else nextState <= waitDelayEnd; end if; when loadLengthCnt => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; else nextState <= waitLengthEnd; end if; when waitLengthEnd => if (loadDelay = '1' or loadLength = '1') then nextState <= loadDelayCnt; elsif (downCntL = 0) then nextState <= loadDelayCnt; else nextState <= waitDelayEnd; end if; when others => null; end case; end process nextStProc; currStProc: process (clk, reset) begin if (reset = '1') then currState <= loadDelayCnt; elsif (clk'event and clk = '1') then currState <= nextState; end if; end process currStProc; outConProc: process (currState, delayCntVal, lengthCntVal) begin case currState is when loadDelayCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; when waitDelayEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= delayCntVal; pulse <= '0'; when loadLengthCnt => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= lengthCntVal; pulse <= '1'; when waitLengthEnd => downCntEn <= '1'; downCntLd <= '0'; downtCntData <= lengthCntVal; pulse <= '1'; when others => downCntEn <= '0'; downCntLd <= '1'; downtCntData <= delayCntVal; pulse <= '0'; end case; end process outConProc; end fsm; -- Incorporates errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; use work.specialFunctions.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(unsigned(inputVal)),4),16)); end process; end behavioral; -- Incorporate errata 5.4 library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= std_logic_vector(to_unsigned(Pow(to_integer(to_unsigned(inputVal)),4),16)); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all; use IEEE.std_logic_unsigned.all; entity powerOfFour is port( clk : in std_logic; inputVal : in std_logic_vector(3 downto 0); power : out std_logic_vector(15 downto 0) ); end powerOfFour; architecture behavioral of powerOfFour is function Pow( N, Exp : integer ) return integer is Variable Result : integer := 1; begin for i in 1 to Exp loop Result := Result * N; end loop; return( Result ); end Pow; begin process begin wait until Clk = '1'; power <= conv_std_logic_vector(Pow(conv_integer(inputVal),4),16); end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity regFile is port ( clk, rst: in std_logic; data: in std_logic_vector(31 downto 0); regSel: in std_logic_vector(1 downto 0); wrEnable: in std_logic; regOut: out std_logic_vector(31 downto 0) ); end regFile; architecture behavioral of regFile is subtype reg is std_logic_vector(31 downto 0); type regArray is array (integer range <>) of reg; signal registerFile: regArray(0 to 3); begin regProc: process (clk, rst) variable i: integer; begin i := 0; if rst = '1' then while i <= registerFile'high loop registerFile(i) <= (others => '0'); i := i + 1; end loop; elsif clk'event and clk = '1' then if (wrEnable = '1') then case regSel is when "00" => registerFile(0) <= data; when "01" => registerFile(1) <= data; when "10" => registerFile(2) <= data; when "11" => registerFile(3) <= data; when others => null; end case; end if; end if; end process; outputs: process(regSel, registerFile) begin case regSel is when "00" => regOut <= registerFile(0); when "01" => regOut <= registerFile(1); when "10" => regOut <= registerFile(2); when "11" => regOut <= registerFile(3); when others => null; end case; end process; end behavioral; library IEEE; use IEEE.std_logic_1164.all; entity DFF is port ( d1,d2: in std_logic; q1,q2: out std_logic; clk: in std_logic; rst : in std_logic ); end DFF; architecture rtl of DFF is begin resetLatch: process (clk, rst) begin if rst = '1' then q1 <= '0'; elsif clk'event and clk = '1' then q1 <= d1; q2 <= d2; end if; end process; end rtl; library ieee; use ieee.std_logic_1164.all; entity resFcnDemo is port ( a, b: in std_logic; oeA,oeB: in std_logic; result: out std_logic ); end resFcnDemo; architecture multiDriver of resFcnDemo is begin result <= a when oeA = '1' else 'Z'; result <= b when oeB = '1' else 'Z'; end multiDriver; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleDFF is port ( data: in std_logic_vector(7 downto 0); clock: in std_logic; enable: in std_logic; qout: out std_logic_vector(7 downto 0) ); end scaleDFF; architecture scalable of scaleDFF is begin u1: sDFFE port map (d => data, clk =>clock, en => enable, q => qout ); end scalable; library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is signal la_n, lb_n, lc_n, ld_n, le_n, lf_n, lg_n: std_logic; signal oe: std_logic; begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" la_n <= '1'; lb_n <= '1'; lc_n <= '1'; ld_n <= '1'; le_n <= '1'; lf_n <= '1'; lg_n <= '1'; case bcdInputs is when "0000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; when "0001" => lb_n <= '0'; lc_n <= '0'; when "0010" => la_n <= '0'; lb_n <= '0'; ld_n <= '0'; le_n <= '0'; lg_n <= '0'; when "0011" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lg_n <= '0'; when "0100" => lb_n <= '0'; lc_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0101" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0110" => la_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "0111" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; when "1000" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; le_n <= '0'; lf_n <= '0'; lg_n <= '0'; when "1001" => la_n <= '0'; lb_n <= '0'; lc_n <= '0'; ld_n <= '0'; lf_n <= '0'; lg_n <= '0'; -- All other inputs possibilities are "don't care" when others => la_n <= 'X'; lb_n <= 'X'; lc_n <= 'X'; ld_n <= 'X'; le_n <= 'X'; lf_n <= 'X'; lg_n <= 'X'; end case; end process bcd2sevSeg; -- Disable outputs for all invalid input values oe <= '1' when (bcdInputs < 10) else '0'; a_n <= la_n when oe = '1' else 'Z'; b_n <= lb_n when oe = '1' else 'Z'; c_n <= lc_n when oe = '1' else 'Z'; d_n <= ld_n when oe = '1' else 'Z'; e_n <= le_n when oe = '1' else 'Z'; f_n <= lf_n when oe = '1' else 'Z'; g_n <= lg_n when oe = '1' else 'Z'; end behavioral; library ieee; use ieee.std_logic_1164.all; use std.textio.all; entity sevenSegmentTB is end sevenSegmentTB; architecture testbench of sevenSegmentTB is component sevenSegment port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end component; type vector is record bcdStimulus: std_logic_vector(3 downto 0); sevSegOut: std_logic_vector(6 downto 0); end record; constant NumVectors: integer:= 17; constant PropDelay: time := 40 ns; constant SimLoopDelay: time := 10 ns; type vectorArray is array (0 to NumVectors - 1) of vector; constant vectorTable: vectorArray := ( (bcdStimulus => "0000", sevSegOut => "0000001"), (bcdStimulus => "0001", sevSegOut => "1001111"), (bcdStimulus => "0010", sevSegOut => "0010010"), (bcdStimulus => "0011", sevSegOut => "0000110"), (bcdStimulus => "0100", sevSegOut => "1001100"), (bcdStimulus => "0101", sevSegOut => "0100100"), (bcdStimulus => "0110", sevSegOut => "0100000"), (bcdStimulus => "0111", sevSegOut => "0001111"), (bcdStimulus => "1000", sevSegOut => "0000000"), (bcdStimulus => "1001", sevSegOut => "0000100"), (bcdStimulus => "1010", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1011", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1100", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1101", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1110", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "1111", sevSegOut => "ZZZZZZZ"), (bcdStimulus => "0000", sevSegOut => "0110110") -- this vector fails ); for all : sevenSegment use entity work.sevenSegment(behavioral); signal StimInputs: std_logic_vector(3 downto 0); signal CaptureOutputs: std_logic_vector(6 downto 0); begin u1: sevenSegment port map (bcdInputs => StimInputs, a_n => CaptureOutputs(6), b_n => CaptureOutputs(5), c_n => CaptureOutputs(4), d_n => CaptureOutputs(3), e_n => CaptureOutputs(2), f_n => CaptureOutputs(1), g_n => CaptureOutputs(0)); LoopStim: process variable FoundError: boolean := false; variable TempVector: vector; variable ErrorMsgLine: line; begin for i in vectorTable'range loop TempVector := vectorTable(i); StimInputs <= TempVector.bcdStimulus; wait for PropDelay; if CaptureOutputs /= TempVector.sevSegOut then write (ErrorMsgLine, string'("Vector failed at ")); write (ErrorMsgLine, now); writeline (output, ErrorMsgLine); FoundError := true; end if; wait for SimLoopDelay; end loop; assert FoundError report "No errors. All vectors passed." severity note; wait; end process; end testbench; library ieee; use ieee.std_logic_1164.all; entity sevenSegment is port ( bcdInputs: in std_logic_vector (3 downto 0); a_n, b_n, c_n, d_n, e_n, f_n, g_n: out std_logic ); end sevenSegment; architecture behavioral of sevenSegment is begin bcd2sevSeg: process (bcdInputs) begin -- Assign default to "off" a_n <= '1'; b_n <= '1'; c_n <= '1'; d_n <= '1'; e_n <= '1'; f_n <= '1'; g_n <= '1'; case bcdInputs is when "0000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; when "0001" => b_n <= '0'; c_n <= '0'; when "0010" => a_n <= '0'; b_n <= '0'; d_n <= '0'; e_n <= '0'; g_n <= '0'; when "0011" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; g_n <= '0'; when "0100" => b_n <= '0'; c_n <= '0'; f_n <= '0'; g_n <= '0'; when "0101" => a_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when "0110" => a_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "0111" => a_n <= '0'; b_n <= '0'; c_n <= '0'; when "1000" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; e_n <= '0'; f_n <= '0'; g_n <= '0'; when "1001" => a_n <= '0'; b_n <= '0'; c_n <= '0'; d_n <= '0'; f_n <= '0'; g_n <= '0'; when others => null; end case; end process bcd2sevSeg; end behavioral; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_unsigned.all; entity ForceShare is port ( a,b,c,d,e,f: in std_logic_vector (7 downto 0); result: out std_logic_vector(7 downto 0) ); end ForceShare; architecture behaviour of ForceShare is begin sum: process (a,c,b,d,e,f) variable tempSum: std_logic_vector(7 downto 0); begin tempSum := a + b; -- temporary node for sum if (tempSum = "10011010") then result <= c; elsif (tempSum = "01011001") then result <= d; elsif (tempSum = "10111011") then result <= e; else result <= f; end if; end process; end behaviour; library IEEE; use IEEE.std_logic_1164.all; entity shifter is port ( clk, rst: in std_logic; shiftEn,shiftIn: std_logic; q: out std_logic_vector (15 downto 0) ); end shifter; architecture behav of shifter is signal qLocal: std_logic_vector(15 downto 0); begin shift: process (clk, rst) begin if (rst = '1') then qLocal <= (others => '0'); elsif (clk'event and clk = '1') then if (shiftEn = '1') then qLocal <= qLocal(14 downto 0) & shiftIn; else qLocal <= qLocal; end if; end if; q <= qLocal; end process; end behav; library ieee; use ieee.std_logic_1164.all; entity lastAssignment is port (a, b: in std_logic; selA, selb: in std_logic; result: out std_logic ); end lastAssignment; architecture behavioral of lastAssignment is begin demo: process (a,b,selA,selB) begin if (selA = '1') then result <= a; else result <= '0'; end if; if (selB = '1') then result <= b; else result <= '0'; end if; end process demo; end behavioral; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '0' then b <= a; else b <= '0'; end if; end process; end basic; library ieee; use ieee.std_logic_1164.all; entity signalDemo is port ( a: in std_logic; b: out std_logic ); end signalDemo; architecture basic of signalDemo is signal c: std_logic; begin demo: process (a) begin c <= a; if c = '1' then b <= a; else b <= '0'; end if; end process; end basic; library IEEE; USE IEEE.std_logic_1164.all; package simPrimitives is component OR2 generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end component; component SimDFF generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end component; end simPrimitives; library IEEE; USE IEEE.std_logic_1164.all; entity OR2 is generic (tPD: time := 1 ns); port (I1, I2: in std_logic; Y: out std_logic ); end OR2; architecture simple of OR2 is begin Y <= I1 OR I2 after tPD; end simple; library IEEE; use IEEE.std_logic_1164.all; entity SimDFF is generic(tCQ: time := 1 ns; tS : time := 1 ns; tH : time := 1 ns ); port (D, Clk: in std_logic; Q: out std_logic ); end SimDff; architecture SimModel of SimDFF is begin reg: process (Clk, D) begin -- Assign output tCQ after rising clock edge if (Clk'event and Clk = '1') then Q <= D after tCQ; end if; -- Check setup time if (Clk'event and Clk = '1') then assert (D'last_event >= tS) report "Setup time violation" severity Warning; end if; -- Check hold time if (D'event and Clk'stable and Clk = '1') then assert (D'last_event - Clk'last_event > tH) report "Hold Time Violation" severity Warning; end if; end process; end simModel; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until rising_edge(clk); if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; entity SRFF is port ( s,r: in std_logic; clk: in std_logic; q: out std_logic ); end SRFF; architecture rtl of SRFF is begin process begin wait until clk = '1'; if s = '0' and r = '1' then q <= '0'; elsif s = '1' and r = '0' then q <= '1'; end if; end process; end rtl; library IEEE; use IEEE.std_logic_1164.all; package scaleable is component scaleUpCnt port ( clk: in std_logic; reset: in std_logic; cnt: in std_logic_vector ); end component; end scaleable; library IEEE; use IEEE.std_logic_1164.all; use work.primitive.all; entity scaleUpCnt is port ( clk: in std_logic; reset: in std_logic; cnt: out std_logic_vector ); end scaleUpCnt; architecture scaleable of scaleUpCnt is signal one: std_logic := '1'; signal cntL: std_logic_vector(cnt'range); signal andTerm: std_logic_vector(cnt'range); begin -- Special case is the least significant bit lsb: tff port map (t => one, reset => reset, clk => clk, q => cntL(cntL'low) ); andTerm(0) <= cntL(cntL'low); -- General case for all other bits genAnd: for i in 1 to cntL'high generate andTerm(i) <= andTerm(i - 1) and cntL(i); end generate; genTFF: for i in 1 to cntL'high generate t1: tff port map (t => andTerm(i), clk => clk, reset => reset, q => cntl(i) ); end generate; cnt <= CntL; end scaleable; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "010"; constant Turn_Ar: targetFsmType := "110"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(3 downto 0); constant Idle: targetFsmType := "0000"; constant B_Busy: targetFsmType := "0001"; constant Backoff: targetFsmType := "0011"; constant S_Data: targetFsmType := "1100"; constant Turn_Ar: targetFsmType := "1101"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "101"; constant Backoff: targetFsmType := "010"; constant S_Data: targetFsmType := "011"; constant Turn_Ar: targetFsmType := "110"; constant Dont_Care: targetFsmType := "XXX"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= Dont_Care; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Stop_n: out std_logic; -- PCI Stop# PCI_Trdy_n: out std_logic; -- PCI Trdy# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; type targetFsmType is (Idle, B_Busy, Backoff, S_Data, Turn_Ar); signal currState, nextState: targetFsmType; begin -- Process to generate next state logic nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; -- Process to register the current state curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; -- Process to generate outputs outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; -- Assign output ports PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; -- Incorporates Errata 10.1 and 10.2 library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(4 downto 0); constant Idle: integer := 0; constant B_Busy: integer := 1; constant Backoff: integer := 2; constant S_Data: integer := 3; constant Turn_Ar: integer := 4; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin nextState <= (others => '0'); if currState(Idle) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; if currState(B_Busy) = '1' then if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState(Idle) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState(S_Data) <= '1'; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState(Backoff) <= '1'; else nextState(B_Busy) <= '1'; end if; end if; if currState(S_Data) = '1' then if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState(Backoff) <= '1'; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState(Turn_Ar) <= '1'; else nextState(S_Data) <= '1'; end if; end if; if currState(Backoff) = '1' then if PCI_Frame_n = '1' then nextState(Turn_Ar) <= '1'; else nextState(Backoff) <= '1'; end if; end if; if currState(Turn_Ar) = '1' then if (PCI_Frame_n = '0' and Hit = '0') then nextState(B_Busy) <= '1'; else nextState(Idle) <= '1'; end if; end if; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= (others => '0'); -- per Errata 10.2 currState(Idle) <= '1'; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; -- defaults per errata 10.1 OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; if (currState(S_Data) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Backoff) = '1') then if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; end if; if (currState(Turn_Ar) = '1') then OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; end if; if (currState(Idle) = '1' or currState(B_Busy) = '1') then OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end if; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when IDLE => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when B_BUSY => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= IDLE; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= BACKOFF; else nextState <= B_BUSY; end if; when S_DATA => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= BACKOFF; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= TURN_AR; else nextState <= S_DATA; end if; when BACKOFF => if PCI_Frame_n = '1' then nextState <= TURN_AR; else nextState <= BACKOFF; end if; when TURN_AR => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_BUSY; else nextState <= IDLE; end if; when others => nextState <= IDLE; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin -- Set default output assignments OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library IEEE; use IEEE.std_logic_1164.all; entity pci_target is port ( PCI_Frame_n: in std_logic; -- PCI Frame# PCI_Irdy_n: in std_logic; -- PCI Irdy# Hit: in std_logic; -- Hit on address decode D_Done: in std_logic; -- Device decode complete Term: in std_logic; -- Terminate transaction Ready: in std_logic; -- Ready to transfer data Cmd_Write: in std_logic; -- Command is Write Cmd_Read: in std_logic; -- Command is Read T_Abort: in std_logic; -- Target error - abort transaction PCI_Clk: in std_logic; -- PCI Clock PCI_Reset_n: in std_logic; -- PCI Reset# PCI_Devsel_n: out std_logic; -- PCI Devsel# PCI_Trdy_n: out std_logic; -- PCI Trdy# PCI_Stop_n: out std_logic; -- PCI Stop# OE_AD: out std_logic; -- PCI AD bus enable OE_Trdy_n: out std_logic; -- PCI Trdy# enable OE_Stop_n: out std_logic; -- PCI Stop# enable OE_Devsel_n: out std_logic -- PCI Devsel# enable ); end pci_target; architecture fsm of pci_target is signal LPCI_Devsel_n, LPCI_Trdy_n, LPCI_Stop_n: std_logic; subtype targetFsmType is std_logic_vector(2 downto 0); constant Idle: targetFsmType := "000"; constant B_Busy: targetFsmType := "001"; constant Backoff: targetFsmType := "011"; constant S_Data: targetFsmType := "110"; constant Turn_Ar: targetFsmType := "100"; signal currState, nextState: targetFsmType; begin nxtStProc: process (currState, PCI_Frame_n, Hit, D_Done, PCI_Irdy_n, LPCI_Trdy_n, LPCI_Devsel_n, LPCI_Stop_n, Term, Ready) begin case currState is when Idle => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when B_Busy => if (PCI_Frame_n ='1' and D_Done = '1') or (PCI_Frame_n = '1' and D_Done = '0' and LPCI_Devsel_n = '0') then nextState <= Idle; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '0' or (Term = '1' and Ready = '1') ) then nextState <= S_Data; elsif (PCI_Frame_n = '0' or PCI_Irdy_n = '0') and Hit = '1' and (Term = '1' and Ready = '0') then nextState <= Backoff; else nextState <= B_Busy; end if; when S_Data => if PCI_Frame_n = '0' and LPCI_Stop_n = '0' and (LPCI_Trdy_n = '1' or PCI_Irdy_n = '0') then nextState <= Backoff; elsif PCI_Frame_n = '1' and (LPCI_Trdy_n = '0' or LPCI_Stop_n = '0') then nextState <= Turn_Ar; else nextState <= S_Data; end if; when Backoff => if PCI_Frame_n = '1' then nextState <= Turn_Ar; else nextState <= Backoff; end if; when Turn_Ar => if (PCI_Frame_n = '0' and Hit = '0') then nextState <= B_Busy; else nextState <= Idle; end if; when others => null; end case; end process nxtStProc; curStProc: process (PCI_Clk, PCI_Reset_n) begin if (PCI_Reset_n = '0') then currState <= Idle; elsif (PCI_Clk'event and PCI_Clk = '1') then currState <= nextState; end if; end process curStProc; outConProc: process (currState, Ready, T_Abort, Cmd_Write, Cmd_Read, T_Abort, Term) begin case currState is when S_Data => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; if (Ready = '1' and T_Abort = '0' and (Cmd_Write = '1' or Cmd_Read = '1')) then LPCI_Trdy_n <= '0'; else LPCI_Trdy_n <= '1'; end if; if (T_Abort = '1' or Term = '1') and (Cmd_Write = '1' or Cmd_Read = '1') then LPCI_Stop_n <= '0'; else LPCI_Stop_n <= '1'; end if; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when Backoff => if (Cmd_Read = '1') then OE_AD <= '1'; else OE_AD <= '0'; end if; LPCI_Stop_n <= '0'; OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; if (T_Abort = '0') then LPCI_Devsel_n <= '0'; else LPCI_Devsel_n <= '1'; end if; when Turn_Ar => OE_Trdy_n <= '1'; OE_Stop_n <= '1'; OE_Devsel_n <= '1'; when others => OE_Trdy_n <= '0'; OE_Stop_n <= '0'; OE_Devsel_n <= '0'; OE_AD <= '0'; LPCI_Trdy_n <= '1'; LPCI_Stop_n <= '1'; LPCI_Devsel_n <= '1'; end case; end process outConProc; PCI_Devsel_n <= LPCI_Devsel_n; PCI_Trdy_n <= LPCI_Trdy_n; PCI_Stop_n <= LPCI_Stop_n; end fsm; library ieee; use ieee.std_logic_1164.all; entity test is port ( a: in std_logic; z: out std_logic; en: in std_logic ); end test; architecture simple of test is begin z <= a when en = '1' else 'z'; end simple;
gpl-2.0
mbgh/aes128-hdl
src/vhdl/keyExpansion.vhd
1
12251
------------------------------------------------------------------------------- --! @file keyExpansion.vhd --! @brief AES-128 key expansion --! @project VLSI Book - AES-128 Example --! @author Michael Muehlberghuber ([email protected]) --! @company Integrated Systems Laboratory, ETH Zurich --! @copyright Copyright (C) 2014 Integrated Systems Laboratory, ETH Zurich --! @date 2014-06-05 --! @updated 2014-10-30 --! @platform Simulation: ModelSim; Synthesis: Synopsys --! @standard VHDL'93/02 ------------------------------------------------------------------------------- -- Revision Control System Information: -- File ID : $Id: keyExpansion.vhd 43 2014-10-30 12:22:52Z u59323933 $ -- Revision : $Revision: 43 $ -- Local Date : $Date: 2014-10-30 13:22:52 +0100 (Thu, 30 Oct 2014) $ -- Modified By : $Author: u59323933 $ ------------------------------------------------------------------------------- -- Major Revisions: -- Date Version Author Description -- 2014-06-05 1.0 michmueh Created -- 2014-06-10 1.1 michmueh Removed controlling FSM an replaced the -- roundkey enables with a simple shift -- register. ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.aes128Pkg.all; ------------------------------------------------------------------------------- --! @brief AES-128 key expansion --! --! The present design implements the key expansion for the 128-bit version of --! the Advanced Encryption Standard (AES). Since the design targets a --! high-throughput implementation, the key expansion is implemented using --! pipeline register between each roundkey calculation. ------------------------------------------------------------------------------- entity keyExpansion is port ( --! @brief System clock. Clk_CI : in std_logic; --! @brief Asynchronous, active-high reset. Reset_RBI : in std_logic; --! @brief Determines whether a new cipherkey has been applied or not. --! <TABLE BORDER="0"> --! <TR><TD>0</TD><TD>...</TD><TD>No new cipherkey has been applied.</TD></TR> --! <TR><TD>1</TD><TD>...</TD><TD>New cipherkey has been applied.</TD></TR> --! </TABLE> Start_SI : in std_logic; --! @brief The cipher key (master key) for the encryption/decryption. Cipherkey_DI : in std_logic_vector(127 downto 0); --! @brief The generated round keys. Roundkeys_DO : out roundkeyArrayType); end entity keyExpansion; ------------------------------------------------------------------------------- --! @brief Behavioral architecture description of AES-128 key expansion. ------------------------------------------------------------------------------- architecture Behavioral of keyExpansion is ----------------------------------------------------------------------------- -- Type definitions ----------------------------------------------------------------------------- type byteArrayType is array (0 to 9) of std_logic_vector(7 downto 0); type subWordArrayType is array (0 to 9) of Word; type expkeyArrayType is array (0 to 43) of Word; type rconArrayType is array (0 to 9) of Word; ----------------------------------------------------------------------------- -- Constants ----------------------------------------------------------------------------- constant RCON : byteArrayType := ( x"01", x"02", x"04", x"08", x"10", x"20", x"40", x"80", x"1B", x"36"); ----------------------------------------------------------------------------- -- Function declarations ----------------------------------------------------------------------------- -- purpose: Provides an exclusive-or (XOR) operation for words. function "xor" ( left : Word; right : Word) return Word is variable Result : Word; begin Result(0) := left(0) xor right(0); Result(1) := left(1) xor right(1); Result(2) := left(2) xor right(2); Result(3) := left(3) xor right(3); return Result; end "xor"; -- purpose: Converts a word to a std_logic_vector. The 0-th byte of the word -- becomes the most significant byte of the std_logic_vector. function conv_std_logic_vector ( input : Word) return std_logic_vector is begin -- function conv_std_logic_vector return input(0) & input(1) & input(2) & input(3); end function conv_std_logic_vector; -- purpose: Converts four words (i.e., a matrix) to a std_logic_vector. function conv_std_logic_vector ( column0 : Word; column1 : Word; column2 : Word; column3 : Word) return std_logic_vector is begin -- function conv_std_logic_vector return column0(0) & column0(1) & column0(2) & column0(3) & column1(0) & column1(1) & column1(2) & column1(3) & column2(0) & column2(1) & column2(2) & column2(3) & column3(0) & column3(1) & column3(2) & column3(3); end function conv_std_logic_vector; ----------------------------------------------------------------------------- -- Component declarations ----------------------------------------------------------------------------- component subWord is port ( In_DI : in Word; Out_DO : out Word); end component subWord; ----------------------------------------------------------------------------- -- Signals ----------------------------------------------------------------------------- -- ExpKey_D: Array of 32-bit words (each made up of four bytes) holding the -- expanded key. signal ExpKey_DN, ExpKey_DP : expkeyArrayType; -- SubWordIn_D: Array holding the ten inputs, each of them one 32-word wide, -- connected to the input of the AES S-box. signal SubWordIn_D : subWordArrayType; -- SubWordOut_D: Array holding the ten outputs, each of them one 32-word wide, -- connected to the output of the AES S-box. signal SubWordOut_D : subWordArrayType; -- Rcon_D: Array holding the ten signals after the XOR operation with the -- round constants. signal Rcon_D : rconArrayType; -- Roundkeys_D: Array holding all the roundkeys produced by the key epansion. signal Roundkeys_D : roundkeyArrayType; -- Shift register holding the enables for the roundkey registers. signal EnRndKeys_SN, EnRndKeys_SP : std_logic_vector(0 to 9); -- Indicates that all roundkey registers currently hold their correct value -- and must not be enabled (e.g., no new cipherkey is provided to the design -- and the corresponding roundkeys have already been derived). signal AllRndKeysDisabled_S : std_logic; begin -- architecture rtl ----------------------------------------------------------------------------- -- Component instantiations ----------------------------------------------------------------------------- -- Generate the ten SubWord instances. gen_subWords : for i in 0 to 9 generate subWords : subWord port map ( In_DI => SubWordIn_D(i), Out_DO => SubWordOut_D(i)); end generate gen_subWords; ----------------------------------------------------------------------------- -- Output assignments ----------------------------------------------------------------------------- -- Connect the columns of the expanded key to the round key outputs. gen_outputKeys : for i in 0 to 10 generate Roundkeys_DO(i) <= conv_std_logic_vector( ExpKey_DP(4*i), ExpKey_DP(4*i+1), ExpKey_DP(4*i+2), ExpKey_DP(4*i+3)); end generate gen_outputKeys; ----------------------------------------------------------------------------- -- Connect the cipherkey to the first four columns (i.e., words) of the -- expanded key. ----------------------------------------------------------------------------- -- Use the first roundkey (i.e., the actual cipherkey) as the first four -- 32-bit words of the expanded key. ExpKey_DN(0) <= conv_word(Cipherkey_DI(127 downto 96)) when Start_SI = '1' else ExpKey_DP(0); ExpKey_DN(1) <= conv_word(Cipherkey_DI(95 downto 64)) when Start_SI = '1' else ExpKey_DP(1); ExpKey_DN(2) <= conv_word(Cipherkey_DI(63 downto 32)) when Start_SI = '1' else ExpKey_DP(2); ExpKey_DN(3) <= conv_word(Cipherkey_DI(31 downto 0)) when Start_SI = '1' else ExpKey_DP(3); ----------------------------------------------------------------------------- -- Calculation of further round key words. ----------------------------------------------------------------------------- -- Since the "RotWord" function only performs a byte-wise rotation of a word, -- we can perform it either before or after the "SubWord" substitution. gen_roundKeys : for i in 0 to 9 generate SubWordIn_D(i) <= ExpKey_DP(4*i+3); Rcon_D(i)(0) <= SubWordOut_D(i)(1) xor RCON(i); Rcon_D(i)(1) <= SubWordOut_D(i)(2); Rcon_D(i)(2) <= SubWordOut_D(i)(3); Rcon_D(i)(3) <= SubWordOut_D(i)(0); -- Calculate the next expanded key only when the respective enable signal -- is set. ExpKey_DN(4*(i+1)+0) <= Rcon_D(i) xor ExpKey_DP(4*i) when EnRndKeys_SP(i) = '1' else ExpKey_DP(4*(i+1)+0); ExpKey_DN(4*(i+1)+1) <= Rcon_D(i) xor ExpKey_DP(4*i) xor ExpKey_DP(4*i+1) when EnRndKeys_SP(i) = '1' else ExpKey_DP(4*(i+1)+1); ExpKey_DN(4*(i+1)+2) <= Rcon_D(i) xor ExpKey_DP(4*i) xor ExpKey_DP(4*i+1) xor ExpKey_DP(4*i+2) when EnRndKeys_SP(i) = '1' else ExpKey_DP(4*(i+1)+2); ExpKey_DN(4*(i+1)+3) <= Rcon_D(i) xor ExpKey_DP(4*i) xor ExpKey_DP(4*i+1) xor ExpKey_DP(4*i+2) xor ExpKey_DP(4*i+3) when EnRndKeys_SP(i) = '1' else ExpKey_DP(4*(i+1)+3); end generate gen_roundKeys; ----------------------------------------------------------------------------- -- Compute the next state logic for the shift register holding the enables for -- the roundkeys. ----------------------------------------------------------------------------- -- The enables for the roundkeys are generated by a one-hot encoded shift -- register, which gets the start signal as an input. EnRndKeys_SN <= -- Start signal is set, so shift in a '1'. '1' & EnRndKeys_SP(0 to 8) when Start_SI = '1' else -- Since none of the roundkeys currently holds a substantial value, we do -- not even have to shift in the zeros, but just hold the current state -- (this might be the case when, the encryption pipeline has been emptied -- and no encryption is going on anymore, i.e., no other plaintext blocks -- have been provided). EnRndKeys_SP when AllRndKeysDisabled_S = '1' else -- Otherwise shift the enables such that they are proceeded correctly -- together with their current pipeline stage (this enables-holding shift -- register serves as kind of a shimming register). '0' & EnRndKeys_SP(0 to 8); ----------------------------------------------------------------------------- -- Compute the signal indicating that none of the roundkey registers has to -- be updated, i.e., no new cipherkey has to be propagated through the key -- expansion pipeline registers. ----------------------------------------------------------------------------- pComb_CalcAllRndKeysDisabled : process (EnRndKeys_SP) is variable tmp : std_logic; begin -- process pComb_CalcAllRndKeysDisabled tmp := EnRndKeys_SP(0); for i in 1 to 9 loop tmp := tmp or EnRndKeys_SP(i); end loop; -- i AllRndKeysDisabled_S <= not tmp; end process pComb_CalcAllRndKeysDisabled; ----------------------------------------------------------------------------- -- Flip Flops ----------------------------------------------------------------------------- pSequ_FlipFlops : process (Clk_CI, Reset_RBI) is begin -- process p_FlipFlops if Reset_RBI = '0' then -- asynchronous reset (active low) ExpKey_DP <= (others => ZERO_WORD); EnRndKeys_SP <= (others => '0'); elsif Clk_CI'event and Clk_CI = '1' then -- rising clock edge ExpKey_DP <= ExpKey_DN; EnRndKeys_SP <= EnRndKeys_SN; end if; end process pSequ_FlipFlops; end architecture Behavioral;
gpl-2.0
bluecmd/hackrf
firmware/cpld/sgpio_if/top_tb.vhd
19
3604
-- -- Copyright 2012 Jared Boone -- -- This file is part of HackRF. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; see the file COPYING. If not, write to -- the Free Software Foundation, Inc., 51 Franklin Street, -- Boston, MA 02110-1301, USA. LIBRARY ieee; USE ieee.std_logic_1164.ALL; ENTITY top_tb IS END top_tb; ARCHITECTURE behavior OF top_tb IS COMPONENT top PORT( HOST_DATA : INOUT std_logic_vector(7 downto 0); HOST_CAPTURE : OUT std_logic; HOST_DISABLE : IN std_logic; HOST_DIRECTION : IN std_logic; HOST_DECIM_SEL : IN std_logic_vector(2 downto 0); DA : IN std_logic_vector(7 downto 0); DD : OUT std_logic_vector(9 downto 0); CODEC_CLK : IN std_logic; CODEC_X2_CLK : IN std_logic ); END COMPONENT; --Inputs signal DA : std_logic_vector(7 downto 0) := (others => '0'); signal CODEC_CLK : std_logic := '0'; signal CODEC_X2_CLK : std_logic := '0'; signal HOST_DISABLE : std_logic := '1'; signal HOST_DIRECTION : std_logic := '0'; signal HOST_DECIM_SEL : std_logic_vector(2 downto 0) := "010"; --BiDirs signal HOST_DATA : std_logic_vector(7 downto 0); --Outputs signal DD : std_logic_vector(9 downto 0); signal HOST_CAPTURE : std_logic; begin uut: top PORT MAP ( HOST_DATA => HOST_DATA, HOST_CAPTURE => HOST_CAPTURE, HOST_DISABLE => HOST_DISABLE, HOST_DIRECTION => HOST_DIRECTION, HOST_DECIM_SEL => HOST_DECIM_SEL, DA => DA, DD => DD, CODEC_CLK => CODEC_CLK, CODEC_X2_CLK => CODEC_X2_CLK ); clk_process :process begin CODEC_CLK <= '1'; CODEC_X2_CLK <= '1'; wait for 12.5 ns; CODEC_X2_CLK <= '0'; wait for 12.5 ns; CODEC_CLK <= '0'; CODEC_X2_CLK <= '1'; wait for 12.5 ns; CODEC_X2_CLK <= '0'; wait for 12.5 ns; end process; adc_proc: process begin wait until rising_edge(CODEC_CLK); wait for 9 ns; DA <= "00000000"; wait until falling_edge(CODEC_CLK); wait for 9 ns; DA <= "00000001"; end process; sgpio_proc: process begin HOST_DATA <= (others => 'Z'); HOST_DIRECTION <= '0'; HOST_DISABLE <= '1'; wait for 135 ns; HOST_DISABLE <= '0'; wait for 1000 ns; HOST_DISABLE <= '1'; wait for 100 ns; HOST_DIRECTION <= '1'; wait for 100 ns; HOST_DISABLE <= '0'; for i in 0 to 10 loop HOST_DATA <= (others => '0'); wait until rising_edge(CODEC_CLK) and HOST_CAPTURE = '1'; HOST_DATA <= (others => '1'); wait until rising_edge(CODEC_CLK) and HOST_CAPTURE = '1'; end loop; wait; end process; end;
gpl-2.0
freecores/twofish
vhdl/twofish_ecb_tbl_testbench_192bits.vhd
1
10562
-- Twofish_ecb_tbl_testbench_192bits.vhd -- Copyright (C) 2006 Spyros Ninos -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this library; see the file COPYING. If not, write to: -- -- Free Software Foundation -- 59 Temple Place - Suite 330 -- Boston, MA 02111-1307, USA. -- -- description : this file is the testbench for the TABLES KAT of the twofish cipher with 192 bit key -- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_textio.all; use ieee.std_logic_arith.all; use std.textio.all; entity tbl_testbench192 is end tbl_testbench192; architecture tbl_encryption192_testbench_arch of tbl_testbench192 is component reg128 port ( in_reg128 : in std_logic_vector(127 downto 0); out_reg128 : out std_logic_vector(127 downto 0); enable_reg128, reset_reg128, clk_reg128 : in std_logic ); end component; component twofish_keysched192 port ( odd_in_tk192, even_in_tk192 : in std_logic_vector(7 downto 0); in_key_tk192 : in std_logic_vector(191 downto 0); out_key_up_tk192, out_key_down_tk192 : out std_logic_vector(31 downto 0) ); end component; component twofish_whit_keysched192 port ( in_key_twk192 : in std_logic_vector(191 downto 0); out_K0_twk192, out_K1_twk192, out_K2_twk192, out_K3_twk192, out_K4_twk192, out_K5_twk192, out_K6_twk192, out_K7_twk192 : out std_logic_vector(31 downto 0) ); end component; component twofish_encryption_round192 port ( in1_ter192, in2_ter192, in3_ter192, in4_ter192, in_Sfirst_ter192, in_Ssecond_ter192, in_Sthird_ter192, in_key_up_ter192, in_key_down_ter192 : in std_logic_vector(31 downto 0); out1_ter192, out2_ter192, out3_ter192, out4_ter192 : out std_logic_vector(31 downto 0) ); end component; component twofish_data_input port ( in_tdi : in std_logic_vector(127 downto 0); out_tdi : out std_logic_vector(127 downto 0) ); end component; component twofish_data_output port ( in_tdo : in std_logic_vector(127 downto 0); out_tdo : out std_logic_vector(127 downto 0) ); end component; component demux128 port ( in_demux128 : in std_logic_vector(127 downto 0); out1_demux128, out2_demux128 : out std_logic_vector(127 downto 0); selection_demux128 : in std_logic ); end component; component mux128 port ( in1_mux128, in2_mux128 : in std_logic_vector(127 downto 0); selection_mux128 : in std_logic; out_mux128 : out std_logic_vector(127 downto 0) ); end component; component twofish_S192 port ( in_key_ts192 : in std_logic_vector(191 downto 0); out_Sfirst_ts192, out_Ssecond_ts192, out_Sthird_ts192 : out std_logic_vector(31 downto 0) ); end component; FILE input_file : text is in "twofish_ecb_tbl_testvalues_192bits.txt"; FILE output_file : text is out "twofish_ecb_tbl_192bits_results.txt"; -- we create the functions that transform a number to text -- transforming a signle digit to a character function digit_to_char(number : integer range 0 to 9) return character is begin case number is when 0 => return '0'; when 1 => return '1'; when 2 => return '2'; when 3 => return '3'; when 4 => return '4'; when 5 => return '5'; when 6 => return '6'; when 7 => return '7'; when 8 => return '8'; when 9 => return '9'; end case; end; -- transforming multi-digit number to text function to_text(int_number : integer range 1 to 50) return string is variable our_text : string (1 to 3) := (others => ' '); variable hundreds, tens, ones : integer range 0 to 9; begin ones := int_number mod 10; tens := ((int_number mod 100) - ones) / 10; hundreds := (int_number - (int_number mod 100)) / 100; our_text(1) := digit_to_char(hundreds); our_text(2) := digit_to_char(tens); our_text(3) := digit_to_char(ones); return our_text; end; signal odd_number, even_number : std_logic_vector(7 downto 0); signal input_data, output_data, to_encr_reg128, from_tdi_to_xors, to_output_whit_xors, from_xors_to_tdo, to_mux, to_demux, from_input_whit_xors, to_round, to_input_mux : std_logic_vector(127 downto 0) ; signal twofish_key : std_logic_vector(191 downto 0); signal key_up, key_down, Sfirst, Ssecond, Sthird, from_xor0, from_xor1, from_xor2, from_xor3, K0,K1,K2,K3, K4,K5,K6,K7 : std_logic_vector(31 downto 0); signal clk : std_logic := '0'; signal mux_selection : std_logic := '0'; signal demux_selection: std_logic := '0'; signal enable_encr_reg : std_logic := '0'; signal reset : std_logic := '0'; signal enable_round_reg : std_logic := '0'; -- begin the testbench arch description begin -- getting data to encrypt data_input: twofish_data_input port map ( in_tdi => input_data, out_tdi => from_tdi_to_xors ); -- producing whitening keys K0..7 the_whitening_step: twofish_whit_keysched192 port map ( in_key_twk192 => twofish_key, out_K0_twk192 => K0, out_K1_twk192 => K1, out_K2_twk192 => K2, out_K3_twk192 => K3, out_K4_twk192 => K4, out_K5_twk192 => K5, out_K6_twk192 => K6, out_K7_twk192 => K7 ); -- performing the input whitening XORs from_xor0 <= K0 XOR from_tdi_to_xors(127 downto 96); from_xor1 <= K1 XOR from_tdi_to_xors(95 downto 64); from_xor2 <= K2 XOR from_tdi_to_xors(63 downto 32); from_xor3 <= K3 XOR from_tdi_to_xors(31 downto 0); from_input_whit_xors <= from_xor0 & from_xor1 & from_xor2 & from_xor3; round_reg: reg128 port map ( in_reg128 => from_input_whit_xors, out_reg128 => to_input_mux, enable_reg128 => enable_round_reg, reset_reg128 => reset, clk_reg128 => clk ); input_mux: mux128 port map ( in1_mux128 => to_input_mux, in2_mux128 => to_mux, out_mux128 => to_round, selection_mux128 => mux_selection ); -- creating a round the_keysched_of_the_round: twofish_keysched192 port map ( odd_in_tk192 => odd_number, even_in_tk192 => even_number, in_key_tk192 => twofish_key, out_key_up_tk192 => key_up, out_key_down_tk192 => key_down ); producing_the_Skeys: twofish_S192 port map ( in_key_ts192 => twofish_key, out_Sfirst_ts192 => Sfirst, out_Ssecond_ts192 => Ssecond, out_Sthird_ts192 => Sthird ); the_encryption_circuit: twofish_encryption_round192 port map ( in1_ter192 => to_round(127 downto 96), in2_ter192 => to_round(95 downto 64), in3_ter192 => to_round(63 downto 32), in4_ter192 => to_round(31 downto 0), in_Sfirst_ter192 => Sfirst, in_Ssecond_ter192 => Ssecond, in_Sthird_ter192 => Sthird, in_key_up_ter192 => key_up, in_key_down_ter192 => key_down, out1_ter192 => to_encr_reg128(127 downto 96), out2_ter192 => to_encr_reg128(95 downto 64), out3_ter192 => to_encr_reg128(63 downto 32), out4_ter192 => to_encr_reg128(31 downto 0) ); encr_reg: reg128 port map ( in_reg128 => to_encr_reg128, out_reg128 => to_demux, enable_reg128 => enable_encr_reg, reset_reg128 => reset, clk_reg128 => clk ); output_demux: demux128 port map ( in_demux128 => to_demux, out1_demux128 => to_output_whit_xors, out2_demux128 => to_mux, selection_demux128 => demux_selection ); -- don't forget the last swap !!! from_xors_to_tdo(127 downto 96) <= K4 XOR to_output_whit_xors(63 downto 32); from_xors_to_tdo(95 downto 64) <= K5 XOR to_output_whit_xors(31 downto 0); from_xors_to_tdo(63 downto 32) <= K6 XOR to_output_whit_xors(127 downto 96); from_xors_to_tdo(31 downto 0) <= K7 XOR to_output_whit_xors(95 downto 64); taking_the_output: twofish_data_output port map ( in_tdo => from_xors_to_tdo, out_tdo => output_data ); -- we create the clock clk <= not clk after 50 ns; -- period 100 ns tbl_proc: process variable key_f, -- key input from file pt_f, -- plaintext from file ct_f : line; -- ciphertext from file variable pt_v , -- plaintext vector ct_v : std_logic_vector(127 downto 0); -- ciphertext vector variable key_v : std_logic_vector(191 downto 0); -- key vector input variable counter : integer range 1 to 50 := 1; variable round : integer range 0 to 16 := 0; begin while not endfile(input_file) loop readline(input_file, key_f); readline(input_file, pt_f); readline(input_file,ct_f); hread(key_f,key_v); hread(pt_f,pt_v); hread(ct_f,ct_v); twofish_key <= key_v; input_data <= pt_v; wait for 25 ns; reset <= '1'; wait for 50 ns; reset <= '0'; mux_selection <= '0'; demux_selection <= '1'; enable_encr_reg <= '0'; enable_round_reg <= '0'; wait for 50 ns; enable_round_reg <= '1'; wait for 50 ns; enable_round_reg <= '0'; -- the first round even_number <= "00001000"; -- 8 odd_number <= "00001001"; -- 9 wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; demux_selection <= '1'; mux_selection <= '1'; -- the rest 15 rounds for round in 1 to 15 loop even_number <= conv_std_logic_vector(((round*2)+8), 8); odd_number <= conv_std_logic_vector(((round*2)+9), 8); wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; end loop; -- taking final results demux_selection <= '0'; wait for 25 ns; assert (ct_v = output_data) report "file entry and encryption result DO NOT match!!! :( " severity failure; assert (ct_v /= output_data) report "Encryption I=" & to_text(counter) &" OK" severity note; counter := counter+1; hwrite(pt_f,input_data); hwrite(ct_f,output_data); hwrite(key_f,key_v); writeline(output_file,key_f); writeline(output_file,pt_f); writeline(output_file,ct_f); end loop; assert false report "***** Tables Known Answer Test with 192 bits key size ended succesfully! :) *****" severity failure; end process tbl_proc; end tbl_encryption192_testbench_arch;
gpl-2.0
freecores/twofish
vhdl/twofish_cbc_decryption_monte_carlo_testbench_256bits.vhd
1
11593
-- Twofish_cbc_decryption_monte_carlo_testbench_256bits.vhd -- Copyright (C) 2006 Spyros Ninos -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this library; see the file COPYING. If not, write to: -- -- -- description : this file is the testbench for the Decryption Monte Carlo KAT of the twofish cipher with 256 bit key -- library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_textio.all; use ieee.std_logic_arith.all; use std.textio.all; entity cbc_decryption_monte_carlo_testbench256 is end cbc_decryption_monte_carlo_testbench256; architecture cbc_decryption256_monte_carlo_testbench_arch of cbc_decryption_monte_carlo_testbench256 is component reg128 port ( in_reg128 : in std_logic_vector(127 downto 0); out_reg128 : out std_logic_vector(127 downto 0); enable_reg128, reset_reg128, clk_reg128 : in std_logic ); end component; component twofish_keysched256 port ( odd_in_tk256, even_in_tk256 : in std_logic_vector(7 downto 0); in_key_tk256 : in std_logic_vector(255 downto 0); out_key_up_tk256, out_key_down_tk256 : out std_logic_vector(31 downto 0) ); end component; component twofish_whit_keysched256 port ( in_key_twk256 : in std_logic_vector(255 downto 0); out_K0_twk256, out_K1_twk256, out_K2_twk256, out_K3_twk256, out_K4_twk256, out_K5_twk256, out_K6_twk256, out_K7_twk256 : out std_logic_vector(31 downto 0) ); end component; component twofish_decryption_round256 port ( in1_tdr256, in2_tdr256, in3_tdr256, in4_tdr256, in_Sfirst_tdr256, in_Ssecond_tdr256, in_Sthird_tdr256, in_Sfourth_tdr256, in_key_up_tdr256, in_key_down_tdr256 : in std_logic_vector(31 downto 0); out1_tdr256, out2_tdr256, out3_tdr256, out4_tdr256 : out std_logic_vector(31 downto 0) ); end component; component twofish_data_input port ( in_tdi : in std_logic_vector(127 downto 0); out_tdi : out std_logic_vector(127 downto 0) ); end component; component twofish_data_output port ( in_tdo : in std_logic_vector(127 downto 0); out_tdo : out std_logic_vector(127 downto 0) ); end component; component demux128 port ( in_demux128 : in std_logic_vector(127 downto 0); out1_demux128, out2_demux128 : out std_logic_vector(127 downto 0); selection_demux128 : in std_logic ); end component; component mux128 port ( in1_mux128, in2_mux128 : in std_logic_vector(127 downto 0); selection_mux128 : in std_logic; out_mux128 : out std_logic_vector(127 downto 0) ); end component; component twofish_S256 port ( in_key_ts256 : in std_logic_vector(255 downto 0); out_Sfirst_ts256, out_Ssecond_ts256, out_Sthird_ts256, out_Sfourth_ts256 : out std_logic_vector(31 downto 0) ); end component; FILE input_file : text is in "twofish_cbc_decryption_monte_carlo_testvalues_256bits.txt"; FILE output_file : text is out "twofish_cbc_decryption_monte_carlo_256bits_results.txt"; -- we create the functions that transform a number to text -- transforming a signle digit to a character function digit_to_char(number : integer range 0 to 9) return character is begin case number is when 0 => return '0'; when 1 => return '1'; when 2 => return '2'; when 3 => return '3'; when 4 => return '4'; when 5 => return '5'; when 6 => return '6'; when 7 => return '7'; when 8 => return '8'; when 9 => return '9'; end case; end; -- transforming multi-digit number to text function to_text(int_number : integer range 0 to 9999) return string is variable our_text : string (1 to 4) := (others => ' '); variable thousands, hundreds, tens, ones : integer range 0 to 9; begin ones := int_number mod 10; tens := ((int_number mod 100) - ones) / 10; hundreds := ((int_number mod 1000) - (int_number mod 100)) / 100; thousands := (int_number - (int_number mod 1000)) / 1000; our_text(1) := digit_to_char(thousands); our_text(2) := digit_to_char(hundreds); our_text(3) := digit_to_char(tens); our_text(4) := digit_to_char(ones); return our_text; end; signal odd_number, even_number : std_logic_vector(7 downto 0); signal input_data, output_data, to_encr_reg128, from_tdi_to_xors, to_output_whit_xors, from_xors_to_tdo, to_mux, to_demux, from_input_whit_xors, to_round, to_input_mux : std_logic_vector(127 downto 0) ; signal twofish_key : std_logic_vector(255 downto 0); signal key_up, key_down, Sfirst, Ssecond, Sthird, Sfourth, from_xor0, from_xor1, from_xor2, from_xor3, K0,K1,K2,K3, K4,K5,K6,K7 : std_logic_vector(31 downto 0); signal clk : std_logic := '0'; signal mux_selection : std_logic := '0'; signal demux_selection: std_logic := '0'; signal enable_encr_reg : std_logic := '0'; signal reset : std_logic := '0'; signal enable_round_reg : std_logic := '0'; -- begin the testbench arch description begin -- getting data to encrypt data_input: twofish_data_input port map ( in_tdi => input_data, out_tdi => from_tdi_to_xors ); -- producing whitening keys K0..7 the_whitening_step: twofish_whit_keysched256 port map ( in_key_twk256 => twofish_key, out_K0_twk256 => K0, out_K1_twk256 => K1, out_K2_twk256 => K2, out_K3_twk256 => K3, out_K4_twk256 => K4, out_K5_twk256 => K5, out_K6_twk256 => K6, out_K7_twk256 => K7 ); -- performing the input whitening XORs from_xor0 <= K4 XOR from_tdi_to_xors(127 downto 96); from_xor1 <= K5 XOR from_tdi_to_xors(95 downto 64); from_xor2 <= K6 XOR from_tdi_to_xors(63 downto 32); from_xor3 <= K7 XOR from_tdi_to_xors(31 downto 0); from_input_whit_xors <= from_xor0 & from_xor1 & from_xor2 & from_xor3; round_reg: reg128 port map ( in_reg128 => from_input_whit_xors, out_reg128 => to_input_mux, enable_reg128 => enable_round_reg, reset_reg128 => reset, clk_reg128 => clk ); input_mux: mux128 port map ( in1_mux128 => to_input_mux, in2_mux128 => to_mux, out_mux128 => to_round, selection_mux128 => mux_selection ); -- creating a round the_keysched_of_the_round: twofish_keysched256 port map ( odd_in_tk256 => odd_number, even_in_tk256 => even_number, in_key_tk256 => twofish_key, out_key_up_tk256 => key_up, out_key_down_tk256 => key_down ); producing_the_Skeys: twofish_S256 port map ( in_key_ts256 => twofish_key, out_Sfirst_ts256 => Sfirst, out_Ssecond_ts256 => Ssecond, out_Sthird_ts256 => Sthird, out_Sfourth_ts256 => Sfourth ); the_decryption_circuit: twofish_decryption_round256 port map ( in1_tdr256 => to_round(127 downto 96), in2_tdr256 => to_round(95 downto 64), in3_tdr256 => to_round(63 downto 32), in4_tdr256 => to_round(31 downto 0), in_Sfirst_tdr256 => Sfirst, in_Ssecond_tdr256 => Ssecond, in_Sthird_tdr256 => Sthird, in_Sfourth_tdr256 => Sfourth, in_key_up_tdr256 => key_up, in_key_down_tdr256 => key_down, out1_tdr256 => to_encr_reg128(127 downto 96), out2_tdr256 => to_encr_reg128(95 downto 64), out3_tdr256 => to_encr_reg128(63 downto 32), out4_tdr256 => to_encr_reg128(31 downto 0) ); encr_reg: reg128 port map ( in_reg128 => to_encr_reg128, out_reg128 => to_demux, enable_reg128 => enable_encr_reg, reset_reg128 => reset, clk_reg128 => clk ); output_demux: demux128 port map ( in_demux128 => to_demux, out1_demux128 => to_output_whit_xors, out2_demux128 => to_mux, selection_demux128 => demux_selection ); -- don't forget the last swap !!! from_xors_to_tdo(127 downto 96) <= K0 XOR to_output_whit_xors(63 downto 32); from_xors_to_tdo(95 downto 64) <= K1 XOR to_output_whit_xors(31 downto 0); from_xors_to_tdo(63 downto 32) <= K2 XOR to_output_whit_xors(127 downto 96); from_xors_to_tdo(31 downto 0) <= K3 XOR to_output_whit_xors(95 downto 64); taking_the_output: twofish_data_output port map ( in_tdo => from_xors_to_tdo, out_tdo => output_data ); -- we create the clock clk <= not clk after 50 ns; -- period 100 ns cbc_dmc_proc: process variable key_f, -- key input from file pt_f, -- plaintext from file ct_f, iv_f : line; -- ciphertext from file variable key_v : std_logic_vector(255 downto 0); -- key vector input variable pt_v , -- plaintext vector ct_v, iv_v : std_logic_vector(127 downto 0); -- ciphertext vector variable counter_10000 : integer range 0 to 9999 := 0; -- counter for the 10.000 repeats in the 400 next ones variable counter_400 : integer range 0 to 399 := 0; -- counter for the 400 repeats variable round : integer range 0 to 16 := 0; -- holds the rounds variable PT, CT, CV, CTj_1 : std_logic_vector(127 downto 0) := (others => '0'); begin while not endfile(input_file) loop readline(input_file, key_f); readline(input_file, iv_f); readline(input_file,ct_f); readline(input_file, pt_f); hread(key_f,key_v); hread(iv_f, iv_v); hread(ct_f,ct_v); hread(pt_f,pt_v); twofish_key <= key_v; CV := iv_v; CT := ct_v; for counter_10000 in 0 to 9999 loop input_data <= CT; wait for 25 ns; reset <= '1'; wait for 50 ns; reset <= '0'; mux_selection <= '0'; demux_selection <= '1'; enable_encr_reg <= '0'; enable_round_reg <= '0'; wait for 50 ns; enable_round_reg <= '1'; wait for 50 ns; enable_round_reg <= '0'; -- the first round even_number <= "00100110"; -- 38 odd_number <= "00100111"; -- 39 wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; demux_selection <= '1'; mux_selection <= '1'; -- the rest 15 rounds for round in 1 to 15 loop even_number <= conv_std_logic_vector((((15-round)*2)+8), 8); odd_number <= conv_std_logic_vector((((15-round)*2)+9), 8); wait for 50 ns; enable_encr_reg <= '1'; wait for 50 ns; enable_encr_reg <= '0'; end loop; -- taking final results demux_selection <= '0'; wait for 25 ns; PT := output_data XOR CV; CV := CT; CT := PT; assert false report "I=" & to_text(counter_400) & " R=" & to_text(counter_10000) severity note; end loop; -- counter_10000 hwrite(key_f, key_v); hwrite(iv_f, iv_v); hwrite(ct_f, ct_v); hwrite(pt_f, PT); writeline(output_file,key_f); writeline(output_file, iv_f); writeline(output_file,ct_f); writeline(output_file,pt_f); assert (pt_v = PT) report "file entry and decryption result DO NOT match!!! :( " severity failure; assert (pt_v /= PT) report "Decryption I=" & to_text(counter_400) &" OK" severity note; counter_400 := counter_400 + 1; end loop; assert false report "***** CBC Decryption Monte Carlo Test with 256 bits key size ended succesfully! :) *****" severity failure; end process cbc_dmc_proc; end cbc_decryption256_monte_carlo_testbench_arch;
gpl-2.0
zefie/hackrf
firmware/cpld/sgpio_if_passthrough/top.vhd
14
1910
-- -- Copyright 2012 Jared Boone -- -- This file is part of HackRF. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; see the file COPYING. If not, write to -- the Free Software Foundation, Inc., 51 Franklin Street, -- Boston, MA 02110-1301, USA. library IEEE; use IEEE.STD_LOGIC_1164.ALL; library UNISIM; use UNISIM.vcomponents.all; entity top is Port( SGPIO : inout std_logic_vector(15 downto 0); DA : in std_logic_vector(7 downto 0); DD : out std_logic_vector(9 downto 0); CODEC_CLK : in std_logic; CODEC_X2_CLK : in std_logic; B1AUX : in std_logic_vector(16 downto 9); B2AUX : inout std_logic_vector(16 downto 1) ); end top; architecture Behavioral of top is type transfer_direction is (to_sgpio, from_sgpio); signal transfer_direction_i : transfer_direction; begin transfer_direction_i <= to_sgpio when B1AUX(9) = '0' else from_sgpio; DD <= (DD'high => '1', others => '0'); B2AUX <= SGPIO when transfer_direction_i = from_sgpio else (others => 'Z'); SGPIO <= B2AUX when transfer_direction_i = to_sgpio else (others => 'Z'); end Behavioral;
gpl-2.0
bluecmd/hackrf
firmware/cpld/sgpio_if/top.vhd
12
5535
-- -- Copyright 2012 Jared Boone -- Copyright 2013 Benjamin Vernoux -- -- This file is part of HackRF. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2, or (at your option) -- any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; see the file COPYING. If not, write to -- the Free Software Foundation, Inc., 51 Franklin Street, -- Boston, MA 02110-1301, USA. library IEEE; use IEEE.STD_LOGIC_1164.ALL; use ieee.std_logic_unsigned.all; library UNISIM; use UNISIM.vcomponents.all; entity top is Port( HOST_DATA : inout std_logic_vector(7 downto 0); HOST_CAPTURE : out std_logic; HOST_DISABLE : in std_logic; HOST_DIRECTION : in std_logic; HOST_DECIM_SEL : in std_logic_vector(2 downto 0); HOST_Q_INVERT : in std_logic; DA : in std_logic_vector(7 downto 0); DD : out std_logic_vector(9 downto 0); CODEC_CLK : in std_logic; CODEC_X2_CLK : in std_logic ); end top; architecture Behavioral of top is signal codec_clk_i : std_logic; signal adc_data_i : std_logic_vector(7 downto 0); signal dac_data_o : std_logic_vector(9 downto 0); signal host_clk_i : std_logic; type transfer_direction is (from_adc, to_dac); signal transfer_direction_i : transfer_direction; signal host_data_enable_i : std_logic; signal host_data_capture_o : std_logic; signal data_from_host_i : std_logic_vector(7 downto 0); signal data_to_host_o : std_logic_vector(7 downto 0); signal decimate_count : std_logic_vector(2 downto 0) := "111"; signal decimate_sel_i : std_logic_vector(2 downto 0); signal decimate_en : std_logic; signal q_invert : std_logic; signal rx_q_invert_mask : std_logic_vector(7 downto 0); signal tx_q_invert_mask : std_logic_vector(7 downto 0); begin ------------------------------------------------ -- Codec interface adc_data_i <= DA(7 downto 0); DD(9 downto 0) <= dac_data_o; ------------------------------------------------ -- Clocks codec_clk_i <= CODEC_CLK; BUFG_host : BUFG port map ( O => host_clk_i, I => CODEC_X2_CLK ); ------------------------------------------------ -- SGPIO interface HOST_DATA <= data_to_host_o when transfer_direction_i = from_adc else (others => 'Z'); data_from_host_i <= HOST_DATA; HOST_CAPTURE <= host_data_capture_o; host_data_enable_i <= not HOST_DISABLE; transfer_direction_i <= to_dac when HOST_DIRECTION = '1' else from_adc; decimate_sel_i <= HOST_DECIM_SEL; ------------------------------------------------ decimate_en <= '1' when decimate_count = "111" else '0'; process(host_clk_i) begin if rising_edge(host_clk_i) then if codec_clk_i = '1' then if decimate_count = "111" or host_data_enable_i = '0' then decimate_count <= decimate_sel_i; else decimate_count <= decimate_count + 1; end if; end if; end if; end process; q_invert <= HOST_Q_INVERT; rx_q_invert_mask <= X"80" when q_invert = '1' else X"7f"; tx_q_invert_mask <= X"7F" when q_invert = '1' else X"80"; process(host_clk_i) begin if rising_edge(host_clk_i) then if codec_clk_i = '1' then -- I: non-inverted between MAX2837 and MAX5864 data_to_host_o <= adc_data_i xor X"80"; else -- Q: inverted between MAX2837 and MAX5864 data_to_host_o <= adc_data_i xor rx_q_invert_mask; end if; end if; end process; process(host_clk_i) begin if rising_edge(host_clk_i) then if transfer_direction_i = to_dac then if codec_clk_i = '1' then dac_data_o <= (data_from_host_i xor tx_q_invert_mask) & tx_q_invert_mask(0) & tx_q_invert_mask(0); else dac_data_o <= (data_from_host_i xor X"80") & "00"; end if; else dac_data_o <= (dac_data_o'high => '0', others => '1'); end if; end if; end process; process(host_clk_i) begin if rising_edge(host_clk_i) then if transfer_direction_i = to_dac then if codec_clk_i = '1' then host_data_capture_o <= host_data_enable_i; end if; else if codec_clk_i = '0' then host_data_capture_o <= host_data_enable_i and decimate_en; end if; end if; end if; end process; end Behavioral;
gpl-2.0
mbgh/aes128-hdl
src/vhdl/cipherRound.vhd
1
3670
------------------------------------------------------------------------------- --! @file cipherRound.vhd --! @brief AES-128 single cipher round --! @project VLSI Book - AES-128 Example --! @author Michael Muehlberghuber ([email protected]) --! @company Integrated Systems Laboratory, ETH Zurich --! @copyright Copyright (C) 2014 Integrated Systems Laboratory, ETH Zurich --! @date 2014-06-05 --! @updated 2014-06-05 --! @platform Simulation: ModelSim; Synthesis: Synopsys, Xilinx XST/Vivado --! @standard VHDL'93/02 ------------------------------------------------------------------------------- -- Revision Control System Information: -- File ID : $Id: cipherRound.vhd 6 2014-06-12 12:49:55Z u59323933 $ -- Revision : $Revision: 6 $ -- Local Date : $Date: 2014-06-12 14:49:55 +0200 (Thu, 12 Jun 2014) $ -- Modified By : $Author: u59323933 $ ------------------------------------------------------------------------------- -- Major Revisions: -- Date Version Author Description -- 2014-06-05 1.0 michmueh Created ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library work; use work.aes128Pkg.all; ------------------------------------------------------------------------------- --! @brief AES-128 single cipher round --! --! Implements a single cipher round of the AES-128 encryption algorithm, which --! can then be instantiated multiple times in order to create a high-throughput --! architecture. ------------------------------------------------------------------------------- entity cipherRound is port ( --! @brief The internal state of AES being applied to this round. StateIn_DI : in Matrix; --! @brief The roundkey to be used for the current AES round. Roundkey_DI : in std_logic_vector(127 downto 0); --! @brief The resulting state of AES after applying this round. StateOut_DO : out Matrix); end entity cipherRound; ------------------------------------------------------------------------------- --! @brief Behavioral architecture description of a single AES round. ------------------------------------------------------------------------------- architecture Behavioral of cipherRound is ----------------------------------------------------------------------------- -- Component declarations ----------------------------------------------------------------------------- component subMatrix is port ( In_DI : in Matrix; Out_DO : out Matrix); end component subMatrix; component mixMatrix is port ( In_DI : in Matrix; Out_DO : out Matrix); end component mixMatrix; ----------------------------------------------------------------------------- -- Signals ----------------------------------------------------------------------------- signal SubMatrixOut_D : Matrix; -- State after "SubMatrix". signal ShiftRowsOut_D : Matrix; -- State after "ShiftRows". signal MixMatrixOut_D : Matrix; -- State after "MixColumns". begin -- architecture Behavioral ----------------------------------------------------------------------------- -- Component instantiations ----------------------------------------------------------------------------- subMatrix_1 : subMatrix port map ( In_DI => StateIn_DI, Out_DO => SubMatrixOut_D); mixMatrix_1 : entity work.mixMatrix port map ( In_DI => ShiftRowsOut_D, Out_DO => MixMatrixOut_D); ShiftRowsOut_D <= shift_rows(SubMatrixOut_D); StateOut_DO <= MixMatrixOut_D xor Roundkey_DI; end architecture Behavioral;
gpl-2.0
freecores/twofish
vhdl/twofish_testbenches_secondary_circuits.vhd
1
3119
-- Twofish_testbenches_secondary_circuits.vhd -- Copyright (C) 2006 Spyros Ninos -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this library; see the file COPYING. If not, write to: -- -- Free Software Foundation -- 59 Temple Place - Suite 330 -- Boston, MA 02111-1307, USA. -- -- description : this file contains all the secondary circuits that are needed for running the testbenches -- -- -- reg128 -- library ieee; use ieee.std_logic_1164.all; entity reg128 is port ( in_reg128 : in std_logic_vector(127 downto 0); out_reg128 : out std_logic_vector(127 downto 0); enable_reg128, reset_reg128,clk_reg128 : in std_logic ); end reg128; architecture reg128_arch of reg128 is begin clk_proc: process(clk_reg128, reset_reg128,enable_reg128) variable internal_state : std_logic_vector(127 downto 0); begin if reset_reg128 = '1' then internal_state := ( others => '0' ); elsif (clk_reg128'event and clk_reg128 = '1') then if enable_reg128='1' then internal_state := in_reg128; else internal_state := internal_state; end if; end if; out_reg128 <= internal_state; end process clk_proc; end reg128_arch; -- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -- -- -- -- new component -- -- -- -- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -- -- -- mux128 -- library ieee; use ieee.std_logic_1164.all; entity mux128 is port ( in1_mux128, in2_mux128 : in std_logic_vector(127 downto 0); selection_mux128 : in std_logic; out_mux128 : out std_logic_vector(127 downto 0) ); end mux128; architecture mux128_arch of mux128 is begin with selection_mux128 select out_mux128 <= in1_mux128 when '0', in2_mux128 when others; end mux128_arch; -- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -- -- -- -- new component -- -- -- -- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -- -- -- demux128 -- library ieee; use ieee.std_logic_1164.all; entity demux128 is port ( in_demux128 : in std_logic_vector(127 downto 0); out1_demux128, out2_demux128 : out std_logic_vector(127 downto 0); selection_demux128 : in std_logic ); end demux128; architecture demux128_arch of demux128 is begin demux_proc: process(in_demux128, selection_demux128) begin if selection_demux128 = '0' then out1_demux128 <= in_demux128; else out2_demux128 <= in_demux128; end if; end process demux_proc; end demux128_arch;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/uart/uart2.in.vhd
6
128
-- UART 2 constant CFG_UART2_ENABLE : integer := CONFIG_UART2_ENABLE; constant CFG_UART2_FIFO : integer := CFG_UA2_FIFO;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/srmmu/mmulru.vhd
1
6015
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: mmulru -- File: mmulru.vhd -- Author: Konrad Eisele, Jiri Gaisler, Gaisler Research -- Description: MMU LRU logic ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.config_types.all; use grlib.config.all; use grlib.amba.all; use grlib.stdlib.all; library gaisler; use gaisler.mmuconfig.all; use gaisler.mmuiface.all; entity mmulru is generic ( entries : integer := 8 ); port ( rst : in std_logic; clk : in std_logic; lrui : in mmulru_in_type; lruo : out mmulru_out_type ); end mmulru; architecture rtl of mmulru is constant entries_log : integer := log2(entries); component mmulrue generic ( position : integer; entries : integer := 8 ); port ( rst : in std_logic; clk : in std_logic; lruei : in mmulrue_in_type; lrueo : out mmulrue_out_type ); end component; type lru_rtype is record bar : std_logic_vector(1 downto 0); clear : std_logic_vector(M_ENT_MAX-1 downto 0); end record; constant RESET_ALL : boolean := GRLIB_CONFIG_ARRAY(grlib_sync_reset_enable_all) = 1; constant ASYNC_RESET : boolean := GRLIB_CONFIG_ARRAY(grlib_async_reset_enable) = 1; signal c,r : lru_rtype; signal lruei : mmulruei_a (entries-1 downto 0); signal lrueo : mmulrueo_a (entries-1 downto 0); begin p0: process (rst, r, lrui, lrueo) variable v : lru_rtype; variable reinit : std_logic; variable pos : std_logic_vector(entries_log-1 downto 0); variable touch : std_logic; begin v := r; -- #init reinit := '0'; --# eather element in luri or element 0 to top pos := lrui.pos(entries_log-1 downto 0); touch := lrui.touch; if (lrui.touchmin) = '1' then pos := lrueo(0).pos(entries_log-1 downto 0); touch := '1'; end if; for i in entries-1 downto 0 loop lruei(i).pos <= (others => '0'); -- this is really ugly ... lruei(i).left <= (others => '0'); lruei(i).right <= (others => '0'); lruei(i).pos(entries_log-1 downto 0) <= pos; lruei(i).touch <= touch; lruei(i).clear <= r.clear((entries-1)-i); -- reverse order lruei(i).flush <= lrui.flush; end loop; lruei(entries-1).fromleft <= '0'; lruei(entries-1).fromright <= lrueo(entries-2).movetop; lruei(entries-1).right(entries_log-1 downto 0) <= lrueo(entries-2).pos(entries_log-1 downto 0); for i in entries-2 downto 1 loop lruei(i).left(entries_log-1 downto 0) <= lrueo(i+1).pos(entries_log-1 downto 0); lruei(i).right(entries_log-1 downto 0) <= lrueo(i-1).pos(entries_log-1 downto 0); lruei(i).fromleft <= lrueo(i+1).movetop; lruei(i).fromright <= lrueo(i-1).movetop; end loop; lruei(0).fromleft <= lrueo(1).movetop; lruei(0).fromright <= '0'; lruei(0).left(entries_log-1 downto 0) <= lrueo(1).pos(entries_log-1 downto 0); if not (r.bar = lrui.mmctrl1.bar) then reinit := '1'; end if; if ((not ASYNC_RESET) and (not RESET_ALL) and (rst = '0')) or (reinit = '1') then v.bar := lrui.mmctrl1.bar; v.clear := (others => '0'); case lrui.mmctrl1.bar is when "01" => v.clear(1 downto 0) := "11"; -- reverse order when "10" => v.clear(2 downto 0) := "111"; -- reverse order when "11" => v.clear(4 downto 0) := "11111"; -- reverse order when others => v.clear(0) := '1'; end case; end if; --# drive signals lruo.pos <= lrueo(0).pos; c <= v; end process p0; syncrregs : if not ASYNC_RESET generate p1: process (clk) begin if rising_edge(clk) then r <= c; if RESET_ALL and (rst = '0') then r.bar <= lrui.mmctrl1.bar; r.clear <= (others => '0'); case lrui.mmctrl1.bar is when "01" => r.clear(1 downto 0) <= "11"; -- reverse order when "10" => r.clear(2 downto 0) <= "111"; -- reverse order when "11" => r.clear(4 downto 0) <= "11111"; -- reverse order when others => r.clear(0) <= '1'; end case; end if; end if; end process p1; end generate; asyncrregs : if ASYNC_RESET generate p1: process (clk, rst) begin if rst = '0' then r.bar <= mmctrl_type1_none.bar; r.clear <= (others => '0'); r.clear(0) <= '1'; elsif rising_edge(clk) then r <= c; end if; end process p1; end generate; --# lru entries lrue0: for i in entries-1 downto 0 generate l1 : mmulrue generic map ( position => i, entries => entries ) port map (rst, clk, lruei(i), lrueo(i)); end generate lrue0; end rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/esa/pci/pci_arb.vhd
4
18127
---------------------------------------------------------------------------- -- This file is a part of the LEON VHDL model -- Copyright (C) 1999 European Space Agency (ESA) -- -- This library is free software; you can redistribute it and/or -- modify it under the terms of the GNU Lesser General Public -- License as published by the Free Software Foundation; either -- version 2 of the License, or (at your option) any later version. -- -- See the file COPYING.LGPL for the full details of the license. --============================================================================-- -- Design unit : pci_arb -- -- File name : pci_arb.vhd -- -- Purpose : Arbiter for the PCI bus -- - configurable size: 4, 8, 16, 32 agents -- - nested round-robbing in two different priority levels -- - priority assignment hard-coded or APB-programmable -- -- Reference : PCI Local Bus Specification, Revision 2.1, -- PCI Special Interest Group, 1st June 1995 -- (for information: http: -- Reference : AMBA(TM) Specification (Rev 2.0), ARM IHI 0011A, -- 13th May 1999, issue A, first release, ARM Limited -- The document can be retrieved from http: -- -- Note : Numbering for req_n, gnt_n, or priority levels is in -- increasing order <0 = left> to <NUMBER-1 = right>. -- APB data/address arrays are in the conventional order: -- The least significant bit is located to the -- right, carrying the lower index number (usually 0). -- The arbiter considers strong signal levels ('1' and '0') -- only. Weak levels ('H', 'L') are not considered. The -- appropriate translation function (to_X01) must be applied -- to the inputs. This is usually done by the pads, -- and therefore not contained in this model. -- -- Configuration: The arbiter can be configured to NB_AGENTS = 4, 8, 16 or 32. -- A priority level (0 = high, 1 = low) is assigned to each device. -- Exception is agent NB_AGENTS-1, which has always lowest priority. -- -- a) The priority levels are hard-coded, when APB_PRIOS = false. -- In this case, the APB ports (pbi/pbo) are unconnected. -- The constant ARB_LVL_C must then be set to appropriate values. -- -- b) When APB_PRIOS = true, the levels are programmable via the -- APB-address 0x80 (allows to be ored with the PCI interface): -- Bit 31 (leftmost) = master 31 . . bit 0 (rightmost) = master 0. -- Bit NB_AGENTS-1 is dont care at write and reads 1. -- Bits NB_AGENTS to 31, if existing, are dont care and read 0. -- The constant ARB_LVL_C is then the reset value. -- -- Algorithm : The algorithm is described in the implementation note of -- section 3.4 of the PCI standard: -- The bus is granted by two nested round-robbing loops. -- An agent number and a priority level is assigned to each agent. -- The agent number determines, the pair of req_n/gnt_n lines. -- Agents are counted from 0 to NB_AGENTS-1. -- All agents in one level have equal access to the bus -- (round-robbing); all agents of level 1 as a group have access -- equal to each agent of level 0. -- Re-arbitration occurs, when frame_n is asserted, as soon -- as any other master has requested the bus, but only -- once per transaction. -- -- b) With programmable priorities. The priority level of all -- agents (except NB_AGENTS-1) is programmable via APB. -- In a 256 byte APB address range, the priority level of -- agent N is accessed via the address 0x80 + 4*N. The APB -- slave returns 0 on all non-implemented addresses, the -- address bits (1:0) are not decoded. Since only addresses -- >= 0x80 are occupied, it can be used in parallel (ored -- read data) with our PCI interface (uses <= 0x78). -- The constant ARB_LVL_C in pci_arb_pkg is the reset value. -- -- Timeout: The "broken master" timeout is another reason for -- re-arbitration (section 3.4.1 of the standard). Grant is -- removed from an agent, which has not started a cycle -- within 16 cycles after request (and grant). Reporting of -- such a 'broken' master is not implemented. -- -- Turnover: A turnover cycle is required by the standard, when re- -- arbitration occurs during idle state of the bus. -- Notwithstanding to the standard, "idle state" is assumed, -- when frame_n is high for more than 1 cycle. -- -- Bus parking : The bus is parked to agent 0 after reset, it remains granted -- to the last owner, if no other agent requests the bus. -- When another request is asserted, re-arbitration occurs -- after one turnover cycle. -- -- Lock : Lock is defined as a resource lock by the PCI standard. -- The optional bus lock mentioned in the standard is not -- considered here and there are no special conditions to -- handle when lock_n is active. -- in arbitration. -- -- Latency : Latency control in PCI is via the latency counters of each -- agent. The arbiter does not perform any latency check and -- a once granted agent continues its transaction until its -- grant is removed AND its own latency counter has expired. -- Even though, a bus re-arbitration occurs during a -- transaction, the hand-over only becomes effective, -- when the current owner deasserts frame_n. -- -- Limitations : [add here known bugs and limitations] -- -- Library : work -- -- Dependencies : LEON config package -- package amba, can be retrieved from: -- http: -- -- Author : Roland Weigand <[email protected]> -- European Space Agency (ESA) -- Microelectronics Section (TOS-ESM) -- P.O. Box 299 -- NL-2200 AG Noordwijk ZH -- The Netherlands -- -- Contact : mailto:[email protected] -- http: -- Copyright (C): European Space Agency (ESA) 2002. -- This source code is free software; you can redistribute it -- and/or modify it under the terms of the GNU Lesser General -- Public License as published by the Free Software Foundation; -- either version 2 of the License, or (at your option) any -- later version. For full details of the license see file -- http: -- -- It is recommended that any use of this VHDL source code is -- reported to the European Space Agency. It is also recommended -- that any use of the VHDL source code properly acknowledges the -- European Space Agency as originator. -- Disclaimer : All information is provided "as is", there is no warranty that -- the information is correct or suitable for any purpose, -- neither implicit nor explicit. This information does not -- necessarily reflect the policy of the European Space Agency. -- -- Simulator : Modelsim 5.5e on Linux RedHat 7.2 -- -- Synthesis : Synopsys Version 1999.10 on Sparc + Solaris 5.5.1 -- -------------------------------------------------------------------------------- -- Version Author Date Changes -- -- 0.0 R. W. 2000/11/02 File created -- 0.1 J.Gaisler 2001/04/10 Integrated in LEON -- 0.2 R. Weigand 2001/04/25 Connect arb_lvl reg to AMBA clock/reset -- 0.3 R. Weigand 2002/03/19 Default assignment to owneri in find_next -- 1.0 RW. 2002/04/08 Implementation of TMR registers -- Removed recursive function call -- Fixed ARB_LEVELS = 2 -- 3.0 R. Weigand 2002/04/16 Released for leon2 -- 4.0 M. Isomaki 2004/10/19 Minor changes for GRLIB integration -- 4.1 J.Gaisler 2004/11/17 Minor changes for GRLIB integration --$Log$ -- Revision 3.1 2002/07/31 13:22:09 weigand -- Bugfix for cases where no valid request in level 0 (level 1 was not rearbitrated) -- -- Revision 3.0 2002/07/24 12:19:38 weigand -- Installed RCS with version 3.0 -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.stdlib.all; library esa; use esa.pci_arb_pkg.all; entity pci_arb is generic(NB_AGENTS : integer := 4; ARB_SIZE : integer := 2; APB_EN : integer := 1 ); port (clk : in clk_type; -- clock rst_n : in std_logic; -- async reset active low req_n : in std_logic_vector(0 to NB_AGENTS-1); -- bus request frame_n : in std_logic; gnt_n : out std_logic_vector(0 to NB_AGENTS-1); -- bus grant pclk : in clk_type; -- APB clock prst_n : in std_logic; -- APB reset pbi : in EAPB_Slv_In_Type; -- APB inputs pbo : out EAPB_Slv_Out_Type -- APB outputs ); end pci_arb; architecture rtl of pci_arb is subtype agent_t is std_logic_vector(ARB_SIZE-1 downto 0); subtype arb_lvl_t is std_logic_vector(NB_AGENTS-1 downto 0); subtype agentno_t is integer range 0 to NB_AGENTS-1; -- Note: the agent with the highest index (3, 7, 15, 31) is always in level 1 -- Example: x010 = prio 0 for agent 2 and 0, prio 1 for agent 3 and 1. -- Default: start with all devices equal priority at level 1. constant ARB_LVL_C : arb_lvl_t := (others => '1'); constant all_ones : std_logic_vector(0 to NB_AGENTS-1) := (others => '1'); --Necessary definitions from amba.vhd and iface.vhd --added to pci_arb package with modified names to avoid --name clashes in GRLIB constant APB_PRIOS : boolean := APB_EN = 1; signal owner0, owneri0 : agent_t; -- current owner in level 0 signal owner1, owneri1 : agent_t; -- current owner in level 1 signal cown, cowni : agent_t; -- current level signal rearb, rearbi : std_logic; -- re-arbitration flag signal tout, touti : std_logic_vector(3 downto 0); -- timeout counter signal turn, turni : std_logic; -- turnaround cycle signal arb_lvl, arb_lvli : arb_lvl_t; -- := ARB_LVL_C; -- level registers type nmstarr is array (0 to 3) of agentno_t; type nvalarr is array (0 to 3) of boolean; begin -- rtl ---------------------------------------------------------------------------- -- PCI ARBITER ---------------------------------------------------------------------------- -- purpose: Grants the bus depending on the request signals. All agents have -- equal priority, if another request occurs during a transaction, the bus is -- granted to the new agent. However, PCI protocol specifies that the master -- can finish the current transaction within the limit of its latency timer. arbiter : process(cown, owner0, owner1, req_n, rearb, tout, turn, frame_n, arb_lvl, rst_n) variable owner0v, owner1v : agentno_t; -- integer variables for current owner variable new_request : agentno_t; -- detected request variable nmst : nmstarr; variable nvalid : nvalarr; begin -- process arbiter -- default assignments rearbi <= rearb; owneri0 <= owner0; owneri1 <= owner1; cowni <= cown; touti <= tout; turni <= '0'; -- no turnaround -- re-arbitrate once during the transaction, -- or when timeout counter expired (bus idle). if (frame_n = '0' and rearb = '0') or turn = '1' then owner0v := conv_integer(owner0); owner1v := conv_integer(owner1); new_request := conv_integer(cown); nvalid(0 to 3) := (others => false); nmst(0 to 3) := (others => 0); -- Determine next request in both priority levels rob : for i in NB_AGENTS-1 downto 0 loop -- consider all masters with valid request if req_n(i) = '0' then -- next in prio level 0 if arb_lvl(i) = '0' then if i > owner0v then nmst(0) := i; nvalid(0) := true; elsif i < owner0v then nmst(1) := i; nvalid(1) := true; end if; -- next in prio level 1 elsif arb_lvl(i) = '1' then if i > owner1v then nmst(2) := i; nvalid(2) := true; elsif i < owner1v then nmst(3) := i; nvalid(3) := true; end if; end if; -- arb_lvl end if; -- req_n end loop rob; -- select new master if nvalid(0) then -- consider level 0 before wrap new_request := nmst(0); owner0v := nmst(0); -- consider level 1 only once, except when no request in level 0 elsif owner0v /= NB_AGENTS-1 or not nvalid(1) then if nvalid(2) then -- level 1 before wrap new_request := nmst(2); owner0v := NB_AGENTS-1; owner1v := nmst(2); elsif nvalid(3) then -- level 1 after wrap new_request := nmst(3); owner0v := NB_AGENTS-1; owner1v := nmst(3); end if; elsif nvalid(1) then -- level 0 after wrap new_request := nmst(1); owner0v := nmst(1); end if; owneri0 <= conv_std_logic_vector(owner0v, ARB_SIZE); owneri1 <= conv_std_logic_vector(owner1v, ARB_SIZE); -- rearbitration if any request asserted & different from current owner if conv_integer(cown) /= new_request then -- if idle state: turnaround cycle required by PCI standard cowni <= conv_std_logic_vector(new_request, ARB_SIZE); touti <= "0000"; -- reset timeout counter if turn = '0' then rearbi <= '1'; -- only one re-arbitration end if; end if; elsif frame_n = '1' then rearbi <= '0'; end if; -- if frame deasserted, but request asserted: count timeout if req_n = all_ones then -- no request: prepare timeout counter touti <= "1111"; elsif frame_n = '1' then -- request, but no transaction if tout = "1111" then -- timeout expired, re-arbitrate turni <= '1'; -- remove grant, turnaround cycle touti <= "0000"; -- next cycle re-arbitrate else touti <= tout + 1; end if; end if; grant : for i in 0 to NB_AGENTS-1 loop if i = conv_integer(cown) and turn = '0' then gnt_n(i) <= '0'; else gnt_n(i) <= '1'; end if; end loop grant; -- synchronous reset if rst_n = '0' then touti <= "0000"; cowni <= (others => '0'); owneri0 <= (others => '0'); owneri1 <= (others => '0'); rearbi <= '0'; turni <= '0'; new_request := 0; end if; end process arbiter; arb_lvl(NB_AGENTS-1) <= '1'; -- always prio 1. fixed_prios : if not APB_PRIOS generate -- assign constant value arb_lvl(NB_AGENTS-2 downto 0) <= ARB_LVL_C(NB_AGENTS-2 downto 0); end generate fixed_prios; -- Generate APB regs and APB slave apbgen : if APB_PRIOS generate -- purpose: APB read and write of arb_lvl configuration registers -- type: memoryless -- inputs: pbi, arb_lvl, prst_n -- outputs: pbo, arb_lvli config : process (pbi, arb_lvl, prst_n) begin -- process config arb_lvli <= arb_lvl; pbo.PRDATA <= (others => '0'); -- default for unimplemented addresses -- register select at (byte-) addresses 0x80 if pbi.PADDR(7 downto 0) = "10000000" and pbi.PSEL = '1' then -- address select if (pbi.PWRITE and pbi.PENABLE) = '1' then -- APB write arb_lvli <= pbi.PWDATA(NB_AGENTS-1 downto 0); end if; pbo.PRDATA(NB_AGENTS-1 downto 0) <= arb_lvl; end if; -- synchronous reset if prst_n = '0' then arb_lvli <= ARB_LVL_C; -- assign default value end if; end process config; -- APB registers apb_regs : process (pclk) begin -- process regs -- activities triggered by asynchronous reset (active low) if pclk'event and pclk = '1' then -- ' arb_lvl(NB_AGENTS-2 downto 0) <= arb_lvli(NB_AGENTS-2 downto 0); end if; end process apb_regs; end generate apbgen; -- PCI registers regs0 : process (clk) begin -- process regs if clk'event and clk = '1' then -- ' tout <= touti; owner0 <= owneri0; owner1 <= owneri1; cown <= cowni; rearb <= rearbi; turn <= turni; end if; end process regs0; end rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/misc/ahbstat.in.vhd
6
144
-- AHB status register constant CFG_AHBSTAT : integer := CONFIG_AHBSTAT_ENABLE; constant CFG_AHBSTATN : integer := CONFIG_AHBSTAT_NFTSLV;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-terasic-de0-nano/config.vhd
1
6412
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench configuration -- Copyright (C) 2009 Aeroflex Gaisler ------------------------------------------------------------------------------ library techmap; use techmap.gencomp.all; package config is -- Technology and synthesis options constant CFG_FABTECH : integer := cyclone3; constant CFG_MEMTECH : integer := cyclone3; constant CFG_PADTECH : integer := cyclone3; constant CFG_TRANSTECH : integer := GTP0; constant CFG_NOASYNC : integer := 0; constant CFG_SCAN : integer := 0; -- Clock generator constant CFG_CLKTECH : integer := cyclone3; constant CFG_CLKMUL : integer := (5); constant CFG_CLKDIV : integer := (5); constant CFG_OCLKDIV : integer := 1; constant CFG_OCLKBDIV : integer := 0; constant CFG_OCLKCDIV : integer := 0; constant CFG_PCIDLL : integer := 0; constant CFG_PCISYSCLK: integer := 0; constant CFG_CLK_NOFB : integer := 0; -- LEON3 processor core constant CFG_LEON3 : integer := 1; constant CFG_NCPU : integer := (1); constant CFG_NWIN : integer := (8); constant CFG_V8 : integer := 16#32# + 4*0; constant CFG_MAC : integer := 0; constant CFG_BP : integer := 1; constant CFG_SVT : integer := 1; constant CFG_RSTADDR : integer := 16#00000#; constant CFG_LDDEL : integer := (1); constant CFG_NOTAG : integer := 0; constant CFG_NWP : integer := (2); constant CFG_PWD : integer := 1*2; constant CFG_FPU : integer := 0 + 16*0 + 32*0; constant CFG_GRFPUSH : integer := 0; constant CFG_ICEN : integer := 1; constant CFG_ISETS : integer := 2; constant CFG_ISETSZ : integer := 4; constant CFG_ILINE : integer := 8; constant CFG_IREPL : integer := 2; constant CFG_ILOCK : integer := 0; constant CFG_ILRAMEN : integer := 0; constant CFG_ILRAMADDR: integer := 16#8E#; constant CFG_ILRAMSZ : integer := 1; constant CFG_DCEN : integer := 1; constant CFG_DSETS : integer := 1; constant CFG_DSETSZ : integer := 4; constant CFG_DLINE : integer := 4; constant CFG_DREPL : integer := 0; constant CFG_DLOCK : integer := 0; constant CFG_DSNOOP : integer := 0*2 + 4*0; constant CFG_DFIXED : integer := 16#0#; constant CFG_DLRAMEN : integer := 0; constant CFG_DLRAMADDR: integer := 16#8F#; constant CFG_DLRAMSZ : integer := 1; constant CFG_MMUEN : integer := 0; constant CFG_ITLBNUM : integer := 2; constant CFG_DTLBNUM : integer := 2; constant CFG_TLB_TYPE : integer := 1 + 0*2; constant CFG_TLB_REP : integer := 1; constant CFG_MMU_PAGE : integer := 0; constant CFG_DSU : integer := 1; constant CFG_ITBSZ : integer := 2 + 64*0; constant CFG_ATBSZ : integer := 2; constant CFG_AHBPF : integer := 0; constant CFG_LEON3FT_EN : integer := 0; constant CFG_IUFT_EN : integer := 0; constant CFG_FPUFT_EN : integer := 0; constant CFG_RF_ERRINJ : integer := 0; constant CFG_CACHE_FT_EN : integer := 0; constant CFG_CACHE_ERRINJ : integer := 0; constant CFG_LEON3_NETLIST: integer := 0; constant CFG_DISAS : integer := 0 + 0; constant CFG_PCLOW : integer := 2; constant CFG_NP_ASI : integer := 0; constant CFG_WRPSR : integer := 0; -- AMBA settings constant CFG_DEFMST : integer := (0); constant CFG_RROBIN : integer := 1; constant CFG_SPLIT : integer := 0; constant CFG_FPNPEN : integer := 0; constant CFG_AHBIO : integer := 16#FFF#; constant CFG_APBADDR : integer := 16#800#; constant CFG_AHB_MON : integer := 0; constant CFG_AHB_MONERR : integer := 0; constant CFG_AHB_MONWAR : integer := 0; constant CFG_AHB_DTRACE : integer := 0; -- JTAG based DSU interface constant CFG_AHB_JTAG : integer := 1; -- SDRAM controller constant CFG_SDCTRL : integer := 1; constant CFG_SDCTRL_INVCLK : integer := 0; constant CFG_SDCTRL_SD64 : integer := 0; constant CFG_SDCTRL_PAGE : integer := 0 + 0; -- AHB status register constant CFG_AHBSTAT : integer := 1; constant CFG_AHBSTATN : integer := (1); -- SPI memory controller constant CFG_SPIMCTRL : integer := 1; constant CFG_SPIMCTRL_SDCARD : integer := 0; constant CFG_SPIMCTRL_READCMD : integer := 16#0B#; constant CFG_SPIMCTRL_DUMMYBYTE : integer := 1; constant CFG_SPIMCTRL_DUALOUTPUT : integer := 0; constant CFG_SPIMCTRL_SCALER : integer := (1); constant CFG_SPIMCTRL_ASCALER : integer := (2); constant CFG_SPIMCTRL_PWRUPCNT : integer := (0); constant CFG_SPIMCTRL_OFFSET : integer := 16#50000#; -- AHB ROM constant CFG_AHBROMEN : integer := 0; constant CFG_AHBROPIP : integer := 0; constant CFG_AHBRODDR : integer := 16#000#; constant CFG_ROMADDR : integer := 16#000#; constant CFG_ROMMASK : integer := 16#E00# + 16#000#; -- AHB RAM constant CFG_AHBRAMEN : integer := 0; constant CFG_AHBRSZ : integer := 1; constant CFG_AHBRADDR : integer := 16#A00#; constant CFG_AHBRPIPE : integer := 0; -- UART 1 constant CFG_UART1_ENABLE : integer := 1; constant CFG_UART1_FIFO : integer := 4; -- LEON3 interrupt controller constant CFG_IRQ3_ENABLE : integer := 1; constant CFG_IRQ3_NSEC : integer := 0; -- Modular timer constant CFG_GPT_ENABLE : integer := 1; constant CFG_GPT_NTIM : integer := (2); constant CFG_GPT_SW : integer := (16); constant CFG_GPT_TW : integer := (32); constant CFG_GPT_IRQ : integer := (8); constant CFG_GPT_SEPIRQ : integer := 1; constant CFG_GPT_WDOGEN : integer := 0; constant CFG_GPT_WDOG : integer := 16#0#; -- GPIO port constant CFG_GRGPIO_ENABLE : integer := 1; constant CFG_GRGPIO_IMASK : integer := 16#fe#; constant CFG_GRGPIO_WIDTH : integer := (32); -- Second GPIO port constant CFG_GRGPIO2_ENABLE : integer := 1; constant CFG_GRGPIO2_IMASK : integer := 16#fe#; constant CFG_GRGPIO2_WIDTH : integer := (32); -- I2C master constant CFG_I2C_ENABLE : integer := 1; -- SPI controller constant CFG_SPICTRL_ENABLE : integer := 1; constant CFG_SPICTRL_NUM : integer := (1); constant CFG_SPICTRL_SLVS : integer := (1); constant CFG_SPICTRL_FIFO : integer := (2); constant CFG_SPICTRL_SLVREG : integer := 1; constant CFG_SPICTRL_ODMODE : integer := 0; constant CFG_SPICTRL_AM : integer := 0; constant CFG_SPICTRL_ASEL : integer := 0; constant CFG_SPICTRL_TWEN : integer := 0; constant CFG_SPICTRL_MAXWLEN : integer := (0); constant CFG_SPICTRL_SYNCRAM : integer := 0; constant CFG_SPICTRL_FT : integer := 0; -- GRLIB debugging constant CFG_DUART : integer := 0; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/stratixiii/alt/adqsin.vhd
6
1455
library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.stdlib.all; library techmap; use techmap.gencomp.all; library stratixiii; use stratixiii.all; entity adqsin is port( dqs_pad : in std_logic; -- DQS pad dqsn_pad : in std_logic; -- DQSN pad dqs : out std_logic ); end; architecture rtl of adqsin is component stratixiii_io_ibuf IS generic ( differential_mode : string := "false"; bus_hold : string := "false"; simulate_z_as : string := "z"; lpm_type : string := "stratixiii_io_ibuf" ); port ( i : in std_logic := '0'; ibar : in std_logic := '0'; o : out std_logic ); end component; signal vcc : std_logic; signal gnd : std_logic_vector(13 downto 0); signal dqs_buf : std_logic; begin vcc <= '1'; gnd <= (others => '0'); -- In buffer (DQS, DQSN) ------------------------------------------------------------ dqs_buf0 : stratixiii_io_ibuf generic map( differential_mode => "true", bus_hold => "false", simulate_z_as => "z", lpm_type => "stratixiii_io_ibuf" ) port map( i => dqs_pad, ibar => dqsn_pad, o => dqs_buf ); dqs <= dqs_buf; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/leon3v3/libiu.vhd
1
8958
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Package: libiu -- File: libiu.vhd -- Author: Jiri Gaisler Gaisler Research -- Description: LEON3 IU types and components ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.leon3.all; use gaisler.libfpu.all; use gaisler.arith.all; use gaisler.mmuconfig.all; package libiu is constant RDBITS : integer := 32; constant IDBITS : integer := 32; subtype cword is std_logic_vector(IDBITS-1 downto 0); type cdatatype is array (0 to 3) of cword; type iregfile_in_type is record raddr1 : std_logic_vector(9 downto 0); -- read address 1 raddr2 : std_logic_vector(9 downto 0); -- read address 2 waddr : std_logic_vector(9 downto 0); -- write address wdata : std_logic_vector(31 downto 0); -- write data ren1 : std_ulogic; -- read 1 enable ren2 : std_ulogic; -- read 2 enable wren : std_ulogic; -- write enable end record; type iregfile_out_type is record data1 : std_logic_vector(RDBITS-1 downto 0); -- read data 1 data2 : std_logic_vector(RDBITS-1 downto 0); -- read data 2 end record; type cctrltype is record burst : std_ulogic; -- icache burst enable dfrz : std_ulogic; -- dcache freeze enable ifrz : std_ulogic; -- icache freeze enable dsnoop : std_ulogic; -- data cache snooping dcs : std_logic_vector(1 downto 0); -- dcache state ics : std_logic_vector(1 downto 0); -- icache state end record; constant cctrl_none : cctrltype := ( burst => '0', dfrz => '0', ifrz => '0', dsnoop => '0', dcs => (others => '0'), ics => (others => '0') ); type icache_in_type is record rpc : std_logic_vector(31 downto 0); -- raw address (npc) fpc : std_logic_vector(31 downto 0); -- latched address (fpc) dpc : std_logic_vector(31 downto 0); -- latched address (dpc) rbranch : std_ulogic; -- Instruction branch fbranch : std_ulogic; -- Instruction branch inull : std_ulogic; -- instruction nullify su : std_ulogic; -- super-user flush : std_ulogic; -- flush icache fline : std_logic_vector(31 downto 3); -- flush line offset nobpmiss : std_ulogic; -- Predicted instruction, block hold end record; type icache_out_type is record data : cdatatype; set : std_logic_vector(1 downto 0); mexc : std_ulogic; hold : std_ulogic; flush : std_ulogic; -- flush in progress diagrdy : std_ulogic; -- diagnostic access ready diagdata : std_logic_vector(IDBITS-1 downto 0);-- diagnostic data mds : std_ulogic; -- memory data strobe cfg : std_logic_vector(31 downto 0); idle : std_ulogic; -- idle mode cstat : l3_cstat_type; bpmiss : std_ulogic; eocl : std_ulogic; end record; type icdiag_in_type is record addr : std_logic_vector(31 downto 0); -- memory stage address enable : std_ulogic; read : std_ulogic; tag : std_ulogic; ctx : std_ulogic; flush : std_ulogic; ilramen : std_ulogic; cctrl : cctrltype; pflush : std_ulogic; pflushaddr : std_logic_vector(VA_I_U downto VA_I_D); pflushtyp : std_ulogic; end record; type dcache_in_type is record asi : std_logic_vector(7 downto 0); maddress : std_logic_vector(31 downto 0); eaddress : std_logic_vector(31 downto 0); edata : std_logic_vector(31 downto 0); size : std_logic_vector(1 downto 0); enaddr : std_ulogic; eenaddr : std_ulogic; nullify : std_ulogic; lock : std_ulogic; read : std_ulogic; write : std_ulogic; flush : std_ulogic; flushl : std_ulogic; -- flush line dsuen : std_ulogic; msu : std_ulogic; -- memory stage supervisor esu : std_ulogic; -- execution stage supervisor intack : std_ulogic; end record; type dcache_out_type is record data : cdatatype; set : std_logic_vector(1 downto 0); mexc : std_ulogic; hold : std_ulogic; mds : std_ulogic; werr : std_ulogic; icdiag : icdiag_in_type; cache : std_ulogic; idle : std_ulogic; -- idle mode hit : std_ulogic; cstat : l3_cstat_type; wbhold : std_ulogic; end record; component iu3 generic ( nwin : integer range 2 to 32 := 8; isets : integer range 1 to 4 := 1; dsets : integer range 1 to 4 := 1; fpu : integer range 0 to 15 := 0; v8 : integer range 0 to 63 := 0; cp, mac : integer range 0 to 1 := 0; dsu : integer range 0 to 1 := 0; nwp : integer range 0 to 4 := 0; pclow : integer range 0 to 2 := 2; notag : integer range 0 to 1 := 0; index : integer range 0 to 15 := 0; lddel : integer range 1 to 2 := 2; irfwt : integer range 0 to 1 := 0; disas : integer range 0 to 2 := 0; tbuf : integer range 0 to 128 := 0; -- trace buf size in kB (0 - no trace buffer) pwd : integer range 0 to 2 := 0; -- power-down svt : integer range 0 to 1 := 0; -- single-vector trapping rstaddr : integer := 0; smp : integer range 0 to 15 := 0; -- support SMP systems fabtech : integer range 0 to NTECH := 0; clk2x : integer := 0; bp : integer := 1; npasi : integer range 0 to 1 := 0; pwrpsr : integer range 0 to 1 := 0 ); port ( clk : in std_ulogic; rstn : in std_ulogic; holdn : in std_ulogic; ici : out icache_in_type; ico : in icache_out_type; dci : out dcache_in_type; dco : in dcache_out_type; rfi : out iregfile_in_type; rfo : in iregfile_out_type; irqi : in l3_irq_in_type; irqo : out l3_irq_out_type; dbgi : in l3_debug_in_type; dbgo : out l3_debug_out_type; muli : out mul32_in_type; mulo : in mul32_out_type; divi : out div32_in_type; divo : in div32_out_type; fpo : in fpc_out_type; fpi : out fpc_in_type; cpo : in fpc_out_type; cpi : out fpc_in_type; tbo : in tracebuf_out_type; tbi : out tracebuf_in_type; tbo_2p : in tracebuf_2p_out_type; tbi_2p : out tracebuf_2p_in_type; sclk : in std_ulogic ); end component; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/ddr/mig.in.vhd
4
374
-- Xilinx MIG constant CFG_MIG_DDR2 : integer := CONFIG_MIG_DDR2; constant CFG_MIG_RANKS : integer := CONFIG_MIG_RANKS; constant CFG_MIG_COLBITS : integer := CONFIG_MIG_COLBITS; constant CFG_MIG_ROWBITS : integer := CONFIG_MIG_ROWBITS; constant CFG_MIG_BANKBITS: integer := CONFIG_MIG_BANKBITS; constant CFG_MIG_HMASK : integer := 16#CONFIG_MIG_HMASK#;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-nuhorizons-3s1500/testbench.vhd
1
13672
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench -- Copyright (C) 2004 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.libdcom.all; use gaisler.sim.all; library techmap; use techmap.gencomp.all; library micron; use micron.components.all; use work.config.all; -- configuration use work.debug.all; entity testbench is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; clkperiod : integer := 20; -- system clock period romwidth : integer := 8+8*CFG_MCTRL_RAM16BIT; -- rom data width (8/16) romdepth : integer := 16; -- rom address depth sramwidth : integer := 32; -- ram data width (8/16/32) sramdepth : integer := 18; -- ram address depth srambanks : integer := 2 -- number of ram banks ); end; architecture behav of testbench is constant promfile : string := "prom.srec"; -- rom contents constant sramfile : string := "ram.srec"; -- ram contents constant sdramfile : string := "ram.srec"; -- sdram contents component leon3mp generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW ); port ( pb_sw : in std_logic_vector (4 downto 1); -- push buttons pll_clk : in std_ulogic; -- PLL clock led : out std_logic_vector(8 downto 1); flash_a : out std_logic_vector(20 downto 0); flash_d : inout std_logic_vector(15 downto 0); sdram_a : out std_logic_vector(11 downto 0); sdram_d : inout std_logic_vector(31 downto 0); sdram_ba : out std_logic_vector(3 downto 0); sdram_dqm : out std_logic_vector(3 downto 0); sdram_clk : inout std_ulogic; sdram_cke : out std_ulogic; -- sdram clock enable sdram_csn : out std_ulogic; -- sdram chip select sdram_wen : out std_ulogic; -- sdram write enable sdram_rasn : out std_ulogic; -- sdram ras sdram_casn : out std_ulogic; -- sdram cas uart1_txd : out std_ulogic; uart1_rxd : in std_ulogic; uart1_rts : out std_ulogic; uart1_cts : in std_ulogic; uart2_txd : out std_ulogic; uart2_rxd : in std_ulogic; uart2_rts : out std_ulogic; uart2_cts : in std_ulogic; flash_oen : out std_ulogic; flash_wen : out std_ulogic; flash_cen : out std_ulogic; flash_byte : out std_ulogic; flash_ready : in std_ulogic; flash_rpn : out std_ulogic; flash_wpn : out std_ulogic; phy_mii_data: inout std_logic; -- ethernet PHY interface phy_tx_clk : in std_ulogic; phy_rx_clk : in std_ulogic; phy_rx_data : in std_logic_vector(3 downto 0); phy_dv : in std_ulogic; phy_rx_er : in std_ulogic; phy_col : in std_ulogic; phy_crs : in std_ulogic; phy_tx_data : out std_logic_vector(3 downto 0); phy_tx_en : out std_ulogic; phy_mii_clk : out std_ulogic; phy_100 : in std_ulogic; -- 100 Mbit indicator phy_rst_n : out std_ulogic; gpio : inout std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0); -- lcd_data : inout std_logic_vector(7 downto 0); -- lcd_rs : out std_ulogic; -- lcd_rw : out std_ulogic; -- lcd_en : out std_ulogic; -- lcd_backl : out std_ulogic; can_txd : out std_ulogic; can_rxd : in std_ulogic; smsc_addr : out std_logic_vector(14 downto 0); smsc_data : inout std_logic_vector(31 downto 0); smsc_nbe : out std_logic_vector(3 downto 0); smsc_resetn : out std_ulogic; smsc_ardy : in std_ulogic; -- smsc_intr : in std_ulogic; smsc_nldev : in std_ulogic; smsc_nrd : out std_ulogic; smsc_nwr : out std_ulogic; smsc_ncs : out std_ulogic; smsc_aen : out std_ulogic; smsc_lclk : out std_ulogic; smsc_wnr : out std_ulogic; smsc_rdyrtn : out std_ulogic; smsc_cycle : out std_ulogic; smsc_nads : out std_ulogic ); end component; signal clk : std_logic := '0'; signal Rst : std_logic := '0'; -- Reset constant ct : integer := clkperiod/2; signal address : std_logic_vector(21 downto 0); signal flash_d : std_logic_vector(15 downto 0); signal romsn : std_ulogic; signal oen : std_ulogic; signal writen : std_ulogic; signal dsuen, dsutx, dsurx, dsubre, dsuact : std_ulogic; signal dsurst : std_ulogic; signal test : std_ulogic; signal error : std_logic; signal GND : std_ulogic := '0'; signal VCC : std_ulogic := '1'; signal NC : std_ulogic := 'Z'; signal clk2 : std_ulogic := '1'; signal sdcke : std_ulogic; -- clk en signal sdcsn : std_ulogic; -- chip sel signal sdwen : std_ulogic; -- write en signal sdrasn : std_ulogic; -- row addr stb signal sdcasn : std_ulogic; -- col addr stb signal sddqm : std_logic_vector ( 3 downto 0); -- data i/o mask signal sdclk : std_ulogic; signal txd1, rxd1 : std_ulogic; signal txd2, rxd2 : std_ulogic; signal etx_clk, erx_clk, erx_dv, erx_er, erx_col, erx_crs, etx_en, etx_er : std_logic:='0'; signal erxd, etxd: std_logic_vector(3 downto 0):=(others=>'0'); signal erxdt, etxdt: std_logic_vector(7 downto 0):=(others=>'0'); signal emdc, emdio: std_logic; signal gtx_clk : std_ulogic; signal ereset : std_logic; signal led : std_logic_vector(8 downto 1); constant lresp : boolean := false; signal sa : std_logic_vector(14 downto 0); signal ba : std_logic_vector(3 downto 0); signal sd : std_logic_vector(31 downto 0); signal pb_sw : std_logic_vector(4 downto 1); signal lcd_data : std_logic_vector(7 downto 0); signal lcd_rs : std_ulogic; signal lcd_rw : std_ulogic; signal lcd_en : std_ulogic; signal lcd_backl: std_ulogic; signal can_txd : std_ulogic; signal can_rxd : std_ulogic; signal gpio : std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0); signal smsc_addr : std_logic_vector(21 downto 0); signal smsc_data : std_logic_vector(31 downto 0); signal smsc_nbe : std_logic_vector(3 downto 0); signal smsc_resetn : std_ulogic; signal smsc_ardy : std_ulogic; signal smsc_intr : std_ulogic; signal smsc_nldev : std_ulogic; signal smsc_nrd : std_ulogic; signal smsc_nwr : std_ulogic; signal smsc_ncs : std_ulogic; signal smsc_aen : std_ulogic; signal smsc_lclk : std_ulogic; signal smsc_wnr : std_ulogic; signal smsc_rdyrtn : std_ulogic; signal smsc_cycle : std_ulogic; signal smsc_nads : std_ulogic; begin -- clock and reset clk <= not clk after ct * 1 ns; rst <= dsurst; dsuen <= '1'; dsubre <= '0'; rxd1 <= '1'; can_rxd <= '1'; error <= led(8); sa(14 downto 12) <= "000"; pb_sw <= rst & "00" & dsubre; cpu : leon3mp generic map ( fabtech, memtech, padtech, clktech, disas, dbguart, pclow ) port map (pb_sw, clk, led, address(21 downto 1), flash_d, sa(11 downto 0), sd, ba, sddqm, sdclk, sdcke, sdcsn, sdwen, sdrasn, sdcasn, txd1, rxd1, open, gnd, dsutx, dsurx, open, gnd, oen, writen, romsn, open, vcc, open, open, emdio, etx_clk, erx_clk, erxd, erx_dv, erx_er, erx_col, erx_crs, etxd, etx_en, emdc, gnd, ereset, gpio, -- lcd_data, lcd_rs, lcd_rw, lcd_en, lcd_backl, can_txd, can_rxd, smsc_addr(14 downto 0), smsc_data, smsc_nbe, smsc_resetn, smsc_ardy,-- smsc_intr, smsc_nldev, smsc_nrd, smsc_nwr, smsc_ncs, smsc_aen, smsc_lclk, smsc_wnr, smsc_rdyrtn, smsc_cycle, smsc_nads); u0: mt48lc16m16a2 generic map (index => 0, fname => sdramfile) PORT MAP( Dq => sd(31 downto 16), Addr => sa(12 downto 0), Ba => ba(1 downto 0), Clk => sdclk, Cke => sdcke, Cs_n => sdcsn, Ras_n => sdrasn, Cas_n => sdcasn, We_n => sdwen, Dqm => sddqm(3 downto 2)); u1: mt48lc16m16a2 generic map (index => 16, fname => sdramfile) PORT MAP( Dq => sd(15 downto 0), Addr => sa(12 downto 0), Ba => ba(3 downto 2), Clk => sdclk, Cke => sdcke, Cs_n => sdcsn, Ras_n => sdrasn, Cas_n => sdcasn, We_n => sdwen, Dqm => sddqm(1 downto 0)); rom8 : if romwidth /= 16 generate prom0 : sram16 generic map (index => 4, abits => romdepth, fname => promfile) port map (address(romdepth downto 1), flash_d(15 downto 0), gnd, gnd, romsn, writen, oen); address(0) <= flash_d(15); end generate; rom16 : if romwidth = 16 generate prom0 : sram16 generic map (index => 4, abits => romdepth, fname => promfile) port map (address(romdepth downto 1), flash_d(15 downto 0), gnd, gnd, romsn, writen, oen); address(0) <= '0'; end generate; emdio <= 'H'; erxd <= erxdt(3 downto 0); etxdt <= "0000" & etxd; p0: phy generic map(base1000_t_fd => 0, base1000_t_hd => 0) port map(rst, emdio, etx_clk, erx_clk, erxdt, erx_dv, erx_er, erx_col, erx_crs, etxdt, etx_en, etx_er, emdc, gtx_clk); error <= 'H'; -- ERROR pull-up iuerr : process begin wait for 2000 ns; if to_x01(error) = '1' then wait on error; end if; assert (to_x01(error) = '1') report "*** IU in error mode, simulation halted ***" severity failure ; end process; flash_d <= buskeep(flash_d) after 5 ns; sd <= buskeep(sd) after 5 ns; smsc_data <= buskeep(smsc_data) after 5 ns; smsc_addr(21 downto 15) <= (others => '0'); test0 : grtestmod port map ( rst, clk, error, address(21 downto 2), smsc_data, smsc_ncs, oen, writen, open); dsucom : process procedure dsucfg(signal dsurx : in std_ulogic; signal dsutx : out std_ulogic) is variable w32 : std_logic_vector(31 downto 0); variable c8 : std_logic_vector(7 downto 0); constant txp : time := 160 * 1 ns; begin dsutx <= '1'; dsurst <= '0'; wait for 500 ns; dsurst <= '1'; wait; wait for 5000 ns; txc(dsutx, 16#55#, txp); -- sync uart txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#40#, 16#00#, 16#44#, txp); txa(dsutx, 16#00#, 16#00#, 16#20#, 16#00#, txp); txc(dsutx, 16#80#, txp); txa(dsutx, 16#90#, 16#40#, 16#00#, 16#44#, txp); wait; txc(dsutx, 16#c0#, txp); txa(dsutx, 16#00#, 16#00#, 16#0a#, 16#aa#, txp); txa(dsutx, 16#00#, 16#55#, 16#00#, 16#55#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#00#, 16#00#, 16#0a#, 16#a0#, txp); txa(dsutx, 16#01#, 16#02#, 16#09#, 16#33#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#00#, 16#00#, 16#00#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#2e#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#91#, 16#00#, 16#00#, 16#00#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#2e#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#00#, 16#00#, 16#20#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#0f#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#00#, 16#00#, 16#20#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#00#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#80#, 16#00#, 16#02#, 16#10#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#0f#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#91#, 16#40#, 16#00#, 16#24#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#24#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#91#, 16#70#, 16#00#, 16#00#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#03#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#00#, 16#00#, 16#20#, txp); txa(dsutx, 16#00#, 16#00#, 16#ff#, 16#ff#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#40#, 16#00#, 16#48#, txp); txa(dsutx, 16#00#, 16#00#, 16#00#, 16#12#, txp); txc(dsutx, 16#c0#, txp); txa(dsutx, 16#90#, 16#40#, 16#00#, 16#60#, txp); txa(dsutx, 16#00#, 16#00#, 16#12#, 16#10#, txp); txc(dsutx, 16#80#, txp); txa(dsutx, 16#90#, 16#00#, 16#00#, 16#00#, txp); rxi(dsurx, w32, txp, lresp); txc(dsutx, 16#a0#, txp); txa(dsutx, 16#40#, 16#00#, 16#00#, 16#00#, txp); rxi(dsurx, w32, txp, lresp); end; begin dsucfg(dsutx, dsurx); wait; end process; end ;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/grlib/util/debug.in.vhd
6
76
-- GRLIB debugging constant CFG_DUART : integer := CONFIG_DEBUG_UART;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/sim/phy.vhd
1
24640
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ---------------------------------------------------------------------------- -- Entity: phy -- File: phy.vhd -- Description: Simulation model of an Ethernet PHY -- Author: Marko Isomaki ------------------------------------------------------------------------------ -- pragma translate_off library ieee; library grlib; use ieee.std_logic_1164.all; use grlib.stdlib.all; entity phy is generic( address : integer range 0 to 31 := 0; extended_regs : integer range 0 to 1 := 1; aneg : integer range 0 to 1 := 1; base100_t4 : integer range 0 to 1 := 0; base100_x_fd : integer range 0 to 1 := 1; base100_x_hd : integer range 0 to 1 := 1; fd_10 : integer range 0 to 1 := 1; hd_10 : integer range 0 to 1 := 1; base100_t2_fd : integer range 0 to 1 := 1; base100_t2_hd : integer range 0 to 1 := 1; base1000_x_fd : integer range 0 to 1 := 0; base1000_x_hd : integer range 0 to 1 := 0; base1000_t_fd : integer range 0 to 1 := 1; base1000_t_hd : integer range 0 to 1 := 1; rmii : integer range 0 to 1 := 0; rgmii : integer range 0 to 1 := 0 ); port( rstn : in std_logic; mdio : inout std_logic; tx_clk : out std_logic; rx_clk : out std_logic; rxd : out std_logic_vector(7 downto 0); rx_dv : out std_logic; rx_er : out std_logic; rx_col : out std_logic; rx_crs : out std_logic; txd : in std_logic_vector(7 downto 0); tx_en : in std_logic; tx_er : in std_logic; mdc : in std_logic; gtx_clk : in std_logic ); end; architecture behavioral of phy is type mdio_state_type is (idle, start_of_frame, start_of_frame2, op, phyad, regad, ta, rdata, wdata); type ctrl_reg_type is record reset : std_ulogic; loopback : std_ulogic; speedsel : std_logic_vector(1 downto 0); anegen : std_ulogic; powerdown : std_ulogic; isolate : std_ulogic; restartaneg : std_ulogic; duplexmode : std_ulogic; coltest : std_ulogic; end record; type status_reg_type is record base100_t4 : std_ulogic; base100_x_fd : std_ulogic; base100_x_hd : std_ulogic; fd_10 : std_ulogic; hd_10 : std_ulogic; base100_t2_fd : std_ulogic; base100_t2_hd : std_ulogic; extstat : std_ulogic; mfpreamblesup : std_ulogic; anegcmpt : std_ulogic; remfault : std_ulogic; anegability : std_ulogic; linkstat : std_ulogic; jabdetect : std_ulogic; extcap : std_ulogic; end record; type aneg_ab_type is record next_page : std_ulogic; remote_fault : std_ulogic; tech_ability : std_logic_vector(7 downto 0); selector : std_logic_vector(4 downto 0); end record; type aneg_exp_type is record par_detct_flt : std_ulogic; lp_np_able : std_ulogic; np_able : std_ulogic; page_rx : std_ulogic; lp_aneg_able : std_ulogic; end record; type aneg_nextpage_type is record next_page : std_ulogic; message_page : std_ulogic; ack2 : std_ulogic; toggle : std_ulogic; message : std_logic_vector(10 downto 0); end record; type mst_slv_ctrl_type is record tmode : std_logic_vector(2 downto 0); manualcfgen : std_ulogic; cfgval : std_ulogic; porttype : std_ulogic; base1000_t_fd : std_ulogic; base1000_t_hd : std_ulogic; end record; type mst_slv_status_type is record cfgfault : std_ulogic; cfgres : std_ulogic; locrxstate : std_ulogic; remrxstate : std_ulogic; lpbase1000_t_fd : std_ulogic; lpbase1000_t_hd : std_ulogic; idlerrcnt : std_logic_vector(7 downto 0); end record; type extended_status_reg_type is record base1000_x_fd : std_ulogic; base1000_x_hd : std_ulogic; base1000_t_fd : std_ulogic; base1000_t_hd : std_ulogic; end record; type reg_type is record state : mdio_state_type; cnt : integer; op : std_logic_vector(1 downto 0); phyad : std_logic_vector(4 downto 0); regad : std_logic_vector(4 downto 0); wr : std_ulogic; regtmp : std_logic_vector(15 downto 0); -- MII management registers ctrl : ctrl_reg_type; status : status_reg_type; anegadv : aneg_ab_type; aneglp : aneg_ab_type; anegexp : aneg_exp_type; anegnptx : aneg_nextpage_type; anegnplp : aneg_nextpage_type; mstslvctrl : mst_slv_ctrl_type; mstslvstat : mst_slv_status_type; extstatus : extended_status_reg_type; rstcnt : integer; anegcnt : integer; end record; signal r, rin : reg_type; signal int_clk : std_ulogic := '0'; signal clkslow : std_ulogic := '0'; signal rcnt : integer; signal anegact : std_ulogic; begin --mdio signal pull-up int_clk <= not int_clk after 10 ns when rmii = 1 else not int_clk after 4 ns when r.ctrl.speedsel = "01" else not int_clk after 20 ns when r.ctrl.speedsel = "10" else not int_clk after 200 ns when r.ctrl.speedsel = "00"; clkslow <= not clkslow after 20 ns when r.ctrl.speedsel = "10" else not clkslow after 200 ns; -- rstdelay : process -- begin -- loop -- rstd <= '0'; -- while r.ctrl.reset /= '1' loop -- wait on r.ctrl.reset; -- end loop; -- rstd <= '1'; -- while rstn = '0' loop -- wait on rstn; -- end loop; -- wait on rstn for 3 us; -- rstd <= '0'; -- wait on rstn until r.ctrl.reset = '0' for 5 us; -- end loop; -- end process; anegproc : process is begin loop anegact <= '0'; while rstn /= '1' loop wait on rstn; end loop; while rstn = '1' loop if r.ctrl.anegen = '0' then anegact <= '0'; wait on rstn, r.ctrl.anegen, r.ctrl.restartaneg; else if r.ctrl.restartaneg = '1' then anegact <= '1'; wait on rstn, r.ctrl.restartaneg, r.ctrl.anegen for 2 us; anegact <= '0'; wait on rstn, r.ctrl.anegen until r.ctrl.restartaneg = '0'; if (rstn and r.ctrl.anegen) = '1' then wait on rstn, r.ctrl.anegen, r.ctrl.restartaneg; end if; else anegact <= '0'; wait on rstn, r.ctrl.restartaneg, r.ctrl.anegen; end if; end if; end loop; end loop; end process; mdiocomb : process(rstn, r, anegact, mdio) is variable v : reg_type; begin v := r; if anegact = '0' then v.ctrl.restartaneg := '0'; end if; case r.state is when idle => mdio <= 'Z'; if to_X01(mdio) = '1' then v.cnt := v.cnt + 1; if v.cnt = 31 then v.state := start_of_frame; v.cnt := 0; end if; else v.cnt := 0; end if; when start_of_frame => if to_X01(mdio) = '0' then v.state := start_of_frame2; elsif to_X01(mdio) /= '1' then v.state := idle; end if; when start_of_frame2 => if to_X01(mdio) = '1' then v.state := op; else v.state := idle; end if; when op => v.cnt := v.cnt + 1; v.op := r.op(0) & to_X01(mdio); if r.cnt = 1 then if (v.op = "01") or (v.op = "10") then v.state := phyad; v.cnt := 0; else v.state := idle; v.cnt := 0; end if; end if; when phyad => v.phyad := r.phyad(3 downto 0) & to_X01(mdio); v.cnt := v.cnt + 1; if r.cnt = 4 then v.state := regad; v.cnt := 0; end if; when regad => v.regad := r.regad(3 downto 0) & to_X01(mdio); v.cnt := v.cnt + 1; if r.cnt = 4 then v.cnt := 0; if conv_integer(r.phyad) = address then v.state := ta; else v.state := idle; end if; end if; when ta => v.cnt := r.cnt + 1; if r.cnt = 0 then if (r.op = "01") and to_X01(mdio) /= '1' then v.cnt := 0; v.state := idle; end if; else if r.op = "10" then mdio <= '0'; v.cnt := 0; v.state := rdata; case r.regad is when "00000" => --ctrl (basic) v.regtmp := r.ctrl.reset & r.ctrl.loopback & r.ctrl.speedsel(1) & r.ctrl.anegen & r.ctrl.powerdown & r.ctrl.isolate & r.ctrl.restartaneg & r.ctrl.duplexmode & r.ctrl.coltest & r.ctrl.speedsel(0) & "000000"; when "00001" => --statuc (basic) v.regtmp := r.status.base100_t4 & r.status.base100_x_fd & r.status.base100_x_hd & r.status.fd_10 & r.status.hd_10 & r.status.base100_t2_fd & r.status.base100_t2_hd & r.status.extstat & '0' & r.status.mfpreamblesup & r.status.anegcmpt & r.status.remfault & r.status.anegability & r.status.linkstat & r.status.jabdetect & r.status.extcap; when "00010" => --PHY ID (extended) if extended_regs = 1 then v.regtmp := X"BBCD"; else v.cnt := 0; v.state := idle; end if; when "00011" => --PHY ID (extended) if extended_regs = 1 then v.regtmp := X"9C83"; else v.cnt := 0; v.state := idle; end if; when "00100" => --Auto-neg adv. (extended) if extended_regs = 1 then v.regtmp := r.anegadv.next_page & '0' & r.anegadv.remote_fault & r.anegadv.tech_ability & r.anegadv.selector; else v.cnt := 0; v.state := idle; end if; when "00101" => --Auto-neg link partner ability (extended) if extended_regs = 1 then v.regtmp := r.aneglp.next_page & '0' & r.aneglp.remote_fault & r.aneglp.tech_ability & r.aneglp.selector; else v.cnt := 0; v.state := idle; end if; when "00110" => --Auto-neg expansion (extended) if extended_regs = 1 then v.regtmp := "00000000000" & r.anegexp.par_detct_flt & r.anegexp.lp_np_able & r.anegexp.np_able & r.anegexp.page_rx & r.anegexp.lp_aneg_able; else v.cnt := 0; v.state := idle; end if; when "00111" => --Auto-neg next page (extended) if extended_regs = 1 then v.regtmp := r.anegnptx.next_page & '0' & r.anegnptx.message_page & r.anegnptx.ack2 & r.anegnptx.toggle & r.anegnptx.message; else v.cnt := 0; v.state := idle; end if; when "01000" => --Auto-neg link partner received next page (extended) if extended_regs = 1 then v.regtmp := r.anegnplp.next_page & '0' & r.anegnplp.message_page & r.anegnplp.ack2 & r.anegnplp.toggle & r.anegnplp.message; else v.cnt := 0; v.state := idle; end if; when "01001" => --Master-slave control (extended) if extended_regs = 1 then v.regtmp := r.mstslvctrl.tmode & r.mstslvctrl.manualcfgen & r.mstslvctrl.cfgval & r.mstslvctrl.porttype & r.mstslvctrl.base1000_t_fd & r.mstslvctrl.base1000_t_hd & "00000000"; else v.cnt := 0; v.state := idle; end if; when "01010" => --Master-slave status (extended) if extended_regs = 1 then v.regtmp := r.mstslvstat.cfgfault & r.mstslvstat.cfgres & r.mstslvstat.locrxstate & r.mstslvstat.remrxstate & r.mstslvstat.lpbase1000_t_fd & r.mstslvstat.lpbase1000_t_hd & "00" & r.mstslvstat.idlerrcnt; else v.cnt := 0; v.state := idle; end if; when "01111" => if (base1000_x_fd = 1) or (base1000_x_hd = 1) or (base1000_t_fd = 1) or (base1000_t_hd = 1) then v.regtmp := r.extstatus.base1000_x_fd & r.extstatus.base1000_x_hd & r.extstatus.base1000_t_fd & r.extstatus.base1000_t_hd & X"000"; else v.regtmp := (others => '0'); end if; when others => --PHY shall not drive MDIO when unimplemented registers --are accessed v.cnt := 0; v.state := idle; v.regtmp := (others => '0'); end case; if r.ctrl.reset = '1' then if r.regad = "00000" then v.regtmp := X"8000"; else v.regtmp := X"0000"; end if; end if; else if to_X01(mdio) /= '0'then v.cnt := 0; v.state := idle; else v.cnt := 0; v.state := wdata; end if; end if; end if; when rdata => v.cnt := r.cnt + 1; mdio <= r.regtmp(15-r.cnt); if r.cnt = 15 then v.state := idle; v.cnt := 0; end if; when wdata => v.cnt := r.cnt + 1; v.regtmp := r.regtmp(14 downto 0) & to_X01(mdio); if r.cnt = 15 then v.state := idle; v.cnt := 0; if r.ctrl.reset = '0' then case r.regad is when "00000" => v.ctrl.reset := v.regtmp(15); v.ctrl.loopback := v.regtmp(14); v.ctrl.speedsel(1) := v.regtmp(13); v.ctrl.anegen := v.regtmp(12); v.ctrl.powerdown := v.regtmp(11); v.ctrl.isolate := v.regtmp(10); v.ctrl.restartaneg := v.regtmp(9); v.ctrl.duplexmode := v.regtmp(8); v.ctrl.coltest := v.regtmp(7); v.ctrl.speedsel(0) := v.regtmp(6); when "00100" => if extended_regs = 1 then v.anegadv.remote_fault := r.regtmp(13); v.anegadv.tech_ability := r.regtmp(12 downto 5); v.anegadv.selector := r.regtmp(4 downto 0); end if; when "00111" => if extended_regs = 1 then v.anegnptx.next_page := r.regtmp(15); v.anegnptx.message_page := r.regtmp(13); v.anegnptx.ack2 := r.regtmp(12); v.anegnptx.message := r.regtmp(10 downto 0); end if; when "01001" => if extended_regs = 1 then v.mstslvctrl.tmode := r.regtmp(15 downto 13); v.mstslvctrl.manualcfgen := r.regtmp(12); v.mstslvctrl.cfgval := r.regtmp(11); v.mstslvctrl.porttype := r.regtmp(10); v.mstslvctrl.base1000_t_fd := r.regtmp(9); v.mstslvctrl.base1000_t_hd := r.regtmp(8); end if; when others => --no writable bits for other regs null; end case; end if; end if; when others => null; end case; if r.rstcnt > 19 then v.ctrl.reset := '0'; v.rstcnt := 0; else v.rstcnt := r.rstcnt + 1; end if; if (v.ctrl.reset and not r.ctrl.reset) = '1' then v.rstcnt := 0; end if; if r.ctrl.anegen = '1' then if r.anegcnt < 10 then v.anegcnt := r.anegcnt + 1; else v.status.anegcmpt := '1'; if (base1000_x_fd = 1) or (base1000_x_hd = 1) or (r.mstslvctrl.base1000_t_fd = '1') or (r.mstslvctrl.base1000_t_hd = '1') then v.ctrl.speedsel(1 downto 0) := "01"; elsif (r.anegadv.tech_ability(4) = '1') or (r.anegadv.tech_ability(3) = '1') or (r.anegadv.tech_ability(2) = '1') or (base100_t2_fd = 1) or (base100_t2_hd = 1) then v.ctrl.speedsel(1 downto 0) := "10"; else v.ctrl.speedsel(1 downto 0) := "00"; end if; if ((base1000_x_fd = 1) or (r.mstslvctrl.base1000_t_fd = '1')) or (((base100_t2_fd = 1) or (r.anegadv.tech_ability(3) = '1')) and (r.mstslvctrl.base1000_t_hd = '0') and (base1000_x_hd = 0)) or ((r.anegadv.tech_ability(1) = '1') and (base100_t2_hd = 0) and (r.anegadv.tech_ability(4) = '0') and (r.anegadv.tech_ability(2) = '0')) then v.ctrl.duplexmode := '1'; else v.ctrl.duplexmode := '0'; end if; end if; end if; if r.ctrl.restartaneg = '1' then v.anegcnt := 0; v.status.anegcmpt := '0'; v.ctrl.restartaneg := '0'; end if; rin <= v; end process; reg : process(rstn, mdc) is begin if rising_edge(mdc) then r <= rin; end if; -- -- RESET DELAY -- if rstd = '1' then -- r.ctrl.reset <= '1'; -- else -- r.ctrl.reset <= '0'; -- end if; -- RESET if (r.ctrl.reset or not rstn) = '1' then r.ctrl.loopback <= '1'; r.anegcnt <= 0; if (base1000_x_hd = 1) or (base1000_x_fd = 1) or (base1000_t_hd = 1) or (base1000_t_fd = 1) then r.ctrl.speedsel <= "01"; elsif (base100_x_hd = 1) or (base100_t2_hd = 1) or (base100_x_fd = 1) or (base100_t2_fd = 1) or (base100_t4 = 1) then r.ctrl.speedsel <= "10"; else r.ctrl.speedsel <= "00"; end if; r.ctrl.anegen <= conv_std_logic(aneg = 1); r.ctrl.powerdown <= '0'; r.ctrl.isolate <= '0'; r.ctrl.restartaneg <= '0'; if (base100_x_hd = 0) and (hd_10 = 0) and (base100_t2_hd = 0) and (base1000_x_hd = 0) and (base1000_t_hd = 0) then r.ctrl.duplexmode <= '1'; else r.ctrl.duplexmode <= '0'; end if; r.ctrl.coltest <= '0'; r.status.base100_t4 <= conv_std_logic(base100_t4 = 1); r.status.base100_x_fd <= conv_std_logic(base100_x_fd = 1); r.status.base100_x_hd <= conv_std_logic(base100_x_hd = 1); r.status.fd_10 <= conv_std_logic(fd_10 = 1); r.status.hd_10 <= conv_std_logic(hd_10 = 1); r.status.base100_t2_fd <= conv_std_logic(base100_t2_fd = 1); r.status.base100_t2_hd <= conv_std_logic(base100_t2_hd = 1); r.status.extstat <= conv_std_logic((base1000_x_fd = 1) or (base1000_x_hd = 1) or (base1000_t_fd = 1) or (base1000_t_hd = 1)); r.status.mfpreamblesup <= '0'; r.status.anegcmpt <= '0'; r.status.remfault <= '0'; r.status.anegability <= conv_std_logic(aneg = 1); r.status.linkstat <= '0'; r.status.jabdetect <= '0'; r.status.extcap <= conv_std_logic(extended_regs = 1); r.anegadv.next_page <= '0'; r.anegadv.remote_fault <= '0'; r.anegadv.tech_ability <= "000" & conv_std_logic(base100_t4 = 1) & conv_std_logic(base100_x_fd = 1) & conv_std_logic(base100_x_hd = 1) & conv_std_logic(fd_10 = 1) & conv_std_logic(hd_10 = 1); r.anegadv.selector <= "00001"; r.aneglp.next_page <= '0'; r.aneglp.remote_fault <= '0'; r.aneglp.tech_ability <= "000" & conv_std_logic(base100_t4 = 1) & conv_std_logic(base100_x_fd = 1) & conv_std_logic(base100_x_hd = 1) & conv_std_logic(fd_10 = 1) & conv_std_logic(hd_10 = 1); r.aneglp.selector <= "00001"; r.anegexp.par_detct_flt <= '0'; r.anegexp.lp_np_able <= '0'; r.anegexp.np_able <= '0'; r.anegexp.page_rx <= '0'; r.anegexp.lp_aneg_able <= '0'; r.anegnptx.next_page <= '0'; r.anegnptx.message_page <= '1'; r.anegnptx.ack2 <= '0'; r.anegnptx.toggle <= '0'; r.anegnptx.message <= "00000000001"; r.anegnplp.next_page <= '0'; r.anegnplp.message_page <= '1'; r.anegnplp.ack2 <= '0'; r.anegnplp.toggle <= '0'; r.anegnplp.message <= "00000000001"; r.mstslvctrl.tmode <= (others => '0'); r.mstslvctrl.manualcfgen <= '0'; r.mstslvctrl.cfgval <= '0'; r.mstslvctrl.porttype <= '0'; r.mstslvctrl.base1000_t_fd <= conv_std_logic(base1000_t_fd = 1); r.mstslvctrl.base1000_t_hd <= conv_std_logic(base1000_t_fd = 1); r.mstslvstat.cfgfault <= '0'; r.mstslvstat.cfgres <= '1'; r.mstslvstat.locrxstate <= '1'; r.mstslvstat.remrxstate <= '1'; r.mstslvstat.lpbase1000_t_fd <= conv_std_logic(base1000_t_fd = 1); r.mstslvstat.lpbase1000_t_hd <= conv_std_logic(base1000_t_fd = 1); r.mstslvstat.idlerrcnt <= (others => '0'); r.extstatus.base1000_x_fd <= conv_std_logic(base1000_x_fd = 1); r.extstatus.base1000_x_hd <= conv_std_logic(base1000_x_hd = 1); r.extstatus.base1000_t_fd <= conv_std_logic(base1000_t_fd = 1); r.extstatus.base1000_t_hd <= conv_std_logic(base1000_t_hd = 1); end if; if rstn = '0' then r.cnt <= 0; r.state <= idle; r.rstcnt <= 0; r.ctrl.reset <= '1'; end if; end process; loopback_sel : process(r.ctrl.loopback, int_clk, gtx_clk, r.ctrl.speedsel, txd, tx_en) is begin if r.ctrl.loopback = '1' then if rmii = 0 then rx_col <= '0'; rx_crs <= tx_en; rx_dv <= tx_en; rx_er <= tx_er; rxd <= txd; if r.ctrl.speedsel /= "01" then rx_clk <= int_clk; tx_clk <= int_clk; else rx_clk <= gtx_clk; tx_clk <= clkslow; end if; else rx_dv <= '1'; rx_er <= '1'; --unused should not affect anything rx_col <= '0'; rx_crs <= tx_en; if tx_en = '0' then rxd(1 downto 0) <= "00"; else rxd(1 downto 0) <= txd(1 downto 0); end if; if rgmii = 1 then if (gtx_clk = '1' and tx_en = '0') then rxd(3 downto 0) <= r.ctrl.duplexmode & r.ctrl.speedsel & r.status.linkstat; end if; end if; rx_clk <= '0'; tx_clk <= '0'; end if; else rx_col <= '0'; rx_crs <= '0'; rx_dv <= '0'; rx_er <= '0'; rxd <= (others => '0'); if rgmii = 1 then if (gtx_clk = '1') then rxd(3 downto 0) <= r.ctrl.duplexmode & r.ctrl.speedsel & r.status.linkstat; end if; end if; if rmii = 0 then if r.ctrl.speedsel /= "01" then rx_clk <= int_clk; tx_clk <= int_clk after 3 ns; else rx_clk <= gtx_clk; tx_clk <= clkslow; end if; else rx_clk <= int_clk; tx_clk <= int_clk after 3 ns; end if; end if; end process; end; -- pragma translate_on
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-xilinx-ml501/svga2ch7301c.vhd
3
10231
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------- -- Entity: svga2ch7301c -- File: svga2ch7301c.vhd -- Author: Jan Andersson - Aeroflex Gaisler AB -- [email protected] -- -- Description: Converter inteneded to connect a SVGACTRL core to a Chrontel -- CH7301C DVI transmitter. Multiplexes data and generates clocks. -- Tailored for use on the Xilinx ML50x boards with Leon3/GRLIB -- template designs. -- -- This multiplexer has been developed for use with the Chrontel CH7301C DVI -- transmitter. Supported multiplexed formats are, as in the CH7301 datasheet: -- -- IDF Description -- 0 12-bit multiplexed RGB input (24-bit color), (scheme 1) -- 1 12-bit multiplexed RGB2 input (24-bit color), (scheme 2) -- 2 8-bit multiplexed RGB input (16-bit color, 565) -- 3 8-bit multiplexed RGB input (15-bit color, 555) -- -- This core assumes a 100 MHz input clock on the 'clk' input. -- -- If the generic 'dynamic' is non-zero the core uses the value vgao.bitdepth -- to decide if multiplexing should be done according to IDF 0 or IDF 2. -- vago.bitdepth = "11" gives IDF 0, others give IDF2. -- The 'idf' generic is not used when the 'dynamic' generic is non-zero. -- Note that if dynamic selection is enabled you will need to reconfigure -- the DVI transmitter when the VGA core changes bit depth. -- library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.misc.all; library grlib; use grlib.stdlib.all; -- pragma translate_off library unisim; use unisim.BUFG; use unisim.DCM; -- pragma translate_on library techmap; use techmap.gencomp.all; entity svga2ch7301c is generic ( tech : integer := 0; idf : integer := 0; dynamic : integer := 0 ); port ( clk : in std_ulogic; rstn : in std_ulogic; clksel : in std_logic_vector(1 downto 0); vgao : in apbvga_out_type; vgaclk_fb : in std_ulogic; clk25_fb : in std_ulogic; clk40_fb : in std_ulogic; clk65_fb : in std_ulogic; vgaclk : out std_ulogic; clk25 : out std_ulogic; clk40 : out std_ulogic; clk65 : out std_ulogic; dclk_p : out std_ulogic; dclk_n : out std_ulogic; locked : out std_ulogic; data : out std_logic_vector(11 downto 0); hsync : out std_ulogic; vsync : out std_ulogic; de : out std_ulogic ); end svga2ch7301c; architecture rtl of svga2ch7301c is component BUFG port (O : out std_logic; I : in std_logic); end component; component BUFGMUX port ( O : out std_ulogic; I0 : in std_ulogic; I1 : in std_ulogic; S : in std_ulogic); end component; component DCM generic ( CLKDV_DIVIDE : real := 2.0; CLKFX_DIVIDE : integer := 1; CLKFX_MULTIPLY : integer := 4; CLKIN_DIVIDE_BY_2 : boolean := false; CLKIN_PERIOD : real := 10.0; CLKOUT_PHASE_SHIFT : string := "NONE"; CLK_FEEDBACK : string := "1X"; DESKEW_ADJUST : string := "SYSTEM_SYNCHRONOUS"; DFS_FREQUENCY_MODE : string := "LOW"; DLL_FREQUENCY_MODE : string := "LOW"; DSS_MODE : string := "NONE"; DUTY_CYCLE_CORRECTION : boolean := true; FACTORY_JF : bit_vector := X"C080"; PHASE_SHIFT : integer := 0; STARTUP_WAIT : boolean := false ); port ( CLKFB : in std_logic; CLKIN : in std_logic; DSSEN : in std_logic; PSCLK : in std_logic; PSEN : in std_logic; PSINCDEC : in std_logic; RST : in std_logic; CLK0 : out std_logic; CLK90 : out std_logic; CLK180 : out std_logic; CLK270 : out std_logic; CLK2X : out std_logic; CLK2X180 : out std_logic; CLKDV : out std_logic; CLKFX : out std_logic; CLKFX180 : out std_logic; LOCKED : out std_logic; PSDONE : out std_logic; STATUS : out std_logic_vector (7 downto 0)); end component; constant VERSION : integer := 1; constant CLKIN_PERIOD_ST : string := "10.0"; attribute CLKIN_PERIOD : string; attribute CLKIN_PERIOD of dll1: label is CLKIN_PERIOD_ST; attribute CLKIN_PERIOD of dll2: label is CLKIN_PERIOD_ST; signal clk_l, clk_m, clk_n, clk_o : std_logic; signal dll0lock, dll1lock, dll2lock : std_logic; signal dllrst : std_ulogic; signal vcc, gnd : std_logic; signal d0, d1 : std_logic_vector(11 downto 0); signal red, green, blue : std_logic_vector(7 downto 0); signal lvgaclk, lclk40, lclk65, lclk40_65 : std_ulogic; signal clkval : std_logic_vector(1 downto 0); begin -- rtl vcc <= '1'; gnd <= '0'; ----------------------------------------------------------------------------- -- RGB data multiplexer ----------------------------------------------------------------------------- red <= vgao.video_out_r; green <= vgao.video_out_g; blue <= vgao.video_out_b; static: if dynamic = 0 generate idf0: if (idf = 0) generate d0 <= green(3 downto 0) & blue(7 downto 0); d1 <= red(7 downto 0) & green(7 downto 4); end generate; idf1: if (idf = 1) generate d0 <= green(4 downto 2) & blue(7 downto 3) & green(0) & blue(2 downto 0); d1 <= red(7 downto 3) & green(7 downto 5) & red(2 downto 0) & green(1); end generate; idf2: if (idf = 2) generate d0(11 downto 4) <= green(4 downto 2) & blue(7 downto 3); d0(3 downto 0) <= (others => '0'); d1(11 downto 4) <= red(7 downto 3) & green(7 downto 5); d1(3 downto 0) <= (others => '0'); data(3 downto 0) <= (others => '0'); end generate; idf3: if (idf = 3) generate d0(11 downto 4) <= green(5 downto 3) & blue(7 downto 3); d0(3 downto 0) <= (others => '0'); d1(11 downto 4) <= '0' & red(7 downto 3) & green(7 downto 6); d1(3 downto 0) <= (others => '0'); data(3 downto 0) <= (others => '0'); end generate idf3; -- DDR regs dataregs: for i in 11 downto (4*(idf/2)) generate ddr_oreg0 : ddr_oreg generic map (tech) port map (q => data(i), c1 => vgaclk_fb, c2 => gnd, ce => vcc, d1 => d0(i), d2 => d1(i), r => gnd, s => gnd); end generate; end generate; nostatic: if dynamic /= 0 generate d0 <= green(3 downto 0) & blue(7 downto 0) when vgao.bitdepth = "11" else green(4 downto 2) & blue(7 downto 3) & "0000"; d1 <= red(7 downto 0) & green(7 downto 4) when vgao.bitdepth = "11" else red(7 downto 3) & green(7 downto 5) & "0000"; dataregs: for i in 11 downto 0 generate ddr_oreg0 : ddr_oreg generic map (tech) port map (q => data(i), c1 => vgaclk_fb, c2 => gnd, ce => vcc, d1 => d0(i), d2 => d1(i), r => gnd, s => gnd); end generate; end generate; ----------------------------------------------------------------------------- -- Sync signals ----------------------------------------------------------------------------- process (vgaclk_fb) begin -- process if rising_edge(vgaclk_fb) then hsync <= vgao.hsync; vsync <= vgao.vsync; de <= vgao.blank; end if; end process; ----------------------------------------------------------------------------- -- Clock generation ----------------------------------------------------------------------------- ddroreg_p : ddr_oreg generic map (tech) port map (q => dclk_p, c1 => vgaclk_fb, c2 => gnd, ce => vcc, d1 => vcc, d2 => gnd, r => gnd, s => gnd); ddroreg_n : ddr_oreg generic map (tech) port map (q => dclk_n, c1 => vgaclk_fb, c2 => gnd, ce => vcc, d1 => gnd, d2 => vcc, r => gnd, s => gnd); -- Clock selection bufg00 : BUFG port map (I => lvgaclk, O => vgaclk); lvgaclk <= clk25_fb when clksel(1) = '0' else lclk40_65; lclk40_65 <= lclk40 when clksel(0) = '0' else lclk65; bufg01 : BUFG port map (I => clk40_fb, O => lclk40); bufg02 : BUFG port map (I => clk65_fb, O => lclk65); dllrst <= not rstn; -- Generate clocks clkdiv : process(clk_m, rstn) begin if (rstn and dll1lock) = '0' then clkval <= "00"; elsif rising_edge(clk_m) then clkval <= clkval + 1; end if; end process; clk25 <= clkval(1); dll0lock <= '1'; bufg03 : BUFG port map (I => clk_l, O => clk_m); dll1 : DCM generic map (CLKFX_MULTIPLY => 4, CLKFX_DIVIDE => 10, DFS_FREQUENCY_MODE => "LOW", DLL_FREQUENCY_MODE => "LOW") port map ( CLKIN => clk, CLKFB => clk_m, DSSEN => gnd, PSCLK => gnd, PSEN => gnd, PSINCDEC => gnd, RST => dllrst, CLK0 => clk_l, CLKFX => clk40, LOCKED => dll1lock); bufg04 : BUFG port map (I => clk_n, O => clk_o); dll2 : DCM generic map (CLKFX_MULTIPLY => 13, CLKFX_DIVIDE => 20, DFS_FREQUENCY_MODE => "LOW", DLL_FREQUENCY_MODE => "LOW") port map ( CLKIN => clk, CLKFB => clk_o, DSSEN => gnd, PSCLK => gnd, PSEN => gnd, PSINCDEC => gnd, RST => dllrst, CLK0 => clk_n, CLKFX => clk65, LOCKED => dll2lock); locked <= dll0lock and dll1lock and dll2lock; end rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/maps/odpad.vhd
1
5741
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: odpad -- File: odpad.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: tri-state output pad with technology wrapper ------------------------------------------------------------------------------ library techmap; library ieee; use ieee.std_logic_1164.all; use techmap.gencomp.all; use techmap.allpads.all; entity odpad is generic (tech : integer := 0; level : integer := 0; slew : integer := 0; voltage : integer := x33v; strength : integer := 12; oepol : integer := 0); port (pad : out std_ulogic; i : in std_ulogic; cfgi: in std_logic_vector(19 downto 0) := "00000000000000000000"); end; architecture rtl of odpad is signal gnd, oen, padx : std_ulogic; begin oen <= not i when oepol /= padoen_polarity(tech) else i; gnd <= '0'; gen0 : if has_pads(tech) = 0 generate pad <= gnd -- pragma translate_off after 2 ns -- pragma translate_on when oen = '0' -- pragma translate_off else 'X' after 2 ns when is_x(i) -- pragma translate_on else 'Z' -- pragma translate_off after 2 ns -- pragma translate_on ; end generate; xcv : if (is_unisim(tech) = 1) generate x0 : unisim_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; axc : if (tech = axcel) or (tech = axdsp) generate x0 : axcel_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; pa3 : if (tech = proasic) or (tech = apa3) generate x0 : apa3_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; pa3e : if (tech = apa3e) generate x0 : apa3e_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; igl2 : if (tech = igloo2) generate x0 : igloo2_toutpad port map (pad, gnd, oen); end generate; pa3l : if (tech = apa3l) generate x0 : apa3l_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; fus : if (tech = actfus) generate x0 : fusion_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; atc : if (tech = atc18s) generate x0 : atc18_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; atcrh : if (tech = atc18rha) generate x0 : atc18rha_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; um : if (tech = umc) generate x0 : umc_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; rhu : if (tech = rhumc) generate x0 : rhumc_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; ihp : if (tech = ihp25) generate x0 : ihp25_toutpad generic map(level, slew, voltage, strength) port map (pad, gnd, oen); end generate; rh18t : if (tech = rhlib18t) generate x0 : rh_lib18t_iopad generic map (strength) port map (padx, gnd, oen, open); pad <= padx; end generate; ut025 : if (tech = ut25) generate x0 : ut025crh_iopad generic map (level, slew, voltage, strength) port map (padx, gnd, oen, open); pad <= padx; end generate; ut13 : if (tech = ut130) generate x0 : ut130hbd_iopad generic map (level, slew, voltage, strength) port map (padx, gnd, oen, open); pad <= padx; end generate; pere : if (tech = peregrine) generate x0 : peregrine_iopad generic map (strength) port map (padx, gnd, oen, open); pad <= padx; end generate; nex : if (tech = easic90) generate x0 : nextreme_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen); end generate; n2x : if (tech = easic45) generate x0 : n2x_toutpad generic map (level, slew, voltage, strength) port map (pad, gnd, oen,cfgi(0), cfgi(1), cfgi(19 downto 15), cfgi(14 downto 10), cfgi(9 downto 6), cfgi(5 downto 2)); end generate; end; library techmap; library ieee; use ieee.std_logic_1164.all; use techmap.gencomp.all; entity odpadv is generic (tech : integer := 0; level : integer := 0; slew : integer := 0; voltage : integer := 0; strength : integer := 0; width : integer := 1; oepol : integer := 0); port ( pad : out std_logic_vector(width-1 downto 0); i : in std_logic_vector(width-1 downto 0); cfgi: in std_logic_vector(19 downto 0) := "00000000000000000000"); end; architecture rtl of odpadv is begin v : for j in width-1 downto 0 generate x0 : odpad generic map (tech, level, slew, voltage, strength, oepol) port map (pad(j), i(j), cfgi); end generate; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/leon3v3/cachemem.vhd
1
22317
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: cachemem -- File: cachemem.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: Contains ram cells for both instruction and data caches ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.libiu.all; use gaisler.libcache.all; use gaisler.mmuconfig.all; library grlib; use grlib.stdlib.all; library techmap; use techmap.gencomp.all; entity cachemem is generic ( tech : integer range 0 to NTECH := 0; icen : integer range 0 to 1 := 0; irepl : integer range 0 to 3 := 0; isets : integer range 1 to 4 := 1; ilinesize : integer range 4 to 8 := 4; isetsize : integer range 1 to 256 := 1; isetlock : integer range 0 to 1 := 0; dcen : integer range 0 to 1 := 0; drepl : integer range 0 to 3 := 0; dsets : integer range 1 to 4 := 1; dlinesize : integer range 4 to 8 := 4; dsetsize : integer range 1 to 256 := 1; dsetlock : integer range 0 to 1 := 0; dsnoop : integer range 0 to 6 := 0; ilram : integer range 0 to 1 := 0; ilramsize : integer range 1 to 512 := 1; dlram : integer range 0 to 1 := 0; dlramsize : integer range 1 to 512 := 1; mmuen : integer range 0 to 1 := 0; testen : integer range 0 to 3 := 0 ); port ( clk : in std_ulogic; crami : in cram_in_type; cramo : out cram_out_type; sclk : in std_ulogic; testin: in std_logic_vector(TESTIN_WIDTH-1 downto 0) ); end; architecture rtl of cachemem is constant DSNOOPSEP : boolean := (dsnoop > 3); constant DSNOOPFAST : boolean := (dsnoop = 2) or (dsnoop = 6); constant ILINE_BITS : integer := log2(ilinesize); constant IOFFSET_BITS : integer := 8 +log2(isetsize) - ILINE_BITS; constant DLINE_BITS : integer := log2(dlinesize); constant DOFFSET_BITS : integer := 8 +log2(dsetsize) - DLINE_BITS; constant ITAG_BITS : integer := TAG_HIGH - IOFFSET_BITS - ILINE_BITS - 2 + ilinesize + 1; constant DTAG_BITS : integer := TAG_HIGH - DOFFSET_BITS - DLINE_BITS - 2 + dlinesize + 1; constant IPTAG_BITS : integer := TAG_HIGH - IOFFSET_BITS - ILINE_BITS - 2 + 1; constant ILRR_BIT : integer := creplalg_tbl(irepl); constant DLRR_BIT : integer := creplalg_tbl(drepl); constant ITAG_LOW : integer := IOFFSET_BITS + ILINE_BITS + 2; constant DTAG_LOW : integer := DOFFSET_BITS + DLINE_BITS + 2; constant ICLOCK_BIT : integer := isetlock; constant DCLOCK_BIT : integer := dsetlock; constant ILRAM_BITS : integer := log2(ilramsize) + 10; constant DLRAM_BITS : integer := log2(dlramsize) + 10; constant ITDEPTH : natural := 2**IOFFSET_BITS; constant DTDEPTH : natural := 2**DOFFSET_BITS; constant MMUCTX_BITS : natural := 8*mmuen; -- i/d tag layout -- +-----+----------+---+--------+-----+-------+ -- | LRR | LOCK_BIT |PAR| MMUCTX | TAG | VALID | -- +-----+----------+---+--------+-----+-------+ -- [opt] [ opt ] [ ] [ opt ] [ ] constant ITWIDTH : natural := ITAG_BITS + ILRR_BIT + ICLOCK_BIT + MMUCTX_BITS ; constant DTWIDTH : natural := DTAG_BITS + DLRR_BIT + DCLOCK_BIT + MMUCTX_BITS ; constant IDWIDTH : natural := 32 ; constant DDWIDTH : natural := 32 ; constant DPTAG_BITS : integer := TAG_HIGH - DOFFSET_BITS - DLINE_BITS - 2 + 1; constant DTLRR_BIT_POS : natural := DTWIDTH-DLRR_BIT; -- if DTLRR_BIT=0 discard (pos DTWIDTH) constant DTLOCK_BIT_POS : natural := DTWIDTH-(DLRR_BIT+DCLOCK_BIT); -- if DTCLOCK_BIT=0 but DTLRR_BIT=1 lrr will overwrite constant DTMMU_VEC_U : natural := DTWIDTH-(DLRR_BIT+DCLOCK_BIT )-1; constant DTMMU_VEC_D : natural := DTWIDTH-(DLRR_BIT+DCLOCK_BIT+ MMUCTX_BITS); constant ITLRR_BIT_POS : natural := ITWIDTH-ILRR_BIT; -- if DLRR_BIT=0 discard (pos DTWIDTH) constant ITLOCK_BIT_POS : natural := ITWIDTH-(ILRR_BIT+ICLOCK_BIT); -- if DCLOCK_BIT=0 but DLRR_BIT=1 lrr will overwrite constant ITMMU_VEC_U : natural := ITWIDTH-(ILRR_BIT+ICLOCK_BIT )-1; constant ITMMU_VEC_D : natural := ITWIDTH-(ILRR_BIT+ICLOCK_BIT+ MMUCTX_BITS); constant DPTAG_RAM_BITS : integer := DPTAG_BITS ; constant DTAG_RAM_BITS : integer := DTAG_BITS ; subtype dtdatain_vector is std_logic_vector(DTWIDTH downto 0); type dtdatain_type is array (0 to MAXSETS-1) of dtdatain_vector; subtype itdatain_vector is std_logic_vector(ITWIDTH downto 0); type itdatain_type is array (0 to MAXSETS-1) of itdatain_vector; subtype dddatain_vector is std_logic_vector(DDWIDTH-1 downto 0); type dddatain_type is array (0 to MAXSETS-1) of dddatain_vector; subtype itdataout_vector is std_logic_vector(ITWIDTH downto 0); type itdataout_type is array (0 to MAXSETS-1) of itdataout_vector; subtype iddataout_vector is std_logic_vector(IDWIDTH -1 downto 0); type iddataout_type is array (0 to MAXSETS-1) of iddataout_vector; subtype dtdataout_vector is std_logic_vector(DTWIDTH downto 0); type dtdataout_type is array (0 to MAXSETS-1) of dtdataout_vector; subtype dddataout_vector is std_logic_vector(DDWIDTH -1 downto 0); type dddataout_type is array (0 to MAXSETS-1) of dddataout_vector; signal itaddr : std_logic_vector(IOFFSET_BITS + ILINE_BITS -1 downto ILINE_BITS); signal idaddr : std_logic_vector(IOFFSET_BITS + ILINE_BITS -1 downto 0); signal ildaddr : std_logic_vector(ILRAM_BITS-3 downto 0); signal itdatain : itdatain_type; signal itdatainx : itdatain_type; signal itdatain_cmp : itdatain_type; signal itdataout : itdataout_type; signal iddatain : std_logic_vector(IDWIDTH -1 downto 0); signal iddatainx : std_logic_vector(IDWIDTH -1 downto 0); signal iddatain_cmp : std_logic_vector(IDWIDTH -1 downto 0); signal iddataout : iddataout_type; signal ildataout : std_logic_vector(31 downto 0); signal itenable : std_ulogic; signal idenable : std_ulogic; signal itwrite : std_logic_vector(0 to MAXSETS-1); signal idwrite : std_logic_vector(0 to MAXSETS-1); signal dtaddr : std_logic_vector(DOFFSET_BITS + DLINE_BITS -1 downto DLINE_BITS); signal dtaddr2 : std_logic_vector(DOFFSET_BITS + DLINE_BITS -1 downto DLINE_BITS); signal dtaddr3 : std_logic_vector(DOFFSET_BITS + DLINE_BITS -1 downto DLINE_BITS); signal ddaddr : std_logic_vector(DOFFSET_BITS + DLINE_BITS -1 downto 0); signal ldaddr : std_logic_vector(DLRAM_BITS-1 downto 2); signal dtdatain : dtdatain_type; signal dtdatainx : dtdatain_type; signal dtdatain_cmp : dtdatain_type; signal dtdatain2 : dtdatain_type; signal dtdatain3 : dtdatain_type; signal dtdatainu : dtdatain_type; signal dtdataout : dtdataout_type; signal dtdataout2: dtdataout_type; signal dtdataout3: dtdataout_type; signal dddatain : dddatain_type; signal dddatainx : dddatain_type; signal dddatain_cmp : dddatain_type; signal dddataout : dddataout_type; signal lddatain, ldataout : std_logic_vector(31 downto 0); signal dtenable : std_logic_vector(0 to MAXSETS-1); signal dtenable2 : std_logic_vector(0 to MAXSETS-1); signal ddenable : std_logic_vector(0 to MAXSETS-1); signal dtwrite : std_logic_vector(0 to MAXSETS-1); signal dtwrite2 : std_logic_vector(0 to MAXSETS-1); signal dtwrite3 : std_logic_vector(0 to MAXSETS-1); signal ddwrite : std_logic_vector(0 to MAXSETS-1); signal vcc, gnd : std_ulogic; begin vcc <= '1'; gnd <= '0'; itaddr <= crami.icramin.address(IOFFSET_BITS + ILINE_BITS -1 downto ILINE_BITS); idaddr <= crami.icramin.address(IOFFSET_BITS + ILINE_BITS -1 downto 0); ildaddr <= crami.icramin.address(ILRAM_BITS-3 downto 0); itinsel : process(clk, crami, dtdataout2, dtdataout3 ) variable viddatain : std_logic_vector(IDWIDTH -1 downto 0); variable vdddatain : dddatain_type; variable vitdatain : itdatain_type; variable vdtdatain : dtdatain_type; variable vdtdatain2 : dtdatain_type; variable vdtdatain3 : dtdatain_type; variable vdtdatainu : dtdatain_type; begin viddatain := (others => '0'); vdddatain := (others => (others => '0')); viddatain(31 downto 0) := crami.icramin.data; for i in 0 to DSETS-1 loop vdtdatain(i) := (others => '0'); if mmuen = 1 then vdtdatain(i)(DTMMU_VEC_U downto DTMMU_VEC_D) := crami.dcramin.ctx(i); end if; vdtdatain(i)(DTLOCK_BIT_POS) := crami.dcramin.tag(i)(CTAG_LOCKPOS); if drepl = lrr then vdtdatain(i)(DTLRR_BIT_POS) := crami.dcramin.tag(i)(CTAG_LRRPOS); end if; vdtdatain(i)(DTAG_BITS-1 downto 0) := crami.dcramin.tag(i)(TAG_HIGH downto DTAG_LOW) & crami.dcramin.tag(i)(dlinesize-1 downto 0); if (crami.dcramin.flush(i) = '1') then vdtdatain(i) := (others => '0'); vdtdatain(i)(DTAG_BITS-1 downto DTAG_BITS-8) := X"FF"; vdtdatain(i)(DTAG_BITS-9 downto DTAG_BITS-10) := conv_std_logic_vector(i,2); vdtdatain(i)(DTAG_BITS-11 downto DTAG_BITS-12) := conv_std_logic_vector(i,2); end if; end loop; for i in 0 to DSETS-1 loop vdtdatain2(i) := (others => '0'); vdddatain(i)(31 downto 0) := crami.dcramin.data(i); vdtdatain2(i)(DTAG_BITS-1 downto DTAG_BITS-8) := X"FF"; vdtdatain2(i)(DTAG_BITS-9 downto DTAG_BITS-10) := conv_std_logic_vector(i,2); vdtdatain2(i)(DTAG_BITS-11 downto DTAG_BITS-12) := conv_std_logic_vector(i,2); end loop; vdtdatainu := (others => (others => '0')); vdtdatain3 := (others => (others => '0')); for i in 0 to DSETS-1 loop vdtdatain3(i) := (others => '0'); vdtdatain3(i)(DTAG_BITS-1 downto DTAG_BITS-DPTAG_BITS) := crami.dcramin.ptag(i)(TAG_HIGH downto DTAG_LOW); if DSNOOPSEP and (crami.dcramin.flush(i) = '1') then vdtdatain3(i) := (others => '0'); vdtdatain3(i)(DTAG_BITS-1 downto DTAG_BITS-8) := X"F3"; vdtdatain3(i)(DTAG_BITS-9 downto DTAG_BITS-10) := conv_std_logic_vector(i,2); vdtdatain3(i)(DTAG_BITS-11 downto DTAG_BITS-12) := conv_std_logic_vector(i,2); end if; end loop; for i in 0 to ISETS-1 loop vitdatain(i) := (others => '0'); if mmuen = 1 then vitdatain(i)(ITMMU_VEC_U downto ITMMU_VEC_D) := crami.icramin.ctx; end if; vitdatain(i)(ITLOCK_BIT_POS) := crami.icramin.tag(i)(CTAG_LOCKPOS); if irepl = lrr then vitdatain(i)(ITLRR_BIT_POS) := crami.icramin.tag(i)(CTAG_LRRPOS); end if; vitdatain(i)(ITAG_BITS-1 downto 0) := crami.icramin.tag(i)(TAG_HIGH downto ITAG_LOW) & crami.icramin.tag(i)(ilinesize-1 downto 0); if (crami.icramin.flush = '1') then vitdatain(i) := (others => '0'); vitdatain(i)(ITAG_BITS-1 downto ITAG_BITS-8) := X"FF"; vitdatain(i)(ITAG_BITS-9 downto ITAG_BITS-10) := conv_std_logic_vector(i,2); vitdatain(i)(ITAG_BITS-11 downto ITAG_BITS-12) := conv_std_logic_vector(i,2); end if; end loop; -- pragma translate_off itdatainx <= vitdatain; iddatainx <= viddatain; dtdatainx <= vdtdatain; dddatainx <= vdddatain; -- pragma translate_on itdatain <= vitdatain; iddatain <= viddatain; dtdatain <= vdtdatain; dtdatain2 <= vdtdatain2; dddatain <= vdddatain; dtdatain3 <= vdtdatain3; end process; itwrite <= crami.icramin.twrite; idwrite <= crami.icramin.dwrite; itenable <= crami.icramin.tenable; idenable <= crami.icramin.denable; dtaddr <= crami.dcramin.address(DOFFSET_BITS + DLINE_BITS -1 downto DLINE_BITS); dtaddr2 <= crami.dcramin.saddress(DOFFSET_BITS-1 downto 0); dtaddr3 <= crami.dcramin.faddress(DOFFSET_BITS-1 downto 0); ddaddr <= crami.dcramin.address(DOFFSET_BITS + DLINE_BITS -1 downto 0); ldaddr <= crami.dcramin.ldramin.address(DLRAM_BITS-1 downto 2); dtwrite <= crami.dcramin.twrite; dtwrite2 <= crami.dcramin.swrite; dtwrite3 <= crami.dcramin.tpwrite; ddwrite <= crami.dcramin.dwrite; dtenable <= crami.dcramin.tenable; dtenable2 <= crami.dcramin.senable; ddenable <= crami.dcramin.denable; ime : if icen = 1 generate im0 : for i in 0 to ISETS-1 generate itags0 : syncram generic map (tech, IOFFSET_BITS, ITWIDTH, testen, memtest_vlen) port map ( clk, itaddr, itdatain(i)(ITWIDTH-1 downto 0), itdataout(i)(ITWIDTH-1 downto 0), itenable, itwrite(i), testin ); idata0 : syncram generic map (tech, IOFFSET_BITS+ILINE_BITS, IDWIDTH, testen, memtest_vlen) port map (clk, idaddr, iddatain, iddataout(i), idenable, idwrite(i), testin ); itdataout(i)(ITWIDTH) <= '0'; end generate; end generate; imd : if icen = 0 generate ind0 : for i in 0 to ISETS-1 generate itdataout(i) <= (others => '0'); iddataout(i) <= (others => '0'); end generate; end generate; ild0 : if ilram = 1 generate ildata0 : syncram generic map (tech, ILRAM_BITS-2, 32, testen, memtest_vlen) port map (clk, ildaddr, iddatain, ildataout, crami.icramin.ldramin.enable, crami.icramin.ldramin.write, testin ); end generate; dme : if dcen = 1 generate dtags0 : if DSNOOP = 0 generate dt0 : for i in 0 to DSETS-1 generate dtags0 : syncram generic map (tech, DOFFSET_BITS, DTWIDTH, testen, memtest_vlen) port map (clk, dtaddr, dtdatain(i)(DTWIDTH-1 downto 0), dtdataout(i)(DTWIDTH-1 downto 0), dtenable(i), dtwrite(i), testin ); end generate; end generate; dtags1 : if DSNOOP /= 0 generate dt1 : if not DSNOOPSEP generate dt0 : for i in 0 to DSETS-1 generate dtags0 : syncram_dp generic map (tech, DOFFSET_BITS, DTWIDTH, testen, memtest_vlen) port map ( clk, dtaddr, dtdatain(i)(DTWIDTH-1 downto 0), dtdataout(i)(DTWIDTH-1 downto 0), dtenable(i), dtwrite(i), sclk, dtaddr2, dtdatain2(i)(DTWIDTH-1 downto 0), dtdataout2(i)(DTWIDTH-1 downto 0), dtenable2(i), dtwrite2(i), testin ); end generate; end generate; -- virtual address snoop case mdt1 : if DSNOOPSEP generate slow : if not DSNOOPFAST generate mdt0 : for i in 0 to DSETS-1 generate dtags0 : syncram_dp generic map (tech, DOFFSET_BITS, DTWIDTH-dlinesize+1, testen, memtest_vlen) port map ( clk, dtaddr, dtdatain(i)(DTWIDTH-1 downto dlinesize-1), dtdataout(i)(DTWIDTH-1 downto dlinesize-1), dtenable(i), dtwrite(i), sclk, dtaddr2, dtdatain2(i)(DTWIDTH-1 downto dlinesize-1), dtdataout2(i)(DTWIDTH-1 downto dlinesize-1), dtenable2(i), dtwrite2(i), testin ); dtags1 : syncram_dp generic map (tech, DOFFSET_BITS, DPTAG_RAM_BITS, testen, memtest_vlen) port map ( clk, dtaddr, dtdatain3(i)(DTAG_RAM_BITS-1 downto DTAG_BITS-DPTAG_BITS), open, dtwrite3(i), dtwrite3(i), sclk, dtaddr2, dtdatainu(i)(DTAG_RAM_BITS-1 downto DTAG_BITS-DPTAG_BITS), dtdataout3(i)(DTAG_RAM_BITS-1 downto DTAG_BITS-DPTAG_BITS), dtenable2(i), dtwrite2(i), testin ); end generate; end generate; fast : if DSNOOPFAST generate mdt0 : for i in 0 to DSETS-1 generate dtags0 : syncram_2p generic map (tech, DOFFSET_BITS, DTWIDTH-dlinesize+1, 0, 1, testen, 0, memtest_vlen) port map ( clk, dtenable(i), dtaddr, dtdataout(i)(DTWIDTH-1 downto dlinesize-1), sclk, dtwrite2(i), dtaddr3, dtdatain(i)(DTWIDTH-1 downto dlinesize-1), testin ); dtags1 : syncram_2p generic map (tech, DOFFSET_BITS, DPTAG_RAM_BITS, 0, 1, testen, 0, memtest_vlen) port map ( sclk, dtenable2(i), dtaddr2, dtdataout3(i)(DTAG_RAM_BITS-1 downto DTAG_BITS-DPTAG_BITS), clk, dtwrite3(i), dtaddr, dtdatain3(i)(DTAG_RAM_BITS-1 downto DTAG_BITS-DPTAG_BITS), testin ); end generate; end generate; end generate; end generate; nodtags1 : if DSNOOP = 0 generate dt0 : for i in 0 to DSETS-1 generate dtdataout2(i)(DTWIDTH-1 downto 0) <= zero64(DTWIDTH-1 downto 0); end generate; end generate; dd0 : for i in 0 to DSETS-1 generate ddata0 : syncram generic map (tech, DOFFSET_BITS+DLINE_BITS, DDWIDTH, testen, memtest_vlen) port map (clk, ddaddr, dddatain(i), dddataout(i), ddenable(i), ddwrite(i), testin ); dtdataout(i)(DTWIDTH) <= '0'; end generate; end generate; dmd : if dcen = 0 generate dnd0 : for i in 0 to DSETS-1 generate dtdataout(i) <= (others => '0'); dtdataout2(i) <= (others => '0'); dddataout(i) <= (others => '0'); end generate; end generate; ldxs0 : if not ((dlram = 1) and (DSETS > 1)) generate lddatain <= dddatain(0)(31 downto 0); end generate; ldxs1 : if (dlram = 1) and (DSETS > 1) generate lddatain <= dddatain(1)(31 downto 0); end generate; ld0 : if dlram = 1 generate ldata0 : syncram generic map (tech, DLRAM_BITS-2, 32, testen, memtest_vlen) port map (clk, ldaddr, lddatain, ldataout, crami.dcramin.ldramin.enable, crami.dcramin.ldramin.write, testin ); end generate; itx : for i in 0 to ISETS-1 generate cramo.icramo.tag(i)(TAG_HIGH downto ITAG_LOW) <= itdataout(i)(ITAG_BITS-1 downto (ITAG_BITS-1) - (TAG_HIGH - ITAG_LOW)); --(ITWIDTH-1-(ILRR_BIT+ICLOCK_BIT) downto ITWIDTH-(TAG_HIGH-ITAG_LOW)-(ILRR_BIT+ICLOCK_BIT)-1); cramo.icramo.tag(i)(ilinesize-1 downto 0) <= itdataout(i)(ilinesize-1 downto 0); cramo.icramo.tag(i)(CTAG_LRRPOS) <= itdataout(i)(ITLRR_BIT_POS); cramo.icramo.tag(i)(CTAG_LOCKPOS) <= itdataout(i)(ITLOCK_BIT_POS); ictx : if mmuen = 1 generate cramo.icramo.ctx(i) <= itdataout(i)(ITMMU_VEC_U downto ITMMU_VEC_D); end generate; noictx : if mmuen = 0 generate cramo.icramo.ctx(i) <= (others => '0'); end generate; cramo.icramo.data(i) <= ildataout when (ilram = 1) and ((ISETS = 1) or (i = 1)) and (crami.icramin.ldramin.read = '1') else iddataout(i)(31 downto 0); itv : if ilinesize = 4 generate cramo.icramo.tag(i)(7 downto 4) <= (others => '0'); end generate; ite : for j in 10 to ITAG_LOW-1 generate cramo.icramo.tag(i)(j) <= '0'; end generate; end generate; itx2 : for i in ISETS to MAXSETS-1 generate cramo.icramo.tag(i) <= (others => '0'); cramo.icramo.data(i) <= (others => '0'); cramo.icramo.ctx(i) <= (others => '0'); end generate; itd : for i in 0 to DSETS-1 generate cramo.dcramo.tag(i)(TAG_HIGH downto DTAG_LOW) <= dtdataout(i)(DTAG_BITS-1 downto (DTAG_BITS-1) - (TAG_HIGH - DTAG_LOW)); -- cramo.dcramo.tag(i)(dlinesize-1 downto 0) <= dtdataout(i)(dlinesize-1 downto 0); cramo.dcramo.tag(i)(dlinesize-1 downto 0) <= (others => dtdataout(i)(dlinesize-1)); cramo.dcramo.tag(i)(CTAG_LRRPOS) <= dtdataout(i)(DTLRR_BIT_POS); cramo.dcramo.tag(i)(CTAG_LOCKPOS) <= dtdataout(i)(DTLOCK_BIT_POS); dctx : if mmuen /= 0 generate cramo.dcramo.ctx(i) <= dtdataout(i)(DTMMU_VEC_U downto DTMMU_VEC_D); end generate; nodctx : if mmuen = 0 generate cramo.dcramo.ctx(i) <= (others => '0'); end generate; stagv : if DSNOOPSEP generate cramo.dcramo.stag(i)(TAG_HIGH downto DTAG_LOW) <= dtdataout3(i)(DTAG_BITS-1 downto (DTAG_BITS-1) - (TAG_HIGH - DTAG_LOW)); cramo.dcramo.stag(i)(DTAG_LOW-1 downto 0) <= (others =>'0'); end generate; stagp : if not DSNOOPSEP generate cramo.dcramo.stag(i)(TAG_HIGH downto DTAG_LOW) <= dtdataout2(i)(DTAG_BITS-1 downto (DTAG_BITS-1) - (TAG_HIGH - DTAG_LOW)); cramo.dcramo.stag(i)(DTAG_LOW-1 downto 0) <= (others =>'0'); end generate; cramo.dcramo.data(i) <= ldataout when (dlram = 1) and ((DSETS = 1) or (i = 1)) and (crami.dcramin.ldramin.read = '1') else dddataout(i)(31 downto 0); dtv : if dlinesize = 4 generate cramo.dcramo.tag(i)(7 downto 4) <= (others => '0'); end generate; dte : for j in 10 to DTAG_LOW-1 generate cramo.dcramo.tag(i)(j) <= '0'; end generate; end generate; itd2 : for i in DSETS to MAXSETS-1 generate cramo.dcramo.tag(i) <= (others => '0'); cramo.dcramo.stag(i) <= (others => '0'); cramo.dcramo.data(i) <= (others => '0'); cramo.dcramo.ctx(i) <= (others => '0'); end generate; noilr: if ilram=0 generate ildataout <= (others => '0'); end generate; nodlr: if dlram=0 generate ldataout <= (others => '0'); end generate; end ;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-altera-ep3sl150/config.vhd
1
6714
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench configuration -- Copyright (C) 2009 Aeroflex Gaisler ------------------------------------------------------------------------------ library techmap; use techmap.gencomp.all; package config is -- Technology and synthesis options constant CFG_FABTECH : integer := stratix3; constant CFG_MEMTECH : integer := stratix3; constant CFG_PADTECH : integer := stratix3; constant CFG_TRANSTECH : integer := GTP0; constant CFG_NOASYNC : integer := 0; constant CFG_SCAN : integer := 0; -- Clock generator constant CFG_CLKTECH : integer := stratix3; constant CFG_CLKMUL : integer := (30); constant CFG_CLKDIV : integer := (10); constant CFG_OCLKDIV : integer := 1; constant CFG_OCLKBDIV : integer := 0; constant CFG_OCLKCDIV : integer := 0; constant CFG_PCIDLL : integer := 0; constant CFG_PCISYSCLK: integer := 0; constant CFG_CLK_NOFB : integer := 0; -- LEON3 processor core constant CFG_LEON3 : integer := 1; constant CFG_NCPU : integer := (1); constant CFG_NWIN : integer := (8); constant CFG_V8 : integer := 16#32# + 4*0; constant CFG_MAC : integer := 0; constant CFG_BP : integer := 0; constant CFG_SVT : integer := 0; constant CFG_RSTADDR : integer := 16#00000#; constant CFG_LDDEL : integer := (1); constant CFG_NOTAG : integer := 0; constant CFG_NWP : integer := (2); constant CFG_PWD : integer := 0*2; constant CFG_FPU : integer := 0 + 16*0 + 32*0; constant CFG_GRFPUSH : integer := 0; constant CFG_ICEN : integer := 1; constant CFG_ISETS : integer := 2; constant CFG_ISETSZ : integer := 8; constant CFG_ILINE : integer := 8; constant CFG_IREPL : integer := 0; constant CFG_ILOCK : integer := 0; constant CFG_ILRAMEN : integer := 0; constant CFG_ILRAMADDR: integer := 16#8E#; constant CFG_ILRAMSZ : integer := 1; constant CFG_DCEN : integer := 1; constant CFG_DSETS : integer := 2; constant CFG_DSETSZ : integer := 4; constant CFG_DLINE : integer := 8; constant CFG_DREPL : integer := 0; constant CFG_DLOCK : integer := 0; constant CFG_DSNOOP : integer := 1*2 + 4*0; constant CFG_DFIXED : integer := 16#0#; constant CFG_DLRAMEN : integer := 0; constant CFG_DLRAMADDR: integer := 16#8F#; constant CFG_DLRAMSZ : integer := 1; constant CFG_MMUEN : integer := 0; constant CFG_ITLBNUM : integer := 2; constant CFG_DTLBNUM : integer := 2; constant CFG_TLB_TYPE : integer := 1 + 0*2; constant CFG_TLB_REP : integer := 1; constant CFG_MMU_PAGE : integer := 0; constant CFG_DSU : integer := 1; constant CFG_ITBSZ : integer := 2 + 64*0; constant CFG_ATBSZ : integer := 2; constant CFG_AHBPF : integer := 0; constant CFG_LEON3FT_EN : integer := 0; constant CFG_IUFT_EN : integer := 0; constant CFG_FPUFT_EN : integer := 0; constant CFG_RF_ERRINJ : integer := 0; constant CFG_CACHE_FT_EN : integer := 0; constant CFG_CACHE_ERRINJ : integer := 0; constant CFG_LEON3_NETLIST: integer := 0; constant CFG_DISAS : integer := 0 + 0; constant CFG_PCLOW : integer := 2; constant CFG_NP_ASI : integer := 0; constant CFG_WRPSR : integer := 0; -- AMBA settings constant CFG_DEFMST : integer := (0); constant CFG_RROBIN : integer := 1; constant CFG_SPLIT : integer := 0; constant CFG_FPNPEN : integer := 0; constant CFG_AHBIO : integer := 16#FFF#; constant CFG_APBADDR : integer := 16#800#; constant CFG_AHB_MON : integer := 0; constant CFG_AHB_MONERR : integer := 0; constant CFG_AHB_MONWAR : integer := 0; constant CFG_AHB_DTRACE : integer := 0; -- DSU UART constant CFG_AHB_UART : integer := 0; -- JTAG based DSU interface constant CFG_AHB_JTAG : integer := 1; -- Ethernet DSU constant CFG_DSU_ETH : integer := 1 + 0 + 0; constant CFG_ETH_BUF : integer := 2; constant CFG_ETH_IPM : integer := 16#C0A8#; constant CFG_ETH_IPL : integer := 16#0058#; constant CFG_ETH_ENM : integer := 16#020000#; constant CFG_ETH_ENL : integer := 16#000012#; -- LEON2 memory controller constant CFG_MCTRL_LEON2 : integer := 1; constant CFG_MCTRL_RAM8BIT : integer := 0; constant CFG_MCTRL_RAM16BIT : integer := 1; constant CFG_MCTRL_5CS : integer := 0; constant CFG_MCTRL_SDEN : integer := 0; constant CFG_MCTRL_SEPBUS : integer := 0; constant CFG_MCTRL_INVCLK : integer := 0; constant CFG_MCTRL_SD64 : integer := 0; constant CFG_MCTRL_PAGE : integer := 0 + 0; -- SSRAM controller constant CFG_SSCTRL : integer := 0; constant CFG_SSCTRLP16 : integer := 0; -- DDR controller constant CFG_DDR2SP : integer := 1; constant CFG_DDR2SP_INIT : integer := 1; constant CFG_DDR2SP_FREQ : integer := (200); constant CFG_DDR2SP_TRFC : integer := (130); constant CFG_DDR2SP_DATAWIDTH : integer := (64); constant CFG_DDR2SP_FTEN : integer := 0; constant CFG_DDR2SP_FTWIDTH : integer := 0; constant CFG_DDR2SP_COL : integer := (10); constant CFG_DDR2SP_SIZE : integer := (256); constant CFG_DDR2SP_DELAY0 : integer := (0); constant CFG_DDR2SP_DELAY1 : integer := (0); constant CFG_DDR2SP_DELAY2 : integer := (0); constant CFG_DDR2SP_DELAY3 : integer := (0); constant CFG_DDR2SP_DELAY4 : integer := (0); constant CFG_DDR2SP_DELAY5 : integer := (0); constant CFG_DDR2SP_DELAY6 : integer := (0); constant CFG_DDR2SP_DELAY7 : integer := (0); constant CFG_DDR2SP_NOSYNC : integer := 0; -- AHB ROM constant CFG_AHBROMEN : integer := 0; constant CFG_AHBROPIP : integer := 0; constant CFG_AHBRODDR : integer := 16#000#; constant CFG_ROMADDR : integer := 16#000#; constant CFG_ROMMASK : integer := 16#E00# + 16#000#; -- AHB RAM constant CFG_AHBRAMEN : integer := 0; constant CFG_AHBRSZ : integer := 1; constant CFG_AHBRADDR : integer := 16#A00#; constant CFG_AHBRPIPE : integer := 0; -- Gaisler Ethernet core constant CFG_GRETH : integer := 1; constant CFG_GRETH1G : integer := 0; constant CFG_ETH_FIFO : integer := 16; -- UART 1 constant CFG_UART1_ENABLE : integer := 1; constant CFG_UART1_FIFO : integer := 8; -- LEON3 interrupt controller constant CFG_IRQ3_ENABLE : integer := 1; constant CFG_IRQ3_NSEC : integer := 0; -- Modular timer constant CFG_GPT_ENABLE : integer := 1; constant CFG_GPT_NTIM : integer := (2); constant CFG_GPT_SW : integer := (8); constant CFG_GPT_TW : integer := (32); constant CFG_GPT_IRQ : integer := (8); constant CFG_GPT_SEPIRQ : integer := 1; constant CFG_GPT_WDOGEN : integer := 0; constant CFG_GPT_WDOG : integer := 16#0#; -- GPIO port constant CFG_GRGPIO_ENABLE : integer := 1; constant CFG_GRGPIO_IMASK : integer := 16#6#; constant CFG_GRGPIO_WIDTH : integer := (3); -- GRLIB debugging constant CFG_DUART : integer := 0; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-altera-ep1c20/leon3mp.vhd
1
21191
------------------------------------------------------------------------------ -- LEON3 Demonstration design -- Copyright (C) 2004 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.memctrl.all; use gaisler.leon3.all; use gaisler.uart.all; use gaisler.misc.all; use gaisler.jtag.all; library esa; use esa.memoryctrl.all; use work.config.all; entity leon3mp is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; ncpu : integer := CFG_NCPU; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; freq : integer := 25 -- frequency of main clock (used for PLLs) ); port ( resetn : in std_ulogic; clk : in std_ulogic; clkout : out std_ulogic; pllref : in std_ulogic; errorn : out std_ulogic; -- Shared bus address : out std_logic_vector(27 downto 0); data : inout std_logic_vector(31 downto 0); -- SRAM ramsn : out std_ulogic; ramoen : out std_ulogic; rwen : out std_ulogic; mben : out std_logic_vector(3 downto 0); iosn : out std_ulogic; -- FLASH romsn : out std_ulogic; oen : out std_ulogic; writen : out std_ulogic; sa : out std_logic_vector(11 downto 0); sd : inout std_logic_vector(31 downto 0); sdclk : out std_ulogic; sdcke : out std_logic; -- sdram clock enable sdcsn : out std_logic; -- sdram chip select sdwen : out std_ulogic; -- sdram write enable sdrasn : out std_ulogic; -- sdram ras sdcasn : out std_ulogic; -- sdram cas sddqm : out std_logic_vector (3 downto 0); -- sdram dqm sdba : out std_logic_vector(1 downto 0); -- sdram bank address -- debug support unit dsutx : out std_ulogic; -- DSU tx data dsurx : in std_ulogic; -- DSU rx data dsubren : in std_ulogic; dsuact : out std_ulogic; -- console UART rxd1 : in std_ulogic; txd1 : out std_ulogic; -- for smsc lan chip eth_aen : out std_logic; eth_readn : out std_logic; eth_writen: out std_logic; eth_nbe : out std_logic_vector(3 downto 0); eth_lclk : out std_ulogic; eth_nads : out std_logic; eth_ncycle : out std_logic; eth_wnr : out std_logic; eth_nvlbus : out std_logic; eth_nrdyrtn : out std_logic; eth_ndatacs : out std_logic; gpio : inout std_logic_vector(CFG_GRGPIO_WIDTH-1 downto 0) -- I/O port ); end; architecture rtl of leon3mp is constant blength : integer := 12; constant fifodepth : integer := 8; constant maxahbm : integer := NCPU+CFG_AHB_UART+CFG_AHB_JTAG; signal vcc, gnd : std_logic_vector(7 downto 0); signal memi : memory_in_type; signal memo : memory_out_type; signal wpo : wprot_out_type; signal sdi : sdctrl_in_type; signal sdo : sdram_out_type; signal sdo2 : sdctrl_out_type; --for smc lan chip signal s_eth_aen : std_logic; signal s_eth_readn : std_logic; signal s_eth_writen: std_logic; signal s_eth_nbe : std_logic_vector(3 downto 0); signal apbi : apb_slv_in_type; signal apbo : apb_slv_out_vector := (others => apb_none); signal ahbsi : ahb_slv_in_type; signal ahbso : ahb_slv_out_vector := (others => ahbs_none); signal ahbmi : ahb_mst_in_type; signal ahbmo : ahb_mst_out_vector := (others => ahbm_none); signal clkm, rstn, sdclkl : std_ulogic; signal cgi : clkgen_in_type; signal cgo : clkgen_out_type; signal u1i, dui : uart_in_type; signal u1o, duo : uart_out_type; signal irqi : irq_in_vector(0 to NCPU-1); signal irqo : irq_out_vector(0 to NCPU-1); signal dbgi : l3_debug_in_vector(0 to NCPU-1); signal dbgo : l3_debug_out_vector(0 to NCPU-1); signal dsui : dsu_in_type; signal dsuo : dsu_out_type; signal gpti : gptimer_in_type; signal gpioi : gpio_in_type; signal gpioo : gpio_out_type; constant IOAEN : integer := 1; constant CFG_SDEN : integer := CFG_MCTRL_SDEN ; constant CFG_INVCLK : integer := CFG_MCTRL_INVCLK; signal lclk, lclkout : std_ulogic; signal tck, tms, tdi, tdo : std_ulogic; signal dsubre : std_ulogic; component clkgen_ep1c20board is generic ( tech : integer := DEFFABTECH; clk_mul : integer := 1; clk_div : integer := 1; sdramen : integer := 0; sdinvclk : integer := 0; freq : integer := 50000); port ( clkin : in std_logic; clkout : out std_logic; clk : out std_logic; clkn : out std_logic; sdclk : out std_logic; cgi : in clkgen_in_type; cgo : out clkgen_out_type); end component; component smc_mctrl generic ( hindex : integer := 0; pindex : integer := 0; romaddr : integer := 16#000#; rommask : integer := 16#E00#; ioaddr : integer := 16#200#; iomask : integer := 16#E00#; ramaddr : integer := 16#400#; rammask : integer := 16#C00#; paddr : integer := 0; pmask : integer := 16#fff#; wprot : integer := 0; invclk : integer := 0; fast : integer := 0; romasel : integer := 28; sdrasel : integer := 29; srbanks : integer := 4; ram8 : integer := 0; ram16 : integer := 0; sden : integer := 0; sepbus : integer := 0; sdbits : integer := 32; sdlsb : integer := 2; oepol : integer := 0; syncrst : integer := 0 ); port ( rst : in std_ulogic; clk : in std_ulogic; memi : in memory_in_type; memo : out memory_out_type; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type; apbi : in apb_slv_in_type; apbo : out apb_slv_out_type; wpo : in wprot_out_type; sdo : out sdram_out_type; eth_aen : out std_ulogic; -- for smsc lan chip eth_readn : out std_ulogic; -- for smsc lan chip eth_writen: out std_ulogic; -- for smsc lan chip eth_nbe : out std_logic_vector(3 downto 0) -- for smsc lan chip ); end component; begin ---------------------------------------------------------------------- --- Reset and Clock generation ------------------------------------- ---------------------------------------------------------------------- vcc <= (others => '1'); gnd <= (others => '0'); cgi.pllctrl <= "00"; cgi.pllrst <= not resetn; --cgi.pllref <= lclk; --pllref; -- clk; --'0'; clk_pad : clkpad generic map (tech => padtech) port map (clk, lclk); clkout_pad : outpad generic map (tech => padtech, slew => 1) port map (clkout, lclkout); pllref_pad : clkpad generic map (tech => padtech) port map (pllref, cgi.pllref); clkgen0 : clkgen_ep1c20board generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, CFG_SDEN, CFG_CLK_NOFB) port map (lclk, lclkout, clkm, open, sdclkl, cgi, cgo); sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24) port map (sdclk, sdclkl); rst0 : rstgen -- reset generator port map (resetn, clkm, cgo.clklock, rstn); ---------------------------------------------------------------------- --- AHB CONTROLLER -------------------------------------------------- ---------------------------------------------------------------------- ahb0 : ahbctrl -- AHB arbiter/multiplexer generic map (defmast => CFG_DEFMST, split => CFG_SPLIT, rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, ioen => IOAEN, nahbm => maxahbm, nahbs => 8) port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso); ---------------------------------------------------------------------- --- LEON3 processor and DSU ----------------------------------------- ---------------------------------------------------------------------- l3 : if CFG_LEON3 = 1 generate cpu : for i in 0 to NCPU-1 generate u0 : leon3s -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, NCPU-1, CFG_DFIXED, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i)); end generate; errorn_pad : odpad generic map (tech => padtech) port map (errorn, dbgo(0).error); dsugen : if CFG_DSU = 1 generate dsu0 : dsu3 -- LEON3 Debug Support Unit generic map (hindex => 2, haddr => 16#900#, hmask => 16#F00#, ncpu => NCPU, tbits => 30, tech => memtech, irq => 0, kbytes => CFG_ATBSZ) port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo); dsui.enable <= '1'; dsubre_pad : inpad generic map (tech => padtech) port map (dsubre, dsui.break); dsuact_pad : outpad generic map (tech => padtech) port map (dsuact, dsuo.active); end generate; end generate; nodsu : if CFG_DSU = 0 generate ahbso(2) <= ahbs_none; dsuo.tstop <= '0'; dsuo.active <= '0'; end generate; dcomgen : if CFG_AHB_UART = 1 generate dcom0 : ahbuart -- Debug UART generic map (hindex => NCPU, pindex => 4, paddr => 7) port map (rstn, clkm, dui, duo, apbi, apbo(4), ahbmi, ahbmo(NCPU)); dsurx_pad : inpad generic map (tech => padtech) port map (dsurx, dui.rxd); dsutx_pad : outpad generic map (tech => padtech) port map (dsutx, duo.txd); end generate; nouah : if CFG_AHB_UART = 0 generate apbo(7) <= apb_none; end generate; ahbjtaggen0 :if CFG_AHB_JTAG = 1 generate ahbjtag0 : ahbjtag generic map(tech => fabtech, hindex => NCPU+CFG_AHB_UART) port map(rstn, clkm, tck, tms, tdi, tdo, ahbmi, ahbmo(NCPU+CFG_AHB_UART), open, open, open, open, open, open, open, gnd(0)); end generate; ---------------------------------------------------------------------- --- Memory controllers ---------------------------------------------- ---------------------------------------------------------------------- src : if CFG_SRCTRL = 1 generate -- 32-bit PROM/SRAM controller sr0 : srctrl generic map (hindex => 0, ramws => CFG_SRCTRL_RAMWS, romws => CFG_SRCTRL_PROMWS, ramaddr => 16#400#, prom8en => CFG_SRCTRL_8BIT, rmw => CFG_SRCTRL_RMW) port map (rstn, clkm, ahbsi, ahbso(0), memi, memo, sdo2); apbo(0) <= apb_none; end generate; mg2 : if CFG_MCTRL_LEON2 = 1 generate -- LEON2 memory controller sr1 : smc_mctrl generic map (hindex => 0, pindex => 0, paddr => 0, srbanks => 2, sden => CFG_MCTRL_SDEN, ram8 => CFG_MCTRL_RAM8BIT, ram16 => CFG_MCTRL_RAM16BIT, invclk => CFG_MCTRL_INVCLK, sepbus => CFG_MCTRL_SEPBUS, sdbits => 32 + 32*CFG_MCTRL_SD64) port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wpo, sdo, s_eth_aen, s_eth_readn, s_eth_writen, s_eth_nbe); sdpads : if CFG_MCTRL_SDEN = 1 generate -- SDRAM controller sd2 : if CFG_MCTRL_SEPBUS = 1 generate sa_pad : outpadv generic map (width => 12) port map (sa, memo.sa(11 downto 0)); sdba_pad : outpadv generic map (width => 2) port map (sdba, memo.sa(14 downto 13)); bdr : for i in 0 to 3 generate sd_pad : iopadv generic map (tech => padtech, width => 8) port map (sd(31-i*8 downto 24-i*8), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.sd(31-i*8 downto 24-i*8)); sd2 : if CFG_MCTRL_SD64 = 1 generate sd_pad2 : iopadv generic map (tech => padtech, width => 8) port map (sd(31-i*8+32 downto 24-i*8+32), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.sd(31-i*8+32 downto 24-i*8+32)); end generate; end generate; end generate; sdwen_pad : outpad generic map (tech => padtech) port map (sdwen, sdo.sdwen); sdras_pad : outpad generic map (tech => padtech) port map (sdrasn, sdo.rasn); sdcas_pad : outpad generic map (tech => padtech) port map (sdcasn, sdo.casn); sddqm_pad : outpadv generic map (width =>4, tech => padtech) port map (sddqm, sdo.dqm(3 downto 0)); end generate; sdcke_pad : outpad generic map (tech => padtech) port map (sdcke, sdo.sdcke(0)); sdcsn_pad : outpad generic map (tech => padtech) port map (sdcsn, sdo.sdcsn(0)); end generate; nosd0 : if (CFG_MCTRL_LEON2 = 0) generate -- no SDRAM controller sdcke_pad : outpad generic map (tech => padtech) port map (sdcke, sdo2.sdcke(0)); sdcsn_pad : outpad generic map (tech => padtech) port map (sdcsn, sdo2.sdcsn(0)); end generate; memi.brdyn <= '1'; memi.bexcn <= '1'; memi.writen <= '1'; memi.wrn <= "1111"; memi.bwidth <= "00"; mg0 : if not ((CFG_SRCTRL = 1) or (CFG_MCTRL_LEON2 = 1)) generate -- no prom/sram pads apbo(0) <= apb_none; ahbso(0) <= ahbs_none; rams_pad : outpad generic map (tech => padtech) port map (ramsn, vcc(0)); roms_pad : outpad generic map (tech => padtech) port map (romsn, vcc(0)); end generate; mgpads : if (CFG_SRCTRL = 1) or (CFG_MCTRL_LEON2 = 1) generate -- prom/sram pads addr_pad : outpadv generic map (width => 28, tech => padtech) port map (address, memo.address(27 downto 0)); rams_pad : outpad generic map (tech => padtech) port map (ramsn, memo.ramsn(0)); roms_pad : outpad generic map (tech => padtech) port map (romsn, memo.romsn(0)); oen_pad : outpad generic map (tech => padtech) port map (oen, memo.oen); rwen_pad : outpad generic map (tech => padtech) port map (rwen, memo.wrn(0)); roen_pad : outpad generic map (tech => padtech) port map (ramoen, memo.ramoen(0)); wri_pad : outpad generic map (tech => padtech) port map (writen, memo.writen); iosn_pad : outpad generic map (tech => padtech) port map (iosn, memo.iosn); -- for smc lan chip eth_aen_pad : outpad generic map (tech => padtech) port map (eth_aen, s_eth_aen); eth_readn_pad : outpad generic map (tech => padtech) port map (eth_readn, s_eth_readn); eth_writen_pad : outpad generic map (tech => padtech) port map (eth_writen, s_eth_writen); eth_nbe_pad : outpadv generic map (width => 4, tech => padtech) port map (eth_nbe, s_eth_nbe); bdr : for i in 0 to 3 generate data_pad : iopadv generic map (tech => padtech, width => 8) port map (data(31-i*8 downto 24-i*8), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.data(31-i*8 downto 24-i*8)); end generate; end generate; ---------------------------------------------------------------------- --- APB Bridge and various periherals ------------------------------- ---------------------------------------------------------------------- apb0 : apbctrl -- AHB/APB bridge generic map (hindex => 1, haddr => CFG_APBADDR) port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo); ua1 : if CFG_UART1_ENABLE /= 0 generate uart1 : apbuart -- UART 1 generic map (pindex => 1, paddr => 1, pirq => 2, console => dbguart, fifosize => CFG_UART1_FIFO) port map (rstn, clkm, apbi, apbo(1), u1i, u1o); u1i.rxd <= rxd1; u1i.ctsn <= '0'; u1i.extclk <= '0'; txd1 <= u1o.txd; end generate; noua0 : if CFG_UART1_ENABLE = 0 generate apbo(1) <= apb_none; end generate; irqctrl : if CFG_IRQ3_ENABLE /= 0 generate irqctrl0 : irqmp -- interrupt controller generic map (pindex => 2, paddr => 2, ncpu => NCPU) port map (rstn, clkm, apbi, apbo(2), irqo, irqi); end generate; irq3 : if CFG_IRQ3_ENABLE = 0 generate x : for i in 0 to NCPU-1 generate irqi(i).irl <= "0000"; end generate; apbo(2) <= apb_none; end generate; gpt : if CFG_GPT_ENABLE /= 0 generate timer0 : gptimer -- timer unit generic map (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ, sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM, nbits => CFG_GPT_TW) port map (rstn, clkm, apbi, apbo(3), gpti, open); gpti.dhalt <= dsuo.tstop; gpti.extclk <= '0'; end generate; notim : if CFG_GPT_ENABLE = 0 generate apbo(3) <= apb_none; end generate; gpio0 : if CFG_GRGPIO_ENABLE /= 0 generate -- GPIO unit grgpio0: grgpio generic map(pindex => 5, paddr => 5, imask => CFG_GRGPIO_IMASK, nbits => CFG_GRGPIO_WIDTH) port map(rst => rstn, clk => clkm, apbi => apbi, apbo => apbo(5), gpioi => gpioi, gpioo => gpioo); pio_pads : for i in 0 to CFG_GRGPIO_WIDTH-1 generate pio_pad : iopad generic map (tech => padtech) port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i)); end generate; end generate; ----------------------------------------------------------------------- --- AHB ROM ---------------------------------------------------------- ----------------------------------------------------------------------- bpromgen : if CFG_AHBROMEN /= 0 generate brom : entity work.ahbrom generic map (hindex => 6, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP) port map ( rstn, clkm, ahbsi, ahbso(6)); end generate; nobpromgen : if CFG_AHBROMEN = 0 generate ahbso(6) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- AHB RAM ---------------------------------------------------------- ----------------------------------------------------------------------- ahbramgen : if CFG_AHBRAMEN = 1 generate ahbram0 : ahbram generic map (hindex => 3, haddr => CFG_AHBRADDR, tech => CFG_MEMTECH, kbytes => CFG_AHBRSZ, pipe => CFG_AHBRPIPE) port map (rstn, clkm, ahbsi, ahbso(3)); end generate; nram : if CFG_AHBRAMEN = 0 generate ahbso(3) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- Drive unused bus elements --------------------------------------- ----------------------------------------------------------------------- nam1 : for i in (NCPU+CFG_AHB_UART+CFG_AHB_JTAG) to NAHBMST-1 generate ahbmo(i) <= ahbm_none; end generate; nap0 : for i in 6 to NAPBSLV-1 generate apbo(i) <= apb_none; end generate; nah0 : for i in 7 to NAHBSLV-1 generate ahbso(i) <= ahbs_none; end generate; ---- ---- -- invert signal for input via a key dsubre <= not dsubren; -- for smc lan chip eth_lclk <= vcc(0); eth_nads <= gnd(0); eth_ncycle <= vcc(0); eth_wnr <= vcc(0); eth_nvlbus <= vcc(0); eth_nrdyrtn <= vcc(0); eth_ndatacs <= vcc(0); ----------------------------------------------------------------------- --- Boot message ---------------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off x : report_design generic map ( msg1 => "LEON3 Altera EP1C20 Demonstration design", fabtech => tech_table(fabtech), memtech => tech_table(memtech), mdel => 1 ); -- pragma translate_on end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/maps/toutpad.vhd
1
7228
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: toutpad -- File: toutpad.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: tri-state output pad with technology wrapper ------------------------------------------------------------------------------ library techmap; library ieee; use ieee.std_logic_1164.all; use techmap.gencomp.all; use techmap.allpads.all; entity toutpad is generic (tech : integer := 0; level : integer := 0; slew : integer := 0; voltage : integer := x33v; strength : integer := 12; oepol : integer := 0); port (pad : out std_ulogic; i, en : in std_ulogic; cfgi: in std_logic_vector(19 downto 0) := "00000000000000000000"); end; architecture rtl of toutpad is signal oen : std_ulogic; signal padx, gnd : std_ulogic; begin gnd <= '0'; oen <= not en when oepol /= padoen_polarity(tech) else en; gen0 : if has_pads(tech) = 0 generate pad <= i -- pragma translate_off after 2 ns -- pragma translate_on when oen = '0' -- pragma translate_off else 'X' after 2 ns when is_x(en) -- pragma translate_on else 'Z' -- pragma translate_off after 2 ns -- pragma translate_on ; end generate; xcv : if (is_unisim(tech) = 1) generate u0 : unisim_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; axc : if (tech = axcel) or (tech = axdsp) generate u0 : axcel_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; pa3 : if (tech = proasic) or (tech = apa3) generate u0 : apa3_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; pa3e : if (tech = apa3e) generate u0 : apa3e_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; igl2 : if (tech = igloo2) generate u0 : igloo2_toutpad port map (pad, i, oen); end generate; pa3l : if (tech = apa3l) generate u0 : apa3l_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; fus : if (tech = actfus) generate u0 : fusion_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; atc : if (tech = atc18s) generate u0 : atc18_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; atcrh : if (tech = atc18rha) generate u0 : atc18rha_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; um : if (tech = umc) generate u0 : umc_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; rhu : if (tech = rhumc) generate u0 : rhumc_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; saed : if (tech = saed32) generate u0 : saed32_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; rhs : if (tech = rhs65) generate u0 : rhs65_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen, cfgi(0), cfgi(2), cfgi(1)); end generate; dar : if (tech = dare) generate u0 : dare_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; ihp : if (tech = ihp25) generate u0 : ihp25_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen); end generate; ihprh : if (tech = ihp25rh) generate u0 : ihp25rh_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen); end generate; rh18t : if (tech = rhlib18t) generate u0 : rh_lib18t_iopad generic map (strength) port map (padx, i, oen, open); pad <= padx; end generate; ut025 : if (tech = ut25) generate u0 : ut025crh_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen); end generate; ut13 : if (tech = ut130) generate u0 : ut130hbd_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen); end generate; pere : if (tech = peregrine) generate u0 : peregrine_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen); end generate; nex : if (tech = easic90) generate u0 : nextreme_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen); end generate; n2x : if (tech = easic45) generate u0 : n2x_toutpad generic map (level, slew, voltage, strength) port map (pad, i, oen, cfgi(0), cfgi(1), cfgi(19 downto 15), cfgi(14 downto 10), cfgi(9 downto 6), cfgi(5 downto 2)); end generate; ut90nhbd : if (tech = ut90) generate u0 : ut90nhbd_toutpad generic map (level, slew, voltage, strength) port map(pad, i, oen, cfgi(0)); end generate; end; library techmap; library ieee; use ieee.std_logic_1164.all; use techmap.gencomp.all; entity toutpadv is generic (tech : integer := 0; level : integer := 0; slew : integer := 0; voltage : integer := x33v; strength : integer := 12; width : integer := 1; oepol : integer := 0); port ( pad : out std_logic_vector(width-1 downto 0); i : in std_logic_vector(width-1 downto 0); en : in std_ulogic; cfgi: in std_logic_vector(19 downto 0) := "00000000000000000000" ); end; architecture rtl of toutpadv is begin v : for j in width-1 downto 0 generate u0 : toutpad generic map (tech, level, slew, voltage, strength, oepol) port map (pad(j), i(j), en, cfgi); end generate; end; library techmap; library ieee; use ieee.std_logic_1164.all; use techmap.gencomp.all; entity toutpadvv is generic (tech : integer := 0; level : integer := 0; slew : integer := 0; voltage : integer := x33v; strength : integer := 12; width : integer := 1; oepol : integer := 0); port ( pad : out std_logic_vector(width-1 downto 0); i : in std_logic_vector(width-1 downto 0); en : in std_logic_vector(width-1 downto 0); cfgi: in std_logic_vector(19 downto 0) := "00000000000000000000"); end; architecture rtl of toutpadvv is begin v : for j in width-1 downto 0 generate u0 : toutpad generic map (tech, level, slew, voltage, strength, oepol) port map (pad(j), i(j), en(j), cfgi); end generate; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-terasic-de4/grlib_config.vhd
2
2900
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Package: config -- File: config.vhd -- Description: GRLIB Global configuration package. Can be overriden -- by local config packages in template designs. ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.config_types.all; package config is -- AHBDW - AHB data with -- -- Valid values are 32, 64, 128 and 256 -- -- The value here sets the width of the AMBA AHB data vectors for all -- cores in the library. -- constant CFG_AHBDW : integer := 32; -- CFG_AHB_ACDM - Enable AMBA Compliant Data Muxing in cores -- -- Valid values are 0 and 1 -- -- 0: All GRLIB cores that use the ahbread* programs defined in the AMBA package -- will read their data from the low part of the AHB data vector. -- -- 1: All GRLIB cores that use the ahbread* programs defined in the AMBA package -- will select valid data, as defined in the AMBA AHB standard, from the -- AHB data vectors based on the address input. If a core uses a function -- that does not have the address input, a failure will be asserted. -- -- The value of CFG_AHB_ACDM is assigned to the constant CORE_ACDM in the -- grlib.amba package. Note that this setting is separate from the ACDM setting -- of the AHBCTRL core (which is set directly via a AHBCTRL VHDL generic). -- constant CFG_AHB_ACDM : integer := 0; -- GRLIB_CONFIG_ARRAY - Array of configuration values -- -- The length of this array and the meaning of different positions is defined -- in the grlib.config_types package. constant GRLIB_CONFIG_ARRAY : grlib_config_array_type := ( grlib_debug_level => 0, grlib_debug_mask => 0, grlib_techmap_strict_ram => 0, grlib_techmap_testin_extra => 0, grlib_sync_reset_enable_all => 0, grlib_async_reset_enable => 0, others => 0); end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-avnet-eval-xc4vlx60/testbench.vhd
1
9285
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench -- Copyright (C) 2004 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.libdcom.all; use gaisler.sim.all; library techmap; use techmap.gencomp.all; use work.config.all; -- configuration use work.debug.all; use std.textio.all; library grlib; use grlib.stdlib.all; use grlib.stdio.all; use grlib.devices.all; entity testbench is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; clkperiod : integer := 10; -- system clock period romwidth : integer := 16; -- rom data width (8/32) romdepth : integer := 16 -- rom address depth ); end; architecture behav of testbench is constant promfile : string := "prom.srec"; -- rom contents constant sdramfile : string := "ram.srec"; -- sdram contents signal clk : std_logic := '0'; signal rst : std_logic := '1'; -- Reset signal rstn: std_logic := '0'; -- Reset constant ct : integer := clkperiod/2; signal address : std_logic_vector(22 downto 0); signal data : std_logic_vector(31 downto 0); signal romsn : std_logic_vector(1 downto 0); signal oen : std_ulogic; signal writen : std_ulogic; signal iosn : std_ulogic; -- ddr memory signal ddr_clk : std_logic; signal ddr_clkb : std_logic; signal ddr_clk_fb : std_logic; signal ddr_cke : std_logic; signal ddr_csb : std_logic; signal ddr_web : std_ulogic; -- ddr write enable signal ddr_rasb : std_ulogic; -- ddr ras signal ddr_casb : std_ulogic; -- ddr cas signal ddr_dm : std_logic_vector (1 downto 0); -- ddr dm signal ddr_dqs : std_logic_vector (1 downto 0); -- ddr dqs signal ddr_ad : std_logic_vector (12 downto 0); -- ddr address signal ddr_ba : std_logic_vector (1 downto 0); -- ddr bank address signal ddr_dq : std_logic_vector (15 downto 0); -- ddr data signal brdyn : std_ulogic; signal bexcn : std_ulogic; signal wdog : std_ulogic; signal dsuen, dsutx, dsurx, dsubre, dsuact : std_ulogic; signal dsurst : std_ulogic; signal test : std_ulogic; signal rtsn, ctsn : std_ulogic; signal error : std_logic; signal pio : std_logic_vector(15 downto 0); signal GND : std_ulogic := '0'; signal VCC : std_ulogic := '1'; signal NC : std_ulogic := 'Z'; signal clk2 : std_ulogic := '1'; signal clk50 : std_ulogic := '1'; signal clk_200p : std_ulogic := '0'; signal clk_200n : std_ulogic := '1'; signal plllock : std_ulogic; -- pulled up high, therefore std_logic signal txd1, rxd1 : std_logic; signal eth_macclk, etx_clk, erx_clk, erx_dv, erx_er, erx_col, erx_crs, etx_en, etx_er : std_logic := '0'; signal erxd, etxd : std_logic_vector(3 downto 0) := (others => '0'); signal erxdt, etxdt : std_logic_vector(7 downto 0) := (others => '0'); signal emdc, emdio : std_logic; --dummy signal for the mdc,mdio in the phy which is not used constant lresp : boolean := false; signal resoutn : std_logic; signal dsubren : std_ulogic; signal dsuactn : std_ulogic; begin dsubren <= not dsubre; -- clock and reset clk <= not clk after ct * 1 ns; clk50 <= not clk50 after 10 ns; clk_200p <= not clk_200p after 2.5 ns; clk_200n <= not clk_200n after 2.5 ns; rst <= '1', '0' after 1000 ns; rstn <= not rst; dsuen <= '0'; dsubre <= '0'; rxd1 <= 'H'; address(0) <= '0'; ddr_dqs <= (others => 'L'); d3 : entity work.leon3mp port map ( resetn => rst, resoutn => resoutn, clk_100mhz => clk, clk_50mhz => clk50, clk_200p => clk_200p, clk_200n => clk_200n, errorn => error, address => address(22 downto 1), data => data(31 downto 16), testdata => data(15 downto 0), ddr_clk0 => ddr_clk, ddr_clk0b => ddr_clkb, ddr_clk_fb => ddr_clk_fb, ddr_cke0 => ddr_cke, ddr_cs0b => ddr_csb, ddr_web => ddr_web, ddr_rasb => ddr_rasb, ddr_casb => ddr_casb, ddr_dm => ddr_dm, ddr_dqs => ddr_dqs, ddr_ad => ddr_ad, ddr_ba => ddr_ba, ddr_dq => ddr_dq, sertx => dsutx, serrx => dsurx, rtsn => rtsn, ctsn => ctsn, dsuen => dsuen, dsubre => dsubre, dsuact => dsuactn, oen => oen, writen => writen, iosn => iosn, romsn => romsn(0), emdio => emdio, etx_clk => etx_clk, erx_clk => erx_clk, erxd => erxd, erx_dv => erx_dv, erx_er => erx_er, erx_col => erx_col, erx_crs => erx_crs, etxd => etxd, etx_en => etx_en, etx_er => etx_er, emdc => emdc ); ddr_clk_fb <= ddr_clk; ddr0: ddrram generic map (width => 16, abits => 13, colbits => 9, rowbits => 12, implbanks => 1, fname => sdramfile, lddelay => (300 us)*CFG_MIG_DDR2) port map ( ck => ddr_clk, cke => ddr_cke, csn => ddr_csb, rasn => ddr_rasb, casn => ddr_casb, wen => ddr_web, dm => ddr_dm, ba => ddr_ba, a => ddr_ad, dq => ddr_dq, dqs => ddr_dqs); prom0 : for i in 0 to (romwidth/8)-1 generate sr0 : sram generic map (index => i+4, abits => romdepth, fname => promfile) port map (address(romdepth downto 1), data(31-i*8 downto 24-i*8), romsn(0), writen, oen); end generate; phy0 : if (CFG_GRETH = 1) generate emdio <= 'H'; erxd <= erxdt(3 downto 0); etxdt <= "0000" & etxd; p0: phy generic map(base1000_t_fd => 0, base1000_t_hd => 0, address => 3) port map(resoutn, emdio, etx_clk, erx_clk, erxdt, erx_dv, erx_er, erx_col, erx_crs, etxdt, etx_en, etx_er, emdc, eth_macclk); end generate; error <= 'H'; -- ERROR pull-up iuerr : process begin wait for 5 us; assert (to_X01(error) = '1') report "*** IU in error mode, simulation halted ***" severity failure; end process; test0 : grtestmod port map ( rstn, clk, error, address(21 downto 2), data, iosn, oen, writen, brdyn); data <= buskeep(data) after 5 ns; dsucom : process procedure dsucfg(signal dsurx : in std_ulogic; signal dsutx : out std_ulogic) is variable w32 : std_logic_vector(31 downto 0); variable c8 : std_logic_vector(7 downto 0); constant txp : time := 160 * 1 ns; begin dsutx <= '1'; dsurst <= '1'; wait; wait for 5000 ns; txc(dsutx, 16#55#, txp); -- sync uart -- txc(dsutx, 16#c0#, txp); -- txa(dsutx, 16#90#, 16#00#, 16#00#, 16#00#, txp); -- txa(dsutx, 16#00#, 16#00#, 16#00#, 16#ef#, txp); -- -- txc(dsutx, 16#c0#, txp); -- txa(dsutx, 16#90#, 16#00#, 16#00#, 16#20#, txp); -- txa(dsutx, 16#00#, 16#00#, 16#ff#, 16#ff#, txp); -- -- txc(dsutx, 16#c0#, txp); -- txa(dsutx, 16#90#, 16#40#, 16#00#, 16#48#, txp); -- txa(dsutx, 16#00#, 16#00#, 16#00#, 16#12#, txp); -- -- txc(dsutx, 16#c0#, txp); -- txa(dsutx, 16#90#, 16#40#, 16#00#, 16#60#, txp); -- txa(dsutx, 16#00#, 16#00#, 16#12#, 16#10#, txp); -- -- txc(dsutx, 16#80#, txp); -- txa(dsutx, 16#90#, 16#00#, 16#00#, 16#00#, txp); -- rxi(dsurx, w32, txp, lresp); txc(dsutx, 16#a0#, txp); txa(dsutx, 16#40#, 16#00#, 16#00#, 16#00#, txp); rxi(dsurx, w32, txp, lresp); end; begin dsucfg(dsutx, dsurx); wait; end process; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-xilinx-ml501/ahbrom.vhd
15
5978
---------------------------------------------------------------------------- -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2004 GAISLER RESEARCH -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- See the file COPYING for the full details of the license. -- ----------------------------------------------------------------------------- -- Entity: ahbrom -- File: ahbrom.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: AHB rom. 0/1-waitstate read ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; entity ahbrom is generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#; pipe : integer := 0; tech : integer := 0; kbytes : integer := 1); port ( rst : in std_ulogic; clk : in std_ulogic; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type ); end; architecture rtl of ahbrom is constant abits : integer := 9; constant bytes : integer := 272; constant hconfig : ahb_config_type := ( 0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_AHBROM, 0, 0, 0), 4 => ahb_membar(haddr, '1', '1', hmask), others => zero32); signal romdata : std_logic_vector(31 downto 0); signal addr : std_logic_vector(abits-1 downto 2); signal hsel, hready : std_ulogic; begin ahbso.hresp <= "00"; ahbso.hsplit <= (others => '0'); ahbso.hirq <= (others => '0'); ahbso.hconfig <= hconfig; ahbso.hindex <= hindex; reg : process (clk) begin if rising_edge(clk) then addr <= ahbsi.haddr(abits-1 downto 2); end if; end process; p0 : if pipe = 0 generate ahbso.hrdata <= ahbdrivedata(romdata); ahbso.hready <= '1'; end generate; p1 : if pipe = 1 generate reg2 : process (clk) begin if rising_edge(clk) then hsel <= ahbsi.hsel(hindex) and ahbsi.htrans(1); hready <= ahbsi.hready; ahbso.hready <= (not rst) or (hsel and hready) or (ahbsi.hsel(hindex) and not ahbsi.htrans(1) and ahbsi.hready); ahbso.hrdata <= ahbdrivedata(romdata); end if; end process; end generate; comb : process (addr) begin case conv_integer(addr) is when 16#00000# => romdata <= X"81D82000"; when 16#00001# => romdata <= X"03000004"; when 16#00002# => romdata <= X"821060C0"; when 16#00003# => romdata <= X"81884000"; when 16#00004# => romdata <= X"81900000"; when 16#00005# => romdata <= X"81980000"; when 16#00006# => romdata <= X"81800000"; when 16#00007# => romdata <= X"01000000"; when 16#00008# => romdata <= X"03000040"; when 16#00009# => romdata <= X"8210600F"; when 16#0000A# => romdata <= X"C2A00040"; when 16#0000B# => romdata <= X"87444000"; when 16#0000C# => romdata <= X"8608E01F"; when 16#0000D# => romdata <= X"88100000"; when 16#0000E# => romdata <= X"8A100000"; when 16#0000F# => romdata <= X"8C100000"; when 16#00010# => romdata <= X"8E100000"; when 16#00011# => romdata <= X"A0100000"; when 16#00012# => romdata <= X"A2100000"; when 16#00013# => romdata <= X"A4100000"; when 16#00014# => romdata <= X"A6100000"; when 16#00015# => romdata <= X"A8100000"; when 16#00016# => romdata <= X"AA100000"; when 16#00017# => romdata <= X"AC100000"; when 16#00018# => romdata <= X"AE100000"; when 16#00019# => romdata <= X"90100000"; when 16#0001A# => romdata <= X"92100000"; when 16#0001B# => romdata <= X"94100000"; when 16#0001C# => romdata <= X"96100000"; when 16#0001D# => romdata <= X"98100000"; when 16#0001E# => romdata <= X"9A100000"; when 16#0001F# => romdata <= X"9C100000"; when 16#00020# => romdata <= X"9E100000"; when 16#00021# => romdata <= X"86A0E001"; when 16#00022# => romdata <= X"16BFFFEF"; when 16#00023# => romdata <= X"81E00000"; when 16#00024# => romdata <= X"82102002"; when 16#00025# => romdata <= X"81904000"; when 16#00026# => romdata <= X"03000004"; when 16#00027# => romdata <= X"821060E0"; when 16#00028# => romdata <= X"81884000"; when 16#00029# => romdata <= X"01000000"; when 16#0002A# => romdata <= X"01000000"; when 16#0002B# => romdata <= X"01000000"; when 16#0002C# => romdata <= X"87444000"; when 16#0002D# => romdata <= X"8730E01C"; when 16#0002E# => romdata <= X"8688E00F"; when 16#0002F# => romdata <= X"12800006"; when 16#00030# => romdata <= X"033FFC00"; when 16#00031# => romdata <= X"82106100"; when 16#00032# => romdata <= X"0539A81B"; when 16#00033# => romdata <= X"8410A260"; when 16#00034# => romdata <= X"C4204000"; when 16#00035# => romdata <= X"3D1003FF"; when 16#00036# => romdata <= X"BC17A3E0"; when 16#00037# => romdata <= X"9C27A060"; when 16#00038# => romdata <= X"03100000"; when 16#00039# => romdata <= X"81C04000"; when 16#0003A# => romdata <= X"01000000"; when 16#0003B# => romdata <= X"01000000"; when 16#0003C# => romdata <= X"01000000"; when 16#0003D# => romdata <= X"01000000"; when 16#0003E# => romdata <= X"01000000"; when 16#0003F# => romdata <= X"01000000"; when 16#00040# => romdata <= X"00000000"; when 16#00041# => romdata <= X"00000000"; when 16#00042# => romdata <= X"00000000"; when 16#00043# => romdata <= X"00000000"; when 16#00044# => romdata <= X"00000000"; when others => romdata <= (others => '-'); end case; end process; -- pragma translate_off bootmsg : report_version generic map ("ahbrom" & tost(hindex) & ": 32-bit AHB ROM Module, " & tost(bytes/4) & " words, " & tost(abits-2) & " address bits" ); -- pragma translate_on end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-digilent-nexys4ddr/dprc_fir_demo/fir_v2.vhd
4
4971
------------------------------------------------------------------------------ -- Copyright (c) 2014, Pascal Trotta - Testgroup (Politecnico di Torino) -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without modification, -- are permitted provided that the following conditions are met: -- -- 1. Redistributions of source code must retain the above copyright notice, this -- list of conditions and the following disclaimer. -- -- 2. Redistributions in binary form must reproduce the above copyright notice, this -- list of conditions and the following disclaimer in the documentation and/or other -- materials provided with the distribution. -- -- THIS SOURCE CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY -- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF -- MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE -- COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE -- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE -- OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -- POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- -- Entity: fir -- File: fir_v2.vhd -- Author: Pascal Trotta (TestGroup research group - Politecnico di Torino) -- Contacts: [email protected] www.testgroup.polito.it -- Description: FIR filter core (version 2) -- for dprc demo ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.numeric_std.all; entity fir is port ( clk : in std_ulogic; rst : in std_ulogic; start : in std_ulogic; in_data : in std_logic_vector(31 downto 0); in_data_read : out std_ulogic; out_data : out std_logic_vector (31 downto 0); out_data_write : out std_ulogic); end fir; architecture fir_rtl of fir is type fsm_state is (idle, fill_sh, running, step); type sh_type is array (0 to 9) of unsigned(7 downto 0); type regs is record state : fsm_state; sh : sh_type; cdata : unsigned(8 downto 0); acc : unsigned(31 downto 0); citer : unsigned(4 downto 0); start : std_logic; end record; signal reg, reg_in : regs; type coeffT is array (0 to 9) of unsigned(7 downto 0); constant coeff : coeffT := (to_unsigned(21,8),to_unsigned(23,8),to_unsigned(21,8),to_unsigned(19,8),to_unsigned(13,8),to_unsigned(9,8),to_unsigned(13,8),to_unsigned(15,8),to_unsigned(21,8),to_unsigned(17,8)); begin out_data <= std_logic_vector(reg.acc); comb_proc: process(reg, start, in_data) variable vreg : regs; begin vreg := reg; in_data_read <= '0'; out_data_write <= '0'; case vreg.state is when idle => if vreg.start='1' then vreg.state := fill_sh; in_data_read <= '1'; end if; vreg.cdata := (others=>'0'); vreg.acc := (others=>'0'); vreg.citer := (others=>'0'); when fill_sh => if vreg.citer=9 then vreg.state := running; vreg.citer := (others=>'0'); else in_data_read <= '1'; vreg.citer := vreg.citer + 1; end if; for i in 9 downto 1 loop --shift vreg.sh(i) := vreg.sh(i-1); end loop; vreg.sh(0) := unsigned(in_data(7 downto 0)); when running => if vreg.citer=9 then vreg.state := step; in_data_read <= '1'; end if; vreg.acc := vreg.acc + (vreg.sh(to_integer(vreg.citer))*coeff(to_integer(vreg.citer))); vreg.citer := vreg.citer + 1; when step => if vreg.cdata=90 then vreg.state := idle; else vreg.state := running; vreg.cdata := vreg.cdata + 1; vreg.citer := (others=>'0'); vreg.acc := (others=>'0'); for i in 9 downto 1 loop --shift vreg.sh(i) := vreg.sh(i-1); end loop; vreg.sh(0) := unsigned(in_data(7 downto 0)); end if; out_data_write <= '1'; end case; vreg.start := start; reg_in <= vreg; end process; reg_proc: process(clk,rst) begin if (rst='1') then reg.state <= idle; for i in 0 to 9 loop reg.sh(i) <= (others=>'0'); end loop; reg.cdata <= (others=>'0'); reg.acc <= (others=>'0'); reg.citer <= (others=>'0'); reg.start <= '0'; elsif rising_edge(clk) then reg <= reg_in; end if; end process; end fir_rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/ddr/ahb2avl_async_be.vhd
1
10973
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: ahb2avl_async_be -- File: ahb2avl_async_be.vhd -- Author: Magnus Hjorth - Aeroflex Gaisler -- Description: Avalon clock domain part of ahb2avl_async -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; library gaisler; use gaisler.ddrpkg.all; use gaisler.ddrintpkg.all; entity ahb2avl_async_be is generic ( avldbits : integer := 32; avlabits : integer := 20; ahbbits : integer := ahbdw; burstlen : integer := 8; nosync : integer := 0 ); port ( rst : in std_ulogic; clk : in std_ulogic; avlsi : out ddravl_slv_in_type; avlso : in ddravl_slv_out_type; request: in ddr_request_type; start_tog: in std_ulogic; response: out ddr_response_type; wbraddr : out std_logic_vector(log2((32*burstlen)/avldbits) downto 0); wbrdata : in std_logic_vector(avldbits-1 downto 0); rbwaddr : out std_logic_vector(log2((32*burstlen)/avldbits)-1 downto 0); rbwdata : out std_logic_vector(avldbits-1 downto 0); rbwrite : out std_logic ); end; architecture rtl of ahb2avl_async_be is constant avlbl: integer := (burstlen*32) / avldbits; constant onev: std_logic_vector(15 downto 0) := (others => '1'); type be_state is (idle,acc1,acc2,rdwait); type be_regs is record req1,req2 : ddr_request_type; start1,start2: std_ulogic; resp: ddr_response_type; s: be_state; ramaddr: std_logic_vector(log2(avlbl)-1 downto 0); beginburst: std_ulogic; wr: std_ulogic; rd: std_ulogic; reading: std_ulogic; rdata_valid_prev: std_ulogic; wmaskmode: std_ulogic; rstarted: std_ulogic; end record; signal r,nr: be_regs; begin comb: process(r,rst,request,start_tog,avlso,wbrdata) variable v: be_regs; variable vstart: std_logic; variable vreq: ddr_request_type; variable startmask,endmask,mask,mask16,mask8: std_logic_vector(avldbits/8-1 downto 0); variable ad32: std_logic_vector(3 downto 2); variable nwmaskmode: std_ulogic; variable rbw: std_ulogic; variable slvi: ddravl_slv_in_type; variable rddone: std_ulogic; variable inc_ramaddr: std_ulogic; variable aendaddr: std_logic_vector(9 downto 0); begin v := r; slvi := ddravl_slv_in_none; slvi.burstbegin := r.beginburst; slvi.addr(avlabits-1 downto log2(avlbl)) := vreq.startaddr(avlabits-1-log2(avlbl)+log2(burstlen*4) downto log2(burstlen*4)); slvi.addr(log2(avlbl)-1 downto 0) := r.ramaddr; slvi.wdata(avldbits-1 downto 0) := wbrdata; slvi.write_req := r.wr; slvi.size := std_logic_vector(to_unsigned(avlbl, slvi.size'length)); -- fix for accesses wider than 32-b word aendaddr := request.endaddr; --(log2(4*burstlen)-1 downto 2); if request.hsize(1 downto 0)="11" and request.hio='0' then aendaddr(2):='1'; end if; if ahbbits > 64 and request.hsize(2)='1' then aendaddr(3 downto 2) := "11"; if ahbbits > 128 and request.hsize(0)='1' then aendaddr(4) := '1'; end if; end if; v.req1 := request; v.req1.endaddr := aendaddr; v.req2 := r.req1; v.start1 := start_tog; v.start2 := r.start1; vstart:=r.start2; vreq:=r.req2; if nosync /= 0 then vstart:=start_tog; vreq:=r.req1; end if; startmask := (others => '1'); endmask := (others => '1'); mask16 := (others => '1'); mask8 := (others => '1'); case avldbits is when 32 => if vreq.startaddr(1)='0' then mask16:="1100"; else mask16:="0011"; end if; if vreq.startaddr(0)='0' then mask8:="1010"; else mask8:="0101"; end if; when 64 => if vreq.startaddr(2)='0' then startmask:="11111111"; else startmask:="00001111"; end if; if vreq.endaddr(2)='0' then endmask:="11110000"; else endmask:="11111111"; end if; if vreq.startaddr(1)='0' then mask16:="11001100"; else mask16:="00110011"; end if; if vreq.startaddr(0)='0' then mask8:="10101010"; else mask8:="01010101"; end if; when 128 => ad32 := vreq.startaddr(3 downto 2); case ad32 is when "00" => startmask:="1111111111111111"; when "01" => startmask:="0000111111111111"; when "10" => startmask:="0000000011111111"; when others => startmask:="0000000000001111"; end case; ad32 := vreq.endaddr(3 downto 2); case ad32 is when "00" => endmask:="1111000000000000"; when "01" => endmask:="1111111100000000"; when "10" => endmask:="1111111111110000"; when others => endmask:="1111111111111111"; end case; if vreq.startaddr(1)='0' then mask16:="1100110011001100"; else mask16:="0011001100110011"; end if; if vreq.startaddr(0)='0' then mask8:="1010101010101010"; else mask8:="0101010101010101"; end if; when 256 => case vreq.startaddr(4 downto 2) is when "000" => startmask:="11111111111111111111111111111111"; when "001" => startmask:="00001111111111111111111111111111"; when "010" => startmask:="00000000111111111111111111111111"; when "011" => startmask:="00000000000011111111111111111111"; when "100" => startmask:="00000000000000001111111111111111"; when "101" => startmask:="00000000000000000000111111111111"; when "110" => startmask:="00000000000000000000000011111111"; when others => startmask:="00000000000000000000000000001111"; end case; case vreq.endaddr(4 downto 2) is when "000" => endmask:="11110000000000000000000000000000"; when "001" => endmask:="11111111000000000000000000000000"; when "010" => endmask:="11111111111100000000000000000000"; when "011" => endmask:="11111111111111110000000000000000"; when "100" => endmask:="11111111111111111111000000000000"; when "101" => endmask:="11111111111111111111111100000000"; when "110" => endmask:="11111111111111111111111111110000"; when others => endmask:="11111111111111111111111111111111"; end case; if vreq.startaddr(1)='0' then mask16:="11001100110011001100110011001100"; else mask16:="00110011001100110011001100110011"; end if; if vreq.startaddr(0)='0' then mask8:="10101010101010101010101010101010"; else mask8:="01010101010101010101010101010101"; end if; when others => --pragma translate_off assert false report "Unsupported data bus width" severity failure; --pragma translate_on end case; mask := (others => r.wmaskmode); nwmaskmode := r.wmaskmode; if r.wmaskmode='0' then if r.ramaddr=vreq.startaddr(log2(burstlen*4)-1 downto log2(avldbits/8)) then mask := startmask; nwmaskmode:='1'; if r.reading='1' then v.rstarted := '1'; end if; end if; end if; if r.ramaddr=vreq.endaddr(log2(burstlen*4)-1 downto log2(avldbits/8)) then mask := mask and endmask; nwmaskmode:='0'; end if; if vreq.hsize(2 downto 1)="00" then mask := mask and mask16; if vreq.hsize(0)='0' then mask := mask and mask8; end if; end if; rddone := '0'; inc_ramaddr := '0'; rbw := '0'; if r.reading /= '0' then if avlso.rdata_valid='1' then rbw := '1'; inc_ramaddr := '1'; if v.rstarted='1' then v.resp.rctr_gray(log2(avlbl)-1 downto 0) := nextgray(r.resp.rctr_gray(log2(avlbl)-1 downto 0)); end if; if r.ramaddr=(r.ramaddr'range => '1') then rddone:='1'; end if; end if; else v.resp.rctr_gray := (others => '0'); end if; v.beginburst := '0'; case r.s is when idle => if vstart /= r.resp.done_tog then v.s := acc1; v.beginburst := '1'; end if; v.reading := '0'; v.rstarted := '0'; v.wmaskmode := '0'; v.rd := '0'; v.wr := '0'; when acc1 => v.wr := vreq.hwrite; v.rd := not vreq.hwrite; v.reading := not vreq.hwrite; if vreq.hwrite='1' then slvi.write_req := '1'; end if; if vreq.hwrite/='0' then v.s := acc2; end if; if vreq.hwrite='0' and avlso.ready='1' then v.s := rdwait; end if; if vreq.hwrite = '0' then mask := (others => '1'); end if; if avlso.ready='1' and vreq.hwrite/='0' then inc_ramaddr := '1'; end if; when acc2 => if avlso.ready='1' then inc_ramaddr := '1'; if r.ramaddr=onev(r.ramaddr'length-1 downto 0) then v.wr := '0'; v.resp.done_tog := not r.resp.done_tog; v.s := idle; end if; end if; when rdwait => v.rd := '0'; if rddone='1' then v.resp.done_tog := not r.resp.done_tog; v.s := idle; end if; end case; if inc_ramaddr/='0' then v.ramaddr := std_logic_vector(unsigned(r.ramaddr)+1); v.wmaskmode := nwmaskmode; end if; if v.s=idle then v.ramaddr := (others => '0'); end if; slvi.read_req := v.rd; slvi.be(avldbits/8-1 downto 0) := mask; if rst='0' then v.s := idle; v.resp := ddr_response_none; end if; nr <= v; response <= r.resp; wbraddr <= r.resp.done_tog & v.ramaddr; rbwaddr <= r.ramaddr; rbwdata <= avlso.rdata(avldbits-1 downto 0); rbwrite <= rbw; avlsi <= slvi; end process; regs: process(clk) begin if rising_edge(clk) then r <= nr; end if; end process; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-gr-xc3s-1500/config.vhd
1
8992
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench configuration -- Copyright (C) 2009 Aeroflex Gaisler ------------------------------------------------------------------------------ library techmap; use techmap.gencomp.all; package config is -- Technology and synthesis options constant CFG_FABTECH : integer := spartan3; constant CFG_MEMTECH : integer := spartan3; constant CFG_PADTECH : integer := spartan3; constant CFG_TRANSTECH : integer := GTP0; constant CFG_NOASYNC : integer := 0; constant CFG_SCAN : integer := 0; -- Clock generator constant CFG_CLKTECH : integer := spartan3; constant CFG_CLKMUL : integer := (4); constant CFG_CLKDIV : integer := (5); constant CFG_OCLKDIV : integer := 1; constant CFG_OCLKBDIV : integer := 0; constant CFG_OCLKCDIV : integer := 0; constant CFG_PCIDLL : integer := 0; constant CFG_PCISYSCLK: integer := 0; constant CFG_CLK_NOFB : integer := 0; -- LEON3 processor core constant CFG_LEON3 : integer := 1; constant CFG_NCPU : integer := (1); constant CFG_NWIN : integer := (8); constant CFG_V8 : integer := 16#32# + 4*0; constant CFG_MAC : integer := 0; constant CFG_BP : integer := 1; constant CFG_SVT : integer := 1; constant CFG_RSTADDR : integer := 16#00000#; constant CFG_LDDEL : integer := (1); constant CFG_NOTAG : integer := 0; constant CFG_NWP : integer := (4); constant CFG_PWD : integer := 0*2; constant CFG_FPU : integer := 0 + 16*0 + 32*0; constant CFG_GRFPUSH : integer := 0; constant CFG_ICEN : integer := 1; constant CFG_ISETS : integer := 2; constant CFG_ISETSZ : integer := 4; constant CFG_ILINE : integer := 8; constant CFG_IREPL : integer := 0; constant CFG_ILOCK : integer := 0; constant CFG_ILRAMEN : integer := 0; constant CFG_ILRAMADDR: integer := 16#8E#; constant CFG_ILRAMSZ : integer := 1; constant CFG_DCEN : integer := 1; constant CFG_DSETS : integer := 1; constant CFG_DSETSZ : integer := 4; constant CFG_DLINE : integer := 4; constant CFG_DREPL : integer := 0; constant CFG_DLOCK : integer := 0; constant CFG_DSNOOP : integer := 1*2 + 4*0; constant CFG_DFIXED : integer := 16#0#; constant CFG_DLRAMEN : integer := 0; constant CFG_DLRAMADDR: integer := 16#8F#; constant CFG_DLRAMSZ : integer := 1; constant CFG_MMUEN : integer := 1; constant CFG_ITLBNUM : integer := 8; constant CFG_DTLBNUM : integer := 8; constant CFG_TLB_TYPE : integer := 0 + 1*2; constant CFG_TLB_REP : integer := 0; constant CFG_MMU_PAGE : integer := 4; constant CFG_DSU : integer := 1; constant CFG_ITBSZ : integer := 2 + 64*0; constant CFG_ATBSZ : integer := 2; constant CFG_AHBPF : integer := 0; constant CFG_LEON3FT_EN : integer := 0; constant CFG_IUFT_EN : integer := 0; constant CFG_FPUFT_EN : integer := 0; constant CFG_RF_ERRINJ : integer := 0; constant CFG_CACHE_FT_EN : integer := 0; constant CFG_CACHE_ERRINJ : integer := 0; constant CFG_LEON3_NETLIST: integer := 0; constant CFG_DISAS : integer := 0 + 0; constant CFG_PCLOW : integer := 2; constant CFG_NP_ASI : integer := 0; constant CFG_WRPSR : integer := 0; -- AMBA settings constant CFG_DEFMST : integer := (0); constant CFG_RROBIN : integer := 1; constant CFG_SPLIT : integer := 0; constant CFG_FPNPEN : integer := 0; constant CFG_AHBIO : integer := 16#FFF#; constant CFG_APBADDR : integer := 16#800#; constant CFG_AHB_MON : integer := 0; constant CFG_AHB_MONERR : integer := 0; constant CFG_AHB_MONWAR : integer := 0; constant CFG_AHB_DTRACE : integer := 0; -- DSU UART constant CFG_AHB_UART : integer := 1; -- JTAG based DSU interface constant CFG_AHB_JTAG : integer := 1; -- USB DSU constant CFG_GRUSB_DCL : integer := 0; constant CFG_GRUSB_DCL_UIFACE : integer := 1; constant CFG_GRUSB_DCL_DW : integer := 8; -- Ethernet DSU constant CFG_DSU_ETH : integer := 1 + 0 + 0; constant CFG_ETH_BUF : integer := 2; constant CFG_ETH_IPM : integer := 16#C0A8#; constant CFG_ETH_IPL : integer := 16#0033#; constant CFG_ETH_ENM : integer := 16#020000#; constant CFG_ETH_ENL : integer := 16#000008#; -- LEON2 memory controller constant CFG_MCTRL_LEON2 : integer := 1; constant CFG_MCTRL_RAM8BIT : integer := 1; constant CFG_MCTRL_RAM16BIT : integer := 0; constant CFG_MCTRL_5CS : integer := 0; constant CFG_MCTRL_SDEN : integer := 1; constant CFG_MCTRL_SEPBUS : integer := 0; constant CFG_MCTRL_INVCLK : integer := 0; constant CFG_MCTRL_SD64 : integer := 0; constant CFG_MCTRL_PAGE : integer := 1 + 0; -- AHB status register constant CFG_AHBSTAT : integer := 0; constant CFG_AHBSTATN : integer := 1; -- AHB ROM constant CFG_AHBROMEN : integer := 0; constant CFG_AHBROPIP : integer := 0; constant CFG_AHBRODDR : integer := 16#000#; constant CFG_ROMADDR : integer := 16#000#; constant CFG_ROMMASK : integer := 16#E00# + 16#000#; -- AHB RAM constant CFG_AHBRAMEN : integer := 0; constant CFG_AHBRSZ : integer := 1; constant CFG_AHBRADDR : integer := 16#A00#; constant CFG_AHBRPIPE : integer := 0; -- Gaisler Ethernet core constant CFG_GRETH : integer := 1; constant CFG_GRETH1G : integer := 0; constant CFG_ETH_FIFO : integer := 16; -- CAN 2.0 interface constant CFG_CAN : integer := 0; constant CFG_CAN_NUM : integer := 1; constant CFG_CANIO : integer := 16#0#; constant CFG_CANIRQ : integer := 0; constant CFG_CANSEPIRQ: integer := 0; constant CFG_CAN_SYNCRST : integer := 0; constant CFG_CANFT : integer := 0; -- GR USB 2.0 Device Controller constant CFG_GRUSBDC : integer := 0; constant CFG_GRUSBDC_AIFACE : integer := 0; constant CFG_GRUSBDC_UIFACE : integer := 1; constant CFG_GRUSBDC_DW : integer := 8; constant CFG_GRUSBDC_NEPI : integer := 1; constant CFG_GRUSBDC_NEPO : integer := 1; constant CFG_GRUSBDC_I0 : integer := 1024; constant CFG_GRUSBDC_I1 : integer := 1024; constant CFG_GRUSBDC_I2 : integer := 1024; constant CFG_GRUSBDC_I3 : integer := 1024; constant CFG_GRUSBDC_I4 : integer := 1024; constant CFG_GRUSBDC_I5 : integer := 1024; constant CFG_GRUSBDC_I6 : integer := 1024; constant CFG_GRUSBDC_I7 : integer := 1024; constant CFG_GRUSBDC_I8 : integer := 1024; constant CFG_GRUSBDC_I9 : integer := 1024; constant CFG_GRUSBDC_I10 : integer := 1024; constant CFG_GRUSBDC_I11 : integer := 1024; constant CFG_GRUSBDC_I12 : integer := 1024; constant CFG_GRUSBDC_I13 : integer := 1024; constant CFG_GRUSBDC_I14 : integer := 1024; constant CFG_GRUSBDC_I15 : integer := 1024; constant CFG_GRUSBDC_O0 : integer := 1024; constant CFG_GRUSBDC_O1 : integer := 1024; constant CFG_GRUSBDC_O2 : integer := 1024; constant CFG_GRUSBDC_O3 : integer := 1024; constant CFG_GRUSBDC_O4 : integer := 1024; constant CFG_GRUSBDC_O5 : integer := 1024; constant CFG_GRUSBDC_O6 : integer := 1024; constant CFG_GRUSBDC_O7 : integer := 1024; constant CFG_GRUSBDC_O8 : integer := 1024; constant CFG_GRUSBDC_O9 : integer := 1024; constant CFG_GRUSBDC_O10 : integer := 1024; constant CFG_GRUSBDC_O11 : integer := 1024; constant CFG_GRUSBDC_O12 : integer := 1024; constant CFG_GRUSBDC_O13 : integer := 1024; constant CFG_GRUSBDC_O14 : integer := 1024; constant CFG_GRUSBDC_O15 : integer := 1024; -- UART 1 constant CFG_UART1_ENABLE : integer := 1; constant CFG_UART1_FIFO : integer := 4; -- UART 2 constant CFG_UART2_ENABLE : integer := 0; constant CFG_UART2_FIFO : integer := 1; -- LEON3 interrupt controller constant CFG_IRQ3_ENABLE : integer := 1; constant CFG_IRQ3_NSEC : integer := 0; -- Modular timer constant CFG_GPT_ENABLE : integer := 1; constant CFG_GPT_NTIM : integer := (2); constant CFG_GPT_SW : integer := (8); constant CFG_GPT_TW : integer := (32); constant CFG_GPT_IRQ : integer := (8); constant CFG_GPT_SEPIRQ : integer := 1; constant CFG_GPT_WDOGEN : integer := 0; constant CFG_GPT_WDOG : integer := 16#0#; -- GPIO port constant CFG_GRGPIO_ENABLE : integer := 1; constant CFG_GRGPIO_IMASK : integer := 16#0000#; constant CFG_GRGPIO_WIDTH : integer := (8); -- Spacewire interface constant CFG_SPW_EN : integer := 0; constant CFG_SPW_NUM : integer := 1; constant CFG_SPW_AHBFIFO : integer := 4; constant CFG_SPW_RXFIFO : integer := 16; constant CFG_SPW_RMAP : integer := 0; constant CFG_SPW_RMAPBUF : integer := 4; constant CFG_SPW_RMAPCRC : integer := 0; constant CFG_SPW_NETLIST : integer := 0; constant CFG_SPW_FT : integer := 0; constant CFG_SPW_GRSPW : integer := 2; constant CFG_SPW_RXUNAL : integer := 0; constant CFG_SPW_DMACHAN : integer := 1; constant CFG_SPW_PORTS : integer := 1; constant CFG_SPW_INPUT : integer := 2; constant CFG_SPW_OUTPUT : integer := 0; constant CFG_SPW_RTSAME : integer := 0; -- VGA and PS2/ interface constant CFG_KBD_ENABLE : integer := 1; constant CFG_VGA_ENABLE : integer := 0; constant CFG_SVGA_ENABLE : integer := 1; -- GRLIB debugging constant CFG_DUART : integer := 0; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/leon3v3/leon3sh.vhd
1
6728
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: leon3sh -- File: leon3sh.vhd -- Author: Jan Andersson, Aeroflex Gaisler -- Description: Top-level LEON3 component ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.leon3.all; entity leon3sh is generic ( hindex : integer := 0; fabtech : integer range 0 to NTECH := DEFFABTECH; memtech : integer range 0 to NTECH := DEFMEMTECH; nwindows : integer range 2 to 32 := 8; dsu : integer range 0 to 1 := 0; fpu : integer range 0 to 63 := 0; v8 : integer range 0 to 63 := 0; cp : integer range 0 to 1 := 0; mac : integer range 0 to 1 := 0; pclow : integer range 0 to 2 := 2; notag : integer range 0 to 1 := 0; nwp : integer range 0 to 4 := 0; icen : integer range 0 to 1 := 0; irepl : integer range 0 to 3 := 2; isets : integer range 1 to 4 := 1; ilinesize : integer range 4 to 8 := 4; isetsize : integer range 1 to 256 := 1; isetlock : integer range 0 to 1 := 0; dcen : integer range 0 to 1 := 0; drepl : integer range 0 to 3 := 2; dsets : integer range 1 to 4 := 1; dlinesize : integer range 4 to 8 := 4; dsetsize : integer range 1 to 256 := 1; dsetlock : integer range 0 to 1 := 0; dsnoop : integer range 0 to 6 := 0; ilram : integer range 0 to 1 := 0; ilramsize : integer range 1 to 512 := 1; ilramstart : integer range 0 to 255 := 16#8e#; dlram : integer range 0 to 1 := 0; dlramsize : integer range 1 to 512 := 1; dlramstart : integer range 0 to 255 := 16#8f#; mmuen : integer range 0 to 1 := 0; itlbnum : integer range 2 to 64 := 8; dtlbnum : integer range 2 to 64 := 8; tlb_type : integer range 0 to 3 := 1; tlb_rep : integer range 0 to 1 := 0; lddel : integer range 1 to 2 := 2; disas : integer range 0 to 2 := 0; tbuf : integer range 0 to 128 := 0; pwd : integer range 0 to 2 := 2; -- power-down svt : integer range 0 to 1 := 1; -- single vector trapping rstaddr : integer := 0; smp : integer range 0 to 15 := 0; -- support SMP systems cached : integer := 0; -- cacheability table scantest : integer := 0; mmupgsz : integer range 0 to 5 := 0; bp : integer := 1; npasi : integer range 0 to 1 := 0; pwrpsr : integer range 0 to 1 := 0 ); port ( clk : in std_ulogic; rstn : in std_ulogic; ahbi : in ahb_mst_in_type; ahbo : out ahb_mst_out_type; ahbsi : in ahb_slv_in_type; ahbso : in ahb_slv_out_vector; irqi : in l3_irq_in_type; irqo : out l3_irq_out_type; dbgi : in l3_debug_in_type; dbgo : out l3_debug_out_type; fpui : out grfpu_in_type; fpuo : in grfpu_out_type ); end; architecture rtl of leon3sh is signal gnd, vcc : std_logic; begin gnd <= '0'; vcc <= '1'; leon3x0 : leon3x generic map ( hindex => hindex, fabtech => fabtech, memtech => memtech, nwindows => nwindows, dsu => dsu, fpu => fpu, v8 => v8, cp => cp, mac => mac, pclow => pclow, notag => notag, nwp => nwp, icen => icen, irepl => irepl, isets => isets, ilinesize => ilinesize, isetsize => isetsize, isetlock => isetlock, dcen => dcen, drepl => drepl, dsets => dsets, dlinesize => dlinesize, dsetsize => dsetsize, dsetlock => dsetlock, dsnoop => dsnoop, ilram => ilram, ilramsize => ilramsize, ilramstart => ilramstart, dlram => dlram, dlramsize => dlramsize, dlramstart => dlramstart, mmuen => mmuen, itlbnum => itlbnum, dtlbnum => dtlbnum, tlb_type => tlb_type, tlb_rep => tlb_rep, lddel => lddel, disas => disas, tbuf => tbuf, pwd => pwd, svt => svt, rstaddr => rstaddr, smp => smp, iuft => 0, fpft => 0, cmft => 0, iuinj => 0, ceinj => 0, cached => cached, clk2x => 0, netlist => 0, scantest => scantest, mmupgsz => mmupgsz, bp => bp, npasi => npasi, pwrpsr => pwrpsr) port map ( clk => gnd, gclk2 => clk, gfclk2 => clk, clk2 => clk, rstn => rstn, ahbi => ahbi, ahbo => ahbo, ahbsi => ahbsi, ahbso => ahbso, irqi => irqi, irqo => irqo, dbgi => dbgi, dbgo => dbgo, fpui => fpui, fpuo => fpuo, clken => vcc ); end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/spi/spi2ahb.vhd
1
2979
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------- -- Entity: spi2ahb -- File: spi2ahb.vhd -- Author: Jan Andersson - Aeroflex Gaisler AB -- Contact: [email protected] -- Description: Simple SPI slave providing a bridge to AMBA AHB -- See spi2ahbx.vhd and GRIP for documentation ------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.conv_std_logic_vector; library gaisler; use gaisler.spi.all; entity spi2ahb is generic ( -- AHB Configuration hindex : integer := 0; -- ahbaddrh : integer := 0; ahbaddrl : integer := 0; ahbmaskh : integer := 0; ahbmaskl : integer := 0; -- oepol : integer range 0 to 1 := 0; -- filter : integer range 2 to 512 := 2; -- cpol : integer range 0 to 1 := 0; cpha : integer range 0 to 1 := 0 ); port ( rstn : in std_ulogic; clk : in std_ulogic; -- AHB master interface ahbi : in ahb_mst_in_type; ahbo : out ahb_mst_out_type; -- SPI signals spii : in spi_in_type; spio : out spi_out_type ); end entity spi2ahb; architecture rtl of spi2ahb is signal spi2ahbi : spi2ahb_in_type; begin bridge : spi2ahbx generic map ( hindex => hindex, oepol => oepol, filter => filter, cpol => cpol, cpha => cpha) port map ( rstn => rstn, clk => clk, ahbi => ahbi, ahbo => ahbo, spii => spii, spio => spio, spi2ahbi => spi2ahbi, spi2ahbo => open); spi2ahbi.en <= '1'; spi2ahbi.haddr <= conv_std_logic_vector(ahbaddrh, 16) & conv_std_logic_vector(ahbaddrl, 16); spi2ahbi.hmask <= conv_std_logic_vector(ahbmaskh, 16) & conv_std_logic_vector(ahbmaskl, 16); end architecture rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/eth/core/greth_rx.vhd
1
11677
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: greth_rx -- File: greth_rx.vhd -- Author: Marko Isomaki -- Description: Ethernet receiver ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library grlib; use grlib.stdlib.all; library eth; use eth.grethpkg.all; entity greth_rx is generic( nsync : integer range 1 to 2 := 2; rmii : integer range 0 to 1 := 0; multicast : integer range 0 to 1 := 0; maxsize : integer := 1500; gmiimode : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; rxi : in host_rx_type; rxo : out rx_host_type ); attribute sync_set_reset of rst : signal is "true"; end entity; architecture rtl of greth_rx is -- constant maxsize : integer := 1518; constant maxsizerx : unsigned(15 downto 0) := to_unsigned(maxsize + 18, 16); constant minsize : integer := 64; --receiver types type rx_state_type is (idle, wait_sfd, data1, data2, errorst, report_status, wait_report, check_crc, discard_packet); type rx_reg_type is record er : std_ulogic; en : std_ulogic; rxd : std_logic_vector(3 downto 0); rxdp : std_logic_vector(3 downto 0); crc : std_logic_vector(31 downto 0); sync_start : std_ulogic; gotframe : std_ulogic; start : std_ulogic; write : std_ulogic; done : std_ulogic; odd_nibble : std_ulogic; lentype : std_logic_vector(15 downto 0); ltfound : std_ulogic; byte_count : std_logic_vector(10 downto 0); data : std_logic_vector(31 downto 0); dataout : std_logic_vector(31 downto 0); rx_state : rx_state_type; status : std_logic_vector(3 downto 0); write_ack : std_logic_vector(nsync-1 downto 0); done_ack : std_logic_vector(nsync downto 0); rxen : std_logic_vector(1 downto 0); got4b : std_ulogic; mcasthash : std_logic_vector(5 downto 0); hashlock : std_ulogic; --rmii enold : std_ulogic; act : std_ulogic; dv : std_ulogic; cnt : std_logic_vector(3 downto 0); rxd2 : std_logic_vector(1 downto 0); speed : std_logic_vector(1 downto 0); zero : std_ulogic; end record; --receiver signals signal r, rin : rx_reg_type; signal rxrst : std_ulogic; signal vcc : std_ulogic; -- attribute sync_set_reset : string; attribute sync_set_reset of rxrst : signal is "true"; begin vcc <= '1'; rx_rst : eth_rstgen port map(rst, clk, vcc, rxrst, open); rx : process(rxrst, r, rxi) is variable v : rx_reg_type; variable index : integer range 0 to 3; variable crc_en : std_ulogic; variable write_req : std_ulogic; variable write_ack : std_ulogic; variable done_ack : std_ulogic; variable er : std_ulogic; variable dv : std_ulogic; variable act : std_ulogic; variable rxd : std_logic_vector(3 downto 0); begin v := r; v.rxd := rxi.rxd(3 downto 0); if rmii = 0 then v.en := rxi.rx_dv; else v.en := rxi.rx_crs; end if; v.er := rxi.rx_er; write_req := '0'; crc_en := '0'; index := conv_integer(r.byte_count(1 downto 0)); --synchronization v.rxen(1) := r.rxen(0); v.rxen(0) := rxi.enable; v.write_ack(0) := rxi.writeack; v.done_ack(0) := rxi.doneack; if nsync = 2 then v.write_ack(1) := r.write_ack(0); v.done_ack(1) := r.done_ack(0); end if; write_ack := not (r.write xor r.write_ack(nsync-1)); done_ack := not (r.done xor r.done_ack(nsync-1)); --rmii/mii if rmii = 0 then er := r.er; dv := r.en; act := r.en; rxd := r.rxd; else --sync v.speed(1) := r.speed(0); v.speed(0) := rxi.speed; rxd := r.rxd(1 downto 0) & r.rxd2; if r.cnt = "0000" then v.cnt := "1001"; else v.cnt := r.cnt - 1; end if; if v.cnt = "0000" then v.zero := '1'; else v.zero := '0'; end if; act := r.act; er := '0'; if r.speed(1) = '0' then if r.zero = '1' then v.enold := r.en; dv := r.en and r.dv; v.dv := r.act and not r.dv; if r.dv = '0' then v.rxd2 := r.rxd(1 downto 0); end if; if (r.enold or r.en) = '0' then v.act := '0'; end if; else dv := '0'; end if; else v.enold := r.en; dv := r.en and r.dv; v.dv := r.act and not r.dv; v.rxd2 := r.rxd(1 downto 0); if (r.enold or r.en) = '0' then v.act := '0'; end if; end if; end if; if (r.en and not r.act) = '1' then if (rxd = "0101") and (r.speed(1) or (not r.speed(1) and r.zero)) = '1' then v.act := '1'; v.dv := '0'; v.rxdp := rxd; end if; end if; if (dv = '1') then v.rxdp := rxd; end if; if multicast = 1 then if (r.byte_count(2 downto 0) = "110") and (r.hashlock = '0') then v.mcasthash := r.crc(5 downto 0); v.hashlock := '1'; end if; end if; --fsm case r.rx_state is when idle => v.gotframe := '0'; v.status := (others => '0'); v.got4b := '0'; v.byte_count := (others => '0'); v.odd_nibble := '0'; v.ltfound := '0'; if multicast = 1 then v.hashlock := '0'; end if; if (dv and r.rxen(1)) = '1' then if (rxd = "1101") and (r.rxdp = "0101") then v.rx_state := data1; v.sync_start := not r.sync_start; end if; v.start := '0'; v.crc := (others => '1'); if er = '1' then v.status(2) := '1'; end if; elsif dv = '1' then v.rx_state := discard_packet; end if; when discard_packet => if act = '0' then v.rx_state := idle; end if; when data1 => if (act and dv) = '1' then crc_en := '1'; v.odd_nibble := not r.odd_nibble; v.rx_state := data2; case index is when 0 => v.data(27 downto 24) := rxd; when 1 => v.data(19 downto 16) := rxd; when 2 => v.data(11 downto 8) := rxd; when 3 => v.data(3 downto 0) := rxd; end case; elsif act = '0' then v.rx_state := check_crc; end if; if (r.byte_count(1 downto 0) = "00" and (r.start and act and dv) = '1') then write_req := '1'; end if; if er = '1' then v.status(2) := '1'; end if; if conv_integer(r.byte_count) > maxsizerx then v.rx_state := errorst; v.status(1) := '1'; v.byte_count := r.byte_count - 4; end if; v.got4b := v.byte_count(2) or r.got4b; when data2 => if (act and dv) = '1' then crc_en := '1'; v.odd_nibble := not r.odd_nibble; v.rx_state := data1; v.byte_count := r.byte_count + 1; v.start := '1'; case index is when 0 => v.data(31 downto 28) := rxd; when 1 => v.data(23 downto 20) := rxd; when 2 => v.data(15 downto 12) := rxd; when 3 => v.data(7 downto 4) := rxd; end case; elsif act = '0' then v.rx_state := check_crc; end if; if er = '1' then v.status(2) := '1'; end if; v.got4b := v.byte_count(2) or r.got4b; when check_crc => if r.crc /= X"C704DD7B" then if r.odd_nibble = '1' then v.status(0) := '1'; else v.status(2) := '1'; end if; end if; if write_ack = '1' then if r.got4b = '1' then v.byte_count := r.byte_count - 4; else v.byte_count := (others => '0'); end if; v.rx_state := report_status; if conv_integer(r.byte_count) < minsize then v.rx_state := wait_report; v.done := not r.done; end if; end if; when errorst => if act = '0' then v.rx_state := wait_report; v.done := not r.done; v.gotframe := '1'; end if; when report_status => v.done := not r.done; v.rx_state := wait_report; v.gotframe := '1'; when wait_report => if done_ack = '1' then if act = '1' then v.rx_state := discard_packet; else v.rx_state := idle; end if; end if; when others => null; end case; --write to fifo if write_req = '1' then if (r.status(3) or not write_ack) = '1' then v.status(3) := '1'; else v.dataout := r.data; v.write := not r.write; end if; if (r.byte_count(4 downto 2) = "100") and (r.ltfound = '0') then v.lentype := r.data(31 downto 16) + 14; v.ltfound := '1'; end if; end if; if write_ack = '1' then if rxi.writeok = '0' then v.status(3) := '1'; end if; end if; --crc generation if crc_en = '1' then v.crc := calccrc(rxd, r.crc); end if; if rxrst = '0' then v.rx_state := idle; v.write := '0'; v.done := '0'; v.sync_start := '0'; v.done_ack := (others => '0'); v.gotframe := '0'; v.write_ack := (others => '0'); v.dv := '0'; v.cnt := (others => '0'); v.zero := '0'; v.byte_count := (others => '0'); v.lentype := (others => '0'); v.status := (others => '0'); v.got4b := '0'; v.odd_nibble := '0'; v.ltfound := '0'; if multicast = 1 then v.hashlock := '0'; end if; end if; if rmii = 0 then v.cnt := (others => '0'); v.zero := '0'; end if; rin <= v; rxo.dataout <= r.dataout; rxo.start <= r.sync_start; rxo.done <= r.done; rxo.write <= r.write; rxo.status <= r.status; rxo.gotframe <= r.gotframe; rxo.byte_count <= r.byte_count; rxo.lentype <= r.lentype; rxo.mcasthash <= r.mcasthash; end process; gmiimode0 : if gmiimode = 0 generate rxregs0 : process(clk) is begin if rising_edge(clk) then r <= rin; end if; end process; end generate; gmiimode1 : if gmiimode = 1 generate rxregs1 : process(clk) is begin if rising_edge(clk) then if (rxi.rx_en = '1' or rxrst = '0') then r <= rin; end if; end if; end process; end generate; end architecture;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/srmmu/mmutlb.vhd
1
21804
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: mmutlb -- File: mmutlb.vhd -- Author: Konrad Eisele, Jiri Gaisler, Gaisler Research -- Description: MMU TLB logic ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.config_types.all; use grlib.config.all; use grlib.amba.all; use grlib.stdlib.all; library techmap; use techmap.gencomp.all; library gaisler; use gaisler.mmuconfig.all; use gaisler.mmuiface.all; use gaisler.libmmu.all; entity mmutlb is generic ( tech : integer range 0 to NTECH := 0; entries : integer range 2 to 64 := 8; tlb_type : integer range 0 to 3 := 1; tlb_rep : integer range 0 to 1 := 1; mmupgsz : integer range 0 to 5 := 0; scantest : integer := 0; ramcbits: integer := 1 ); port ( rst : in std_logic; clk : in std_logic; tlbi : in mmutlb_in_type; tlbo : out mmutlb_out_type; two : in mmutw_out_type; twi : out mmutw_in_type; testin : in std_logic_vector(TESTIN_WIDTH-1 downto 0) ); end mmutlb; architecture rtl of mmutlb is constant M_TLB_FASTWRITE : integer range 0 to 3 := conv_integer(conv_std_logic_vector(tlb_type,2) and conv_std_logic_vector(2,2)); -- fast writebuffer constant entries_log : integer := log2(entries); constant entries_max : std_logic_vector(entries_log-1 downto 0) := conv_std_logic_vector(entries-1, entries_log); type states is (idle, match, walk, pack, flush, sync, diag, dofault); type tlb_rtype is record s2_tlbstate : states; s2_entry : std_logic_vector(entries_log-1 downto 0); s2_hm : std_logic; s2_needsync : std_logic; s2_data : std_logic_vector(31 downto 0); s2_isid : mmu_idcache; s2_su : std_logic; s2_read : std_logic; s2_flush : std_logic; s2_ctx : std_logic_vector(M_CTX_SZ-1 downto 0); walk_use : std_logic; walk_transdata : mmuidc_data_out_type; walk_fault : mmutlbfault_out_type; nrep : std_logic_vector(entries_log-1 downto 0); tpos : std_logic_vector(entries_log-1 downto 0); touch : std_logic; sync_isw : std_logic; tlbmiss : std_logic; end record; constant RESET_ALL : boolean := GRLIB_CONFIG_ARRAY(grlib_sync_reset_enable_all) = 1; constant ASYNC_RESET : boolean := GRLIB_CONFIG_ARRAY(grlib_async_reset_enable) = 1; constant RRES : tlb_rtype := ( s2_tlbstate => idle, s2_entry => (others => '0'), s2_hm => '0', s2_needsync => '0', s2_data => (others => '0'), s2_isid => id_icache, s2_su => '0', s2_read => '0', s2_flush => '0', s2_ctx => (others => '0'), walk_use => '0', walk_transdata => mmuidco_zero, walk_fault => mmutlbfault_out_zero, nrep => (others => '0'), tpos => (others => '0'), touch => '0', sync_isw => '0', tlbmiss => '0'); signal c,r : tlb_rtype; -- tlb cams component mmutlbcam generic ( tlb_type : integer range 0 to 3 := 1; mmupgsz : integer range 0 to 5 := 0 ); port ( rst : in std_logic; clk : in std_logic; tlbcami : in mmutlbcam_in_type; tlbcamo : out mmutlbcam_out_type ); end component; signal tlbcami : mmutlbcami_a (entries-1 downto 0); signal tlbcamo : mmutlbcamo_a (entries-1 downto 0); -- least recently used component mmulru generic ( entries : integer := 8 ); port ( clk : in std_logic; rst : in std_logic; lrui : in mmulru_in_type; lruo : out mmulru_out_type ); end component; signal lrui : mmulru_in_type; signal lruo : mmulru_out_type; -- data-ram syncram signals signal dr1_addr : std_logic_vector(entries_log-1 downto 0); signal dr1_datain : std_logic_vector(29 downto 0); signal dr1_dataout : std_logic_vector(29 downto 0); signal dr1_enable : std_logic; signal dr1_write : std_logic; begin p0: process (rst, r, tlbi, two, tlbcamo, dr1_dataout, lruo) variable v : tlb_rtype; variable finish, selstate : std_logic; variable cam_hitaddr : std_logic_vector(entries_log-1 downto 0); variable cam_hit_all : std_logic; variable mtag,ftag : tlbcam_tfp; -- tlb cam input variable tlbcam_trans_op : std_logic; variable tlbcam_write_op : std_logic_vector(entries-1 downto 0); variable tlbcam_flush_op : std_logic; -- tw inputs variable twi_walk_op_ur : std_logic; variable twi_data : std_logic_vector(31 downto 0); variable twi_areq_ur : std_logic; variable twi_aaddr : std_logic_vector(31 downto 0); variable twi_adata : std_logic_vector(31 downto 0); variable two_error : std_logic; -- lru inputs variable lrui_touch : std_logic; variable lrui_touchmin : std_logic; variable lrui_pos : std_logic_vector(entries_log-1 downto 0); -- syncram inputs variable dr1write : std_logic; -- hit tlbcam's output variable ACC : std_logic_vector(2 downto 0); variable PTE : std_logic_vector(31 downto 0); variable LVL : std_logic_vector(1 downto 0); variable CAC : std_logic; variable NEEDSYNC : std_logic; -- wb hit tlbcam's output variable wb_i_entry : integer range 0 to entries-1; variable wb_ACC : std_logic_vector(2 downto 0); variable wb_PTE : std_logic_vector(31 downto 0); variable wb_LVL : std_logic_vector(1 downto 0); variable wb_CAC : std_logic; variable wb_fault_pro, wb_fault_pri : std_logic; variable wb_WBNEEDSYNC : std_logic; variable twACC : std_logic_vector(2 downto 0); variable tWLVL : std_logic_vector(1 downto 0); variable twPTE : std_logic_vector(31 downto 0); variable twNEEDSYNC : std_logic; variable tlbcam_tagin : tlbcam_tfp; variable tlbcam_tagwrite : tlbcam_reg; variable store : std_logic; variable reppos : std_logic_vector(entries_log-1 downto 0); variable i_entry : integer range 0 to entries-1; variable i_reppos : integer range 0 to entries-1; variable fault_pro, fault_pri : std_logic; variable fault_mexc, fault_trans, fault_inv, fault_access : std_logic; variable transdata : mmuidc_data_out_type; variable fault : mmutlbfault_out_type; variable savewalk : std_logic; variable tlbo_s1finished : std_logic; variable wb_transdata : mmuidc_data_out_type; variable cam_addr : std_logic_vector(31 downto 0); begin v := r; v.tlbmiss := '0'; cam_addr := tlbi.transdata.data; wb_i_entry := 0; wb_ACC := (others => '0'); wb_PTE := (others => '0'); wb_LVL := (others => '0'); wb_CAC := '0'; wb_fault_pro := '0'; wb_fault_pri := '0'; wb_WBNEEDSYNC := '0'; if (M_TLB_FASTWRITE /= 0) and (tlbi.trans_op = '0') then cam_addr := tlbi.transdata.wb_data; end if; wb_transdata.finish := '0'; wb_transdata.data := (others => '0'); wb_transdata.cache := '0'; wb_transdata.accexc := '0'; finish := '0'; selstate := '0'; cam_hitaddr := (others => '0'); cam_hit_all := '0'; mtag.TYP := (others => '0'); mtag.I1 := (others => '0'); mtag.I2 := (others => '0'); mtag.I3 := (others => '0'); mtag.CTX := (others => '0'); mtag.M := '0'; ftag.TYP := (others => '0'); ftag.I1 := (others => '0'); ftag.I2 := (others => '0'); ftag.I3 := (others => '0'); ftag.CTX := (others => '0'); ftag.M := '0'; tlbcam_trans_op := '0'; tlbcam_write_op := (others => '0'); tlbcam_flush_op := '0'; twi_walk_op_ur := '0'; twi_data := (others => '0'); twi_areq_ur := '0'; twi_aaddr := (others => '0'); twi_adata := (others => '0'); two_error := '0'; lrui_touch:= '0'; lrui_touchmin:= '0'; lrui_pos := (others => '0'); dr1write := '0'; ACC := (others => '0'); PTE := (others => '0'); LVL := (others => '0'); CAC := '0'; NEEDSYNC := '0'; twACC := (others => '0'); tWLVL := (others => '0'); twPTE := (others => '0'); twNEEDSYNC := '0'; tlbcam_tagin.TYP := (others => '0'); tlbcam_tagin.I1 := (others => '0'); tlbcam_tagin.I2 := (others => '0'); tlbcam_tagin.I3 := (others => '0'); tlbcam_tagin.CTX := (others => '0'); tlbcam_tagin.M := '0'; tlbcam_tagwrite.ET := (others => '0'); tlbcam_tagwrite.ACC := (others => '0'); tlbcam_tagwrite.M := '0'; tlbcam_tagwrite.R := '0'; tlbcam_tagwrite.SU := '0'; tlbcam_tagwrite.VALID := '0'; tlbcam_tagwrite.LVL := (others => '0'); tlbcam_tagwrite.I1 := (others => '0'); tlbcam_tagwrite.I2 := (others => '0'); tlbcam_tagwrite.I3 := (others => '0'); tlbcam_tagwrite.CTX := (others => '0'); tlbcam_tagwrite.PPN := (others => '0'); tlbcam_tagwrite.C := '0'; store := '0'; reppos := (others => '0'); fault_pro := '0'; fault_pri := '0'; fault_mexc := '0'; fault_trans := '0'; fault_inv := '0'; fault_access := '0'; transdata.finish := '0'; transdata.data := (others => '0'); transdata.cache := '0'; transdata.accexc := '0'; fault.fault_pro := '0'; fault.fault_pri := '0'; fault.fault_access := '0'; fault.fault_mexc := '0'; fault.fault_trans := '0'; fault.fault_inv := '0'; fault.fault_lvl := (others => '0'); fault.fault_su := '0'; fault.fault_read := '0'; fault.fault_isid := id_dcache; fault.fault_addr := (others => '0'); savewalk := '0'; tlbo_s1finished := '0'; tlbcam_trans_op := '0'; tlbcam_write_op := (others => '0'); tlbcam_flush_op := '0'; lrui_touch := '0'; lrui_touchmin := '0'; lrui_pos := (others => '0'); dr1write := '0'; fault_pro := '0'; fault_pri := '0'; fault_mexc := '0'; fault_trans := '0'; fault_inv := '0'; fault_access := '0'; twi_walk_op_ur := '0'; twi_areq_ur := '0'; twi_aaddr := dr1_dataout&"00"; finish := '0'; store := '0'; savewalk := '0'; tlbo_s1finished := '0'; selstate := '0'; cam_hitaddr := (others => '0'); cam_hit_all := '0'; NEEDSYNC := '0'; for i in entries-1 downto 0 loop NEEDSYNC := NEEDSYNC or tlbcamo(i).NEEDSYNC; if (tlbcamo(i).hit) = '1' then cam_hitaddr(entries_log-1 downto 0) := cam_hitaddr(entries_log-1 downto 0) or conv_std_logic_vector(i, entries_log); cam_hit_all := '1'; end if; end loop; -- tlbcam write operation tlbcam_tagwrite := TLB_CreateCamWrite( two.data, r.s2_read, two.lvl, r.s2_ctx, r.s2_data); -- replacement position reppos := (others => '0'); if tlb_rep = 0 then reppos := lruo.pos(entries_log-1 downto 0); v.touch := '0'; elsif tlb_rep = 1 then reppos := r.nrep; end if; i_reppos := conv_integer(reppos); -- tw two_error := two.fault_mexc or two.fault_trans or two.fault_inv; twACC := two.data(PTE_ACC_U downto PTE_ACC_D); twLVL := two.lvl; twPTE := two.data; twNEEDSYNC := (not two.data(PTE_R)) or ((not r.s2_read) and (not two.data(PTE_M))); -- tw : writeback on next flush case r.s2_tlbstate is when idle => if (tlbi.s2valid) = '1' then if r.s2_flush = '1' then v.s2_tlbstate := pack; else v.walk_fault.fault_pri := '0'; v.walk_fault.fault_pro := '0'; v.walk_fault.fault_access := '0'; v.walk_fault.fault_trans := '0'; v.walk_fault.fault_inv := '0'; v.walk_fault.fault_mexc := '0'; if (r.s2_hm and not tlbi.mmctrl1.tlbdis ) = '1' then if r.s2_needsync = '1' then v.s2_tlbstate := sync; else finish := '1'; end if; if tlb_rep = 0 then v.tpos := r.s2_entry; v.touch := '1'; -- touch lru end if; else v.s2_entry := reppos; v.s2_tlbstate := walk; v.tlbmiss := '1'; if tlb_rep = 0 then lrui_touchmin := '1'; -- lru element consumed end if; end if; end if; end if; when walk => if (two.finish = '1') then if ( two_error ) = '0' then tlbcam_write_op := decode(r.s2_entry); dr1write := '1'; TLB_CheckFault( twACC, r.s2_isid, r.s2_su, r.s2_read, v.walk_fault.fault_pro, v.walk_fault.fault_pri ); end if; TLB_MergeData( mmupgsz, tlbi.mmctrl1, two.lvl , two.data, r.s2_data, v.walk_transdata.data ); v.walk_transdata.cache := two.data(PTE_C); v.walk_fault.fault_lvl := two.fault_lvl; v.walk_fault.fault_access := '0'; v.walk_fault.fault_mexc := two.fault_mexc; v.walk_fault.fault_trans := two.fault_trans; v.walk_fault.fault_inv := two.fault_inv; v.walk_use := '1'; if ( twNEEDSYNC = '0' or two_error = '1') then v.s2_tlbstate := pack; else v.s2_tlbstate := sync; v.sync_isw := '1'; end if; if tlb_rep = 1 then if (r.nrep = entries_max) then v.nrep := (others => '0'); else v.nrep := r.nrep + 1; end if; end if; else twi_walk_op_ur := '1'; end if; when pack => v.s2_flush := '0'; v.walk_use := '0'; finish := '1'; v.s2_tlbstate := idle; when sync => tlbcam_trans_op := '1'; if ( v.sync_isw = '1') then -- pte address is currently written to syncram, wait one cycle before issuing twi_areq_ur v.sync_isw := '0'; else if (two.finish = '1') then v.s2_tlbstate := pack; v.walk_fault.fault_mexc := two.fault_mexc; if (two.fault_mexc) = '1' then v.walk_use := '1'; end if; else twi_areq_ur := '1'; end if; end if; when others => v .s2_tlbstate := idle; end case; if selstate = '1' then if tlbi.trans_op = '1' then elsif tlbi.flush_op = '1' then end if; end if; i_entry := conv_integer(r.s2_entry); ACC := tlbcamo(i_entry).pteout(PTE_ACC_U downto PTE_ACC_D); PTE := tlbcamo(i_entry).pteout; LVL := tlbcamo(i_entry).LVL; CAC := tlbcamo(i_entry).pteout(PTE_C); transdata.cache := CAC; TLB_CheckFault( ACC, r.s2_isid, r.s2_su, r.s2_read, fault_pro, fault_pri ); fault.fault_pro := '0'; fault.fault_pri := '0'; fault.fault_access := '0'; fault.fault_mexc := '0'; fault.fault_trans := '0'; fault.fault_inv := '0'; if finish = '1' and (r.s2_flush = '0') then --protect flush path fault.fault_pro := fault_pro; fault.fault_pri := fault_pri; fault.fault_access := fault_access; fault.fault_mexc := fault_mexc; fault.fault_trans := fault_trans; fault.fault_inv := fault_inv; end if; if (M_TLB_FASTWRITE /= 0) then wb_i_entry := conv_integer(cam_hitaddr(entries_log-1 downto 0)); wb_ACC := tlbcamo(wb_i_entry).pteout(PTE_ACC_U downto PTE_ACC_D); wb_PTE := tlbcamo(wb_i_entry).pteout; wb_LVL := tlbcamo(wb_i_entry).LVL; wb_CAC := tlbcamo(wb_i_entry).pteout(PTE_C); wb_WBNEEDSYNC := tlbcamo(wb_i_entry).WBNEEDSYNC; wb_transdata.cache := wb_CAC; TLB_MergeData( mmupgsz, tlbi.mmctrl1, wb_LVL, wb_PTE, tlbi.transdata.data, wb_transdata.data ); TLB_CheckFault( wb_ACC, tlbi.transdata.isid, tlbi.transdata.su, tlbi.transdata.read, wb_fault_pro, wb_fault_pri ); wb_transdata.accexc := wb_fault_pro or wb_fault_pri or wb_WBNEEDSYNC or (not cam_hit_all); end if; --# merge data TLB_MergeData( mmupgsz, tlbi.mmctrl1, LVL, PTE, r.s2_data, transdata.data ); --# reset if (not ASYNC_RESET) and (not RESET_ALL) and (rst = '0') then v.s2_flush := '0'; v.s2_tlbstate := idle; if tlb_rep = 1 then v.nrep := (others => '0'); end if; if tlb_rep = 0 then v.touch := '0'; end if; v.sync_isw := '0'; end if; if (finish = '1') or (tlbi.s2valid = '0') then tlbo_s1finished := '1'; v.s2_hm := cam_hit_all; v.s2_entry := cam_hitaddr(entries_log-1 downto 0); v.s2_needsync := NEEDSYNC; v.s2_data := tlbi.transdata.data; v.s2_read := tlbi.transdata.read; v.s2_su := tlbi.transdata.su; v.s2_isid := tlbi.transdata.isid; v.s2_flush := tlbi.flush_op; v.s2_ctx := tlbi.mmctrl1.ctx; end if; -- translation operation tag mtag := TLB_CreateCamTrans( cam_addr, tlbi.transdata.read, tlbi.mmctrl1.ctx ); tlbcam_tagin := mtag; -- flush/(probe) operation tag ftag := TLB_CreateCamFlush( r.s2_data, tlbi.mmctrl1.ctx ); if (r.s2_flush = '1') then tlbcam_tagin := ftag; end if; if r.walk_use = '1' then transdata := r.walk_transdata; fault := r.walk_fault; end if; fault.fault_read := r.s2_read; fault.fault_su := r.s2_su; fault.fault_isid := r.s2_isid; fault.fault_addr := r.s2_data; transdata.finish := finish; transdata.accexc := '0'; twi_adata := PTE; --# drive signals tlbo.wbtransdata <= wb_transdata; tlbo.transdata <= transdata; tlbo.fault <= fault; tlbo.nexttrans <= store; tlbo.s1finished <= tlbo_s1finished; twi.walk_op_ur <= twi_walk_op_ur; twi.data <= r.s2_data; twi.areq_ur <= twi_areq_ur; twi.adata <= twi_adata; twi.aaddr <= twi_aaddr; twi.tlbmiss <= r.tlbmiss; if tlb_rep = 0 then lrui.flush <= r.s2_flush; lrui.touch <= r.touch; lrui.touchmin <= lrui_touchmin; lrui.pos <= (others => '0'); lrui.pos(entries_log-1 downto 0) <= r.tpos; lrui.mmctrl1 <= tlbi.mmctrl1; end if; dr1_addr <= r.s2_entry; dr1_datain <= two.addr(31 downto 2); dr1_enable <= '1'; dr1_write <= dr1write; for i in entries-1 downto 0 loop tlbcami(i).mmctrl <= tlbi.mmctrl1; tlbcami(i).tagin <= tlbcam_tagin; tlbcami(i).trans_op <= tlbi.trans_op; --tlbcam_trans_op; tlbcami(i).wb_op <= tlbi.wb_op; --tlbcam_trans_op; tlbcami(i).flush_op <= r.s2_flush; tlbcami(i).mmuen <= tlbi.mmctrl1.e; tlbcami(i).tagwrite <= tlbcam_tagwrite; tlbcami(i).write_op <= tlbcam_write_op(i); tlbcami(i).mset <= '0'; end loop; -- i c <= v; end process p0; syncrregs : if not ASYNC_RESET generate p1: process (clk) begin if rising_edge(clk) then r <= c; if RESET_ALL and (rst = '0') then r <= RRES; end if; end if; end process p1; end generate; asyncrregs : if ASYNC_RESET generate p1: process (clk, rst) begin if rst = '0' then r <= RRES; elsif rising_edge(clk) then r <= c; end if; end process p1; end generate; -- tag-cam tlb entries tlbcam0: for i in entries-1 downto 0 generate tag0 : mmutlbcam generic map ( tlb_type, mmupgsz ) port map (rst, clk, tlbcami(i), tlbcamo(i)); end generate tlbcam0; -- data-ram syncram dataram : syncram generic map ( tech => tech, dbits => 30, abits => entries_log, testen => scantest, custombits => ramcbits) port map ( clk, dr1_addr, dr1_datain, dr1_dataout, dr1_enable, dr1_write, testin ); -- lru lru0: if tlb_rep = 0 generate lru : mmulru generic map ( entries => entries) port map ( clk, rst, lrui, lruo ); end generate lru0; end rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/pci/ptf/pt_pci_arb.vhd
1
4042
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: pt_pci_arb -- File: pt_pci_arb.vhd -- Author: Alf Vaerneus, Gaisler Research -- Description: PCI arbiter ------------------------------------------------------------------------------ -- pragma translate_off library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.pt_pkg.all; entity pt_pci_arb is generic ( slots : integer := 5; tval : time := 7 ns); port ( systclk : in pci_syst_type; ifcin : in pci_ifc_type; arbin : in pci_arb_type; arbout : out pci_arb_type); end pt_pci_arb; architecture tb of pt_pci_arb is type queue_type is array (0 to slots-1) of integer range 0 to slots; signal queue : queue_type; signal queue_nr : integer range 0 to slots; signal wfbus : boolean; begin arb : process(systclk) variable i, slotgnt : integer; variable set : boolean; variable bus_idle : boolean; variable vqueue_nr : integer range 0 to slots; variable gnt,req : std_logic_vector(slots-1 downto 0); begin set := false; vqueue_nr := queue_nr; if (ifcin.frame and ifcin.irdy) = '1' then bus_idle := true; else bus_idle := false; end if; gnt := to_x01(arbin.gnt(slots-1 downto 0)); req := to_x01(arbin.req(slots-1 downto 0)); if systclk.rst = '0' then gnt := (others => '1'); wfbus <= false; for i in 0 to slots-1 loop queue(i) <= 0; end loop; queue_nr <= 0; elsif rising_edge(systclk.clk) then for i in 0 to slots-1 loop if (gnt(i) or req(i)) = '0' then if (bus_idle or wfbus) then set := true; end if; end if; end loop; for i in 0 to slots-1 loop if (gnt(i) and not req(i)) = '1' then if queue(i) = 0 then vqueue_nr := vqueue_nr+1; queue(i) <= vqueue_nr; elsif (queue(i) = 1 and set = false) then gnt := (others => '1'); gnt(i) := '0'; queue(i) <= 0; if not bus_idle then wfbus <= true; end if; if vqueue_nr > 0 then vqueue_nr := vqueue_nr-1; end if; elsif queue(i) >= 2 then if (set = false or vqueue_nr <= 1) then queue(i) <= queue(i)-1; -- if vqueue_nr > 0 then vqueue_nr := vqueue_nr-1; end if; end if; end if; elsif (req(i) and not gnt(i)) = '1' then queue(i) <= 0; gnt(i) := '1'; -- if vqueue_nr > 0 then vqueue_nr := vqueue_nr-1; end if; elsif (req(i) and gnt(i)) = '1' then if (queue(i) > 0 and set = false) then queue(i) <= queue(i)-1; if (vqueue_nr > 0 and queue(i) = 1) then vqueue_nr := vqueue_nr-1; end if; end if; end if; end loop; end if; if bus_idle then wfbus <= false; end if; queue_nr <= vqueue_nr; arbout.req <= (others => 'Z'); arbout.gnt <= (others => 'Z'); arbout.gnt(slots-1 downto 0) <= gnt; end process; end; -- pragma translate_on
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-altera-c5ekit/config.vhd
1
5254
----------------------------------------------------------------------------- -- LEON3 Demonstration design test bench configuration -- Copyright (C) 2009 Aeroflex Gaisler ------------------------------------------------------------------------------ library techmap; use techmap.gencomp.all; package config is -- Technology and synthesis options constant CFG_FABTECH : integer := altera; constant CFG_MEMTECH : integer := altera; constant CFG_PADTECH : integer := altera; constant CFG_TRANSTECH : integer := GTP0; constant CFG_NOASYNC : integer := 0; constant CFG_SCAN : integer := 0; -- LEON3 processor core constant CFG_LEON3 : integer := 1; constant CFG_NCPU : integer := (1); constant CFG_NWIN : integer := (8); constant CFG_V8 : integer := 2 + 4*0; constant CFG_MAC : integer := 0; constant CFG_BP : integer := 0; constant CFG_SVT : integer := 0; constant CFG_RSTADDR : integer := 16#00000#; constant CFG_LDDEL : integer := (1); constant CFG_NOTAG : integer := 0; constant CFG_NWP : integer := (0); constant CFG_PWD : integer := 0*2; constant CFG_FPU : integer := 0 + 16*0 + 32*0; constant CFG_GRFPUSH : integer := 0; constant CFG_ICEN : integer := 1; constant CFG_ISETS : integer := 1; constant CFG_ISETSZ : integer := 4; constant CFG_ILINE : integer := 8; constant CFG_IREPL : integer := 0; constant CFG_ILOCK : integer := 0; constant CFG_ILRAMEN : integer := 0; constant CFG_ILRAMADDR: integer := 16#8E#; constant CFG_ILRAMSZ : integer := 1; constant CFG_DCEN : integer := 1; constant CFG_DSETS : integer := 1; constant CFG_DSETSZ : integer := 4; constant CFG_DLINE : integer := 8; constant CFG_DREPL : integer := 0; constant CFG_DLOCK : integer := 0; constant CFG_DSNOOP : integer := 1*2 + 4*0; constant CFG_DFIXED : integer := 16#0#; constant CFG_DLRAMEN : integer := 0; constant CFG_DLRAMADDR: integer := 16#8F#; constant CFG_DLRAMSZ : integer := 1; constant CFG_MMUEN : integer := 0; constant CFG_ITLBNUM : integer := 2; constant CFG_DTLBNUM : integer := 2; constant CFG_TLB_TYPE : integer := 1 + 0*2; constant CFG_TLB_REP : integer := 1; constant CFG_MMU_PAGE : integer := 0; constant CFG_DSU : integer := 1; constant CFG_ITBSZ : integer := 1 + 64*0; constant CFG_ATBSZ : integer := 1; constant CFG_AHBPF : integer := 0; constant CFG_LEON3FT_EN : integer := 0; constant CFG_IUFT_EN : integer := 0; constant CFG_FPUFT_EN : integer := 0; constant CFG_RF_ERRINJ : integer := 0; constant CFG_CACHE_FT_EN : integer := 0; constant CFG_CACHE_ERRINJ : integer := 0; constant CFG_LEON3_NETLIST: integer := 0; constant CFG_DISAS : integer := 0 + 0; constant CFG_PCLOW : integer := 2; constant CFG_NP_ASI : integer := 0; constant CFG_WRPSR : integer := 0; -- AMBA settings constant CFG_DEFMST : integer := (0); constant CFG_RROBIN : integer := 1; constant CFG_SPLIT : integer := 0; constant CFG_FPNPEN : integer := 0; constant CFG_AHBIO : integer := 16#FFF#; constant CFG_APBADDR : integer := 16#800#; constant CFG_AHB_MON : integer := 0; constant CFG_AHB_MONERR : integer := 0; constant CFG_AHB_MONWAR : integer := 0; constant CFG_AHB_DTRACE : integer := 0; -- DSU UART constant CFG_AHB_UART : integer := 1; -- JTAG based DSU interface constant CFG_AHB_JTAG : integer := 1; -- Ethernet DSU constant CFG_DSU_ETH : integer := 1 + 0 + 0; constant CFG_ETH_BUF : integer := 2; constant CFG_ETH_IPM : integer := 16#C0A8#; constant CFG_ETH_IPL : integer := 16#0033#; constant CFG_ETH_ENM : integer := 16#020000#; constant CFG_ETH_ENL : integer := 16#000000#; -- SSRAM controller constant CFG_SSCTRL : integer := 0; constant CFG_SSCTRLP16 : integer := 0; -- I2C master constant CFG_I2C_ENABLE : integer := 1; -- AHB ROM constant CFG_AHBROMEN : integer := 1; constant CFG_AHBROPIP : integer := 0; constant CFG_AHBRODDR : integer := 16#000#; constant CFG_ROMADDR : integer := 16#100#; constant CFG_ROMMASK : integer := 16#E00# + 16#100#; -- AHB RAM constant CFG_AHBRAMEN : integer := 0; constant CFG_AHBRSZ : integer := 1; constant CFG_AHBRADDR : integer := 16#A00#; constant CFG_AHBRPIPE : integer := 0; -- Gaisler Ethernet core constant CFG_GRETH : integer := 1; constant CFG_GRETH1G : integer := 0; constant CFG_ETH_FIFO : integer := 8; -- Gaisler Ethernet core constant CFG_GRETH2 : integer := 1; constant CFG_GRETH21G : integer := 0; constant CFG_ETH2_FIFO : integer := 8; -- UART 1 constant CFG_UART1_ENABLE : integer := 1; constant CFG_UART1_FIFO : integer := 8; -- LEON3 interrupt controller constant CFG_IRQ3_ENABLE : integer := 1; constant CFG_IRQ3_NSEC : integer := 0; -- Modular timer constant CFG_GPT_ENABLE : integer := 1; constant CFG_GPT_NTIM : integer := (2); constant CFG_GPT_SW : integer := (8); constant CFG_GPT_TW : integer := (32); constant CFG_GPT_IRQ : integer := (8); constant CFG_GPT_SEPIRQ : integer := 1; constant CFG_GPT_WDOGEN : integer := 0; constant CFG_GPT_WDOG : integer := 16#0#; -- GPIO port constant CFG_GRGPIO_ENABLE : integer := 1; constant CFG_GRGPIO_IMASK : integer := 16#000F#; constant CFG_GRGPIO_WIDTH : integer := (2); -- GRLIB debugging constant CFG_DUART : integer := 0; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/i2c/i2cslv.vhd
1
20281
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------- -- Entity: i2cslv -- File: i2cslv.vhd -- Author: Jan Andersson - Gaisler Research -- [email protected] -- -- Description: Simple I2C-slave with AMBA APB interface -- -- Documentation of generics: -- -- [hardaddr] -- If this generic is set to 1 the core uses i2caddr as the hard coded address. -- If hardaddr is set to 0 the core's address can be changed via the SLVADDR -- register. -- -- [tenbit] -- Support for ten bit addresses. -- -- [i2caddr] -- The slave's (initial) i2c address. -- -- [oepol] -- Output enable polarity -- -- [filter] -- Length of filters used on SCL and SDA -- -- The slave has four different modes operation. The mode is defined by the -- value of the bits RMODE and TMODE. -- RMODE TMODE I2CSLAVE Mode -- 0 0 0 -- 0 1 1 -- 1 0 2 -- 1 1 3 -- -- RMODE 0: -- The slave accepts one byte and NAKs all other transfers until software has -- acknowledged the received byte. -- RMODE 1: -- The slave accepts one byte and keeps SCL low until software has acknowledged -- the received byte -- TMODE 0: -- The slave transmits the same byte to all if the master requests more than -- one byte in the transfer. The slave then NAKs all read requests unless the -- Transmit Always Valid (TAV) bit in the control register is set. -- TMODE 1: -- The slave transmits one byte and then keeps SCL low until software has -- acknowledged that the byte has been transmitted. library ieee; use ieee.std_logic_1164.all; library gaisler; use gaisler.i2c.all; library grlib; use grlib.amba.all; use grlib.devices.all; use grlib.stdlib.all; entity i2cslv is generic ( -- APB generics pindex : integer := 0; -- slave bus index paddr : integer := 0; pmask : integer := 16#fff#; pirq : integer := 0; -- interrupt index -- I2C configuration hardaddr : integer range 0 to 1 := 0; -- See description above tenbit : integer range 0 to 1 := 0; i2caddr : integer range 0 to 1023 := 0; oepol : integer range 0 to 1 := 0; filter : integer range 2 to 512 := 2 ); port ( rstn : in std_ulogic; clk : in std_ulogic; -- APB signals apbi : in apb_slv_in_type; apbo : out apb_slv_out_type; -- I2C signals i2ci : in i2c_in_type; i2co : out i2c_out_type ); end entity i2cslv; architecture rtl of i2cslv is ----------------------------------------------------------------------------- -- Constants ----------------------------------------------------------------------------- -- Core version constant I2CSLV_REV : integer := 0; -- AMBA PnP constant PCONFIG : apb_config_type := ( 0 => ahb_device_reg(VENDOR_GAISLER, GAISLER_I2CSLV, 0, I2CSLV_REV, pirq), 1 => apb_iobar(paddr, pmask)); -- Register addresses constant SLV_ADDR : std_logic_vector(7 downto 2) := "000000"; constant CTRL_ADDR : std_logic_vector(7 downto 2) := "000001"; constant STS_ADDR : std_logic_vector(7 downto 2) := "000010"; constant MSK_ADDR : std_logic_vector(7 downto 2) := "000011"; constant RD_ADDR : std_logic_vector(7 downto 2) := "000100"; constant TD_ADDR : std_logic_vector(7 downto 2) := "000101"; -- Core configuration constant TENBIT_SUPPORT : integer := tenbit; constant I2CADDRLEN : integer := 7 + tenbit*3; constant HARDCADDR : integer := hardaddr; constant I2CSLVADDR : std_logic_vector((I2CADDRLEN-1) downto 0) := conv_std_logic_vector(i2caddr, I2CADDRLEN); -- Misc constants constant I2C_READ : std_ulogic := '1'; -- R/Wn bit constant I2C_WRITE : std_ulogic := '0'; constant OEPOL_LEVEL : std_ulogic := conv_std_logic(oepol = 1); constant I2C_LOW : std_ulogic := OEPOL_LEVEL; -- OE constant I2C_HIZ : std_ulogic := not OEPOL_LEVEL; constant I2C_ACK : std_ulogic := '0'; constant TENBIT_ADDR_START : std_logic_vector(4 downto 0) := "11110"; ----------------------------------------------------------------------------- -- Types ----------------------------------------------------------------------------- type ctrl_reg_type is record -- Control register rmode : std_ulogic; -- Receive mode tmode : std_ulogic; -- Transmit mode tv : std_ulogic; -- Transmit valid tav : std_ulogic; -- Transmit always valid en : std_ulogic; -- Enable end record; type sts_reg_type is record -- Status/Mask registers rec : std_ulogic; -- Received byte tra : std_ulogic; -- Transmitted byte nak : std_ulogic; -- NAK'd address end record; type slvaddr_reg_type is record -- Slave address register tba : std_ulogic; -- 10-bit address slvaddr : std_logic_vector((I2CADDRLEN-1) downto 0); end record; type i2cslv_reg_bank is record -- APB registers slvaddr : slvaddr_reg_type; ctrl : ctrl_reg_type; sts : sts_reg_type; msk : sts_reg_type; receive : std_logic_vector(7 downto 0); transmit : std_logic_vector(7 downto 0); end record; type i2c_in_array is array (filter downto 0) of i2c_in_type; type slv_state_type is (idle, checkaddr, check10bitaddr, sclhold, movebyte, handshake); type i2cslv_reg_type is record slvstate : slv_state_type; -- reg : i2cslv_reg_bank; irq : std_ulogic; -- Transfer phase active : boolean; addr : boolean; transmit : boolean; receive : boolean; -- Shift register sreg : std_logic_vector(7 downto 0); cnt : std_logic_vector(2 downto 0); -- Synchronizers for inputs SCL and SDA scl : std_ulogic; sda : std_ulogic; i2ci : i2c_in_array; -- Output enables scloen : std_ulogic; sdaoen : std_ulogic; end record; ----------------------------------------------------------------------------- -- Subprograms ----------------------------------------------------------------------------- -- purpose: Compares the first byte of a received address with the slave's -- address. The tba input determines if the slave is using a ten bit address. function compaddr1stb ( ibyte : std_logic_vector(7 downto 0); -- I2C byte sr : slvaddr_reg_type) -- slave address register return boolean is variable correct : std_logic_vector(7 downto 1); begin -- compaddr1stb if sr.tba = '1' then correct(7 downto 3) := TENBIT_ADDR_START; correct(2 downto 1):= sr.slvaddr((I2CADDRLEN-1) downto (I2CADDRLEN-2)); else correct(7 downto 1) := sr.slvaddr(6 downto 0); end if; return ibyte(7 downto 1) = correct(7 downto 1); end compaddr1stb; -- purpose: Compares the 2nd byte of a ten bit address with the slave address function compaddr2ndb ( ibyte : std_logic_vector(7 downto 0); -- I2C byte slvaddr : std_logic_vector((I2CADDRLEN-1) downto 0)) -- slave address return boolean is begin -- compaddr2ndb return ibyte((I2CADDRLEN-3) downto 0) = slvaddr((I2CADDRLEN-3) downto 0); end compaddr2ndb; ----------------------------------------------------------------------------- -- Signals ----------------------------------------------------------------------------- -- Register interface signal r, rin : i2cslv_reg_type; begin comb: process (r, rstn, apbi, i2ci) variable v : i2cslv_reg_type; variable irq : std_logic_vector((NAHBIRQ-1) downto 0); variable apbaddr : std_logic_vector(5 downto 0); variable apbout : std_logic_vector(31 downto 0); variable sclfilt : std_logic_vector(filter-1 downto 0); variable sdafilt : std_logic_vector(filter-1 downto 0); variable tba : boolean; begin -- process comb v := r; v.irq := '0'; irq := (others=>'0'); irq(pirq) := r.irq; apbaddr := apbi.paddr(7 downto 2); apbout := (others => '0'); v.i2ci(0) := i2ci; v.i2ci(filter downto 1) := r.i2ci(filter-1 downto 0); tba := false; --------------------------------------------------------------------------- -- APB register interface --------------------------------------------------------------------------- -- read registers if (apbi.psel(pindex) and apbi.penable and (not apbi.pwrite)) = '1' then case apbaddr is when SLV_ADDR => apbout(31) := r.reg.slvaddr.tba; apbout((I2CADDRLEN-1) downto 0) := r.reg.slvaddr.slvaddr; when CTRL_ADDR => apbout(4 downto 0) := r.reg.ctrl.rmode & r.reg.ctrl.tmode & r.reg.ctrl.tv & r.reg.ctrl.tav & r.reg.ctrl.en; when STS_ADDR => apbout(2 downto 0) := r.reg.sts.rec & r.reg.sts.tra & r.reg.sts.nak; when MSK_ADDR => apbout(2 downto 0) := r.reg.msk.rec & r.reg.msk.tra & r.reg.msk.nak; when RD_ADDR => v.reg.sts.rec := '0'; apbout(7 downto 0) := r.reg.receive; when TD_ADDR => apbout(7 downto 0) := r.reg.transmit; when others => null; end case; end if; -- write registers if (apbi.psel(pindex) and apbi.penable and apbi.pwrite) = '1' then case apbaddr is when SLV_ADDR => if HARDCADDR = 0 then if TENBIT_SUPPORT = 1 then v.reg.slvaddr.tba := apbi.pwdata(31); end if; v.reg.slvaddr.slvaddr := apbi.pwdata((I2CADDRLEN-1) downto 0); end if; when CTRL_ADDR => v.reg.ctrl.rmode := apbi.pwdata(4); v.reg.ctrl.tmode := apbi.pwdata(3); v.reg.ctrl.tv := apbi.pwdata(2); v.reg.ctrl.tav := apbi.pwdata(1); v.reg.ctrl.en := apbi.pwdata(0); when STS_ADDR => v.reg.sts.tra := r.reg.sts.tra and not apbi.pwdata(1); v.reg.sts.nak := r.reg.sts.nak and not apbi.pwdata(0); when MSK_ADDR => v.reg.msk.rec := apbi.pwdata(2); v.reg.msk.tra := apbi.pwdata(1); v.reg.msk.nak := apbi.pwdata(0); when TD_ADDR => v.reg.transmit := apbi.pwdata(7 downto 0); when others => null; end case; end if; ---------------------------------------------------------------------------- -- Bus filtering ---------------------------------------------------------------------------- for i in 0 to filter-1 loop sclfilt(i) := r.i2ci(i+1).scl; sdafilt(i) := r.i2ci(i+1).sda; end loop; -- i if andv(sclfilt) = '1' then v.scl := '1'; end if; if orv(sclfilt) = '0' then v.scl := '0'; end if; if andv(sdafilt) = '1' then v.sda := '1'; end if; if orv(sdafilt) = '0' then v.sda := '0'; end if; --------------------------------------------------------------------------- -- I2C slave control FSM --------------------------------------------------------------------------- case r.slvstate is when idle => -- Release bus if (r.scl and not v.scl) = '1' then v.sdaoen := I2C_HIZ; end if; when checkaddr => tba := r.reg.slvaddr.tba = '1'; if compaddr1stb(r.sreg, r.reg.slvaddr) then if r.sreg(0) = I2C_READ then if (not tba or (tba and r.active)) then if r.reg.ctrl.tv = '1' then -- Transmit data v.transmit := true; v.slvstate := handshake; else -- No data to transmit, NAK if (not v.reg.sts.nak and r.reg.msk.nak) = '1' then v.irq := '1'; end if; v.reg.sts.nak := '1'; v.slvstate := idle; end if; else -- Ten bit address with R/Wn = 1 and slave not previously -- addressed. v.slvstate := idle; end if; else v.receive := not tba; v.slvstate := handshake; end if; else -- Slave address did not match v.active := false; v.slvstate := idle; end if; v.sreg := r.reg.transmit; when check10bitaddr => if compaddr2ndb(r.sreg, r.reg.slvaddr.slvaddr) then -- Slave has been addressed with a matching 10 bit address -- If we receive a repeated start condition, matching address -- and R/Wn = 1 we will transmit data. Without start condition we -- will receive data. v.addr := true; v.active := true; v.receive := true; v.slvstate := handshake; else v.slvstate := idle; end if; when sclhold => -- This state is used when the device has been addressed to see if SCL -- should be kept low until the receive register is free or the -- transmit register is filled. It is also used when a data byte has -- been transmitted or received to SCL low until software acknowledges -- the transfer. if (r.scl and not v.scl) = '1' then v.scloen := I2C_LOW; v.sdaoen := I2C_HIZ; end if; if ((r.receive and (not r.reg.sts.rec or not r.reg.ctrl.rmode) = '1') or (r.transmit and (r.reg.ctrl.tv or not r.reg.ctrl.tmode) = '1')) then v.slvstate := movebyte; v.scloen := I2C_HIZ; -- Falling edge that should be detected in movebyte may have passed if r.transmit and v.scl = '0' then v.sdaoen := r.sreg(7) xor OEPOL_LEVEL; end if; end if; v.sreg := r.reg.transmit; when movebyte => if (r.scl and not v.scl) = '1' then if r.transmit then v.sdaoen := r.sreg(7) xor OEPOL_LEVEL; else v.sdaoen := I2C_HIZ; end if; end if; if (not r.scl and v.scl) = '1' then v.sreg := r.sreg(6 downto 0) & r.sda; if r.cnt = "111" then if r.addr then v.slvstate := checkaddr; elsif r.receive nor r.transmit then v.slvstate := check10bitaddr; else v.slvstate := handshake; end if; v.cnt := (others => '0'); else v.cnt := r.cnt + 1; end if; end if; when handshake => -- Falling edge if (r.scl and not v.scl) = '1' then if r.addr then v.sdaoen := I2C_LOW; elsif r.receive then -- Receive, send ACK/NAK -- Acknowledge byte if core has room in receive register -- This code assumes that the core's receive register is free if we are -- in RMODE 1. This should always be the case unless software has -- reconfigured the core during operation. if r.reg.sts.rec = '0' then v.sdaoen := I2C_LOW; v.reg.receive := r.sreg; if r.reg.msk.rec = '1' then v.irq := '1'; end if; v.reg.sts.rec := '1'; else -- NAK the byte, the master must abort the transfer v.sdaoen := I2C_HIZ; v.slvstate := idle; end if; else -- Transmit, release bus v.sdaoen := I2C_HIZ; -- Byte transmitted, unset TV unless TAV is set. v.reg.ctrl.tv := r.reg.ctrl.tav; -- Set status bit and check if interrupt should be generated if (not v.reg.sts.tra and r.reg.msk.tra) = '1' then v.irq := '1'; end if; v.reg.sts.tra := '1'; end if; if not r.addr and r.receive and v.sdaoen = I2C_HIZ then if (not v.reg.sts.nak and r.reg.msk.nak) = '1' then v.irq := '1'; end if; v.reg.sts.nak := '1'; end if; end if; -- Risinge edge if (not r.scl and v.scl) = '1' then if r.addr then v.slvstate := movebyte; else if r.receive then -- RMODE 0: Be ready to accept one more byte which will be NAK'd if -- software has not read the receive register -- RMODE 1: Keep SCL low until software has acknowledged received byte if r.reg.ctrl.rmode = '0' then v.slvstate := movebyte; else v.slvstate := sclhold; end if; else -- Transmit, check ACK/NAK from master -- If the master NAKs the transmitted byte the transfer has ended and -- we should wait for the master's next action. If the master ACKs the -- byte the core will act depending on tmode: -- TMODE 0: -- If the master ACKs the byte we must continue to transmit and will -- transmit the same byte on all requests. -- TMODE 1: -- IF the master ACKs the byte we will keep SCL low until software has -- put new transmit data into the transmit register. if r.sda = I2C_ACK then if r.reg.ctrl.tmode = '0' then v.slvstate := movebyte; else v.slvstate := sclhold; end if; else v.slvstate := idle; end if; end if; end if; v.addr := false; v.sreg := r.reg.transmit; end if; end case; if r.reg.ctrl.en = '1' then -- STOP condition if (r.scl and v.scl and not r.sda and v.sda) = '1' then v.active := false; v.slvstate := idle; end if; -- START or repeated START condition if (r.scl and v.scl and r.sda and not v.sda) = '1' then v.slvstate := movebyte; v.cnt := (others => '0'); v.addr := true; v.transmit := false; v.receive := false; end if; end if; ---------------------------------------------------------------------------- -- Reset and idle operation ---------------------------------------------------------------------------- if rstn = '0' then v.slvstate := idle; v.reg.slvaddr.slvaddr := I2CSLVADDR; if TENBIT_SUPPORT = 1 then v.reg.slvaddr.tba := '1'; else v.reg.slvaddr.tba := '0'; end if; v.reg.ctrl.en := '0'; v.reg.sts := ('0', '0', '0'); v.scl := '0'; v.active := false; v.scloen := I2C_HIZ; v.sdaoen := I2C_HIZ; end if; ---------------------------------------------------------------------------- -- Signal assignments ---------------------------------------------------------------------------- -- Update registers rin <= v; -- Update outputs apbo.prdata <= apbout; apbo.pirq <= irq; apbo.pconfig <= PCONFIG; apbo.pindex <= pindex; i2co.scl <= '0'; i2co.scloen <= r.scloen; i2co.sda <= '0'; i2co.sdaoen <= r.sdaoen; i2co.enable <= r.reg.ctrl.en; end process comb; reg: process (clk) begin -- process reg if rising_edge(clk) then r <= rin; end if; end process reg; -- Boot message -- pragma translate_off bootmsg : report_version generic map ( "i2cslv" & tost(pindex) & ": I2C slave rev " & tost(I2CSLV_REV) & ", irq " & tost(pirq)); -- pragma translate_on end architecture rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/spw/comp/spwcomp.vhd
1
31498
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; package spwcomp is component grspwc2 is generic( rmap : integer range 0 to 2 := 0; rmapcrc : integer range 0 to 1 := 0; fifosize1 : integer range 4 to 64 := 32; fifosize2 : integer range 16 to 64 := 64; rxunaligned : integer range 0 to 1 := 0; rmapbufs : integer range 2 to 8 := 4; scantest : integer range 0 to 1 := 0; ports : integer range 1 to 2 := 1; dmachan : integer range 1 to 4 := 1; tech : integer; input_type : integer range 0 to 4 := 0; output_type : integer range 0 to 2 := 0; rxtx_sameclk : integer range 0 to 1 := 0; nodeaddr : integer range 0 to 255 := 254; destkey : integer range 0 to 255 := 0; interruptdist : integer range 0 to 32 := 0; intscalerbits : integer range 0 to 31 := 0; intisrtimerbits : integer range 0 to 31 := 0; intiatimerbits : integer range 0 to 31 := 0; intctimerbits : integer range 0 to 31 := 0; tickinasync : integer range 0 to 1 := 0; pnp : integer range 0 to 2 := 0; pnpvendid : integer range 0 to 16#FFFF# := 0; pnpprodid : integer range 0 to 16#FFFF# := 0; pnpmajorver : integer range 0 to 16#FF# := 0; pnpminorver : integer range 0 to 16#FF# := 0; pnppatch : integer range 0 to 16#FF# := 0; num_txdesc : integer range 64 to 512 := 64; num_rxdesc : integer range 128 to 1024 := 128 ); port( rst : in std_ulogic; clk : in std_ulogic; rxclk0 : in std_ulogic; rxclk1 : in std_ulogic; txclk : in std_ulogic; txclkn : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(3 downto 0); dv : in std_logic_vector(3 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(3 downto 0); so : out std_logic_vector(3 downto 0); --time iface tickin : in std_ulogic; tickinraw : in std_ulogic; timein : in std_logic_vector(7 downto 0); tickindone : out std_ulogic; tickout : out std_ulogic; tickoutraw : out std_ulogic; timeout : out std_logic_vector(7 downto 0); --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(5 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(5 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(5 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(5 downto 0); txrdata : in std_logic_vector(31 downto 0); --nchar fifo ncrenable : out std_ulogic; ncraddress : out std_logic_vector(5 downto 0); ncwrite : out std_ulogic; ncwdata : out std_logic_vector(9 downto 0); ncwaddress : out std_logic_vector(5 downto 0); ncrdata : in std_logic_vector(9 downto 0); --rmap buf rmrenable : out std_ulogic; rmraddress : out std_logic_vector(7 downto 0); rmwrite : out std_ulogic; rmwdata : out std_logic_vector(7 downto 0); rmwaddress : out std_logic_vector(7 downto 0); rmrdata : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0'; --parallel rx data out rxdav : out std_ulogic; rxdataout : out std_logic_vector(8 downto 0); loopback : out std_ulogic; -- interrupt dist. default values intpreload : in std_logic_vector(30 downto 0); inttreload : in std_logic_vector(30 downto 0); intiareload : in std_logic_vector(30 downto 0); intcreload : in std_logic_vector(30 downto 0); irqtxdefault : in std_logic_vector(4 downto 0); -- SpW PnP enable pnpen : in std_ulogic; pnpuvendid : in std_logic_vector(15 downto 0); pnpuprodid : in std_logic_vector(15 downto 0); pnpusn : in std_logic_vector(31 downto 0) ); end component; component grspwc is generic( sysfreq : integer := 40000; usegen : integer range 0 to 1 := 1; nsync : integer range 1 to 2 := 1; rmap : integer range 0 to 2 := 0; rmapcrc : integer range 0 to 1 := 0; fifosize1 : integer range 4 to 32 := 32; fifosize2 : integer range 16 to 64 := 64; rxunaligned : integer range 0 to 1 := 0; rmapbufs : integer range 2 to 8 := 4; scantest : integer range 0 to 1 := 0; ports : integer range 1 to 2 := 1; tech : integer; nodeaddr : integer range 0 to 255 := 254; destkey : integer range 0 to 255 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; txclk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(1 downto 0); nd : in std_logic_vector(9 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(1 downto 0); so : out std_logic_vector(1 downto 0); rxrsto : out std_ulogic; --time iface tickin : in std_ulogic; tickout : out std_ulogic; --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); dcrstval : in std_logic_vector(9 downto 0); timerrstval : in std_logic_vector(11 downto 0); --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); --clk bufs rxclki : in std_logic_vector(1 downto 0); --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(4 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(4 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(4 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(4 downto 0); txrdata : in std_logic_vector(31 downto 0); --nchar fifo ncrenable : out std_ulogic; ncraddress : out std_logic_vector(5 downto 0); ncwrite : out std_ulogic; ncwdata : out std_logic_vector(8 downto 0); ncwaddress : out std_logic_vector(5 downto 0); ncrdata : in std_logic_vector(8 downto 0); --rmap buf rmrenable : out std_ulogic; rmraddress : out std_logic_vector(7 downto 0); rmwrite : out std_ulogic; rmwdata : out std_logic_vector(7 downto 0); rmwaddress : out std_logic_vector(7 downto 0); rmrdata : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testclk : in std_ulogic := '0'; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0'; rmapact : out std_ulogic ); end component; component grspwc_axcelerator is port( rst : in std_ulogic; clk : in std_ulogic; txclk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(1 downto 0); nd : in std_logic_vector(1 downto 0); --spw out do : out std_logic_vector(1 downto 0); so : out std_logic_vector(1 downto 0); rxrsto : out std_ulogic; --time iface tickin : in std_ulogic; tickout : out std_ulogic; --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); dcrstval : in std_logic_vector(9 downto 0); timerrstval : in std_logic_vector(11 downto 0); --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); --clk bufs rxclki : in std_logic_vector(1 downto 0); --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(4 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(4 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(4 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(4 downto 0); txrdata : in std_logic_vector(31 downto 0); --nchar fifo ncrenable : out std_ulogic; ncraddress : out std_logic_vector(5 downto 0); ncwrite : out std_ulogic; ncwdata : out std_logic_vector(8 downto 0); ncwaddress : out std_logic_vector(5 downto 0); ncrdata : in std_logic_vector(8 downto 0); --rmap buf rmrenable : out std_ulogic; rmraddress : out std_logic_vector(7 downto 0); rmwrite : out std_ulogic; rmwdata : out std_logic_vector(7 downto 0); rmwaddress : out std_logic_vector(7 downto 0); rmrdata : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testclk : in std_ulogic := '0'; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0' ); end component; component grspwc_unisim is port( rst : in std_ulogic; clk : in std_ulogic; txclk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(1 downto 0); nd : in std_logic_vector(1 downto 0); --spw out do : out std_logic_vector(1 downto 0); so : out std_logic_vector(1 downto 0); rxrsto : out std_ulogic; --time iface tickin : in std_ulogic; tickout : out std_ulogic; --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); dcrstval : in std_logic_vector(9 downto 0); timerrstval : in std_logic_vector(11 downto 0); --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); --clk bufs rxclki : in std_logic_vector(1 downto 0); --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(4 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(4 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(4 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(4 downto 0); txrdata : in std_logic_vector(31 downto 0); --nchar fifo ncrenable : out std_ulogic; ncraddress : out std_logic_vector(5 downto 0); ncwrite : out std_ulogic; ncwdata : out std_logic_vector(8 downto 0); ncwaddress : out std_logic_vector(5 downto 0); ncrdata : in std_logic_vector(8 downto 0); --rmap buf rmrenable : out std_ulogic; rmraddress : out std_logic_vector(7 downto 0); rmwrite : out std_ulogic; rmwdata : out std_logic_vector(7 downto 0); rmwaddress : out std_logic_vector(7 downto 0); rmrdata : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testclk : in std_ulogic := '0'; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0' ); end component; component grspw_gen is generic( tech : integer := 0; sysfreq : integer := 10000; usegen : integer range 0 to 1 := 1; nsync : integer range 1 to 2 := 1; rmap : integer range 0 to 2 := 0; rmapcrc : integer range 0 to 1 := 0; fifosize1 : integer range 4 to 32 := 32; fifosize2 : integer range 16 to 64 := 64; rxclkbuftype : integer range 0 to 2 := 0; rxunaligned : integer range 0 to 1 := 0; rmapbufs : integer range 2 to 8 := 4; ft : integer range 0 to 2 := 0; scantest : integer range 0 to 1 := 0; techfifo : integer range 0 to 1 := 1; ports : integer range 1 to 2 := 1; memtech : integer := 0; nodeaddr : integer range 0 to 255 := 254; destkey : integer range 0 to 255 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; txclk : in std_ulogic; rxclk : in std_logic_vector(1 downto 0); --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(1 downto 0); nd : in std_logic_vector(9 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(1 downto 0); so : out std_logic_vector(1 downto 0); rxrsto : out std_ulogic; --time iface tickin : in std_ulogic; tickout : out std_ulogic; --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); dcrstval : in std_logic_vector(9 downto 0); timerrstval : in std_logic_vector(11 downto 0); --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testclk : in std_ulogic := '0'; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0' ); end component; component grspw_codec_core is generic( ports : integer range 1 to 2 := 1; input_type : integer range 0 to 4 := 0; output_type : integer range 0 to 2 := 0; rxtx_sameclk : integer range 0 to 1 := 0; fifosize : integer range 16 to 2048 := 64; tech : integer; scantest : integer range 0 to 1 := 0; inputtest : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; rxclk0 : in std_ulogic; rxclk1 : in std_ulogic; txclk : in std_ulogic; txclkn : in std_ulogic; testen : in std_ulogic; testrst : in std_ulogic; --spw in d : in std_logic_vector(3 downto 0); dv : in std_logic_vector(3 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(3 downto 0); so : out std_logic_vector(3 downto 0); --link fsm linkdisabled : in std_ulogic; linkstart : in std_ulogic; autostart : in std_ulogic; portsel : in std_ulogic; noportforce : in std_ulogic; rdivisor : in std_logic_vector(7 downto 0); idivisor : in std_logic_vector(7 downto 0); state : out std_logic_vector(2 downto 0); actport : out std_ulogic; dconnecterr : out std_ulogic; crederr : out std_ulogic; escerr : out std_ulogic; parerr : out std_ulogic; --rx fifo signals rxrenable : out std_ulogic; rxraddress : out std_logic_vector(10 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(9 downto 0); rxwaddress : out std_logic_vector(10 downto 0); rxrdata : in std_logic_vector(9 downto 0); rxaccess : out std_ulogic; --rx iface rxicharav : out std_ulogic; rxicharcnt : out std_logic_vector(11 downto 0); rxichar : out std_logic_vector(8 downto 0); rxiread : in std_ulogic; rxififorst : in std_ulogic; --tx fifo signals txrenable : out std_ulogic; txraddress : out std_logic_vector(10 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(8 downto 0); txwaddress : out std_logic_vector(10 downto 0); txrdata : in std_logic_vector(8 downto 0); txaccess : out std_ulogic; --tx iface txicharcnt : out std_logic_vector(11 downto 0); txifull : out std_ulogic; txiempty : out std_ulogic; txiwrite : in std_ulogic; txichar : in std_logic_vector(8 downto 0); txififorst : in std_ulogic; txififorstact: out std_ulogic; --time iface tickin : in std_ulogic; timein : in std_logic_vector(7 downto 0); tickin_done : out std_ulogic; tickin_busy : out std_ulogic; tickout : out std_ulogic; timeout : out std_logic_vector(7 downto 0); credcnt : out std_logic_vector(5 downto 0); ocredcnt : out std_logic_vector(5 downto 0); --misc powerdown : out std_ulogic; powerdownrx : out std_ulogic; -- input timing testing testdi : in std_logic_vector(1 downto 0) := "00"; testsi : in std_logic_vector(1 downto 0) := "00"; testinput : in std_ulogic := '0' ); end component; component grspw2_gen is generic( rmap : integer range 0 to 2 := 0; rmapcrc : integer range 0 to 1 := 0; fifosize1 : integer range 4 to 64 := 32; fifosize2 : integer range 16 to 64 := 64; rxunaligned : integer range 0 to 1 := 0; rmapbufs : integer range 2 to 8 := 4; scantest : integer range 0 to 1 := 0; ports : integer range 1 to 2 := 1; dmachan : integer range 1 to 4 := 1; tech : integer; input_type : integer range 0 to 4 := 0; output_type : integer range 0 to 2 := 0; rxtx_sameclk : integer range 0 to 1 := 0; ft : integer range 0 to 2 := 0; techfifo : integer range 0 to 1 := 1; memtech : integer := 0; nodeaddr : integer range 0 to 255 := 254; destkey : integer range 0 to 255 := 0; interruptdist : integer range 0 to 32 := 0; intscalerbits : integer range 0 to 31 := 0; intisrtimerbits : integer range 0 to 31 := 0; intiatimerbits : integer range 0 to 31 := 0; intctimerbits : integer range 0 to 31 := 0; tickinasync : integer range 0 to 1 := 0; pnp : integer range 0 to 2 := 0; pnpvendid : integer range 0 to 16#FFFF# := 0; pnpprodid : integer range 0 to 16#FFFF# := 0; pnpmajorver : integer range 0 to 16#FF# := 0; pnpminorver : integer range 0 to 16#FF# := 0; pnppatch : integer range 0 to 16#FF# := 0; num_txdesc : integer range 64 to 512 := 64; num_rxdesc : integer range 128 to 1024 := 128 ); port( rst : in std_ulogic; clk : in std_ulogic; rxclk0 : in std_ulogic; rxclk1 : in std_ulogic; txclk : in std_ulogic; txclkn : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --spw in d : in std_logic_vector(3 downto 0); dv : in std_logic_vector(3 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(3 downto 0); so : out std_logic_vector(3 downto 0); --time iface tickin : in std_ulogic; tickinraw : in std_ulogic; timein : in std_logic_vector(7 downto 0); tickindone : out std_ulogic; tickout : out std_ulogic; tickoutraw : out std_ulogic; timeout : out std_logic_vector(7 downto 0); --irq irq : out std_logic; --misc clkdiv10 : in std_logic_vector(7 downto 0); linkdis : out std_ulogic; testrst : in std_ulogic := '0'; testen : in std_ulogic := '0'; --rmapen rmapen : in std_ulogic; rmapnodeaddr : in std_logic_vector(7 downto 0); --parallel rx data out rxdav : out std_ulogic; rxdataout : out std_logic_vector(8 downto 0); loopback : out std_ulogic; -- interrupt dist. default values intpreload : in std_logic_vector(30 downto 0); inttreload : in std_logic_vector(30 downto 0); intiareload : in std_logic_vector(30 downto 0); intcreload : in std_logic_vector(30 downto 0); irqtxdefault : in std_logic_vector(4 downto 0); -- SpW PnP enable pnpen : in std_ulogic; pnpuvendid : in std_logic_vector(15 downto 0); pnpuprodid : in std_logic_vector(15 downto 0); pnpusn : in std_logic_vector(31 downto 0) ); end component; component grspw_codec_gen is generic( ports : integer range 1 to 2 := 1; input_type : integer range 0 to 4 := 0; output_type : integer range 0 to 2 := 0; rxtx_sameclk : integer range 0 to 1 := 0; fifosize : integer range 16 to 2048 := 64; tech : integer; scantest : integer range 0 to 1 := 0; techfifo : integer range 0 to 1 := 0; ft : integer range 0 to 2 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; rxclk0 : in std_ulogic; rxclk1 : in std_ulogic; txclk : in std_ulogic; txclkn : in std_ulogic; testen : in std_ulogic; testrst : in std_ulogic; --spw in d : in std_logic_vector(3 downto 0); dv : in std_logic_vector(3 downto 0); dconnect : in std_logic_vector(3 downto 0); --spw out do : out std_logic_vector(3 downto 0); so : out std_logic_vector(3 downto 0); --link fsm linkdisabled : in std_ulogic; linkstart : in std_ulogic; autostart : in std_ulogic; portsel : in std_ulogic; noportforce : in std_ulogic; rdivisor : in std_logic_vector(7 downto 0); idivisor : in std_logic_vector(7 downto 0); state : out std_logic_vector(2 downto 0); actport : out std_ulogic; dconnecterr : out std_ulogic; crederr : out std_ulogic; escerr : out std_ulogic; parerr : out std_ulogic; --rx iface rxicharav : out std_ulogic; rxicharcnt : out std_logic_vector(11 downto 0); rxichar : out std_logic_vector(8 downto 0); rxiread : in std_ulogic; rxififorst : in std_ulogic; --tx iface txicharcnt : out std_logic_vector(11 downto 0); txifull : out std_ulogic; txiempty : out std_ulogic; txiwrite : in std_ulogic; txichar : in std_logic_vector(8 downto 0); txififorst : in std_ulogic; txififorstact: out std_ulogic; --time iface tickin : in std_ulogic; timein : in std_logic_vector(7 downto 0); tickin_done : out std_ulogic; tickout : out std_ulogic; timeout : out std_logic_vector(7 downto 0); --misc merror : out std_ulogic ); end component; end package;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/spi/spimctrl.in.vhd
2
665
-- SPI memory controller constant CFG_SPIMCTRL : integer := CONFIG_SPIMCTRL; constant CFG_SPIMCTRL_SDCARD : integer := 0; constant CFG_SPIMCTRL_READCMD : integer := 16#CONFIG_SPIMCTRL_READCMD#; constant CFG_SPIMCTRL_DUMMYBYTE : integer := CONFIG_SPIMCTRL_DUMMYBYTE; constant CFG_SPIMCTRL_DUALOUTPUT : integer := CONFIG_SPIMCTRL_DUALOUTPUT; constant CFG_SPIMCTRL_SCALER : integer := CONFIG_SPIMCTRL_SCALER; constant CFG_SPIMCTRL_ASCALER : integer := CONFIG_SPIMCTRL_ASCALER; constant CFG_SPIMCTRL_PWRUPCNT : integer := CONFIG_SPIMCTRL_PWRUPCNT; constant CFG_SPIMCTRL_OFFSET : integer := 16#CONFIG_SPIMCTRL_OFFSET#;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/maps/ddr_oreg.vhd
1
3202
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: ddr_oreg -- File: ddr_oreg.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: DDR output reg with tech selection ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library techmap; use techmap.gencomp.all; use techmap.allddr.all; entity ddr_oreg is generic (tech : integer; arch : integer := 0; scantest: integer := 0); port ( Q : out std_ulogic; C1 : in std_ulogic; C2 : in std_ulogic; CE : in std_ulogic; D1 : in std_ulogic; D2 : in std_ulogic; R : in std_ulogic; S : in std_ulogic; testen: in std_ulogic; testrst: in std_ulogic); end; architecture rtl of ddr_oreg is begin inf : if not ((tech = lattice) or (is_unisim(tech) = 1) or (tech = axcel) or (tech = axdsp) or (tech = apa3) or (tech = apa3e) or (tech = apa3l) or (tech = igloo2)) generate inf0 : gen_oddr_reg generic map (scantest,0) port map (Q, C1, C2, CE, D1, D2, R, S, testen, testrst); end generate; ax : if (tech = axcel) or (tech = axdsp) generate ax0 : axcel_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; pa3 : if (tech = apa3) generate pa0 : apa3_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; pa3e : if (tech = apa3e) generate pa0 : apa3e_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; pa3l : if (tech = apa3l) generate pa0 : apa3l_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; lat : if tech = lattice generate lat0 : ec_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; igl2 : if tech = igloo2 generate igl20 : igloo2_oddr_reg port map (Q, C1, C2, CE, D1, D2, R, S); end generate; xil : if is_unisim(tech) = 1 generate xil0 : unisim_oddr_reg generic map (tech, arch) port map (Q, C1, C2, CE, D1, D2, R, S); end generate; --pragma translate_off assert (tech /= easic45) and (tech /= easic90) report "ddr_oreg: Not supported on eASIC. Use DDR pad instead." severity failure; --pragma translate_on end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-xilinx-ml50x/grlib_config.vhd
1
2828
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Package: config -- File: config.vhd -- Author: Jiri Gaisler, Gaisler Research -- Description: GRLIB Global configuration package. Can be overriden -- by local config packages in template designs. ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.config_types.all; package config is -- AHBDW - AHB data with -- -- Valid values are 32, 64, 128 and 256 -- -- The value here sets the width of the AMBA AHB data vectors for all -- cores in the library. -- constant CFG_AHBDW : integer := 64; -- CORE_ACDM - Enable AMBA Compliant Data Muxing in cores -- -- Valid values are 0 and 1 -- -- 0: All GRLIB cores that use the ahbread* programs defined in the AMBA package -- will read their data from the low part of the AHB data vector. -- -- 1: All GRLIB cores that use the ahbread* programs defined in the AMBA package -- will select valid data, as defined in the AMBA AHB standard, from the -- AHB data vectors based on the address input. If a core uses a function -- that does not have the address input, a failure will be asserted. -- constant CFG_AHB_ACDM : integer := 0; -- GRLIB_CONFIG_ARRAY - Array of configuration values -- -- The length of this array and the meaning of different positions is defined -- in the grlib.config_types package. constant GRLIB_CONFIG_ARRAY : grlib_config_array_type := ( grlib_debug_level => 0, grlib_debug_mask => 0, grlib_techmap_strict_ram => 0, others => 0); -- CFG_GRETH_SGMII_MODE: set to 0 to connect to the Ethernet PHY via GMII signals. -- Set to 1 to connect to the Ethernet PHY in SGMII mode through high-speed serial -- signals. constant CFG_GRETH_SGMII_MODE : integer := 0; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/ddr/ddr2spax_ddr.vhd
1
52372
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: ddr2spax -- File: ddr2spax.vhd -- Author: Magnus Hjorth - Aeroflex Gaisler -- Description: DDR2 memory controller with asynch AHB interface -- Based on ddr2sp(16/32/64)a, generalized and expanded -------------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library grlib; use grlib.stdlib.all; use grlib.amba.all; use grlib.devices.all; library gaisler; use gaisler.ddrpkg.all; use gaisler.ddrintpkg.all; entity ddr2spax_ddr is generic ( ddrbits : integer := 32; burstlen : integer := 8; MHz : integer := 100; TRFC : integer := 130; col : integer := 9; Mbyte : integer := 8; pwron : integer := 0; oepol : integer := 0; readdly : integer := 1; odten : integer := 0; octen : integer := 0; -- dqsgating : integer := 0; nosync : integer := 0; dqsgating : integer := 0; eightbanks : integer range 0 to 1 := 0; -- Set to 1 if 8 banks instead of 4 dqsse : integer range 0 to 1 := 0; -- single ended DQS ddr_syncrst: integer range 0 to 1 := 0; chkbits : integer := 0; bigmem : integer range 0 to 1 := 0; raspipe : integer range 0 to 1 := 0; hwidthen : integer range 0 to 1 := 0; phytech : integer := 0; hasdqvalid : integer := 0; rstdel : integer := 200; phyptctrl : integer := 0; scantest : integer := 0 ); port ( ddr_rst : in std_ulogic; clk_ddr : in std_ulogic; request : in ddr_request_type; start_tog: in std_logic; response : out ddr_response_type; sdi : in ddrctrl_in_type; sdo : out ddrctrl_out_type; wbraddr : out std_logic_vector(log2((16*burstlen)/ddrbits) downto 0); wbrdata : in std_logic_vector(2*(ddrbits+chkbits)-1 downto 0); rbwaddr : out std_logic_vector(log2((16*burstlen)/ddrbits)-1 downto 0); rbwdata : out std_logic_vector(2*(ddrbits+chkbits)-1 downto 0); rbwrite : out std_logic; hwidth : in std_ulogic; reqsel : in std_ulogic; frequest : in ddr_request_type; response2: out ddr_response_type; testen : in std_ulogic; testrst : in std_ulogic; testoen : in std_ulogic ); end ddr2spax_ddr; architecture rtl of ddr2spax_ddr is constant CMD_PRE : std_logic_vector(2 downto 0) := "010"; constant CMD_REF : std_logic_vector(2 downto 0) := "100"; constant CMD_LMR : std_logic_vector(2 downto 0) := "110"; constant CMD_EMR : std_logic_vector(2 downto 0) := "111"; function tosl(x: integer) return std_logic is begin if x /= 0 then return '1'; else return '0'; end if; end tosl; function zerov(w: integer) return std_logic_vector is constant r: std_logic_vector(w-1 downto 0) := (others => '0'); begin return r; end zerov; constant l2blen: integer := log2(burstlen)+log2(32); constant l2ddrw: integer := log2(ddrbits*2); constant oepols: std_logic := tosl(oepol); -- Write buffer dimensions -- Write buffer is addressable down to 32-bit level on write (AHB) side. constant wbuf_rabits: integer := 1+l2blen-l2ddrw; -- log2((burstlen*32)/(2*ddrbits)); constant wbuf_rdbits: integer := 2*ddrbits; -- Read buffer dimensions constant rbuf_wabits: integer := l2blen-l2ddrw; -- log2((burstlen*32)/(2*ddrbits)); constant rbuf_wdbits: integer := 2*(ddrbits+chkbits); -- sdram configuration register type sdram_cfg_type is record command : std_logic_vector(2 downto 0); csize : std_logic_vector(1 downto 0); bsize : std_logic_vector(3 downto 0); trcd : std_logic_vector(2 downto 0); -- tRCD : 2-9 clock cycles trfc : std_logic_vector(7 downto 0); trp : std_logic_vector(2 downto 0); -- precharge to activate: 2-9 clock cycles refresh : std_logic_vector(11 downto 0); renable : std_ulogic; dllrst : std_ulogic; refon : std_ulogic; cke : std_ulogic; cal_en : std_logic_vector(7 downto 0); cal_inc : std_logic_vector(7 downto 0); cbcal_en : std_logic_vector(3 downto 0); cbcal_inc : std_logic_vector(3 downto 0); cal_pll : std_logic_vector(1 downto 0); -- *** ??? pll_reconf cal_rst : std_logic; readdly : std_logic_vector(3 downto 0); twr : std_logic_vector(4 downto 0); emr : std_logic_vector(1 downto 0); -- selects EM register ocd : std_ulogic; -- enable/disable ocd dqsctrl : std_logic_vector(7 downto 0); eightbanks : std_ulogic; caslat : std_logic_vector(1 downto 0); -- CAS latency 3-6 odten : std_logic_vector(1 downto 0); tras : std_logic_vector(4 downto 0); -- RAS-to-Precharge minimum trtp : std_ulogic; regmem : std_ulogic; -- Registered memory (1 cycle extra latency) strength : std_ulogic; -- Drive strength 1=reduced, 0=normal end record; constant ddr_burstlen: integer := (burstlen*32)/(2*ddrbits); constant l2ddr_burstlen: integer := l2blen-l2ddrw; type ddrstate is (dsidle,dsrascas,dscaslat,dsreaddly,dsdata,dsdone,dsagain,dsreg,dsrefresh,dspreall); type ddrcmdstate is (dcrstdel,dcoff,dcinit1,dcinit2,dcinit3,dcinit4,dcinit5,dcinit6,dcinit7,dcinit8,dcon); type ddr_reg_type is record s : ddrstate; cmds : ddrcmdstate; response : ddr_response_type; response1 : ddr_response_type; response2 : ddr_response_type; response_prev : ddr_response_type; cfg : sdram_cfg_type; rowsel : std_logic_vector(2 downto 0); endaddr : std_logic_vector(l2blen-4 downto 2); addrlo : std_logic_vector(l2ddrw-4 downto 0); col : std_logic_vector(13 downto 0); hwrite : std_logic; hsize : std_logic_vector(2 downto 0); ctr : std_logic_vector(7 downto 0); casctr : std_logic_vector(l2ddr_burstlen-1 downto 0); datacas : std_logic; prectr : std_logic_vector(5 downto 0); rastimer : std_logic_vector(4 downto 0); tras_met : std_logic; pchpend : std_logic; refctr : std_logic_vector(16 downto 0); refpend : std_logic; pastlast : std_logic; sdo_csn : std_logic_vector(1 downto 0); sdo_wen : std_ulogic; wen_prev : std_ulogic; sdo_rasn : std_ulogic; rasn_pre : std_ulogic; sdo_casn : std_ulogic; sdo_dqm : std_logic_vector(15 downto 0); dqm_prev : std_logic_vector(15 downto 0); twr_plus_cl : std_logic_vector(5 downto 0); request_row : std_logic_vector(14 downto 0); request_bank : std_logic_vector(2 downto 0); request_cs : std_logic_vector(0 downto 0); row : std_logic_vector(14 downto 0); setrow : std_logic; samerow : std_logic; start_tog_prev: std_logic; sdo_bdrive : std_ulogic; sdo_qdrive : std_ulogic; sdo_nbdrive : std_ulogic; sdo_address : std_logic_vector(14 downto 0); sdo_address_prev: std_logic_vector(14 downto 0); sdo_ba : std_logic_vector(2 downto 0); sdo_data : std_logic_vector(sdo.data'length-1 downto 0); sdo_cb : std_logic_vector(sdo.cb'length-1 downto 0); sdo_odt : std_logic; sdo_oct : std_logic; rbwrite : std_logic; rbwdata : std_logic_vector(rbuf_wdbits-1 downto 0); ramaddr : std_logic_vector(rbuf_wabits-1 downto 0); ramaddr_prev : std_logic_vector(rbuf_wabits-1 downto 0); mr_twr : std_logic_vector(2 downto 0); mr_tcl : std_logic_vector(2 downto 0); read_pend : std_logic_vector(15 downto 0); req1,req2 : ddr_request_type; start1,start2 : std_logic; hwidth1 : std_logic; hwidth : std_logic; hwcas : std_logic; hwctr : std_logic; end record; signal dr,ndr : ddr_reg_type; signal muxsel2,muxsel1,muxsel0: std_ulogic; signal muxin4: std_logic_vector(31 downto 0); signal muxout4: std_logic_vector(3 downto 0); signal start_tog_delta1,start_tog_delta2: std_logic; signal arst: std_ulogic; attribute syn_keep: boolean; attribute syn_keep of muxsel2:signal is true; attribute syn_keep of muxsel1:signal is true; attribute syn_keep of muxsel0:signal is true; begin arst <= testrst when (scantest/=0 and ddr_syncrst=0) and testen='1' else ddr_rst; start_tog_delta1 <= start_tog; start_tog_delta2 <= start_tog_delta1; muxsel2 <= dr.rowsel(2); muxsel1 <= dr.rowsel(1); muxsel0 <= dr.rowsel(0); muxproc : process(muxin4,muxsel2,muxsel1,muxsel0) begin muxout4(3) <= genmux((muxsel2 & muxsel1 & muxsel0),muxin4(31 downto 24)); muxout4(2) <= genmux((muxsel2 & muxsel1 & muxsel0),muxin4(23 downto 16)); muxout4(1) <= genmux((muxsel2 & muxsel1 & muxsel0),muxin4(15 downto 8)); muxout4(0) <= genmux((muxsel2 & muxsel1 & muxsel0),muxin4(7 downto 0)); end process; ddrcomb : process(ddr_rst,sdi,request,frequest,start_tog_delta2,dr,wbrdata,muxout4,hwidth,reqsel,testen,testoen) constant plmemwrite: boolean := false; constant plmemread: boolean := false; variable dv: ddr_reg_type; variable o: ddrctrl_out_type; variable bdrive,qdrive: std_logic; variable vreq,vreqf: ddr_request_type; variable resp,resp2: ddr_response_type; variable vstart: std_logic; variable acsn: std_logic_vector(1 downto 0); variable arow: std_logic_vector(14 downto 0); variable acol: std_logic_vector(13 downto 0); variable abank: std_logic_vector(2 downto 0); variable aendaddr: std_logic_vector(l2blen-4 downto 2); variable aloa: std_logic_vector(l2ddrw-4 downto 0); variable rbw: std_logic; variable rbwd: std_logic_vector(rbuf_wdbits-1 downto 0); variable rbwa: std_logic_vector(rbuf_wabits-1 downto 0); variable wbra: std_logic_vector(wbuf_rabits-1 downto 0); variable regdata: std_logic_vector(31 downto 0); variable regsd1 : std_logic_vector(31 downto 0); -- data from registers variable regsd2 : std_logic_vector(31 downto 0); -- data from registers variable regsd3 : std_logic_vector(31 downto 0); -- data from registers variable regsd4 : std_logic_vector(31 downto 0); -- data from registers variable regsd5 : std_logic_vector(31 downto 0); -- data from registers variable mr : std_logic_vector(14 downto 0); -- DDR2 Mode register variable mask: std_logic_vector(15 downto 0); variable hio1: std_logic; variable w5: std_logic; variable precharge_next: std_logic; variable precharge_notras: std_logic; variable goto_caslat: std_logic; variable block_precharge: std_logic; variable regt0,regt1: std_logic_vector(ddrbits-1 downto 0); variable addrtemp3,addrtemp2,addrtemp1,addrtemp0: std_logic_vector(7 downto 0); variable expcsize: std_logic_vector(2 downto 0); variable caslat_reg: std_logic_vector(2 downto 0); variable addrlo32, endaddr32: std_logic_vector(3 downto 2); variable endaddr43: std_logic_vector(4 downto 3); variable endaddr42: std_logic_vector(4 downto 2); variable inc_rctr: std_logic; begin dv := dr; o := ddrctrl_out_none; o.sdcke := (others => dr.cfg.cke); o.sdcsn := dr.sdo_csn; o.sdwen := dr.wen_prev; o.rasn := dr.sdo_rasn and dr.rasn_pre; o.casn := dr.sdo_casn and dr.datacas; o.dqm := dr.dqm_prev; o.bdrive := dr.sdo_bdrive; o.qdrive := dr.sdo_qdrive; o.nbdrive := dr.sdo_nbdrive; o.address := dr.sdo_address; o.data := dr.sdo_data; o.ba := dr.sdo_ba; o.cal_en := dr.cfg.cal_en; o.cal_inc := dr.cfg.cal_inc; o.cal_pll := dr.cfg.cal_pll; o.cal_rst := dr.cfg.cal_rst; o.odt := (others => dr.sdo_odt); o.oct := dr.sdo_oct; o.cb := dr.sdo_cb; o.cbcal_en := dr.cfg.cbcal_en; o.cbcal_inc := dr.cfg.cbcal_inc; resp := ddr_response_none; resp2 := ddr_response_none; rbw := dr.rbwrite; rbwd := dr.rbwdata; rbwa := (others => '0'); w5 := '0'; wbra := dr.response.done_tog & dr.ramaddr; dv.ramaddr_prev := dr.ramaddr; dv.dqm_prev := dr.sdo_dqm; dv.wen_prev := dr.sdo_wen; dv.response_prev := dr.response; dv.sdo_address_prev := dr.sdo_address; dv.cfg.cal_en := (others => '0'); dv.cfg.cal_inc := (others => '0'); dv.cfg.cal_pll := (others => '0'); dv.cfg.cal_rst := '0'; dv.cfg.cbcal_en := (others => '0'); dv.cfg.cbcal_inc := (others => '0'); dv.sdo_data := (others => '0'); dv.sdo_data(2*ddrbits-1 downto ddrbits) := wbrdata(2*ddrbits+chkbits-1 downto ddrbits+chkbits); dv.sdo_data(ddrbits-1 downto 0) := wbrdata(ddrbits-1 downto 0); dv.sdo_cb := (others => '0'); if chkbits > 0 then dv.sdo_cb(2*chkbits-1 downto chkbits) := wbrdata(2*ddrbits+2*chkbits-1 downto 2*ddrbits+chkbits); dv.sdo_cb(chkbits-1 downto 0) := wbrdata(ddrbits+chkbits-1 downto ddrbits); end if; if hwidthen/=0 and dr.hwidth='1' and dr.hwctr='1' then dv.sdo_data(ddrbits-1 downto 0) := dr.sdo_data(2*ddrbits-1 downto ddrbits); if chkbits > 0 then dv.sdo_cb(chkbits-1 downto 0) := dr.sdo_cb(2*chkbits-1 downto chkbits); end if; end if; if not (hwidthen/=0 and hasdqvalid/=0 and sdi.datavalid='0') then dv.rbwdata(2*ddrbits+chkbits-1 downto ddrbits+chkbits) := sdi.data(2*ddrbits-1 downto ddrbits); dv.rbwdata(ddrbits-1 downto 0) := sdi.data(ddrbits-1 downto 0); if chkbits > 0 then dv.rbwdata(2*ddrbits+2*chkbits-1 downto 2*ddrbits+chkbits) := sdi.cb(2*chkbits-1 downto chkbits); dv.rbwdata(ddrbits+chkbits-1 downto ddrbits) := sdi.cb(chkbits-1 downto 0); end if; -- Half-width input data muxing if hwidthen/=0 and dr.hwidth='1' and dr.hwctr='1' then dv.rbwdata(2*ddrbits+chkbits-1 downto 2*ddrbits+chkbits-ddrbits/2) := dr.rbwdata(2*ddrbits+chkbits-ddrbits/2-1 downto ddrbits+chkbits); dv.rbwdata(2*ddrbits+chkbits-ddrbits/2-1 downto ddrbits+chkbits) := dr.rbwdata(ddrbits/2-1 downto 0); dv.rbwdata(ddrbits-1 downto ddrbits/2) := sdi.data(ddrbits+ddrbits/2-1 downto ddrbits); if chkbits > 0 then dv.rbwdata(2*ddrbits+2*chkbits-1 downto 2*ddrbits+2*chkbits-chkbits/2) := dr.rbwdata(2*ddrbits+2*chkbits-chkbits/2-1 downto 2*ddrbits+chkbits); dv.rbwdata(2*ddrbits+2*chkbits-chkbits/2-1 downto 2*ddrbits+chkbits) := dr.rbwdata(ddrbits+chkbits/2-1 downto ddrbits); dv.rbwdata(ddrbits+chkbits-1 downto ddrbits+chkbits/2) := sdi.cb(chkbits+chkbits/2-1 downto chkbits); end if; end if; end if; -- hwidth input should be constant but sample it for robustness -- then sample in one more stage to allow replication if necessary dv.hwidth1 := hwidth; dv.hwidth := dr.hwidth1; if hwidthen=0 then dv.hwidth:='0'; end if; -- Synchronize 1/2 stages dv.req1 := request; dv.req2 := dr.req1; dv.start1 := start_tog_delta2; dv.start2 := dr.start1; vstart := dr.start2; vreq := dr.req2; vreqf := dr.req1; if nosync /= 0 then vstart:=start_tog_delta2; vreq:=request; vreqf:=request; end if; if nosync > 1 then vreqf:=frequest; end if; dv.start_tog_prev := vstart; regsd1 := (others => '0'); regsd1(31 downto 15) := dr.cfg.refon & dr.cfg.ocd & dr.cfg.emr & dr.cfg.bsize(3) & dr.cfg.trcd(0) & dr.cfg.bsize(2 downto 0) & dr.cfg.csize & dr.cfg.command & dr.cfg.dllrst & dr.cfg.renable & dr.cfg.cke; regsd1(11 downto 0) := dr.cfg.refresh; regsd2 := (others => '0'); regsd2(25 downto 18) := std_logic_vector(to_unsigned(phytech,8)); if bigmem /= 0 then regsd2(17):='1'; end if; if chkbits > 0 then regsd2(16):='1'; end if; regsd2(15 downto 0) := "1" & std_logic_vector(to_unsigned(log2(ddrbits/8),3)) & std_logic_vector(to_unsigned(MHz,12)); if dr.hwidth='1' then regsd2(14 downto 12) := std_logic_vector(to_unsigned(log2((ddrbits/2)/8),3)); end if; regsd3 := (others => '0'); regsd3(17 downto 16) := dr.cfg.readdly(1 downto 0); regsd3(22 downto 18) := dr.cfg.trfc(4 downto 0); regsd3(27 downto 23) := dr.cfg.twr; regsd3(28) := dr.cfg.trp(0); regsd4 := (others => '0'); regsd4(23 downto 22) := dr.cfg.readdly(3 downto 2); regsd4(21) := dr.cfg.regmem; regsd4(13 downto 0) := dr.cfg.trtp & "00" & dr.cfg.caslat & dr.cfg.eightbanks & dr.cfg.dqsctrl; regsd5 := (others => '0'); regsd5(30 downto 28) := dr.cfg.trp; regsd5(25 downto 18) := dr.cfg.trfc; regsd5(17 downto 16) := dr.cfg.odten; regsd5(15) := dr.cfg.strength; regsd5(10 downto 8) := dr.cfg.trcd; regsd5(4 downto 0) := dr.cfg.tras; case ddrbits is when 16 => o.regwdata := dr.sdo_data(31 downto 0) & dr.sdo_data(31 downto 0); when 32 => o.regwdata := dr.sdo_data(31 downto 0) & dr.sdo_data(63 downto 32); when 64 => o.regwdata := dr.sdo_data(31 downto 0) & dr.sdo_data(63 downto 32); when others => o.regwdata := dr.sdo_data(2*ddrbits-7*32-1 downto 2*ddrbits-8*32) & dr.sdo_data(2*ddrbits-6*32-1 downto 2*ddrbits-7*32); end case; if dr.cfg.regmem='1' then caslat_reg := std_logic_vector(unsigned('0' & dr.cfg.caslat)+1); else caslat_reg := '0' & dr.cfg.caslat; end if; -- Mode register dv.mr_twr := std_logic_vector(unsigned(dr.cfg.twr(2 downto 0))-3); if dv.mr_twr="110" or dv.mr_twr="111" or dv.mr_twr="000" then dv.mr_twr := "101"; end if; dv.mr_tcl := std_logic_vector(unsigned('0' & dr.cfg.caslat)+3); mr := (others => '0'); mr(12) := '0'; -- Power down exit time mr(11 downto 9) := dr.mr_twr; -- WR-1 mr(8) := dr.cfg.dllrst; -- DLL Reset mr(7) := '0'; -- Test mode mr(6 downto 4) := dr.mr_tcl; -- CL mr(3) := '0'; -- Burst type, 0=seq 1=interl mr(2 downto 0) := "010"; -- Burst len 010=4, 011=8 -- Calculate address parts from a2ds.haddr and a2ds.startword expcsize := dr.hwidth & dr.cfg.csize; case expcsize is when "011" => arow := vreqf.startaddr(l2ddrw+22 downto l2ddrw+8); when "111" | "010" => arow := vreqf.startaddr(l2ddrw+21 downto l2ddrw+7); when "110" | "001" => arow := vreqf.startaddr(l2ddrw+20 downto l2ddrw+6); when "101" | "000" => arow := vreqf.startaddr(l2ddrw+19 downto l2ddrw+5); when others => arow := vreqf.startaddr(l2ddrw+18 downto l2ddrw+4); end case; dv.rowsel := dr.cfg.bsize(2 downto 0); if bigmem /= 0 and dr.cfg.bsize(3 downto 1)="000" then dv.rowsel := "010"; end if; if bigmem = 0 and dr.cfg.bsize(3)='1' then dv.rowsel := "111"; end if; addrtemp3 := vreqf.startaddr(30 downto 23); --CS addrtemp2 := vreqf.startaddr(29 downto 22); --BA2/1 addrtemp1 := vreqf.startaddr(28 downto 21); --BA1/0 addrtemp0 := vreqf.startaddr(27 downto 20); --BA0/- if bigmem=1 then addrtemp3(1 downto 0) := "0" & vreqf.startaddr(31); addrtemp2(1 downto 0) := vreqf.startaddr(31 downto 30); addrtemp1(1 downto 0) := vreqf.startaddr(30 downto 29); addrtemp0(1 downto 0) := vreqf.startaddr(29 downto 28); end if; muxin4 <= addrtemp3 & addrtemp2 & addrtemp1 & addrtemp0; abank := muxout4(2 downto 0); if dr.cfg.eightbanks='0' then abank := '0' & abank(2) & abank(1); end if; acol := vreqf.startaddr(log2(ddrbits/8)+13 downto log2(ddrbits/8)); if ddrbits=16 then acol(0):='0'; end if; -- Always align to at least 32 bits acsn(0) := muxout4(3); acsn(1) := not acsn(0); dv.setrow := '0'; if dr.setrow='1' then dv.row := dr.sdo_address_prev; end if; dv.samerow := '0'; if abank=dr.sdo_ba and acsn=dr.sdo_csn and arow=dr.row then dv.samerow := '1'; end if; dv.request_row := arow; dv.request_cs := acsn(0 downto 0); dv.request_bank := abank; hio1 := vreqf.hio; if raspipe /= 0 then vstart := dr.start_tog_prev; arow := dr.request_row; acsn := (not dr.request_cs) & dr.request_cs; abank := dr.request_bank; hio1 := vreq.hio; end if; aendaddr := vreq.endaddr(log2(4*burstlen)-1 downto 2); if vreq.hsize(1 downto 0)="11" and vreq.hio='0' then aendaddr(2):='1'; end if; if ahbdw > 64 and vreqf.hsize(2)='1' then aendaddr(3 downto 2) := "11"; if ahbdw > 128 and vreqf.hsize(0)='1' then aendaddr(4) := '1'; end if; end if; aloa(l2ddrw-4 downto 0) := vreq.startaddr(l2ddrw-4 downto 0); if ddrbits > 32 then addrlo32 := dr.addrlo(3 downto 2); elsif ddrbits > 16 then addrlo32 := '0' & dr.addrlo(2); else addrlo32 := "00"; end if; endaddr32 := dr.endaddr(3 downto 2); endaddr43 := dr.endaddr(4 downto 3); endaddr42 := dr.endaddr(4 downto 2); -- Calculate data mask mask := (others => dr.pastlast); -- Set mask bits for <word access if dr.hsize="000" then if dr.addrlo(0)='1' then mask := mask or "1010101010101010"; else mask := mask or "0101010101010101"; end if; end if; if dr.hsize(2 downto 1)="00" then if dr.addrlo(1)='1' then mask := mask or "1100110011001100"; else mask := mask or "0011001100110011"; end if; end if; -- First access -- (this could be written in generic code instead) if dr.ctr=zerov(dr.ctr'length) then case ddrbits is when 16 => null; when 32 => if dr.addrlo(2)='1' then mask(7 downto 0) := mask(7 downto 0) or x"F0"; end if; when 64 => case addrlo32 is when "00" => null; when "01" => mask := mask or x"F000"; when "10" => mask := mask or x"FF00"; when others => mask := mask or x"FFF0"; end case; when others => null; end case; end if; -- Last access if dr.ramaddr = dr.endaddr(log2(4*burstlen)-1 downto log2(2*ddrbits/8)) then if hwidthen=0 or dr.hwidth='0' or dr.hwctr='1' then dv.pastlast := '1'; end if; case ddrbits is when 16 => null; when 32 => if dr.endaddr(2)='0' then mask(7 downto 0) := mask(7 downto 0) or x"0F"; end if; when 64 => case endaddr32 is when "00" => mask := mask or x"0FFF"; when "01" => mask := mask or x"00FF"; when "10" => mask := mask or x"000F"; when others => null; end case; when others => null; end case; end if; -- Before first if dr.col(1)='1' and dr.ctr(0)='1' and dr.ctr(dr.ctr'high downto 1)=zerov(dr.ctr'length-1) then mask := mask or x"FFFF"; end if; dv.sdo_rasn := '1'; dv.sdo_casn := '1'; dv.sdo_wen := '1'; dv.sdo_odt := '0'; dv.sdo_oct := '0'; dv.rbwrite := '0'; dv.ctr := std_logic_vector(unsigned(dr.ctr)+1); if hwidthen/=0 and dr.hwidth='1' and dr.s=dsdata then dv.hwctr := not dr.hwctr; if dr.hwctr='0' then dv.ctr := dr.ctr; end if; end if; dv.rastimer := std_logic_vector(unsigned(dr.rastimer)+1); if dr.rastimer=dr.cfg.tras then dv.tras_met := '1'; end if; -- Calculate whether we would precharge the next cycle if Tras=0 precharge_notras := '0'; if dr.casctr=zerov(dr.casctr'length) and dr.prectr="000000" and dr.pchpend='1' then precharge_notras := '1'; end if; -- Calculate whether we should precharge the next cycle precharge_next := precharge_notras and dr.tras_met; block_precharge := '0'; inc_rctr := '0'; goto_caslat := '0'; case dr.s is when dsidle => dv.ctr := (others => '0'); dv.hwctr := '0'; dv.sdo_bdrive := not oepols; dv.sdo_qdrive := not oepols; dv.sdo_nbdrive := not oepols; dv.col := acol; dv.sdo_csn := (others => '1'); dv.rastimer := (others => '0'); dv.tras_met := '0'; dv.response.rctr_gray := "0000"; if dr.refpend='1' and dr.cfg.refon='1' then -- Periodic refresh dv.sdo_csn := (others => '0'); dv.sdo_rasn := '0'; dv.sdo_casn := '0'; dv.refpend := '0'; dv.s := dsrefresh; elsif vstart /= dr.response.done_tog and (dr.cmds=dcon or (dr.cmds=dcoff and dr.cfg.renable='0')) then -- R/W data dv.sdo_rasn := '0' or hio1; dv.sdo_csn := acsn; dv.sdo_address := arow; dv.sdo_ba := abank; dv.s := dsrascas; elsif dr.cfg.command /= "000" then -- Command dv.sdo_csn := (others => '0'); if dr.cfg.command(2 downto 1)="11" then dv.sdo_wen:='0'; dv.sdo_casn:='0'; dv.sdo_rasn:='0'; dv.sdo_ba := "00" & dr.cfg.command(0); if dr.cfg.command(0)='0' or dr.cfg.emr="00" then dv.sdo_ba := "000"; dv.sdo_address := mr; else dv.sdo_ba := "0" & dr.cfg.emr; if dr.cfg.emr="01" then dv.sdo_address := "0000"&conv_std_logic(dqsse=1)&dr.cfg.ocd&dr.cfg.ocd&dr.cfg.ocd & dr.cfg.odten(1)&"000"& dr.cfg.odten(0) & dr.cfg.strength & "0"; else dv.sdo_address := (others => '0'); end if; end if; else dv.sdo_wen := dr.cfg.command(2); dv.sdo_casn := dr.cfg.command(1); dv.sdo_rasn := dr.cfg.command(0); dv.sdo_address(10) := '1'; -- print("X Command: " & tost(dr.cfg.command) & " -> casn:" & tost(dv.sdo_casn) & ",rasn:" & tost(dv.sdo_rasn) & ",wen:" & tost(dv.sdo_wen)); end if; dv.cfg.command := "000"; if dr.cfg.command=CMD_REF then dv.s := dsrefresh; end if; if dr.cfg.command=CMD_PRE then dv.s := dspreall; end if; end if; when dsrascas => if dr.ctr(2 downto 0)="000" then -- pragma translate_off assert dr.ctr="00000000" severity failure; -- pragma translate_on -- dv.row := dr.sdo_address; dv.setrow := '1'; end if; dv.hwrite := vreq.hwrite; dv.hsize := vreq.hsize; dv.endaddr := aendaddr; dv.addrlo := aloa; dv.sdo_address := dr.col(13 downto 10) & '0' & dr.col(9 downto 1) & '0'; if dr.hwidth='1' then dv.sdo_address := dr.col(12 downto 9) & '0' & dr.col(8 downto 1) & "00"; end if; if vreq.hio='1' and dr.ctr(0)='1' then dv.s := dsreg; dv.ctr := (others => '0'); dv.hwctr := '0'; elsif vreq.hio='0' and dr.ctr(2 downto 0)=dr.cfg.trcd then goto_caslat := '1'; end if; when dscaslat => dv.sdo_odt := dr.hwrite; dv.sdo_oct := not dr.hwrite; dv.pastlast := '0'; if dr.ctr(2 downto 0)=caslat_reg then if dr.hwrite='1' then dv.s := dsdata; else dv.s := dsreaddly; end if; dv.ctr := (others => '0'); dv.hwctr := '0'; dv.sdo_qdrive := not (dr.hwrite xor oepols); dv.sdo_nbdrive := not (dr.hwrite xor oepols); end if; when dsreaddly => dv.sdo_odt := dr.hwrite; dv.sdo_oct := not dr.hwrite; dv.pastlast := '0'; if dr.ctr(3 downto 0)=dr.cfg.readdly then dv.s := dsdata; dv.ctr := (others => '0'); dv.hwctr := '0'; end if; when dsdata => inc_rctr := '0'; dv.sdo_odt := dr.hwrite; dv.sdo_oct := not dr.hwrite; dv.rbwrite := '1'; dv.sdo_dqm := mask; dv.sdo_bdrive := not (dr.hwrite xor oepols); dv.sdo_qdrive := not (dr.hwrite xor oepols); dv.sdo_nbdrive := not (dr.hwrite xor oepols); -- If-case to handle pausing for half-width mode if hwidthen=0 or dr.hwidth='0' or dr.hwctr='1' then inc_rctr := '1'; -- The first request may be on a 2-odd column to get the first data first -- Make sure following requests are on even mult of 4xcolumns if dr.ctr(0)='1' then dv.col(1) := '0'; end if; -- Make sure we don't advance read counter for the unwanted 3:rd/4:th -- word in the burst in this case if dr.ctr(0)='1' and dr.col(1)='1' then inc_rctr := '0'; end if; -- Toggle done and change state after completed burst if dr.ctr(log2(ddr_burstlen)-1 downto 0)=(not zerov(l2ddr_burstlen)) then dv.sdo_nbdrive := not oepols; dv.s := dsdone; dv.response.done_tog := not dr.response.done_tog; end if; end if; -- Stall if not ready yet if hasdqvalid/=0 and sdi.datavalid='0' and dr.hwrite='0' then dv.ctr := dr.ctr; dv.hwctr := dr.hwctr; dv.response := dr.response; dv.s := dsdata; dv.col(1) := dr.col(1); dv.rbwrite := '0'; inc_rctr := '0'; end if; if inc_rctr='1' and dr.hwrite='0' then dv.response.rctr_gray(l2ddr_burstlen-1 downto 0) := nextgray(dr.response.rctr_gray(l2ddr_burstlen-1 downto 0)); end if; when dsdone => dv.response.rctr_gray := "0000"; dv.sdo_bdrive := not oepols; if dr.ctr(0)='1' then dv.sdo_qdrive := not oepols; end if; if dr.pchpend='0' and dr.prectr=zerov(dr.prectr'length) then dv.s := dsidle; end if; -- Short circuit if request on same row and waiting for Tras to expire if precharge_notras='1' and precharge_next='0' and dr.start_tog_prev /= dr.response.done_tog and dr.samerow='1' and vreq.hio='0' then dv.col := acol; dv.endaddr := aendaddr; dv.addrlo := aloa; dv.hwrite := vreq.hwrite; dv.hsize := vreq.hsize; dv.s := dsagain; dv.sdo_qdrive := not oepols; end if; when dsagain => block_precharge := '1'; dv.sdo_address := dr.col(13 downto 10) & '0' & dr.col(9 downto 1) & '0'; goto_caslat := '1'; when dsreg => -- This code assumes ddrbits>=16, needs to be changed slightly to support -- smaller widths dv.rbwrite := '1'; -- DDR2CFG1-5,PHYCFG read regt0 := (others => '0'); regt1 := (others => '0'); case ddrbits is when 16 => case endaddr42 is when "000" => regt0 := regsd1(31 downto 16); regt1 := regsd1(15 downto 0); when "001" => regt0 := regsd2(31 downto 16); regt1 := regsd2(15 downto 0); when "010" => regt0 := regsd3(31 downto 16); regt1 := regsd3(15 downto 0); when "011" => regt0 := regsd4(31 downto 16); regt1 := regsd4(15 downto 0); when "100" | "101" => regt0 := regsd5(31 downto 16); regt1 := regsd5(15 downto 0); when "110" => regt0 := sdi.regrdata(31 downto 16); regt1 := sdi.regrdata(15 downto 0); when others => regt0 := sdi.regrdata(63 downto 48); regt1 := sdi.regrdata(47 downto 32); end case; when 32 => case endaddr43 is when "00" => regt0 := regsd1; regt1 := regsd2; when "01" => regt0 := regsd3; regt1 := regsd4; when "10" => regt0 := regsd5; regt1 := regsd2; when others => regt0 := sdi.regrdata(31 downto 0); regt1 := sdi.regrdata(63 downto 32); end case; when 64 => case dr.endaddr(4) is when '0' => regt0 := regsd1 & regsd2; regt1 := regsd3 & regsd4; when others => regt0 := regsd5 & regsd2; regt1 := sdi.regrdata(31 downto 0) & sdi.regrdata(63 downto 32); end case; when 128 => regt0 := regsd1 & regsd2 & regsd3 & regsd4; regt1 := regsd5 & regsd2 & sdi.regrdata(31 downto 0) & sdi.regrdata(63 downto 32); when others => regt0(ddrbits-1 downto ddrbits-255) := regsd1 & regsd2 & regsd3 & regsd4 & regsd5 & x"00000000" & sdi.regrdata(31 downto 0) & sdi.regrdata(63 downto 32); end case; dv.rbwdata(ddrbits*2+chkbits-1 downto ddrbits+chkbits) := regt0; dv.rbwdata(ddrbits-1 downto 0) := regt1; -- Note write data is two cycles behind regt0 := dr.sdo_data(ddrbits*2-1 downto ddrbits); regt1 := dr.sdo_data(ddrbits-1 downto 0); if dr.hwrite='1' and dr.ctr(2 downto 0)="010" then w5 := '0'; case ddrbits is when 16 => case endaddr42 is when "000" => regsd1 := regt0 & regt1; when "001" => regsd2 := regt0 & regt1; when "010" => regsd3 := regt0 & regt1; when "011" => regsd4 := regt0 & regt1; when "100" => regsd5 := regt0 & regt1; w5 := '1'; when "110" => o.regwrite(0) := '1'; when "111" => o.regwrite(1) := '1'; when others => null; end case; when 32 => case endaddr42 is when "000" => regsd1 := regt0; when "001" => regsd2 := regt1; when "010" => regsd3 := regt0; when "011" => regsd4 := regt1; when "100" => regsd5 := regt0; w5 := '1'; when "110" => o.regwrite(0) := '1'; when "111" => o.regwrite(1) := '1'; when others => null; end case; when 64 => case endaddr42 is when "000" => regsd1 := regt0(63 downto 32); when "001" => regsd2 := regt0(31 downto 0); when "010" => regsd3 := regt1(63 downto 32); when "011" => regsd4 := regt1(31 downto 0); when "100" => regsd5 := regt0(63 downto 32); w5 := '1'; when "110" => o.regwrite(0) := '1'; when "111" => o.regwrite(1) := '1'; when others => null; end case; when 128 => case endaddr42 is when "000" => regsd1 := regt0(127 downto 96); when "001" => regsd2 := regt0(95 downto 64); when "010" => regsd3 := regt0(63 downto 32); when "011" => regsd4 := regt0(31 downto 0); when "100" => regsd5 := regt1(127 downto 96); w5 := '1'; when "110" => o.regwrite(0) := '1'; when "111" => o.regwrite(1) := '1'; when others => null; end case; when others => case endaddr42 is when "000" => regsd1 := regt0(ddrbits-1 downto ddrbits-32); when "001" => regsd2 := regt0(ddrbits-33 downto ddrbits-64); when "010" => regsd3 := regt0(ddrbits-65 downto ddrbits-96); when "011" => regsd4 := regt0(ddrbits-97 downto ddrbits-128); when "100" => regsd5 := regt0(ddrbits-129 downto ddrbits-160); w5 := '1'; when "110" => o.regwrite(0) := '1'; when "111" => o.regwrite(1) := '1'; when others => null; end case; end case; -- Update lsb aliases for expanded fields in ddr2cfg5 if w5='1' then regsd3(28) := regsd5(28); -- TRP regsd3(22 downto 18) := regsd5(22 downto 18); -- TRFC regsd1(26) := regsd5(8); -- TRCD end if; end if; if (dr.hwrite='1' and dr.ctr(2 downto 1)="11") or dr.hwrite='0' then dv.s := dsidle; dv.response.done_tog := not dr.response.done_tog; end if; dv.cfg := (refon => regsd1(31), ocd => regsd1(30), emr => regsd1(29 downto 28), trcd => regsd5(10 downto 9) & regsd1(26), bsize => regsd1(27) & regsd1(25 downto 23), csize => regsd1(22 downto 21), command => regsd1(20 downto 18), dllrst => regsd1(17), renable => regsd1(16), cke => regsd1(15), refresh => regsd1(11 downto 0), cal_pll => regsd3(30 downto 29), cal_rst => regsd3(31), trp => regsd5(30 downto 29) & regsd3(28), twr => regsd3(27 downto 23), trfc => regsd5(25 downto 23) & regsd3(22 downto 18), readdly => regsd4(23 downto 22) & regsd3(17 downto 16), cal_inc => regsd3(15 downto 8), cal_en => regsd3(7 downto 0), eightbanks => regsd4(8), dqsctrl => regsd4(7 downto 0), caslat => regsd4(10 downto 9), odten => regsd5(17 downto 16), tras => regsd5(4 downto 0), strength => regsd5(15), trtp => regsd4(13), cbcal_inc => regsd4(31 downto 28), cbcal_en => regsd4(27 downto 24), regmem => regsd4(21) ); when dsrefresh => if dr.ctr(7 downto 0)=dr.cfg.trfc then dv.s := dsidle; end if; when dspreall => -- Wait for tRP (eightbanks=0) or tRP+1 (eightbanks=1) if dr.ctr(3 downto 0)=std_logic_vector(("0" & unsigned(dr.cfg.trp)) + (2+eightbanks)) then dv.s := dsidle; end if; end case; if goto_caslat='1' then dv.s := dscaslat; -- Set counter to -4 for read and -1 for write to compensate -- write-read diff and pipelining. -- Only need lowest three bits so set highest 3 to '0' as usual dv.ctr(5 downto 3) := "000"; dv.ctr(2 downto 0) := "100"; if vreq.hwrite='1' then dv.ctr(2 downto 0) := "111"; end if; dv.casctr := std_logic_vector(to_unsigned(ddr_burstlen/2, dv.casctr'length)); dv.hwcas := '0'; dv.pchpend := '1'; end if; -- CAS and precharge handling -- FSM above sets up casctr and pchpend dv.twr_plus_cl := std_logic_vector(("0" & unsigned(dr.cfg.twr)) + ("0000" & unsigned(dr.cfg.caslat))); if dr.prectr /= zerov(dr.prectr'length) then dv.prectr := std_logic_vector(unsigned(dr.prectr)-1); end if; dv.read_pend := '0' & dr.read_pend(dr.read_pend'high downto 1); dv.datacas := '1'; if dr.casctr /= zerov(dr.casctr'length) then if dr.datacas='1' then dv.datacas := '0'; -- dv.sdo_casn := '0'; dv.sdo_wen := not dr.hwrite; if dr.hwrite='0' then case dr.cfg.caslat is when "00" => dv.read_pend(4 downto 3) := "11"; when "01" => dv.read_pend(5 downto 4) := "11"; when "10" => dv.read_pend(6 downto 5) := "11"; when others => dv.read_pend(7 downto 6) := "11"; end case; end if; elsif dr.hwidth='1' then dv.hwcas := not dr.hwcas; if dr.hwcas='1' then dv.casctr := std_logic_vector(unsigned(dr.casctr)-1); if l2blen-l2ddrw > 1 then dv.sdo_address(l2blen-l2ddrw+1 downto 3) := std_logic_vector(unsigned(dr.sdo_address(l2blen-l2ddrw+1 downto 3)+1)); end if; dv.sdo_address(2) := '0'; else dv.sdo_address(2) := not dr.sdo_address(2); end if; else dv.casctr := std_logic_vector(unsigned(dr.casctr)-1); if l2blen-l2ddrw > 1 then dv.sdo_address(l2blen-l2ddrw downto 2) := std_logic_vector(unsigned(dr.sdo_address(l2blen-l2ddrw downto 2)+1)); end if; dv.sdo_address(1) := '0'; end if; -- Set up precharge counter (will not run until casctr=0) if dr.hwrite='0' then dv.prectr := "00000" & dr.cfg.trtp; else dv.prectr := dr.twr_plus_cl; end if; end if; o.read_pend := dv.read_pend(7 downto 0); dv.rasn_pre := '1'; if precharge_next='1' and block_precharge='0' then dv.pchpend := '0'; dv.sdo_wen := '0'; -- dv.sdo_rasn := '0'; dv.rasn_pre := '0'; dv.prectr := "000" & dr.cfg.trp; end if; -- Refresh and init handling dv.refctr := std_logic_vector(unsigned(dr.refctr)+1); case dr.cmds is when dcrstdel => if dr.refctr=std_logic_vector(to_unsigned(MHz*rstdel, dr.refctr'length)) then dv.cmds := dcoff; end if; -- Bypass reset delay by writing anything to regsd2 if dr.start_tog_prev='1' and vreq.hio='1' and vreq.hwrite='1' and vreq.endaddr(4 downto 2)="001" then dv.cmds := dcoff; end if; when dcoff => -- Wait for renable to be set high and phy to be locked dv.refctr := (others => '0'); if dr.cfg.renable='1' then dv.cfg.cke := '1'; dv.cfg.dllrst := '1'; dv.cfg.ocd := '0'; dv.cmds := dcinit1; end if; when dcinit1 => -- Wait >=400 ns if dr.refctr=std_logic_vector(to_unsigned((MHz*4+9)/10, dr.refctr'length)) then dv.cmds := dcinit2; dv.cfg.command := CMD_PRE; dv.cfg.emr := "00"; end if; when dcinit2 => -- MR order 2,3,1,0 -- 2xcycles per command if dr.cfg.command="000" then dv.cfg.command := CMD_EMR; dv.cfg.emr := (not dr.cfg.emr(0)) & dr.cfg.emr(1); -- 00->10->11->01->00 if dr.cfg.emr="01" then dv.cmds := dcinit3; dv.refctr := (others => '0'); end if; end if; when dcinit3 => if dr.cfg.command="000" then dv.cfg.command := CMD_PRE; dv.cmds := dcinit4; end if; when dcinit4 => if dr.cfg.command="000" then dv.cfg.command := CMD_REF; dv.cmds := dcinit5; end if; when dcinit5 => if dr.cfg.command="000" then dv.cfg.command := CMD_REF; dv.cmds := dcinit6; end if; when dcinit6 => if dr.cfg.command="000" then dv.cfg.command := CMD_EMR; dv.cfg.emr := "00"; dv.cfg.dllrst := '0'; dv.cmds := dcinit7; dv.refctr := (others => '0'); end if; when dcinit7 => if dr.refctr(7 downto 0)=std_logic_vector(to_unsigned(200,8)) then dv.cfg.command := CMD_EMR; dv.cfg.emr := "01"; dv.cfg.ocd := '1'; dv.cmds := dcinit8; end if; when dcinit8 => if dr.cfg.command="000" then if dr.cfg.ocd='1' then dv.cfg.ocd := '0'; dv.cfg.command := CMD_EMR; else dv.cmds := dcon; dv.cfg.renable := '0'; end if; end if; dv.refctr := (others => '0'); when dcon => if dr.cfg.cke='0' then dv.cmds := dcoff; elsif dr.cfg.renable='1' then dv.cmds := dcinit2; dv.refctr := (others => '0'); elsif dr.refctr(11 downto 0)=dr.cfg.refresh then dv.refpend := '1'; dv.refctr := (others => '0'); end if; end case; -- Calculate next address dv.ramaddr(0) := dv.ctr(0) xor dv.col(1); if rbuf_wabits > 1 then dv.ramaddr(rbuf_wabits-1 downto 1) := std_logic_vector(unsigned(dr.col(rbuf_wabits downto 2)) + unsigned(dv.ctr(rbuf_wabits-1 downto 1))); end if; -- print("col: " & tost(dr.col) & ", dv.ctr: " & tost(dv.ctr) & ", res: " & tost(dv.ramaddr)); if eightbanks=0 then dv.cfg.eightbanks:='0'; end if; rbwd := dv.rbwdata; rbwa := dr.ramaddr; rbw := dv.rbwrite; if plmemwrite then rbwd := dr.rbwdata; rbwa := dr.ramaddr_prev; rbw := dr.rbwrite; end if; if not plmemread then o.dqm := dr.sdo_dqm; o.sdwen := dr.sdo_wen; o.data := dv.sdo_data; o.cb := dv.sdo_cb; end if; -- half-width output data muxing, placed after (potential) pipeline regs. if hwidthen/=0 and dr.hwidth='1' then if dr.hwctr='1' then o.data(ddrbits/2-1 downto 0) := o.data(2*ddrbits-ddrbits/2-1 downto ddrbits); o.data(2*ddrbits-ddrbits/2-1 downto ddrbits) := o.data(2*ddrbits-1 downto 2*ddrbits-ddrbits/2); if chkbits > 0 then o.cb(chkbits/2-1 downto 0) := o.cb(2*chkbits-chkbits/2-1 downto chkbits); o.cb(2*chkbits-chkbits/2-1 downto chkbits) := o.cb(2*chkbits-1 downto 2*chkbits-chkbits/2); end if; o.dqm(ddrbits/16-1 downto 0) := o.dqm(ddrbits/4-ddrbits/16-1 downto ddrbits/8); o.dqm(ddrbits/4-ddrbits/16-1 downto ddrbits/8) := o.dqm(ddrbits/4-1 downto ddrbits/4-ddrbits/16); else o.data(2*ddrbits-ddrbits/2-1 downto ddrbits) := o.data(ddrbits-1 downto ddrbits/2); if chkbits > 0 then o.cb(2*chkbits-chkbits/2-1 downto chkbits) := o.cb(chkbits-1 downto chkbits/2); end if; o.dqm(ddrbits/4-ddrbits/16-1 downto ddrbits/8) := o.dqm(ddrbits/8-1 downto ddrbits/16); end if; end if; if ddr_rst='0' then dv.s := dsidle; dv.cmds := dcrstdel; dv.response := ddr_response_none; dv.casctr := (others => '0'); dv.refctr := (others => '0'); dv.pchpend := '0'; dv.refpend := '0'; dv.rbwrite := '0'; dv.ctr := (others => '0'); dv.hwctr := '0'; dv.sdo_nbdrive := not oepols; dv.sdo_csn := (others => '1'); dv.rastimer := (others => '0'); dv.tras_met := '0'; dv.cfg.command := "000"; dv.cfg.emr := "00"; dv.cfg.csize := conv_std_logic_vector(col-9, 2); dv.cfg.bsize := conv_std_logic_vector(log2(Mbyte/8), 4); dv.cfg.refon := '0'; dv.cfg.trfc := conv_std_logic_vector(TRFC*MHz/1000-2, 8); dv.cfg.refresh := conv_std_logic_vector(7800*MHz/1000, 12); dv.cfg.twr := conv_std_logic_vector((15)*MHz/1000+3, 5); dv.sdo_dqm := (others => '1'); dv.cfg.dllrst := '0'; dv.cfg.cke := '0'; dv.cfg.ocd := '0'; dv.cfg.readdly := conv_std_logic_vector(readdly, 4); dv.cfg.eightbanks := conv_std_logic_vector(eightbanks, 1)(0); dv.cfg.odten := std_logic_vector(to_unsigned(odten,2)); dv.cfg.dqsctrl := (others => '0'); dv.cfg.strength := '0'; if pwron = 1 then dv.cfg.renable := '1'; else dv.cfg.renable:='0'; end if; -- Default to min 15 ns tRCD, 15 ns tRP, min(7.5 ns,2*tCK) tRTP -- Use CL=3 for DDR2-400/533, 4 for DDR2-667, 5 for DDR2-800 dv.cfg.trcd := "000"; dv.cfg.trp := "000"; dv.cfg.trtp := '0'; dv.cfg.caslat := "00"; dv.cfg.regmem := '0'; if MHz > 130 then dv.cfg.trcd := "001"; dv.cfg.trp := "001"; end if; if MHz > 200 then -- Will work up to 600 MHz, then trcd/trp needs to be expanded dv.cfg.trcd := std_logic_vector(to_unsigned((15 * MHz + 999) / 1000 - 2, 3)); dv.cfg.trp := std_logic_vector(to_unsigned((15 * MHz + 999) / 1000 - 2, 3)); end if; if MHz > 267 then -- Works up to 400 MHz, then trtp will need to be expanded dv.cfg.trtp := '1'; dv.cfg.caslat := "01"; end if; if MHz > 334 then dv.cfg.caslat := "10"; end if; dv.cfg.cal_rst := '1'; -- Reset input delays dv.sdo_ba := (others => '0'); dv.sdo_address := (others => '0'); -- Default to min 45 ns tRAS dv.cfg.tras := std_logic_vector(to_unsigned((45*MHz+999)/1000 - 2, 5)); dv.read_pend := (others => '0'); if ddr_syncrst /= 0 then dv.cfg.cke := '0'; dv.sdo_bdrive := not oepols; dv.sdo_qdrive := not oepols; dv.sdo_odt := '0'; if phyptctrl /= 0 then o.sdcke := "00"; o.bdrive := not oepols; o.qdrive := not oepols; o.odt := (others => '0'); end if; end if; end if; if dr.cfg.odten="00" then dv.sdo_odt := '0'; end if; if octen=0 then dv.sdo_oct := '0'; end if; for x in 0 to chkbits/4-1 loop o.cbdqm(x) := o.dqm(x*ddrbits/chkbits); end loop; if vreq.maskdata='1' then o.dqm := (others => '1'); end if; if vreq.maskcb='1' then o.cbdqm := (others => '1'); end if; if dr.cfg.command /= "000" then -- print("Command: " & tost(dr.cfg.command) & " -> casn:" & tost(dv.sdo_casn) & ",rasn:" & tost(dv.sdo_rasn) & ",wen:" & tost(dv.sdo_wen)); end if; -- Dynamic nosync handling (nosync=2) if plmemwrite then dv.response1 := dr.response; dv.response2 := dr.response; else dv.response1 := dv.response; dv.response2 := dv.response; end if; if reqsel='1' then dv.response1 := ddr_response_none; end if; if reqsel='0' then dv.response2 := ddr_response_none; end if; if nosync > 1 then resp := dr.response1; elsif plmemwrite then resp := dr.response_prev; else resp := dr.response; end if; resp2 := dr.response2; if scantest/=0 and phyptctrl/=0 then if testen='1' then o.bdrive := testoen; o.qdrive := testoen; end if; end if; rbwdata <= rbwd; rbwaddr <= rbwa; rbwrite <= rbw; wbraddr <= wbra; sdo <= o; response <= resp; response2 <= resp2; ndr <= dv; end process; ddrregs: process(clk_ddr,arst) begin if rising_edge(clk_ddr) then dr <= ndr; end if; if ddr_syncrst=0 and arst='0' then dr.cfg.cke <= '0'; dr.sdo_bdrive <= not oepols; dr.sdo_qdrive <= not oepols; dr.sdo_odt <= '0'; end if; end process; end;
gpl-2.0
gareth8118/lepton-eda
gnetlist/docs/README.vhdl
7
598
The VHDL backend Written by Magnus Danielson and improved by Thomas Heidel A few things you have to care about: 1. In order to generate valid component declarations, you have to add an additional attribute to each pin. "type=IN" or "type=OUT" or "type=INOUT" 2. The "device" attribute must be unique to a symbol! The verilog symbols of the same type for example, have all the same device attribute and will therefore not work. 3. Make sure your component-library picks up the vhdl symbols instead of the verilog symbols Library paths that show up last are searched first!
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/gaisler/pci/pcipads.vhd
1
10989
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: pcipads -- File: pcipads.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: PCI pads module ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library techmap; use techmap.gencomp.all; use work.pci.all; library grlib; use grlib.stdlib.all; entity pcipads is generic ( padtech : integer := 0; noreset : integer := 0; oepol : integer := 0; host : integer := 1; int : integer := 0; no66 : integer := 0; onchipreqgnt : integer := 0; -- Internal req and gnt signals drivereset : integer := 0; -- Drive PCI rst with outpad constidsel : integer := 0; -- pci_idsel is tied to local constant level : integer := pci33; -- input/output level voltage : integer := x33v; -- input/output voltage nolock : integer := 0 ); port ( pci_rst : inout std_logic; pci_gnt : in std_ulogic; pci_idsel : in std_ulogic; pci_lock : inout std_ulogic; pci_ad : inout std_logic_vector(31 downto 0); pci_cbe : inout std_logic_vector(3 downto 0); pci_frame : inout std_ulogic; pci_irdy : inout std_ulogic; pci_trdy : inout std_ulogic; pci_devsel : inout std_ulogic; pci_stop : inout std_ulogic; pci_perr : inout std_ulogic; pci_par : inout std_ulogic; pci_req : inout std_ulogic; -- tristate pad but never read pci_serr : inout std_ulogic; -- open drain output pci_host : in std_ulogic; pci_66 : in std_ulogic; pcii : out pci_in_type; pcio : in pci_out_type; pci_int : inout std_logic_vector(3 downto 0) --:= conv_std_logic_vector(16#F#, 4) -- Disable int by default --pci_int : inout std_logic_vector(3 downto 0) := -- conv_std_logic_vector(16#F# - (16#F# * oepol), 4) -- Disable int by default ); end; architecture rtl of pcipads is signal vcc : std_ulogic; begin vcc <= '1'; -- Reset rstpad : if noreset = 0 generate nodrive: if drivereset = 0 generate pci_rst_pad : iodpad generic map (tech => padtech, level => level, voltage => voltage, oepol => 0) port map (pci_rst, pcio.rst, pcii.rst); end generate nodrive; drive: if drivereset /= 0 generate pci_rst_pad : outpad generic map (tech => padtech, level => level, voltage => voltage) port map (pci_rst, pcio.rst); pcii.rst <= pcio.rst; end generate drive; end generate; norstpad : if noreset = 1 generate pcii.rst <= pci_rst; end generate; localgnt: if onchipreqgnt = 1 generate pcii.gnt <= pci_gnt; pci_req <= pcio.req when pcio.reqen = conv_std_logic(oepol=1) else '1'; end generate localgnt; extgnt: if onchipreqgnt = 0 generate pad_pci_gnt : inpad generic map (padtech, level, voltage) port map (pci_gnt, pcii.gnt); pad_pci_req : toutpad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_req, pcio.req, pcio.reqen); end generate extgnt; idsel_pad: if constidsel = 0 generate pad_pci_idsel : inpad generic map (padtech, level, voltage) port map (pci_idsel, pcii.idsel); end generate idsel_pad; idsel_local: if constidsel /= 0 generate pcii.idsel <= pci_idsel; end generate idsel_local; onlyhost : if host = 2 generate pcii.host <= '0'; -- Always host end generate; dohost : if host = 1 generate pad_pci_host : inpad generic map (padtech, level, voltage) port map (pci_host, pcii.host); end generate; nohost : if host = 0 generate pcii.host <= '1'; -- disable pci host functionality end generate; do66 : if no66 = 0 generate pad_pci_66 : inpad generic map (padtech, level, voltage) port map (pci_66, pcii.pci66); end generate; dono66 : if no66 = 1 generate pcii.pci66 <= '0'; end generate; dolock : if nolock = 0 generate pad_pci_lock : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_lock, pcio.lock, pcio.locken, pcii.lock); end generate; donolock : if nolock = 1 generate pcii.lock <= pci_lock; end generate; pad_pci_ad : iopadvv generic map (tech => padtech, level => level, voltage => voltage, width => 32, oepol => oepol) port map (pci_ad, pcio.ad, pcio.vaden, pcii.ad); pad_pci_cbe0 : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_cbe(0), pcio.cbe(0), pcio.cbeen(0), pcii.cbe(0)); pad_pci_cbe1 : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_cbe(1), pcio.cbe(1), pcio.cbeen(1), pcii.cbe(1)); pad_pci_cbe2 : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_cbe(2), pcio.cbe(2), pcio.cbeen(2), pcii.cbe(2)); pad_pci_cbe3 : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_cbe(3), pcio.cbe(3), pcio.cbeen(3), pcii.cbe(3)); pad_pci_frame : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_frame, pcio.frame, pcio.frameen, pcii.frame); pad_pci_trdy : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_trdy, pcio.trdy, pcio.trdyen, pcii.trdy); pad_pci_irdy : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_irdy, pcio.irdy, pcio.irdyen, pcii.irdy); pad_pci_devsel: iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_devsel, pcio.devsel, pcio.devselen, pcii.devsel); pad_pci_stop : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_stop, pcio.stop, pcio.stopen, pcii.stop); pad_pci_perr : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_perr, pcio.perr, pcio.perren, pcii.perr); pad_pci_par : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_par, pcio.par, pcio.paren, pcii.par); pad_pci_serr : iopad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_serr, pcio.serr, pcio.serren, pcii.serr); -- PCI interrupt pads -- int = 0 => no interrupt -- int = 1 => PCI_INT[A] = out, PCI_INT[B,C,D] = Not connected -- int = 2 => PCI_INT[B] = out, PCI_INT[A,C,D] = Not connected -- int = 3 => PCI_INT[C] = out, PCI_INT[A,B,D] = Not connected -- int = 4 => PCI_INT[D] = out, PCI_INT[A,B,C] = Not connected -- int = 10 => PCI_INT[A] = inout, PCI_INT[B,C,D] = in -- int = 11 => PCI_INT[B] = inout, PCI_INT[A,C,D] = in -- int = 12 => PCI_INT[C] = inout, PCI_INT[A,B,D] = in -- int = 13 => PCI_INT[D] = inout, PCI_INT[A,B,C] = in -- int = 14 => PCI_INT[A,B,C,D] = in -- int = 100 => PCI_INT[A] = out, PCI_INT[B,C,D] = Not connected -- int = 101 => PCI_INT[A,B] = out, PCI_INT[C,D] = Not connected -- int = 102 => PCI_INT[A,B,C] = out, PCI_INT[D] = Not connected -- int = 103 => PCI_INT[A,B,C,D] = out -- int = 110 => PCI_INT[A] = inout, PCI_INT[B,C,D] = in -- int = 111 => PCI_INT[A,B] = inout, PCI_INT[C,D] = in -- int = 112 => PCI_INT[A,B,C] = inout, PCI_INT[D] = in -- int = 113 => PCI_INT[A,B,C,D] = inout interrupt : if int /= 0 generate x : for i in 0 to 3 generate xo : if i = int - 1 and int < 10 generate pad_pci_int : odpad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_int(i), pcio.inten); end generate; xonon : if i /= int - 1 and int < 10 and int < 100 generate pci_int(i) <= '1'; end generate; xio : if i = (int - 10) and int >= 10 and int < 100 generate pad_pci_int : iodpad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_int(i), pcio.inten, pcii.int(i)); end generate; xi : if i /= (int - 10) and int >= 10 and int < 100 generate pad_pci_int : inpad generic map (tech => padtech, level => level, voltage => voltage) port map (pci_int(i), pcii.int(i)); end generate; x2o : if i <= (int - 100) and int < 110 and int >= 100 generate pad_pci_int : odpad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_int(i), pcio.vinten(i)); end generate; x2onon : if i > (int - 100) and int < 110 and int >= 100 generate pci_int(i) <= '1'; end generate; x2oi : if i <= (int - 110) and int >= 110 generate pad_pci_int : iodpad generic map (tech => padtech, level => level, voltage => voltage, oepol => oepol) port map (pci_int(i), pcio.vinten(i), pcii.int(i)); end generate; x2i : if i > (int - 110) and int >= 110 generate pad_pci_int : inpad generic map (tech => padtech, level => level, voltage => voltage) port map (pci_int(i), pcii.int(i)); end generate; end generate; end generate; nointerrupt : if int = 0 generate pcii.int <= (others => '0'); end generate; pcii.pme_status <= '0'; end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/inferred/mul_inferred.vhd
1
4283
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ----------------------------------------------------------------------------- -- Entity: gen_mul_61x61 -- File: mul_inferred.vhd -- Author: Edvin Catovic - Gaisler Research -- Description: Generic 61x61 multplier ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library grlib; use grlib.stdlib.all; entity gen_mul_61x61 is port(A : in std_logic_vector(60 downto 0); B : in std_logic_vector(60 downto 0); EN : in std_logic; CLK : in std_logic; PRODUCT : out std_logic_vector(121 downto 0)); end; architecture rtl of gen_mul_61x61 is signal r1, r1in, r2, r2in : std_logic_vector(121 downto 0); begin comb : process(A, B, r1) begin -- pragma translate_off if not (is_x(A) or is_x(B)) then -- pragma translate_on r1in <= std_logic_vector(unsigned(A) * unsigned(B)); -- pragma translate_off end if; -- pragma translate_on r2in <= r1; end process; reg : process(clk) begin if rising_edge(clk) then if EN = '1' then r1 <= r1in; r2 <= r2in; end if; end if; end process; PRODUCT <= r2; end; library IEEE; use IEEE.std_logic_1164.all; use IEEE.std_logic_arith.all; library grlib; use grlib.stdlib.all; entity gen_mult_pipe is generic ( a_width : positive; -- multiplier word width b_width : positive; -- multiplicand word width num_stages : positive := 2; -- number of pipeline stages stall_mode : natural range 0 to 1 := 1); -- '0': non-stallable; '1': stallable port ( clk : in std_logic; -- register clock en : in std_logic; -- register enable tc : in std_logic; -- '0' : unsigned, '1' : signed a : in std_logic_vector(a_width-1 downto 0); -- multiplier b : in std_logic_vector(b_width-1 downto 0); -- multiplicand product : out std_logic_vector(a_width+b_width-1 downto 0)); -- product end ; architecture simple of gen_mult_pipe is subtype resw is std_logic_vector(A_width+B_width-1 downto 0); type pipet is array (num_stages-1 downto 1) of resw; signal p_i : pipet; signal prod : resw; begin comb : process(A, B, TC) begin -- pragma translate_off if notx(A) and notx(B) and notx(tc) then -- pragma translate_on if TC = '1' then prod <= signed(A) * signed(B); else prod <= unsigned(A) * unsigned(B); end if; -- pragma translate_off else prod <= (others => 'X'); end if; -- pragma translate_on end process; w2 : if num_stages = 2 generate reg : process(clk) begin if rising_edge(clk) then if (stall_mode = 0) or (en = '1') then p_i(1) <= prod; end if; end if; end process; end generate; w3 : if num_stages > 2 generate reg : process(clk) begin if rising_edge(clk) then if (stall_mode = 0) or (en = '1') then p_i <= p_i(num_stages-2 downto 1) & prod; end if; end if; end process; end generate; product <= p_i(num_stages-1); end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-xilinx-ml605/leon3mp.vhd
1
35626
------------------------------------------------------------------------------ -- LEON3 Demonstration design -- Copyright (C) 2006 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library grlib; use grlib.config.all; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; library techmap; use techmap.gencomp.all; use techmap.allclkgen.all; library gaisler; use gaisler.memctrl.all; use gaisler.leon3.all; use gaisler.uart.all; use gaisler.misc.all; use gaisler.i2c.all; use gaisler.net.all; use gaisler.jtag.all; library esa; use esa.memoryctrl.all; use work.config.all; use work.ml605.all; use work.pcie.all; -- pragma translate_off use gaisler.sim.all; -- pragma translate_on entity leon3mp is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; SIM_BYPASS_INIT_CAL : string := "OFF" ); port ( reset : in std_ulogic; errorn : out std_ulogic; clk_ref_p : in std_logic; clk_ref_n : in std_logic; -- PROM interface address : out std_logic_vector(23 downto 0); data : inout std_logic_vector(15 downto 0); romsn : out std_ulogic; oen : out std_ulogic; writen : out std_ulogic; alatch : out std_ulogic; -- DDR3 memory ddr3_dq : inout std_logic_vector(DQ_WIDTH-1 downto 0); ddr3_dm : out std_logic_vector(DM_WIDTH-1 downto 0); ddr3_addr : out std_logic_vector(ROW_WIDTH-1 downto 0); ddr3_ba : out std_logic_vector(BANK_WIDTH-1 downto 0); ddr3_ras_n : out std_logic; ddr3_cas_n : out std_logic; ddr3_we_n : out std_logic; ddr3_reset_n : out std_logic; ddr3_cs_n : out std_logic_vector((CS_WIDTH*nCS_PER_RANK)-1 downto 0); ddr3_odt : out std_logic_vector((CS_WIDTH*nCS_PER_RANK)-1 downto 0); ddr3_cke : out std_logic_vector(CKE_WIDTH-1 downto 0); ddr3_dqs_p : inout std_logic_vector(DQS_WIDTH-1 downto 0); ddr3_dqs_n : inout std_logic_vector(DQS_WIDTH-1 downto 0); ddr3_ck_p : out std_logic_vector(CK_WIDTH-1 downto 0); ddr3_ck_n : out std_logic_vector(CK_WIDTH-1 downto 0); -- Debug support unit dsubre : in std_ulogic; -- Debug Unit break (connect to button) -- AHB Uart dsurx : in std_ulogic; dsutx : out std_ulogic; -- Ethernet signals gmiiclk_p : in std_ulogic; gmiiclk_n : in std_ulogic; egtx_clk : out std_ulogic; etx_clk : in std_ulogic; erx_clk : in std_ulogic; erxd : in std_logic_vector(7 downto 0); erx_dv : in std_ulogic; erx_er : in std_ulogic; erx_col : in std_ulogic; erx_crs : in std_ulogic; emdint : in std_ulogic; etxd : out std_logic_vector(7 downto 0); etx_en : out std_ulogic; etx_er : out std_ulogic; emdc : out std_ulogic; emdio : inout std_logic; erstn : out std_ulogic; iic_scl_main : inout std_ulogic; iic_sda_main : inout std_ulogic; dvi_iic_scl : inout std_logic; dvi_iic_sda : inout std_logic; tft_lcd_data : out std_logic_vector(11 downto 0); tft_lcd_clk_p : out std_ulogic; tft_lcd_clk_n : out std_ulogic; tft_lcd_hsync : out std_ulogic; tft_lcd_vsync : out std_ulogic; tft_lcd_de : out std_ulogic; tft_lcd_reset_b : out std_ulogic; clk_33 : in std_ulogic; -- SYSACE clock sysace_mpa : out std_logic_vector(6 downto 0); sysace_mpce : out std_ulogic; sysace_mpirq : in std_ulogic; sysace_mpoe : out std_ulogic; sysace_mpwe : out std_ulogic; sysace_d : inout std_logic_vector(7 downto 0); pci_exp_txp : out std_logic_vector(CFG_NO_OF_LANES-1 downto 0); pci_exp_txn : out std_logic_vector(CFG_NO_OF_LANES-1 downto 0); pci_exp_rxp : in std_logic_vector(CFG_NO_OF_LANES-1 downto 0); pci_exp_rxn : in std_logic_vector(CFG_NO_OF_LANES-1 downto 0); sys_clk_p : in std_logic; sys_clk_n : in std_logic; sys_reset_n : in std_logic; -- Output signals to LEDs led : out std_logic_vector(6 downto 0) ); end; architecture rtl of leon3mp is signal vcc : std_logic; signal gnd : std_logic; signal memi : memory_in_type; signal memo : memory_out_type; signal wpo : wprot_out_type; signal gpioi : gpio_in_type; signal gpioo : gpio_out_type; signal apbi : apb_slv_in_type; signal apbo : apb_slv_out_vector := (others => apb_none); signal ahbsi : ahb_slv_in_type; signal ahbso : ahb_slv_out_vector := (others => ahbs_none); signal ahbmi : ahb_mst_in_type; signal ahbmo : ahb_mst_out_vector := (others => ahbm_none); signal u1i, dui : uart_in_type; signal u1o, duo : uart_out_type; signal irqi : irq_in_vector(0 to CFG_NCPU-1); signal irqo : irq_out_vector(0 to CFG_NCPU-1); signal dbgi : l3_debug_in_vector(0 to CFG_NCPU-1); signal dbgo : l3_debug_out_vector(0 to CFG_NCPU-1); signal dsui : dsu_in_type; signal dsuo : dsu_out_type; signal fpi : grfpu_in_vector_type; signal fpo : grfpu_out_vector_type; signal ethi : eth_in_type; signal etho : eth_out_type; signal gpti : gptimer_in_type; signal lclk, clk_ddr, lclk200 : std_ulogic; signal clkm, rstn, clkml : std_ulogic; signal tck, tms, tdi, tdo : std_ulogic; signal rstraw : std_logic; signal lock : std_logic; signal tb_rst : std_logic; signal tb_clk : std_logic; signal phy_init_done : std_logic; signal lerrorn : std_logic; -- RS232 APB Uart signal rxd1 : std_logic; signal txd1 : std_logic; -- VGA signal vgao : apbvga_out_type; signal lcd_datal : std_logic_vector(11 downto 0); signal lcd_hsyncl, lcd_vsyncl, lcd_del, lcd_reset_bl : std_ulogic; signal clk_sel : std_logic_vector(1 downto 0); signal clk100 : std_ulogic; signal clkvga, clkvga_p, clkvga_n : std_ulogic; -- IIC signal i2ci, dvi_i2ci : i2c_in_type; signal i2co, dvi_i2co : i2c_out_type; -- SYSACE signal clkace : std_ulogic; signal acei : gracectrl_in_type; signal aceo : gracectrl_out_type; -- Used for connecting input/output signals to the DDR3 controller signal migi : mig_app_in_type; signal migo : mig_app_out_type; attribute keep : boolean; attribute syn_keep : boolean; attribute syn_preserve : boolean; attribute syn_keep of lock : signal is true; attribute syn_keep of clk_ddr : signal is true; attribute syn_keep of clkm : signal is true; attribute syn_preserve of clkm : signal is true; attribute syn_preserve of clk_ddr : signal is true; attribute keep of lock : signal is true; attribute keep of clkm : signal is true; attribute keep of clk_ddr : signal is true; constant VCO_FREQ : integer := 1200000; -- MMCM VCO frequency in KHz constant CPU_FREQ : integer := VCO_FREQ / CFG_MIG_CLK4; -- cpu frequency in KHz constant I2C_FILTER : integer := (CPU_FREQ*5+50000)/100000+1; begin ---------------------------------------------------------------------- --- Reset and Clock generation ------------------------------------- ---------------------------------------------------------------------- vcc <= '1'; gnd <= '0'; alatch <= '0'; erstn <= rstn; -- Glitch free reset that can be used for the Eth Phy and flash memory rst0 : rstgen generic map (acthigh => 1) port map (reset, clkm, lock, rstn, rstraw); ---------------------------------------------------------------------- --- AHB CONTROLLER -------------------------------------------------- ---------------------------------------------------------------------- ahb0 : ahbctrl generic map (defmast => CFG_DEFMST, split => CFG_SPLIT, rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, ioen => 1, nahbm => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_SVGA_ENABLE+CFG_PCIEXP, nahbs => 9) port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso); ---------------------------------------------------------------------- --- LEON3 processor and DSU ----------------------------------------- ---------------------------------------------------------------------- -- LEON3 processor nosh : if CFG_GRFPUSH = 0 generate cpu : for i in 0 to CFG_NCPU-1 generate l3ft : if CFG_LEON3FT_EN /= 0 generate leon3ft0 : leon3ft -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU*(1-CFG_GRFPUSH), CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_IUFT_EN, CFG_FPUFT_EN, CFG_CACHE_FT_EN, CFG_RF_ERRINJ, CFG_CACHE_ERRINJ, CFG_DFIXED, CFG_LEON3_NETLIST, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i), clkm); end generate; l3s : if CFG_LEON3FT_EN = 0 generate u0 : leon3s -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU*(1-CFG_GRFPUSH), CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_DFIXED, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i)); end generate; end generate; end generate; sh : if CFG_GRFPUSH = 1 generate cpu : for i in 0 to CFG_NCPU-1 generate l3ft : if CFG_LEON3FT_EN /= 0 generate leon3ft0 : leon3ftsh -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_IUFT_EN, CFG_FPUFT_EN, CFG_CACHE_FT_EN, CFG_RF_ERRINJ, CFG_CACHE_ERRINJ, CFG_DFIXED, CFG_LEON3_NETLIST, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i), clkm, fpi(i), fpo(i)); end generate; l3s : if CFG_LEON3FT_EN = 0 generate u0 : leon3sh -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_DFIXED, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i), fpi(i), fpo(i)); end generate; end generate; grfpush0 : grfpushwx generic map ((CFG_FPU-1), CFG_NCPU, fabtech) port map (clkm, rstn, fpi, fpo); end generate; lerrorn <= dbgo(0).error and rstn; error_pad : odpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (errorn, lerrorn); dsugen : if CFG_DSU = 1 generate -- LEON3 Debug Support Unit dsugen : if CFG_DSU = 1 generate dsu0 : dsu3 generic map (hindex => 2, haddr => 16#900#, hmask => 16#F00#, ncpu => CFG_NCPU, tbits => 30, tech => memtech, irq => 0, kbytes => CFG_ATBSZ) port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo); dsubre_pad : inpad generic map (level => cmos, voltage => x15v, tech => padtech) port map (dsubre, dsui.break); dsui.enable <= '1'; led(2) <= dsuo.active; end generate; end generate; nodsu : if CFG_DSU = 0 generate ahbso(2) <= ahbs_none; dsuo.tstop <= '0'; dsuo.active <= '0'; end generate; -- Debug UART dcomgen : if CFG_AHB_UART = 1 generate dcom0 : ahbuart generic map (hindex => CFG_NCPU, pindex => 4, paddr => 7) port map (rstn, clkm, dui, duo, apbi, apbo(4), ahbmi, ahbmo(CFG_NCPU)); dsurx_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dsurx, dui.rxd); dsutx_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dsutx, duo.txd); led(0) <= not dui.rxd; led(1) <= not duo.txd; end generate; nouah : if CFG_AHB_UART = 0 generate apbo(4) <= apb_none; end generate; ahbjtaggen0 :if CFG_AHB_JTAG = 1 generate ahbjtag0 : ahbjtag generic map(tech => fabtech, hindex => CFG_NCPU+CFG_AHB_UART) port map(rstn, clkm, tck, tms, tdi, tdo, ahbmi, ahbmo(CFG_NCPU+CFG_AHB_UART), open, open, open, open, open, open, open, gnd); end generate; ---------------------------------------------------------------------- --- Memory controllers ---------------------------------------------- ---------------------------------------------------------------------- mg2 : if CFG_MCTRL_LEON2 = 1 generate -- LEON2 memory controller sr1 : mctrl generic map (hindex => 5, pindex => 0, paddr => 0, ram8 => CFG_MCTRL_RAM8BIT, ram16 => CFG_MCTRL_RAM16BIT, iomask => 0, rammask => 0) port map (rstn, clkm, memi, memo, ahbsi, ahbso(5), apbi, apbo(0), wpo, open); end generate; memi.brdyn <= '1'; memi.bexcn <= '1'; memi.writen <= '1'; memi.wrn <= "1111"; memi.bwidth <= "01"; mg0 : if (CFG_MCTRL_LEON2 = 0) generate apbo(0) <= apb_none; ahbso(5) <= ahbs_none; roms_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (romsn, vcc); memo.bdrive(0) <= '1'; end generate; mgpads : if (CFG_MCTRL_LEON2 /= 0) generate addr_pad : outpadv generic map (level => cmos, voltage => x25v, tech => padtech, width => 24) port map (address, memo.address(24 downto 1)); roms_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (romsn, memo.romsn(0)); oen_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (oen, memo.oen); wri_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (writen, memo.writen); end generate; bdr : iopadvv generic map (level => cmos, voltage => x25v, tech => padtech, width => 16) port map (data(15 downto 0), memo.data(31 downto 16), memo.vbdrive(31 downto 16), memi.data(31 downto 16)); ---------------------------------------------------------------------- --- DDR3 memory controller ------------------------------------------ ---------------------------------------------------------------------- -- mig_gen : if (CFG_MIG_DDR2 = 1) generate ahb2mig0 : ahb2mig_ml605 generic map ( hindex => 0, haddr => 16#400#, hmask => 16#E00#, MHz => 400, Mbyte => 512, nosync => boolean'pos(CFG_MIG_CLK4=12)) --CFG_CLKDIV/12) port map ( rst => rstn, clk_ahb => clkm, clk_ddr => clk_ddr, ahbsi => ahbsi, ahbso => ahbso(0), migi => migi, migo => migo); ddr3ctrl : entity work.mig_37 generic map (SIM_BYPASS_INIT_CAL => SIM_BYPASS_INIT_CAL,CLKOUT_DIVIDE4 => work.config.CFG_MIG_CLK4) port map( clk_ref_p => clk_ref_p, clk_ref_n => clk_ref_n, ddr3_dq => ddr3_dq, ddr3_addr => ddr3_addr, ddr3_ba => ddr3_ba, ddr3_ras_n => ddr3_ras_n, ddr3_cas_n => ddr3_cas_n, ddr3_we_n => ddr3_we_n, ddr3_reset_n => ddr3_reset_n, ddr3_cs_n => ddr3_cs_n, ddr3_odt => ddr3_odt, ddr3_cke => ddr3_cke, ddr3_dm => ddr3_dm, ddr3_dqs_p => ddr3_dqs_p, ddr3_dqs_n => ddr3_dqs_n, ddr3_ck_p => ddr3_ck_p, ddr3_ck_n => ddr3_ck_n, app_wdf_wren => migi.app_wdf_wren, app_wdf_data => migi.app_wdf_data, app_wdf_mask => migi.app_wdf_mask, app_wdf_end => migi.app_wdf_end, app_addr => migi.app_addr, app_cmd => migi.app_cmd, app_en => migi.app_en, app_rdy => migo.app_rdy, app_wdf_rdy => migo.app_wdf_rdy, app_rd_data => migo.app_rd_data, app_rd_data_valid => migo.app_rd_data_valid, tb_rst => open, tb_clk => clk_ddr, clk_ahb => clkm, clk100 => clk100, phy_init_done => phy_init_done, sys_rst_13 => reset, sys_rst_14 => rstraw ); led(3) <= phy_init_done; led(4) <= rstn; led(5) <= reset; led(6) <= '0'; lock <= phy_init_done; -- and cgo.clklock; -- end generate; -- noddr : if (CFG_DDR2SP+CFG_MIG_DDR2) = 0 generate lock <= cgo.clklock; end generate; ---------------------------------------------------------------------- --- System ACE I/F Controller --------------------------------------- ---------------------------------------------------------------------- grace: if CFG_GRACECTRL = 1 generate grace0 : gracectrl generic map (hindex => 7, hirq => 10, mode => 2, haddr => 16#002#, hmask => 16#fff#, split => CFG_SPLIT) port map (rstn, clkm, clkace, ahbsi, ahbso(7), acei, aceo); end generate; nograce: if CFG_GRACECTRL /= 1 generate aceo <= gracectrl_none; end generate; clk_33_pad : clkpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (clk_33, clkace); sysace_mpa_pads : outpadv generic map (level => cmos, voltage => x25v, width => 7, tech => padtech) port map (sysace_mpa, aceo.addr); sysace_mpce_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (sysace_mpce, aceo.cen); sysace_d_pads : iopadv generic map (level => cmos, voltage => x25v, tech => padtech, width => 8) port map (sysace_d(7 downto 0), aceo.do(7 downto 0), aceo.doen, acei.di(7 downto 0)); acei.di(15 downto 8) <= (others => '0'); sysace_mpoe_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (sysace_mpoe, aceo.oen); sysace_mpwe_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (sysace_mpwe, aceo.wen); sysace_mpirq_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (sysace_mpirq, acei.irq); -----------------PCI-EXPRESS-Master-Target------------------------------------------ pcie_mt : if CFG_PCIE_TYPE = 1 generate -- master/target without fifo EP: pcie_master_target_virtex generic map ( fabtech => fabtech, hmstndx => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_SVGA_ENABLE, hslvndx => 8, abits => 21, device_id => CFG_PCIEXPDID, -- PCIE device ID vendor_id => CFG_PCIEXPVID, -- PCIE vendor ID pcie_bar_mask => 16#FFE#, nsync => 2, -- 1 or 2 sync regs between clocks haddr => 16#a00#, hmask => 16#fff#, pindex => 5, paddr => 5, pmask => 16#fff#, Master => CFG_PCIE_SIM_MAS, lane_width => CFG_NO_OF_LANES ) port map( rst => rstn, clk => clkm, -- System Interface sys_clk_p => sys_clk_p, sys_clk_n => sys_clk_n, sys_reset_n => sys_reset_n, -- PCI Express Fabric Interface pci_exp_txp => pci_exp_txp, pci_exp_txn => pci_exp_txn, pci_exp_rxp => pci_exp_rxp, pci_exp_rxn => pci_exp_rxn, ahbso => ahbso(8), ahbsi => ahbsi, apbi => apbi, apbo => apbo(5), ahbmi => ahbmi, ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_SVGA_ENABLE) ); end generate; ------------------PCI-EXPRESS-Master-FIFO------------------------------------------ pcie_mf : if CFG_PCIE_TYPE = 3 generate -- master with fifo and DMA dma:pciedma generic map (fabtech => fabtech, memtech => memtech, dmstndx =>(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_SVGA_ENABLE), dapbndx => 8, dapbaddr => 8,dapbirq => 8, blength => 12, abits => 21, device_id => CFG_PCIEXPDID, vendor_id => CFG_PCIEXPVID, pcie_bar_mask => 16#FFE#, slvndx => 8, apbndx => 5, apbaddr => 5, haddr => 16#A00#,hmask=> 16#FFF#, nsync => 2,lane_width => CFG_NO_OF_LANES) port map( rst => rstn, clk => clkm, -- System Interface sys_clk_p => sys_clk_p, sys_clk_n => sys_clk_n, sys_reset_n => sys_reset_n, -- PCI Express Fabric Interface pci_exp_txp => pci_exp_txp, pci_exp_txn => pci_exp_txn, pci_exp_rxp => pci_exp_rxp, pci_exp_rxn => pci_exp_rxn, dapbo => apbo(8), dahbmo => ahbmo((CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+CFG_SVGA_ENABLE)), apbi => apbi, apbo => apbo(5), ahbmi => ahbmi, ahbsi => ahbsi, ahbso => ahbso(8) ); end generate; ---------------------------------------------------------------------- pcie_mf_no_dma: if CFG_PCIE_TYPE = 2 generate -- master with fifo EP:pcie_master_fifo_virtex generic map (fabtech => fabtech, memtech => memtech, hslvndx => 8, abits => 21, device_id => CFG_PCIEXPDID, vendor_id => CFG_PCIEXPVID, pcie_bar_mask => 16#FFE#, pindex => 5, paddr => 5, haddr => 16#A00#, hmask => 16#FFF#, nsync => 2, lane_width => CFG_NO_OF_LANES) port map( rst => rstn, clk => clkm, -- System Interface sys_clk_p => sys_clk_p, sys_clk_n => sys_clk_n, sys_reset_n => sys_reset_n, -- PCI Express Fabric Interface pci_exp_txp => pci_exp_txp, pci_exp_txn => pci_exp_txn, pci_exp_rxp => pci_exp_rxp, pci_exp_rxn => pci_exp_rxn, ahbso => ahbso(8), ahbsi => ahbsi, apbi => apbi, apbo => apbo(5) ); end generate; ---------------------------------------------------------------------- --- APB Bridge and various periherals ------------------------------- ---------------------------------------------------------------------- -- APB Bridge apb0 : apbctrl generic map (hindex => 1, haddr => CFG_APBADDR) port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo); -- Interrupt controller irqctrl : if CFG_IRQ3_ENABLE /= 0 generate irqctrl0 : irqmp generic map (pindex => 2, paddr => 2, ncpu => CFG_NCPU) port map (rstn, clkm, apbi, apbo(2), irqo, irqi); end generate; irq3 : if CFG_IRQ3_ENABLE = 0 generate x : for i in 0 to CFG_NCPU-1 generate irqi(i).irl <= "0000"; end generate; apbo(2) <= apb_none; end generate; -- Time Unit gpt : if CFG_GPT_ENABLE /= 0 generate timer0 : gptimer generic map (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ, sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM, nbits => CFG_GPT_TW) port map (rstn, clkm, apbi, apbo(3), gpti, open); gpti.dhalt <= dsuo.tstop; gpti.extclk <= '0'; end generate; notim : if CFG_GPT_ENABLE = 0 generate apbo(3) <= apb_none; end generate; -- GPIO Unit gpio0 : if CFG_GRGPIO_ENABLE /= 0 generate grgpio0: grgpio generic map(pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 12) port map(rstn, clkm, apbi, apbo(11), gpioi, gpioo); end generate; ua1 : if CFG_UART1_ENABLE /= 0 generate uart1 : apbuart -- UART 1 generic map (pindex => 1, paddr => 1, pirq => 2, console => dbguart, fifosize => CFG_UART1_FIFO) port map (rstn, clkm, apbi, apbo(1), u1i, u1o); u1i.rxd <= rxd1; u1i.ctsn <= '0'; u1i.extclk <= '0'; txd1 <= u1o.txd; serrx_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dsurx, rxd1); sertx_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dsutx, txd1); led(0) <= not rxd1; led(1) <= not txd1; end generate; noua0 : if CFG_UART1_ENABLE = 0 generate apbo(1) <= apb_none; end generate; i2cm: if CFG_I2C_ENABLE = 1 generate -- I2C master i2c0 : i2cmst generic map (pindex => 12, paddr => 12, pmask => 16#FFF#, pirq => 11, filter => I2C_FILTER) port map (rstn, clkm, apbi, apbo(12), i2ci, i2co); i2c_scl_pad : iopad generic map (level => cmos, voltage => x25v, tech => padtech) port map (iic_scl_main, i2co.scl, i2co.scloen, i2ci.scl); i2c_sda_pad : iopad generic map (level => cmos, voltage => x25v, tech => padtech) port map (iic_sda_main, i2co.sda, i2co.sdaoen, i2ci.sda); end generate i2cm; ----------------------------------------------------------------------- --- VGA + IIC -------------------------------------------------------- ----------------------------------------------------------------------- vga : if CFG_VGA_ENABLE /= 0 generate vga0 : apbvga generic map(memtech => memtech, pindex => 6, paddr => 6) port map(rstn, clkm, clkvga, apbi, apbo(6), vgao); clk_sel <= "00"; end generate; svga : if CFG_SVGA_ENABLE /= 0 generate svga0 : svgactrl generic map(memtech => memtech, pindex => 6, paddr => 6, hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG, clk0 => 40000, clk1 => 24000, clk2 => 20000, clk3 => 16000, burstlen => 4, ahbaccsz => CFG_AHBDW) port map(rstn, clkm, clkvga, apbi, apbo(6), vgao, ahbmi, ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG), clk_sel); end generate; vgadvi : if (CFG_VGA_ENABLE + CFG_SVGA_ENABLE) /= 0 generate dvi0 : entity work.svga2ch7301c generic map (tech => fabtech, idf => 2) port map (clk100, ethi.gtx_clk, lock, clk_sel, vgao, clkvga, clkvga_p, clkvga_n, lcd_datal, lcd_hsyncl, lcd_vsyncl, lcd_del); i2cdvi : i2cmst generic map (pindex => 9, paddr => 9, pmask => 16#FFF#, pirq => 7, filter => I2C_FILTER) port map (rstn, clkm, apbi, apbo(9), dvi_i2ci, dvi_i2co); end generate; novga : if (CFG_VGA_ENABLE + CFG_SVGA_ENABLE) = 0 generate apbo(6) <= apb_none; lcd_datal <= (others => '0'); clkvga_p <= '0'; clkvga_n <= '0'; lcd_hsyncl <= '0'; lcd_vsyncl <= '0'; lcd_del <= '0'; dvi_i2co.scloen <= '1'; dvi_i2co.sdaoen <= '1'; end generate; tft_lcd_data_pad : outpadv generic map (level => cmos, voltage => x25v, width => 12, tech => padtech) port map (tft_lcd_data, lcd_datal); tft_lcd_clkp_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_clk_p, clkvga_p); tft_lcd_clkn_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_clk_n, clkvga_n); tft_lcd_hsync_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_hsync, lcd_hsyncl); tft_lcd_vsync_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_vsync, lcd_vsyncl); tft_lcd_de_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_de, lcd_del); tft_lcd_reset_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (tft_lcd_reset_b, rstn); dvi_i2c_scl_pad : iopad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dvi_iic_scl, dvi_i2co.scl, dvi_i2co.scloen, dvi_i2ci.scl); dvi_i2c_sda_pad : iopad generic map (level => cmos, voltage => x25v, tech => padtech) port map (dvi_iic_sda, dvi_i2co.sda, dvi_i2co.sdaoen, dvi_i2ci.sda); ----------------------------------------------------------------------- --- ETHERNET --------------------------------------------------------- ----------------------------------------------------------------------- eth0 : if CFG_GRETH = 1 generate -- Gaisler ethernet MAC e1 : grethm generic map(hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_SVGA_ENABLE, pindex => 15, paddr => 15, pirq => 12, memtech => memtech, mdcscaler => CPU_FREQ/1000, enable_mdio => 1, fifosize => CFG_ETH_FIFO, nsync => 1, edcl => CFG_DSU_ETH, edclbufsz => CFG_ETH_BUF, macaddrh => CFG_ETH_ENM, macaddrl => CFG_ETH_ENL, phyrstadr => 7, ipaddrh => CFG_ETH_IPM, ipaddrl => CFG_ETH_IPL, giga => CFG_GRETH1G, enable_mdint => 1) port map(rst => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_SVGA_ENABLE), apbi => apbi, apbo => apbo(15), ethi => ethi, etho => etho); end generate; -- greth1g: if CFG_GRETH1G = 1 generate gtxclk0 : entity work.gtxclk port map ( clk_p => gmiiclk_p, clk_n => gmiiclk_n, clkint => ethi.gtx_clk, clkout => egtx_clk); -- end generate; ethpads : if (CFG_GRETH = 1) generate -- eth pads emdio_pad : iopad generic map (level => cmos, voltage => x25v, tech => padtech) port map (emdio, etho.mdio_o, etho.mdio_oe, ethi.mdio_i); etxc_pad : clkpad generic map (level => cmos, voltage => x25v, tech => padtech, arch => 2) port map (etx_clk, ethi.tx_clk); erxc_pad : clkpad generic map (level => cmos, voltage => x25v, tech => padtech, arch => 2) port map (erx_clk, ethi.rx_clk); erxd_pad : inpadv generic map (level => cmos, voltage => x25v, tech => padtech, width => 8) port map (erxd, ethi.rxd(7 downto 0)); erxdv_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (erx_dv, ethi.rx_dv); erxer_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (erx_er, ethi.rx_er); erxco_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (erx_col, ethi.rx_col); erxcr_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (erx_crs, ethi.rx_crs); emdint_pad : inpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (emdint, ethi.mdint); etxd_pad : outpadv generic map (level => cmos, voltage => x25v, tech => padtech, width => 8) port map (etxd, etho.txd(7 downto 0)); etxen_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (etx_en, etho.tx_en); etxer_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (etx_er, etho.tx_er); emdc_pad : outpad generic map (level => cmos, voltage => x25v, tech => padtech) port map (emdc, etho.mdc); end generate; ----------------------------------------------------------------------- --- AHB ROM ---------------------------------------------------------- ----------------------------------------------------------------------- bpromgen : if CFG_AHBROMEN /= 0 generate brom : entity work.ahbrom generic map (hindex => 6, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP) port map ( rstn, clkm, ahbsi, ahbso(6)); end generate; nobpromgen : if CFG_AHBROMEN = 0 generate ahbso(6) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- AHB RAM ---------------------------------------------------------- ----------------------------------------------------------------------- ahbramgen : if CFG_AHBRAMEN = 1 generate ahbram0 : ahbram generic map (hindex => 3, haddr => CFG_AHBRADDR, tech => CFG_MEMTECH, kbytes => CFG_AHBRSZ, pipe => CFG_AHBRPIPE) port map (rstn, clkm, ahbsi, ahbso(3)); end generate; nram : if CFG_AHBRAMEN = 0 generate ahbso(3) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- Test report module ---------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off test0 : ahbrep generic map (hindex => 4, haddr => 16#200#) port map (rstn, clkm, ahbsi, ahbso(4)); -- pragma translate_on ----------------------------------------------------------------------- --- Drive unused bus elements --------------------------------------- ----------------------------------------------------------------------- nam1 : for i in (CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+1+CFG_PCIEXP) to NAHBMST-1 generate ahbmo(i) <= ahbm_none; end generate; ----------------------------------------------------------------------- --- Boot message ---------------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off x : report_design generic map ( msg1 => "LEON3 Demonstration design for Xilinx Virtex6 ML605 board", fabtech => tech_table(fabtech), memtech => tech_table(memtech), mdel => 1 ); -- pragma translate_on end rtl;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/eth/comp/ethcomp.vhd
1
20848
------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; package ethcomp is component grethc is generic( ifg_gap : integer := 24; attempt_limit : integer := 16; backoff_limit : integer := 10; mdcscaler : integer range 0 to 255 := 25; enable_mdio : integer range 0 to 1 := 0; fifosize : integer range 4 to 512 := 8; nsync : integer range 1 to 2 := 2; edcl : integer range 0 to 3 := 0; edclbufsz : integer range 1 to 64 := 1; macaddrh : integer := 16#00005E#; macaddrl : integer := 16#000000#; ipaddrh : integer := 16#c0a8#; ipaddrl : integer := 16#0035#; phyrstadr : integer range 0 to 32 := 0; rmii : integer range 0 to 1 := 0; oepol : integer range 0 to 1 := 0; scanen : integer range 0 to 1 := 0; mdint_pol : integer range 0 to 1 := 0; enable_mdint : integer range 0 to 1 := 0; multicast : integer range 0 to 1 := 0; edclsepahbg : integer range 0 to 1 := 0; ramdebug : integer range 0 to 2 := 0; mdiohold : integer := 1; maxsize : integer; gmiimode : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --edcl ahb mst in ehgrant : in std_ulogic; ehready : in std_ulogic; ehresp : in std_logic_vector(1 downto 0); ehrdata : in std_logic_vector(31 downto 0); --edcl ahb mst out ehbusreq : out std_ulogic; ehlock : out std_ulogic; ehtrans : out std_logic_vector(1 downto 0); ehaddr : out std_logic_vector(31 downto 0); ehwrite : out std_ulogic; ehsize : out std_logic_vector(2 downto 0); ehburst : out std_logic_vector(2 downto 0); ehprot : out std_logic_vector(3 downto 0); ehwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --irq irq : out std_logic; --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(10 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(10 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(10 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(10 downto 0); txrdata : in std_logic_vector(31 downto 0); --edcl buf erenable : out std_ulogic; eraddress : out std_logic_vector(15 downto 0); ewritem : out std_ulogic; ewritel : out std_ulogic; ewaddressm : out std_logic_vector(15 downto 0); ewaddressl : out std_logic_vector(15 downto 0); ewdata : out std_logic_vector(31 downto 0); erdata : in std_logic_vector(31 downto 0); --ethernet input signals rmii_clk : in std_ulogic; tx_clk : in std_ulogic; rx_clk : in std_ulogic; tx_dv : in std_ulogic; rxd : in std_logic_vector(3 downto 0); rx_dv : in std_ulogic; rx_er : in std_ulogic; rx_col : in std_ulogic; rx_en : in std_ulogic; rx_crs : in std_ulogic; mdio_i : in std_ulogic; phyrstaddr : in std_logic_vector(4 downto 0); mdint : in std_ulogic; --ethernet output signals reset : out std_ulogic; txd : out std_logic_vector(3 downto 0); tx_en : out std_ulogic; tx_er : out std_ulogic; mdc : out std_ulogic; mdio_o : out std_ulogic; mdio_oe : out std_ulogic; --scantest testrst : in std_ulogic; testen : in std_ulogic; testoen : in std_ulogic; edcladdr : in std_logic_vector(3 downto 0) := "0000"; edclsepahb : in std_ulogic; edcldisable : in std_ulogic; speed : out std_ulogic ); end component; component greth_gbitc is generic( ifg_gap : integer := 24; attempt_limit : integer := 16; backoff_limit : integer := 10; slot_time : integer := 128; mdcscaler : integer range 0 to 255 := 25; nsync : integer range 1 to 2 := 2; edcl : integer range 0 to 3 := 0; edclbufsz : integer range 1 to 64 := 1; burstlength : integer range 4 to 128 := 32; macaddrh : integer := 16#00005E#; macaddrl : integer := 16#000000#; ipaddrh : integer := 16#c0a8#; ipaddrl : integer := 16#0035#; phyrstadr : integer range 0 to 32 := 0; sim : integer range 0 to 1 := 0; oepol : integer range 0 to 1 := 0; scanen : integer range 0 to 1 := 0; mdint_pol : integer range 0 to 1 := 0; enable_mdint : integer range 0 to 1 := 0; multicast : integer range 0 to 1 := 0; edclsepahbg : integer range 0 to 1 := 0; ramdebug : integer range 0 to 2 := 0; mdiohold : integer := 1; gmiimode : integer range 0 to 1 := 0; mdiochain : integer range 0 to 1 := 0; iotest : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --edcl ahb mst in ehgrant : in std_ulogic; ehready : in std_ulogic; ehresp : in std_logic_vector(1 downto 0); ehrdata : in std_logic_vector(31 downto 0); --edcl ahb mst out ehbusreq : out std_ulogic; ehlock : out std_ulogic; ehtrans : out std_logic_vector(1 downto 0); ehaddr : out std_logic_vector(31 downto 0); ehwrite : out std_ulogic; ehsize : out std_logic_vector(2 downto 0); ehburst : out std_logic_vector(2 downto 0); ehprot : out std_logic_vector(3 downto 0); ehwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --irq irq : out std_logic; --rx ahb fifo rxrenable : out std_ulogic; rxraddress : out std_logic_vector(8 downto 0); rxwrite : out std_ulogic; rxwdata : out std_logic_vector(31 downto 0); rxwaddress : out std_logic_vector(8 downto 0); rxrdata : in std_logic_vector(31 downto 0); --tx ahb fifo txrenable : out std_ulogic; txraddress : out std_logic_vector(8 downto 0); txwrite : out std_ulogic; txwdata : out std_logic_vector(31 downto 0); txwaddress : out std_logic_vector(8 downto 0); txrdata : in std_logic_vector(31 downto 0); --edcl buf erenable : out std_ulogic; eraddress : out std_logic_vector(15 downto 0); ewritem : out std_ulogic; ewritel : out std_ulogic; ewaddressm : out std_logic_vector(15 downto 0); ewaddressl : out std_logic_vector(15 downto 0); ewdata : out std_logic_vector(31 downto 0); erdata : in std_logic_vector(31 downto 0); --ethernet input signals gtx_clk : in std_ulogic; tx_clk : in std_ulogic; tx_dv : in std_ulogic; rx_clk : in std_ulogic; rxd : in std_logic_vector(7 downto 0); rx_dv : in std_ulogic; rx_er : in std_ulogic; rx_col : in std_ulogic; rx_crs : in std_ulogic; rx_en : in std_ulogic; mdio_i : in std_ulogic; phyrstaddr : in std_logic_vector(4 downto 0); mdint : in std_ulogic; --ethernet output signals reset : out std_ulogic; txd : out std_logic_vector(7 downto 0); tx_en : out std_ulogic; tx_er : out std_ulogic; mdc : out std_ulogic; mdio_o : out std_ulogic; mdio_oe : out std_ulogic; --scantest testrst : in std_ulogic; testen : in std_ulogic; testoen : in std_ulogic; edcladdr : in std_logic_vector(3 downto 0) := "0000"; edclsepahb : in std_ulogic; edcldisable : in std_ulogic; gbit : out std_ulogic; speed : out std_ulogic; -- mdio sharing mdiochain_first : in std_ulogic := '0'; -- First in chain (ignore ticki/sampi) mdiochain_ticki : in std_ulogic := '0'; -- From above in chain mdiochain_datai : in std_ulogic := '0'; mdiochain_locko : out std_ulogic; -- To above in chain mdiochain_ticko : out std_ulogic; -- To below in chain mdiochain_i : out std_ulogic; -- To below in chain mdiochain_locki : in std_ulogic := '0'; -- From below in chain mdiochain_o : in std_ulogic := '0'; mdiochain_oe : in std_ulogic := '0' ); end component; component greth_gen is generic( memtech : integer := 0; ifg_gap : integer := 24; attempt_limit : integer := 16; backoff_limit : integer := 10; mdcscaler : integer range 0 to 255 := 25; enable_mdio : integer range 0 to 1 := 0; fifosize : integer range 4 to 64 := 8; nsync : integer range 1 to 2 := 2; edcl : integer range 0 to 3 := 0; edclbufsz : integer range 1 to 64 := 1; macaddrh : integer := 16#00005E#; macaddrl : integer := 16#000000#; ipaddrh : integer := 16#c0a8#; ipaddrl : integer := 16#0035#; phyrstadr : integer range 0 to 31 := 0; rmii : integer range 0 to 1 := 0; oepol : integer range 0 to 1 := 0; scanen : integer range 0 to 1 := 0; mdint_pol : integer range 0 to 1 := 0; enable_mdint : integer range 0 to 1 := 0; multicast : integer range 0 to 1 := 0; gmiimode : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --irq irq : out std_logic; --ethernet input signals rmii_clk : in std_ulogic; tx_clk : in std_ulogic; tx_dv : in std_ulogic; rx_clk : in std_ulogic; rxd : in std_logic_vector(3 downto 0); rx_dv : in std_ulogic; rx_er : in std_ulogic; rx_col : in std_ulogic; rx_crs : in std_ulogic; rx_en : in std_ulogic; mdio_i : in std_ulogic; phyrstaddr : in std_logic_vector(4 downto 0); mdint : in std_ulogic; --ethernet output signals reset : out std_ulogic; txd : out std_logic_vector(3 downto 0); tx_en : out std_ulogic; tx_er : out std_ulogic; mdc : out std_ulogic; mdio_o : out std_ulogic; mdio_oe : out std_ulogic; --scantest testrst : in std_ulogic; testen : in std_ulogic; testoen : in std_ulogic; edcladdr : in std_logic_vector(3 downto 0); edclsepahb : in std_ulogic; edcldisable : in std_ulogic; speed : out std_ulogic ); end component; component greth_gbit_gen is generic( memtech : integer := 0; ifg_gap : integer := 24; attempt_limit : integer := 16; backoff_limit : integer := 10; slot_time : integer := 128; mdcscaler : integer range 0 to 255 := 25; nsync : integer range 1 to 2 := 2; edcl : integer range 0 to 3 := 1; edclbufsz : integer range 1 to 64 := 1; burstlength : integer range 4 to 128 := 32; macaddrh : integer := 16#00005E#; macaddrl : integer := 16#000000#; ipaddrh : integer := 16#c0a8#; ipaddrl : integer := 16#0035#; phyrstadr : integer range 0 to 32 := 0; sim : integer range 0 to 1 := 0; oepol : integer range 0 to 1 := 0; scanen : integer range 0 to 1 := 0; ft : integer range 0 to 2 := 0; edclft : integer range 0 to 2 := 0; mdint_pol : integer range 0 to 1 := 0; enable_mdint : integer range 0 to 1 := 0; multicast : integer range 0 to 1 := 0; edclsepahbg : integer range 0 to 1 := 0; ramdebug : integer range 0 to 2 := 0; gmiimode : integer range 0 to 1 := 0 ); port( rst : in std_ulogic; clk : in std_ulogic; --ahb mst in hgrant : in std_ulogic; hready : in std_ulogic; hresp : in std_logic_vector(1 downto 0); hrdata : in std_logic_vector(31 downto 0); --ahb mst out hbusreq : out std_ulogic; hlock : out std_ulogic; htrans : out std_logic_vector(1 downto 0); haddr : out std_logic_vector(31 downto 0); hwrite : out std_ulogic; hsize : out std_logic_vector(2 downto 0); hburst : out std_logic_vector(2 downto 0); hprot : out std_logic_vector(3 downto 0); hwdata : out std_logic_vector(31 downto 0); --edcl ahb mst in ehgrant : in std_ulogic; ehready : in std_ulogic; ehresp : in std_logic_vector(1 downto 0); ehrdata : in std_logic_vector(31 downto 0); --edcl ahb mst out ehbusreq : out std_ulogic; ehlock : out std_ulogic; ehtrans : out std_logic_vector(1 downto 0); ehaddr : out std_logic_vector(31 downto 0); ehwrite : out std_ulogic; ehsize : out std_logic_vector(2 downto 0); ehburst : out std_logic_vector(2 downto 0); ehprot : out std_logic_vector(3 downto 0); ehwdata : out std_logic_vector(31 downto 0); --apb slv in psel : in std_ulogic; penable : in std_ulogic; paddr : in std_logic_vector(31 downto 0); pwrite : in std_ulogic; pwdata : in std_logic_vector(31 downto 0); --apb slv out prdata : out std_logic_vector(31 downto 0); --irq irq : out std_logic; --ethernet input signals gtx_clk : in std_ulogic; tx_clk : in std_ulogic; rx_clk : in std_ulogic; rxd : in std_logic_vector(7 downto 0); rx_dv : in std_ulogic; rx_er : in std_ulogic; rx_col : in std_ulogic; rx_crs : in std_ulogic; mdio_i : in std_ulogic; phyrstaddr : in std_logic_vector(4 downto 0); mdint : in std_ulogic; --ethernet output signals reset : out std_ulogic; txd : out std_logic_vector(7 downto 0); tx_en : out std_ulogic; tx_er : out std_ulogic; mdc : out std_ulogic; mdio_o : out std_ulogic; mdio_oe : out std_ulogic; --scantest testrst : in std_ulogic; testen : in std_ulogic; testoen : in std_ulogic; edcladdr : in std_logic_vector(3 downto 0); edclsepahb : in std_ulogic; edcldisable : in std_ulogic; speed : out std_ulogic; gbit : out std_ulogic ); end component; end package;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/lib/techmap/stratixiii/alt/apll.vhd
4
9287
LIBRARY ieee; USE ieee.std_logic_1164.all; LIBRARY altera_mf; USE altera_mf.all; ENTITY apll IS generic ( freq : integer := 200; mult : integer := 8; div : integer := 5; rskew : integer := 0 ); PORT ( areset : IN STD_LOGIC := '0'; inclk0 : IN STD_LOGIC := '0'; phasestep : IN STD_LOGIC := '0'; phaseupdown : IN STD_LOGIC := '0'; scanclk : IN STD_LOGIC := '1'; c0 : OUT STD_LOGIC ; c1 : OUT STD_LOGIC ; c2 : OUT STD_LOGIC ; c3 : OUT STD_LOGIC ; c4 : OUT STD_LOGIC ; locked : OUT STD_LOGIC; phasedone : OUT STD_LOGIC ); END apll; ARCHITECTURE SYN OF apll IS SIGNAL sub_wire0 : STD_LOGIC_VECTOR (9 DOWNTO 0); SIGNAL sub_wire1 : STD_LOGIC ; SIGNAL sub_wire2 : STD_LOGIC ; SIGNAL sub_wire3 : STD_LOGIC ; SIGNAL sub_wire4 : STD_LOGIC ; SIGNAL sub_wire5 : STD_LOGIC ; SIGNAL sub_wire6 : STD_LOGIC ; SIGNAL sub_wire7 : STD_LOGIC ; SIGNAL sub_wire8 : STD_LOGIC_VECTOR (1 DOWNTO 0); SIGNAL sub_wire9_bv : BIT_VECTOR (0 DOWNTO 0); SIGNAL sub_wire9 : STD_LOGIC_VECTOR (0 DOWNTO 0); SIGNAL scanclk_clk5 : STD_LOGIC ; signal phasecounter_reg : std_logic_vector(3 downto 0); attribute syn_keep : boolean; attribute syn_keep of phasecounter_reg : signal is true; attribute syn_preserve : boolean; attribute syn_preserve of phasecounter_reg : signal is true; constant period : integer := 1000000/freq; function set_phase(freq : in integer) return string is variable s : string(1 to 4) := "0000"; variable f,r : integer; begin f := freq; while f /= 0 loop r := f mod 10; case r is when 0 => s := "0" & s(1 to 3); when 1 => s := "1" & s(1 to 3); when 2 => s := "2" & s(1 to 3); when 3 => s := "3" & s(1 to 3); when 4 => s := "4" & s(1 to 3); when 5 => s := "5" & s(1 to 3); when 6 => s := "6" & s(1 to 3); when 7 => s := "7" & s(1 to 3); when 8 => s := "8" & s(1 to 3); when 9 => s := "9" & s(1 to 3); when others => end case; f := f / 10; end loop; return s; end function; type phasevec is array (1 to 3) of string(1 to 4); type phasevecarr is array (10 to 21) of phasevec; constant phasearr : phasevecarr := ( ("2500", "5000", "7500"), ("2273", "4545", "6818"), -- 100 & 110 MHz ("2083", "4167", "6250"), ("1923", "3846", "5769"), -- 120 & 130 MHz ("1786", "3571", "5357"), ("1667", "3333", "5000"), -- 140 & 150 MHz ("1563", "3125", "4688"), ("1471", "2941", "4412"), -- 160 & 170 MHz ("1389", "2778", "4167"), ("1316", "2632", "3947"), -- 180 & 190 MHz ("1250", "2500", "3750"), ("1190", "2381", "3571")); -- 200 & 210 MHz --constant pshift_90 : string := phasearr((freq*mult)/(10*div))(1); constant pshift_90 : string := set_phase(100000/((4*freq*mult)/(10*div))); --constant pshift_180 : string := phasearr((freq*mult)/(10*div))(2); constant pshift_180 : string := set_phase(100000/((2*freq*mult)/(10*div))); --constant pshift_270 : string := phasearr((freq*mult)/(10*div))(3); constant pshift_270 : string := set_phase(300000/((4*freq*mult)/(10*div))); constant pshift_rclk : string := set_phase(rskew); COMPONENT altpll GENERIC ( bandwidth_type : STRING; clk0_divide_by : NATURAL; clk0_duty_cycle : NATURAL; clk0_multiply_by : NATURAL; clk0_phase_shift : STRING; clk1_divide_by : NATURAL; clk1_duty_cycle : NATURAL; clk1_multiply_by : NATURAL; clk1_phase_shift : STRING; clk2_divide_by : NATURAL; clk2_duty_cycle : NATURAL; clk2_multiply_by : NATURAL; clk2_phase_shift : STRING; clk3_divide_by : NATURAL; clk3_duty_cycle : NATURAL; clk3_multiply_by : NATURAL; clk3_phase_shift : STRING; clk4_divide_by : NATURAL; clk4_duty_cycle : NATURAL; clk4_multiply_by : NATURAL; clk4_phase_shift : STRING; clk5_divide_by : NATURAL; clk5_duty_cycle : NATURAL; clk5_multiply_by : NATURAL; clk5_phase_shift : STRING; compensate_clock : STRING; inclk0_input_frequency : NATURAL; intended_device_family : STRING; lpm_hint : STRING; lpm_type : STRING; operation_mode : STRING; pll_type : STRING; port_activeclock : STRING; port_areset : STRING; port_clkbad0 : STRING; port_clkbad1 : STRING; port_clkloss : STRING; port_clkswitch : STRING; port_configupdate : STRING; port_fbin : STRING; port_fbout : STRING; port_inclk0 : STRING; port_inclk1 : STRING; port_locked : STRING; port_pfdena : STRING; port_phasecounterselect : STRING; port_phasedone : STRING; port_phasestep : STRING; port_phaseupdown : STRING; port_pllena : STRING; port_scanaclr : STRING; port_scanclk : STRING; port_scanclkena : STRING; port_scandata : STRING; port_scandataout : STRING; port_scandone : STRING; port_scanread : STRING; port_scanwrite : STRING; port_clk0 : STRING; port_clk1 : STRING; port_clk2 : STRING; port_clk3 : STRING; port_clk4 : STRING; port_clk5 : STRING; port_clk6 : STRING; port_clk7 : STRING; port_clk8 : STRING; port_clk9 : STRING; port_clkena0 : STRING; port_clkena1 : STRING; port_clkena2 : STRING; port_clkena3 : STRING; port_clkena4 : STRING; port_clkena5 : STRING; self_reset_on_loss_lock : STRING; using_fbmimicbidir_port : STRING; width_clock : NATURAL ); PORT ( phasestep : IN STD_LOGIC ; phaseupdown : IN STD_LOGIC ; inclk : IN STD_LOGIC_VECTOR (1 DOWNTO 0); phasecounterselect : IN STD_LOGIC_VECTOR (3 DOWNTO 0); locked : OUT STD_LOGIC ; phasedone : OUT STD_LOGIC ; areset : IN STD_LOGIC ; clk : OUT STD_LOGIC_VECTOR (9 DOWNTO 0); scanclk : IN STD_LOGIC ); END COMPONENT; BEGIN sub_wire9_bv(0 DOWNTO 0) <= "0"; sub_wire9 <= To_stdlogicvector(sub_wire9_bv); scanclk_clk5 <= sub_wire0(5); sub_wire5 <= sub_wire0(4); sub_wire4 <= sub_wire0(3); sub_wire3 <= sub_wire0(2); sub_wire2 <= sub_wire0(1); sub_wire1 <= sub_wire0(0); c0 <= sub_wire1; c1 <= sub_wire2; c2 <= sub_wire3; c3 <= sub_wire4; c4 <= sub_wire5; locked <= sub_wire6; sub_wire7 <= inclk0; sub_wire8 <= sub_wire9(0 DOWNTO 0) & sub_wire7; -- quartus bug, cant be constant --process(scanclk) process(scanclk_clk5) begin --if rising_edge(scanclk) then if rising_edge(scanclk_clk5) then -- use ddr clock/2 to not violate 100MHz max freq phasecounter_reg <= "0110"; --phasecounter; end if; end process; altpll_component : altpll GENERIC MAP ( bandwidth_type => "AUTO", clk0_divide_by => div,--5, clk0_duty_cycle => 50, clk0_multiply_by => mult,--8, clk0_phase_shift => "0", clk1_divide_by => div,--5, clk1_duty_cycle => 50, clk1_multiply_by => mult,--8, clk1_phase_shift => pshift_90,--"1250", clk2_divide_by => div,--5, clk2_duty_cycle => 50, clk2_multiply_by => mult,--8, clk2_phase_shift => pshift_180,--"2500", clk3_divide_by => div,--5, clk3_duty_cycle => 50, clk3_multiply_by => mult,--8, clk3_phase_shift => pshift_270,--"3750", clk4_divide_by => div, clk4_duty_cycle => 50, clk4_multiply_by => mult, clk4_phase_shift => pshift_rclk,--"0", clk5_divide_by => div*2, clk5_duty_cycle => 50, clk5_multiply_by => mult, clk5_phase_shift => "0", compensate_clock => "CLK0", inclk0_input_frequency => period,--8000, intended_device_family => "Stratix III", lpm_hint => "CBX_MODULE_PREFIX=apll", lpm_type => "altpll", operation_mode => "NORMAL", pll_type => "AUTO", port_activeclock => "PORT_UNUSED", port_areset => "PORT_USED", port_clkbad0 => "PORT_UNUSED", port_clkbad1 => "PORT_UNUSED", port_clkloss => "PORT_UNUSED", port_clkswitch => "PORT_UNUSED", port_configupdate => "PORT_UNUSED", port_fbin => "PORT_UNUSED", port_fbout => "PORT_UNUSED", port_inclk0 => "PORT_USED", port_inclk1 => "PORT_UNUSED", port_locked => "PORT_USED", port_pfdena => "PORT_UNUSED", port_phasecounterselect => "PORT_USED", port_phasedone => "PORT_USED", port_phasestep => "PORT_USED", port_phaseupdown => "PORT_USED", port_pllena => "PORT_UNUSED", port_scanaclr => "PORT_UNUSED", port_scanclk => "PORT_USED", port_scanclkena => "PORT_UNUSED", port_scandata => "PORT_UNUSED", port_scandataout => "PORT_UNUSED", port_scandone => "PORT_UNUSED", port_scanread => "PORT_UNUSED", port_scanwrite => "PORT_UNUSED", port_clk0 => "PORT_USED", port_clk1 => "PORT_USED", port_clk2 => "PORT_USED", port_clk3 => "PORT_USED", port_clk4 => "PORT_USED", port_clk5 => "PORT_USED", port_clk6 => "PORT_UNUSED", port_clk7 => "PORT_UNUSED", port_clk8 => "PORT_UNUSED", port_clk9 => "PORT_UNUSED", port_clkena0 => "PORT_UNUSED", port_clkena1 => "PORT_UNUSED", port_clkena2 => "PORT_UNUSED", port_clkena3 => "PORT_UNUSED", port_clkena4 => "PORT_UNUSED", port_clkena5 => "PORT_UNUSED", self_reset_on_loss_lock => "ON", using_fbmimicbidir_port => "OFF", width_clock => 10 ) PORT MAP ( phasestep => phasestep, phaseupdown => phaseupdown, inclk => sub_wire8, phasecounterselect => phasecounter_reg, areset => areset, --scanclk => scanclk, scanclk => scanclk_clk5, clk => sub_wire0, locked => sub_wire6, phasedone => phasedone ); END SYN;
gpl-2.0
gareth8118/lepton-eda
gnetlist/examples/vams/vhdl/basic-vhdl/spice_cs_arc.vhdl
15
244
ARCHITECTURE current_controlled OF spice_cs IS QUANTITY v ACROSS i THROUGH urt TO lrt; QUANTITY vc ACROSS ic THROUGH ult TO llt; BEGIN vc == 0.0; i == N * ic; -- i == ISS * (exp(v/(N * VT)) - 1.0); END ARCHITECTURE current_controlled;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-xilinx-zc702/ahbrom.vhd
3
8224
---------------------------------------------------------------------------- -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2010 Aeroflex Gaisler ---------------------------------------------------------------------------- -- Entity: ahbrom -- File: ahbrom.vhd -- Author: Jiri Gaisler - Gaisler Research -- Description: AHB rom. 0/1-waitstate read ---------------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; entity ahbrom is generic ( hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#; pipe : integer := 0; tech : integer := 0; kbytes : integer := 1); port ( rst : in std_ulogic; clk : in std_ulogic; ahbsi : in ahb_slv_in_type; ahbso : out ahb_slv_out_type ); end; architecture rtl of ahbrom is constant abits : integer := 9; constant bytes : integer := 496; constant hconfig : ahb_config_type := ( 0 => ahb_device_reg ( VENDOR_GAISLER, GAISLER_AHBROM, 0, 0, 0), 4 => ahb_membar(haddr, '1', '1', hmask), others => zero32); signal romdata : std_logic_vector(31 downto 0); signal addr : std_logic_vector(abits-1 downto 2); signal hsel, hready : std_ulogic; begin ahbso.hresp <= "00"; ahbso.hsplit <= (others => '0'); ahbso.hirq <= (others => '0'); ahbso.hconfig <= hconfig; ahbso.hindex <= hindex; reg : process (clk) begin if rising_edge(clk) then addr <= ahbsi.haddr(abits-1 downto 2); end if; end process; p0 : if pipe = 0 generate ahbso.hrdata <= ahbdrivedata(romdata); ahbso.hready <= '1'; end generate; p1 : if pipe = 1 generate reg2 : process (clk) begin if rising_edge(clk) then hsel <= ahbsi.hsel(hindex) and ahbsi.htrans(1); hready <= ahbsi.hready; ahbso.hready <= (not rst) or (hsel and hready) or (ahbsi.hsel(hindex) and not ahbsi.htrans(1) and ahbsi.hready); ahbso.hrdata <= ahbdrivedata(romdata); end if; end process; end generate; comb : process (addr) begin case conv_integer(addr) is when 16#00000# => romdata <= X"81D82000"; when 16#00001# => romdata <= X"03000004"; when 16#00002# => romdata <= X"821060E0"; when 16#00003# => romdata <= X"81884000"; when 16#00004# => romdata <= X"81900000"; when 16#00005# => romdata <= X"81980000"; when 16#00006# => romdata <= X"81800000"; when 16#00007# => romdata <= X"A1800000"; when 16#00008# => romdata <= X"01000000"; when 16#00009# => romdata <= X"03002040"; when 16#0000A# => romdata <= X"8210600F"; when 16#0000B# => romdata <= X"C2A00040"; when 16#0000C# => romdata <= X"84100000"; when 16#0000D# => romdata <= X"01000000"; when 16#0000E# => romdata <= X"01000000"; when 16#0000F# => romdata <= X"01000000"; when 16#00010# => romdata <= X"01000000"; when 16#00011# => romdata <= X"01000000"; when 16#00012# => romdata <= X"80108002"; when 16#00013# => romdata <= X"01000000"; when 16#00014# => romdata <= X"01000000"; when 16#00015# => romdata <= X"01000000"; when 16#00016# => romdata <= X"01000000"; when 16#00017# => romdata <= X"01000000"; when 16#00018# => romdata <= X"87444000"; when 16#00019# => romdata <= X"8608E01F"; when 16#0001A# => romdata <= X"88100000"; when 16#0001B# => romdata <= X"8A100000"; when 16#0001C# => romdata <= X"8C100000"; when 16#0001D# => romdata <= X"8E100000"; when 16#0001E# => romdata <= X"A0100000"; when 16#0001F# => romdata <= X"A2100000"; when 16#00020# => romdata <= X"A4100000"; when 16#00021# => romdata <= X"A6100000"; when 16#00022# => romdata <= X"A8100000"; when 16#00023# => romdata <= X"AA100000"; when 16#00024# => romdata <= X"AC100000"; when 16#00025# => romdata <= X"AE100000"; when 16#00026# => romdata <= X"90100000"; when 16#00027# => romdata <= X"92100000"; when 16#00028# => romdata <= X"94100000"; when 16#00029# => romdata <= X"96100000"; when 16#0002A# => romdata <= X"98100000"; when 16#0002B# => romdata <= X"9A100000"; when 16#0002C# => romdata <= X"9C100000"; when 16#0002D# => romdata <= X"9E100000"; when 16#0002E# => romdata <= X"86A0E001"; when 16#0002F# => romdata <= X"16BFFFEF"; when 16#00030# => romdata <= X"81E00000"; when 16#00031# => romdata <= X"82102002"; when 16#00032# => romdata <= X"81904000"; when 16#00033# => romdata <= X"03000004"; when 16#00034# => romdata <= X"821060E0"; when 16#00035# => romdata <= X"81884000"; when 16#00036# => romdata <= X"01000000"; when 16#00037# => romdata <= X"01000000"; when 16#00038# => romdata <= X"01000000"; when 16#00039# => romdata <= X"83480000"; when 16#0003A# => romdata <= X"8330600C"; when 16#0003B# => romdata <= X"80886001"; when 16#0003C# => romdata <= X"02800018"; when 16#0003D# => romdata <= X"01000000"; when 16#0003E# => romdata <= X"07000000"; when 16#0003F# => romdata <= X"8610E148"; when 16#00040# => romdata <= X"C108C000"; when 16#00041# => romdata <= X"C118C000"; when 16#00042# => romdata <= X"C518C000"; when 16#00043# => romdata <= X"C918C000"; when 16#00044# => romdata <= X"CD18C000"; when 16#00045# => romdata <= X"D118C000"; when 16#00046# => romdata <= X"D518C000"; when 16#00047# => romdata <= X"D918C000"; when 16#00048# => romdata <= X"DD18C000"; when 16#00049# => romdata <= X"E118C000"; when 16#0004A# => romdata <= X"E518C000"; when 16#0004B# => romdata <= X"E918C000"; when 16#0004C# => romdata <= X"ED18C000"; when 16#0004D# => romdata <= X"F118C000"; when 16#0004E# => romdata <= X"F518C000"; when 16#0004F# => romdata <= X"F918C000"; when 16#00050# => romdata <= X"10800004"; when 16#00051# => romdata <= X"FD18C000"; when 16#00052# => romdata <= X"00000000"; when 16#00053# => romdata <= X"00000000"; when 16#00054# => romdata <= X"87444000"; when 16#00055# => romdata <= X"8730E01C"; when 16#00056# => romdata <= X"8688E00F"; when 16#00057# => romdata <= X"1280000B"; when 16#00058# => romdata <= X"03200000"; when 16#00059# => romdata <= X"82106300"; when 16#0005A# => romdata <= X"84102052"; when 16#0005B# => romdata <= X"C4206004"; when 16#0005C# => romdata <= X"C4206000"; when 16#0005D# => romdata <= X"C0206008"; when 16#0005E# => romdata <= X"84103FFF"; when 16#0005F# => romdata <= X"C4206014"; when 16#00060# => romdata <= X"84102007"; when 16#00061# => romdata <= X"C4206008"; when 16#00062# => romdata <= X"05000080"; when 16#00063# => romdata <= X"82100000"; when 16#00064# => romdata <= X"80A0E000"; when 16#00065# => romdata <= X"02800005"; when 16#00066# => romdata <= X"01000000"; when 16#00067# => romdata <= X"82004002"; when 16#00068# => romdata <= X"10BFFFFC"; when 16#00069# => romdata <= X"8620E001"; when 16#0006A# => romdata <= X"3D1003FF"; when 16#0006B# => romdata <= X"BC17A3E0"; when 16#0006C# => romdata <= X"BC278001"; when 16#0006D# => romdata <= X"9C27A060"; when 16#0006E# => romdata <= X"03100000"; when 16#0006F# => romdata <= X"81C04000"; when 16#00070# => romdata <= X"01000000"; when 16#00071# => romdata <= X"01000000"; when 16#00072# => romdata <= X"01000000"; when 16#00073# => romdata <= X"01000000"; when 16#00074# => romdata <= X"01000000"; when 16#00075# => romdata <= X"01000000"; when 16#00076# => romdata <= X"01000000"; when 16#00077# => romdata <= X"01000000"; when 16#00078# => romdata <= X"00000000"; when 16#00079# => romdata <= X"00000000"; when 16#0007A# => romdata <= X"00000000"; when 16#0007B# => romdata <= X"00000000"; when 16#0007C# => romdata <= X"00000000"; when others => romdata <= (others => '-'); end case; end process; -- pragma translate_off bootmsg : report_version generic map ("ahbrom" & tost(hindex) & ": 32-bit AHB ROM Module, " & tost(bytes/4) & " words, " & tost(abits-2) & " address bits" ); -- pragma translate_on end;
gpl-2.0
elkhadiy/xph-leons
grlib-gpl-1.4.1-b4156/designs/leon3-avnet-eval-xc4vlx25/leon3mp.vhd
1
21946
------------------------------------------------------------------------------ -- LEON3 Demonstration design -- Copyright (C) 2006 Jiri Gaisler, Gaisler Research ------------------------------------------------------------------------------ -- This file is a part of the GRLIB VHDL IP LIBRARY -- Copyright (C) 2003 - 2008, Gaisler Research -- Copyright (C) 2008 - 2014, Aeroflex Gaisler -- Copyright (C) 2015, Cobham Gaisler -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ------------------------------------------------------------------------------ library ieee; use ieee.std_logic_1164.all; library grlib; use grlib.amba.all; use grlib.stdlib.all; use grlib.devices.all; library techmap; use techmap.gencomp.all; use techmap.allclkgen.all; library gaisler; use gaisler.memctrl.all; use gaisler.ddrpkg.all; use gaisler.leon3.all; use gaisler.uart.all; use gaisler.misc.all; use gaisler.net.all; use gaisler.jtag.all; library esa; use esa.memoryctrl.all; use work.config.all; entity leon3mp is generic ( fabtech : integer := CFG_FABTECH; memtech : integer := CFG_MEMTECH; padtech : integer := CFG_PADTECH; clktech : integer := CFG_CLKTECH; disas : integer := CFG_DISAS; -- Enable disassembly to console dbguart : integer := CFG_DUART; -- Print UART on console pclow : integer := CFG_PCLOW; ddrfreq : integer := 100000 -- frequency of ddr clock in kHz ); port ( resetn : in std_ulogic; resoutn : out std_logic; clk_100mhz : in std_ulogic; errorn : out std_ulogic; -- prom interface address : out std_logic_vector(21 downto 0); data : inout std_logic_vector(15 downto 0); romsn : out std_ulogic; oen : out std_ulogic; writen : out std_ulogic; romrstn : out std_ulogic; -- pragma translate_off iosn : out std_ulogic; testdata : inout std_logic_vector(15 downto 0); -- pragma translate_on -- ddr memory ddr_clk0 : out std_logic; ddr_clk0b : out std_logic; ddr_clk_fb_out : out std_logic; ddr_clk_fb : in std_logic; ddr_cke0 : out std_logic; ddr_cs0b : out std_logic; ddr_web : out std_ulogic; -- ddr write enable ddr_rasb : out std_ulogic; -- ddr ras ddr_casb : out std_ulogic; -- ddr cas ddr_dm : out std_logic_vector (1 downto 0); -- ddr dm ddr_dqs : inout std_logic_vector (1 downto 0); -- ddr dqs ddr_ad : out std_logic_vector (12 downto 0); -- ddr address ddr_ba : out std_logic_vector (1 downto 0); -- ddr bank address ddr_dq : inout std_logic_vector (15 downto 0); -- ddr data -- debug support unit dsuen : in std_ulogic; dsubre : in std_ulogic; dsuact : out std_ulogic; -- UART for serial DCL/console I/O serrx : in std_ulogic; sertx : out std_ulogic; rtsn : out std_ulogic; ctsn : in std_ulogic; led_rx : out std_ulogic; led_tx : out std_ulogic; -- ethernet signals emdio : inout std_logic; -- ethernet PHY interface etx_clk : in std_ulogic; erx_clk : in std_ulogic; erxd : in std_logic_vector(3 downto 0); erx_dv : in std_ulogic; erx_er : in std_ulogic; erx_col : in std_ulogic; erx_crs : in std_ulogic; etxd : out std_logic_vector(3 downto 0); etx_en : out std_ulogic; etx_er : out std_ulogic; emdc : out std_ulogic; erstn : out std_ulogic; -- OLED display signals disp_dcn : out std_ulogic; disp_csn : out std_ulogic; disp_rdn : out std_ulogic; disp_wrn : out std_ulogic; disp_d : inout std_logic_vector(7 downto 0) ); end; architecture rtl of leon3mp is constant blength : integer := 12; constant fifodepth : integer := 8; signal vcc, gnd : std_logic_vector(4 downto 0); signal memi : memory_in_type; signal memo : memory_out_type; signal wpo : wprot_out_type; signal sdi : sdctrl_in_type; signal sdo : sdctrl_out_type; signal gpioi : gpio_in_type; signal gpioo : gpio_out_type; signal apbi : apb_slv_in_type; signal apbo : apb_slv_out_vector := (others => apb_none); signal ahbsi : ahb_slv_in_type; signal ahbso : ahb_slv_out_vector := (others => ahbs_none); signal ahbmi : ahb_mst_in_type; signal ahbmo : ahb_mst_out_vector := (others => ahbm_none); signal lclk : std_ulogic; signal ddrclk, ddrrst, ddrclkfb : std_ulogic; signal clkm, rstn, clkml, clk2x : std_ulogic; signal cgi : clkgen_in_type; signal cgo : clkgen_out_type; signal u1i, dui : uart_in_type; signal u1o, duo : uart_out_type; signal irqi : irq_in_vector(0 to CFG_NCPU-1); signal irqo : irq_out_vector(0 to CFG_NCPU-1); signal dbgi : l3_debug_in_vector(0 to CFG_NCPU-1); signal dbgo : l3_debug_out_vector(0 to CFG_NCPU-1); signal dsui : dsu_in_type; signal dsuo : dsu_out_type; signal ethi, ethi1, ethi2 : eth_in_type; signal etho, etho1, etho2 : eth_out_type; signal gpti : gptimer_in_type; signal tck, tms, tdi, tdo : std_ulogic; -- signal dsubre : std_logic; signal duart, ldsuen : std_logic; signal rsertx, rserrx, rdsuen : std_logic; signal rstraw : std_logic; signal rstneg : std_logic; signal rxd1 : std_logic; signal txd1 : std_logic; signal lock : std_logic; signal ddr_clk : std_logic_vector(2 downto 0); signal ddr_clkb : std_logic_vector(2 downto 0); signal ddr_cke : std_logic_vector(1 downto 0); signal ddr_csb : std_logic_vector(1 downto 0); signal ddr_adl : std_logic_vector(13 downto 0); -- ddr address attribute keep : boolean; attribute syn_keep : boolean; attribute syn_preserve : boolean; attribute syn_keep of lock : signal is true; attribute syn_keep of clkml : signal is true; attribute syn_preserve of clkml : signal is true; attribute keep of lock : signal is true; attribute keep of clkml : signal is true; attribute keep of clkm : signal is true; constant BOARD_FREQ : integer := 100000; -- input frequency in KHz constant CPU_FREQ : integer := BOARD_FREQ * CFG_CLKMUL / CFG_CLKDIV; -- cpu frequency in KHz begin romrstn <= rstn; ---------------------------------------------------------------------- --- Reset and Clock generation ------------------------------------- ---------------------------------------------------------------------- vcc <= (others => '1'); gnd <= (others => '0'); cgi.pllctrl <= "00"; cgi.pllrst <= rstraw; rstneg <= not resetn; rst0 : rstgen port map (rstneg, clkm, lock, rstn, rstraw); clk_pad : clkpad generic map (tech => padtech) port map (clk_100mhz, lclk); clkgen0 : clkgen -- clock generator generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, 0, 1, 0, 0, 0, BOARD_FREQ, 0) port map (lclk, gnd(0), clkm, open, open, open, open, cgi, cgo); ---------------------------------------------------------------------- --- AHB CONTROLLER -------------------------------------------------- ---------------------------------------------------------------------- ahb0 : ahbctrl -- AHB arbiter/multiplexer generic map (defmast => CFG_DEFMST, split => CFG_SPLIT, rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, ioen => 1, nahbm => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+1, nahbs => 8) port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso); ---------------------------------------------------------------------- --- LEON3 processor and DSU ----------------------------------------- ---------------------------------------------------------------------- leon3gen : if CFG_LEON3 = 1 generate cpu : for i in 0 to CFG_NCPU-1 generate u0 : leon3s -- LEON3 processor generic map (i, fabtech, memtech, CFG_NWIN, CFG_DSU, CFG_FPU, CFG_V8, 0, CFG_MAC, pclow, CFG_NOTAG, CFG_NWP, CFG_ICEN, CFG_IREPL, CFG_ISETS, CFG_ILINE, CFG_ISETSZ, CFG_ILOCK, CFG_DCEN, CFG_DREPL, CFG_DSETS, CFG_DLINE, CFG_DSETSZ, CFG_DLOCK, CFG_DSNOOP, CFG_ILRAMEN, CFG_ILRAMSZ, CFG_ILRAMADDR, CFG_DLRAMEN, CFG_DLRAMSZ, CFG_DLRAMADDR, CFG_MMUEN, CFG_ITLBNUM, CFG_DTLBNUM, CFG_TLB_TYPE, CFG_TLB_REP, CFG_LDDEL, disas, CFG_ITBSZ, CFG_PWD, CFG_SVT, CFG_RSTADDR, CFG_NCPU-1, CFG_DFIXED, CFG_SCAN, CFG_MMU_PAGE, CFG_BP, CFG_NP_ASI, CFG_WRPSR) port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbso, irqi(i), irqo(i), dbgi(i), dbgo(i)); end generate; error_pad : odpad generic map (tech => padtech) port map (errorn, dbgo(0).error); dsugen : if CFG_DSU = 1 generate dsu0 : dsu3 -- LEON3 Debug Support Unit generic map (hindex => 2, haddr => 16#900#, hmask => 16#F00#, ncpu => CFG_NCPU, tbits => 30, tech => memtech, irq => 0, kbytes => CFG_ATBSZ) port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo); -- dsuen_pad : inpad generic map (tech => padtech) port map (dsuen, dsui.enable); dsui.enable <= '1'; dsubre_pad : inpad generic map (tech => padtech) port map (dsubre, dsui.break); dsuact_pad : outpad generic map (tech => padtech) port map (dsuact, dsuo.active); end generate; end generate; nodsu : if CFG_DSU = 0 generate ahbso(2) <= ahbs_none; dsuo.tstop <= '0'; dsuo.active <= '0'; end generate; dcomgen : if CFG_AHB_UART = 1 generate dcom0 : ahbuart -- Debug UART generic map (hindex => CFG_NCPU, pindex => 4, paddr => 7) port map (rstn, clkm, dui, duo, apbi, apbo(4), ahbmi, ahbmo(CFG_NCPU)); end generate; nouah : if CFG_AHB_UART = 0 generate apbo(4) <= apb_none; end generate; ahbjtaggen0 :if CFG_AHB_JTAG = 1 generate ahbjtag0 : ahbjtag generic map(tech => fabtech, hindex => CFG_NCPU+CFG_AHB_UART) port map(rstn, clkm, tck, tms, tdi, tdo, ahbmi, ahbmo(CFG_NCPU+CFG_AHB_UART), open, open, open, open, open, open, open, gnd(0)); end generate; ---------------------------------------------------------------------- --- Memory controllers ---------------------------------------------- ---------------------------------------------------------------------- mg2 : if CFG_MCTRL_LEON2 = 1 generate -- LEON2 memory controller sr1 : mctrl generic map (hindex => 5, pindex => 0, paddr => 0, srbanks => 1, ramaddr => 16#600#, rammask => 16#F00#, ram16 => 1 ) port map (rstn, clkm, memi, memo, ahbsi, ahbso(5), apbi, apbo(0), wpo, open); end generate; memi.brdyn <= '1'; memi.bexcn <= '1'; memi.writen <= '1'; memi.wrn <= "1111"; memi.bwidth <= "01"; mg0 : if (CFG_MCTRL_LEON2 = 0) generate apbo(0) <= apb_none; ahbso(0) <= ahbs_none; roms_pad : outpad generic map (tech => padtech) port map (romsn, vcc(0)); end generate; mgpads : if (CFG_MCTRL_LEON2 /= 0) generate addr_pad : outpadv generic map (width => 22, tech => padtech) port map (address, memo.address(22 downto 1)); roms_pad : outpad generic map (tech => padtech) port map (romsn, memo.romsn(0)); oen_pad : outpad generic map (tech => padtech) port map (oen, memo.oen); wri_pad : outpad generic map (tech => padtech) port map (writen, memo.writen); -- pragma translate_off iosn_pad : outpad generic map (tech => padtech) port map (iosn, memo.iosn); tbdr : for i in 0 to 1 generate data_pad : iopadv generic map (tech => padtech, width => 8) port map (testdata(15-i*8 downto 8-i*8), memo.data(15-i*8 downto 8-i*8), memo.bdrive(i+2), memi.data(15-i*8 downto 8-i*8)); end generate; -- pragma translate_on bdr : for i in 0 to 1 generate data_pad : iopadv generic map (tech => padtech, width => 8) port map (data(15-i*8 downto 8-i*8), memo.data(31-i*8 downto 24-i*8), memo.bdrive(i), memi.data(31-i*8 downto 24-i*8)); end generate; end generate; ---------------------------------------------------------------------- --- DDR memory controller ------------------------------------------- ---------------------------------------------------------------------- ddrsp0 : if (CFG_DDRSP /= 0) generate ddrc : ddrspa generic map ( fabtech => virtex4, memtech => memtech, hindex => 4, haddr => 16#400#, hmask => 16#F00#, ioaddr => 1, pwron => CFG_DDRSP_INIT, MHz => BOARD_FREQ/1000, rskew => -95 -- pragma translate_off * 0 -- disable clock skew during simulation -- pragma translate_on , clkmul => CFG_DDRSP_FREQ/5, clkdiv => 20, col => CFG_DDRSP_COL, Mbyte => CFG_DDRSP_SIZE, ahbfreq => CPU_FREQ/1000, ddrbits => 16) port map ( rstneg, rstn, lclk, clkm, lock, clkml, clkml, ahbsi, ahbso(4), ddr_clk, ddr_clkb, ddr_clk_fb_out, ddr_clk_fb, ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb, ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq); ddr_clk0 <= ddr_clk(0); ddr_clk0b <= ddr_clkb(0); ddr_cke0 <= ddr_cke(0); ddr_cs0b <= ddr_csb(0); ddr_ad <= ddr_adl(12 downto 0); end generate; noddr : if (CFG_DDRSP = 0) generate lock <= '1'; end generate; ---------------------------------------------------------------------- --- APB Bridge and various periherals ------------------------------- ---------------------------------------------------------------------- apb0 : apbctrl -- AHB/APB bridge generic map (hindex => 1, haddr => CFG_APBADDR) port map (rstn, clkm, ahbsi, ahbso(1), apbi, apbo); ua1 : if CFG_UART1_ENABLE /= 0 generate uart1 : apbuart -- UART 1 generic map (pindex => 1, paddr => 1, pirq => 2, console => dbguart, fifosize => CFG_UART1_FIFO) port map (rstn, clkm, apbi, apbo(1), u1i, u1o); u1i.rxd <= rxd1; u1i.ctsn <= '0'; u1i.extclk <= '0'; txd1 <= u1o.txd; end generate; noua0 : if CFG_UART1_ENABLE = 0 generate apbo(1) <= apb_none; end generate; irqctrl : if CFG_IRQ3_ENABLE /= 0 generate irqctrl0 : irqmp -- interrupt controller generic map (pindex => 2, paddr => 2, ncpu => CFG_NCPU) port map (rstn, clkm, apbi, apbo(2), irqo, irqi); end generate; irq3 : if CFG_IRQ3_ENABLE = 0 generate x : for i in 0 to CFG_NCPU-1 generate irqi(i).irl <= "0000"; end generate; apbo(2) <= apb_none; end generate; gpt : if CFG_GPT_ENABLE /= 0 generate timer0 : gptimer -- timer unit generic map (pindex => 3, paddr => 3, pirq => CFG_GPT_IRQ, sepirq => CFG_GPT_SEPIRQ, sbits => CFG_GPT_SW, ntimers => CFG_GPT_NTIM, nbits => CFG_GPT_TW) port map (rstn, clkm, apbi, apbo(3), gpti, open); gpti.dhalt <= dsuo.tstop; gpti.extclk <= '0'; end generate; notim : if CFG_GPT_ENABLE = 0 generate apbo(3) <= apb_none; end generate; gpio0 : if CFG_GRGPIO_ENABLE /= 0 generate -- GR GPIO unit grgpio0: grgpio generic map( pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 12 --CFG_GRGPIO_WIDTH ) port map( rstn, clkm, apbi, apbo(11), gpioi, gpioo); disp_csn_pad : outpad generic map (tech => padtech) port map (disp_csn, gpioo.dout(8)); disp_dcn_pad : outpad generic map (tech => padtech) port map (disp_dcn, gpioo.dout(9)); disp_rdn_pad : outpad generic map (tech => padtech) port map (disp_rdn, gpioo.dout(10)); disp_wrn_pad : outpad generic map (tech => padtech) port map (disp_wrn, gpioo.dout(11)); disp_d_pads : for i in 0 to 7 generate pio_pad : iopad generic map (tech => padtech) port map (disp_d(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i)); end generate; end generate; ----------------------------------------------------------------------- --- ETHERNET --------------------------------------------------------- ----------------------------------------------------------------------- eth0 : if CFG_GRETH = 1 generate -- Gaisler ethernet MAC e1 : grethm generic map(hindex => CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG, pindex => 15, paddr => 15, pirq => 12, memtech => memtech, mdcscaler => CPU_FREQ/1000, enable_mdio => 1, fifosize => CFG_ETH_FIFO, nsync => 1, edcl => CFG_DSU_ETH, edclbufsz => CFG_ETH_BUF, macaddrh => CFG_ETH_ENM, macaddrl => CFG_ETH_ENL, ipaddrh => CFG_ETH_IPM, ipaddrl => CFG_ETH_IPL, phyrstadr => 3, giga => CFG_GRETH1G) port map( rst => rstn, clk => clkm, ahbmi => ahbmi, ahbmo => ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG), apbi => apbi, apbo => apbo(15), ethi => ethi, etho => etho); emdio_pad : iopad generic map (tech => padtech) port map (emdio, etho.mdio_o, etho.mdio_oe, ethi.mdio_i); etxc_pad : inpad generic map (tech => padtech) port map (etx_clk, ethi.tx_clk); erxc_pad : inpad generic map (tech => padtech) port map (erx_clk, ethi.rx_clk); erxd_pad : inpadv generic map (tech => padtech, width => 4) port map (erxd, ethi.rxd(3 downto 0)); erxdv_pad : inpad generic map (tech => padtech) port map (erx_dv, ethi.rx_dv); erxer_pad : inpad generic map (tech => padtech) port map (erx_er, ethi.rx_er); erxco_pad : inpad generic map (tech => padtech) port map (erx_col, ethi.rx_col); erxcr_pad : inpad generic map (tech => padtech) port map (erx_crs, ethi.rx_crs); etxd_pad : outpadv generic map (tech => padtech, width => 4) port map (etxd, etho.txd(3 downto 0)); etxen_pad : outpad generic map (tech => padtech) port map (etx_en, etho.tx_en); etxer_pad : outpad generic map (tech => padtech) port map (etx_er, etho.tx_er); emdc_pad : outpad generic map (tech => padtech) port map (emdc, etho.mdc); erstn_pad : outpad generic map (tech => padtech) port map (erstn, rstn); end generate; ----------------------------------------------------------------------- --- AHB DMA ---------------------------------------------------------- ----------------------------------------------------------------------- -- dma0 : ahbdma -- generic map (hindex => CFG_NCPU+CFG_AHB_UART+CFG_GRETH, -- pindex => 12, paddr => 12, dbuf => 32) -- port map (rstn, clkm, apbi, apbo(12), ahbmi, -- ahbmo(CFG_NCPU+CFG_AHB_UART+CFG_GRETH)); -- -- at0 : ahbtrace -- generic map ( hindex => 7, ioaddr => 16#200#, iomask => 16#E00#, -- tech => memtech, irq => 0, kbytes => 8) -- port map ( rstn, clkm, ahbmi, ahbsi, ahbso(7)); ----------------------------------------------------------------------- --- AHB ROM ---------------------------------------------------------- ----------------------------------------------------------------------- bpromgen : if CFG_AHBROMEN /= 0 generate brom : entity work.ahbrom generic map (hindex => 6, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP) port map ( rstn, clkm, ahbsi, ahbso(6)); end generate; nobpromgen : if CFG_AHBROMEN = 0 generate ahbso(6) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- AHB RAM ---------------------------------------------------------- ----------------------------------------------------------------------- ahbramgen : if CFG_AHBRAMEN = 1 generate ahbram0 : ahbram generic map (hindex => 3, haddr => CFG_AHBRADDR, tech => CFG_MEMTECH, kbytes => CFG_AHBRSZ) port map (rstn, clkm, ahbsi, ahbso(3)); end generate; nram : if CFG_AHBRAMEN = 0 generate ahbso(3) <= ahbs_none; end generate; ----------------------------------------------------------------------- --- Drive unused bus elements --------------------------------------- ----------------------------------------------------------------------- nam1 : for i in (CFG_NCPU+CFG_AHB_UART+CFG_AHB_JTAG+CFG_GRETH+1) to NAHBMST-1 generate ahbmo(i) <= ahbm_none; end generate; -- nap0 : for i in 9 to NAPBSLV-1-CFG_GRETH generate apbo(i) <= apb_none; end generate; -- nah0 : for i in 8 to NAHBSLV-1 generate ahbso(i) <= ahbs_none; end generate; resoutn <= rstn; ----------------------------------------------------------------------- --- Boot message ---------------------------------------------------- ----------------------------------------------------------------------- -- pragma translate_off x : report_design generic map ( msg1 => "LEON3 MP Demonstration design for Avnet Virtex4 Eval board", fabtech => tech_table(fabtech), memtech => tech_table(memtech), mdel => 1 ); -- pragma translate_on -- use switch 1 to multiplex DSU UART and UART1 dsuen_pad : inpad generic map (tech => padtech) port map (dsuen, ldsuen); duart <= rdsuen when CFG_AHB_UART /= 0 else '0'; rxd1 <= txd1 when duart = '1' else rserrx; rsertx <= duo.txd when duart = '1' else txd1; dui.rxd <= rserrx when duart = '1' else '1'; led_rx <= not rserrx; p1 : process(clkm) begin if rising_edge(clkm) then sertx <= rsertx; rserrx <= serrx; rdsuen <= ldsuen; rtsn <= '0'; led_tx <= not rsertx; end if; end process; end rtl;
gpl-2.0