Datasets:

Modalities:
Audio
Text
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
ASLP-lab commited on
Commit
e0fafbb
Β·
verified Β·
1 Parent(s): 58e20cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -3
README.md CHANGED
@@ -1,3 +1,91 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ ---
4
+ # SongEval 🎡
5
+ **A Large-Scale Benchmark Dataset for Aesthetic Evaluation of Complete Songs**
6
+
7
+ [![Hugging Face Dataset](https://img.shields.io/badge/HuggingFace-Dataset-blue)](https://huggingface.co/datasets/ASLP-lab/SongEval)
8
+ [![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
9
+
10
+ ---
11
+
12
+ ## πŸ“– Overview
13
+
14
+ **SongEval** is the first open-source, large-scale benchmark dataset designed for **aesthetic evaluation of complete songs**. It provides over **2,399 songs** (~140 hours) annotated by **16 expert raters** across **five perceptual dimensions**. The dataset enables research in evaluating and improving music generation systems from a human aesthetic perspective.
15
+
16
+
17
+ <p align="center"> <img src="assets/intro.png" alt="SongEval" width="800"/> </p>
18
+
19
+ ---
20
+
21
+ ## 🌟 Features
22
+
23
+ - 🎧 **2,399 complete songs** (with vocals and accompaniment)
24
+ - ⏱️ **~140 hours** of high-quality audio
25
+ - 🌍 **English and Chinese** songs
26
+ - 🎼 **9 mainstream genres**
27
+ - πŸ“ **5 aesthetic dimensions**:
28
+ - Overall Coherence
29
+ - Memorability
30
+ - Naturalness of Vocal Breathing and Phrasing
31
+ - Clarity of Song Structure
32
+ - Overall Musicality
33
+ - πŸ“Š Ratings on a **5-point Likert scale** by **musically trained annotators**
34
+ - πŸŽ™οΈ Includes outputs from **five generation models** + a subset of real/bad-case samples
35
+
36
+ <div style="display: flex; justify-content: space-between;">
37
+ <img src="assets/score.png" alt="Image 1" style="width: 48%;" />
38
+ <img src="assets/distribution.png" alt="Image 2" style="width: 48%;" />
39
+ </div>
40
+
41
+
42
+ ---
43
+
44
+ ## πŸ“‚ Dataset Structure
45
+
46
+ Each sample includes:
47
+
48
+ - `audio`: WAV audio of the full song
49
+ - `gender`: male or female
50
+ - `aesthetic_scores`: dict of five human-annotated scores (1–5)
51
+
52
+ ---
53
+
54
+ ## πŸ” Use Cases
55
+
56
+ - Benchmarking song generation models from an aesthetic viewpoint
57
+ - Training perceptual quality predictors for song
58
+ - Exploring alignment between objective metrics and human judgments
59
+
60
+ ---
61
+
62
+ ## πŸ§ͺ Evaluation Toolkit
63
+
64
+ We provide an open-source evaluation toolkit trained on SongEval to help researchers evaluate new music generation outputs:
65
+
66
+ πŸ‘‰ GitHub: [https://github.com/ASLP-lab/SongEval](https://github.com/ASLP-lab/SongEval)
67
+
68
+ ---
69
+
70
+ ## πŸ“₯ Download
71
+
72
+ You can load the dataset directly using πŸ€— Datasets:
73
+
74
+ ```python
75
+ from datasets import load_dataset
76
+
77
+ dataset = load_dataset("ASLP-lab/SongEval")
78
+
79
+ ```
80
+
81
+ ## πŸ™ Acknowledgement
82
+
83
+ We sincerely thank the **Shanghai Conservatory of Music** for their expert guidance on music theory, aesthetics, and annotation design.
84
+ <p align="center"> <img src="assets/sy_logo.jpg" alt="Shanghai Conservatory of Music Logo" width="300"/> </p>
85
+
86
+ ---
87
+
88
+ ## πŸ“¬ Citation
89
+ Coming soon!
90
+
91
+