File size: 31,282 Bytes
c0abc78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:164
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: 'QUESTION #1\n'
sentences:
- 'An interesting point of comparison here could be the way railways rolled out
around the world in the 1800s. Constructing these required enormous investments
and had a massive environmental impact, and many of the lines that were built
turned out to be unnecessary—sometimes multiple lines from different companies
serving the exact same routes!
The resulting bubbles contributed to several financial crashes, see Wikipedia
for Panic of 1873, Panic of 1893, Panic of 1901 and the UK’s Railway Mania. They
left us with a lot of useful infrastructure and a great deal of bankruptcies and
environmental damage.
The year of slop'
- 'This remains astonishing to me. I thought a model with the capabilities and output
quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
These models take up enough of my 64GB of RAM that I don’t run them often—they
don’t leave much room for anything else.
The fact that they run at all is a testament to the incredible training and inference
performance gains that we’ve figured out over the past year. It turns out there
was a lot of low-hanging fruit to be harvested in terms of model efficiency. I
expect there’s still more to come.'
- 'Things we learned about LLMs in 2024
Simon Willison’s Weblog
Subscribe
Things we learned about LLMs in 2024
31st December 2024
A lot has happened in the world of Large Language Models over the course of 2024.
Here’s a review of things we figured out about the field in the past twelve months,
plus my attempt at identifying key themes and pivotal moments.
This is a sequel to my review of 2023.
In this article:'
- source_sentence: 'QUESTION #2\n...\n\nContext:\nJust this week, the New York Times
launched a landmark lawsuit against OpenAI and Microsoft over this issue. The
69 page PDF is genuinely worth reading—especially the first few pages, which lay
out the issues in a way that’s surprisingly easy to follow. The rest of the document
includes some of the clearest explanations of what LLMs are, how they work and
how they are built that I’ve read anywhere.\nThe legal arguments here are complex.
I’m not a lawyer, but I don’t think this one will be easily decided. Whichever
way it goes, I expect this case to have a profound impact on how this technology
develops in the future.\n'', additional_kwargs={}, response_metadata={})]'
sentences:
- 'A lot of people are excited about AI agents—an infuriatingly vague term that
seems to be converging on “AI systems that can go away and act on your behalf”.
We’ve been talking about them all year, but I’ve seen few if any examples of them
running in production, despite lots of exciting prototypes.
I think this is because of gullibility.
Can we solve this? Honestly, I’m beginning to suspect that you can’t fully solve
gullibility without achieving AGI. So it may be quite a while before those agent
dreams can really start to come true!
Code may be the best application
Over the course of the year, it’s become increasingly clear that writing code
is one of the things LLMs are most capable of.'
- 'Just this week, the New York Times launched a landmark lawsuit against OpenAI
and Microsoft over this issue. The 69 page PDF is genuinely worth reading—especially
the first few pages, which lay out the issues in a way that’s surprisingly easy
to follow. The rest of the document includes some of the clearest explanations
of what LLMs are, how they work and how they are built that I’ve read anywhere.
The legal arguments here are complex. I’m not a lawyer, but I don’t think this
one will be easily decided. Whichever way it goes, I expect this case to have
a profound impact on how this technology develops in the future.'
- 'Then there’s the rest. If you browse the Chatbot Arena leaderboard today—still
the most useful single place to get a vibes-based evaluation of models—you’ll
see that GPT-4-0314 has fallen to around 70th place. The 18 organizations with
higher scoring models are Google, OpenAI, Alibaba, Anthropic, Meta, Reka AI, 01
AI, Amazon, Cohere, DeepSeek, Nvidia, Mistral, NexusFlow, Zhipu AI, xAI, AI21
Labs, Princeton and Tencent.
Training a GPT-4 beating model was a huge deal in 2023. In 2024 it’s an achievement
that isn’t even particularly notable, though I personally still celebrate any
time a new organization joins that list.
Some of those GPT-4 models run on my laptop'
- source_sentence: 'QUESTION #1\n'
sentences:
- 'The biggest innovation here is that it opens up a new way to scale a model: instead
of improving model performance purely through additional compute at training time,
models can now take on harder problems by spending more compute on inference.
The sequel to o1, o3 (they skipped “o2” for European trademark reasons) was announced
on 20th December with an impressive result against the ARC-AGI benchmark, albeit
one that likely involved more than $1,000,000 of compute time expense!
o3 is expected to ship in January. I doubt many people have real-world problems
that would benefit from that level of compute expenditure—I certainly don’t!—but
it appears to be a genuine next step in LLM architecture for taking on much harder
problems.'
- 'Those US export regulations on GPUs to China seem to have inspired some very
effective training optimizations!
The environmental impact got better
A welcome result of the increased efficiency of the models—both the hosted ones
and the ones I can run locally—is that the energy usage and environmental impact
of running a prompt has dropped enormously over the past couple of years.
OpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days.
I have it on good authority that neither Google Gemini nor Amazon Nova (two of
the least expensive model providers) are running prompts at a loss.'
- 'OpenAI made GPT-4o free for all users in May, and Claude 3.5 Sonnet was freely
available from its launch in June. This was a momentus change, because for the
previous year free users had mostly been restricted to GPT-3.5 level models, meaning
new users got a very inaccurate mental model of what a capable LLM could actually
do.
That era appears to have ended, likely permanently, with OpenAI’s launch of ChatGPT
Pro. This $200/month subscription service is the only way to access their most
capable model, o1 Pro.
Since the trick behind the o1 series (and the future models it will undoubtedly
inspire) is to expend more compute time to get better results, I don’t think those
days of free access to the best available models are likely to return.'
- source_sentence: 'QUESTION #1\n'
sentences:
- 'The May 13th announcement of GPT-4o included a demo of a brand new voice mode,
where the true multi-modal GPT-4o (the o is for “omni”) model could accept audio
input and output incredibly realistic sounding speech without needing separate
TTS or STT models.
The demo also sounded conspicuously similar to Scarlett Johansson... and after
she complained the voice from the demo, Skye, never made it to a production product.
The delay in releasing the new voice mode after the initial demo caused quite
a lot of confusion. I wrote about that in ChatGPT in “4o” mode is not running
the new features yet.'
- 'Against this photo of butterflies at the California Academy of Sciences:
A shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange
slices of fruit are visible inside the dish.
Two butterflies are positioned in the feeder, one is a dark brown/black butterfly
with white/cream-colored markings. The other is a large, brown butterfly with
patterns of lighter brown, beige, and black markings, including prominent eye
spots. The larger brown butterfly appears to be feeding on the fruit.'
- 'The year of slop
Synthetic training data works great
LLMs somehow got even harder to use
Knowledge is incredibly unevenly distributed
LLMs need better criticism
Everything tagged “llms” on my blog in 2024'
- source_sentence: 'QUESTION #1\n'
sentences:
- 'Terminology aside, I remain skeptical as to their utility based, once again,
on the challenge of gullibility. LLMs believe anything you tell them. Any systems
that attempts to make meaningful decisions on your behalf will run into the same
roadblock: how good is a travel agent, or a digital assistant, or even a research
tool if it can’t distinguish truth from fiction?
Just the other day Google Search was caught serving up an entirely fake description
of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
movie listing from a fan fiction wiki.'
- 'Your browser does not support the audio element.
OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also
accepts audio input, and the Google Gemini apps can speak in a similar way to
ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s
meant to roll out in Q1 of 2025.
Google’s NotebookLM, released in September, took audio output to a new level by
producing spookily realistic conversations between two “podcast hosts” about anything
you fed into their tool. They later added custom instructions, so naturally I
turned them into pelicans:
Your browser does not support the audio element.'
- 'Then in February, Meta released Llama. And a few weeks later in March, Georgi
Gerganov released code that got it working on a MacBook.
I wrote about how Large language models are having their Stable Diffusion moment,
and with hindsight that was a very good call!
This unleashed a whirlwind of innovation, which was accelerated further in July
when Meta released Llama 2—an improved version which, crucially, included permission
for commercial use.
Today there are literally thousands of LLMs that can be run locally, on all manner
of different devices.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.56
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.64
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.72
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.56
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09200000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.56
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.64
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.72
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.92
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7017423735235339
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.63715873015873
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6441284271284272
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dataera2013/legal-ft-2")
# Run inference
sentences = [
'QUESTION #1\\n',
'Your browser does not support the audio element.\n\nOpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also accepts audio input, and the Google Gemini apps can speak in a similar way to ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s meant to roll out in Q1 of 2025.\nGoogle’s NotebookLM, released in September, took audio output to a new level by producing spookily realistic conversations between two “podcast hosts” about anything you fed into their tool. They later added custom instructions, so naturally I turned them into pelicans:\n\n\nYour browser does not support the audio element.',
'Then in February, Meta released Llama. And a few weeks later in March, Georgi Gerganov released code that got it working on a MacBook.\nI wrote about how Large language models are having their Stable Diffusion moment, and with hindsight that was a very good call!\nThis unleashed a whirlwind of innovation, which was accelerated further in July when Meta released Llama 2—an improved version which, crucially, included permission for commercial use.\nToday there are literally thousands of LLMs that can be run locally, on all manner of different devices.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.56 |
| cosine_accuracy@3 | 0.64 |
| cosine_accuracy@5 | 0.72 |
| cosine_accuracy@10 | 0.92 |
| cosine_precision@1 | 0.56 |
| cosine_precision@3 | 0.2133 |
| cosine_precision@5 | 0.144 |
| cosine_precision@10 | 0.092 |
| cosine_recall@1 | 0.56 |
| cosine_recall@3 | 0.64 |
| cosine_recall@5 | 0.72 |
| cosine_recall@10 | 0.92 |
| **cosine_ndcg@10** | **0.7017** |
| cosine_mrr@10 | 0.6372 |
| cosine_map@100 | 0.6441 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 164 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 164 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 72.05 tokens</li><li>max: 228 tokens</li></ul> | <ul><li>min: 43 tokens</li><li>mean: 135.85 tokens</li><li>max: 214 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>QUESTION #1\n</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
| <code>QUESTION #2\n...\n\nContext:\nStuff we figured out about AI in 2023\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSimon Willison’s Weblog\nSubscribe\n\n\n\n\n\n\nStuff we figured out about AI in 2023\n31st December 2023\n2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.\nHere’s my attempt to round up the highlights in one place!\n', additional_kwargs={}, response_metadata={})]</code> | <code>Stuff we figured out about AI in 2023<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Simon Willison’s Weblog<br>Subscribe<br><br><br><br><br><br><br>Stuff we figured out about AI in 2023<br>31st December 2023<br>2023 was the breakthrough year for Large Language Models (LLMs). I think it’s OK to call these AI—they’re the latest and (currently) most interesting development in the academic field of Artificial Intelligence that dates back to the 1950s.<br>Here’s my attempt to round up the highlights in one place!</code> |
| <code>QUESTION #1\n</code> | <code>Large Language Models<br>They’re actually quite easy to build<br>You can run LLMs on your own devices<br>Hobbyists can build their own fine-tuned models<br>We don’t yet know how to build GPT-4<br>Vibes Based Development<br>LLMs are really smart, and also really, really dumb<br>Gullibility is the biggest unsolved problem<br>Code may be the best application<br>The ethics of this space remain diabolically complex<br>My blog in 2023</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:------:|:----:|:--------------:|
| 1.0 | 17 | 0.7017 |
| 2.0 | 34 | 0.7017 |
| 2.9412 | 50 | 0.7017 |
| 3.0 | 51 | 0.7017 |
| 4.0 | 68 | 0.7017 |
| 5.0 | 85 | 0.7017 |
| 5.8824 | 100 | 0.7017 |
| 6.0 | 102 | 0.7017 |
| 7.0 | 119 | 0.7017 |
| 8.0 | 136 | 0.7017 |
| 8.8235 | 150 | 0.7017 |
| 9.0 | 153 | 0.7017 |
| 10.0 | 170 | 0.7017 |
### Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |