--- base_model: - tencent/HunyuanVideo library_name: diffusers --- HunyuanVideo Keyframe Control Lora is an adapter for HunyuanVideo T2V model for keyframe-based video generation. ​Our architecture builds upon existing models, introducing key enhancements to optimize keyframe-based video generation:​ * We modify the input patch embedding projection layer to effectively incorporate keyframe information. By adjusting the convolutional input parameters, we enable the model to process image inputs within the Diffusion Transformer (DiT) framework.​ * We apply Low-Rank Adaptation (LoRA) across all linear layers and the convolutional input layer. This approach facilitates efficient fine-tuning by introducing low-rank matrices that approximate the weight updates, thereby preserving the base model's foundational capabilities while reducing the number of trainable parameters. * The model is conditioned on user-defined keyframes, allowing precise control over the generated video's start and end frames. This conditioning ensures that the generated content aligns seamlessly with the specified keyframes, enhancing the coherence and narrative flow of the video.​ | Image 1 | Image 2 | Generated Video | |---------|---------|-----------------| | ![Image 1](https://content.dashtoon.ai/stability-images/41aeca63-064a-4003-8c8b-bfe2cc80d275.png) | ![Image 2](https://content.dashtoon.ai/stability-images/28956177-3455-4b56-bb6c-73eacef323ca.png) | | | ![Image 1](https://content.dashtoon.ai/stability-images/ddabbf2f-4218-497b-8239-b7b882d93000.png) | ![Image 2](https://content.dashtoon.ai/stability-images/b603acba-40a4-44ba-aa26-ed79403df580.png) | | | ![Image 1](https://content.dashtoon.ai/stability-images/5298cf0c-0955-4568-935a-2fb66045f21d.png) | ![Image 2](https://content.dashtoon.ai/stability-images/722a4ea7-7092-4323-8e83-3f627e8fd7f8.png) | | | ![Image 1](https://content.dashtoon.ai/stability-images/69d9a49f-95c0-4e85-bd49-14a039373c8b.png) | ![Image 2](https://content.dashtoon.ai/stability-images/0cef7fa9-e15a-48ec-9bd3-c61921181802.png) | | ## Recommended Settings 1. The model works best on human subjects. Single subject images work slightly better. 2. It is recommended to use the following image generation resolutions `720x1280`, `544x960`, `1280x720`, `960x544`. 3. It is recommended to set frames from 33 upto 97. Can go upto 121 frames as well (but not tested much). 4. Prompting helps a lot but works even without. The prompt can be as simple as just the name of the object you want to generate or can be detailed. 5. `num_inference_steps` is recommended to be 50, but for fast results you can use 30 as well. Anything less than 30 is not recommended. ## Diffusers HunyuanVideo Keyframe Control Lora can be used directly from Diffusers. Install the latest version of Diffusers. ```python from typing import List, Optional, Tuple, Union import cv2 import numpy as np import safetensors.torch import torch import torchvision.transforms.v2 as transforms from diffusers import FlowMatchEulerDiscreteScheduler, HunyuanVideoPipeline from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback from diffusers.loaders import HunyuanVideoLoraLoaderMixin from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel from diffusers.models.attention import Attention from diffusers.models.embeddings import apply_rotary_emb from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoPatchEmbed, HunyuanVideoTransformer3DModel from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE, retrieve_timesteps from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import export_to_video, is_torch_xla_available, load_image, logging, replace_example_docstring from diffusers.utils.state_dict_utils import convert_state_dict_to_diffusers, convert_unet_state_dict_to_peft from diffusers.utils.torch_utils import randn_tensor from diffusers.video_processor import VideoProcessor from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict from PIL import Image video_transforms = transforms.Compose( [ transforms.Lambda(lambda x: x / 255.0), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) def resize_image_to_bucket(image: Union[Image.Image, np.ndarray], bucket_reso: tuple[int, int]) -> np.ndarray: """ Resize the image to the bucket resolution. """ is_pil_image = isinstance(image, Image.Image) if is_pil_image: image_width, image_height = image.size else: image_height, image_width = image.shape[:2] if bucket_reso == (image_width, image_height): return np.array(image) if is_pil_image else image bucket_width, bucket_height = bucket_reso scale_width = bucket_width / image_width scale_height = bucket_height / image_height scale = max(scale_width, scale_height) image_width = int(image_width * scale + 0.5) image_height = int(image_height * scale + 0.5) if scale > 1: image = Image.fromarray(image) if not is_pil_image else image image = image.resize((image_width, image_height), Image.LANCZOS) image = np.array(image) else: image = np.array(image) if is_pil_image else image image = cv2.resize(image, (image_width, image_height), interpolation=cv2.INTER_AREA) # crop the image to the bucket resolution crop_left = (image_width - bucket_width) // 2 crop_top = (image_height - bucket_height) // 2 image = image[crop_top : crop_top + bucket_height, crop_left : crop_left + bucket_width] return image model_id = "hunyuanvideo-community/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16) pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16) pipe.to("cuda") pipe.vae.enable_tiling() pipe.vae.enable_slicing() with torch.no_grad(): # enable image inputs initial_input_channels = pipe.transformer.config.in_channels new_img_in = HunyuanVideoPatchEmbed( patch_size=(pipe.transformer.config.patch_size_t, pipe.transformer.config.patch_size, pipe.transformer.config.patch_size), in_chans=pipe.transformer.config.in_channels * 2, embed_dim=pipe.transformer.config.num_attention_heads * pipe.transformer.config.attention_head_dim, ) new_img_in = new_img_in.to(pipe.device, dtype=pipe.dtype) new_img_in.proj.weight.zero_() new_img_in.proj.weight[:, :initial_input_channels].copy_(pipe.transformer.x_embedder.proj.weight) if pipe.transformer.x_embedder.proj.bias is not None: new_img_in.proj.bias.copy_(pipe.transformer.x_embedder.proj.bias) pipe.transformer.x_embedder = new_img_in LORA_PATH = "" lora_state_dict = pipe.lora_state_dict(LORA_PATH) transformer_lora_state_dict = {f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") and "lora" in k} pipe.load_lora_into_transformer(transformer_lora_state_dict, transformer=pipe.transformer, adapter_name="i2v", _pipeline=pipe) pipe.set_adapters(["i2v"], adapter_weights=[1.0]) pipe.fuse_lora(components=["transformer"], lora_scale=1.0, adapter_names=["i2v"]) pipe.unload_lora_weights() n_frames, height, width = 77, 1280, 720 prompt = "a woman" cond_frame1 = load_image("https://content.dashtoon.ai/stability-images/e524013d-55d4-483a-b80a-dfc51d639158.png") cond_frame1 = resize_image_to_bucket(cond_frame1, bucket_reso=(width, height)) cond_frame2 = load_image("https://content.dashtoon.ai/stability-images/0b29c296-0a90-4b92-96b9-1ed0ae21e480.png") cond_frame2 = resize_image_to_bucket(cond_frame2, bucket_reso=(width, height)) cond_video = np.zeros(shape=(n_frames, height, width, 3)) cond_video[0], cond_video[-1] = np.array(cond_frame1), np.array(cond_frame2) cond_video = torch.from_numpy(cond_video.copy()).permute(0, 3, 1, 2) cond_video = torch.stack([video_transforms(x) for x in cond_video], dim=0).unsqueeze(0) with torch.no_grad(): image_or_video = cond_video.to(device="cuda", dtype=pipe.dtype) image_or_video = image_or_video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W] cond_latents = pipe.vae.encode(image_or_video).latent_dist.sample() cond_latents = cond_latents * pipe.vae.config.scaling_factor cond_latents = cond_latents.to(dtype=pipe.dtype) @torch.no_grad() def call_pipe( pipe, prompt: Union[str, List[str]] = None, prompt_2: Union[str, List[str]] = None, height: int = 720, width: int = 1280, num_frames: int = 129, num_inference_steps: int = 50, sigmas: List[float] = None, guidance_scale: float = 6.0, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, max_sequence_length: int = 256, image_latents: Optional[torch.Tensor] = None, ): if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct pipe.check_inputs( prompt, prompt_2, height, width, prompt_embeds, callback_on_step_end_tensor_inputs, prompt_template, ) pipe._guidance_scale = guidance_scale pipe._attention_kwargs = attention_kwargs pipe._current_timestep = None pipe._interrupt = False device = pipe._execution_device # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 3. Encode input prompt prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = pipe.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_template=prompt_template, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, prompt_attention_mask=prompt_attention_mask, device=device, max_sequence_length=max_sequence_length, ) transformer_dtype = pipe.transformer.dtype prompt_embeds = prompt_embeds.to(transformer_dtype) prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) if pooled_prompt_embeds is not None: pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) # 4. Prepare timesteps sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas timesteps, num_inference_steps = retrieve_timesteps( pipe.scheduler, num_inference_steps, device, sigmas=sigmas, ) # 5. Prepare latent variables num_channels_latents = pipe.transformer.config.in_channels num_latent_frames = (num_frames - 1) // pipe.vae_scale_factor_temporal + 1 latents = pipe.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, num_latent_frames, torch.float32, device, generator, latents, ) # 6. Prepare guidance condition guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * pipe.scheduler.order pipe._num_timesteps = len(timesteps) with pipe.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if pipe.interrupt: continue pipe._current_timestep = t latent_model_input = latents.to(transformer_dtype) timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = pipe.transformer( hidden_states=torch.cat([latent_model_input, image_latents], dim=1), timestep=timestep, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, pooled_projections=pooled_prompt_embeds, guidance=guidance, attention_kwargs=attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(pipe, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipe.scheduler.order == 0): progress_bar.update() pipe._current_timestep = None if not output_type == "latent": latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor video = pipe.vae.decode(latents, return_dict=False)[0] video = pipe.video_processor.postprocess_video(video, output_type=output_type) else: video = latents # Offload all models pipe.maybe_free_model_hooks() if not return_dict: return (video,) return HunyuanVideoPipelineOutput(frames=video) video = call_pipe( pipe, prompt=prompt, num_frames=n_frames, num_inference_steps=50, image_latents=cond_latents, width=width, height=height, guidance_scale=6.0, generator=torch.Generator(device="cuda").manual_seed(0), ).frames[0] export_to_video(video, "output.mp4", fps=24) ```