# Suggestions to Improve BraTS U-Net Segmentation Pipeline # 1. Enhanced Data Augmentation from albumentations import Compose, RandomCrop, ElasticTransform, GridDistortion, OpticalDistortion, RandomBrightnessContrast, GaussianNoise, Flip from sklearn.svm._liblinear import train def get_augmentation_pipeline(): return Compose([ Flip(p=0.5), RandomCrop(height=128, width=128, p=0.5), ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03, p=0.5), GridDistortion(p=0.5), OpticalDistortion(p=0.5), GaussianNoise(p=0.5), RandomBrightnessContrast(p=0.5) ]) augmentation_pipeline = get_augmentation_pipeline() # Apply this pipeline to your dataset loader as part of preprocessing. # 2. Switching to Attention U-Net / UNet++ with Pre-trained Encoders import segmentation_models_pytorch as smp # Define a UNet++ with a ResNet34 encoder pre-trained on ImageNet model = smp.UnetPlusPlus( encoder_name="resnet34", # Encoder architecture encoder_weights="imagenet", # Use ImageNet pre-trained weights in_channels=4, # Number of input channels (BraTS has 4 modalities) classes=4 # Number of output classes ) # 3. Improved Loss Function import torch import torch.nn as nn from segmentation_models_pytorch.losses import TverskyLoss # Combine Dice Loss and Tversky Loss class CombinedLoss(nn.Module): def __init__(self, alpha=0.5): super(CombinedLoss, self).__init__() self.dice_loss = smp.losses.DiceLoss("softmax") self.tversky_loss = TverskyLoss("softmax", alpha=0.7, beta=0.3) self.alpha = alpha def forward(self, y_pred, y_true): return self.alpha * self.dice_loss(y_pred, y_true) + (1 - self.alpha) * self.tversky_loss(y_pred, y_true) loss_fn = CombinedLoss() # 4. Learning Rate Scheduling from torch.optim.lr_scheduler import CosineAnnealingLR optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-5) # Cosine Annealing # Update the scheduler in each epoch for epoch in range(num_epochs): train(...) # Train your model for one epoch scheduler.step() # 5. Post-Processing with CRF import pydensecrf.densecrf as dcrf def apply_crf(prob_map, img): d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], 4) # 4 is the number of classes U = -np.log(prob_map) d.setUnaryEnergy(U) # Add pairwise terms d.addPairwiseGaussian(sxy=3, compat=3) d.addPairwiseBilateral(sxy=30, srgb=13, rgbim=img, compat=10) Q = d.inference(5) # Number of iterations return np.argmax(Q, axis=0).reshape((img.shape[0], img.shape[1])) # Apply this on your predicted probabilities # 6. Cross-Validation from sklearn.model_selection import KFold kf = KFold(n_splits=5) for train_idx, valid_idx in kf.split(dataset): train_data = Subset(dataset, train_idx) valid_data = Subset(dataset, valid_idx) train_loader = DataLoader(train_data, batch_size=16, shuffle=True) valid_loader = DataLoader(valid_data, batch_size=16, shuffle=False) train_model(train_loader, valid_loader) # 7. Ensemble Learning class EnsembleModel(nn.Module): def __init__(self, models): super(EnsembleModel, self).__init__() self.models = nn.ModuleList(models) def forward(self, x): outputs = [model(x) for model in self.models] return torch.mean(torch.stack(outputs), dim=0) # Combine multiple trained models models = [model1, model2, model3] # Pre-trained models ensemble_model = EnsembleModel(models) # 8. Hyperparameter Tuning with Grid Search (Example) from sklearn.model_selection import ParameterGrid param_grid = { 'learning_rate': [1e-3, 1e-4], 'batch_size': [8, 16], 'loss_alpha': [0.5, 0.7] } for params in ParameterGrid(param_grid): optimizer = torch.optim.Adam(model.parameters(), lr=params['learning_rate']) loss_fn = CombinedLoss(alpha=params['loss_alpha']) train_loader = DataLoader(train_data, batch_size=params['batch_size']) train_model(train_loader, valid_loader)