Upload 12 files
Browse files- LICENSE +21 -0
- brats_pretrained.ipynb +0 -0
- brats_scratch-temp-modified.ipynb +1433 -0
- brats_scratch-temp.ipynb +0 -0
- brats_scratch.ipynb +0 -0
- links.csv +0 -0
- model/model.npy +3 -0
- model/model.pth +3 -0
- pre_links.csv +0 -0
- pre_model/model.npy +3 -0
- pre_model/model.pth +3 -0
- tests.py +121 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 Samson
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
brats_pretrained.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
brats_scratch-temp-modified.ipynb
ADDED
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"metadata": {
|
6 |
+
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
7 |
+
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
|
8 |
+
"execution": {
|
9 |
+
"iopub.execute_input": "2025-01-09T16:36:25.227597Z",
|
10 |
+
"iopub.status.busy": "2025-01-09T16:36:25.227303Z",
|
11 |
+
"iopub.status.idle": "2025-01-09T16:36:35.081281Z",
|
12 |
+
"shell.execute_reply": "2025-01-09T16:36:35.080659Z",
|
13 |
+
"shell.execute_reply.started": "2025-01-09T16:36:25.227573Z"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"source": [
|
17 |
+
"import segmentation_models_pytorch as smp\n",
|
18 |
+
"import os\n",
|
19 |
+
"import matplotlib.pyplot as plt\n",
|
20 |
+
"from PIL import Image\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"import torch\n",
|
23 |
+
"from torch.fx.experimental.meta_tracer import torch_abs_override\n",
|
24 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
25 |
+
"from torchvision import transforms, utils\n",
|
26 |
+
"import torch.nn as nn\n",
|
27 |
+
"import torch.optim as optim\n",
|
28 |
+
"from torch.optim import lr_scheduler\n",
|
29 |
+
"import time\n",
|
30 |
+
"import albumentations as Album\n",
|
31 |
+
"import torch.nn.functional as Functional\n",
|
32 |
+
"import pandas as pd\n",
|
33 |
+
"import nibabel as nib\n",
|
34 |
+
"from tqdm import tqdm"
|
35 |
+
],
|
36 |
+
"outputs": [],
|
37 |
+
"execution_count": null
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"metadata": {},
|
42 |
+
"source": [
|
43 |
+
"! pip show albumentations"
|
44 |
+
],
|
45 |
+
"outputs": [],
|
46 |
+
"execution_count": null
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"metadata": {
|
51 |
+
"execution": {
|
52 |
+
"iopub.execute_input": "2025-01-09T16:36:48.479196Z",
|
53 |
+
"iopub.status.busy": "2025-01-09T16:36:48.478879Z",
|
54 |
+
"iopub.status.idle": "2025-01-09T16:36:48.500028Z",
|
55 |
+
"shell.execute_reply": "2025-01-09T16:36:48.499404Z",
|
56 |
+
"shell.execute_reply.started": "2025-01-09T16:36:48.479170Z"
|
57 |
+
}
|
58 |
+
},
|
59 |
+
"source": [
|
60 |
+
"training_df = pd.read_csv('data/archive/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData/name_mapping.csv')\n",
|
61 |
+
"root_df = 'data/archive/BraTS2020_TrainingData/MICCAI_BraTS2020_TrainingData'"
|
62 |
+
],
|
63 |
+
"outputs": [],
|
64 |
+
"execution_count": null
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"metadata": {
|
69 |
+
"execution": {
|
70 |
+
"iopub.execute_input": "2025-01-09T16:36:51.384165Z",
|
71 |
+
"iopub.status.busy": "2025-01-09T16:36:51.383835Z",
|
72 |
+
"iopub.status.idle": "2025-01-09T16:36:51.401352Z",
|
73 |
+
"shell.execute_reply": "2025-01-09T16:36:51.400713Z",
|
74 |
+
"shell.execute_reply.started": "2025-01-09T16:36:51.384140Z"
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"source": [
|
78 |
+
"training_df.head(10)"
|
79 |
+
],
|
80 |
+
"outputs": [],
|
81 |
+
"execution_count": null
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "markdown",
|
85 |
+
"metadata": {},
|
86 |
+
"source": [
|
87 |
+
"Exporting CSV Files to be used as reference for MRI Imaging files (.nii) to their respective file paths"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"metadata": {
|
93 |
+
"execution": {
|
94 |
+
"iopub.execute_input": "2025-01-09T16:36:57.780114Z",
|
95 |
+
"iopub.status.busy": "2025-01-09T16:36:57.779827Z",
|
96 |
+
"iopub.status.idle": "2025-01-09T16:36:59.207480Z",
|
97 |
+
"shell.execute_reply": "2025-01-09T16:36:59.206793Z",
|
98 |
+
"shell.execute_reply.started": "2025-01-09T16:36:57.780094Z"
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"source": [
|
102 |
+
"root_list = []\n",
|
103 |
+
"tot_list = []\n",
|
104 |
+
"\n",
|
105 |
+
"for filename_root in tqdm(np.sort(os.listdir(root_df))[:-2]):\n",
|
106 |
+
" subpath = os.path.join(root_df, filename_root)\n",
|
107 |
+
" file_list = []\n",
|
108 |
+
"\n",
|
109 |
+
" for filename in np.sort(os.listdir(subpath)):\n",
|
110 |
+
" file_list.append(os.path.join(subpath, filename))\n",
|
111 |
+
"\n",
|
112 |
+
" root_list.append(filename_root)\n",
|
113 |
+
" tot_list.append(file_list)\n",
|
114 |
+
" \n",
|
115 |
+
"maps = pd.concat(\n",
|
116 |
+
" [pd.DataFrame(root_list, columns=['DIR']),\n",
|
117 |
+
" pd.DataFrame(tot_list, columns=['flair', 'seg', 't1', 't1ce', 't2']) \n",
|
118 |
+
"], axis=1)\n",
|
119 |
+
"\n",
|
120 |
+
"maps.to_csv('links.csv', index=False)"
|
121 |
+
],
|
122 |
+
"outputs": [],
|
123 |
+
"execution_count": null
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"metadata": {
|
128 |
+
"execution": {
|
129 |
+
"iopub.execute_input": "2025-01-09T16:37:07.946953Z",
|
130 |
+
"iopub.status.busy": "2025-01-09T16:37:07.946665Z",
|
131 |
+
"iopub.status.idle": "2025-01-09T16:37:07.955468Z",
|
132 |
+
"shell.execute_reply": "2025-01-09T16:37:07.954634Z",
|
133 |
+
"shell.execute_reply.started": "2025-01-09T16:37:07.946934Z"
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"source": [
|
137 |
+
"image_path = {\n",
|
138 |
+
" 'seg': [],\n",
|
139 |
+
" 't1': [],\n",
|
140 |
+
" 't1ce': [],\n",
|
141 |
+
" 't2': [],\n",
|
142 |
+
" 'flair': []\n",
|
143 |
+
"}\n",
|
144 |
+
"\n",
|
145 |
+
"for path in training_df['BraTS_2020_subject_ID']:\n",
|
146 |
+
" patient = os.path.join(root_df, path)\n",
|
147 |
+
"\n",
|
148 |
+
" for name in image_path:\n",
|
149 |
+
" image_path[name].append(os.path.join(patient, path + f'_{name}.nii'))\n",
|
150 |
+
"\n",
|
151 |
+
"image_path['seg'][:5]"
|
152 |
+
],
|
153 |
+
"outputs": [],
|
154 |
+
"execution_count": null
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"metadata": {
|
159 |
+
"execution": {
|
160 |
+
"iopub.execute_input": "2025-01-09T16:37:15.635134Z",
|
161 |
+
"iopub.status.busy": "2025-01-09T16:37:15.634853Z",
|
162 |
+
"iopub.status.idle": "2025-01-09T16:37:15.640048Z",
|
163 |
+
"shell.execute_reply": "2025-01-09T16:37:15.639143Z",
|
164 |
+
"shell.execute_reply.started": "2025-01-09T16:37:15.635113Z"
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"source": [
|
168 |
+
"def load_image(image_path):\n",
|
169 |
+
" return nib.load(image_path).get_fdata()\n",
|
170 |
+
"\n",
|
171 |
+
"\n",
|
172 |
+
"def ccentre(image_slice, crop_x, crop_y):\n",
|
173 |
+
" y, x = image_slice.shape\n",
|
174 |
+
"\n",
|
175 |
+
" start_x = x // 2 - (crop_x // 2)\n",
|
176 |
+
" start_y = y // 2 - (crop_y // 2)\n",
|
177 |
+
"\n",
|
178 |
+
" return image_slice[start_y : start_y + crop_y, start_x : start_x + crop_x]\n",
|
179 |
+
"\n",
|
180 |
+
"\n",
|
181 |
+
"def normalize(image_slice):\n",
|
182 |
+
" return (image_slice - image_slice.mean()) / image_slice.std()"
|
183 |
+
],
|
184 |
+
"outputs": [],
|
185 |
+
"execution_count": null
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"metadata": {
|
190 |
+
"execution": {
|
191 |
+
"iopub.execute_input": "2025-01-09T16:37:23.487997Z",
|
192 |
+
"iopub.status.busy": "2025-01-09T16:37:23.487694Z",
|
193 |
+
"iopub.status.idle": "2025-01-09T16:37:24.301565Z",
|
194 |
+
"shell.execute_reply": "2025-01-09T16:37:24.300420Z",
|
195 |
+
"shell.execute_reply.started": "2025-01-09T16:37:23.487971Z"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"source": [
|
199 |
+
"def create_dataset_directories(base_dir=\"dataset\"):\n",
|
200 |
+
" os.makedirs(os.path.join(base_dir, \"t1\"), exist_ok=True)\n",
|
201 |
+
" os.makedirs(os.path.join(base_dir, \"t1ce\"), exist_ok=True)\n",
|
202 |
+
" os.makedirs(os.path.join(base_dir, \"t2\"), exist_ok=True)\n",
|
203 |
+
" os.makedirs(os.path.join(base_dir, \"flair\"), exist_ok=True)\n",
|
204 |
+
" os.makedirs(os.path.join(base_dir, \"seg\"), exist_ok=True)"
|
205 |
+
],
|
206 |
+
"outputs": [],
|
207 |
+
"execution_count": null
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "code",
|
211 |
+
"metadata": {},
|
212 |
+
"source": [
|
213 |
+
"create_dataset_directories('dataset')\n",
|
214 |
+
"# Save the stress because the directory already exists"
|
215 |
+
],
|
216 |
+
"outputs": [],
|
217 |
+
"execution_count": null
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"cell_type": "code",
|
221 |
+
"metadata": {
|
222 |
+
"execution": {
|
223 |
+
"iopub.execute_input": "2025-01-09T16:37:51.309665Z",
|
224 |
+
"iopub.status.busy": "2025-01-09T16:37:51.309191Z",
|
225 |
+
"iopub.status.idle": "2025-01-09T16:39:04.326289Z",
|
226 |
+
"shell.execute_reply": "2025-01-09T16:39:04.325310Z",
|
227 |
+
"shell.execute_reply.started": "2025-01-09T16:37:51.309625Z"
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"source": [
|
231 |
+
"images_saved = 0\n",
|
232 |
+
"images = {}\n",
|
233 |
+
"image_slice = {}\n",
|
234 |
+
"\n",
|
235 |
+
"save_limit = 5000\n",
|
236 |
+
"\n",
|
237 |
+
"for i in (range(len(image_path['seg']))):\n",
|
238 |
+
" \n",
|
239 |
+
" for name in image_path:\n",
|
240 |
+
" images[name] = load_image(image_path[name][i])\n",
|
241 |
+
"\n",
|
242 |
+
" for j in range(155):\n",
|
243 |
+
" for name in images:\n",
|
244 |
+
" image_slice[name] = images[name][:, :, j]\n",
|
245 |
+
" image_slice[name] = ccentre(image_slice[name], 128, 128)\n",
|
246 |
+
"\n",
|
247 |
+
" if image_slice['seg'].max() > 0:\n",
|
248 |
+
" for name in ['t1', 't2', 't1ce', 'flair']:\n",
|
249 |
+
" image_slice[name] = normalize(image_slice[name])\n",
|
250 |
+
"\n",
|
251 |
+
" for name in image_slice:\n",
|
252 |
+
" np.save(f'dataset/{name}/image_{images_saved}.npy', image_slice[name])\n",
|
253 |
+
"\n",
|
254 |
+
" images_saved += 1\n",
|
255 |
+
"\n",
|
256 |
+
" if images_saved == save_limit:\n",
|
257 |
+
" break\n",
|
258 |
+
"\n",
|
259 |
+
" if images_saved == save_limit:\n",
|
260 |
+
" break"
|
261 |
+
],
|
262 |
+
"outputs": [],
|
263 |
+
"execution_count": null
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"metadata": {
|
268 |
+
"execution": {
|
269 |
+
"iopub.execute_input": "2025-01-09T16:40:00.898802Z",
|
270 |
+
"iopub.status.busy": "2025-01-09T16:40:00.898500Z",
|
271 |
+
"iopub.status.idle": "2025-01-09T16:40:00.902420Z",
|
272 |
+
"shell.execute_reply": "2025-01-09T16:40:00.901607Z",
|
273 |
+
"shell.execute_reply.started": "2025-01-09T16:40:00.898781Z"
|
274 |
+
}
|
275 |
+
},
|
276 |
+
"source": [
|
277 |
+
"# SOME BASIC IMAGE VISUALIZATIONS"
|
278 |
+
],
|
279 |
+
"outputs": [],
|
280 |
+
"execution_count": null
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"metadata": {
|
285 |
+
"execution": {
|
286 |
+
"iopub.execute_input": "2025-01-09T16:40:06.557314Z",
|
287 |
+
"iopub.status.busy": "2025-01-09T16:40:06.556901Z",
|
288 |
+
"iopub.status.idle": "2025-01-09T16:40:07.667075Z",
|
289 |
+
"shell.execute_reply": "2025-01-09T16:40:07.666168Z",
|
290 |
+
"shell.execute_reply.started": "2025-01-09T16:40:06.557279Z"
|
291 |
+
}
|
292 |
+
},
|
293 |
+
"source": [
|
294 |
+
"fig = plt.figure(figsize = (24, 15))\n",
|
295 |
+
"\n",
|
296 |
+
"plt.subplot(1, 5, 1)\n",
|
297 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap='bone')\n",
|
298 |
+
"plt.title('Original')\n",
|
299 |
+
"\n",
|
300 |
+
"plt.subplot(1, 5, 2)\n",
|
301 |
+
"plt.imshow(np.load('dataset/seg/image_25.npy'), cmap='bone')\n",
|
302 |
+
"plt.title('Segment')\n",
|
303 |
+
"\n",
|
304 |
+
"plt.subplot(1, 5, 3)\n",
|
305 |
+
"plt.imshow(np.load('dataset/t1/image_25.npy'), cmap='bone')\n",
|
306 |
+
"plt.title('T1')\n",
|
307 |
+
"\n",
|
308 |
+
"plt.subplot(1, 5, 4)\n",
|
309 |
+
"plt.imshow(np.load('dataset/t1ce/image_25.npy'), cmap='bone')\n",
|
310 |
+
"plt.title('T1CE')\n",
|
311 |
+
"\n",
|
312 |
+
"plt.subplot(1, 5, 5)\n",
|
313 |
+
"plt.imshow(np.load('dataset/t2/image_25.npy'), cmap='bone')\n",
|
314 |
+
"plt.title('T2')"
|
315 |
+
],
|
316 |
+
"outputs": [],
|
317 |
+
"execution_count": null
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"metadata": {
|
322 |
+
"execution": {
|
323 |
+
"iopub.execute_input": "2025-01-09T16:40:14.432473Z",
|
324 |
+
"iopub.status.busy": "2025-01-09T16:40:14.432179Z",
|
325 |
+
"iopub.status.idle": "2025-01-09T16:40:14.436037Z",
|
326 |
+
"shell.execute_reply": "2025-01-09T16:40:14.435102Z",
|
327 |
+
"shell.execute_reply.started": "2025-01-09T16:40:14.432449Z"
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"source": [
|
331 |
+
"# WITH SOME COLOUR..."
|
332 |
+
],
|
333 |
+
"outputs": [],
|
334 |
+
"execution_count": null
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "code",
|
338 |
+
"metadata": {
|
339 |
+
"execution": {
|
340 |
+
"iopub.execute_input": "2025-01-09T16:40:15.200141Z",
|
341 |
+
"iopub.status.busy": "2025-01-09T16:40:15.199879Z",
|
342 |
+
"iopub.status.idle": "2025-01-09T16:40:16.473796Z",
|
343 |
+
"shell.execute_reply": "2025-01-09T16:40:16.472822Z",
|
344 |
+
"shell.execute_reply.started": "2025-01-09T16:40:15.200120Z"
|
345 |
+
}
|
346 |
+
},
|
347 |
+
"source": [
|
348 |
+
"fig = plt.figure(figsize = (24, 15))\n",
|
349 |
+
"\n",
|
350 |
+
"plt.subplot(1, 5, 1)\n",
|
351 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap = 'bone')\n",
|
352 |
+
"plt.title('Original')\n",
|
353 |
+
"\n",
|
354 |
+
"plt.subplot(1, 5, 2)\n",
|
355 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap = 'bone')\n",
|
356 |
+
"plt.imshow(np.load('dataset/seg/image_25.npy'), alpha=0.5, cmap='nipy_spectral')\n",
|
357 |
+
"plt.title('Segment')\n",
|
358 |
+
"\n",
|
359 |
+
"plt.subplot(1, 5, 3)\n",
|
360 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap = 'bone')\n",
|
361 |
+
"plt.imshow(np.load('dataset/t1/image_25.npy'), alpha=0.5, cmap='nipy_spectral')\n",
|
362 |
+
"plt.title('T1')\n",
|
363 |
+
"\n",
|
364 |
+
"plt.subplot(1, 5, 4)\n",
|
365 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap = 'bone')\n",
|
366 |
+
"plt.imshow(np.load('dataset/t1ce/image_25.npy'), alpha=0.5, cmap='nipy_spectral')\n",
|
367 |
+
"plt.title('T1CE')\n",
|
368 |
+
"\n",
|
369 |
+
"plt.subplot(1, 5, 5)\n",
|
370 |
+
"plt.imshow(np.load('dataset/flair/image_25.npy'), cmap = 'bone')\n",
|
371 |
+
"plt.imshow(np.load('dataset/t2/image_25.npy'), alpha=0.5, cmap='nipy_spectral')\n",
|
372 |
+
"plt.title('T2')"
|
373 |
+
],
|
374 |
+
"outputs": [],
|
375 |
+
"execution_count": null
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"metadata": {
|
380 |
+
"execution": {
|
381 |
+
"iopub.execute_input": "2025-01-09T16:40:47.809814Z",
|
382 |
+
"iopub.status.busy": "2025-01-09T16:40:47.809476Z",
|
383 |
+
"iopub.status.idle": "2025-01-09T16:40:47.817498Z",
|
384 |
+
"shell.execute_reply": "2025-01-09T16:40:47.816414Z",
|
385 |
+
"shell.execute_reply.started": "2025-01-09T16:40:47.809789Z"
|
386 |
+
}
|
387 |
+
},
|
388 |
+
"source": [
|
389 |
+
"class DatasetGenerator(Dataset):\n",
|
390 |
+
" def __init__(self, datapath='dataset/', augmentation=None):\n",
|
391 |
+
" self.augmentation = augmentation\n",
|
392 |
+
"\n",
|
393 |
+
" self.folderpaths = {\n",
|
394 |
+
" 'mask': os.path.join(datapath, 'seg/'),\n",
|
395 |
+
" 't1': os.path.join(datapath, 't1/'),\n",
|
396 |
+
" 't1ce': os.path.join(datapath, 't1ce/'),\n",
|
397 |
+
" 't2': os.path.join(datapath, 't2/'),\n",
|
398 |
+
" 'flair': os.path.join(datapath, 'flair/'),\n",
|
399 |
+
" }\n",
|
400 |
+
"\n",
|
401 |
+
" def __getitem__(self, index):\n",
|
402 |
+
" images = {}\n",
|
403 |
+
"\n",
|
404 |
+
" for name in self.folderpaths:\n",
|
405 |
+
" images[name] = np.load(os.path.join(self.folderpaths[name], f'image_{index}.npy')).astype(np.float32)\n",
|
406 |
+
"\n",
|
407 |
+
" # print(f\"Loaded images for index {index}: {images.keys()}\")\n",
|
408 |
+
" \n",
|
409 |
+
" if self.augmentation:\n",
|
410 |
+
" augmented = self.augmentation(\n",
|
411 |
+
" image=images['flair'],\n",
|
412 |
+
" mask=images['mask'],\n",
|
413 |
+
" t1=images['t1'],\n",
|
414 |
+
" t1ce=images['t1ce'],\n",
|
415 |
+
" t2=images['t2']\n",
|
416 |
+
" )\n",
|
417 |
+
" # print(f\"Augmented images for index {index}: {augmented.keys()}\")\n",
|
418 |
+
" images['flair'] = augmented['image']\n",
|
419 |
+
" images['mask'] = augmented['mask']\n",
|
420 |
+
" images['t1'] = augmented['t1']\n",
|
421 |
+
" images['t1ce'] = augmented['t1ce']\n",
|
422 |
+
" images['t2'] = augmented['t2']\n",
|
423 |
+
"\n",
|
424 |
+
" for name in images:\n",
|
425 |
+
" images[name] = torch.from_numpy(images[name])\n",
|
426 |
+
"\n",
|
427 |
+
" # STACKING UP MULTI INPUTS\n",
|
428 |
+
" input = torch.stack([\n",
|
429 |
+
" images['t1'],\n",
|
430 |
+
" images['t1ce'],\n",
|
431 |
+
" images['t2'],\n",
|
432 |
+
" images['flair']\n",
|
433 |
+
" ], dim=0)\n",
|
434 |
+
"\n",
|
435 |
+
" images['mask'][images['mask'] == 4] = 3\n",
|
436 |
+
"\n",
|
437 |
+
" # ONE-HOT TRUTH LABEL ENCODING\n",
|
438 |
+
" images['mask'] = Functional.one_hot(\n",
|
439 |
+
" images['mask'].long().unsqueeze(0),\n",
|
440 |
+
" num_classes=4\n",
|
441 |
+
" ).permute(0, 3, 1, 2).contiguous().squeeze(0)\n",
|
442 |
+
"\n",
|
443 |
+
" return input.float(), images['mask'].long()\n",
|
444 |
+
"\n",
|
445 |
+
" def __len__(self):\n",
|
446 |
+
" return len(os.listdir(self.folderpaths['mask'])) - 1"
|
447 |
+
],
|
448 |
+
"outputs": [],
|
449 |
+
"execution_count": null
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"cell_type": "code",
|
453 |
+
"metadata": {
|
454 |
+
"execution": {
|
455 |
+
"iopub.execute_input": "2025-01-09T16:40:52.376269Z",
|
456 |
+
"iopub.status.busy": "2025-01-09T16:40:52.375862Z",
|
457 |
+
"iopub.status.idle": "2025-01-09T16:40:52.404458Z",
|
458 |
+
"shell.execute_reply": "2025-01-09T16:40:52.403612Z",
|
459 |
+
"shell.execute_reply.started": "2025-01-09T16:40:52.376234Z"
|
460 |
+
}
|
461 |
+
},
|
462 |
+
"source": [
|
463 |
+
"augmentation = Album.Compose([\n",
|
464 |
+
" Album.OneOf([\n",
|
465 |
+
" Album.ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03, p=0.5),\n",
|
466 |
+
" Album.GridDistortion(p=0.5),\n",
|
467 |
+
" Album.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=0.5)\n",
|
468 |
+
"\n",
|
469 |
+
" ], p=0.8),\n",
|
470 |
+
" Album.RandomBrightnessContrast(p=0.8),\n",
|
471 |
+
"\n",
|
472 |
+
" # Added classes for enhanced data augmentations\n",
|
473 |
+
" #Album.Rotate(limit=45, p=0.8),\n",
|
474 |
+
" #Album.HorizontalFlip(p=0.8),\n",
|
475 |
+
" #Album.VerticalFlip(p=0.8),\n",
|
476 |
+
" #Album.GaussNoise(p=0.5)\n",
|
477 |
+
"\n",
|
478 |
+
"], additional_targets={\n",
|
479 |
+
" 't1': 'image',\n",
|
480 |
+
" 't1ce': 'image',\n",
|
481 |
+
" 't2': 'image'\n",
|
482 |
+
"})\n",
|
483 |
+
"\n",
|
484 |
+
"\n",
|
485 |
+
"valid_test_dataset = DatasetGenerator(datapath='dataset/', augmentation=None)\n",
|
486 |
+
"train_dataset = DatasetGenerator(datapath='dataset/', augmentation=augmentation)\n",
|
487 |
+
"\n",
|
488 |
+
"# USING A 4:1:1 train-validation-test\n",
|
489 |
+
"train_length = int(0.6 * len(valid_test_dataset))\n",
|
490 |
+
"valid_length = int(0.2 * len(valid_test_dataset))\n",
|
491 |
+
"test_length = len(valid_test_dataset) - train_length - valid_length\n",
|
492 |
+
"\n",
|
493 |
+
"_, valid_dataset, test_dataset = torch.utils.data.random_split(\n",
|
494 |
+
" valid_test_dataset,\n",
|
495 |
+
" (train_length, valid_length, test_length), generator=torch.Generator().manual_seed(42)\n",
|
496 |
+
")\n",
|
497 |
+
"\n",
|
498 |
+
"train_dataset, _, _ = torch.utils.data.random_split(\n",
|
499 |
+
" train_dataset,\n",
|
500 |
+
" (train_length, valid_length, test_length), generator=torch.Generator().manual_seed(42)\n",
|
501 |
+
")"
|
502 |
+
],
|
503 |
+
"outputs": [],
|
504 |
+
"execution_count": null
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"cell_type": "code",
|
508 |
+
"metadata": {
|
509 |
+
"execution": {
|
510 |
+
"iopub.execute_input": "2025-01-09T16:41:01.714186Z",
|
511 |
+
"iopub.status.busy": "2025-01-09T16:41:01.713852Z",
|
512 |
+
"iopub.status.idle": "2025-01-09T16:41:01.719951Z",
|
513 |
+
"shell.execute_reply": "2025-01-09T16:41:01.719031Z",
|
514 |
+
"shell.execute_reply.started": "2025-01-09T16:41:01.714157Z"
|
515 |
+
}
|
516 |
+
},
|
517 |
+
"source": [
|
518 |
+
"train_loader = DataLoader(\n",
|
519 |
+
" train_dataset, batch_size=16,\n",
|
520 |
+
" num_workers=0, shuffle=True\n",
|
521 |
+
")\n",
|
522 |
+
"\n",
|
523 |
+
"valid_loader = DataLoader(\n",
|
524 |
+
" valid_dataset, batch_size=1,\n",
|
525 |
+
" num_workers=0, shuffle=True\n",
|
526 |
+
")\n",
|
527 |
+
"\n",
|
528 |
+
"test_loader = DataLoader(\n",
|
529 |
+
" test_dataset, batch_size=1,\n",
|
530 |
+
" num_workers=2, shuffle=True\n",
|
531 |
+
")"
|
532 |
+
],
|
533 |
+
"outputs": [],
|
534 |
+
"execution_count": null
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"cell_type": "code",
|
538 |
+
"metadata": {},
|
539 |
+
"source": [
|
540 |
+
"print(len(train_loader))\n",
|
541 |
+
"print(len(test_loader))\n",
|
542 |
+
"print(len(valid_loader))"
|
543 |
+
],
|
544 |
+
"outputs": [],
|
545 |
+
"execution_count": null
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"cell_type": "code",
|
549 |
+
"metadata": {
|
550 |
+
"execution": {
|
551 |
+
"iopub.execute_input": "2025-01-09T16:41:04.716492Z",
|
552 |
+
"iopub.status.busy": "2025-01-09T16:41:04.716204Z",
|
553 |
+
"iopub.status.idle": "2025-01-09T16:41:05.078974Z",
|
554 |
+
"shell.execute_reply": "2025-01-09T16:41:05.077171Z",
|
555 |
+
"shell.execute_reply.started": "2025-01-09T16:41:04.716472Z"
|
556 |
+
}
|
557 |
+
},
|
558 |
+
"source": [
|
559 |
+
"a, b = next(iter(train_loader))"
|
560 |
+
],
|
561 |
+
"outputs": [],
|
562 |
+
"execution_count": null
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"cell_type": "code",
|
566 |
+
"metadata": {
|
567 |
+
"execution": {
|
568 |
+
"iopub.execute_input": "2025-01-09T16:17:05.731880Z",
|
569 |
+
"iopub.status.busy": "2025-01-09T16:17:05.731375Z",
|
570 |
+
"iopub.status.idle": "2025-01-09T16:17:05.752440Z",
|
571 |
+
"shell.execute_reply": "2025-01-09T16:17:05.750970Z",
|
572 |
+
"shell.execute_reply.started": "2025-01-09T16:17:05.731822Z"
|
573 |
+
}
|
574 |
+
},
|
575 |
+
"source": [
|
576 |
+
"plt.imshow(a[0, 0], cmap='gray')"
|
577 |
+
],
|
578 |
+
"outputs": [],
|
579 |
+
"execution_count": null
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"metadata": {
|
584 |
+
"execution": {
|
585 |
+
"iopub.status.busy": "2025-01-09T15:44:19.497446Z",
|
586 |
+
"iopub.status.idle": "2025-01-09T15:44:19.497913Z",
|
587 |
+
"shell.execute_reply": "2025-01-09T15:44:19.497700Z"
|
588 |
+
}
|
589 |
+
},
|
590 |
+
"source": [
|
591 |
+
"temp = torch.argmax(b, 0)\n",
|
592 |
+
"plt.imshow(temp[0], cmap='gray')"
|
593 |
+
],
|
594 |
+
"outputs": [],
|
595 |
+
"execution_count": null
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"metadata": {},
|
600 |
+
"source": [
|
601 |
+
"! nvidia-smi"
|
602 |
+
],
|
603 |
+
"outputs": [],
|
604 |
+
"execution_count": null
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"metadata": {
|
609 |
+
"execution": {
|
610 |
+
"iopub.status.busy": "2025-01-09T15:44:19.498903Z",
|
611 |
+
"iopub.status.idle": "2025-01-09T15:44:19.499326Z",
|
612 |
+
"shell.execute_reply": "2025-01-09T15:44:19.499132Z"
|
613 |
+
}
|
614 |
+
},
|
615 |
+
"source": [
|
616 |
+
"# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n",
|
617 |
+
"print(torch.cuda.is_available())\n",
|
618 |
+
"print(f'* CUDA Device: {torch.cuda.get_device_name(\"cuda:0\")}\\n* Device Properties: {torch.cuda.get_device_properties(\"cuda:0\")}')\n",
|
619 |
+
"\n",
|
620 |
+
"# device = torch.cuda.device(0)\n",
|
621 |
+
"device = torch.device('cuda:0')"
|
622 |
+
],
|
623 |
+
"outputs": [],
|
624 |
+
"execution_count": null
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"cell_type": "code",
|
628 |
+
"metadata": {
|
629 |
+
"execution": {
|
630 |
+
"iopub.status.busy": "2025-01-09T15:44:19.500315Z",
|
631 |
+
"iopub.status.idle": "2025-01-09T15:44:19.500623Z",
|
632 |
+
"shell.execute_reply": "2025-01-09T15:44:19.500501Z"
|
633 |
+
}
|
634 |
+
},
|
635 |
+
"source": [
|
636 |
+
"import torch\n",
|
637 |
+
"import torch.nn as nn\n",
|
638 |
+
"\n",
|
639 |
+
"@torch.jit.script\n",
|
640 |
+
"def autocrop(encoder_layer: torch.Tensor, decoder_layer: torch.Tensor):\n",
|
641 |
+
" if encoder_layer.shape[2:] != decoder_layer.shape[2:]:\n",
|
642 |
+
" ds = encoder_layer.shape[2:]\n",
|
643 |
+
" es = decoder_layer.shape[2:]\n",
|
644 |
+
"\n",
|
645 |
+
" assert ds[0] >= es[0]\n",
|
646 |
+
" assert ds[1] >= es[1]\n",
|
647 |
+
"\n",
|
648 |
+
" # IN CASES OF 2D FORMAT\n",
|
649 |
+
" if encoder_layer.dim() == 4:\n",
|
650 |
+
" encoder_layer = encoder_layer[\n",
|
651 |
+
" :, :, \n",
|
652 |
+
" ((ds[0] - es[0]) // 2) : ((ds[0] + es[0]) // 2),\n",
|
653 |
+
" ((ds[1] - es[1]) // 2) : ((ds[1] + es[1]) // 2)\n",
|
654 |
+
" ]\n",
|
655 |
+
"\n",
|
656 |
+
" # IN CASES OF 3D FORMATS\n",
|
657 |
+
" elif encoder_layer.dim() == 5:\n",
|
658 |
+
" assert ds[2] >= es[2]\n",
|
659 |
+
"\n",
|
660 |
+
" encoder_layer = encoder_layer[\n",
|
661 |
+
" :, :, \n",
|
662 |
+
" ((ds[0] - es[0]) // 2) : ((ds[0] + es[0]) // 2),\n",
|
663 |
+
" ((ds[1] - es[1]) // 2) : ((ds[1] + es[1]) // 2),\n",
|
664 |
+
" ((ds[2] - es[2]) // 2) : ((ds[2] + es[2]) // 2)\n",
|
665 |
+
" ]\n",
|
666 |
+
"\n",
|
667 |
+
" return encoder_layer, decoder_layer\n",
|
668 |
+
" \n",
|
669 |
+
" else: \n",
|
670 |
+
" return encoder_layer, decoder_layer\n",
|
671 |
+
"\n",
|
672 |
+
"\n",
|
673 |
+
"def convolution_layer(dim: int):\n",
|
674 |
+
" if dim == 3: \n",
|
675 |
+
" return nn.Conv3d\n",
|
676 |
+
" elif dim == 2:\n",
|
677 |
+
" return nn.Conv2d\n",
|
678 |
+
"\n",
|
679 |
+
"\n",
|
680 |
+
"def get_convolution_layer(\n",
|
681 |
+
" in_channels: int, out_channels: int,\n",
|
682 |
+
" kernel_size: int = 3, stride: int = 1,\n",
|
683 |
+
" padding: int = 1, bias: bool = True, dim: int = 2):\n",
|
684 |
+
"\n",
|
685 |
+
" return convolution_layer(dim)(in_channels, out_channels, kernel_size=kernel_size,\n",
|
686 |
+
" stride=stride, padding=padding, bias=bias)\n",
|
687 |
+
"\n",
|
688 |
+
"\n",
|
689 |
+
"def convolution_transpose_layer(dim: int):\n",
|
690 |
+
" if dim == 3:\n",
|
691 |
+
" return nn.ConvTranspose3d\n",
|
692 |
+
" elif dim == 2:\n",
|
693 |
+
" return nn.ConvTranspose2d\n",
|
694 |
+
"\n",
|
695 |
+
"\n",
|
696 |
+
"def get_up_layer(\n",
|
697 |
+
" in_channels: int, out_channels: int,\n",
|
698 |
+
" kernel_size: int = 2, stride: int = 2,\n",
|
699 |
+
" dim: int = 3, up_mode: str = 'transposed'):\n",
|
700 |
+
"\n",
|
701 |
+
" if up_mode == 'transposed':\n",
|
702 |
+
" return convolution_transpose_layer(dim)(in_channels, out_channels, \n",
|
703 |
+
" kernel_size=kernel_size, stride=stride)\n",
|
704 |
+
" else:\n",
|
705 |
+
" return nn.Upsample(scale_factor=2.0, mode=up_mode)\n",
|
706 |
+
"\n",
|
707 |
+
"\n",
|
708 |
+
"def maxpool_layer(dim: int):\n",
|
709 |
+
" if dim == 3:\n",
|
710 |
+
" return nn.MaxPool3d\n",
|
711 |
+
" elif dim == 2:\n",
|
712 |
+
" return nn.MaxPool2d\n",
|
713 |
+
"\n",
|
714 |
+
"\n",
|
715 |
+
"def get_maxpool_layer(kernel_size: int = 2, stride: int = 2, padding: int = 0, dim: int = 2):\n",
|
716 |
+
" return maxpool_layer(dim=dim)(kernel_size=kernel_size, stride=stride, padding=padding)\n",
|
717 |
+
"\n",
|
718 |
+
"# LeakyReLU Problem\n",
|
719 |
+
"def get_activation(activation: str):\n",
|
720 |
+
" if activation == 'relu':\n",
|
721 |
+
" return nn.ReLU()\n",
|
722 |
+
" elif activation == 'leaky':\n",
|
723 |
+
" return nn.LeakyReLU(negative_slope=0.1)\n",
|
724 |
+
" elif activation == 'elu':\n",
|
725 |
+
" return nn.ELU()\n",
|
726 |
+
"\n",
|
727 |
+
"\n",
|
728 |
+
"def get_normalization(normalization: str, num_channels: int, dim: int):\n",
|
729 |
+
" if normalization == 'batch':\n",
|
730 |
+
" if dim == 3:\n",
|
731 |
+
" return nn.BatchNorm3d(num_channels)\n",
|
732 |
+
" elif dim == 2:\n",
|
733 |
+
" return nn.BatchNorm2d(num_channels)\n",
|
734 |
+
"\n",
|
735 |
+
" elif normalization == 'instance':\n",
|
736 |
+
" if dim == 3:\n",
|
737 |
+
" return nn.InstanceNorm3d(num_channels)\n",
|
738 |
+
" elif dim == 2:\n",
|
739 |
+
" return nn.InstanceNorm2d(num_channels)\n",
|
740 |
+
"\n",
|
741 |
+
" elif 'group' in normalization:\n",
|
742 |
+
" num_groups = int(normalization.partition('group')[-1])\n",
|
743 |
+
" return nn.GroupNorm(num_groups=num_groups, num_channels=num_channels)\n",
|
744 |
+
"\n",
|
745 |
+
"\n",
|
746 |
+
"class ConcatenateLayer(nn.Module):\n",
|
747 |
+
" def __init__(self):\n",
|
748 |
+
" super(ConcatenateLayer, self).__init__()\n",
|
749 |
+
"\n",
|
750 |
+
" def forward(self, layer_1, layer_2):\n",
|
751 |
+
" x = torch.cat((layer_1, layer_2), 1)\n",
|
752 |
+
"\n",
|
753 |
+
" return x\n",
|
754 |
+
"\n",
|
755 |
+
"\n",
|
756 |
+
"class DownBlock(nn.Module):\n",
|
757 |
+
" def __init__(\n",
|
758 |
+
" self, \n",
|
759 |
+
" in_channels: int,\n",
|
760 |
+
" out_channels: int, \n",
|
761 |
+
" pooling: bool = True,\n",
|
762 |
+
" activation: str = 'relu',\n",
|
763 |
+
" normalization: str = None,\n",
|
764 |
+
" dim: int = 2,\n",
|
765 |
+
" convolution_mode: str = 'same'):\n",
|
766 |
+
"\n",
|
767 |
+
" super().__init__()\n",
|
768 |
+
"\n",
|
769 |
+
" self.in_channels = in_channels\n",
|
770 |
+
" self.out_channels = out_channels\n",
|
771 |
+
" self.pooling = pooling\n",
|
772 |
+
" self.normalization = normalization\n",
|
773 |
+
"\n",
|
774 |
+
" if convolution_mode == 'same':\n",
|
775 |
+
" self.padding = 1\n",
|
776 |
+
" elif convolution_mode == 'valid':\n",
|
777 |
+
" self.padding = 0\n",
|
778 |
+
"\n",
|
779 |
+
" self.dim = dim\n",
|
780 |
+
" self.activation = activation\n",
|
781 |
+
"\n",
|
782 |
+
" # CONVOLUTION LAYERS\n",
|
783 |
+
" self.convolution1 = get_convolution_layer(\n",
|
784 |
+
" self.in_channels, self.out_channels, kernel_size=3,\n",
|
785 |
+
" stride=1, padding=self.padding, bias=True, dim=self.dim\n",
|
786 |
+
" )\n",
|
787 |
+
" self.convolution2 = get_convolution_layer(\n",
|
788 |
+
" self.out_channels, self.out_channels, kernel_size=3,\n",
|
789 |
+
" stride=1, padding=self.padding, bias=True, dim=self.dim\n",
|
790 |
+
" )\n",
|
791 |
+
"\n",
|
792 |
+
" # POOLING LAYER\n",
|
793 |
+
" if self.pooling:\n",
|
794 |
+
" self.pool = get_maxpool_layer(kernel_size=2, stride=2, padding=0, dim=self.dim)\n",
|
795 |
+
"\n",
|
796 |
+
" # ACTIVATION LAYER\n",
|
797 |
+
" self.activation1 = get_activation(self.activation)\n",
|
798 |
+
" self.activation2 = get_activation(self.activation)\n",
|
799 |
+
"\n",
|
800 |
+
" # NORMALIZATION LAYERS\n",
|
801 |
+
" if self.normalization:\n",
|
802 |
+
" self.normalization1 = get_normalization(\n",
|
803 |
+
" normalization=self.normalization, num_channels=self.out_channels,\n",
|
804 |
+
" dim=self.dim\n",
|
805 |
+
" )\n",
|
806 |
+
" self.normalization2 = get_normalization(\n",
|
807 |
+
" normalization=self.normalization, num_channels=self.out_channels,\n",
|
808 |
+
" dim=self.dim\n",
|
809 |
+
" )\n",
|
810 |
+
"\n",
|
811 |
+
" def forward(self, x):\n",
|
812 |
+
" y = self.convolution1(x)\n",
|
813 |
+
" y = self.activation1(y)\n",
|
814 |
+
"\n",
|
815 |
+
" if self.normalization:\n",
|
816 |
+
" y = self.normalization1(y)\n",
|
817 |
+
"\n",
|
818 |
+
" y = self.convolution2(y)\n",
|
819 |
+
" y = self.activation2(y)\n",
|
820 |
+
"\n",
|
821 |
+
" if self.normalization:\n",
|
822 |
+
" y = self.normalization2(y)\n",
|
823 |
+
"\n",
|
824 |
+
" before_pooling = y\n",
|
825 |
+
"\n",
|
826 |
+
" if self.pooling:\n",
|
827 |
+
" y = self.pool(y)\n",
|
828 |
+
"\n",
|
829 |
+
" return y, before_pooling\n",
|
830 |
+
"\n",
|
831 |
+
"\n",
|
832 |
+
"import torch\n",
|
833 |
+
"import torch.nn as nn\n",
|
834 |
+
"\n",
|
835 |
+
"class UpBlock(nn.Module):\n",
|
836 |
+
" def __init__(self,\n",
|
837 |
+
" in_channels: int,\n",
|
838 |
+
" out_channels: int,\n",
|
839 |
+
" activation: str = 'relu',\n",
|
840 |
+
" normalization: str = None,\n",
|
841 |
+
" dim: int = 3,\n",
|
842 |
+
" convolution_mode: str = 'same',\n",
|
843 |
+
" up_mode: str = 'transposed'):\n",
|
844 |
+
"\n",
|
845 |
+
" super().__init__()\n",
|
846 |
+
"\n",
|
847 |
+
" self.in_channels = in_channels\n",
|
848 |
+
" self.out_channels = out_channels\n",
|
849 |
+
" self.normalization = normalization\n",
|
850 |
+
"\n",
|
851 |
+
" if convolution_mode == 'same':\n",
|
852 |
+
" self.padding = 1\n",
|
853 |
+
" elif convolution_mode == 'valid':\n",
|
854 |
+
" self.padding = 0\n",
|
855 |
+
"\n",
|
856 |
+
" self.dim = dim\n",
|
857 |
+
" self.activation = activation\n",
|
858 |
+
" self.up_mode = up_mode\n",
|
859 |
+
"\n",
|
860 |
+
" # UP-CONVOLUTION/UP-SAMPLING LAYER\n",
|
861 |
+
" self.up = get_up_layer(\n",
|
862 |
+
" self.in_channels, self.out_channels, kernel_size=2,\n",
|
863 |
+
" stride=2, dim=self.dim, up_mode=self.up_mode\n",
|
864 |
+
" )\n",
|
865 |
+
"\n",
|
866 |
+
" self.convolution0 = get_convolution_layer(\n",
|
867 |
+
" self.out_channels, self.out_channels, kernel_size=1,\n",
|
868 |
+
" stride=1, padding=0, bias=True, dim=self.dim\n",
|
869 |
+
" )\n",
|
870 |
+
" self.convolution1 = get_convolution_layer(\n",
|
871 |
+
" 2 * self.out_channels, self.out_channels, kernel_size=3,\n",
|
872 |
+
" stride=1, padding=self.padding, bias=True, dim=self.dim\n",
|
873 |
+
" )\n",
|
874 |
+
" self.convolution2 = get_convolution_layer(\n",
|
875 |
+
" self.out_channels, self.out_channels, kernel_size=3,\n",
|
876 |
+
" stride=1, padding=self.padding, bias=True, dim=self.dim\n",
|
877 |
+
" )\n",
|
878 |
+
"\n",
|
879 |
+
" # ACTIVATION LAYERS\n",
|
880 |
+
" self.activation0 = get_activation(self.activation)\n",
|
881 |
+
" self.activation1 = get_activation(self.activation)\n",
|
882 |
+
" self.activation2 = get_activation(self.activation)\n",
|
883 |
+
"\n",
|
884 |
+
" # NORMALIZATION LAYERS\n",
|
885 |
+
" if self.normalization:\n",
|
886 |
+
" self.normalization0 = get_normalization(\n",
|
887 |
+
" normalization=self.normalization, num_channels=self.out_channels,\n",
|
888 |
+
" dim=self.dim\n",
|
889 |
+
" )\n",
|
890 |
+
" self.normalization1 = get_normalization(\n",
|
891 |
+
" normalization=self.normalization, num_channels=self.out_channels,\n",
|
892 |
+
" dim=self.dim\n",
|
893 |
+
" )\n",
|
894 |
+
" self.normalization2 = get_normalization(\n",
|
895 |
+
" normalization=self.normalization, num_channels=self.out_channels,\n",
|
896 |
+
" dim=self.dim\n",
|
897 |
+
" )\n",
|
898 |
+
"\n",
|
899 |
+
" self.concat = ConcatenateLayer()\n",
|
900 |
+
"\n",
|
901 |
+
" def forward(self, encoder_layer, decoder_layer):\n",
|
902 |
+
" up_layer = self.up(decoder_layer)\n",
|
903 |
+
" cropped_encoder_layer, dec_layer = autocrop(encoder_layer, up_layer)\n",
|
904 |
+
"\n",
|
905 |
+
" if self.up_mode != 'transposed':\n",
|
906 |
+
" up_layer = self.convolution0(up_layer)\n",
|
907 |
+
"\n",
|
908 |
+
" up_layer = self.convolution0(up_layer)\n",
|
909 |
+
"\n",
|
910 |
+
" if self.normalization:\n",
|
911 |
+
" up_layer = self.normalization0(up_layer)\n",
|
912 |
+
"\n",
|
913 |
+
" merged_layer = self.concat(up_layer, cropped_encoder_layer)\n",
|
914 |
+
"\n",
|
915 |
+
" y = self.convolution1(merged_layer)\n",
|
916 |
+
" y = self.activation1(y)\n",
|
917 |
+
"\n",
|
918 |
+
" if self.normalization:\n",
|
919 |
+
" y = self.normalization1(y)\n",
|
920 |
+
"\n",
|
921 |
+
" y = self.convolution2(y)\n",
|
922 |
+
" y = self.activation2(y)\n",
|
923 |
+
"\n",
|
924 |
+
" if self.normalization:\n",
|
925 |
+
" y = self.normalization2(y)\n",
|
926 |
+
"\n",
|
927 |
+
" return y\n",
|
928 |
+
"\n",
|
929 |
+
"\n",
|
930 |
+
"class UNet(nn.Module):\n",
|
931 |
+
" def __init__(\n",
|
932 |
+
" self,\n",
|
933 |
+
" in_channels: int = 1,\n",
|
934 |
+
" out_channels: int = 2,\n",
|
935 |
+
" n_blocks: int = 4,\n",
|
936 |
+
" start_filters: int = 32,\n",
|
937 |
+
" activation: str = 'relu',\n",
|
938 |
+
" normalization: str = 'batch',\n",
|
939 |
+
" convolution_mode: str = 'same',\n",
|
940 |
+
" dim: int = 2,\n",
|
941 |
+
" up_mode: str = 'transposed'):\n",
|
942 |
+
"\n",
|
943 |
+
" super().__init__()\n",
|
944 |
+
"\n",
|
945 |
+
" self.in_channels = in_channels\n",
|
946 |
+
" self.out_channels = out_channels\n",
|
947 |
+
" self.n_blocks = n_blocks\n",
|
948 |
+
" self.start_filters = start_filters\n",
|
949 |
+
" self.activation = activation\n",
|
950 |
+
" self.normalization = normalization\n",
|
951 |
+
" self.convolution_mode = convolution_mode\n",
|
952 |
+
" self.dim = dim\n",
|
953 |
+
" self.up_mode = up_mode\n",
|
954 |
+
"\n",
|
955 |
+
" self.down_blocks = []\n",
|
956 |
+
" self.up_blocks = []\n",
|
957 |
+
"\n",
|
958 |
+
" # ENCODER PATH CREATION\n",
|
959 |
+
" for i in range(self.n_blocks):\n",
|
960 |
+
" num_filters_in = self.in_channels if i == 0 else num_filters_out\n",
|
961 |
+
" num_filters_out = self.start_filters * (2 ** i)\n",
|
962 |
+
" pooling = True if i < self.n_blocks - 1 else False\n",
|
963 |
+
"\n",
|
964 |
+
" down_block = DownBlock(\n",
|
965 |
+
" in_channels=num_filters_in, out_channels=num_filters_out,\n",
|
966 |
+
" pooling=pooling, activation=self.activation,\n",
|
967 |
+
" normalization=self.normalization, convolution_mode=self.convolution_mode,\n",
|
968 |
+
" dim=self.dim\n",
|
969 |
+
" )\n",
|
970 |
+
"\n",
|
971 |
+
" self.down_blocks.append(down_block)\n",
|
972 |
+
"\n",
|
973 |
+
" # DECODER PATH CREATION (NEEDS ONLY N_BLOCKS-1)\n",
|
974 |
+
" for i in range(n_blocks - 1):\n",
|
975 |
+
" num_filters_in = num_filters_out\n",
|
976 |
+
" num_filters_out = num_filters_in // 2\n",
|
977 |
+
"\n",
|
978 |
+
" up_block = UpBlock(\n",
|
979 |
+
" in_channels=num_filters_in, out_channels=num_filters_out,\n",
|
980 |
+
" activation=self.activation, normalization=self.normalization,\n",
|
981 |
+
" convolution_mode=self.convolution_mode,\n",
|
982 |
+
" dim=self.dim, up_mode=self.up_mode\n",
|
983 |
+
" )\n",
|
984 |
+
"\n",
|
985 |
+
" self.up_blocks.append(up_block)\n",
|
986 |
+
"\n",
|
987 |
+
" # FINAL CONVOLUTION\n",
|
988 |
+
" self.convolution_final = get_convolution_layer(\n",
|
989 |
+
" num_filters_out, self.out_channels,\n",
|
990 |
+
" kernel_size=1, stride=1,\n",
|
991 |
+
" padding=0, bias=True, dim=self.dim\n",
|
992 |
+
" )\n",
|
993 |
+
"\n",
|
994 |
+
" # ADDING LIST OF MODULES TO CURRENT MODULE\n",
|
995 |
+
" self.down_blocks = nn.ModuleList(self.down_blocks)\n",
|
996 |
+
" self.up_blocks = nn.ModuleList(self.up_blocks)\n",
|
997 |
+
"\n",
|
998 |
+
" # WEIGHT INITIALIZATION\n",
|
999 |
+
" self.initialize_parameters()\n",
|
1000 |
+
"\n",
|
1001 |
+
" @staticmethod\n",
|
1002 |
+
" def weight_init(module, method, **kwargs):\n",
|
1003 |
+
" if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)):\n",
|
1004 |
+
" method(module.weight, **kwargs)\n",
|
1005 |
+
"\n",
|
1006 |
+
" @staticmethod\n",
|
1007 |
+
" def bias_init(module, method, **kwargs):\n",
|
1008 |
+
" if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)):\n",
|
1009 |
+
" method(module.bias, **kwargs)\n",
|
1010 |
+
"\n",
|
1011 |
+
" def initialize_parameters(self,\n",
|
1012 |
+
" method_weights=nn.init.xavier_uniform_,\n",
|
1013 |
+
" method_bias=nn.init.zeros_,\n",
|
1014 |
+
" kwargs_weights={},\n",
|
1015 |
+
" kwargs_bias={}):\n",
|
1016 |
+
"\n",
|
1017 |
+
" for module in self.modules():\n",
|
1018 |
+
" self.weight_init(module, method_weights, **kwargs_weights) # initialize weights\n",
|
1019 |
+
" self.bias_init(module, method_bias, **kwargs_bias) # initialize bias\n",
|
1020 |
+
"\n",
|
1021 |
+
" def forward(self, x: torch.tensor):\n",
|
1022 |
+
" encoder_output = []\n",
|
1023 |
+
"\n",
|
1024 |
+
" # ENCODER PATHWAY\n",
|
1025 |
+
" for module in self.down_blocks:\n",
|
1026 |
+
" x, before_pooling = module(x)\n",
|
1027 |
+
" encoder_output.append(before_pooling)\n",
|
1028 |
+
"\n",
|
1029 |
+
" # DECODER PATHWAY\n",
|
1030 |
+
" for i, module in enumerate(self.up_blocks):\n",
|
1031 |
+
" before_pool = encoder_output[-(i + 2)]\n",
|
1032 |
+
" x = module(before_pool, x)\n",
|
1033 |
+
"\n",
|
1034 |
+
" x = self.convolution_final(x)\n",
|
1035 |
+
"\n",
|
1036 |
+
" return x\n",
|
1037 |
+
"\n",
|
1038 |
+
" def __repr__(self):\n",
|
1039 |
+
" attributes = {attr_key: self.__dict__[attr_key] for attr_key in self.__dict__.keys() if '_' not in attr_key[0] and 'training' not in attr_key}\n",
|
1040 |
+
" d = {self.__class__.__name__: attributes}\n",
|
1041 |
+
"\n",
|
1042 |
+
" return f'{d}'"
|
1043 |
+
],
|
1044 |
+
"outputs": [],
|
1045 |
+
"execution_count": null
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"cell_type": "code",
|
1049 |
+
"metadata": {
|
1050 |
+
"execution": {
|
1051 |
+
"iopub.status.busy": "2025-01-09T15:44:19.501954Z",
|
1052 |
+
"iopub.status.idle": "2025-01-09T15:44:19.502387Z",
|
1053 |
+
"shell.execute_reply": "2025-01-09T15:44:19.502197Z"
|
1054 |
+
}
|
1055 |
+
},
|
1056 |
+
"source": [
|
1057 |
+
"MODEL = UNet(\n",
|
1058 |
+
" in_channels=4, out_channels=4,\n",
|
1059 |
+
" n_blocks=4, start_filters=32,\n",
|
1060 |
+
" activation='relu', normalization='batch',\n",
|
1061 |
+
" convolution_mode='same', dim=2\n",
|
1062 |
+
")"
|
1063 |
+
],
|
1064 |
+
"outputs": [],
|
1065 |
+
"execution_count": null
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"cell_type": "code",
|
1069 |
+
"metadata": {
|
1070 |
+
"execution": {
|
1071 |
+
"iopub.status.busy": "2025-01-09T15:44:19.503541Z",
|
1072 |
+
"iopub.status.idle": "2025-01-09T15:44:19.503975Z",
|
1073 |
+
"shell.execute_reply": "2025-01-09T15:44:19.503784Z"
|
1074 |
+
}
|
1075 |
+
},
|
1076 |
+
"source": [
|
1077 |
+
"background_channel = [0]\n",
|
1078 |
+
"\n",
|
1079 |
+
"dice_loss = smp.utils.losses.DiceLoss(activation='softmax2d')\n",
|
1080 |
+
"\n",
|
1081 |
+
"optimizer = torch.optim.Adam([\n",
|
1082 |
+
" dict(params=MODEL.parameters(), lr=0.0001)\n",
|
1083 |
+
"])\n",
|
1084 |
+
"\n",
|
1085 |
+
"metrics = [\n",
|
1086 |
+
" smp.utils.metrics.IoU(threshold=0.5, ignore_channels=background_channel, activation='softmax2d'),\n",
|
1087 |
+
" smp.utils.metrics.Fscore(ignore_channels=background_channel, activation='softmax2d'),\n",
|
1088 |
+
"]"
|
1089 |
+
],
|
1090 |
+
"outputs": [],
|
1091 |
+
"execution_count": null
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"cell_type": "code",
|
1095 |
+
"metadata": {
|
1096 |
+
"execution": {
|
1097 |
+
"iopub.status.busy": "2025-01-09T15:44:19.505175Z",
|
1098 |
+
"iopub.status.idle": "2025-01-09T15:44:19.505582Z",
|
1099 |
+
"shell.execute_reply": "2025-01-09T15:44:19.505396Z"
|
1100 |
+
}
|
1101 |
+
},
|
1102 |
+
"source": [
|
1103 |
+
"train_epoch = smp.utils.train.TrainEpoch(\n",
|
1104 |
+
" model=MODEL, loss=dice_loss,\n",
|
1105 |
+
" metrics=[], optimizer=optimizer,\n",
|
1106 |
+
" device=device, verbose=True\n",
|
1107 |
+
")\n",
|
1108 |
+
"\n",
|
1109 |
+
"valid_epoch = smp.utils.train.ValidEpoch(\n",
|
1110 |
+
" model=MODEL, loss=dice_loss,\n",
|
1111 |
+
" metrics=metrics, device=device,\n",
|
1112 |
+
" verbose=True\n",
|
1113 |
+
")\n",
|
1114 |
+
"\n",
|
1115 |
+
"max_dice_score = 0\n",
|
1116 |
+
"\n",
|
1117 |
+
"stats = {\n",
|
1118 |
+
" 'train_loss' : [],\n",
|
1119 |
+
" 'valid_loss' : [],\n",
|
1120 |
+
" 'fscore' : [],\n",
|
1121 |
+
" 'iou_score' : []\n",
|
1122 |
+
"}\n",
|
1123 |
+
"\n",
|
1124 |
+
"for i in range(50):\n",
|
1125 |
+
" print(f'\\n |--- EPOCH-{i} ---| ')\n",
|
1126 |
+
" train_logs = train_epoch.run(train_loader)\n",
|
1127 |
+
" valid_logs = valid_epoch.run(valid_loader)\n",
|
1128 |
+
" \n",
|
1129 |
+
" if max_dice_score < valid_logs['fscore']:\n",
|
1130 |
+
" max_dice_score = valid_logs['fscore']\n",
|
1131 |
+
" torch.save(MODEL.state_dict(), f'model/model.pth')\n",
|
1132 |
+
" \n",
|
1133 |
+
" print('model saved!')\n",
|
1134 |
+
" \n",
|
1135 |
+
" # loss statistics\n",
|
1136 |
+
" stats['train_loss'].append(train_logs['dice_loss'])\n",
|
1137 |
+
" stats['valid_loss'].append(valid_logs['dice_loss'])\n",
|
1138 |
+
" \n",
|
1139 |
+
" # metric statistics\n",
|
1140 |
+
" stats['fscore'].append(valid_logs['fscore'])\n",
|
1141 |
+
" stats['iou_score'].append(valid_logs['iou_score'])\n",
|
1142 |
+
" \n",
|
1143 |
+
" np.save(f'model/model.npy', stats)\n",
|
1144 |
+
" "
|
1145 |
+
],
|
1146 |
+
"outputs": [],
|
1147 |
+
"execution_count": null
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"cell_type": "code",
|
1151 |
+
"metadata": {},
|
1152 |
+
"source": [
|
1153 |
+
"STATS = np.load(f'model/model.npy', allow_pickle=True).item()\n",
|
1154 |
+
"plt.plot(STATS['train_loss'], label='train_loss')\n",
|
1155 |
+
"plt.plot(STATS['valid_loss'], label='valid_loss')\n",
|
1156 |
+
"\n",
|
1157 |
+
"plt.legend(loc='upper right')\n",
|
1158 |
+
"\n",
|
1159 |
+
"plt.xlabel('EPOCH')\n",
|
1160 |
+
"plt.ylabel('LOSS')\n",
|
1161 |
+
"\n",
|
1162 |
+
"plt.title('TRAIN & VALIDATION LOSS')"
|
1163 |
+
],
|
1164 |
+
"outputs": [],
|
1165 |
+
"execution_count": null
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"cell_type": "code",
|
1169 |
+
"metadata": {},
|
1170 |
+
"source": [
|
1171 |
+
"STATS = np.load(f'model/model.npy', allow_pickle=True).item()\n",
|
1172 |
+
"plt.plot(STATS['fscore'], label ='fscore')\n",
|
1173 |
+
"plt.legend(loc = \"lower right\")\n",
|
1174 |
+
"plt.ylabel('SCORE')\n",
|
1175 |
+
"plt.xlabel('EPOCH')\n",
|
1176 |
+
"plt.title('F_SCORE')\n",
|
1177 |
+
"\n",
|
1178 |
+
"plt.plot(STATS['iou_score'], label ='iou_score')\n",
|
1179 |
+
"plt.legend(loc = \"lower right\")\n",
|
1180 |
+
"plt.ylabel('SCORE')\n",
|
1181 |
+
"plt.xlabel('EPOCH')\n",
|
1182 |
+
"plt.title('IOU_SCORE')"
|
1183 |
+
],
|
1184 |
+
"outputs": [],
|
1185 |
+
"execution_count": null
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"cell_type": "code",
|
1189 |
+
"metadata": {},
|
1190 |
+
"source": [
|
1191 |
+
"MODEL.load_state_dict(torch.load('model/model.pth', weights_only=True))"
|
1192 |
+
],
|
1193 |
+
"outputs": [],
|
1194 |
+
"execution_count": null
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"cell_type": "code",
|
1198 |
+
"metadata": {},
|
1199 |
+
"source": [
|
1200 |
+
"with torch.no_grad():\n",
|
1201 |
+
" out = MODEL(a.cuda())"
|
1202 |
+
],
|
1203 |
+
"outputs": [],
|
1204 |
+
"execution_count": null
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"cell_type": "code",
|
1208 |
+
"metadata": {},
|
1209 |
+
"source": [
|
1210 |
+
"plt.figure(figsize = (18, 10))\n",
|
1211 |
+
"plt.subplot(1, 3, 1)\n",
|
1212 |
+
"plt.imshow(a[2, 0],cmap='bone')\n",
|
1213 |
+
"plt.title('Input Image')\n",
|
1214 |
+
"\n",
|
1215 |
+
"plt.subplot(1, 3, 2)\n",
|
1216 |
+
"plt.imshow(a[2, 0],cmap='bone')\n",
|
1217 |
+
"plt.imshow(out.cpu()[2, 0], alpha = 0.5, cmap = 'nipy_spectral')\n",
|
1218 |
+
"plt.title('Predicted Segmentation')\n",
|
1219 |
+
"\n",
|
1220 |
+
"plt.subplot(1, 3, 3)\n",
|
1221 |
+
"plt.imshow(out.cpu()[2, 0], cmap = 'bone')\n",
|
1222 |
+
"plt.title('Prediction')"
|
1223 |
+
],
|
1224 |
+
"outputs": [],
|
1225 |
+
"execution_count": null
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"cell_type": "code",
|
1229 |
+
"metadata": {},
|
1230 |
+
"source": [],
|
1231 |
+
"outputs": [],
|
1232 |
+
"execution_count": null
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"cell_type": "code",
|
1236 |
+
"metadata": {},
|
1237 |
+
"source": [
|
1238 |
+
"\n",
|
1239 |
+
"# Enhanced Data Augmentation\n",
|
1240 |
+
"from albumentations import Compose, RandomCrop, ElasticTransform, GridDistortion, OpticalDistortion, RandomBrightnessContrast, GaussNoise, Flip\n",
|
1241 |
+
"\n",
|
1242 |
+
"def get_augmentation_pipeline():\n",
|
1243 |
+
" return Compose([\n",
|
1244 |
+
" Flip(p=0.5),\n",
|
1245 |
+
" RandomCrop(height=128, width=128, p=0.5),\n",
|
1246 |
+
" ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03, p=0.5),\n",
|
1247 |
+
" GridDistortion(p=0.5),\n",
|
1248 |
+
" OpticalDistortion(p=0.5),\n",
|
1249 |
+
" GaussNoise(p=0.5),\n",
|
1250 |
+
" RandomBrightnessContrast(p=0.5)\n",
|
1251 |
+
" ])\n",
|
1252 |
+
"\n",
|
1253 |
+
"augmentation_pipeline = get_augmentation_pipeline()\n"
|
1254 |
+
],
|
1255 |
+
"outputs": [],
|
1256 |
+
"execution_count": null
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"cell_type": "code",
|
1260 |
+
"metadata": {},
|
1261 |
+
"source": [
|
1262 |
+
"\n",
|
1263 |
+
"# Switching to Attention U-Net / UNet++ with Pre-trained Encoders\n",
|
1264 |
+
"import segmentation_models_pytorch as smp\n",
|
1265 |
+
"\n",
|
1266 |
+
"# Define a UNet++ with a ResNet34 encoder pre-trained on ImageNet\n",
|
1267 |
+
"model = smp.UnetPlusPlus(\n",
|
1268 |
+
" encoder_name=\"resnet34\",\n",
|
1269 |
+
" encoder_weights=\"imagenet\",\n",
|
1270 |
+
" in_channels=4,\n",
|
1271 |
+
" classes=4\n",
|
1272 |
+
")\n"
|
1273 |
+
],
|
1274 |
+
"outputs": [],
|
1275 |
+
"execution_count": null
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"cell_type": "code",
|
1279 |
+
"metadata": {},
|
1280 |
+
"source": [
|
1281 |
+
"\n",
|
1282 |
+
"# Improved Loss Function\n",
|
1283 |
+
"import torch.nn as nn\n",
|
1284 |
+
"from segmentation_models_pytorch.losses import TverskyLoss\n",
|
1285 |
+
"\n",
|
1286 |
+
"# Combine Dice Loss and Tversky Loss\n",
|
1287 |
+
"class CombinedLoss(nn.Module):\n",
|
1288 |
+
" def __init__(self, alpha=0.5):\n",
|
1289 |
+
" super(CombinedLoss, self).__init__()\n",
|
1290 |
+
" self.dice_loss = smp.losses.DiceLoss(\"softmax\")\n",
|
1291 |
+
" self.tversky_loss = TverskyLoss(\"softmax\", alpha=0.7, beta=0.3)\n",
|
1292 |
+
" self.alpha = alpha\n",
|
1293 |
+
"\n",
|
1294 |
+
" def forward(self, y_pred, y_true):\n",
|
1295 |
+
" return self.alpha * self.dice_loss(y_pred, y_true) + (1 - self.alpha) * self.tversky_loss(y_pred, y_true)\n",
|
1296 |
+
"\n",
|
1297 |
+
"loss_fn = CombinedLoss()\n"
|
1298 |
+
],
|
1299 |
+
"outputs": [],
|
1300 |
+
"execution_count": null
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"cell_type": "code",
|
1304 |
+
"metadata": {},
|
1305 |
+
"source": [
|
1306 |
+
"from sklearn.svm._liblinear import train_wrap\n",
|
1307 |
+
"\n",
|
1308 |
+
"num_epochs = 50\n",
|
1309 |
+
"\n",
|
1310 |
+
"# Learning Rate Scheduling\n",
|
1311 |
+
"from torch.optim.lr_scheduler import CosineAnnealingLR\n",
|
1312 |
+
"\n",
|
1313 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)\n",
|
1314 |
+
"scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-5) # Cosine Annealing\n",
|
1315 |
+
"\n",
|
1316 |
+
"# Update the scheduler in each epoch\n",
|
1317 |
+
"for epoch in range(num_epochs):\n",
|
1318 |
+
" train_wrap(...) # Train your model for one epoch\n",
|
1319 |
+
" scheduler.step()\n"
|
1320 |
+
],
|
1321 |
+
"outputs": [],
|
1322 |
+
"execution_count": null
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"cell_type": "code",
|
1326 |
+
"metadata": {},
|
1327 |
+
"source": [
|
1328 |
+
"\n",
|
1329 |
+
"# Post-Processing with CRF\n",
|
1330 |
+
"import pydensecrf.densecrf as dcrf\n",
|
1331 |
+
"\n",
|
1332 |
+
"def apply_crf(prob_map, img):\n",
|
1333 |
+
" d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], 4) # 4 is the number of classes\n",
|
1334 |
+
" U = -np.log(prob_map)\n",
|
1335 |
+
" d.setUnaryEnergy(U)\n",
|
1336 |
+
"\n",
|
1337 |
+
" # Add pairwise terms\n",
|
1338 |
+
" d.addPairwiseGaussian(sxy=3, compat=3)\n",
|
1339 |
+
" d.addPairwiseBilateral(sxy=30, srgb=13, rgbim=img, compat=10)\n",
|
1340 |
+
"\n",
|
1341 |
+
" Q = d.inference(5) # Number of iterations\n",
|
1342 |
+
" \n",
|
1343 |
+
" return np.argmax(Q, axis=0).reshape((img.shape[0], img.shape[1]))\n"
|
1344 |
+
],
|
1345 |
+
"outputs": [],
|
1346 |
+
"execution_count": null
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"cell_type": "code",
|
1350 |
+
"metadata": {},
|
1351 |
+
"source": [
|
1352 |
+
"\n",
|
1353 |
+
"# Cross-Validation\n",
|
1354 |
+
"from sklearn.model_selection import KFold\n",
|
1355 |
+
"\n",
|
1356 |
+
"kf = KFold(n_splits=5)\n",
|
1357 |
+
"for train_idx, valid_idx in kf.split(dataset):\n",
|
1358 |
+
" train_data = Subset(dataset, train_idx)\n",
|
1359 |
+
" valid_data = Subset(dataset, valid_idx)\n",
|
1360 |
+
"\n",
|
1361 |
+
" train_loader = DataLoader(train_data, batch_size=16, shuffle=True)\n",
|
1362 |
+
" valid_loader = DataLoader(valid_data, batch_size=16, shuffle=False)\n",
|
1363 |
+
"\n",
|
1364 |
+
" train_model(train_loader, valid_loader)\n"
|
1365 |
+
],
|
1366 |
+
"outputs": [],
|
1367 |
+
"execution_count": null
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"cell_type": "code",
|
1371 |
+
"metadata": {},
|
1372 |
+
"source": [
|
1373 |
+
"\n",
|
1374 |
+
"# Ensemble Learning\n",
|
1375 |
+
"class EnsembleModel(nn.Module):\n",
|
1376 |
+
" def __init__(self, models):\n",
|
1377 |
+
" super(EnsembleModel, self).__init__()\n",
|
1378 |
+
" self.models = nn.ModuleList(models)\n",
|
1379 |
+
"\n",
|
1380 |
+
" def forward(self, x):\n",
|
1381 |
+
" outputs = [model(x) for model in self.models]\n",
|
1382 |
+
" return torch.mean(torch.stack(outputs), dim=0)\n",
|
1383 |
+
"\n",
|
1384 |
+
"# Combine multiple trained models\n",
|
1385 |
+
"models = [model1, model2, model3] # Pre-trained models\n",
|
1386 |
+
"ensemble_model = EnsembleModel(models)\n"
|
1387 |
+
],
|
1388 |
+
"outputs": [],
|
1389 |
+
"execution_count": null
|
1390 |
+
}
|
1391 |
+
],
|
1392 |
+
"metadata": {
|
1393 |
+
"kaggle": {
|
1394 |
+
"accelerator": "nvidiaTeslaT4",
|
1395 |
+
"dataSources": [
|
1396 |
+
{
|
1397 |
+
"datasetId": 723383,
|
1398 |
+
"sourceId": 1267593,
|
1399 |
+
"sourceType": "datasetVersion"
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"datasetId": 751906,
|
1403 |
+
"sourceId": 1299795,
|
1404 |
+
"sourceType": "datasetVersion"
|
1405 |
+
}
|
1406 |
+
],
|
1407 |
+
"dockerImageVersionId": 30823,
|
1408 |
+
"isGpuEnabled": true,
|
1409 |
+
"isInternetEnabled": true,
|
1410 |
+
"language": "python",
|
1411 |
+
"sourceType": "notebook"
|
1412 |
+
},
|
1413 |
+
"kernelspec": {
|
1414 |
+
"display_name": "Python 3",
|
1415 |
+
"language": "python",
|
1416 |
+
"name": "python3"
|
1417 |
+
},
|
1418 |
+
"language_info": {
|
1419 |
+
"codemirror_mode": {
|
1420 |
+
"name": "ipython",
|
1421 |
+
"version": 3
|
1422 |
+
},
|
1423 |
+
"file_extension": ".py",
|
1424 |
+
"mimetype": "text/x-python",
|
1425 |
+
"name": "python",
|
1426 |
+
"nbconvert_exporter": "python",
|
1427 |
+
"pygments_lexer": "ipython3",
|
1428 |
+
"version": "3.10.12"
|
1429 |
+
}
|
1430 |
+
},
|
1431 |
+
"nbformat": 4,
|
1432 |
+
"nbformat_minor": 4
|
1433 |
+
}
|
brats_scratch-temp.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
brats_scratch.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
links.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/model.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df6534f6cb7866692c00232c381826a053dd4bdd88127c3c4b26fcc24d41e387
|
3 |
+
size 5961
|
model/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2369e10b3b15fbc78f934c5173efe9b09f8e91d575b6abfaa326987d188b7ad0
|
3 |
+
size 7853934
|
pre_links.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pre_model/model.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a11df31cd0be24bf393c5c64a6add5004026176ae02ecaaca2ee8d8b735651b
|
3 |
+
size 24561
|
pre_model/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c029a6b882c7e96f3eac714d99dcc4066bb8cff4b1d5e584f2a8498fa38316ca
|
3 |
+
size 295128250
|
tests.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Suggestions to Improve BraTS U-Net Segmentation Pipeline
|
2 |
+
|
3 |
+
# 1. Enhanced Data Augmentation
|
4 |
+
from albumentations import Compose, RandomCrop, ElasticTransform, GridDistortion, OpticalDistortion, RandomBrightnessContrast, GaussianNoise, Flip
|
5 |
+
from sklearn.svm._liblinear import train
|
6 |
+
|
7 |
+
|
8 |
+
def get_augmentation_pipeline():
|
9 |
+
return Compose([
|
10 |
+
Flip(p=0.5),
|
11 |
+
RandomCrop(height=128, width=128, p=0.5),
|
12 |
+
ElasticTransform(alpha=120, sigma=120 * 0.05, alpha_affine=120 * 0.03, p=0.5),
|
13 |
+
GridDistortion(p=0.5),
|
14 |
+
OpticalDistortion(p=0.5),
|
15 |
+
GaussianNoise(p=0.5),
|
16 |
+
RandomBrightnessContrast(p=0.5)
|
17 |
+
])
|
18 |
+
|
19 |
+
augmentation_pipeline = get_augmentation_pipeline()
|
20 |
+
|
21 |
+
# Apply this pipeline to your dataset loader as part of preprocessing.
|
22 |
+
|
23 |
+
# 2. Switching to Attention U-Net / UNet++ with Pre-trained Encoders
|
24 |
+
import segmentation_models_pytorch as smp
|
25 |
+
|
26 |
+
# Define a UNet++ with a ResNet34 encoder pre-trained on ImageNet
|
27 |
+
model = smp.UnetPlusPlus(
|
28 |
+
encoder_name="resnet34", # Encoder architecture
|
29 |
+
encoder_weights="imagenet", # Use ImageNet pre-trained weights
|
30 |
+
in_channels=4, # Number of input channels (BraTS has 4 modalities)
|
31 |
+
classes=4 # Number of output classes
|
32 |
+
)
|
33 |
+
|
34 |
+
# 3. Improved Loss Function
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
from segmentation_models_pytorch.losses import TverskyLoss
|
38 |
+
|
39 |
+
# Combine Dice Loss and Tversky Loss
|
40 |
+
class CombinedLoss(nn.Module):
|
41 |
+
def __init__(self, alpha=0.5):
|
42 |
+
super(CombinedLoss, self).__init__()
|
43 |
+
self.dice_loss = smp.losses.DiceLoss("softmax")
|
44 |
+
self.tversky_loss = TverskyLoss("softmax", alpha=0.7, beta=0.3)
|
45 |
+
self.alpha = alpha
|
46 |
+
|
47 |
+
def forward(self, y_pred, y_true):
|
48 |
+
return self.alpha * self.dice_loss(y_pred, y_true) + (1 - self.alpha) * self.tversky_loss(y_pred, y_true)
|
49 |
+
|
50 |
+
loss_fn = CombinedLoss()
|
51 |
+
|
52 |
+
# 4. Learning Rate Scheduling
|
53 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
54 |
+
|
55 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
56 |
+
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=1e-5) # Cosine Annealing
|
57 |
+
|
58 |
+
# Update the scheduler in each epoch
|
59 |
+
for epoch in range(num_epochs):
|
60 |
+
train(...) # Train your model for one epoch
|
61 |
+
scheduler.step()
|
62 |
+
|
63 |
+
# 5. Post-Processing with CRF
|
64 |
+
import pydensecrf.densecrf as dcrf
|
65 |
+
|
66 |
+
def apply_crf(prob_map, img):
|
67 |
+
d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], 4) # 4 is the number of classes
|
68 |
+
U = -np.log(prob_map)
|
69 |
+
d.setUnaryEnergy(U)
|
70 |
+
|
71 |
+
# Add pairwise terms
|
72 |
+
d.addPairwiseGaussian(sxy=3, compat=3)
|
73 |
+
d.addPairwiseBilateral(sxy=30, srgb=13, rgbim=img, compat=10)
|
74 |
+
|
75 |
+
Q = d.inference(5) # Number of iterations
|
76 |
+
return np.argmax(Q, axis=0).reshape((img.shape[0], img.shape[1]))
|
77 |
+
|
78 |
+
# Apply this on your predicted probabilities
|
79 |
+
|
80 |
+
# 6. Cross-Validation
|
81 |
+
from sklearn.model_selection import KFold
|
82 |
+
|
83 |
+
kf = KFold(n_splits=5)
|
84 |
+
for train_idx, valid_idx in kf.split(dataset):
|
85 |
+
train_data = Subset(dataset, train_idx)
|
86 |
+
valid_data = Subset(dataset, valid_idx)
|
87 |
+
|
88 |
+
train_loader = DataLoader(train_data, batch_size=16, shuffle=True)
|
89 |
+
valid_loader = DataLoader(valid_data, batch_size=16, shuffle=False)
|
90 |
+
|
91 |
+
train_model(train_loader, valid_loader)
|
92 |
+
|
93 |
+
# 7. Ensemble Learning
|
94 |
+
class EnsembleModel(nn.Module):
|
95 |
+
def __init__(self, models):
|
96 |
+
super(EnsembleModel, self).__init__()
|
97 |
+
self.models = nn.ModuleList(models)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
outputs = [model(x) for model in self.models]
|
101 |
+
return torch.mean(torch.stack(outputs), dim=0)
|
102 |
+
|
103 |
+
# Combine multiple trained models
|
104 |
+
models = [model1, model2, model3] # Pre-trained models
|
105 |
+
ensemble_model = EnsembleModel(models)
|
106 |
+
|
107 |
+
# 8. Hyperparameter Tuning with Grid Search (Example)
|
108 |
+
from sklearn.model_selection import ParameterGrid
|
109 |
+
|
110 |
+
param_grid = {
|
111 |
+
'learning_rate': [1e-3, 1e-4],
|
112 |
+
'batch_size': [8, 16],
|
113 |
+
'loss_alpha': [0.5, 0.7]
|
114 |
+
}
|
115 |
+
|
116 |
+
for params in ParameterGrid(param_grid):
|
117 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=params['learning_rate'])
|
118 |
+
loss_fn = CombinedLoss(alpha=params['loss_alpha'])
|
119 |
+
train_loader = DataLoader(train_data, batch_size=params['batch_size'])
|
120 |
+
|
121 |
+
train_model(train_loader, valid_loader)
|