dariodipalma commited on
Commit
b2c08f7
·
1 Parent(s): d4a0435

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.34 +/- 21.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b3bcbc940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b3bcbc9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b3bcbca60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b3bcbcaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f4b3bcbcb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b3bcbcc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b3bcbcca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b3bcbcd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b3bcbcdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b3bcbce50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b3bcbcee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b3bcbcf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b3bcbe030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678294815909923455, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrtkjwfd7C74riUPHtf9TzXR+o8oUrMvQAAgD8AAIA/VtWxPnQ3BT+YWDO9Rs3AvqWNkz52FiW+AAAAAAAAAADmaQm959MVP6ckEb0y/8C+dgcMvR+QoTwAAAAAAAAAAACSpDwz1Ak/AL/2PIZFyr7wBnM95dzbOwAAAAAAAAAADXXnPZDRnD4+tC++0EKGvr55zrxlbB88AAAAAAAAAACaxSe8it9SPIqvhTwkCUi+TD7FvJo7hb0AAAAAAAAAAM1gND2uWYS6Y6WRtq0xkLEjJ406SOypNQAAgD8AAIA/zSYhPgV/bz7MUDi+t3Fgvr340bpp3qg8AAAAAAAAAAAaPue966sWP2KTND5hK5q+MtAyvZhr3zwAAAAAAAAAAGbi/7ulAkA+bcJgPNzFWb6mDL88aWCZuwAAAAAAAAAAM6/NPUL/uD/M7Q4/xDP8vR31Wrxa5vA9AAAAAAAAAABmGzK9UGgqP/540j0F78C+tgj+vPipxjwAAAAAAAAAAAAWOr3AgIU/mjuUvZRg574iuh69JgEsvQAAAAAAAAAAml0FvPqvAD+5Uig9raTPvrmKtDybOFy8AAAAAAAAAABNLOO9GotrPsu++DzKRIe+uu08u5WKxbsAAAAAAAAAAIAznD32fH26srZcu1udrbjrz0c7pRYCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8N3mjRNtb0CUhpRSlIwBbJRL/owBdJRHQJXlyevpyIZ1fZQoaAZoCWgPQwhDA7Fs5gBzQJSGlFKUaBVNBgFoFkdAleYZg5R0l3V9lChoBmgJaA9DCE+WWu93hnFAlIaUUpRoFU0RAWgWR0CV5k642CNCdX2UKGgGaAloD0MIxeI3hdWjcECUhpRSlGgVTUcBaBZHQJXmdh8Yyft1fZQoaAZoCWgPQwiOsRNewgtwQJSGlFKUaBVNDAFoFkdAlebKyjYZmHV9lChoBmgJaA9DCHnKaroe8HJAlIaUUpRoFUv6aBZHQJXm3GuLaVV1fZQoaAZoCWgPQwh1yThGMj1wQJSGlFKUaBVNGgFoFkdAleeRYzSCv3V9lChoBmgJaA9DCKfOo+J/T3BAlIaUUpRoFU0KAWgWR0CV6C/82rGSdX2UKGgGaAloD0MIRYE+kae2bUCUhpRSlGgVTTQBaBZHQJXoYdXDFZR1fZQoaAZoCWgPQwifrBiuzuFzQJSGlFKUaBVNGgFoFkdAlekxQBPsRnV9lChoBmgJaA9DCFQbnIj+EnBAlIaUUpRoFU0AAWgWR0CV6fqASWZ7dX2UKGgGaAloD0MIY2TJHAvWcECUhpRSlGgVTTcBaBZHQJXqAhTwUg11fZQoaAZoCWgPQwjqWRDKOxpwQJSGlFKUaBVNFwFoFkdAleslVxS5y3V9lChoBmgJaA9DCFgdOdLZy3JAlIaUUpRoFU0pAWgWR0CV63Yj0L+hdX2UKGgGaAloD0MIQFBu2/d+bUCUhpRSlGgVTQcBaBZHQJXsyjKxLTR1fZQoaAZoCWgPQwiSdw5l6LtyQJSGlFKUaBVNUwFoFkdAle1MKG+K0nV9lChoBmgJaA9DCDSitDd4t2xAlIaUUpRoFU0GAWgWR0CV7VaKDTScdX2UKGgGaAloD0MIgQhx5exvb0CUhpRSlGgVTTIBaBZHQJXtj7yhBZ91fZQoaAZoCWgPQwgzbmqg+Q5vQJSGlFKUaBVNGgFoFkdAle4aTSsr/nV9lChoBmgJaA9DCJ7RViVR/3JAlIaUUpRoFU0PAWgWR0CV7iE7GNrCdX2UKGgGaAloD0MIyeNp+YFIb0CUhpRSlGgVTSoBaBZHQJXuMFbFCLN1fZQoaAZoCWgPQwi688Rz9kNxQJSGlFKUaBVNAwFoFkdAle+Nke6qbXV9lChoBmgJaA9DCLqCbcRT7HJAlIaUUpRoFU1hAWgWR0CV8Hb48EFGdX2UKGgGaAloD0MI0ETY8DRPckCUhpRSlGgVTQMBaBZHQJXwlESdvsJ1fZQoaAZoCWgPQwhuUWaDTAlwQJSGlFKUaBVNWAFoFkdAlfEORLbpNnV9lChoBmgJaA9DCDAS2nJu4nJAlIaUUpRoFU0eAWgWR0CV8kiVjZtfdX2UKGgGaAloD0MIRztu+J2ScUCUhpRSlGgVTQMBaBZHQJXyt5HEuQJ1fZQoaAZoCWgPQwjkvP+PE+VQQJSGlFKUaBVLpmgWR0CV8vNFz+3pdX2UKGgGaAloD0MICMxDpvyncUCUhpRSlGgVTQsBaBZHQJXzU+JP69F1fZQoaAZoCWgPQwjyXrUy4QpwQJSGlFKUaBVNWwFoFkdAlfQwLux8lXV9lChoBmgJaA9DCDeOWIvPVm9AlIaUUpRoFU0BAWgWR0CV9N7fYSQHdX2UKGgGaAloD0MIlgfpKTLKckCUhpRSlGgVTRwBaBZHQJX1PhddE9d1fZQoaAZoCWgPQwh+q3XispJwQJSGlFKUaBVNCQFoFkdAlfVi1JDmbXV9lChoBmgJaA9DCAsKgzLNcHBAlIaUUpRoFUv6aBZHQJX1hOARTS91fZQoaAZoCWgPQwjv5T45ij1wQJSGlFKUaBVNKgFoFkdAlfYS97F85XV9lChoBmgJaA9DCLdCWI0l/ERAlIaUUpRoFUu9aBZHQJX2OWOZLIx1fZQoaAZoCWgPQwhxPJ8BNRNwQJSGlFKUaBVNSwFoFkdAlfeb4FiazHV9lChoBmgJaA9DCAEW+fVD0E1AlIaUUpRoFUvnaBZHQJX3x+lTFVF1fZQoaAZoCWgPQwhkrDb/bwBxQJSGlFKUaBVNHAFoFkdAlffRKxs2vXV9lChoBmgJaA9DCDATRUhdOnJAlIaUUpRoFU0BAWgWR0CWEhlWfbsXdX2UKGgGaAloD0MIl+ZWCCsIckCUhpRSlGgVS/NoFkdAlhJcbedkKHV9lChoBmgJaA9DCEvLSL0nwW9AlIaUUpRoFU0bAWgWR0CWErGXHBDYdX2UKGgGaAloD0MIoOHNGvxVcUCUhpRSlGgVTQgBaBZHQJYSx3KSxJN1fZQoaAZoCWgPQwia6sn8oyxyQJSGlFKUaBVNYwFoFkdAlhMRYV6/qXV9lChoBmgJaA9DCJ1IMNXMPXFAlIaUUpRoFUv7aBZHQJYUwmWt2cJ1fZQoaAZoCWgPQwgYsOQqluRwQJSGlFKUaBVL/2gWR0CWFXgGbCrMdX2UKGgGaAloD0MIbM1WXjLFckCUhpRSlGgVTScBaBZHQJYVq/8EV351fZQoaAZoCWgPQwjzkCkfQnNwQJSGlFKUaBVNHwFoFkdAlhaj0g8r7XV9lChoBmgJaA9DCBFTIoneAG5AlIaUUpRoFU0RAWgWR0CWFthCMPz4dX2UKGgGaAloD0MIUrgehavBckCUhpRSlGgVTTABaBZHQJYW/CaZx711fZQoaAZoCWgPQwiit3h4T+NwQJSGlFKUaBVNLQFoFkdAlhfEHQhOg3V9lChoBmgJaA9DCLpoyHiUg3FAlIaUUpRoFU0AAWgWR0CWGAEb5uZUdX2UKGgGaAloD0MI9fQR+EPwcECUhpRSlGgVTRkBaBZHQJYY2EUTL4h1fZQoaAZoCWgPQwiyoDAok4tyQJSGlFKUaBVNJgFoFkdAlhkpCKJl8XV9lChoBmgJaA9DCNuHvOWqQ3FAlIaUUpRoFUv7aBZHQJYa6GHpKSR1fZQoaAZoCWgPQwj9oZknVw5yQJSGlFKUaBVNGgFoFkdAlhtpt78ejnV9lChoBmgJaA9DCOnwEMZPHW1AlIaUUpRoFU0oAWgWR0CWG7NDc/MXdX2UKGgGaAloD0MIx9YzhKPjckCUhpRSlGgVTSsBaBZHQJYcQr1/UfB1fZQoaAZoCWgPQwh9QKAzqVlwQJSGlFKUaBVNMAFoFkdAlhxbP6be/HV9lChoBmgJaA9DCOKPos7c+m9AlIaUUpRoFUv3aBZHQJYcl6Uqx1R1fZQoaAZoCWgPQwipTZzcL+RxQJSGlFKUaBVNAAFoFkdAlh0IBmwqzHV9lChoBmgJaA9DCJV9VwR/F3JAlIaUUpRoFU0lAWgWR0CWHWzeGfwrdX2UKGgGaAloD0MI1eyBVuBDcECUhpRSlGgVS+9oFkdAlh2wJokAxXV9lChoBmgJaA9DCAwiUtMuT1ZAlIaUUpRoFU3oA2gWR0CWHcNjLB9DdX2UKGgGaAloD0MIkNyadFszUECUhpRSlGgVS9toFkdAlh4FwPy08nV9lChoBmgJaA9DCGA6rdsgZHNAlIaUUpRoFU0KAWgWR0CWHiTmnwXqdX2UKGgGaAloD0MIG2g+526wcECUhpRSlGgVTQoBaBZHQJYebUG3WnV1fZQoaAZoCWgPQwgyk6gX/AByQJSGlFKUaBVNFAFoFkdAlh+K+36RAHV9lChoBmgJaA9DCBoVONnGY3BAlIaUUpRoFU0AAWgWR0CWH9bJOnEVdX2UKGgGaAloD0MIxHqjVphPcECUhpRSlGgVS/1oFkdAliATiCJ40XV9lChoBmgJaA9DCG7eOCnMG3JAlIaUUpRoFUv6aBZHQJYh8U21lXl1fZQoaAZoCWgPQwhZaVIKOh5tQJSGlFKUaBVL+GgWR0CWIiqj8DSxdX2UKGgGaAloD0MIqG4u/rY/b0CUhpRSlGgVTRUBaBZHQJYiULRa5gB1fZQoaAZoCWgPQwgIrvIEgrNwQJSGlFKUaBVNAQFoFkdAliLkHY6GQHV9lChoBmgJaA9DCE1Ngjek5nJAlIaUUpRoFUv0aBZHQJYjSvwEyL11fZQoaAZoCWgPQwhRTx+B/1xzQJSGlFKUaBVNHgFoFkdAliQYkzGgjHV9lChoBmgJaA9DCLrZHyj3fHNAlIaUUpRoFUv6aBZHQJYkQd7v5QB1fZQoaAZoCWgPQwgLf4Y364lyQJSGlFKUaBVNCQFoFkdAliRxXKbKBHV9lChoBmgJaA9DCH089N3tXnBAlIaUUpRoFU0yAWgWR0CWJIEWIoE0dX2UKGgGaAloD0MItoKmJdZWb0CUhpRSlGgVS/VoFkdAliSPhZQpF3V9lChoBmgJaA9DCM0/+ibNTG9AlIaUUpRoFUvlaBZHQJYknRhMJyB1fZQoaAZoCWgPQwimgR/VMK9tQJSGlFKUaBVNHgFoFkdAliWnGOuJUHV9lChoBmgJaA9DCBr35jdMxG1AlIaUUpRoFU08AWgWR0CWJgP8Q7LddX2UKGgGaAloD0MI2QbuQJ1XckCUhpRSlGgVTRIBaBZHQJYm44//vOR1fZQoaAZoCWgPQwiUowBRsABvQJSGlFKUaBVNEwFoFkdAlieBY3eenXV9lChoBmgJaA9DCC/4NCdvfXBAlIaUUpRoFU1OAWgWR0CWKRFfReC1dX2UKGgGaAloD0MIMCqpExBVcECUhpRSlGgVS/toFkdAlilcir1dxHV9lChoBmgJaA9DCPgzvFkD6W9AlIaUUpRoFU0EAWgWR0CWKXltCRfXdX2UKGgGaAloD0MIUWfuIWFickCUhpRSlGgVTSkBaBZHQJYqWUjcEeR1fZQoaAZoCWgPQwjP86eN6s1uQJSGlFKUaBVL5GgWR0CWKtW1MM7VdX2UKGgGaAloD0MIvcgE/NqZckCUhpRSlGgVS/hoFkdAlisa0QbuMXV9lChoBmgJaA9DCJ3zUxxHH3FAlIaUUpRoFUv9aBZHQJYrYd6sySF1fZQoaAZoCWgPQwh8YTJVMCtQQJSGlFKUaBVLvmgWR0CWK42Rq46PdX2UKGgGaAloD0MIiWGHMak7cUCUhpRSlGgVTS0BaBZHQJYr2vC/Gl11fZQoaAZoCWgPQwgsSgnBaldwQJSGlFKUaBVL7WgWR0CWLITr3TNMdX2UKGgGaAloD0MI8l61MuF0bkCUhpRSlGgVTSIBaBZHQJYsr8Muvll1fZQoaAZoCWgPQwg2PL1SlsJuQJSGlFKUaBVNKgFoFkdAlizLULDyfHV9lChoBmgJaA9DCAmnBS/6/XBAlIaUUpRoFU0mAWgWR0CWLNsguAZsdX2UKGgGaAloD0MIxMw+j9GGbECUhpRSlGgVTYUBaBZHQJYtvdqL0jF1fZQoaAZoCWgPQwg1DYrmAQJwQJSGlFKUaBVNBwFoFkdAli4+hsZYP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc73602732e957e9b45d96ca7634da9b10a906eb52d36ac316e30b31d5340859
3
+ size 147392
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b3bcbc940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b3bcbc9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b3bcbca60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b3bcbcaf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4b3bcbcb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4b3bcbcc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b3bcbcca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b3bcbcd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4b3bcbcdc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b3bcbce50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b3bcbcee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b3bcbcf70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f4b3bcbe030>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678294815909923455,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrtkjwfd7C74riUPHtf9TzXR+o8oUrMvQAAgD8AAIA/VtWxPnQ3BT+YWDO9Rs3AvqWNkz52FiW+AAAAAAAAAADmaQm959MVP6ckEb0y/8C+dgcMvR+QoTwAAAAAAAAAAACSpDwz1Ak/AL/2PIZFyr7wBnM95dzbOwAAAAAAAAAADXXnPZDRnD4+tC++0EKGvr55zrxlbB88AAAAAAAAAACaxSe8it9SPIqvhTwkCUi+TD7FvJo7hb0AAAAAAAAAAM1gND2uWYS6Y6WRtq0xkLEjJ406SOypNQAAgD8AAIA/zSYhPgV/bz7MUDi+t3Fgvr340bpp3qg8AAAAAAAAAAAaPue966sWP2KTND5hK5q+MtAyvZhr3zwAAAAAAAAAAGbi/7ulAkA+bcJgPNzFWb6mDL88aWCZuwAAAAAAAAAAM6/NPUL/uD/M7Q4/xDP8vR31Wrxa5vA9AAAAAAAAAABmGzK9UGgqP/540j0F78C+tgj+vPipxjwAAAAAAAAAAAAWOr3AgIU/mjuUvZRg574iuh69JgEsvQAAAAAAAAAAml0FvPqvAD+5Uig9raTPvrmKtDybOFy8AAAAAAAAAABNLOO9GotrPsu++DzKRIe+uu08u5WKxbsAAAAAAAAAAIAznD32fH26srZcu1udrbjrz0c7pRYCOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVZxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8N3mjRNtb0CUhpRSlIwBbJRL/owBdJRHQJXlyevpyIZ1fZQoaAZoCWgPQwhDA7Fs5gBzQJSGlFKUaBVNBgFoFkdAleYZg5R0l3V9lChoBmgJaA9DCE+WWu93hnFAlIaUUpRoFU0RAWgWR0CV5k642CNCdX2UKGgGaAloD0MIxeI3hdWjcECUhpRSlGgVTUcBaBZHQJXmdh8Yyft1fZQoaAZoCWgPQwiOsRNewgtwQJSGlFKUaBVNDAFoFkdAlebKyjYZmHV9lChoBmgJaA9DCHnKaroe8HJAlIaUUpRoFUv6aBZHQJXm3GuLaVV1fZQoaAZoCWgPQwh1yThGMj1wQJSGlFKUaBVNGgFoFkdAleeRYzSCv3V9lChoBmgJaA9DCKfOo+J/T3BAlIaUUpRoFU0KAWgWR0CV6C/82rGSdX2UKGgGaAloD0MIRYE+kae2bUCUhpRSlGgVTTQBaBZHQJXoYdXDFZR1fZQoaAZoCWgPQwifrBiuzuFzQJSGlFKUaBVNGgFoFkdAlekxQBPsRnV9lChoBmgJaA9DCFQbnIj+EnBAlIaUUpRoFU0AAWgWR0CV6fqASWZ7dX2UKGgGaAloD0MIY2TJHAvWcECUhpRSlGgVTTcBaBZHQJXqAhTwUg11fZQoaAZoCWgPQwjqWRDKOxpwQJSGlFKUaBVNFwFoFkdAleslVxS5y3V9lChoBmgJaA9DCFgdOdLZy3JAlIaUUpRoFU0pAWgWR0CV63Yj0L+hdX2UKGgGaAloD0MIQFBu2/d+bUCUhpRSlGgVTQcBaBZHQJXsyjKxLTR1fZQoaAZoCWgPQwiSdw5l6LtyQJSGlFKUaBVNUwFoFkdAle1MKG+K0nV9lChoBmgJaA9DCDSitDd4t2xAlIaUUpRoFU0GAWgWR0CV7VaKDTScdX2UKGgGaAloD0MIgQhx5exvb0CUhpRSlGgVTTIBaBZHQJXtj7yhBZ91fZQoaAZoCWgPQwgzbmqg+Q5vQJSGlFKUaBVNGgFoFkdAle4aTSsr/nV9lChoBmgJaA9DCJ7RViVR/3JAlIaUUpRoFU0PAWgWR0CV7iE7GNrCdX2UKGgGaAloD0MIyeNp+YFIb0CUhpRSlGgVTSoBaBZHQJXuMFbFCLN1fZQoaAZoCWgPQwi688Rz9kNxQJSGlFKUaBVNAwFoFkdAle+Nke6qbXV9lChoBmgJaA9DCLqCbcRT7HJAlIaUUpRoFU1hAWgWR0CV8Hb48EFGdX2UKGgGaAloD0MI0ETY8DRPckCUhpRSlGgVTQMBaBZHQJXwlESdvsJ1fZQoaAZoCWgPQwhuUWaDTAlwQJSGlFKUaBVNWAFoFkdAlfEORLbpNnV9lChoBmgJaA9DCDAS2nJu4nJAlIaUUpRoFU0eAWgWR0CV8kiVjZtfdX2UKGgGaAloD0MIRztu+J2ScUCUhpRSlGgVTQMBaBZHQJXyt5HEuQJ1fZQoaAZoCWgPQwjkvP+PE+VQQJSGlFKUaBVLpmgWR0CV8vNFz+3pdX2UKGgGaAloD0MICMxDpvyncUCUhpRSlGgVTQsBaBZHQJXzU+JP69F1fZQoaAZoCWgPQwjyXrUy4QpwQJSGlFKUaBVNWwFoFkdAlfQwLux8lXV9lChoBmgJaA9DCDeOWIvPVm9AlIaUUpRoFU0BAWgWR0CV9N7fYSQHdX2UKGgGaAloD0MIlgfpKTLKckCUhpRSlGgVTRwBaBZHQJX1PhddE9d1fZQoaAZoCWgPQwh+q3XispJwQJSGlFKUaBVNCQFoFkdAlfVi1JDmbXV9lChoBmgJaA9DCAsKgzLNcHBAlIaUUpRoFUv6aBZHQJX1hOARTS91fZQoaAZoCWgPQwjv5T45ij1wQJSGlFKUaBVNKgFoFkdAlfYS97F85XV9lChoBmgJaA9DCLdCWI0l/ERAlIaUUpRoFUu9aBZHQJX2OWOZLIx1fZQoaAZoCWgPQwhxPJ8BNRNwQJSGlFKUaBVNSwFoFkdAlfeb4FiazHV9lChoBmgJaA9DCAEW+fVD0E1AlIaUUpRoFUvnaBZHQJX3x+lTFVF1fZQoaAZoCWgPQwhkrDb/bwBxQJSGlFKUaBVNHAFoFkdAlffRKxs2vXV9lChoBmgJaA9DCDATRUhdOnJAlIaUUpRoFU0BAWgWR0CWEhlWfbsXdX2UKGgGaAloD0MIl+ZWCCsIckCUhpRSlGgVS/NoFkdAlhJcbedkKHV9lChoBmgJaA9DCEvLSL0nwW9AlIaUUpRoFU0bAWgWR0CWErGXHBDYdX2UKGgGaAloD0MIoOHNGvxVcUCUhpRSlGgVTQgBaBZHQJYSx3KSxJN1fZQoaAZoCWgPQwia6sn8oyxyQJSGlFKUaBVNYwFoFkdAlhMRYV6/qXV9lChoBmgJaA9DCJ1IMNXMPXFAlIaUUpRoFUv7aBZHQJYUwmWt2cJ1fZQoaAZoCWgPQwgYsOQqluRwQJSGlFKUaBVL/2gWR0CWFXgGbCrMdX2UKGgGaAloD0MIbM1WXjLFckCUhpRSlGgVTScBaBZHQJYVq/8EV351fZQoaAZoCWgPQwjzkCkfQnNwQJSGlFKUaBVNHwFoFkdAlhaj0g8r7XV9lChoBmgJaA9DCBFTIoneAG5AlIaUUpRoFU0RAWgWR0CWFthCMPz4dX2UKGgGaAloD0MIUrgehavBckCUhpRSlGgVTTABaBZHQJYW/CaZx711fZQoaAZoCWgPQwiit3h4T+NwQJSGlFKUaBVNLQFoFkdAlhfEHQhOg3V9lChoBmgJaA9DCLpoyHiUg3FAlIaUUpRoFU0AAWgWR0CWGAEb5uZUdX2UKGgGaAloD0MI9fQR+EPwcECUhpRSlGgVTRkBaBZHQJYY2EUTL4h1fZQoaAZoCWgPQwiyoDAok4tyQJSGlFKUaBVNJgFoFkdAlhkpCKJl8XV9lChoBmgJaA9DCNuHvOWqQ3FAlIaUUpRoFUv7aBZHQJYa6GHpKSR1fZQoaAZoCWgPQwj9oZknVw5yQJSGlFKUaBVNGgFoFkdAlhtpt78ejnV9lChoBmgJaA9DCOnwEMZPHW1AlIaUUpRoFU0oAWgWR0CWG7NDc/MXdX2UKGgGaAloD0MIx9YzhKPjckCUhpRSlGgVTSsBaBZHQJYcQr1/UfB1fZQoaAZoCWgPQwh9QKAzqVlwQJSGlFKUaBVNMAFoFkdAlhxbP6be/HV9lChoBmgJaA9DCOKPos7c+m9AlIaUUpRoFUv3aBZHQJYcl6Uqx1R1fZQoaAZoCWgPQwipTZzcL+RxQJSGlFKUaBVNAAFoFkdAlh0IBmwqzHV9lChoBmgJaA9DCJV9VwR/F3JAlIaUUpRoFU0lAWgWR0CWHWzeGfwrdX2UKGgGaAloD0MI1eyBVuBDcECUhpRSlGgVS+9oFkdAlh2wJokAxXV9lChoBmgJaA9DCAwiUtMuT1ZAlIaUUpRoFU3oA2gWR0CWHcNjLB9DdX2UKGgGaAloD0MIkNyadFszUECUhpRSlGgVS9toFkdAlh4FwPy08nV9lChoBmgJaA9DCGA6rdsgZHNAlIaUUpRoFU0KAWgWR0CWHiTmnwXqdX2UKGgGaAloD0MIG2g+526wcECUhpRSlGgVTQoBaBZHQJYebUG3WnV1fZQoaAZoCWgPQwgyk6gX/AByQJSGlFKUaBVNFAFoFkdAlh+K+36RAHV9lChoBmgJaA9DCBoVONnGY3BAlIaUUpRoFU0AAWgWR0CWH9bJOnEVdX2UKGgGaAloD0MIxHqjVphPcECUhpRSlGgVS/1oFkdAliATiCJ40XV9lChoBmgJaA9DCG7eOCnMG3JAlIaUUpRoFUv6aBZHQJYh8U21lXl1fZQoaAZoCWgPQwhZaVIKOh5tQJSGlFKUaBVL+GgWR0CWIiqj8DSxdX2UKGgGaAloD0MIqG4u/rY/b0CUhpRSlGgVTRUBaBZHQJYiULRa5gB1fZQoaAZoCWgPQwgIrvIEgrNwQJSGlFKUaBVNAQFoFkdAliLkHY6GQHV9lChoBmgJaA9DCE1Ngjek5nJAlIaUUpRoFUv0aBZHQJYjSvwEyL11fZQoaAZoCWgPQwhRTx+B/1xzQJSGlFKUaBVNHgFoFkdAliQYkzGgjHV9lChoBmgJaA9DCLrZHyj3fHNAlIaUUpRoFUv6aBZHQJYkQd7v5QB1fZQoaAZoCWgPQwgLf4Y364lyQJSGlFKUaBVNCQFoFkdAliRxXKbKBHV9lChoBmgJaA9DCH089N3tXnBAlIaUUpRoFU0yAWgWR0CWJIEWIoE0dX2UKGgGaAloD0MItoKmJdZWb0CUhpRSlGgVS/VoFkdAliSPhZQpF3V9lChoBmgJaA9DCM0/+ibNTG9AlIaUUpRoFUvlaBZHQJYknRhMJyB1fZQoaAZoCWgPQwimgR/VMK9tQJSGlFKUaBVNHgFoFkdAliWnGOuJUHV9lChoBmgJaA9DCBr35jdMxG1AlIaUUpRoFU08AWgWR0CWJgP8Q7LddX2UKGgGaAloD0MI2QbuQJ1XckCUhpRSlGgVTRIBaBZHQJYm44//vOR1fZQoaAZoCWgPQwiUowBRsABvQJSGlFKUaBVNEwFoFkdAlieBY3eenXV9lChoBmgJaA9DCC/4NCdvfXBAlIaUUpRoFU1OAWgWR0CWKRFfReC1dX2UKGgGaAloD0MIMCqpExBVcECUhpRSlGgVS/toFkdAlilcir1dxHV9lChoBmgJaA9DCPgzvFkD6W9AlIaUUpRoFU0EAWgWR0CWKXltCRfXdX2UKGgGaAloD0MIUWfuIWFickCUhpRSlGgVTSkBaBZHQJYqWUjcEeR1fZQoaAZoCWgPQwjP86eN6s1uQJSGlFKUaBVL5GgWR0CWKtW1MM7VdX2UKGgGaAloD0MIvcgE/NqZckCUhpRSlGgVS/hoFkdAlisa0QbuMXV9lChoBmgJaA9DCJ3zUxxHH3FAlIaUUpRoFUv9aBZHQJYrYd6sySF1fZQoaAZoCWgPQwh8YTJVMCtQQJSGlFKUaBVLvmgWR0CWK42Rq46PdX2UKGgGaAloD0MIiWGHMak7cUCUhpRSlGgVTS0BaBZHQJYr2vC/Gl11fZQoaAZoCWgPQwgsSgnBaldwQJSGlFKUaBVL7WgWR0CWLITr3TNMdX2UKGgGaAloD0MI8l61MuF0bkCUhpRSlGgVTSIBaBZHQJYsr8Muvll1fZQoaAZoCWgPQwg2PL1SlsJuQJSGlFKUaBVNKgFoFkdAlizLULDyfHV9lChoBmgJaA9DCAmnBS/6/XBAlIaUUpRoFU0mAWgWR0CWLNsguAZsdX2UKGgGaAloD0MIxMw+j9GGbECUhpRSlGgVTYUBaBZHQJYtvdqL0jF1fZQoaAZoCWgPQwg1DYrmAQJwQJSGlFKUaBVNBwFoFkdAli4+hsZYP3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc465c062cd40bd7364fdd14eb5a451a9ed8e2e4898cfd7b98e28cf4e8c4b020
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b8e2bb3becb0fc89643e4b36c08ae745de886c89d795c8c7461e8940fb773f7
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (211 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.3404205404151, "std_reward": 21.342710952297896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T17:26:59.468063"}