Update README.md
Browse files
README.md
CHANGED
@@ -10,7 +10,6 @@ tags:
|
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
12 |
license: apache-2.0
|
13 |
-
---
|
14 |
model-index:
|
15 |
- name: danurahul/wav2vec2-large-xlsr-pa-IN
|
16 |
results:
|
@@ -25,7 +24,7 @@ model-index:
|
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
value: 54.86
|
28 |
-
|
29 |
# Wav2Vec2-Large-XLSR-53-Punjabi
|
30 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
31 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
@@ -50,15 +49,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
50 |
# Preprocessing the datasets.
|
51 |
# We need to read the aduio files as arrays
|
52 |
def speech_file_to_array_fn(batch):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
58 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
|
60 |
with torch.no_grad():
|
61 |
-
|
62 |
|
63 |
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
|
@@ -89,30 +88,30 @@ model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN")
|
|
89 |
|
90 |
model.to("cuda")
|
91 |
|
92 |
-
chars_to_ignore_regex = '[
|
93 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
94 |
|
95 |
# Preprocessing the datasets.
|
96 |
# We need to read the aduio files as arrays
|
97 |
def speech_file_to_array_fn(batch):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
104 |
|
105 |
# Preprocessing the datasets.
|
106 |
# We need to read the aduio files as arrays
|
107 |
def evaluate(batch):
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
118 |
|
|
|
10 |
- speech
|
11 |
- xlsr-fine-tuning-week
|
12 |
license: apache-2.0
|
|
|
13 |
model-index:
|
14 |
- name: danurahul/wav2vec2-large-xlsr-pa-IN
|
15 |
results:
|
|
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
value: 54.86
|
27 |
+
---
|
28 |
# Wav2Vec2-Large-XLSR-53-Punjabi
|
29 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
\\treturn batch
|
55 |
|
56 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
|
|
88 |
|
89 |
model.to("cuda")
|
90 |
|
91 |
+
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�]'
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
+
\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
98 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
99 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
+
\\treturn batch
|
101 |
|
102 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
103 |
|
104 |
# Preprocessing the datasets.
|
105 |
# We need to read the aduio files as arrays
|
106 |
def evaluate(batch):
|
107 |
+
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
108 |
|
109 |
+
\\twith torch.no_grad():
|
110 |
+
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
111 |
|
112 |
+
\\tpred_ids = torch.argmax(logits, dim=-1)
|
113 |
+
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
114 |
+
\\treturn batch
|
115 |
|
116 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
117 |
|