First PPO agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -178.15 +/- 62.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4bd2c648b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4bd2c64940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4bd2c649d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4bd2c64a60>", "_build": "<function ActorCriticPolicy._build at 0x7a4bd2c64af0>", "forward": "<function ActorCriticPolicy.forward at 0x7a4bd2c64b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4bd2c64c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4bd2c64ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a4bd2c64d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4bd2c64dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4bd2c64e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4bd2c64ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4bf878e300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709744147404366488, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3ZTr5cJSa8iNdHPlMwdL+qDkY9+OU2vgAAgD8AAIA/QKtHvlkzZz8CtPm9jtdIv1w/fb4d89a9AAAAAAAAAABaHWA+AjNCP0AHtD5J6U2/9R5hPvKA1D0AAAAAAAAAAG2qSD5PV2c9AVsAPh0+Lr/qlsS92sQHPQAAAAAAAAAAg5KRvvNOXD8P8iS/uihOvwavNz1WgGK+AAAAAAAAAAA6BEK+tnzuPjJOEb4NAHO/bq/BvcMhkb0AAAAAAAAAAG2OCb4DCb4/nD8Ov8SD2L3V4dk8QpsKvgAAAAAAAAAAGq89PZ1/nz+6C1A+G2UHvzndOzrBqZs9AAAAAAAAAACTaeo+pc6hPyP64T4Eb/W+11bQPuNdZT4AAAAAAAAAAGb8YT337Mo/U8VgPqr9dj39pNC9DTAWvgAAAAAAAAAAy13WvoNQXj8WKYW+AAFAvxtByr7+Btw9AAAAAAAAAADNBBo8RSuXP8UtCz6eZiS/PAdvvr/+MbwAAAAAAAAAAOYNIz/TfPo+LWArP9eeXb+9D4Q+kasjPgAAAAAAAAAA89GavYbSsj9GKNO+W391vparAD0Nf8O7AAAAAAAAAACzZHe9Ip+jP4BpC7+OBCe/PqhCPXUUajwAAAAAAAAAAA1d/71gr8A/1UNOvlupFr5+QC++3U5qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEja7FsHjZOMAWyUS2WMAXSUR0B3f/kS26TXdX2UKGgGR8BVnfmknCwbaAdLVWgIR0B3gEEMb3oLdX2UKGgGR8BZLCRfWtlqaAdLdmgIR0B3gJ6u4gA7dX2UKGgGR8BOpnNX5nDjaAdLX2gIR0B3gLL2YfGNdX2UKGgGR8BHJBY/3WWhaAdLTmgIR0B3g1qxkd3jdX2UKGgGR8BYNHWvr4WUaAdLd2gIR0B3hGVY6nzhdX2UKGgGR8BVA2n4wh4daAdLXmgIR0B3hJLUTcqOdX2UKGgGR8BSlgTZg5R1aAdLaWgIR0B3hJJ+UhV3dX2UKGgGR8BHQnw5NoJzaAdLVWgIR0B3hkhNdqtYdX2UKGgGR8BN7pJf6XSjaAdLXWgIR0B3h6AUcn3MdX2UKGgGR8BZLQSJ0nw5aAdLcWgIR0B3iIjW07bMdX2UKGgGR8BnhakO7QLNaAdLWGgIR0B3iObpeNT+dX2UKGgGR8BVOD1oQFs6aAdLZ2gIR0B3iQtUXHindX2UKGgGR8BjEy/fwZwXaAdLc2gIR0B3iY0YTCcgdX2UKGgGR8Bl81VJcxCZaAdLd2gIR0B3ifCk43m3dX2UKGgGR8BS10x20Re1aAdLUmgIR0B3if+vQnhLdX2UKGgGR8BeBtV/+bVjaAdLdmgIR0B3ikVTJhfCdX2UKGgGR8BJ8M6JZW7waAdLeGgIR0B3ikLmZE2HdX2UKGgGR8Bjpc9r433paAdLb2gIR0B3iof7rLQpdX2UKGgGR8BpeRZ8rqdIaAdLiGgIR0B3ituqFRHgdX2UKGgGR8BgTX2ugYgraAdLZmgIR0B3i8RQJokBdX2UKGgGR8BafTLB9Cu2aAdLb2gIR0B3jEF2V3UydX2UKGgGR8BT+/SpiqhlaAdLnGgIR0B3jPi1iONpdX2UKGgGR8BXUQFotcv/aAdLgGgIR0B3jWcvugHvdX2UKGgGR8BE0BWgezUraAdLTWgIR0B3jhanrIHUdX2UKGgGR8BYmq+FlCkXaAdLPmgIR0B3jk1+AmRedX2UKGgGR8BTTj5CWu5jaAdLUmgIR0B3jnOcDr7gdX2UKGgGR8BW9uGGmDUWaAdLZmgIR0B3jz3UQTVUdX2UKGgGR8BfYTkQwsXjaAdLYWgIR0B3kNaEBbOedX2UKGgGR8BTsyr5qM3qaAdLWWgIR0B3kc2FWXC1dX2UKGgGR8BZoHuNPxhEaAdLi2gIR0B3kpw97ngYdX2UKGgGR8BFaNf5ULlWaAdLYGgIR0B3kwTewcHXdX2UKGgGR8BDEiojv/ipaAdLXWgIR0B3k6RfWtlqdX2UKGgGR8BV5mtyPuG9aAdLTmgIR0B3lBCVrylOdX2UKGgGR8BQaFpGnXNDaAdLd2gIR0B3lGNYKYzBdX2UKGgGR8BUrX5rP+n7aAdLdWgIR0B3lI9s7+1jdX2UKGgGR8BKUr3bmEGraAdLYGgIR0B3lLhky1u0dX2UKGgGR8Bd8ndO6/ZeaAdLeGgIR0B3lPZFocrBdX2UKGgGR8BBfKrBCUosaAdLUWgIR0B3lg14xDb8dX2UKGgGR8BJ4X/o7muDaAdLbGgIR0B3lovcrRShdX2UKGgGR8A4HlANXo1UaAdLTGgIR0B3lzd69kBkdX2UKGgGR8BgapH09QoDaAdLb2gIR0B3ly3G4qgAdX2UKGgGR8BVHPf0mMOxaAdLZGgIR0B3l5IWgvlEdX2UKGgGR0ArMrwOOKfnaAdLcmgIR0B3mBByCFsYdX2UKGgGR8BJ3qs2eg+RaAdLbGgIR0B3mNoDgZTAdX2UKGgGR8BdPqBRQ79yaAdLUGgIR0B3mPjWCmMwdX2UKGgGR8BFbpOvdM0xaAdLYWgIR0B3mPh4t6HCdX2UKGgGR8BQWNvwVj7RaAdLSmgIR0B3mUZBLPD6dX2UKGgGR8BgGKVGCqZMaAdLZmgIR0B3mfR5TqB3dX2UKGgGR8BRyQssg+yJaAdLWWgIR0B3mhE0BOpLdX2UKGgGR8BX8cG9pRGdaAdLUmgIR0B3mhB+nZTRdX2UKGgGR8BY2NDMNc4YaAdLjmgIR0B3mhBSk0rLdX2UKGgGR8AzEiVB2OhkaAdLiWgIR0B3mlZW7voedX2UKGgGR8BSCT3Ehq0uaAdLamgIR0B3mxCOWBz4dX2UKGgGR8BU0N96Tnq3aAdLYmgIR0B3nQqLCN0edX2UKGgGR8BO7YQJ5VwQaAdLUWgIR0B3nS1JDmbLdX2UKGgGR8BdP42bXpW4aAdLVGgIR0B3nW8K5TZQdX2UKGgGR8BdZag7HQyAaAdLVGgIR0B3nfCuU2UCdX2UKGgGR8BRACtJWeYlaAdLUGgIR0B3njtrsSkCdX2UKGgGR8BS4hBRhttRaAdLSGgIR0B3ntl05lvqdX2UKGgGR8BUepoTPBznaAdLTmgIR0B3n/QswtaqdX2UKGgGR8BYHMOskpqiaAdLfmgIR0B3oGQQtjCpdX2UKGgGR8BQfLj94u9OaAdLV2gIR0B3oG9TP0I1dX2UKGgGR8BS7YvexfOVaAdLXGgIR0B3oLNiYsundX2UKGgGR8BY4bsByS3caAdLT2gIR0B3oTLr5ZbIdX2UKGgGR8BVMJaA4GUwaAdLUWgIR0B3oWay8jA0dX2UKGgGR8BPzZof0VafaAdLXmgIR0B3om+zt1IRdX2UKGgGR8BSrZIDoyKvaAdLQmgIR0B3oz2GqPwNdX2UKGgGR8BxNLcXWOIZaAdLZGgIR0B3o3uSfUWmdX2UKGgGR8BQgr6UJOWTaAdLbmgIR0B3o8FNcnmadX2UKGgGR8BSannU2DQJaAdLSmgIR0B3o9dxAB1cdX2UKGgGR8BUK6Eal1r7aAdLZ2gIR0B3pIaNuLrHdX2UKGgGR8BQ39tuUD+zaAdLU2gIR0B3pN6v7m+1dX2UKGgGR8BYoe4gA6uGaAdLWmgIR0B3ptaIN3GGdX2UKGgGR8BUvgSBbwBpaAdLRWgIR0B3pxARkEs8dX2UKGgGR8BOb4eDFqBVaAdLVWgIR0B3p2F0xM37dX2UKGgGR8BRhJS75Ec9aAdLamgIR0B3p2FFlTWHdX2UKGgGR8BaYJHuqm0maAdLXmgIR0B3qJYcNpdsdX2UKGgGR8BJvtD2JzkqaAdLY2gIR0B3qTyPMjeLdX2UKGgGR8BUvcL4N7SiaAdLamgIR0B3qZq59Vm0dX2UKGgGR8BWhAu7HyVfaAdLgmgIR0B3qc1UEPlNdX2UKGgGR8A3xTqB3A2yaAdLZGgIR0B3qgJ+lTFVdX2UKGgGR8BUzx4yGi5/aAdLYmgIR0B3quh11W8zdX2UKGgGR8BSmeM6zVtoaAdLW2gIR0B3q5moR7JGdX2UKGgGR8BTZY7muDBeaAdLY2gIR0B3rRSNwR5DdX2UKGgGR8BbWLGaQV9GaAdLRmgIR0B3rYDwH7gsdX2UKGgGR8BqNq15Sm65aAdLeGgIR0B3rd/QSi/PdX2UKGgGR8BRmWhIvrWzaAdLVWgIR0B3rlOfukULdX2UKGgGR8BYM194NZvDaAdLfGgIR0B3rn90ihWYdX2UKGgGR8BUVWFajesQaAdLVmgIR0B3rqJdjXnRdX2UKGgGR8BCEj3mFJxvaAdLimgIR0B3ryqyWzF/dX2UKGgGR8BOxOvdM0xeaAdLYmgIR0B3r+RQrMC+dX2UKGgGR8BVXgZflZHNaAdLWGgIR0B3sRFRYRukdX2UKGgGR8BQDnG4qgAZaAdLjGgIR0B3sU4//vORdX2UKGgGR8BU7JccENe/aAdLTGgIR0B3sfdk8RthdX2UKGgGR8BGPkgfU4JeaAdLeWgIR0B3s4150KZ2dX2UKGgGR8BQYM1XNke7aAdLbmgIR0B3s+CEpRXPdX2UKGgGR8BUFAdjoZAIaAdLSmgIR0B3tAvf0mMPdX2UKGgGR8BfwFTrE9+xaAdLXWgIR0B3tEdPtUn5dX2UKGgGR8BdhU7GNrCWaAdLT2gIR0B3tNuWKMvRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b098b33c9d7f1536643fd00c2a45b326d0fa7fdad049ed5bbe42a6b327ee57ad
|
3 |
+
size 147947
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a4bd2c648b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4bd2c64940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4bd2c649d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4bd2c64a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a4bd2c64af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a4bd2c64b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4bd2c64c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4bd2c64ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a4bd2c64d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4bd2c64dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4bd2c64e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4bd2c64ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a4bf878e300>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709744147404366488,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3ZTr5cJSa8iNdHPlMwdL+qDkY9+OU2vgAAgD8AAIA/QKtHvlkzZz8CtPm9jtdIv1w/fb4d89a9AAAAAAAAAABaHWA+AjNCP0AHtD5J6U2/9R5hPvKA1D0AAAAAAAAAAG2qSD5PV2c9AVsAPh0+Lr/qlsS92sQHPQAAAAAAAAAAg5KRvvNOXD8P8iS/uihOvwavNz1WgGK+AAAAAAAAAAA6BEK+tnzuPjJOEb4NAHO/bq/BvcMhkb0AAAAAAAAAAG2OCb4DCb4/nD8Ov8SD2L3V4dk8QpsKvgAAAAAAAAAAGq89PZ1/nz+6C1A+G2UHvzndOzrBqZs9AAAAAAAAAACTaeo+pc6hPyP64T4Eb/W+11bQPuNdZT4AAAAAAAAAAGb8YT337Mo/U8VgPqr9dj39pNC9DTAWvgAAAAAAAAAAy13WvoNQXj8WKYW+AAFAvxtByr7+Btw9AAAAAAAAAADNBBo8RSuXP8UtCz6eZiS/PAdvvr/+MbwAAAAAAAAAAOYNIz/TfPo+LWArP9eeXb+9D4Q+kasjPgAAAAAAAAAA89GavYbSsj9GKNO+W391vparAD0Nf8O7AAAAAAAAAACzZHe9Ip+jP4BpC7+OBCe/PqhCPXUUajwAAAAAAAAAAA1d/71gr8A/1UNOvlupFr5+QC++3U5qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEja7FsHjZOMAWyUS2WMAXSUR0B3f/kS26TXdX2UKGgGR8BVnfmknCwbaAdLVWgIR0B3gEEMb3oLdX2UKGgGR8BZLCRfWtlqaAdLdmgIR0B3gJ6u4gA7dX2UKGgGR8BOpnNX5nDjaAdLX2gIR0B3gLL2YfGNdX2UKGgGR8BHJBY/3WWhaAdLTmgIR0B3g1qxkd3jdX2UKGgGR8BYNHWvr4WUaAdLd2gIR0B3hGVY6nzhdX2UKGgGR8BVA2n4wh4daAdLXmgIR0B3hJLUTcqOdX2UKGgGR8BSlgTZg5R1aAdLaWgIR0B3hJJ+UhV3dX2UKGgGR8BHQnw5NoJzaAdLVWgIR0B3hkhNdqtYdX2UKGgGR8BN7pJf6XSjaAdLXWgIR0B3h6AUcn3MdX2UKGgGR8BZLQSJ0nw5aAdLcWgIR0B3iIjW07bMdX2UKGgGR8BnhakO7QLNaAdLWGgIR0B3iObpeNT+dX2UKGgGR8BVOD1oQFs6aAdLZ2gIR0B3iQtUXHindX2UKGgGR8BjEy/fwZwXaAdLc2gIR0B3iY0YTCcgdX2UKGgGR8Bl81VJcxCZaAdLd2gIR0B3ifCk43m3dX2UKGgGR8BS10x20Re1aAdLUmgIR0B3if+vQnhLdX2UKGgGR8BeBtV/+bVjaAdLdmgIR0B3ikVTJhfCdX2UKGgGR8BJ8M6JZW7waAdLeGgIR0B3ikLmZE2HdX2UKGgGR8Bjpc9r433paAdLb2gIR0B3iof7rLQpdX2UKGgGR8BpeRZ8rqdIaAdLiGgIR0B3ituqFRHgdX2UKGgGR8BgTX2ugYgraAdLZmgIR0B3i8RQJokBdX2UKGgGR8BafTLB9Cu2aAdLb2gIR0B3jEF2V3UydX2UKGgGR8BT+/SpiqhlaAdLnGgIR0B3jPi1iONpdX2UKGgGR8BXUQFotcv/aAdLgGgIR0B3jWcvugHvdX2UKGgGR8BE0BWgezUraAdLTWgIR0B3jhanrIHUdX2UKGgGR8BYmq+FlCkXaAdLPmgIR0B3jk1+AmRedX2UKGgGR8BTTj5CWu5jaAdLUmgIR0B3jnOcDr7gdX2UKGgGR8BW9uGGmDUWaAdLZmgIR0B3jz3UQTVUdX2UKGgGR8BfYTkQwsXjaAdLYWgIR0B3kNaEBbOedX2UKGgGR8BTsyr5qM3qaAdLWWgIR0B3kc2FWXC1dX2UKGgGR8BZoHuNPxhEaAdLi2gIR0B3kpw97ngYdX2UKGgGR8BFaNf5ULlWaAdLYGgIR0B3kwTewcHXdX2UKGgGR8BDEiojv/ipaAdLXWgIR0B3k6RfWtlqdX2UKGgGR8BV5mtyPuG9aAdLTmgIR0B3lBCVrylOdX2UKGgGR8BQaFpGnXNDaAdLd2gIR0B3lGNYKYzBdX2UKGgGR8BUrX5rP+n7aAdLdWgIR0B3lI9s7+1jdX2UKGgGR8BKUr3bmEGraAdLYGgIR0B3lLhky1u0dX2UKGgGR8Bd8ndO6/ZeaAdLeGgIR0B3lPZFocrBdX2UKGgGR8BBfKrBCUosaAdLUWgIR0B3lg14xDb8dX2UKGgGR8BJ4X/o7muDaAdLbGgIR0B3lovcrRShdX2UKGgGR8A4HlANXo1UaAdLTGgIR0B3lzd69kBkdX2UKGgGR8BgapH09QoDaAdLb2gIR0B3ly3G4qgAdX2UKGgGR8BVHPf0mMOxaAdLZGgIR0B3l5IWgvlEdX2UKGgGR0ArMrwOOKfnaAdLcmgIR0B3mBByCFsYdX2UKGgGR8BJ3qs2eg+RaAdLbGgIR0B3mNoDgZTAdX2UKGgGR8BdPqBRQ79yaAdLUGgIR0B3mPjWCmMwdX2UKGgGR8BFbpOvdM0xaAdLYWgIR0B3mPh4t6HCdX2UKGgGR8BQWNvwVj7RaAdLSmgIR0B3mUZBLPD6dX2UKGgGR8BgGKVGCqZMaAdLZmgIR0B3mfR5TqB3dX2UKGgGR8BRyQssg+yJaAdLWWgIR0B3mhE0BOpLdX2UKGgGR8BX8cG9pRGdaAdLUmgIR0B3mhB+nZTRdX2UKGgGR8BY2NDMNc4YaAdLjmgIR0B3mhBSk0rLdX2UKGgGR8AzEiVB2OhkaAdLiWgIR0B3mlZW7voedX2UKGgGR8BSCT3Ehq0uaAdLamgIR0B3mxCOWBz4dX2UKGgGR8BU0N96Tnq3aAdLYmgIR0B3nQqLCN0edX2UKGgGR8BO7YQJ5VwQaAdLUWgIR0B3nS1JDmbLdX2UKGgGR8BdP42bXpW4aAdLVGgIR0B3nW8K5TZQdX2UKGgGR8BdZag7HQyAaAdLVGgIR0B3nfCuU2UCdX2UKGgGR8BRACtJWeYlaAdLUGgIR0B3njtrsSkCdX2UKGgGR8BS4hBRhttRaAdLSGgIR0B3ntl05lvqdX2UKGgGR8BUepoTPBznaAdLTmgIR0B3n/QswtaqdX2UKGgGR8BYHMOskpqiaAdLfmgIR0B3oGQQtjCpdX2UKGgGR8BQfLj94u9OaAdLV2gIR0B3oG9TP0I1dX2UKGgGR8BS7YvexfOVaAdLXGgIR0B3oLNiYsundX2UKGgGR8BY4bsByS3caAdLT2gIR0B3oTLr5ZbIdX2UKGgGR8BVMJaA4GUwaAdLUWgIR0B3oWay8jA0dX2UKGgGR8BPzZof0VafaAdLXmgIR0B3om+zt1IRdX2UKGgGR8BSrZIDoyKvaAdLQmgIR0B3oz2GqPwNdX2UKGgGR8BxNLcXWOIZaAdLZGgIR0B3o3uSfUWmdX2UKGgGR8BQgr6UJOWTaAdLbmgIR0B3o8FNcnmadX2UKGgGR8BSannU2DQJaAdLSmgIR0B3o9dxAB1cdX2UKGgGR8BUK6Eal1r7aAdLZ2gIR0B3pIaNuLrHdX2UKGgGR8BQ39tuUD+zaAdLU2gIR0B3pN6v7m+1dX2UKGgGR8BYoe4gA6uGaAdLWmgIR0B3ptaIN3GGdX2UKGgGR8BUvgSBbwBpaAdLRWgIR0B3pxARkEs8dX2UKGgGR8BOb4eDFqBVaAdLVWgIR0B3p2F0xM37dX2UKGgGR8BRhJS75Ec9aAdLamgIR0B3p2FFlTWHdX2UKGgGR8BaYJHuqm0maAdLXmgIR0B3qJYcNpdsdX2UKGgGR8BJvtD2JzkqaAdLY2gIR0B3qTyPMjeLdX2UKGgGR8BUvcL4N7SiaAdLamgIR0B3qZq59Vm0dX2UKGgGR8BWhAu7HyVfaAdLgmgIR0B3qc1UEPlNdX2UKGgGR8A3xTqB3A2yaAdLZGgIR0B3qgJ+lTFVdX2UKGgGR8BUzx4yGi5/aAdLYmgIR0B3quh11W8zdX2UKGgGR8BSmeM6zVtoaAdLW2gIR0B3q5moR7JGdX2UKGgGR8BTZY7muDBeaAdLY2gIR0B3rRSNwR5DdX2UKGgGR8BbWLGaQV9GaAdLRmgIR0B3rYDwH7gsdX2UKGgGR8BqNq15Sm65aAdLeGgIR0B3rd/QSi/PdX2UKGgGR8BRmWhIvrWzaAdLVWgIR0B3rlOfukULdX2UKGgGR8BYM194NZvDaAdLfGgIR0B3rn90ihWYdX2UKGgGR8BUVWFajesQaAdLVmgIR0B3rqJdjXnRdX2UKGgGR8BCEj3mFJxvaAdLimgIR0B3ryqyWzF/dX2UKGgGR8BOxOvdM0xeaAdLYmgIR0B3r+RQrMC+dX2UKGgGR8BVXgZflZHNaAdLWGgIR0B3sRFRYRukdX2UKGgGR8BQDnG4qgAZaAdLjGgIR0B3sU4//vORdX2UKGgGR8BU7JccENe/aAdLTGgIR0B3sfdk8RthdX2UKGgGR8BGPkgfU4JeaAdLeWgIR0B3s4150KZ2dX2UKGgGR8BQYM1XNke7aAdLbmgIR0B3s+CEpRXPdX2UKGgGR8BUFAdjoZAIaAdLSmgIR0B3tAvf0mMPdX2UKGgGR8BfwFTrE9+xaAdLXWgIR0B3tEdPtUn5dX2UKGgGR8BdhU7GNrCWaAdLT2gIR0B3tNuWKMvRdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 28,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9c4a9508724d88a7b9ae64f646fa426bd0e89f70e051a7100d0984606eeb3a5
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d62b8b1fb821de5a529d19e94442e1d6577c5f3c78b2370bd90b972dcaa1db34
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (187 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -178.1482507, "std_reward": 62.978435163628994, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-06T17:16:10.633850"}
|