danlund4 commited on
Commit
4536ecd
·
verified ·
1 Parent(s): 3f2a7b0

First PPO agent

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -178.15 +/- 62.98
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4bd2c648b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4bd2c64940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4bd2c649d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4bd2c64a60>", "_build": "<function ActorCriticPolicy._build at 0x7a4bd2c64af0>", "forward": "<function ActorCriticPolicy.forward at 0x7a4bd2c64b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4bd2c64c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4bd2c64ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a4bd2c64d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4bd2c64dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4bd2c64e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4bd2c64ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a4bf878e300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709744147404366488, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3ZTr5cJSa8iNdHPlMwdL+qDkY9+OU2vgAAgD8AAIA/QKtHvlkzZz8CtPm9jtdIv1w/fb4d89a9AAAAAAAAAABaHWA+AjNCP0AHtD5J6U2/9R5hPvKA1D0AAAAAAAAAAG2qSD5PV2c9AVsAPh0+Lr/qlsS92sQHPQAAAAAAAAAAg5KRvvNOXD8P8iS/uihOvwavNz1WgGK+AAAAAAAAAAA6BEK+tnzuPjJOEb4NAHO/bq/BvcMhkb0AAAAAAAAAAG2OCb4DCb4/nD8Ov8SD2L3V4dk8QpsKvgAAAAAAAAAAGq89PZ1/nz+6C1A+G2UHvzndOzrBqZs9AAAAAAAAAACTaeo+pc6hPyP64T4Eb/W+11bQPuNdZT4AAAAAAAAAAGb8YT337Mo/U8VgPqr9dj39pNC9DTAWvgAAAAAAAAAAy13WvoNQXj8WKYW+AAFAvxtByr7+Btw9AAAAAAAAAADNBBo8RSuXP8UtCz6eZiS/PAdvvr/+MbwAAAAAAAAAAOYNIz/TfPo+LWArP9eeXb+9D4Q+kasjPgAAAAAAAAAA89GavYbSsj9GKNO+W391vparAD0Nf8O7AAAAAAAAAACzZHe9Ip+jP4BpC7+OBCe/PqhCPXUUajwAAAAAAAAAAA1d/71gr8A/1UNOvlupFr5+QC++3U5qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEja7FsHjZOMAWyUS2WMAXSUR0B3f/kS26TXdX2UKGgGR8BVnfmknCwbaAdLVWgIR0B3gEEMb3oLdX2UKGgGR8BZLCRfWtlqaAdLdmgIR0B3gJ6u4gA7dX2UKGgGR8BOpnNX5nDjaAdLX2gIR0B3gLL2YfGNdX2UKGgGR8BHJBY/3WWhaAdLTmgIR0B3g1qxkd3jdX2UKGgGR8BYNHWvr4WUaAdLd2gIR0B3hGVY6nzhdX2UKGgGR8BVA2n4wh4daAdLXmgIR0B3hJLUTcqOdX2UKGgGR8BSlgTZg5R1aAdLaWgIR0B3hJJ+UhV3dX2UKGgGR8BHQnw5NoJzaAdLVWgIR0B3hkhNdqtYdX2UKGgGR8BN7pJf6XSjaAdLXWgIR0B3h6AUcn3MdX2UKGgGR8BZLQSJ0nw5aAdLcWgIR0B3iIjW07bMdX2UKGgGR8BnhakO7QLNaAdLWGgIR0B3iObpeNT+dX2UKGgGR8BVOD1oQFs6aAdLZ2gIR0B3iQtUXHindX2UKGgGR8BjEy/fwZwXaAdLc2gIR0B3iY0YTCcgdX2UKGgGR8Bl81VJcxCZaAdLd2gIR0B3ifCk43m3dX2UKGgGR8BS10x20Re1aAdLUmgIR0B3if+vQnhLdX2UKGgGR8BeBtV/+bVjaAdLdmgIR0B3ikVTJhfCdX2UKGgGR8BJ8M6JZW7waAdLeGgIR0B3ikLmZE2HdX2UKGgGR8Bjpc9r433paAdLb2gIR0B3iof7rLQpdX2UKGgGR8BpeRZ8rqdIaAdLiGgIR0B3ituqFRHgdX2UKGgGR8BgTX2ugYgraAdLZmgIR0B3i8RQJokBdX2UKGgGR8BafTLB9Cu2aAdLb2gIR0B3jEF2V3UydX2UKGgGR8BT+/SpiqhlaAdLnGgIR0B3jPi1iONpdX2UKGgGR8BXUQFotcv/aAdLgGgIR0B3jWcvugHvdX2UKGgGR8BE0BWgezUraAdLTWgIR0B3jhanrIHUdX2UKGgGR8BYmq+FlCkXaAdLPmgIR0B3jk1+AmRedX2UKGgGR8BTTj5CWu5jaAdLUmgIR0B3jnOcDr7gdX2UKGgGR8BW9uGGmDUWaAdLZmgIR0B3jz3UQTVUdX2UKGgGR8BfYTkQwsXjaAdLYWgIR0B3kNaEBbOedX2UKGgGR8BTsyr5qM3qaAdLWWgIR0B3kc2FWXC1dX2UKGgGR8BZoHuNPxhEaAdLi2gIR0B3kpw97ngYdX2UKGgGR8BFaNf5ULlWaAdLYGgIR0B3kwTewcHXdX2UKGgGR8BDEiojv/ipaAdLXWgIR0B3k6RfWtlqdX2UKGgGR8BV5mtyPuG9aAdLTmgIR0B3lBCVrylOdX2UKGgGR8BQaFpGnXNDaAdLd2gIR0B3lGNYKYzBdX2UKGgGR8BUrX5rP+n7aAdLdWgIR0B3lI9s7+1jdX2UKGgGR8BKUr3bmEGraAdLYGgIR0B3lLhky1u0dX2UKGgGR8Bd8ndO6/ZeaAdLeGgIR0B3lPZFocrBdX2UKGgGR8BBfKrBCUosaAdLUWgIR0B3lg14xDb8dX2UKGgGR8BJ4X/o7muDaAdLbGgIR0B3lovcrRShdX2UKGgGR8A4HlANXo1UaAdLTGgIR0B3lzd69kBkdX2UKGgGR8BgapH09QoDaAdLb2gIR0B3ly3G4qgAdX2UKGgGR8BVHPf0mMOxaAdLZGgIR0B3l5IWgvlEdX2UKGgGR0ArMrwOOKfnaAdLcmgIR0B3mBByCFsYdX2UKGgGR8BJ3qs2eg+RaAdLbGgIR0B3mNoDgZTAdX2UKGgGR8BdPqBRQ79yaAdLUGgIR0B3mPjWCmMwdX2UKGgGR8BFbpOvdM0xaAdLYWgIR0B3mPh4t6HCdX2UKGgGR8BQWNvwVj7RaAdLSmgIR0B3mUZBLPD6dX2UKGgGR8BgGKVGCqZMaAdLZmgIR0B3mfR5TqB3dX2UKGgGR8BRyQssg+yJaAdLWWgIR0B3mhE0BOpLdX2UKGgGR8BX8cG9pRGdaAdLUmgIR0B3mhB+nZTRdX2UKGgGR8BY2NDMNc4YaAdLjmgIR0B3mhBSk0rLdX2UKGgGR8AzEiVB2OhkaAdLiWgIR0B3mlZW7voedX2UKGgGR8BSCT3Ehq0uaAdLamgIR0B3mxCOWBz4dX2UKGgGR8BU0N96Tnq3aAdLYmgIR0B3nQqLCN0edX2UKGgGR8BO7YQJ5VwQaAdLUWgIR0B3nS1JDmbLdX2UKGgGR8BdP42bXpW4aAdLVGgIR0B3nW8K5TZQdX2UKGgGR8BdZag7HQyAaAdLVGgIR0B3nfCuU2UCdX2UKGgGR8BRACtJWeYlaAdLUGgIR0B3njtrsSkCdX2UKGgGR8BS4hBRhttRaAdLSGgIR0B3ntl05lvqdX2UKGgGR8BUepoTPBznaAdLTmgIR0B3n/QswtaqdX2UKGgGR8BYHMOskpqiaAdLfmgIR0B3oGQQtjCpdX2UKGgGR8BQfLj94u9OaAdLV2gIR0B3oG9TP0I1dX2UKGgGR8BS7YvexfOVaAdLXGgIR0B3oLNiYsundX2UKGgGR8BY4bsByS3caAdLT2gIR0B3oTLr5ZbIdX2UKGgGR8BVMJaA4GUwaAdLUWgIR0B3oWay8jA0dX2UKGgGR8BPzZof0VafaAdLXmgIR0B3om+zt1IRdX2UKGgGR8BSrZIDoyKvaAdLQmgIR0B3oz2GqPwNdX2UKGgGR8BxNLcXWOIZaAdLZGgIR0B3o3uSfUWmdX2UKGgGR8BQgr6UJOWTaAdLbmgIR0B3o8FNcnmadX2UKGgGR8BSannU2DQJaAdLSmgIR0B3o9dxAB1cdX2UKGgGR8BUK6Eal1r7aAdLZ2gIR0B3pIaNuLrHdX2UKGgGR8BQ39tuUD+zaAdLU2gIR0B3pN6v7m+1dX2UKGgGR8BYoe4gA6uGaAdLWmgIR0B3ptaIN3GGdX2UKGgGR8BUvgSBbwBpaAdLRWgIR0B3pxARkEs8dX2UKGgGR8BOb4eDFqBVaAdLVWgIR0B3p2F0xM37dX2UKGgGR8BRhJS75Ec9aAdLamgIR0B3p2FFlTWHdX2UKGgGR8BaYJHuqm0maAdLXmgIR0B3qJYcNpdsdX2UKGgGR8BJvtD2JzkqaAdLY2gIR0B3qTyPMjeLdX2UKGgGR8BUvcL4N7SiaAdLamgIR0B3qZq59Vm0dX2UKGgGR8BWhAu7HyVfaAdLgmgIR0B3qc1UEPlNdX2UKGgGR8A3xTqB3A2yaAdLZGgIR0B3qgJ+lTFVdX2UKGgGR8BUzx4yGi5/aAdLYmgIR0B3quh11W8zdX2UKGgGR8BSmeM6zVtoaAdLW2gIR0B3q5moR7JGdX2UKGgGR8BTZY7muDBeaAdLY2gIR0B3rRSNwR5DdX2UKGgGR8BbWLGaQV9GaAdLRmgIR0B3rYDwH7gsdX2UKGgGR8BqNq15Sm65aAdLeGgIR0B3rd/QSi/PdX2UKGgGR8BRmWhIvrWzaAdLVWgIR0B3rlOfukULdX2UKGgGR8BYM194NZvDaAdLfGgIR0B3rn90ihWYdX2UKGgGR8BUVWFajesQaAdLVmgIR0B3rqJdjXnRdX2UKGgGR8BCEj3mFJxvaAdLimgIR0B3ryqyWzF/dX2UKGgGR8BOxOvdM0xeaAdLYmgIR0B3r+RQrMC+dX2UKGgGR8BVXgZflZHNaAdLWGgIR0B3sRFRYRukdX2UKGgGR8BQDnG4qgAZaAdLjGgIR0B3sU4//vORdX2UKGgGR8BU7JccENe/aAdLTGgIR0B3sfdk8RthdX2UKGgGR8BGPkgfU4JeaAdLeWgIR0B3s4150KZ2dX2UKGgGR8BQYM1XNke7aAdLbmgIR0B3s+CEpRXPdX2UKGgGR8BUFAdjoZAIaAdLSmgIR0B3tAvf0mMPdX2UKGgGR8BfwFTrE9+xaAdLXWgIR0B3tEdPtUn5dX2UKGgGR8BdhU7GNrCWaAdLT2gIR0B3tNuWKMvRdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b098b33c9d7f1536643fd00c2a45b326d0fa7fdad049ed5bbe42a6b327ee57ad
3
+ size 147947
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a4bd2c648b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a4bd2c64940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a4bd2c649d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a4bd2c64a60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a4bd2c64af0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a4bd2c64b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a4bd2c64c10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a4bd2c64ca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a4bd2c64d30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a4bd2c64dc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a4bd2c64e50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a4bd2c64ee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a4bf878e300>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1709744147404366488,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3ZTr5cJSa8iNdHPlMwdL+qDkY9+OU2vgAAgD8AAIA/QKtHvlkzZz8CtPm9jtdIv1w/fb4d89a9AAAAAAAAAABaHWA+AjNCP0AHtD5J6U2/9R5hPvKA1D0AAAAAAAAAAG2qSD5PV2c9AVsAPh0+Lr/qlsS92sQHPQAAAAAAAAAAg5KRvvNOXD8P8iS/uihOvwavNz1WgGK+AAAAAAAAAAA6BEK+tnzuPjJOEb4NAHO/bq/BvcMhkb0AAAAAAAAAAG2OCb4DCb4/nD8Ov8SD2L3V4dk8QpsKvgAAAAAAAAAAGq89PZ1/nz+6C1A+G2UHvzndOzrBqZs9AAAAAAAAAACTaeo+pc6hPyP64T4Eb/W+11bQPuNdZT4AAAAAAAAAAGb8YT337Mo/U8VgPqr9dj39pNC9DTAWvgAAAAAAAAAAy13WvoNQXj8WKYW+AAFAvxtByr7+Btw9AAAAAAAAAADNBBo8RSuXP8UtCz6eZiS/PAdvvr/+MbwAAAAAAAAAAOYNIz/TfPo+LWArP9eeXb+9D4Q+kasjPgAAAAAAAAAA89GavYbSsj9GKNO+W391vparAD0Nf8O7AAAAAAAAAACzZHe9Ip+jP4BpC7+OBCe/PqhCPXUUajwAAAAAAAAAAA1d/71gr8A/1UNOvlupFr5+QC++3U5qPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEja7FsHjZOMAWyUS2WMAXSUR0B3f/kS26TXdX2UKGgGR8BVnfmknCwbaAdLVWgIR0B3gEEMb3oLdX2UKGgGR8BZLCRfWtlqaAdLdmgIR0B3gJ6u4gA7dX2UKGgGR8BOpnNX5nDjaAdLX2gIR0B3gLL2YfGNdX2UKGgGR8BHJBY/3WWhaAdLTmgIR0B3g1qxkd3jdX2UKGgGR8BYNHWvr4WUaAdLd2gIR0B3hGVY6nzhdX2UKGgGR8BVA2n4wh4daAdLXmgIR0B3hJLUTcqOdX2UKGgGR8BSlgTZg5R1aAdLaWgIR0B3hJJ+UhV3dX2UKGgGR8BHQnw5NoJzaAdLVWgIR0B3hkhNdqtYdX2UKGgGR8BN7pJf6XSjaAdLXWgIR0B3h6AUcn3MdX2UKGgGR8BZLQSJ0nw5aAdLcWgIR0B3iIjW07bMdX2UKGgGR8BnhakO7QLNaAdLWGgIR0B3iObpeNT+dX2UKGgGR8BVOD1oQFs6aAdLZ2gIR0B3iQtUXHindX2UKGgGR8BjEy/fwZwXaAdLc2gIR0B3iY0YTCcgdX2UKGgGR8Bl81VJcxCZaAdLd2gIR0B3ifCk43m3dX2UKGgGR8BS10x20Re1aAdLUmgIR0B3if+vQnhLdX2UKGgGR8BeBtV/+bVjaAdLdmgIR0B3ikVTJhfCdX2UKGgGR8BJ8M6JZW7waAdLeGgIR0B3ikLmZE2HdX2UKGgGR8Bjpc9r433paAdLb2gIR0B3iof7rLQpdX2UKGgGR8BpeRZ8rqdIaAdLiGgIR0B3ituqFRHgdX2UKGgGR8BgTX2ugYgraAdLZmgIR0B3i8RQJokBdX2UKGgGR8BafTLB9Cu2aAdLb2gIR0B3jEF2V3UydX2UKGgGR8BT+/SpiqhlaAdLnGgIR0B3jPi1iONpdX2UKGgGR8BXUQFotcv/aAdLgGgIR0B3jWcvugHvdX2UKGgGR8BE0BWgezUraAdLTWgIR0B3jhanrIHUdX2UKGgGR8BYmq+FlCkXaAdLPmgIR0B3jk1+AmRedX2UKGgGR8BTTj5CWu5jaAdLUmgIR0B3jnOcDr7gdX2UKGgGR8BW9uGGmDUWaAdLZmgIR0B3jz3UQTVUdX2UKGgGR8BfYTkQwsXjaAdLYWgIR0B3kNaEBbOedX2UKGgGR8BTsyr5qM3qaAdLWWgIR0B3kc2FWXC1dX2UKGgGR8BZoHuNPxhEaAdLi2gIR0B3kpw97ngYdX2UKGgGR8BFaNf5ULlWaAdLYGgIR0B3kwTewcHXdX2UKGgGR8BDEiojv/ipaAdLXWgIR0B3k6RfWtlqdX2UKGgGR8BV5mtyPuG9aAdLTmgIR0B3lBCVrylOdX2UKGgGR8BQaFpGnXNDaAdLd2gIR0B3lGNYKYzBdX2UKGgGR8BUrX5rP+n7aAdLdWgIR0B3lI9s7+1jdX2UKGgGR8BKUr3bmEGraAdLYGgIR0B3lLhky1u0dX2UKGgGR8Bd8ndO6/ZeaAdLeGgIR0B3lPZFocrBdX2UKGgGR8BBfKrBCUosaAdLUWgIR0B3lg14xDb8dX2UKGgGR8BJ4X/o7muDaAdLbGgIR0B3lovcrRShdX2UKGgGR8A4HlANXo1UaAdLTGgIR0B3lzd69kBkdX2UKGgGR8BgapH09QoDaAdLb2gIR0B3ly3G4qgAdX2UKGgGR8BVHPf0mMOxaAdLZGgIR0B3l5IWgvlEdX2UKGgGR0ArMrwOOKfnaAdLcmgIR0B3mBByCFsYdX2UKGgGR8BJ3qs2eg+RaAdLbGgIR0B3mNoDgZTAdX2UKGgGR8BdPqBRQ79yaAdLUGgIR0B3mPjWCmMwdX2UKGgGR8BFbpOvdM0xaAdLYWgIR0B3mPh4t6HCdX2UKGgGR8BQWNvwVj7RaAdLSmgIR0B3mUZBLPD6dX2UKGgGR8BgGKVGCqZMaAdLZmgIR0B3mfR5TqB3dX2UKGgGR8BRyQssg+yJaAdLWWgIR0B3mhE0BOpLdX2UKGgGR8BX8cG9pRGdaAdLUmgIR0B3mhB+nZTRdX2UKGgGR8BY2NDMNc4YaAdLjmgIR0B3mhBSk0rLdX2UKGgGR8AzEiVB2OhkaAdLiWgIR0B3mlZW7voedX2UKGgGR8BSCT3Ehq0uaAdLamgIR0B3mxCOWBz4dX2UKGgGR8BU0N96Tnq3aAdLYmgIR0B3nQqLCN0edX2UKGgGR8BO7YQJ5VwQaAdLUWgIR0B3nS1JDmbLdX2UKGgGR8BdP42bXpW4aAdLVGgIR0B3nW8K5TZQdX2UKGgGR8BdZag7HQyAaAdLVGgIR0B3nfCuU2UCdX2UKGgGR8BRACtJWeYlaAdLUGgIR0B3njtrsSkCdX2UKGgGR8BS4hBRhttRaAdLSGgIR0B3ntl05lvqdX2UKGgGR8BUepoTPBznaAdLTmgIR0B3n/QswtaqdX2UKGgGR8BYHMOskpqiaAdLfmgIR0B3oGQQtjCpdX2UKGgGR8BQfLj94u9OaAdLV2gIR0B3oG9TP0I1dX2UKGgGR8BS7YvexfOVaAdLXGgIR0B3oLNiYsundX2UKGgGR8BY4bsByS3caAdLT2gIR0B3oTLr5ZbIdX2UKGgGR8BVMJaA4GUwaAdLUWgIR0B3oWay8jA0dX2UKGgGR8BPzZof0VafaAdLXmgIR0B3om+zt1IRdX2UKGgGR8BSrZIDoyKvaAdLQmgIR0B3oz2GqPwNdX2UKGgGR8BxNLcXWOIZaAdLZGgIR0B3o3uSfUWmdX2UKGgGR8BQgr6UJOWTaAdLbmgIR0B3o8FNcnmadX2UKGgGR8BSannU2DQJaAdLSmgIR0B3o9dxAB1cdX2UKGgGR8BUK6Eal1r7aAdLZ2gIR0B3pIaNuLrHdX2UKGgGR8BQ39tuUD+zaAdLU2gIR0B3pN6v7m+1dX2UKGgGR8BYoe4gA6uGaAdLWmgIR0B3ptaIN3GGdX2UKGgGR8BUvgSBbwBpaAdLRWgIR0B3pxARkEs8dX2UKGgGR8BOb4eDFqBVaAdLVWgIR0B3p2F0xM37dX2UKGgGR8BRhJS75Ec9aAdLamgIR0B3p2FFlTWHdX2UKGgGR8BaYJHuqm0maAdLXmgIR0B3qJYcNpdsdX2UKGgGR8BJvtD2JzkqaAdLY2gIR0B3qTyPMjeLdX2UKGgGR8BUvcL4N7SiaAdLamgIR0B3qZq59Vm0dX2UKGgGR8BWhAu7HyVfaAdLgmgIR0B3qc1UEPlNdX2UKGgGR8A3xTqB3A2yaAdLZGgIR0B3qgJ+lTFVdX2UKGgGR8BUzx4yGi5/aAdLYmgIR0B3quh11W8zdX2UKGgGR8BSmeM6zVtoaAdLW2gIR0B3q5moR7JGdX2UKGgGR8BTZY7muDBeaAdLY2gIR0B3rRSNwR5DdX2UKGgGR8BbWLGaQV9GaAdLRmgIR0B3rYDwH7gsdX2UKGgGR8BqNq15Sm65aAdLeGgIR0B3rd/QSi/PdX2UKGgGR8BRmWhIvrWzaAdLVWgIR0B3rlOfukULdX2UKGgGR8BYM194NZvDaAdLfGgIR0B3rn90ihWYdX2UKGgGR8BUVWFajesQaAdLVmgIR0B3rqJdjXnRdX2UKGgGR8BCEj3mFJxvaAdLimgIR0B3ryqyWzF/dX2UKGgGR8BOxOvdM0xeaAdLYmgIR0B3r+RQrMC+dX2UKGgGR8BVXgZflZHNaAdLWGgIR0B3sRFRYRukdX2UKGgGR8BQDnG4qgAZaAdLjGgIR0B3sU4//vORdX2UKGgGR8BU7JccENe/aAdLTGgIR0B3sfdk8RthdX2UKGgGR8BGPkgfU4JeaAdLeWgIR0B3s4150KZ2dX2UKGgGR8BQYM1XNke7aAdLbmgIR0B3s+CEpRXPdX2UKGgGR8BUFAdjoZAIaAdLSmgIR0B3tAvf0mMPdX2UKGgGR8BfwFTrE9+xaAdLXWgIR0B3tEdPtUn5dX2UKGgGR8BdhU7GNrCWaAdLT2gIR0B3tNuWKMvRdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 28,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c4a9508724d88a7b9ae64f646fa426bd0e89f70e051a7100d0984606eeb3a5
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d62b8b1fb821de5a529d19e94442e1d6577c5f3c78b2370bd90b972dcaa1db34
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (187 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -178.1482507, "std_reward": 62.978435163628994, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-06T17:16:10.633850"}