File size: 9,957 Bytes
1ba06ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
from __future__ import division
import math
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
#import matplotlib.pyplot as plt
#import matplotlib.patches as patches
def load_classes(path):
"""
Loads class labels at 'path'
"""
fp = open(path, "r")
names = fp.read().split("\n")[:-1]
return names
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.0], recall, [1.0]))
mpre = np.concatenate(([0.0], precision, [0.0]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def bbox_iou(box1, box2, x1y1x2y2=True):
"""
Returns the IoU of two bounding boxes
"""
if not x1y1x2y2:
# Transform from center and width to exact coordinates
b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
else:
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
# get the corrdinates of the intersection rectangle
inter_rect_x1 = torch.max(b1_x1, b2_x1)
inter_rect_y1 = torch.max(b1_y1, b2_y1)
inter_rect_x2 = torch.min(b1_x2, b2_x2)
inter_rect_y2 = torch.min(b1_y2, b2_y2)
# Intersection area
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(
inter_rect_y2 - inter_rect_y1 + 1, min=0
)
# Union Area
b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
return iou
def bbox_iou_numpy(box1, box2):
"""Computes IoU between bounding boxes.
Parameters
----------
box1 : ndarray
(N, 4) shaped array with bboxes
box2 : ndarray
(M, 4) shaped array with bboxes
Returns
-------
: ndarray
(N, M) shaped array with IoUs
"""
area = (box2[:, 2] - box2[:, 0]) * (box2[:, 3] - box2[:, 1])
iw = np.minimum(np.expand_dims(box1[:, 2], axis=1), box2[:, 2]) - np.maximum(
np.expand_dims(box1[:, 0], 1), box2[:, 0]
)
ih = np.minimum(np.expand_dims(box1[:, 3], axis=1), box2[:, 3]) - np.maximum(
np.expand_dims(box1[:, 1], 1), box2[:, 1]
)
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
ua = np.expand_dims((box1[:, 2] - box1[:, 0]) * (box1[:, 3] - box1[:, 1]), axis=1) + area - iw * ih
ua = np.maximum(ua, np.finfo(float).eps)
intersection = iw * ih
return intersection / ua
def non_max_suppression(prediction, num_classes, conf_thres=0.5, nms_thres=0.4):
"""
Removes detections with lower object confidence score than 'conf_thres' and performs
Non-Maximum Suppression to further filter detections.
Returns detections with shape:
(x1, y1, x2, y2, object_conf, class_score, class_pred)
"""
# From (center x, center y, width, height) to (x1, y1, x2, y2)
box_corner = prediction.new(prediction.shape)
box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
prediction[:, :, :4] = box_corner[:, :, :4]
output = [None for _ in range(len(prediction))]
for image_i, image_pred in enumerate(prediction):
# Filter out confidence scores below threshold
conf_mask = (image_pred[:, 4] >= conf_thres).squeeze()
image_pred = image_pred[conf_mask]
# If none are remaining => process next image
if not image_pred.size(0):
continue
# Get score and class with highest confidence
class_conf, class_pred = torch.max(image_pred[:, 5 : 5 + num_classes], 1, keepdim=True)
# Detections ordered as (x1, y1, x2, y2, obj_conf, class_conf, class_pred)
detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1)
# Iterate through all predicted classes
unique_labels = detections[:, -1].cpu().unique()
if prediction.is_cuda:
unique_labels = unique_labels.cuda()
for c in unique_labels:
# Get the detections with the particular class
detections_class = detections[detections[:, -1] == c]
# Sort the detections by maximum objectness confidence
_, conf_sort_index = torch.sort(detections_class[:, 4], descending=True)
detections_class = detections_class[conf_sort_index]
# Perform non-maximum suppression
max_detections = []
while detections_class.size(0):
# Get detection with highest confidence and save as max detection
max_detections.append(detections_class[0].unsqueeze(0))
# Stop if we're at the last detection
if len(detections_class) == 1:
break
# Get the IOUs for all boxes with lower confidence
ious = bbox_iou(max_detections[-1], detections_class[1:])
# Remove detections with IoU >= NMS threshold
detections_class = detections_class[1:][ious < nms_thres]
max_detections = torch.cat(max_detections).data
# Add max detections to outputs
output[image_i] = (
max_detections if output[image_i] is None else torch.cat((output[image_i], max_detections))
)
return output
def build_targets(
pred_boxes, pred_conf, pred_cls, target, anchors, num_anchors, num_classes, grid_size, ignore_thres, img_dim
):
nB = target.size(0)
nA = num_anchors
nC = num_classes
nG = grid_size
mask = torch.zeros(nB, nA, nG, nG)
conf_mask = torch.ones(nB, nA, nG, nG)
tx = torch.zeros(nB, nA, nG, nG)
ty = torch.zeros(nB, nA, nG, nG)
tw = torch.zeros(nB, nA, nG, nG)
th = torch.zeros(nB, nA, nG, nG)
tconf = torch.ByteTensor(nB, nA, nG, nG).fill_(0)
tcls = torch.ByteTensor(nB, nA, nG, nG, nC).fill_(0)
nGT = 0
nCorrect = 0
for b in range(nB):
for t in range(target.shape[1]):
if target[b, t].sum() == 0:
continue
nGT += 1
# Convert to position relative to box
gx = target[b, t, 1] * nG
gy = target[b, t, 2] * nG
gw = target[b, t, 3] * nG
gh = target[b, t, 4] * nG
# Get grid box indices
gi = int(gx)
gj = int(gy)
# Get shape of gt box
gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
# Get shape of anchor box
anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((len(anchors), 2)), np.array(anchors)), 1))
# Calculate iou between gt and anchor shapes
anch_ious = bbox_iou(gt_box, anchor_shapes)
# Where the overlap is larger than threshold set mask to zero (ignore)
conf_mask[b, anch_ious > ignore_thres, gj, gi] = 0
# Find the best matching anchor box
best_n = np.argmax(anch_ious)
# Get ground truth box
gt_box = torch.FloatTensor(np.array([gx, gy, gw, gh])).unsqueeze(0)
# Get the best prediction
pred_box = pred_boxes[b, best_n, gj, gi].unsqueeze(0)
# Masks
mask[b, best_n, gj, gi] = 1
conf_mask[b, best_n, gj, gi] = 1
# Coordinates
tx[b, best_n, gj, gi] = gx - gi
ty[b, best_n, gj, gi] = gy - gj
# Width and height
tw[b, best_n, gj, gi] = math.log(gw / anchors[best_n][0] + 1e-16)
th[b, best_n, gj, gi] = math.log(gh / anchors[best_n][1] + 1e-16)
# One-hot encoding of label
target_label = int(target[b, t, 0])
tcls[b, best_n, gj, gi, target_label] = 1
tconf[b, best_n, gj, gi] = 1
# Calculate iou between ground truth and best matching prediction
iou = bbox_iou(gt_box, pred_box, x1y1x2y2=False)
pred_label = torch.argmax(pred_cls[b, best_n, gj, gi])
score = pred_conf[b, best_n, gj, gi]
if iou > 0.5 and pred_label == target_label and score > 0.5:
nCorrect += 1
return nGT, nCorrect, mask, conf_mask, tx, ty, tw, th, tconf, tcls
def to_categorical(y, num_classes):
""" 1-hot encodes a tensor """
return torch.from_numpy(np.eye(num_classes, dtype="uint8")[y])
|