--- library_name: keras license: mit language: - en pipeline_tag: image-to-image --- ## Metrics PSNR - Validation set: 21.70 ## Usage ### Download Model ```bash git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape ``` ```bash cd autoencoder-grayscale2color-landscape git lfs pull ``` ### Import Libraries ```python from PIL import Image import os import numpy as np import tensorflow as tf import requests from skimage.color import lab2rgb import matplotlib.pyplot as plt from models.auto_encoder_gray2color import SpatialAttention ``` ### Load Model file ```python # Load the saved model once at startup load_model_path = "./ckpts/best_model.h5" print(f"Loading model from {load_model_path}...") loaded_autoencoder = tf.keras.models.load_model( load_model_path, custom_objects={'SpatialAttention': SpatialAttention} ) ``` ### Define Functions ```python def process_image(input_img): # Store original input dimensions original_width, original_height = input_img.size # Convert PIL Image to grayscale and resize to model input size img = input_img.convert("L") # Convert to grayscale (single channel) img = img.resize((WIDTH, HEIGHT)) # Resize to 512x512 for model img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0 # Normalize to [0, 1] img_array = img_array[None, ..., 0:1] # Add batch dimension, shape: (1, 512, 512, 1) # Run inference (assuming loaded_autoencoder predicts a*b* channels) output_array = loaded_autoencoder.predict(img_array) # Shape: (1, 512, 512, 2) for a*b* print("output_array shape: ", output_array.shape) # Extract L* (grayscale input) and a*b* (model output) L_channel = img_array[0, :, :, 0] * 100.0 # Denormalize L* to [0, 100] ab_channels = output_array[0] * 128.0 # Denormalize a*b* to [-128, 128] # Combine L*, a*, b* into a 3-channel L*a*b* image lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1) # Shape: (512, 512, 3) # Convert L*a*b* to RGB rgb_array = lab2rgb(lab_image) # Convert to RGB, output in [0, 1] rgb_array = np.clip(rgb_array, 0, 1) * 255.0 # Scale to [0, 255] rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB") # Create RGB PIL image # Resize output image to match input image resolution rgb_image = rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS) return rgb_image def process_and_plot_images(input_path): # Read input image input_img = Image.open(input_path) # Process the image (placeholder for your process_image function) output_img = process_image(input_img) # Save output image to output.jpg output_img.save("output.jpg") return input_img, output_img def plot_in_out_images(input_img, output_img): # Create a figure with two subplots for input and output images plt.figure(figsize=(17, 8), dpi=300) # Set DPI to 300 # Plot input image plt.subplot(1, 2, 1) plt.imshow(input_img, cmap='gray') plt.title("Input Image") plt.axis('off') # Hide axes for cleaner display # Plot output image plt.subplot(1, 2, 2) plt.imshow(output_img, cmap='gray') plt.title("Output Image") plt.axis('off') # Hide axes for cleaner display # Save the figure as output.jpg with 300 DPI plt.savefig("output.jpg", dpi=300, bbox_inches='tight') # Show the plot plt.show() ``` ### Inference ```python # Example usage WIDTH, HEIGHT = 512, 512 # Replace 'input_image.jpg' with the path to your image image_path = "" input_img, output_img = process_and_plot_images(image_path) plot_in_out_images(input_img, output_img) ``` ### Example Output ![Plot Image](./examples/model_output.jpg)