Model save
Browse files- README.md +83 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: MCG-NJU/videomae-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: videomae-base-finetuned-kisa
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# videomae-base-finetuned-kisa
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 4.2647
|
22 |
+
- Accuracy: 0.4913
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.05
|
48 |
+
- training_steps: 2725
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
54 |
+
| 0.0741 | 0.0404 | 110 | 1.1353 | 0.5 |
|
55 |
+
| 0.0259 | 1.0404 | 220 | 3.7142 | 0.1183 |
|
56 |
+
| 0.5784 | 2.0404 | 330 | 2.2692 | 0.5 |
|
57 |
+
| 0.1384 | 3.0404 | 440 | 1.3726 | 0.5178 |
|
58 |
+
| 0.513 | 4.0404 | 550 | 2.5340 | 0.3728 |
|
59 |
+
| 0.0156 | 5.0404 | 660 | 2.3487 | 0.2041 |
|
60 |
+
| 0.0033 | 6.0404 | 770 | 4.4601 | 0.1953 |
|
61 |
+
| 0.0071 | 7.0404 | 880 | 4.6045 | 0.0917 |
|
62 |
+
| 0.004 | 8.0404 | 990 | 3.4062 | 0.4083 |
|
63 |
+
| 0.0017 | 9.0404 | 1100 | 2.4961 | 0.4941 |
|
64 |
+
| 0.4934 | 10.0404 | 1210 | 2.9785 | 0.4941 |
|
65 |
+
| 0.43 | 11.0404 | 1320 | 3.7030 | 0.5207 |
|
66 |
+
| 0.0014 | 12.0404 | 1430 | 2.5479 | 0.2012 |
|
67 |
+
| 0.0021 | 13.0404 | 1540 | 4.0235 | 0.3195 |
|
68 |
+
| 0.2387 | 14.0404 | 1650 | 4.6049 | 0.2337 |
|
69 |
+
| 0.0009 | 15.0404 | 1760 | 4.3070 | 0.2485 |
|
70 |
+
| 0.0004 | 16.0404 | 1870 | 4.4573 | 0.2515 |
|
71 |
+
| 0.5939 | 17.0404 | 1980 | 4.3423 | 0.3550 |
|
72 |
+
| 0.0013 | 18.0404 | 2090 | 4.3365 | 0.3047 |
|
73 |
+
| 0.0015 | 19.0404 | 2200 | 4.0964 | 0.2426 |
|
74 |
+
| 0.0032 | 20.0404 | 2310 | 4.1795 | 0.2988 |
|
75 |
+
| 0.0006 | 21.0404 | 2420 | 4.1612 | 0.3136 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.48.1
|
81 |
+
- Pytorch 2.5.1+cu121
|
82 |
+
- Datasets 3.2.0
|
83 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344937368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7442df10c1c37b7d84772382df9dd0a80efd7e5d17bb51a219e56b7bf6134ab
|
3 |
size 344937368
|